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A submodel of the general diagnostic classification models for multiple choice 

(GDCM-MC), the excluding guessing from the correct answer (EGCA) model, was first 

introduced because the submodel with kernel extended reparameterized unified model 

(ERUM) can be compared directly to the dichotomous reduced reparameterized unified 

model (RRUM) without model induced bias. 

 A simulation study was used to demonstrate this equivalence of the EGCA 

parameters of the correct options and the RRUM item parameters. At the same time, the 

simulation study was also used to demonstrate the equivalence of the two models when 

there were no skills or misconceptions measured by the incorrect options, and show the 

improvement of the EGCA estimation when distractors are created to provide additional 

information. The results confirmed the equivalence of the EGCA parameters of the 

correct options and the RRUM item parameters. The results also show that the correct 

classification rates (CCRs) and test-level cognitive diagnostic index (𝐶𝐶𝐶𝐶𝐼𝐼•) were the 

same for the two models when there was no informative distractor. Additionally, by 

including weakly informative distractors, the EGCA showed higher CCRs and 𝐶𝐶𝐶𝐶𝐼𝐼• than 

the RRUM. When the distractors were strongly informative, the EGCA had much higher 

CCRs and 𝐶𝐶𝐶𝐶𝐼𝐼• The studies also showed that CCRs and 𝐶𝐶𝐶𝐶𝐼𝐼• increased when the sample 

size, test length, and item quality increased, as well as when the number of measured test 

skills and misconceptions decreased.  



A real-world example was used to compare the classification differences and 

predictability of the classification on the selection of the options between the two models 

in a distractor-driven assessment. The results show that the profile classification 

agreement was 48%, and the classification based on the EGCA was more correlated with 

the students’ selection of the correct or the misconception-embedded options than the 

classification based on the RRUM. The results indicate that the EGCA provides more 

realistic classification than the RRUM. The results of both simulation and the real data 

studies suggest that the polytomous diagnostic classification models (DCMs), rather than 

the dichotomous DCMs, should be used when the multiple-choice items have informative 

distractors. 
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CHAPTER I 

INTRODUCTION 
 
 
 The purpose of an educational assessment is to make inferences about teaching, 

learning and students’ specific area of knowledge (Standard, 2014). Educational 

assessment scores can indicate if teaching goals have been achieved and students have 

successfully mastered the knowledge and skills in a specific domain. Scores are often 

used to inform certification decisions. Educational testing can involve low (e.g., 

classroom assessment). or high stakes (e.g., licensure exams). Formative assessment, an 

assessment used to provide learning and teaching feedback, is typically a low-stakes test. 

The students can learn about strengths and weaknesses in skills, knowledge, and abilities, 

and teachers use the information to improve their instruction by addressing the areas in 

which the students need more assistance. 

 In contrast to low-stakes testing, when a result is used to provide an overall 

evaluation of students and teachers over a learning period, the assessment is referred to as 

a summative assessment. Summative assessments are often high stakes. For example, the 

summative scores of a course can be used to indicate whether students can continue on to 

higher-level courses. Such high-stakes assessments are often standardized and 

administered at a large-scale level. Cizek (2001) suggested that high-stakes tests are 

usually reliable, free of bias, and related to public goals because greater effort has been 

spent on development and calibration to ensure the quality of the test. Cizek (2001)
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also argued that high-stakes testing can be used to accommodate minority or disability 

groups, help the public to learn about students and school performance, and serve as an 

accurate piece of information for students to learn their achievement levels in different 

subjects. Moreover, using high-stakes testing to evaluate the performance of teachers can 

stimulate educators to improve their instruction and enable more critical classroom 

assessments (Cizek, 2001). 

 Standardized summative testing can be productive for students, educators, and 

other stakeholders at global levels. However, formative assessments do have some 

advantages over summative assessments. Leighton et al. (2010) researched teachers’ 

beliefs about classroom assessment. They found that educators believed that classroom 

assessments could provide a better understanding of students’ learning process and that 

such assessments were more likely to trigger students’ learning than standardized 

summative assessments. Klute, Apthorp, Harlacher, and Reale (2017) performed a meta-

analysis and found that students given formative assessments have better outcomes than 

students who have not; moreover, that students have higher math scores when formative 

assessments are used along with lectures.  

Although formative assessments can provide detailed diagnostic feedback, they 

are not as accurate as high-stakes summative tests, because most educators are not 

experts in test development. As such, relying on educators to develop formative 

assessments can be challenging and problematic. Therefore, a need exists to create 

accurate, formative tests to supply better diagnostic information about student skills, 

knowledge, and abilities. For example, test developers can use an evidence-centered 
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design (Mislevy, Almond, & Lukas, 2003) to create a test that targets various skills 

(Rupp, Templin & Henson, 2010).  

 In addition to the development of an instrument or test, appropriate models should 

be used that best extrapolate information from the examinees’ responses. For educational 

assessment modeling, the differences between the goals of summative and formative 

assessments are reflected by selecting a unidimensional or multidimensional latent-

attributes model. For example, item response theory (IRT) models are commonly used to 

examine unidimensional continuous latent attributes. IRT models are widely used by 

psychometricians because they can help practitioners examine the item qualities (e.g., the 

difficulty level of an item) and examinees’ continuous attributes (e.g., math ability) 

separately. However, if it necessary to attain more diagnostic information regarding an 

examinee’s set of abilities (i.e., formative assessment), an extension of unidimensional 

IRT models—that is, multidimensional IRT (MIRT) models—can be used.  

Unfortunately, MIRT models have certain application limitations. For example, 

the computational burden for MIRT models can be very high when using the expectation-

maximization algorithm (Cai, 2010; Han & Paek, 2014). The computation time increases 

exponentially as the number of dimensions or latent attributes increase, and it can be 

difficult to estimate the multiple latent abilities (Cai, 2010). Additionally, a large number 

of examinees and longer tests have been needed to estimate the multiple abilities 

accurately. As a result, other models have been proposed to address the shortcomings of 

MIRT models.  
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One method is to treat the different ability scales as dichotomous instead of 

continuous. Diagnostic Classification Models (DCMs), which model discrete latent 

attributes, can be used to provide diagnostic information about examinees’ attributes. 

Similar to IRT models, DCMs also separate item-level properties and latent attributes, 

which can assist practitioners in examining both item quality and diagnostic information 

of the examinees. For the past two decades, many general DCMs have been developed 

(de la Torre, 2010; Henson, Templin, Willse, 2009; von Davier, 2005). Similar to the 

development of IRT models, DCMs originally focused on modeling dichotomous 

responses and, more recently, such models have focused on polytomous responses. For 

example, ordinal scale DCMs (e.g., Likert type, partial credit) or nominal scale /multiple-

choice DCMs (de la Torre, 2009a; DiBello, Henson, Stout, 2015; Ozaki, 2015; von 

Davier, 2005) have been developed to capture more useful information in the selection of 

the options/ ratings by examinees under the DCM framework. More research has applied 

DCMs to assessing students’ latent attributes and better diagnostic information regarding 

examinee attributes (Kim, 2011; Shear, 2016; von Davier, 2005). The use of DCMs in 

future formative assessment is promising. 

 Despite the development of polytomous models in the IRT and DCM framework, 

people continue to use dichotomous models even when polytomous responses models 

have been provided in practice (de la Torre, 2009a; Jiao, Liu, Haynie, Woo, & Gorham, 

2012). In particular, ordinal scale and nominal/multiple-choice are often dichotomized 

and modeled using dichotomous DCMs. If the scale is nominal/multiple-choice items, the 

correct answer is naturally coded as 1, and the other answers are coded as 0. This method 
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ignores more specific information (such as partial skill or misconceptions) measured by 

the incorrect options. That is, why an item was answered incorrectly is not directly 

modeled—only that the item was answered incorrectly. If the scale is ordinal, one 

method used to dichotomize the item is by coding the highest score (or the scores that are 

above the item mean) as 1, and the score lower than the highest score (or the scores that 

are at or below mean) as 0. By collapsing the multiple categories into two, specific 

information as to how an item is missed is ignored.  

 Focusing only on the correct response and ignoring levels of information provided 

by different categories can reduce the amount of information from any given item. That 

said, the actual impact of this loss of information on estimating an examinee’s ability has 

not been well studied. Jiao et al. (2012) compared polytomous IRT models to 

dichotomous IRT models using real data and a simulation study. The results suggest that, 

although continuous latent ability is highly correlated between the two models using real 

data, polytomous models provide smaller standard latent-ability errors. Additionally, (de 

la Torre, 2009a) compared a polytomous DCM— the MC-DINA—to the corresponding 

dichotomous DCM—the DINA model—in a simulation study and found better recovery 

of the latent attributes when using the MC-DINA. The results of these two studies 

indicate the usefulness of applying polytomous IRT models rather than dichotomous 

models when polytomous responses have been collected.  

Most studies comparing polytomous models to dichotomous models should be 

interpreted with caution. For example, in the previous two cases, data were specifically 

simulated using the polytomous model, and the polytomous responses were then 
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dichotomized. However, in these cases, the dichotomized data could not be assumed to 

exactly fit the analogous dichotomized model. For example, when data are simulated 

using the MC-DINA and then dichotomized, it cannot be expected that the corresponding 

DINA model will simultaneously fit these data. Thus, many studies using dichotomous 

models for the data that was originally simulated using the polytomous model have at 

least some bias caused by model misfit in the dichotomous model estimation. Most IRT 

models for polytomous data and their analogous dichotomous models do not 

simultaneously fit polytomous models, and the dichotomized response data without a 

model induced bias. The current study first develops a DCM in which polytomous data 

can be simulated such that a traditional DCM also fits the data when responses are 

dichotomized. Thus, the effect of modeling the polytomous responses can be estimated 

without introducing bias caused by model misfit. In addition, as the real data study was 

only conducted using IRT models (Jiao et al., 2012), it is necessary to compare the 

polytomous DCMs to the dichotomous DCMs when no model-induced bias exists and 

when the real data is used. 

The following chapter will review common IRT models and DCMs that can be 

used for dichotomous data and discuss the polytomous versions of the models. In 

introducing the polytomous models, similarities and differences between the polytomous 

and the analogous dichotomous approaches will be explored. Next, the factors that impact 

the distractors of the multiple-choice items will be examined. Previous literature has 

shown that informative distractors can provide additional information about examinee 

skills and misconceptions. It is hypothesized that polytomous DCMs will provide a better 



 

7 

estimation of latent attributes when compared to the corresponding dichotomous DCMs if 

the distractors are informative.  

As previously discussed, there is no polytomous DCM that fits polytomous data 

while simultaneously the analogous dichotomous DCM also fits the same data after being 

dichotomized. For example, data simulated using the MC-DINA and then dichotomized 

will not perfectly fit the DINA. Thus, a submodel of the general diagnostic classification 

models for multiple-choice options (GDCM-MC; DiBello et al., 2015) is defined such 

that when data is simulated using this model (fitting the polytomous DCM), the 

dichotomized data also fit the reduced reparameterized unified model (RRUM; Hartz, 

Roussos, & Stout, 2002). It is hypothesized that this GDCM-MC submodel and the 

corresponding dichotomous DCM will perform similarly when no informative distractors 

exist in the items. The advantage of using the GDCM-MC—or more specifically, the 

submodel defined in the research—over the dichotomous DCM with respect to item 

discrimination and attributes recovery is larger when more informative distractors, rather 

than less informative distractors, are used.  
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CHAPTER II 

LITERATURE REVIEW 
 
 
 In educational or psychological assessment several factors are involved when 

selecting an appropriate model such as the scale of the item response, dimensionality of 

the construct measured, and the scale of the abilities/attributes. Of particular importance 

to this research is the scale used for item responses. For example, the scale (or type of 

item response) can be binary (dichotomous) in which the correct item answer is typically 

scored as 1, and the incorrect answer is scored as a 0. However, an item response may 

have three or more levels of response, and these levels could be nominal or ordinal. For 

instance, students can obtain partial or semi-partial credit for answering a two-point 

question partially correct. As a result, the range of the score might be 0, .5, 1, 1.5, and 2 

with 0 and 2 being the smallest and largest possible score the student can earn, 

respectively. The responses in between zero and two are ordered from small to large. If 

there is no ordering of an item’s options, the scale is nominal. In other cases, the item 

responses may be treated as continuous.  

 Psychometric models, in the most general sense, can be first selected based the 

number of latent traits the instrument has been designed to measure (the dimensionality) 

in addition to the general characteristics of such traits. Furthermore, the type of item 

response can influence a researcher’s choice of model. In a case in which only one 

continuous latent trait is measured by the dichotomous/polytomous-scale test, 
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dichotomous/polytomous IRT models can be used, such as the Rasch model (Rasch, 

1960), two-parameters IRT, a partial credit model (Masters, 1982), and a graded response 

model (Samejma, 1969). In a context in which more than one continuous ability is 

measured, multidimensional versions of IRT can be used such as compensatory 

multidimensional IRT models (CMIRT; Reckase, 1985), as well as non-compensatory 

MIRT models (NCMIRT; Sympson, 1978), and multidimensional partial-credit models 

(Reckase, 2009). In contrast to IRT models, DCM models are typically thought to be 

multidimensional models that measure discrete latent traits (commonly called attributes). 

Furthermore, specific DCMs have been defined to model polytomous and dichotomous 

data (de la Torre, 2009a; Dibello, Henson & Stout, 2015; Rupp, Templin & Henson, 

2009; Ozaki, 2015; von Davier, 2005). A more specific description of models used to 

score dichotomous examinee responses is next discussed, followed by a discussion of 

models for polytomously score items. 

2.1 Dichotomous Scale 

 Although both IRT models and DCMs have different assumptions about latent 

traits (i.e., dimensionality and scale), both models can be applied to a dichotomous-scale 

item (e.g., right/wrong) in an assessment. Furthermore, as previously noted, an IRT 

framework can be used to model unidimensional (UIRT) latent space or 

multidimensional (MIRT) latent space of continuous abilities. However, most often, the 

UIRT models have been used in educational assessments. In contrast, DCMs are used in 

settings where more than one dimension of discrete latent attributes is measured by an 

assessment. First, the traditional unidimensional IRT models will be discussed, followed 
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by an examination of multidimensional models for dichotomous response data (i.e., 

multidimensional IRT models and DCMs).  

2.1.1 Unidimensional IRT Models 

 The Rasch model (Rasch, 1960) defines the probability of a correct response 

through a linear model such that the log odds are predicted as a function of an examinee's 

unidimensional ability, 𝜃𝜃𝑗𝑗 . In this model, the logit link is shown as follows: 

 

𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝜃𝜃𝑗𝑗 , 𝑏𝑏𝑖𝑖� = exp�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖�
1+exp (𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

, (1) 

 
 
where 𝜃𝜃𝑗𝑗  is the 𝑗𝑗𝑡𝑡ℎ examinee’s latent ability and 𝑏𝑏𝑖𝑖 is the difficulty parameter of the 𝑖𝑖𝑡𝑡ℎ 

item. The latent ability 𝜃𝜃𝑗𝑗  is defined to be continuous and normally distributed, and 𝑏𝑏𝑖𝑖 is 

usually centered at 0 for identifiability purposes. Note that the larger the value of 𝑏𝑏𝑖𝑖, the 

harder the item. The one-parameter (1PL; Birnbaum, 1968) model is essentially the same 

as the Rasch model, because only item difficulty is included as an item parameter. The 

difficulty parameters 𝑏𝑏𝑖𝑖 are usually centered at 0 for the Rasch model, whereas the latent 

ability 𝜃𝜃𝑗𝑗  are usually centered at 0 for identifiability purposes for the 1PL model.  

 As psychometric research developed further, more complex IRT models were 

developed. The general form of a three-parameter (3PL; Birnbaum, 1968) model is 

shown as  

 

𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝜃𝜃𝑗𝑗 , 𝑎𝑎𝑖𝑖, 𝑏𝑏𝑖𝑖, 𝑐𝑐𝑖𝑖� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖) ∗  exp𝑎𝑎𝑖𝑖�𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖�
1+exp ai(𝜃𝜃𝑗𝑗−𝑏𝑏𝑖𝑖)

, (2) 
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where 𝑎𝑎𝑖𝑖 is the discrimination parameter, which is related to how well an item 

discriminates “high” ability examinees from “low” ability examinees, and the guessing 

parameter 𝑐𝑐𝑖𝑖 used to measure the probability that low-ability examinees can guess the 

item’s correct response. If the parameter 𝑐𝑐𝑖𝑖 is set to 0 (i.e., no guessing), then the model is 

equal to the two-parameter (2PL; Choppin, 1983) model. 

2.1.2 Multidimensional IRT Models 

 Multidimensional IRT (MIRT) models are used when it is assumed that more than 

one continuous latent ability is being measured. MIRT models are usually thought to be 

confirmatory (although exploratory methods exist), because researchers must specify the 

latent abilities measured by each item and the type of interaction among the abilities (e.g., 

compensatory or non-compensatory). The most common MIRT model is the 

compensatory MIRT (CMIRT; Reckase, 1985). Compensatory models are typically 

defined such that lacking or being low on one latent trait can be compensated for by 

having or being higher on another latent ability. The item response function for CMIRT 

is represented as: 

 

𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝜃𝜃𝑗𝑗1,𝜃𝜃𝑗𝑗2, … ,𝜃𝜃𝑗𝑗𝑗𝑗 ,𝑎𝑎𝑗𝑗1,𝑎𝑎𝑗𝑗2, … ,𝑎𝑎𝑗𝑗𝑗𝑗, 𝑏𝑏𝑖𝑖� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖) ∗  exp�∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗𝑗𝑗𝐾𝐾
𝑘𝑘=1 +𝑏𝑏𝑖𝑖�

1+exp (∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗𝑗𝑗𝐾𝐾
𝑘𝑘=1 +𝑏𝑏𝑖𝑖)

, (3) 

 
 
where 𝑎𝑎𝑖𝑖𝑖𝑖 represents the discrimination for the 𝑘𝑘𝑡𝑡ℎ latent trait, 𝑏𝑏𝑖𝑖 is difficulty of the 𝑖𝑖𝑡𝑡ℎ 

item, and 𝜃𝜃𝑗𝑗𝑗𝑗 represents the 𝑘𝑘𝑡𝑡ℎ of the total of 𝐾𝐾 latent abilities of the 𝑗𝑗𝑡𝑡ℎ examinee. An 

item-level guessing parameter 𝑐𝑐𝑖𝑖 can be added to the model. 
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 The non-compensatory multidimensional IRT model (NCMIRT; Sympson, 1978) 

defines the probability of a correct response to item i for examinee j in such a way that 

lacking or being low on one latent ability cannot be compensated by mastering or having 

higher levels of other latent abilities measured by that item. The item response is defined 

as: 

 
𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝜃𝜃𝑗𝑗1,𝜃𝜃𝑗𝑗2, … � = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖)∏

1

1+𝑒𝑒−�𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�
𝐾𝐾
𝑘𝑘=1  , (4) 

 
 
where 𝑏𝑏𝑖𝑖𝑖𝑖 is the difficulty parameters for the 𝑘𝑘𝑡𝑡ℎ latent ability.  

 Recently, DeMars (2016) developed the partially compensatory MIRT that was 

inspired by the NCMIRT (1978) and Embretson(1984)’s product model. The model 

includes the item difficulty and discrimination, as well as the interaction effects, of each 

latent ability. For example, a two-dimensional partially compensatory model can be 

expressed as: 

 

𝑃𝑃�𝑥𝑥𝑖𝑖𝑖𝑖 = 1|𝜃𝜃𝑗𝑗1,𝜃𝜃𝑗𝑗2,𝑎𝑎𝑖𝑖1,𝑎𝑎𝑖𝑖2, 𝑏𝑏𝑖𝑖� = 𝑐𝑐𝑖𝑖 + (1 − 𝑐𝑐𝑖𝑖) ∗  exp�𝑎𝑎𝑖𝑖1𝜃𝜃𝑗𝑗1+𝑎𝑎𝑖𝑖2𝜃𝜃𝑗𝑗2+𝑎𝑎𝑖𝑖3𝜃𝜃𝑗𝑗1𝜃𝜃𝑗𝑗2+𝑏𝑏𝑖𝑖�
1+exp (𝑎𝑎𝑖𝑖1𝜃𝜃𝑗𝑗1+𝑎𝑎𝑖𝑖2𝜃𝜃𝑗𝑗2+𝑎𝑎𝑖𝑖3𝜃𝜃𝑗𝑗1𝜃𝜃𝑗𝑗2+𝑏𝑏𝑖𝑖)

, (5) 

 
 
where the 𝑎𝑎𝑖𝑖3 is the coefficient of the interaction effect between 𝜃𝜃𝑗𝑗1 and 𝜃𝜃𝑗𝑗2. The model 

allows for the possibility that any two pairs of latent abilities interact to influence the 

probability of a correct response, which is similar to the log-linear model diagnostic 

classification model (LCDM; Henson, Templin & Willse, 2009).  
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2.1.3 Dichotomous DCMs 

 DCMs are psychometric models developed to model examinee responses to an 

assessment created to measure multiple dichotomous latent attributes. As a result, DCMs 

can also be expressed as constrained latent class models. Specifically, DCMs “classify” 

the examinees’ abilities into groups based on mastery or non-mastery of a set of latent 

attributes (discrete latent traits). Thus, any two examinees with the same profile of 

mastery/non-mastery are thought to belong to the same class. Typically, because of their 

link to latent class models, estimates of the class membership probability are obtained 

and usually summarized using the probability of mastery for each latent attribute. Note 

that DCMs are typically thought to be multidimensional in nature, because a DCM with 

only one discrete attribute is equivalent to a latent class analysis with only two classes. In 

settings where the stakes are low and diagnostic information on an examinee’s set of 

latent attributes is needed, DCMs can be used to score a formative assessment that can 

provide feedback to students’ attributes. As a result, teachers can tailor the instruction to 

student weaknesses. 

 Like most MIRT models, DCMs are typically thought to be confirmatory, which 

means that the attributes measured by each item should be known (or defined by the 

researcher). Once the attributes measured by each test item have been determined, an 

items-by-attributes indicator matrix, called a Q-matrix is defined. The Q-matrix 

specifically defines whether the 𝑘𝑘𝑡𝑡ℎ attribute is measured by the 𝑖𝑖𝑡𝑡ℎ item, 𝑞𝑞𝑖𝑖𝑖𝑖 = 1, or not 

measured, 𝑞𝑞𝑖𝑖𝑖𝑖 = 0. An example of a three-item, three-attribute Q-matrix is shown in 

Table 1. A value of “1” means that the item measures the attribute and a value of “0” 
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means that the item does not measure the attribute represented by that column. In this 

example, the test measures three attributes: item 1 only measures attribute 2, item 2 only 

measures attribute 1, and item 3 measures attributes 1, 2, and 3.  

 
Table 1. A Dichotomous Q-Matrix 

 A1 A2 A3 
Item 1 0 1 0 
Item 2 1 0 0 
Item 3 1 1 1 

 
 
 Like the discussed MIRT models, DCMs can also be identified as either 

compensatory and non-compensatory. Each compensatory model typically has a 

counterpart that is a non-compensatory model. Compensatory DCMs define the 

probability of a correct response in such a way that an examinee can compensate for a 

lack of mastery on some attributes measured by the item by having mastered other 

attributes. In contrast, for non-compensatory DCMs, having some attributes does increase 

the chance of getting an item correct when examinees are absent of the other attributes 

required by the item. A researcher must determine which model to use based on prior 

information regarding the attributes, as well as a prior theory on how an examinee 

answers each item. 

2.1.3.1 DINA 

 The non-compensatory “deterministic input noisy and” gate (DINA) model is one 

of the most widely researched DCMs (DeCarlo, 2011; de la Torre, 2009b; Junker & 

Sijtsma, 2001), and is known for its parsimonious nature and ease of interpretation of the 
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model parameters (de la Torre, 2011). Under this model, each item has a “slipping” (𝑠𝑠𝑖𝑖) 

and a “guessing” (𝑔𝑔𝑖𝑖) parameter. The “slipping” parameter defines the probability of a 

person incorrectly responding to an item of which he/she has mastered all of the 

measured attributes. The “guessing” parameter indicates the probability of a person, who 

has not obtained mastery for that item, correctly responding to that item (i.e., has not 

mastered at least of one of the measured attributes). The probability of correctly 

responding to the 𝑖𝑖𝑡𝑡ℎ item by the 𝑗𝑗𝑡𝑡ℎ examinee is shown as follows: 

 
𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖 = 1) = (1 − si)𝜂𝜂𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖

1−𝜂𝜂𝑖𝑖𝑖𝑖 , (6) 
 

𝜂𝜂𝑖𝑖𝑖𝑖 = ∏ 𝛼𝛼𝑗𝑗𝑗𝑗
𝑞𝑞𝑖𝑖𝑖𝑖  𝐾𝐾

𝑘𝑘  ,  
 
 
where 𝛼𝛼𝑗𝑗𝑗𝑗 is binary variable indicating if the 𝑗𝑗𝑡𝑡ℎ examinee has mastered (𝛼𝛼𝑗𝑗𝑗𝑗 =1) the 𝑘𝑘𝑡𝑡ℎ 

attribute or not mastered (𝛼𝛼𝑗𝑗𝑗𝑗= 0). The 𝑞𝑞𝑖𝑖𝑖𝑖 indicates if the 𝑘𝑘𝑡𝑡ℎ attribute is measured (𝑞𝑞𝑖𝑖𝑘𝑘 

=1) by the 𝑖𝑖𝑡𝑡ℎ item or not (𝑞𝑞𝑖𝑖𝑖𝑖= 0). Please note that 𝛼𝛼𝑗𝑗𝑗𝑗
𝑞𝑞𝑖𝑖𝑖𝑖 indicates whether the mastery of 

𝑘𝑘𝑡𝑡ℎ attribute of the 𝑗𝑗𝑡𝑡ℎ examinee influences the probability of a correct response for the 

𝑖𝑖𝑡𝑡ℎ item. Specifically, if an attribute is measured by the item, and the examinee has 

mastered the 𝑘𝑘𝑡𝑡ℎ attribute, then 𝛼𝛼𝑗𝑗𝑗𝑗
𝑞𝑞𝑖𝑖𝑖𝑖 = 1, otherwise, if the 𝑗𝑗𝑡𝑡ℎexaminee has not mastered 

the 𝑘𝑘𝑡𝑡ℎ attribute measured by the item, 𝛼𝛼𝑗𝑗𝑗𝑗
𝑞𝑞𝑖𝑖𝑖𝑖 = 0. Note that in equation 6, it is assumed 

that 00 = 1. The value K represents the total number of attributes, and the product of all 

𝛼𝛼𝑗𝑗𝑗𝑗
𝑞𝑞𝑖𝑖𝑖𝑖 suggests that each attribute measured by the item is required for answering the item 

correctly.  
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If the value of 𝑠𝑠𝑖𝑖 is high, there is a high chance for examinees that have mastered 

the measured attributes of the item to miss it. Similarly, if the value of 𝑔𝑔𝑖𝑖 is high, there is 

a high chance for examinees who do not master the required attributes by the item to 

answer the item correctly.  

2.1.3.2 DINO 

The compensatory DINO model (Templin & Henson, 2006) is the counterpart of 

the non-compensatory DINA. Like the DINA model, the DINO defines the probability of 

correctly responding to the item as a function of a slipping parameter 𝑠𝑠𝑖𝑖 and a guessing 

parameter 𝑔𝑔𝑖𝑖. Thus, the DINO defines the probability of the correct response as: 

 
𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖 = 1) = (1 − si)ζ𝑖𝑖𝑖𝑖𝑔𝑔𝑖𝑖

1−𝜁𝜁𝑖𝑖𝑖𝑖, (7) 
 

𝜁𝜁𝑖𝑖𝑖𝑖 = 1 −∏ (1 − 𝛼𝛼𝑗𝑗𝑗𝑗)𝑗𝑗𝑗𝑗
𝑞𝑞𝑖𝑖𝑖𝑖  𝐾𝐾

𝑘𝑘  ,  
 
 
where 𝜁𝜁𝑖𝑖𝑖𝑖 represents whether any attribute required by the 𝑖𝑖𝑡𝑡ℎ item is mastered by the 𝑗𝑗𝑡𝑡ℎ 

examinee. If any attribute is mastered by the examinee, 𝜁𝜁𝑖𝑖𝑖𝑖 equals 1, otherwise 𝜁𝜁𝑖𝑖𝑖𝑖 equals 

0. This model is compensatory in nature because mastering any measured attribute will 

result in a high chance of a correct response (regardless of which attribute is mastered), 

even if all other attributes have not been mastered. In addition to 𝜁𝜁𝑖𝑖𝑖𝑖, the interpretations of 

the item parameters of the DINO are similar to those of the DINA, with the exception of 

who is identified as being in the “item master” group.  

 Although the DINA or DINO models are relatively simple models to use because 

of ease of interpretation and relatively parsimonious parametrization, they can also be 
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relatively restrictive. Specifically, both the DINA and the DINO models do not allow for 

differentiable contribution of attributes to the probability of a correct response. Thus, the 

two models assume that all attributes measured by an item contribute the same 

probability of a correct response within an item, which is rarely the case. Other models 

have been developed to overcome this shortcoming.  

2.1.3.3 RRUM 

The reduced reparametrized unified model (RRUM; Hartz, Roussos, & Stout, 

2002) is a DCM that describes a more complex interaction between the attributes and 

probability of a correct response. The RRUM estimates how each attribute impacts the 

response probability. The added complexity has been found to be useful in real-world 

settings, such as in applications to assess students’ language attributes (Kim, 2011). For 

the RRUM, each item has a baseline probability of being answered correctly, 𝜋𝜋𝑖𝑖∗, 

assuming that all measured attributes for that item have been mastered. People who lack 

any of the measured attributes are then “penalized” by a factor of 𝑟𝑟𝑖𝑖𝑖𝑖∗ . Because the penalty 

is defined specifically for that item and attribute, each attributes’ contribution is not 

assumed to be the same for all attributes. The item-response probability function of the 

RRUM is defined below: 

 
𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖 = 1) = 𝜋𝜋𝑖𝑖∗ ∏ 𝑟𝑟𝑖𝑖𝑖𝑖∗

(1−𝛼𝛼𝑖𝑖𝑖𝑖)𝑞𝑞𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘=1  , (8) 

 
 
where 𝑞𝑞𝑖𝑖𝑖𝑖 is the 𝑘𝑘𝑡𝑡ℎ attribute measured by the 𝑖𝑖𝑡𝑡ℎ item, K is the total number of the 

attributes, 𝜋𝜋𝑖𝑖∗ can be interpreted as the base portion of the 𝑖𝑖𝑡𝑡ℎ item assuming mastery of 
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all measured attributes, and 𝑟𝑟𝑖𝑖𝑖𝑖∗  is the “penalty” for non-mastery of the 𝑘𝑘𝑡𝑡ℎ attribute. 

Lacking the 𝑘𝑘𝑡𝑡ℎ attribute required by the 𝑖𝑖𝑡𝑡ℎ item will result in the probability of a correct 

response 𝜋𝜋𝑖𝑖∗ being adjusted by a factor of  𝑟𝑟𝑖𝑖𝑖𝑖∗ . The RRUM model provides information on 

how mastery/non-mastery of a single attribute can impact an item-response probability.  

 For the RRUM, a combination of the value of parameters 𝜋𝜋∗ and 𝑟𝑟∗ can be used 

to describe how well an item can discriminate between examinees that have mastered the 

attributes and those who have not. A high value of 𝜋𝜋∗ (the base probability) indicates a 

higher level of base probability between examinees who have the attributes and those that 

do not. If the value of 𝜋𝜋∗ is low, both students who master and do not master the 

attributes measured by the item will have approximately the same probability of 

answering the item correctly. The low value of 𝑟𝑟𝑘𝑘∗ (the penalty probability) indicates a 

higher discrimination. The probability of answering an item correctly for examinees who 

master the 𝑘𝑘𝑡𝑡ℎ attribute is 𝜋𝜋∗, and is 𝜋𝜋∗𝑟𝑟𝑘𝑘∗ for examinees who do not master. The higher 

the value of 𝑟𝑟𝑘𝑘∗ is, the larger reduction in the probability of examinees who do not master, 

which means the larger difference between the examinees who master the 𝑘𝑘𝑡𝑡ℎ attribute 

and who do not. Thus, it is easier to separate the two groups with a low value of 𝑟𝑟𝑘𝑘∗ than 

with a high value of 𝑟𝑟𝑘𝑘∗ . Therefore, for a good-quality item, the 𝜋𝜋∗ is high, and 𝑟𝑟𝑘𝑘∗ is low, 

but for a poor-quality item, the 𝜋𝜋∗ is low, and 𝑟𝑟𝑘𝑘∗ is high.  

2.1.3.4 CRUM 

 The compensatory RUM (CRUM, Hartz, 2002) is the RRUM counterpart, and it 

is similar to the compensatory MIRT model. Thus, the model indicates that mastering 
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other measured attributes compensates for an item lacking one measured attribute. The 

probability of correctly answering an item with a logit link is shown as: 

 

 𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1� = exp�𝜆𝜆𝑖𝑖0+∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘 �

1+exp�𝜆𝜆𝑖𝑖0+∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘 �

, (9) 

 
 
where 𝜆𝜆𝑖𝑖0 is the intercept of the 𝑖𝑖𝑡𝑡ℎ item, and 𝜆𝜆𝑖𝑖𝑖𝑖 is the coefficients of the product of 

𝑎𝑎𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖. If the 𝑘𝑘𝑡𝑡ℎ attribute is measured by the 𝑖𝑖𝑡𝑡ℎ item, the 𝑞𝑞𝑖𝑖𝑖𝑖 is 1 otherwise is 0.  

 The aforementioned specific models have simple parameterization that can assist 

researchers to in making judgments concerning item quality based on the value of the 

parameters. However, when prior knowledge of the attributes and how these attributes are 

used to answer an item are unknown to the researchers, selection of compensatory and 

non-compensatory is not easy to determine for some attributes or specific items. Also, if, 

a combination of both compensatory and non-compensatory attributes are measured by a 

test, choosing a specific model would be a difficult task to do and possibly unreasonable.  

 Within the last two decades, a series of general DCMs have been developed: the 

general diagnostic model (GDM; von Davier, 2005), the log-linear cognitive diagnosis 

classification model (LCDM; Henson, Templin, & Willse, 2009), and the G-DINA model 

(de la Torre, 2011). As a result, general DCMs can be estimated, and the estimated 

parameters can serve as a potential guide for a specific model selection for a set of latent 

attributes. If possible, the reduction of the general model to a simple model may improve 

estimation because of the reduction of the number of parameters estimated in the model. 
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2.1.3.5 GDM 

 The GDM (von Davier, 2005), which is the similar to the compensatory RUM, 

also models an examinee’s response using an intercept and latent attributes’ main effects. 

However, the GDM can be extended to polytomous attributes (a latent attribute having 

two or more levels) as opposed to only two levels (mastery and non-mastery). The GDM 

and the CRUM both focus on the additive attributes that can impact the probability of 

answering an item correctly. Similar to the IRT model discussed, the GDM uses a logit 

link function to build the connection between a dichotomous outcome and latent 

dichotomous attributes. The function probability of a correct response using the GDM is: 

 

𝑃𝑃(𝑋𝑋𝑖𝑖 = 1) = exp�𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖
𝑇𝑇ℎ(𝑞𝑞𝑖𝑖,𝑎𝑎)�

1+exp�𝛽𝛽𝑖𝑖+𝛾𝛾𝑖𝑖
𝑇𝑇ℎ(𝑞𝑞𝑖𝑖,𝑎𝑎)�

 , (10) 

 
ℎ(𝑞𝑞𝑖𝑖,𝑎𝑎) = (𝑞𝑞𝑖𝑖1𝑎𝑎1, … , 𝑞𝑞𝑖𝑖𝑖𝑖𝑎𝑎𝐾𝐾) , 

 

𝛾𝛾𝑖𝑖𝑇𝑇 =
𝑟𝑟𝑖𝑖1
⋮
𝑟𝑟𝑖𝑖𝑖𝑖

. 

 
 
 One limitation of the discussed applications of the GDM is that it is typically 

presented as an additive model without interactions. As a result, the GDM may not 

capture the interaction of effects among the latent attributes measured by the items. If 

these interactions are large, the omission model misfit and lead to model misfit and 

misclassification of latent attributes if such interaction effects are large. The LCDM 

addresses this limitation. 
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2.1.3.6 LCDM 

The LCDM is a general model that can be used to fit all of the specific 

aforementioned DCMs. The LCDM defines the probability of a correct response as a 

function of all main attributes effects plus all two- or more-way attributes interaction 

(Henson, Templin, &Willse, 2009). It also uses the logit link function for modeling the 

dichotomous response pattern. In fact, the LCDM can be defined in a similar way as the 

GDM in equation 11, however instead of defining 𝛾𝛾𝑖𝑖𝑇𝑇ℎ(𝑞𝑞𝑖𝑖,𝑎𝑎) as a sum of only main 

effects, the LCDM also considers all possible attribute interactions. When 𝛾𝛾𝑖𝑖𝑇𝑇ℎ(𝑞𝑞𝑖𝑖,𝑎𝑎) is 

extended the, the LCDM defines the probability of a correct response as: 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 1� =
exp�𝜆𝜆𝑖𝑖0+∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝐾𝐾

𝑘𝑘 +∑ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝑢𝑢>𝑣𝑣
𝐾𝐾
𝑣𝑣=1 +⋯�

1+exp�𝜆𝜆𝑖𝑖0+∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝐾𝐾
𝑘𝑘 +∑ ∑ 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝛼𝛼𝑗𝑗𝑗𝑗𝑞𝑞𝑖𝑖𝑖𝑖𝑢𝑢>𝑣𝑣

𝐾𝐾
𝑣𝑣=1 +⋯�

, (11) 

 
 
Thus, in addition to the intercept and the main effects, where 𝜆𝜆𝑖𝑖𝑖𝑖𝑖𝑖 is the coefficient of the 

two-way interaction effect between the two attributes measured by the 𝑖𝑖𝑡𝑡ℎ item. If more 

than 2 attributes are measured by the item, then all possible two-way effects could be 

included in addition to all three-way effect and so on Because each parameter is at the 

item level, the number of parameters increases exponentially as the number of the 

attributes increase. 

 The model contains an item specific intercept, the main effects of each attribute 

measured by the 𝑖𝑖𝑡𝑡ℎ item, and the two-ways or more-ways interaction among the 

measured attributes. By constraining the parameters in the LCDM, the model can be 

transformed to a DINA, DINO, RRUM, and specific cases of a GDM (Henson et al., 
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2009). For example, if all but the highest order interaction effects are constrained to 0, the 

LCDM will be mathematically equivalent to the DINA model, while the LCDM will be 

equivalent to the CRUM model or the typical presentation of the GDM for modeling 

dichotomous attributes and dichotomous responses by omitting the interaction effects. 

 The models such as the UIRT, MIRT, GDM, and LCDM use a traditional link, the 

logit link, to model dichotomous. However, there are times when alternative links may 

provide some benefit. For example, if modeling the log-probability, a product may be 

expressed a linear sum of main effects as opposed to requiring an interaction term. 

Because several link functions could be used for categorical data analysis (Agresti, 2007), 

one other model has been proposed by de la Tore (2011). The generalized DINA model 

(G-DINA; de la Torre, 2011) with a log link function has been proposed. de la Torre 

(2011) allows for a number of links, when this link is equal to logic link then the 

parametrization is identical to the LCDM. However, he discusses additional links such as 

the log link and the identity link. Despite the fact that these different links may lead to 

different estimates, the G-DINA is a saturated model just as the LCDM and thus, the 

results of the two models should be equivalent (de la Torre, 2011). 

 The IRT and DCM models previously discussed are typically applied to item 

response data that are dichotomous. However, when the scored responses are polytomous 

(i.e., ordinal or multinomial) and thus have more than two levels, varying levels of 

diagnostic information can be obtained. Ignoring the levels of information could 

potentially lead to less accuracy in estimating the examinee attributes (Jiao et al., 2012). 
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There are IRT models, and DCMs that have been developed for polytomous response 

data.  

2.2 Polytomous Scale 

 Although the literature typically uses the term polytomous to refer to models for 

an ordinal scale, the term technically refers to an item response with more than two 

categories. Thus, this document uses the phrase“polytomous item” to indicate an item 

that is either ordinal or nominal (commonly referred to as a multinomial model). Many 

polytomous IRT models have been developed to measure an item with multiple scoring 

categories such as nominal, interval and ordinal scales (Andrich, 1978; Masters, 1982; 

Muraki, 1992; Samejima, 1969; Thissen &Steinberg, 1984). On the other hand, in recent 

years, researchers have started to develop polytomous models in the DCM framework. 

Several polytomous DCMs can now be used for the analysis of this type of data can now 

be used for the analysis of this type of data (de la Torre, 2009; DiBello, Henson, & Stout, 

2015; Ozaki, 2015).  

2.2.1 Ordinal Scale IRT Models 

 There are two different types of commonly-used polytomous IRT models for 

items that are scored using an ordinal scale: the adjacent category model and the 

cumulative model (Penfield, 2014). The adjacent category model includes the partial 

credit model (PCM; Masters, 1982), the generalized partial credit model (GPCM; 

Muraki, 1992), and the rating scale model (RSM; Andrich, 1978). The cumulative model 

is referred to as the graded response model (GRM; Samejima, 1969). 
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2.2.1.1 PCM 

 The PCM consists of step-wise item response functions. Each step function 

models the probability of choosing an item’s adjacent categories, and the number of steps 

is equal to the total number of score categories minus one. A step function can be defined 

using the 1PL IRT model, and can be expressed as follows: 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(Ψ𝑖𝑖𝑖𝑖) = 𝑎𝑎𝑖𝑖𝜃𝜃𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑖𝑖, (12) 

 
 
where t represents the 𝑡𝑡𝑡𝑡ℎ step of the 𝑖𝑖𝑡𝑡ℎ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, 𝑎𝑎𝑖𝑖 represents the discrimination of 𝜃𝜃𝑗𝑗  of 

the 𝑡𝑡𝑡𝑡ℎ step, and 𝑏𝑏𝑖𝑖𝑖𝑖 is the difficulty of the 𝑡𝑡𝑡𝑡ℎ step of the 𝑖𝑖𝑡𝑡ℎ item. The Ψ𝑖𝑖𝑖𝑖 step represents 

the probability of choosing t and t-1 for the 𝑖𝑖𝑡𝑡ℎ item. 

 For instance, an item that contains four categories (0,1, 2, and 3) has a total of 

three steps. The first step, step 1, models the probability of choosing 0 versus 1, the 

second step compares 1 versus 2 assuming that 0 has not been selected. The final step in 

this example (step 3) models the probability of choosing 2 versus 3 assuming that neither 

0 nor 1 have been selected. The step function of the PCM assumes that the discrimination 

parameters of all steps are equal to 1, which is the feature of the Rasch model. The 

probability of choosing each category can be solved using the step function. The 

difficulty of each step 𝑏𝑏𝑖𝑖𝑖𝑖 is different for each item, and the higher value of the 𝑏𝑏𝑖𝑖𝑖𝑖 is, the 

less difficult the step. It is assumed that as the latent abilities’ level increase, the 

probability of being in higher “steps” increases.  
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Using algebraic manipulation, the probability of choosing an item response using the 

PCM can be defined as follows 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥� = exp�∑ �𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�𝑥𝑥
𝑐𝑐=0 �

∑ (exp�∑ �𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�𝑘𝑘
𝑐𝑐=0 �𝑚𝑚𝑖𝑖

𝑘𝑘=0
 , 𝑥𝑥 = 0, 1, 2, … ,𝑚𝑚𝑖𝑖. , (13) 

 

𝑐𝑐 = 0,� �𝜃𝜃𝑗𝑗 + 𝑏𝑏𝑖𝑖0�
0

𝑐𝑐=0
= 0  

 
 
where 𝑥𝑥 is the value (number of categories) of an item that the 𝑗𝑗𝑡𝑡ℎ examinee responds, 𝜃𝜃𝑗𝑗 

the latent attribute of the examinee 𝑗𝑗, 𝑚𝑚𝑖𝑖 is the number of steps of the 𝑖𝑖𝑡𝑡ℎ item, and 𝑏𝑏𝑖𝑖𝑖𝑖 is 

the category difficulty of the 𝑐𝑐𝑡𝑡ℎ category of 𝑖𝑖𝑡𝑡ℎ item. 

2.2.1.2 RSM 

 The RSM (Andrich, 1978) is a constrained version of the PCM. As in the 

previously described models, it uses adjacent categories steps to model the probability of 

choosing the adjacent categories given an examinee’s latent ability. The steps of each 

item have the same discrimination. However, the distances between each step are fixed 

for each item, and the difficulty varies across items. This constraint allows different items 

to have steps that are separated by the same distances but vary with respect to difficulty 

across items. The response function is shown as follows: 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥� = exp�∑ �𝜃𝜃𝑗𝑗+𝑑𝑑𝑖𝑖+𝑡𝑡𝑐𝑐�𝑥𝑥
𝑐𝑐=0 �

∑ (exp�∑ �𝜃𝜃𝑗𝑗+𝑑𝑑𝑖𝑖+𝑡𝑡𝑐𝑐�𝑘𝑘
𝑐𝑐=0 �𝑚𝑚𝑖𝑖

𝑘𝑘=0
 , 𝑥𝑥 = 0, 1, 2, … ,𝑚𝑚𝑖𝑖  , (14) 

 
𝑐𝑐 = 0,∑ �𝜃𝜃𝑗𝑗 + 𝑑𝑑𝑖𝑖 + 𝑡𝑡0�0

𝑐𝑐=0 = 0  ,  
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where 𝑡𝑡𝑐𝑐 is the distance between each step of an item and the 𝑖𝑖𝑡𝑡ℎ item difficulty. Note 

that the 𝑡𝑡𝑐𝑐 is only different between steps and does not change across items. The RSM 

can be useful for the Likert-type scales when all the items use the same Likert-type scale 

and the distance between each step and the item difficulty can be assumed to be equal 

across all items. 

2.2.1.3 GPCM 

 Compared with the PCM, the GPCM (Muraki, 1992) relaxes the assumption of 

constraining all the discrimination parameters across items on a test to be 1. The 

discrimination parameters are freely estimated across all items under this model. Both the 

PCM and the GPCM allows for different categories or steps to have different levels of 

difficulty. The response function of the GPCM can be shown as follows: 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥� = exp�∑ �𝑎𝑎𝑖𝑖𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�𝑥𝑥
𝑐𝑐=0 �

∑ (exp�∑ �𝑎𝑎𝑖𝑖𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�𝑘𝑘
𝑐𝑐=0 �𝑚𝑚𝑖𝑖

𝑘𝑘=0
 , 𝑥𝑥 = 0, 1, 2, … ,𝑚𝑚𝑖𝑖 ,(15) 

 
𝑐𝑐 = 0,∑ �𝑎𝑎𝑖𝑖𝜃𝜃𝑗𝑗 + 𝑏𝑏𝑖𝑖0�0

𝑐𝑐=0 = 0 . 
 
 
2.2.1.4 GRM  

 The GRM (Samejima, 1969) uses cumulative steps to model the responses rather 

than adjacent categories of each item. It uses 2PL as the step function, but each step 

function represents the probability of choosing that category above that value versus the 

probability of selecting a category less. The step function can be shown as follows: 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(Ψ𝑖𝑖𝑖𝑖) = 𝑎𝑎𝑖𝑖𝜃𝜃𝑗𝑗 + 𝑏𝑏𝑖𝑖𝑖𝑖, (16) 
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where Ψ𝑖𝑖𝑖𝑖 is the 𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖 ≥ 𝑡𝑡). For example, when there are four categories (i.e., 0,1,2, and 

3) in an item, Step 1 means that the probability of choosing categories 1, 2, and 3, versus 

the probability of selecting 0. Step 2 models the probability of choosing category 2 or 3 

versus the probability of selecting 0 or 1, and so forth. Similar to the GPCM, the GRM 

assumes that each step of an item has the same discrimination parameter. However, each 

step of the GRM has a unique level of difficulty, and from lower steps to higher steps, the 

level of difficulty increases. As the level of the latent attribute increases, the probability 

of moving from lower steps to higher steps also increases. The response function is 

defined as follows: 

 
𝑃𝑃𝑖𝑖�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑗𝑗� = Ψ𝑖𝑖𝑖𝑖�𝜃𝜃𝑗𝑗� − Ψ𝑖𝑖(𝑗𝑗+1)�𝜃𝜃𝑗𝑗�, (17) 

 
If j =0, Ψ𝑖𝑖𝑖𝑖�𝜃𝜃𝑗𝑗�=1. 

 
 
2.2.2.5 Multidimensional GPCM 

 A unidimensional polytomous IRT models can be easily extended to 

multidimensional cases (Chen, 2017; de la Torre, 2009b). In the framework of a CMIRT, 

each item can measure more than one dimension. However, polytomous MIRT models 

often assume that test items are simple-structure where only one latent ability is measured 

by an item (Chen, 2017). For example, a multidimensional GPCM can be shown as 

follows: 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥� = exp�∑ �𝑎𝑎𝑖𝑖(𝑑𝑑)𝜃𝜃(𝑑𝑑)𝑗𝑗+𝑏𝑏𝑖𝑖(𝑑𝑑),𝑐𝑐�𝑥𝑥
𝑐𝑐=0 �

∑ (exp�∑ �𝑎𝑎𝑖𝑖(𝑑𝑑)𝜃𝜃(𝑑𝑑)𝑗𝑗+𝑏𝑏𝑖𝑖(𝑑𝑑),𝑐𝑐�𝑘𝑘
𝑐𝑐=0 �

𝑚𝑚𝑖𝑖(𝑑𝑑)
𝑘𝑘=0

 , 𝑥𝑥 = 0, 1, 2, … ,𝑚𝑚𝑖𝑖(𝑑𝑑). , (18) 

 



 

28 

when 𝑐𝑐 = 0,∑ �𝑎𝑎𝑖𝑖(𝑑𝑑)𝜃𝜃(𝑑𝑑)𝑗𝑗 + 𝑏𝑏𝑖𝑖(𝑑𝑑)0�0
𝑐𝑐=0 = 0 

 
 
where d represents the dimension measured by the test. Note that the 𝑎𝑎𝑖𝑖(𝑑𝑑), 𝑏𝑏𝑖𝑖(𝑑𝑑)𝑐𝑐, and 

𝜃𝜃𝑗𝑗(𝑑𝑑) are unique to the 𝑖𝑖𝑡𝑡ℎitem of the 𝑑𝑑𝑡𝑡ℎ dimension.  

2.2.2 Nominal /Multiple-Choice IRT Models 

2.2.2.1 NRM 

 Multiple-choice items usually involve non-ordering nominal responses; other than 

the correct options, the incorrect options are not particularly ordered. The nominal 

response model (NRM; Bock, 1972) is proposed to model the correct and incorrect 

options of a multiple-choice item. Similar to the ordinal category model, a step function 

is used to model the probability of the correct option against the probability of an 

incorrect option, 

 
𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(Ψ𝑖𝑖𝑖𝑖) = −𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗 − 𝑏𝑏𝑖𝑖𝑖𝑖, 𝑡𝑡 = 1, 2, … ,𝑚𝑚𝑖𝑖, (19) 

 
 
where Ψ𝑖𝑖𝑖𝑖 is the probability of 𝑋𝑋𝑖𝑖𝑖𝑖 = 0 against the probability of 𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑡𝑡. Zero is the 

correct option. 

 Each step has a discrimination parameter and a difficulty parameter. The 

discrimination parameter 𝑎𝑎𝑖𝑖𝑖𝑖 of the 𝑡𝑡𝑡𝑡ℎ step of the 𝑖𝑖𝑡𝑡ℎ item indicates the discrimination 

level of the incorrect option against the correct option, and difficulty parameter 𝑏𝑏𝑖𝑖𝑖𝑖 

estimates the log odds ratio of choosing the correct option against the incorrect option 

(Bock, 1972; Penfield, 2014). The probability of selecting an option is defined in the 

equations 20 and 21: 



 

29 

For correct options: 

 
𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 0� = 1

1+∑ exp�𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�
𝑚𝑚𝑖𝑖
𝑐𝑐=1

 ; (20) 

 
 
and for incorrect options: 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = ℎ� = exp�𝑎𝑎𝑖𝑖ℎ𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖ℎ�

1+∑ exp�𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�
𝑚𝑚𝑖𝑖
𝑐𝑐=1

, ℎ = 1,2, … ,𝑚𝑚𝑖𝑖. (21) 

 
 
where 𝑚𝑚𝑖𝑖 is the total number of the ℎ𝑡𝑡ℎ option of the 𝑖𝑖𝑡𝑡ℎ item minus one. 

2.2.2.2 Modified NRM 

 However, the Bock’s NRM (1972) does not consider the possibility of randomly 

guessing, even if that person’s ability is to be considered relatively low (Penfield, 2014). 

A modified NRM model was proposed to model instances when an examinee “does not 

know” the answer of a multiple-choice item and engages in random guessing (Samejima, 

1979). Based on this model, selecting an option is determined by a mixture of the 

influence of the latent ability and random guessing. 

An imaginary “does not know the correct answer” option is created and denoted 

as 0. The probability of selecting an option is given in equation 22. 

 

𝑃𝑃′�𝑋𝑋𝑖𝑖𝑖𝑖 = ℎ� = 𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = ℎ� +
1
𝑚𝑚𝑖𝑖

∗ 𝑃𝑃(𝑋𝑋𝑖𝑖𝑖𝑖 = 0) 

 

= exp�𝑎𝑎𝑖𝑖ℎ𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖ℎ�

∑ exp�𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�
𝑚𝑚𝑖𝑖
𝑐𝑐=0

+ 1
𝑚𝑚𝑖𝑖
∗ exp�𝑎𝑎𝑖𝑖0𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖0�

∑ exp�𝑎𝑎𝑖𝑖𝑖𝑖𝜃𝜃𝑗𝑗+𝑏𝑏𝑖𝑖𝑖𝑖�
𝑚𝑚𝑖𝑖
𝑐𝑐=0

 ,ℎ = 1,2, … ,𝑚𝑚𝑖𝑖, (22) 
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where 𝑚𝑚𝑖𝑖 is the number of options. The first part is the probability of selecting any option 

except for the imaginary “does not know correct answer” option, and second part is the 

guessing portion that is the product of weight 1/𝑚𝑚𝑖𝑖 and the probability of imaginary 

“does not know correct answer” option. The model suggests that the probability of 

choosing an option is influenced by the probability of selecting an option based on one’s 

ability and random guessing. The model also requires that the probability of the 

imaginary “does not know correct answer” option decreases as the ability increases. 

 Samejima’s NRM (1979) assumes the weights of the guessing portion are the 

same across all options, whereas Thissen and Steinberg (1984) introduced a different 

NRM that estimates different weights that depends on the option characteristics. The 

newly modified NRMs can model random guessing from the multiple-choice response 

data. As a result, these models can be potentially useful in modeling item response 

behavior in a multiple-choice setting when examinees may also be guessing. 

2.2.2.3 Multidimensional NRM 

 Similarly, the multidimensional NRM model can be written as follows (assuming 

the correct answer is represented by category 0): 

For correct answer 

 
𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 0� = 1

1+∑ exp�𝑎𝑎𝑖𝑖(𝑑𝑑),𝑐𝑐𝜃𝜃(𝑑𝑑)𝑗𝑗+𝑏𝑏𝑖𝑖(𝑑𝑑),𝑐𝑐�
𝑚𝑚𝑖𝑖(𝑑𝑑)
𝑐𝑐=1

 ; (23) 

 
 
and for incorrect options: 
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𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = ℎ� =
exp�𝑎𝑎𝑖𝑖(𝑑𝑑),ℎ𝜃𝜃(𝑑𝑑)𝑗𝑗+𝑏𝑏𝑖𝑖(𝑑𝑑),ℎ�

1+∑ exp�𝑎𝑎𝑖𝑖(𝑑𝑑),𝑐𝑐𝜃𝜃(𝑑𝑑)𝑗𝑗+𝑏𝑏𝑖𝑖(𝑑𝑑),𝑐𝑐�
𝑚𝑚𝑖𝑖(𝑑𝑑)
𝑐𝑐=1

, ℎ = 1,2, … ,𝑚𝑚𝑖𝑖(𝑑𝑑) . (24) 

 
 
 The models can recover the correlation between the measured latent attributes 

(Chen, 2017) because the model assumes each item only measures one dimension. 

However, similar to the CMIRT, when many items measure more than one latent ability, 

the polytomous MIRT may have difficulty to recover the latent correlation (Han & Paek, 

2014). Also, because the polytomous MIRT models have more parameters, and the latent 

abilities are on the continuous scale, a large sample size may be required to recover the 

parameters and latent abilities well. In contrast, the requirement of sample size is lower in 

the polytomous DCM framework because the latent attributes are not on a continuous 

scale (Templin & Bradshaw, 2013). 

2.2.3 Polytomous Scale DCMs 

 For the past decade, many DCM models have been developed to model 

polytomous response data. For example, the polytomous general diagnostic model 

(pGDM; von Davier, 2005) can be used for an ordered scale (e.g., Likert-Scale). Most of 

the other developed polytomous DCMs are used to model multiple-choice data such as 

the MC-DINA(de la Torre, 2008), the SICM model (Bradshaw and Templin, 2014), 

GDCM-MC(DiBello, Henson, Stout, 2015), and structured MC-DINA models(MC-S-

DINA; Ozaki, 2015) use a multinomial model approach.  
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2.2.3.1 Polytomous GDM  

 The von Davier (2005)’s pGDM adopted the partial credit IRT model. The 

formula is shown in equation 25. Note that pGDM subsumes the aforementioned 

dichotomous GDM in which 𝑥𝑥 is only 0 or 1.  

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥� = exp�𝛽𝛽𝑖𝑖𝑖𝑖+∑ 𝑥𝑥𝛾𝛾𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖𝑎𝑎𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 �

1+∑ exp�𝛽𝛽𝑖𝑖𝑖𝑖+∑ 𝑦𝑦𝛾𝛾𝑖𝑖𝑖𝑖𝑞𝑞𝑖𝑖𝑖𝑖𝑎𝑎𝑘𝑘𝑘𝑘𝐾𝐾
𝑘𝑘=1 �𝑚𝑚𝑖𝑖

𝑦𝑦=1
, (25) 

 
𝑥𝑥 = 0, 1, . . . ,𝑚𝑚𝑖𝑖 , 

 
 
where 𝑎𝑎𝑘𝑘𝑘𝑘 is the 𝑘𝑘𝑡𝑡ℎ attribute of the 𝑗𝑗𝑡𝑡ℎ examinee, 𝑚𝑚𝑖𝑖 is the the number of options of the 

𝑖𝑖𝑡𝑡ℎ item minus 1, and 𝑞𝑞𝑖𝑖𝑖𝑖 is a Q-matrix entry at the item-level that indicates whether the 

𝑘𝑘𝑡𝑡ℎ attribute is measured by the 𝑖𝑖𝑡𝑡ℎ item. The parameters 𝛾𝛾𝑖𝑖𝑖𝑖 is the coefficient of the 

latent attribute, and 𝛽𝛽𝑖𝑖𝑖𝑖 is the intercept for specific category 𝑥𝑥. Each 𝑥𝑥𝛾𝛾𝑖𝑖𝑖𝑖 is weight of the 

main effect of the 𝑘𝑘𝑡𝑡ℎ attribute of the 𝑖𝑖𝑡𝑡ℎ item, meaning that the attributes measured by 

higher score have larger weight. Such weighting method can be limited because the 

attributes’ main effects may not be a function of score categories. In addition, the pGDM 

only assumes main effects of the attributes, which are measured at the item-level, and can 

be limited to cases where a large interaction of the attributes can influence the probaiblity 

of selecting an option.  

 Multiple-choice items are frequently used in an educational assessment. Multiple-

choice items are often scored as correct or incorrect and, as such, treated as binary. 

However, the incorrect answers (i.e., distracters) of an item can be embedded with 

additional information about an examinee’s ability. Specifically, if the created distracters 
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are based on a potential set of reasons why a student may not know how to respond to an 

item, then the way in which the student incorrectly responds can also give information 

about certain skills or misconceptions. If this additional information can be modeled or 

extracted, the diagnosis of examinee attributes may be improved so that educators can 

have a better understanding of examinee attributes without adding additional items. 

2.2.3.2 SICM 

 The scaling individuals and classifying misconceptions (SICM) model (Bradshaw 

& Templin, 2014) was developed to model multiple-choice items. The SCIM model 

combined the IRT and DCM in that a continuous latent ability serves as the general 

unidimensional ability, and the multiple dichotomous misconceptions serve as the 

nuisance dimensions that leads to local dependency among the items (Bradshaw & 

Templin, 2014). It uses the log ratio between the probability of answering incorrect 

options and the probability of answering the correct option as the dependent variable, and 

the latent covariates (i.e., the latent continuous trait and dichotomous misconceptions) as 

predictors. The probability of selecting the correct option defined as a function of only an 

examinee’s continuous ability. This probability of a correct response provides a baseline 

probability, whereas the incorrect options only measure misconceptions but not the 

continuous latent attribute. The response function of selecting an incorrect option is 

defined as: 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑥𝑥𝑖𝑖𝑖𝑖� =
exp�𝜆𝜆𝑥𝑥𝑖𝑖𝑖𝑖,0−𝜆𝜆𝑥𝑥𝑖𝑖𝑖𝑖,𝜃𝜃(𝜃𝜃𝑒𝑒)+𝝀𝝀𝒙𝒙𝒊𝒊𝒊𝒊

𝑻𝑻 𝒉𝒉�𝜶𝜶𝒋𝒋,𝒒𝒒𝒙𝒙𝒊𝒊𝒊𝒊��

∑ exp�𝜆𝜆𝑥𝑥𝑖𝑖ℎ,0−𝜆𝜆𝑥𝑥𝑖𝑖𝑖𝑖,𝜃𝜃(𝜃𝜃𝑒𝑒)+𝝀𝝀𝒙𝒙𝒊𝒊𝒊𝒊
𝑻𝑻 𝒉𝒉�𝜶𝜶𝒋𝒋,𝒒𝒒𝒙𝒙𝒊𝒊𝒊𝒊��

𝑚𝑚𝑖𝑖
ℎ=1,ℎ≠𝐻𝐻

, (26) 
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where c(numerator) and h (denominator) are the notation for the same incorrect option, C 

(numerator) and H (denominator) are the same notation for the correct option. 𝑥𝑥𝑖𝑖𝑖𝑖 

represents the 𝑐𝑐𝑡𝑡ℎ incorrect option of 𝑖𝑖𝑡𝑡ℎ item, 𝑚𝑚𝑖𝑖 is the total number of incorrect options 

of the 𝑖𝑖𝑡𝑡ℎ item, 𝒒𝒒𝒙𝒙𝒊𝒊𝒊𝒊 = 𝑞𝑞𝑥𝑥𝑖𝑖1 𝑞𝑞𝑥𝑥𝑖𝑖2 … 𝑞𝑞𝑥𝑥𝑖𝑖𝑖𝑖, is the Q vector that indicates whether the 

misconception is measured by the 𝑐𝑐𝑡𝑡ℎ option across all misconceptions of a test, 𝜆𝜆𝑥𝑥𝑖𝑖𝑖𝑖,0 is 

intercept that represents the logit of the incorrect option over correct option, and 𝜆𝜆𝑥𝑥𝑖𝑖𝑖𝑖,𝜃𝜃 is 

the coefficent of continous scale 𝜃𝜃 represented by the correct option C(or H), and 

𝝀𝝀𝒙𝒙𝒊𝒊𝒊𝒊
𝑻𝑻 𝒉𝒉�𝜶𝜶𝒋𝒋,𝒒𝒒𝒙𝒙𝒊𝒊𝒊𝒊� consists of all the main effects and interaction effects of the discrete 

misconceptions measured by the 𝑐𝑐𝑡𝑡ℎ incorrect option.  

 The Q-matrix of the SICM only includes misconceptions measured by each 

incorrect option because the correct option only measures the continuous ability and not 

any misconceptions (Bradshaw & Templin, 2014). For example, a Q-matrix of three 

incorrect options that measure four attributes can be shown in Table 2, in which each 

distractor measures at least one misconception. Although the SCIM can be a useful tool 

for measuring multiple dichotomous misconceptions, it does not allow for the possibility 

of items to directly measure dichotomous skills of interest.  

 
Table 2. The Q-Matrix of an Item. 

Option No. A1 A2 A3 A4 
0 - - - - 
1 1 0 0 0 
2 0 1 0 0 
3 1 0 1 0 
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2.2.3.3 MC-DINA 

Other multiple-choice DCMs have been developed to allow for the possibility of 

modeling multiple skills. For example, the multiple-choice DINA (MC-DINA) model (de 

la Torre, 2009a) was proposed to model the attributes measured by each multiple-choice 

item. Like the SICM, the Q-matrix of the MC-DINA model is option-based (i.e., a Q-

matrix vector is defined for each option). However, unlike the SICM, the MC-DINA 

considers the attributes measured by each option including the correct choice. Because it 

is a DINA-based model, each item-option coded Q-vector identifies a latent class 

“group”, which may contain more than just one profile, that should be attracted to that 

option. The number of latent class “groups” of an item is equal to the number of uniquely 

coded Q-vectors plus one because a reference group, group 0, is defined that has not 

mastered any set of measured attributes for any of the options. Group 0 will have an 

equal probability of choosing each option of the item (i.e., random guessing), and other 

latent class groups will have a modeled parameter describing the probability of choosing 

the “attractive” option (i.e., in which the item-option Q-matrix matches the examinees’ 

attribute profile).  

 The MC-DINA estimates the probability of choosing an option given a latent 

group. Simulation results (de la Torre, 2009a) show that the MC-DINA has better 

attribute profile classification rates than the dichotomous DINA model. However, there 

are no model parameters that specifically define the property of each option, which 

makes it difficult for practitioners to evaluate the quality of each distracter.  
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2.2.3.4 MC-S-DINA 

 To make the model easier to use, Ozaki (2015) proposed several MC-DINA 

model alternatives, namely, multiple-choice structural DINA (MC-S-DINA) models. In 

these models, a random guessing portion was added to the model that is based on the 

probability of missing the option in which the measured attributes are matched with an 

examinee’s mastered attributes. The models also include parameters that indicate the 

probability of “slipping” and missing the option for examinees who have mastered all the 

required attributes, which describes the item difficulty. The MC-S-DINA II, one of the 

three proposed models, is discussed here. For the MC-S-DINA II, each option has a 

“slipping” parameter. The probability of choosing the 𝑐𝑐𝑡𝑡ℎ option, given an attribute 

profile of the 𝑗𝑗𝑡𝑡ℎ examinee, is shown as: 

 

𝑃𝑃�𝑋𝑋𝑖𝑖𝑖𝑖 = 𝑐𝑐�𝛼𝛼𝑗𝑗� = 𝛾𝛾𝑖𝑖𝑖𝑖(1− 𝛿𝛿𝑖𝑖𝑖𝑖)𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 � 𝛽𝛽𝑖𝑖𝑖𝑖
𝐶𝐶−1

�
(1−𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖)

+
�1−𝛾𝛾𝑖𝑖𝑖𝑖�

𝐶𝐶
 , (27) 

 
𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 = ∏ (2 − 2�𝛼𝛼𝑗𝑗𝑗𝑗−𝑞𝑞𝑖𝑖𝑖𝑖𝑐𝑐�

2
)𝐾𝐾

𝑘𝑘=1 ,  
 

𝛾𝛾𝑖𝑖𝑖𝑖 = ∑ 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖�1 −∏ �1 − 𝛼𝛼𝑗𝑗𝑗𝑗�𝐾𝐾
𝑘𝑘=1 �𝐶𝐶

𝑐𝑐=1 ,  
 

𝛽𝛽𝑖𝑖𝑖𝑖 = ∑ 𝛿𝛿𝑖𝑖𝑖𝑖𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖𝐶𝐶
𝑐𝑐=1  ,  

 
 
where C is the total number of options, and K is the total number of skills measured by 

the item. 𝜂𝜂𝑖𝑖𝑖𝑖𝑖𝑖 is equal to 0 if the required attributes of an option are not fully mastered by 

the examinee, otherwise it is equal to 1. 𝛾𝛾𝑖𝑖𝑖𝑖 is 0 if the examinee does not have any 

attributes measured by any item options, and the examinee has equal probability of 

choosing any option. 𝛽𝛽𝑖𝑖𝑗𝑗 is equal to the probability of missing the option in which all the 
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measured attributes are mastered by the 𝑗𝑗𝑡𝑡ℎ examinee, and it is weighted by the number 

of options minus 1 (C-1).  

 The other two MC-S-DINA models are similar to the MC-S-DINA II. One model 

has only one “slip” parameter at the item level, while the other model has more 

parameters that model even more attribute interactions and options than the MC-S-DINA 

II. Simulation results show that the proposed models have better attribute profile recovery 

than the MC-DINA model (Ozaki, 2015), suggesting that the models can be potentially 

useful in diagnosing students’ strengths and weaknesses using the multiple-choice items.  

2.2.3.5 GDCM-MC 

Concurrently with Ozaki’s (2015) work, a family of general diagnostic 

classification models for multiple-choice options (GDCM-MC; DiBello et al., 2015) was 

also proposed, which are central to this research. The GDCM-MC defines a general 

framework where it is assumed that how an examinee responds to a multiple-choice item 

depends on the mastery of skills and misconceptions. Note that because the model 

specifically focused on both skills and misconceptions DiBello et al. (2015) referred them 

generically as attributes that were either possessed or not. For consistency, this 

terminology will not be adopted when discussing this model and the submodel defined 

for this research. Instead, the terms attribute and mastery/non-mastery will continue to be 

used. Under this framework, a function is used to define the attractiveness of each option. 

Using the GDCM-MC, the function used to identify the attractiveness of each option can 

be related to any of the abovementioned dichotomous DCM models (although slightly 

modified). Note that, although this is not entirely the case, the idea of modeling each 
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option is “as though” they are pseudo -items. For example, the GDCM-MC could use a 

version of the RRUM, DINA, or even the LCDM. This function was referred to as the 

“Kernal Function” by DiBello et al. (2015) and was notated as, 𝐹𝐹𝑖𝑖ℎ(𝛼𝛼). Furthermore, the 

GDCM-MC uses an option-based Q-matrix, but made a modification to allow for a 

specific focus on both skills and miscoceptions. Finally, similar to Ozaki (2015) MC-S-

DINA models, the GDCM-MC allows for the potential of random guessing, which is 

weighted by the number of options.  

Although the choice of “Kernel Functions” in GDCM-MC will not be discussed 

further, a dichotomous DCM previously discussed in this document could be used. 

However, a more thorough discussion of the Q-matrix for the GDCM must be provided. 

An additional entry was necessary for the GDCM-MC because the GDCM-MC measures 

both skills, and misconceptions and mastery or non-mastery of either may simultaneously 

make one option attractive and another unattractive. Specifically, entries specify the 

pattern of skills and misconceptions that make that option most attractive. Thus, the third 

entry of an “N” was added to suggest that a particular attribute did not directly impact the 

attractiveness of a given option. An example of the GDCM-MC Q-matrix for a single 

four-option item that measures three attributes (of which some could be skills and other 

misconceptions) is shown below. 
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Table 3. A GDCM-MC Q-Matrix of an Item 

Option No. A1(Skill 1) A2(Skill 2) A3(Misconception) 
1 1 1 0 
2 N 1 N 
3 1 N N 
4 N N 1 

 

Each row of the Q-matrix represents an option, and each column of the Q-matrix 

represents an attribute (skill or misconception). In total, there are four options and three 

attributes measured by this item. The entry of a value 1 means that mastery of the 

attribute would result in higher attraction to that option, whereas an entry of 0 means that 

lacking mastery of that attribute is will result in a higher attraction to it. Generally, 

matching the 1’s and 0’s in a Q-matrix option lead to a higher attraction of that option. 

An entry of “N” means that the attribute is irrelevant for that option, and as such, does 

not directly influence the attractiveness of that option. 

Given the Q-matrix, the GDCM-MC consists of a weighted combination of a 

cognitive portion and a guessing portion. The cognitive portion is very similar to a typical 

multinomial model that is a part “divided by the total”. Whereas the guessing portion 

assumes that, when an examinee does guess, all options are equally attractive, and thus, 

the probability of selecting any option is the inverse of the number of options for that 

item. Given these two parts, the GDCM-MC defines the probability of selecting the ℎ𝑡𝑡ℎ 

option of the 𝑖𝑖𝑡𝑡ℎ item as follows:  

 
𝑃𝑃𝑖𝑖(ℎ|𝜶𝜶) = 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶)

𝑆𝑆𝛼𝛼
𝜔𝜔𝑖𝑖𝜶𝜶 + 1

𝐻𝐻𝑖𝑖
(1 − 𝜔𝜔𝑖𝑖𝜶𝜶) , (28) 
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𝜔𝜔𝑖𝑖𝜶𝜶 = min�1,∑ 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶)𝐻𝐻𝐻𝐻
ℎ′=1 � , 

 
𝑆𝑆𝛼𝛼 = ∑ 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶)𝐻𝐻𝐻𝐻

ℎ=1  . 
 
 
In equation 28, the probability of selecting a given option is a weighted sum between the 

probability of cognitively selecting that option, 𝐹𝐹𝑖𝑖ℎ(𝛼𝛼)
𝑆𝑆𝛼𝛼

, and the probability of selecting that 

option when guessing, 1
𝐻𝐻𝑖𝑖

. Specifically, 𝐹𝐹𝑖𝑖ℎ(𝛼𝛼) is the kernel function that represents the 

attractiveness of the ℎ𝑡𝑡ℎ option of the 𝑖𝑖𝑡𝑡ℎ item, and can be any aforementioned 

dichotomous DCM (this particular research will use the RRUM). Note that kernel 𝐹𝐹𝑖𝑖ℎ(𝛼𝛼) 

is related to the probability of cognitively choosing that option, thus, this portion is 

modeled in the same way as a typical dichotomous DCM, and 𝑆𝑆𝛼𝛼 is the sum of kernel 

𝐹𝐹𝑖𝑖ℎ(𝛼𝛼) across all options. 𝐻𝐻𝑖𝑖 indicates the number of options for the 𝑖𝑖𝑡𝑡ℎ item. As was 

mentioned, the value 𝜔𝜔𝑖𝑖𝜶𝜶 defines a weight that is placed on the cognitive portion of the 

model relative to the guessing portion. Notice that this weight depends on 𝑆𝑆𝛼𝛼 which is the 

sum of the kernel function across all options. Because the kernels represent the 

attractiveness of each option, when the “attraction” of the options, in general, is relatively 

high, 𝑆𝑆𝛼𝛼 > 1. As a result, 𝜔𝜔𝑖𝑖𝑖𝑖 = 1 and, thus, all weight is placed on the cognitive ability 

(i.e., the response probability is 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶)
𝑆𝑆𝛼𝛼

). If, however, all options are not that attractive, 

𝑆𝑆𝛼𝛼 < 1 and as a result 𝜔𝜔𝑖𝑖𝑖𝑖 < 1. When 𝜔𝜔𝑖𝑖𝑖𝑖 < 1, at least some portion of the probability of 

selecting an option will be due to random guessing. Most importantly to this research, in 

general, the probability of selecting any option is not equal to any dichotomous function 

alone because of the guessing part for an option or the division of 𝑆𝑆𝛼𝛼. Thus, even when a 
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specific kernel is selected, the corresponding dichotomous model will not perfectly fit the 

polytomously scored data after recoding it as a dichotomous (right/wrong) response.  

Although the GDCM-MC provides a useful framework for a number of possible 

models, one must choose a kernel, usually based on the particular items. DiBello et al. 

(2015) specifically discuss the estimation of the GDCM-MC when using the RRUM as 

the kernel, 𝐹𝐹𝑖𝑖ℎ(𝛼𝛼). When using the RRUM as a kernel function, the model is named the 

extended reparameterized unified model (ERUM). Using the RRUM as a base (RRUM; 

Hartz, Roussos, & Stout, 2002), the kernel is defined as: 

 
𝐹𝐹𝑖𝑖ℎ(𝛼𝛼) = 𝜋𝜋𝑖𝑖ℎ ∏ 𝑟𝑟𝑖𝑖ℎ𝑘𝑘

|𝑞𝑞𝑖𝑖ℎ𝑘𝑘−𝛼𝛼𝑘𝑘|
𝑘𝑘=1|𝑞𝑞𝑖𝑖ℎ𝑘𝑘≠𝑁𝑁  . (29) 

 
 

Both the ERUM and RRUM use 𝜋𝜋 and 𝑟𝑟 to model the respondents’ item response 

behavior given the respondents’ latent attribute profile 𝜶𝜶. 𝜋𝜋𝑖𝑖ℎ can be viewed as the 

attractiveness of the ℎ𝑡𝑡ℎ option of 𝑖𝑖𝑡𝑡ℎ item for an examinee with a mastery profile that 

matches that option Q-matrix vector. Notice that the ERUM extends the function of 𝑟𝑟𝑖𝑖ℎ𝑘𝑘 

to penalize not only the lack of mastery for the measured 𝑘𝑘𝑡𝑡ℎ attribute, but also for 

possibly mastering the 𝑘𝑘𝑡𝑡ℎ attribute (e.g., specific misconception). In other words, the 

𝑟𝑟𝑖𝑖ℎ𝑘𝑘 of the ERUM indicates the reduction of probability for choosing the ℎ𝑡𝑡ℎ option of 

the 𝑖𝑖𝑡𝑡ℎ item if an examinee’s 𝑘𝑘𝑡𝑡ℎ attribute does not match the specified attribute 

measured by the option. This matching is calculated as the |𝑞𝑞𝑖𝑖ℎ𝑘𝑘 − 𝛼𝛼𝑘𝑘|, which only 

equals 0 when the two are identical and 1 otherwise. If the two values match, 𝑟𝑟0 = 1 and 

thus no penalty is applied. Otherwise, the attractiveness is reduced by a factor of r, which 
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0 < 𝑟𝑟 < 1. The probability of choosing an option is related to the value of 𝜋𝜋 and r. A 

high 𝜋𝜋 value indicates that an examinee whose attribute profile matched the measured Q-

vector of an option will increase the attractiveness of that option, and low 𝑟𝑟 value means 

that any mismatched attribute can dramatically reduce the attractiveness of that option.  

2.3 The Impact of Distractors 

Distractors can have a great impact on item functioning. Many past studies have 

focused on how to appropriately model distractors, examining the quality of distractors, 

types of distractors, and the quantity of distractors (Ali, Carr, & Ruit, 2016; Cizek & 

O’Day, 1994; Kubinger, Holocher-Ertl, Reif, Hohensinn, & Frebort, 2010; Pachai, 

DiBattista, & Kim, 2010; Sideridis, Tsaousis, & Al Harbi, 2017). Informative distractors 

were found to be not ignorable, and models that explicitly account for distractors would 

provide a better fit (Sideridis et al., 2017). Sideridis and colleagues (2017) examined 

several ways of modeling informative distractors. The methods used in the study included 

(1) adapting both a Rasch and partial credit models to model the informative distractors 

within items; (2) modeling the informative distractors as separate items; and (3) modeling 

the items that were combined with a testlet model. The study also examined the items 

using a Rasch model without including the low-ability group, which could have a higher 

chance guessing than the high-ability group. The results show any method other than 

treating the informative distractors as separate items can provide a better fit when 

compared the use of standard Rasch model. However, given the different data used in the 

methods compared, model fit cannot be fairly judged. 
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 Studies have found that adding non-informative distractors does not affect the 

multiple-choice responses. However, using informative distractors can increase the 

reliability of a test and the difficulty of an item to the level of a free-response format. 

Cizek and O’Day (1994) studied non-functioning item options, which are options rarely 

chosen by examinees. They compared a test that contained five-option items, each of 

which had a non-functioning option, to a test that contained four-option items that did not 

include the non-functioning option. They found that the item’s discrimination and 

difficulty parameters, when calibrated using a 2PL model, were not significantly 

different. Additionally, the reliability of the two tests was not significantly different. Ali 

et al. (2016) replaced non-functioning distractors of multiple-choice items with 

examinees’ partial answers from a free-response format of the same questions, which is a 

way of increasing the information of distractor. This new form was compared to the 

multiple-choice items with non-functioning distractors. The difficulty of the items 

increased, becoming closer to the difficulty observed in the free-response format. In this 

case, the internal consistency of the test also improved after the replacement.  

 Other studies have examined the impact of a “none of the above” (NOTA) option 

as a distractor or even a correct option. Pachai et al. (2010) found that using a NOTA 

option as a distractor can decrease the discrimination of an item because the NOTA 

option can attract both the higher-ability group and the lower-ability group. In addition, 

using NOTA as a correct option can increase the item difficulty, which does not help 

improve the quality of items. Similarly, Kubinger et al. (2010) found that a five-option 

multiple-choice item that requires an examinee to select two options to obtain credit tends 
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to be more difficult than a six-option multiple-choice item that requires only one correct 

answer. Additionally, there was no difference in item difficulty between a free-response 

format item and the five-option item. The results either make distractors more 

informative or increase the number of options, which can reduce the chance of guessing 

and thus lead to an increase in item difficulty.  

 In general, it does appear that adding informative distractors can improve 

reliability and even limit the chances of guessing. Increases in test reliability will lead to 

decreases in measurement error, which is an indication of measured-ability improvement. 

Studies have shown that distractors can provide useful information for more accurately 

estimating an examinee’s ability level. The next section addresses research related to how 

distractors impact ability estimation. 

2.4 Abilities Estimation Distractors 

Given an assessment with multiple-choice items, there are at least two approaches 

for scoring: binary scoring and polytomous scoring (i.e., using an ordinal or multinomial 

model). Binary scoring approaches only consider whether the examinee correctly answers 

the item. As a result, how the examinee misses the item (which distractor is chosen) is 

ignored. Modeling approaches that use polytomous scoring treat each incorrect option as 

a piece of information. The incorrect options can be treated as ordered (Jiao et al., 2012) 

or nominal (Bradshaw & Templin, 2014) data. Although the suitable model will be 

selected based on the scoring approach characteristics, polytomous models tend to be 

more complex than dichotomous-response models. As a result, the question of whether 

information obtained from a polytomous scoring approach can be justified by the 
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increased complexity of a polytomous model should be explored. That is, does scoring 

examinees using polytomously scored multiple-choice items meaningfully improve 

estimates of an examinee’s ability? 

 Several studies have focused on whether to score items polytomously when 

partial credit can be given to examinees with responses that are not entirely incorrect. 

Grunert and colleagues (2013) examined how the distribution of total scores on a 

chemistry test was affected when changing from dichotomous scoring to polytomous 

scoring and found that different scoring methods did result in changes in students’ rank 

order. Although the relative order of students was impacted, the normality of the total 

score distribution was unchanged. The results of this study suggest that polytomous 

scoring could change a student’s estimated ability level.  

 Jiao and colleagues (2012) examined an assessment with only dichotomously 

scored items and found that polytomous scoring of some items did not change the 

estimation of examinees’ latent abilities. The authors scored some of the items 

polytomously and compared the results to estimates obtained using only dichotomous-

scored items. The results showed that the ability scores from the two methods were 

highly correlated (𝑟𝑟 = .94). Additionally, simulation studies were run to explore the 

difference between scoring examinees using polytomously scored items or 

dichotomously scored items. Data were simulated from both the PCM and Rasch models 

using parameters from a real data analysis. The approaches were then used to conduct the 

anlaysis in the following way. The two types of originally simulated data were analyzed 

using the PCM and Rasch, respectively. The simulated polytomous responses were then 
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dichotomized, and the dichotomous Rasch model was used to analyze the data simulated 

using Rasch and dichotomized data. Simulation results showed examinee abilities 

estimated from the first approach had a lower standard error when compared to the 

abilities estimated using the second approach. However, because some of the data were 

generated from the PCM, the higher accuracy of latent-ability estimates using the PCM 

may have been due to a model misfit. 

 A comparison of polytomous versus dichotomous models has also been conducted 

using the DCM framework. For example, de la Torre (2009a) compared examinee 

estimates obtained using polytomously scored items that were analyzed using the MC-

DINA to examinee estimates obtained using the same items when dichotomously scored 

and analyzed using the DINA. In this study, the data were simulated using the MC-

DINA. A 30-item, 4-option, 5-attribute test was used in this scenario. The first set of 10 

items only had one attribute measured by the correct options, and no attributes were 

measured by the incorrect options. The second set of 10 items measured two attributes, 

and the third set of 10 items measured three attributes. The last two sets had attributes 

measured by some or all of the incorrect options. de la Torre (2009a) suggested that the 

first ten items should produce the same results if estimated by either the MC-DINA or the 

DINA model because the distractors provided no information about the examinee’s latent 

attributes. The data were analyzed first using the MC-DINA and compared to data 

analysis using the DINA with dichotomized data. The correct option Q-matrix was used 

in the DINA model. The results showed that the MC-DINA provides better classification 

accuracy of latent attributes than the DINA model. This study had a similar problem to 
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the previous study(Jiao et al., 2012); that is, the advantage of the MC-DINA in 

classification accuracy could be due to a misfit of the DINA model.  

 The MC-DINA is a multiple-choice extension of the DINA model and can be 

used to diagnose examinees’ attribute profiles that match with attribute profiles measured 

by item options. The model can be limited in application because it only considers the 

attribute profiles matched with profiles measured by options, and measured attributes 

must be non-compensatory. On the other hand, the GDCM-MC is a more flexible model, 

as it is not limited to profiles only measured by the options of items (ERUM) and non-

compensatory attributes. 

Although polytomous DCMs have been developed, the same items could be 

scored dichotomously and fit with a much simpler model in most cases. Thus, there is a 

need to specifically address the question of whether the added complexity of a 

polytomous model is justified. Further research should examine if polytomous modeling 

approaches provide better estimates of examinees’ attributes.  

In the current research, the focus is specifically on model recovery and, more 

importantly, on examinees’ classifications (i.e., estimation of examinees’ abilities). In 

contrast, comparing model fit between polytomous and dichotomous models is difficult 

because typical measures of relative fits, such as AIC or BIC, are based on different data. 

Other indices that show polytomous and dichotomous DCM performance may also serve 

as an alternative comparison. For instance, the cognitive diagnostic index (CDI; Henson 

&Douglas, 2005), based on Kullback-Leibler information, can be used to understand how 

well an item discriminates between high- ability and low-ability groups. Because the CDI 
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is based on the Kullbach-Leibler distance between attribute patterns, which is defined for 

both dichotomously and polytomously scored items, the index can be computed for both 

polytomous and dichotomous data. Also, as both the polytomous and dichotomous forms 

of CDI rely on model parameters, it may be an indirect tool with which to compare the 

performance of polytomous and dichotomous scoring models. 

2.5 CDI 

Henson and Douglas (2005) introduced the CDI for dichotomous DCMs. The CDI 

measures an item's overall discrimination power between attribute-mastery profiles. It 

can indicate an item's usefulness in examinee-profile estimation (Henson, Rousso, 

Douglas & He, 2008). Henson et al. (2008) have shown that the attribute-level CDI is 

positively associated with CCRs, which means that the higher the CDI, the better the item 

performs. One advantage of the CDI is that it provides a unified approach to measuring 

the value of an item that can be computed regardless of the model used. Specifically, the 

CDI is expressed as a function of the Kullbach-Leibler information (KLI), which can be 

expressed as a function of the conditional-probability distribution of the item given the 

attribute profile, as opposed to only relying on differences of specific item parameters. In 

addition, the CDI naturally extends to polytomous models. (Henson, DiBello & Stout, 

2015). For these reasons, this study will use the index as a measure of item quality and as 

one method to quantify the improvement of an item when considering polytomous 

responses as opposed to dichotomously scored responses. Because the CDI depends on 

the KLI, a brief discussion is given, and the CDI is then defined.  

 The KL information (KLI) formula of the 𝑗𝑗𝑡𝑡ℎ item is defined as: 
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𝐾𝐾𝐾𝐾𝐼𝐼𝑖𝑖(𝑢𝑢, 𝑣𝑣) = ∑ �𝑃𝑃(𝑋𝑋𝑖𝑖 = ℎ|𝜶𝜶𝑢𝑢) ∗ ln (𝑃𝑃�𝑋𝑋𝑖𝑖 = ℎ�𝜶𝜶𝑢𝑢�
𝑃𝑃�𝑋𝑋𝑖𝑖 = ℎ�𝜶𝜶𝑣𝑣�

)�𝐻𝐻𝑖𝑖
ℎ=1   , (30)  

 
 
where 𝐻𝐻𝑖𝑖 is the number of options for the 𝑖𝑖𝑡𝑡ℎ item (for dichotomous responses there are 

only two values of h), and h is the specific option of the item.  

𝐾𝐾𝐾𝐾𝐼𝐼𝑖𝑖(𝑢𝑢, 𝑣𝑣) is the weighted sum of the logarithm difference between the option-

response probability conditional on the facet pattern 𝑢𝑢 and 𝑣𝑣 across 𝐻𝐻𝑖𝑖 option(s). The 

weight is the probability of choosing the ℎ𝑡𝑡ℎ option of the 𝑖𝑖𝑡𝑡ℎ item conditional on the 

attribute pattern 𝑢𝑢. Note that there should be only two conditional option response 

probabilities, 𝑃𝑃(𝑋𝑋𝑖𝑖 = 1) and 𝑃𝑃(𝑋𝑋𝑖𝑖 = 0) , for the KLI used in the dichotomous. Because 

𝐾𝐾𝐿𝐿𝐼𝐼𝑖𝑖(𝑢𝑢, 𝑣𝑣) is defined for all possible pairs of facet patterns, the 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖  of the 𝑖𝑖𝑡𝑡ℎ item is 

weighted by all possible facet patterns,  

 
𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖  = 1

∑ ℎ(𝛼𝛼𝑢𝑢,𝛼𝛼𝑣𝑣)−1𝑢𝑢≠𝑣𝑣
∑ [ℎ(𝛼𝛼𝑢𝑢,𝛼𝛼𝑣𝑣)−1𝐾𝐾𝐾𝐾𝐼𝐼𝑖𝑖(𝑢𝑢, 𝑣𝑣)]𝑢𝑢≠𝑣𝑣  , (31) 

 
 
where ℎ(𝛼𝛼𝑢𝑢,𝛼𝛼𝑣𝑣) is the Hamming distance between two facet patterns, 𝑢𝑢 and 𝑣𝑣.  

 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 measures the discrimination of the 𝑖𝑖𝑡𝑡ℎ item. Test-level CDI (𝐶𝐶𝐶𝐶𝐼𝐼•), which is 

the sum of 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 of all the items of a test, can also be used to indicate the quality of the 

entire test (Henson & Douglas, 2005; Henson et al., 2008). In this study, 𝐶𝐶𝐶𝐶𝐼𝐼•, which is 

the sum of the 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖  of all items on a test as well as on 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖, will be used to examine the 

test-level discrimination,  

 
𝐶𝐶𝐶𝐶𝐼𝐼• = ∑ 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖𝐼𝐼

𝑖𝑖=1  . (32) 
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The previous research also showed that 𝐶𝐶𝐶𝐶𝐼𝐼• could be positively non-linearly 

associated with classification accuracy (Henson et al., 2008). As a result, this research 

further extends this research to examine the relationship between the 𝐶𝐶𝐶𝐶𝐼𝐼• and CCRs 

when comparing dichotomous and polytomously scored assessments. 

2.6 Research Aims 

Research Aim 1. The first aim is to develop a polytomous model such that if the 

polytomous data fits this model, it must also be true that the dichotomized data (e.g., 

scored right/wrong) will simultaneously fit a dichotomous DCM. 

Research Aim 2: The second aim is to demonstrate the advantage of modeling the 

polytomously scored items as opposed to only using the dichotomously scored 

information. Furthermore, the aim is to explore the effect of varying levels of information 

provided by the polytomous data by varying the information in the distractors (options 

that are incorrect). Thus, three conditions will be considered: (a) when there are no 

informative distractors measured in the incorrect options, the polytomous model should 

have the same correct classification rates (CCRs) as when using the dichotomously 

scored items; (b) when the distractors are somewhat informative as the correct option, the 

polytomous scored items should have higher CCRs than their dichotomous version; and 

(c) when the distractors are as informative as the correct option, the polytomously scored 

items should result in higher CCRs than the somewhat-informative distractors and their 

dichotomous version. The results should be generalizable across different conditions such 

as sample size, test length, the number of facets, and item quality. 
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Research Aim 3: To show that 𝐶𝐶𝐶𝐶𝐼𝐼• will behave similarly as CCRs across 

different sample sizes, test lengths, attribute numbers, and quality of distractors and 

items. The log of 𝐶𝐶𝐶𝐶𝐼𝐼• will be positively associated with CCRs. Because the true value of 

CCRs is unknown in educational assessments, the value of 𝐶𝐶𝐶𝐶𝐼𝐼• in this study can, 

therefore, be used to indicate the quality of an assessment.
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CHAPTER III 
 

METHOD 
 
 

In this chapter, the EGCA model is first introduced as a submodel of the GDCM-

MC. Thus, the EGCA is a polytomous DCM. In addition, this model is developed in such 

a way that if the polytomous responses are modeled and fit the EGCA, then it must also 

be true that, after being dichotomized, the same responses will fit the RRUM. Thus, the 

model will allow for study of the informative distractor benefit without being confounded 

by model fit. A simulation study and a real data study plan are then described in addition 

to defining the indices used for analyzing the results.  

3.1 Excluding Guessing from Correct Answer Model 

As defined in the literature review, the GDCM-MC defines the probability of 

selecting an option as a weighted combination of a cognitive portion and a random 

guessing portion. Although conceptually, such a model can be useful, when studying the 

potential benefit of using polytomously scored items, the GDCM-MC has a limitation. 

Specifically, if data are simulated from the GDCM-MC, then the rescored dichotomous 

items will not follow any known DCM. As a result, any comparison with respect to CCRs 

between the two models used to score items will be confounded by model misfit in 

addition to any information that may be obtained by the polytomous data. 

The EGCA GDCM-MC is a submodel of the GDCM-MC and defined by 

excluding the guessing portion of the GDCM from the correct option. Note that guessing 
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is still functionally the same as the GDCM-MC for all other incorrect options. Thus, the 

probability of an examinee choosing any incorrect option is modeled as a function of both 

the cognitive portion of the GDCM-MC and random guessing for the option (see 

equation 33). If there is no information (attributes) in the incorrect option, the probability 

of choosing the option will be reduced to the probability of selecting that option by 

random guessing. The option with no diagnostic information is referred to as “unlinked.” 

In contrast, an option with diagnostic information is “linked.” That is, in a linked option, 

mastery or non-mastery of a set of attributes do directly influence the attractiveness of 

that option as opposed to only random guessing.  

The EGCA uses the same Q-matrix as the GDCM-MC and has three constraints. 

The first constraint requires that the correct option be entirely modeled using only the 

cognitive portion of the GDCM-MC. That is, guessing is excluded from the calculation of 

the correct option (i.e., the probability of selecting the correct option is completely 

modeled by the kernel function). The second constraint requires the kernel function, 

𝐹𝐹𝑖𝑖ℎ(𝜶𝜶), of an unlinked incorrect option(s) to be equal to 0. The third constraint is 

accomplished by requiring that 𝑆𝑆𝑆𝑆 < 1 in the original GDCM-MC. Recall that when 𝑆𝑆𝑆𝑆 < 

1 it must also be true that 𝜔𝜔𝜔𝜔𝜔𝜔 < 1, which results in at least some guessing being 

modeling for the probability of selecting an incorrect response. Given these three 

constraints of the GDCM-MC, the EGCA defines the probability as: 
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𝑃𝑃𝑖𝑖(ℎ|𝜶𝜶) =

⎩
⎪
⎨

⎪
⎧

𝐹𝐹𝑖𝑖ℎ(𝜶𝜶)
𝑆𝑆𝛼𝛼

𝜔𝜔𝑖𝑖𝜶𝜶, when ℎ = correct option
𝐹𝐹𝑖𝑖ℎ(𝜶𝜶)
𝑆𝑆𝛼𝛼

𝜔𝜔𝑖𝑖𝜶𝜶 + 1
𝐻𝐻𝑖𝑖
′ (1 − 𝜔𝜔𝑖𝑖𝜶𝜶), when ℎ = incorrect option linked

1
𝐻𝐻𝑖𝑖
′ (1 − 𝜔𝜔𝑖𝑖𝜶𝜶), when ℎ = incorrect option unlinked

 , (33) 

 
𝜔𝜔𝑖𝑖𝜶𝜶 = min{1, 𝑆𝑆𝛼𝛼}, 

 
𝑆𝑆𝛼𝛼 = ∑ 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶)𝐻𝐻𝐻𝐻

ℎ=1 , 
 
 
where 𝐻𝐻𝑖𝑖′ = 𝐻𝐻𝑖𝑖 − 1 because the correct option is excluded from guessing. Additionally, 

the guessing portions are required in the incorrect options. Thus, 𝜔𝜔𝑖𝑖𝜶𝜶 has to be 1, which 

means that 𝑆𝑆𝛼𝛼 has to be smaller than 1 in order to make 𝜔𝜔𝑖𝑖𝜶𝜶 is 1. Equation 33 can 

therefore be simplified as: 

 

𝑃𝑃𝑖𝑖(ℎ|𝜶𝜶) =

⎩
⎪
⎨

⎪
⎧ 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶), when h = correct option
𝐹𝐹𝑖𝑖ℎ(𝜶𝜶) + 1

𝐻𝐻𝑖𝑖
′ (1 − 𝑆𝑆𝛼𝛼), when h = incorrect option linked

1
𝐻𝐻𝑖𝑖
′ (1 − 𝑆𝑆𝛼𝛼), when h = incorrect option unlinked

 . (34) 

 
 

Note that by defining the EGCA this way, the correct option-response function is 

always the same as if the data were recoded as correct and incorrect (i.e., dichotomously 

scored) and then parameterized using the dichotomous model, kernel, 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶). If there is 

no additional information in the incorrect options, 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶) will become 0 for those 

incorrect options, which means that the EGCA is the same as 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶) of the correct 

option. If there is additional information in the distractors (i.e., 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶) ≠ 0), then the 

EGCA directly models the diagnostic information above and beyond the correct response 

option modeled by 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶). Notably, if none of the incorrect options provide information, 
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the EGCA will be equivalent to the dichotomous 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶) because: (a) the correct option of 

the EGCA with 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶) and the RRUM has the same response function; and (b) there are 

no additional parameters. 

Finally, the EGCA, just as was the case in the GDCM-MC, must have the kernel 

function defined for calibration or application. In this research, the kernel, 𝐹𝐹𝑖𝑖ℎ(𝛼𝛼), used is 

the RRUM. Thus, in each option, there will be a 𝜋𝜋, and r is as many as number of 

attributes as measured by the option.  

3.2 Simulation Study   

Given the EGCA with the ERUM kernel, the current study aims to compare the 

EGCA with the dichotomous RRUM through both a simulation study and a real-world 

data example. Recall that the primary focus of this research is to study the effect of using 

dichotomously scored items versus polytomously scored items on correct classifications 

rates (i.e., the estimation of examinees’ attributes). In doing so, factors of the simulation 

study must be considered such that the results will be useful and generalizable to a fairly 

broad set of application. Thus, the simulation will consider factors that have been shown 

to impact the quality of examinee estimates.  

3.2.1 Research Factors  

Previous research has shown that factors such as sample size, number of items, 

number of attributes, and the value of item parameters can impact correct classification 

rates (CCRs) in the dichotomous DCMs (Bradshaw & Templin, 2014; Fu, Rollins, & 

Henson, 2016; Shu et al., 2013). Specifically, the literature suggests that increasing the 

sample size or the test length can lead to higher CCRs. Tests that measure a large number 
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of attributes tend to have lower CCRs compared to tests that measure fewer attributes 

given the same test conditions (Bradshaw & Templin, 2014; Fu et al. 2016). In addition, 

item quality can impact CCRs, as such quality is often referred to as item discrimination 

and can usually be expressed as a function of the item parameters. For example, item 

quality is associated with the magnitude of the intercept and the slopes of latent attributes 

in addition to any interaction effect when using the LCDM (Bradshaw & Templin, 2014). 

Most relevant to this research, it has been shown that item quality is directly related to the 

combination of 𝜋𝜋 and 𝑟𝑟 parameters when using the RRUM; specifically, a high 𝜋𝜋 and low 

r condition indicate a high-item quality (Fu, Rollins, & Henson, 2016). The findings 

show that CCRs are directly impacted by the abovementioned factors researched in the 

dichotomous DCM framework. The factors that impact can also impact CCRs of the 

GDCM-MC ERUM (DiBello et al., 2015; Naumenko, Fu, Henson, Stout, & DiBello, 

2016). Moreover, previous research has shown that the informativeness of distractors 

may impact the latent-ability estimation of the latent abilities (Jiao et al., 2012). It is 

believed that informativeness of distractors can also impact CCRs using EGCA. These 

factors were manipulated for this study. The following paragraphs will describe and 

detail the different levels considered for each of these factors. In addition, multiple 

replications of the same condition were considered for the simulation study.  

3.2.1.1 Manipulation of Item Quality  

The values of 𝜋𝜋 and 𝑟𝑟 were manipulated for the correct option and linked 

incorrect options. The 𝜋𝜋 values are set to 0 for unlinked incorrect options and, as a result, 

the 𝑟𝑟 values do not matter because they would be multiplied by 𝜋𝜋 = 0 and are 
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constrained to 1. A good quality item for the RRUM is when 𝜋𝜋 is high and 𝑟𝑟 is low (Fu et 

al., 2016). In a previous study (DiBello et al., 2015), the 𝜋𝜋 and r values were drawn from 

Unif (0.65, 0.95) and Unif (0.1, 0.5) respectively. The study further distinguished the 

values of 𝜋𝜋 and r for each linked option. High and low levels of the π values were drawn 

from Unif (0.7, 0.9) and Unif (0.5, 0.7), respectively. High and low levels of the 𝑟𝑟 

parameters were drawn from Unif (0.2, 0.5) and Unif (0.05, 0.2), respectively. The two 

conditions of 𝜋𝜋 were crossed with the two conditions of 𝑟𝑟 to create a total of four 

conditions of item quality. These four conditions are High/Low (H/L, good quality), 

High/High (H/H, medium quality), Low/Low (L/L, medium quality) and Low/High (L/H, 

poor quality).  

The proposed 𝜋𝜋 and 𝑟𝑟 can further influence the ERUM kernel 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶), which can 

in turn affect the value of 𝑆𝑆𝛼𝛼. The EGCA requires 𝑆𝑆𝛼𝛼 < 1 to make the kernel 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶) of 

the correct option exactly the same as its analogous dichotomous DCM. If the proposed 𝜋𝜋 

and r lead to 𝑆𝑆𝛼𝛼 > 1, the parameters estimated EGCA would not be correct. The simulated 

value of 𝜋𝜋 of all the options were divided from the maximum value of 𝑆𝑆𝛼𝛼 of the entire 

attribute profiles for that item so that 𝑆𝑆𝛼𝛼 < 1.  

3.2.1.2 Manipulation of Distractors 

The current study also manipulated the informativeness of the distractors 

simulated using the EGCA. There were three levels of the informativeness of the 

distractors: strong, weak, and no information (none). The amount of information for any 

distractors was manipulated by changing the 𝜋𝜋 and 𝑟𝑟. Specifically, the values of 𝜋𝜋 of the 
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strong (good quality) distractors were in the same range of the values of 𝜋𝜋 of the correct 

option. For example, if the values of 𝜋𝜋 of the correct options were drawn from a Unif 

(0.5, 0.7) distribution, then the values of 𝜋𝜋 of the distractors were also drawn from a Unif 

(0.5, 0.7) distractor. To define the weak distractor conditions, the 𝜋𝜋 values were 

simulated to be lower than the 𝜋𝜋 for the correct option. Specifically, if the values of 𝜋𝜋 for 

the correct options were drawn from a Unif (0.5, 0.7) distribution, the values of 𝜋𝜋 of 

distractors would first be first drawn from Unif (0.5, 0.7), and then divided by 2 to 

resemble a bad distractor that could not distinguish the attributes. 

3.2.1.3 Simulation of Attributes 

 Using the following steps, the attribute mastery profile was simulated. First, 

random numbers were simulated from a multivariate normal distribution with dimensions 

equal to the number of measured attributes in which the first half are skills, and the 

second half are misconceptions. The means and a variances-covariances matrix of the 

multivariate distribution are 0 and 𝚺𝚺 respectively. The diagonal of 𝚺𝚺 is all 1s, which is the 

variance of the multivariate distribution, and the off-diagonal is covariance (or correlation 

because the variances are 1s.) between skills, misconceptions and skills, and 

misconceptions. The skills were assumed to be correlated with a magnitude of Unif 

(.2, .4), misconceptions were assumed to be correlated with a magnitude of Unif (.3, .5), 

and the correlation between misconception and skills were assumed to be negative with a 

value of Unif (-.5, -.7). In addition to the association between attributes, it is believed that 

not all attributes would be equally difficulty. Thus, the proportion of mastery on each 
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attribute was simulated from a Unif (.4, .6) distribution for each condition replication. 

Using these proportions, the cutoff point for each attribute was computed based on the z-

scores corresponding to the generated mastery probability, as each dimension followed a 

univariate normal distribution. For instance, the z-score that corresponds to the mastery 

probability .5 is 0. If the generated random number is larger than 0, the attribute is 

mastered (1); otherwise, the attribute is not mastered (0).  

3.2.1.4 Q-Matrix Generation 

In this study, four and six attributes Q-matrices were used. The four-attribute 

condition included two skills and two misconceptions measured by the whole test, and 

the six-attribute condition included three skills and three misconceptions. After 

determining the number of attributes and whether they are skills or misconceptions, the 

Q-matrix was randomly generated. Different Q-matrices were generated for each 

replication and condition. In order to make the Q-matrices realistic, the correct option 

required the skills measured by the item to be present and required the misconceptions 

measured by the item to be lacking or absent, and there were no more than three 

attributes measured by an item. The incorrect options required that not all skills measured 

by the item must be mastered or that the misconceptions measured by the item must be 

mastered. These constraints are similar to the “realistic” constraints used by DiBello et al. 

(2015). By using these constraints, the Q-matrices resembled the multiple-choice items in 

educational assessments. An example of a four-attributes Q-matrix of a GDCM-MC is 

shown in Table 4. In this example, which was also the case in the current simulation 

study, the correct option is the first option for every item. 
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3.2.1.5 Recoding Data  

Given the Q-matrix and the specified conditions, data were simulated from the 

EGCA with the ERUM kernel by using the polytomous Q-matrix and then estimated 

using the EGCA. Next, to calibrate the data set using the RRUM, the data needed to be 

rescored as right/wrong (0/1 dichotomous scoring). Because the data was intentionally 

simulated such that the first item was “correct,” the data was rescored such that if the first 

option was scored as a 1 (“correct”), and all other options were scored as a 0 

(“incorrect”).  

3.2.1.6 Recoding Q-Matrix  

To calibrate the RRUM, a Q-matrix for the dichotomous model must also be 

defined. There are two challenges in redefining a Q-matrix for the RRUM when 

originally simulating data from the EGCA. First, the EGCA defines a Q-matrix entry for 

every option, whereas the RRUM only defines a Q-matrix for each item. Second, the 

EGCA allows three entries in the Q-matrix (0, 1, and N), whereas the RRUM only allows 

for two entries (0 and 1). The following discussion describes the method used to recode 

the Q-matrix for the RRUM from the EGCA. 

The EGCA is defined in such a way that the probability of selecting the correct 

option is always defined as 𝐹𝐹𝑖𝑖ℎ(𝜶𝜶). Thus, the Q-vectors of correct options of all items for 

the EGCA are only needed for the RRUM. However, in addition to ignoring the Q-matrix 

entries for the distractors, one additional change must be made. Specifically, the EGCA 

allows for three types of entries (i.e., 0, 1, N) whereas the RRUM allows for two types of 
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entries (i.e., 1, 0) and thus the number of entry types for the EGCA Q-matrix must be 

changed. 

Using the EGCA, the Q-matrix entry of 1 and 0 mean that the attribute directly 

influences attractiveness and N means it does not. In the RRUM, the Q-matrix entry of 1 

means that the attribute influences the attractiveness and 0 means it does not. Therefore, 

in order to use the correct option Q-vector for the EGCA, all Ns are coded as 0s (because 

0 in the RRUM matrix means that it does not influence), and all 0s and 1s are coded as 1 

in the RRUM (because they influence the attractiveness). The correct option Q-vectors 

only have entries 0s and Ns for misconceptions. As such, Q-vector entries 0s are coded as 

1s, which means that the idea of misconceptions need to be reexpressed as skills, and 

those skills would be “Does not possess that misconception”. Thus, the RRUM uses the 

correct option Q-vectors with misconceptions entries 0s recoded to 1s and Ns recoded to 

0s. In order to make the classification comparable between the EGCA and the RRUM, 

the estimated misconceptions are recoded back from 1s to 0s and 0s to 1s after the 

attributes are estimated by the RRUM.  

Tables 4 and 5 provide an example of a possible Q-matrix for the EGCA (Table 

4) and how it is recoded for the RRUM (Table 5). Note that the correct option in the Q-

matrix for the EGCA is the first option. For example, the entry for item 1 option 1 of A1 

(skill) is 1 for the EGCA, which is the same in the RRUM Q-matrix. The entry for item 1 

option 1 of A2 (skill) and A3 (misconception) are Ns for the EGCA, and it is coded as 0s 

in the Q-matrix for the RRUM. Lastly, the entry for item 1 option 1 of A4 

(misconception) is 0 for the EGCA, and it is coded as 1 in the Q-matrix for the RRUM. 
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Table 4. Four-Attribute Q-Matrix with One Unlinked Option for the EGCA 

Item No. Option No. Skills Misconceptions 
  A1 A2 A3 A4 

1 1 1 N N 0 
1 2 0 N N N 
1 3 N N N 1 
1 4 N N N N 
2 1 N 1 0 N 
2 2 N 0 N N 
2 3 N N 1 N 
2 4 N N N N 

 
 
Table 5. Recoded Q-Matrix for the RRUM Based on the EGCA Q-Matrix in Table 4 

Item No. Skills Misconceptions 
 A1 A2 A3 A4 

1 1 0 0 1 
2 0 1 1 0 

 
 
3.2.1.7 Estimation Algorithm 

The Metropolis-Hastings (MH) within the Gibbs Sampling Markov Chain Monte 

Carlo (MCMC) estimation algorithm was programmed in FORTRAN to estimate both 

the RRUM and the EGCA. This program is a modified version of the FORTRAN 

program originally developed for estimation of the GDCM-MC (DiBello, Stout, & 

Henson, 2015). The chain length for all MCMC estimations was 5,000 with a 4,000 burn-

in, and two chains with random starting values were used. 

3.2.1.8 Summary of Simulation Conditions  

In the simulation study, two other factors were manipulated. Specifically, the 

number of simulees (i.e., 1,000 and 2,000) and the number of items (i.e., 20 and 40). The 

factorial design of this study contained two levels of sample size, two levels of test 
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lengths, two levels of attribute sizes, four levels of 𝜋𝜋 and r conditions (i.e., H/H, H/L, 

L/H, L/L), three levels of distractor quality (i.e., strong, weak and none), and two 

different estimating models (i.e., EGCA and RRUM) resulting in 2 x 2 x 2 x 4 x 3 x 2 = 

192 conditions in total (see Table 6). Finally, each condition was replicated 50 times. 

Given the large number of factors manipulated in this study, it was believed that the 

variability of each condition would not be large for each condition.  

 
Table 6. Simulation Conditions 

Factors Conditions 

Examinees 1000, 2000 

Test Length 20, 40 

Attributes 4 (2 skills +2 misconceptions), 
6 (3 skills + 3 misconceptions) 

𝝅𝝅 High (Unif (0.7, 0.9)) 
Low (Unif (0.5, 0.7)) 

r High (Unif (0.2, 0.5)) 
Low (Unif (0.05, 0.2)) 

Distractor Information Strong, Weak, Non-informative(None) 

Model EGCA, RRUM 
 
 
3.2.2 Indices 

3.2.2.1 PC 

To ensure cross-chain convergence using the Gelman and Rubin R statistic (GRR; 

Gelman & Rubin, 1992), when the GRR statistics was between 1 and 1.3, the 
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corresponding parameters were treated as convergence. For each replication of a 

condition, the number of parameters that have the GRR greater than 1.3 is summed as 𝑥𝑥. 

The total number of parameters for that condition is 𝑋𝑋. The proportion convergence (𝑃𝑃𝑃𝑃) 

was used to examine the percentage of convergence. The formula is shown as follows: 

 
𝑃𝑃𝑃𝑃 = 1 −  𝑥𝑥

𝑋𝑋
 . (35) 

 
 
3.2.2.2 CCRs 

The profile- and attribute-level correct classification rates (pCCRs and aCCRs) 

were used to detect any differences in accuracy between the two models across various 

conditions. pCCRs are defined as the proportion of examinees that were correctly 

classified across all K attributes by the model. aCCRs reflect the proportion of correct 

classification for averaged attributes across all attributes and examinees. pCCRs and 

aCCRs are defined as,  

 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 =
∑ 𝐸𝐸(𝒂𝒂𝑗𝑗=𝒂𝒂𝚥𝚥�)𝑁𝑁
𝑗𝑗

𝑁𝑁
 , (36) 

 

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 =
∑ ∑ 𝐸𝐸(𝑎𝑎𝑗𝑗𝑗𝑗=𝑎𝑎�𝑗𝑗𝑗𝑗)𝐾𝐾

𝑘𝑘
𝑁𝑁
𝑗𝑗

𝑁𝑁∗𝐾𝐾
 , (37) 

 
 
where N is the total number of simulees, K is the number of attributes measured by an 

assessment, 𝒂𝒂𝑗𝑗 is the attribute profile of the 𝑗𝑗𝑡𝑡ℎ simulee, and 𝑎𝑎𝑗𝑗𝑗𝑗 is the 𝑗𝑗𝑡𝑡ℎ simulee’s 𝑘𝑘𝑡𝑡ℎ 

attribute. E is the expectation function. When the condition inside is met, E(.) is 1, 

otherwise, E(.) is 0. 
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3.2.2.3 𝐶𝐶𝐶𝐶𝐼𝐼• 

𝐶𝐶𝐶𝐶𝐼𝐼• was used to check how tests discriminate the attributes. The correlation 

between the log of 𝐶𝐶𝐶𝐶𝐼𝐼• and pCCRs and aCCRs for the EGCA and the RRUM, which 

can indicate the strength of the relationship between the log of 𝐶𝐶𝐶𝐶𝐼𝐼• and the two CCRs, 

was obtained, In addition, 𝐶𝐶𝐶𝐶𝐼𝐼• across different conditions was obtained. This can be 

used as a guideline for determining the values of 𝐶𝐶𝐶𝐶𝐼𝐼• that corresponds to the highest or 

lowest CCRs.  

3.2.2.4 MAD and Correlation  

The current study also compared the estimated and true parameters of the EGCA 

using the mean absolute difference (MAD) and correlation. The MAD is shown as: 

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ ∑ �𝑥𝑥�𝑝𝑝𝑝𝑝−𝑥𝑥𝑝𝑝𝑝𝑝�𝑃𝑃

𝑝𝑝
𝑅𝑅
𝑟𝑟

𝑅𝑅∗𝑃𝑃
 , (38) 

 
 
where p is the 𝑝𝑝𝑡𝑡ℎ parameters, P is the total number of parameters, r is the 𝑟𝑟𝑡𝑡ℎ replication, 

R is the total number of replication 𝑥𝑥�𝑝𝑝𝑝𝑝 is the estimated parameter, and 𝑥𝑥𝑝𝑝𝑝𝑝 is the true 

parameter. When comparing the two models’ parameters, the MAD can be expressed as 

shown:  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =
∑ ∑ �𝑥𝑥�𝑝𝑝𝑝𝑝−𝑥𝑥�𝑝𝑝𝑝𝑝′ �𝑃𝑃

𝑝𝑝
𝑅𝑅
𝑟𝑟

𝑅𝑅∗𝑃𝑃
 , (39) 

 
 
where 𝑥𝑥�𝑝𝑝𝑝𝑝′  is the estimated parameter of another model.  

The MAD and correlation between the estimated and true 𝜋𝜋 and r were examined 

across all conditions for the EGCA. The EGCA is the model used to simulate the data, 
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and it has been previously defined to be mathematically equivalent to the RRUM when 

the incorrect options are non-informative. Furthermore, the parameters for the correct 

option should be equivalent when using both the polytomous data and the dichotomously 

scored data. The MAD and correlation between the parameters (i.e., 𝜋𝜋 and 𝑟𝑟) of the 

EGCA and the RRUM were compared because the two models are expected to have the 

same parameters. 

3.3 Real Data Study 

A distractor-driven assessment from a previous study (Shear & Roussos, 2016) 

was used to compare the EGCA and the RRUM. The assessment contained 12 items: 5 

were multiple-choice (MC) items, and the other 7 were selected-response (SR) items. A 

total of 2,011 examinees completed the assessment. The MC items have four options and 

require selecting one option, whereas the SR items have five to six binary choices and 

require the selection of binary choices in a certain way to correctly answer the items.  

For the MC items, an examinee may select an incorrect option embedded with a 

misconception or other incorrect options that do not have a misconception. As for the SR 

items, answering a certain combination of binary choices may indicate the examinees 

have a misconception. Shear and Roussos (2016) found that not every option was chosen 

by the examinees in the MC items. A recoding method was used so that the 12 items only 

contained three options: one correct option and the two incorrect options (one only 

measures the misconception option, and the other is just a regular incorrect option). An 

illustration of the FR item and its coding method is illustrated in Figure 1. The 

assessment was intended to measure one skill and two misconceptions. Shear and 
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Roussos (2016) used relative fit indices Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) to examine different Q-matrices. The Q-matrix that led to the 

best relative fit in the study by Shear and Roussos was used for the EGCA in this study 

(See Table 7).  

 

 

Figure 1. An Illustration of a Selected-Response Item.  
Note. If all green options were selected, the answer is correct, meaning that the examinee 
selected the correct option. If the three options in the red rectangle were selected, it 
suggests that the examinee chose a misconception option. For other cases, it was 
considered that the examinees only selected incorrect options. 
 
 

When using the RRUM model, the correct option Q-vectors of each item were 

used for the Q-matrix. In addition, when creating the Q-matrix for the RRUM, all 

misconceptions of the correct option were recoded to 1s, as previously described. Also, 

because the RRUM is a dichotomous model, the examinees’ correct responses were 

recoded to 1s, and the other responses were recoded to 0. The recoded Q-matrix and 

responses were used in the RRUM. Recall that when using the RRUM in this way, the 
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misconceptions are coded as a “skill” that represents not having the misconception. Thus, 

to ensure that the estimation of the misconceptions is interpreted the same as between the 

EGCA and the RRUM estimated misconceptions, the RRUM estimated misconceptions 

were recoded from 1s to 0s and 0s to 1s. Furthermore, because the kernel in the EGCA 

was the same as in the RRUM, it was possible to use an algorithm that was close to the 

MCMC algorithm. To ensure convergence, three chains with 15,000 chain lengths and 

10,000 burn-in options were used. 

Because the true classification accuracy is unknown in this case, a number of 

indices were used to determine the differences between the EGCA and the RRUM. 

Specifically, comparisons were made between basic descriptions of the estimation of 

attribute patterns, statistics of the relationship between the response and attribute 

classification, and finally discrimination indices 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 and 𝐶𝐶𝐶𝐶𝐼𝐼• . First, the study 

examined the posterior and classification distributions of each attribute (i.e., the estimated 

proportion of mastery) between the EGCA and the RRUM. In order to evaluate the 

posterior distribution of each attribute for the two models, the absolute deviance (AD) 

between the estimated attribute probability and .5 for an attribute was summed. The sum 

of AD across all examinees can indicate the amount of discrimination for the attribute. 

The higher AD means the higher the discrimination of the classification. The sum of AD 

was compared between the two models across all three attributes for the two models. 

Similarly, to examine the attribute distribution, the sum of the mastery of each attribute 

was used and compared. 
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Secondly, descriptive statistics were used to compare the responses to the estimate 

attribute profile, which could illustrate whether the estimated attribute profile is 

associated with actual responses. In this particular example, each correct item option 

measures examinees who master the skill and lack the corresponding misconception (i.e., 

the correct option for items 1–5 measures misconception 1 and for items 6-12, 

misconception 2 is measured). The Q-matrix entry for the correct option is shown in 

Table 7. As shown, the examinees that match this pattern are expected to select this 

option much more frequently. To explore this relationship, a binary variable was used to 

recode the classification first. Specifically, if an examinee was diagnosed to have 

mastered Skill 1 and lacked Misconception 1, it was counted as 1 for that person and 

otherwise as 0. The binary variable was correlated with the number of correct options 

selected for the first five items because these items only measured Skill 1 and 

Misconception 1. Similarly, another binary variable was used to indicate whether an 

examinee had Skill 1 and lacked Misconception 2, which was correlated the number 

correct options selected for the last seven items.  

Additionally, each misconception option of the first five items and the last seven 

items measured two separate misconceptions (see Table 7). The number of misconception 

options that measured a misconception selected by each examinee was correlated with the 

corresponding diagnosis of the corresponding misconception. In other words, whether the 

examinee had Misconception 1 or 2 was correlated with the number of misconception 

options selected by the examinee for items 1–5 or items 6–12. The abovementioned 

correlations were compared between the EGCA and the RRUM. A strong correlation 
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indicates the connection between the diagnosis and the selection of corresponding 

options. A weak correlation indicates the lack of connection between the diagnosis and 

the selection of corresponding options. Lastly, 𝐶𝐶𝐶𝐶𝐼𝐼• and 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 for each item were 

estimated using the EGCA and the RRUM. The values were compared. The larger value 

indicate a higher test discrimination or item discrimination.  

 
Table 7. The Q-Matrix for a Distractor-Driven Assessment  

Item No. Option No. A1(Skill 1) A2(Misc. 1) A3(Misc. 2) 

Item 1-5 
Incorrect 0 N N 

Misconception N 1 N 
Correct 1 0 N 

Item 6-12 
Incorrect 0 N N 

Misconception N N 1 
Correct 1 N 0 
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CHAPTER IV 
 

RESULTS 
 
 

In the current study, a submodel of the GDCM-MC, the EGCA, was first defined 

so that the model was equivalent to the analogous DCM when no distractor information 

exists. Given this model, a simulation study was used to study the added benefit of 

modeling the information distractors across various conditions (e.g., sample size, quality 

of item). Finally, a real-world dataset was analyzed using the two models. 

In this chapter, the results of the simulation study and real data analysis were 

presented and discussed. The simulation study was completed specifically to study the 

effect of modeling on the classification of examinee’s attribute profile. First, the 

convergence of item parameters for both EGCA and the RRUM were examined to ensure 

that the results can be reliably interpreted. The recovery of item parameters of the EGCA 

was then examined to ensure that the sub-model function well. Next, because it was 

assumed that the parameters of RRUM would consist of the same as the parameters of the 

correct option of the EGCA, the parameters of the correct option of the EGCA and the 

parameters of the RRUM were compared. Finally, the classification accuracy (i.e., 

pCCRs and aCCRs) and 𝐶𝐶𝐶𝐶𝐼𝐼•, were compared between the two models across various 

conditions. In the real data study, the classification and 𝐶𝐶𝐶𝐶𝐼𝐼• between the two models 

were compared. It was expected that the two models would have different classification,  
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and the EGCA would provide a more polarized classification than the RRUM. The 

association between the classification and the selection of the correct options or  

misconception options were analyzed. It was expected that the correlation for the EGCA 

would be higher than the RRUM because the classification using the EGCA is more 

realistic than the RRUM. 

4.1 Simulation Study 

In this section, the item parameters convergence between the two models is first 

discussed, then followed by the MAD and correlation between the true and estimated 

item parameters for the EGCA model. Next, the MAD and correlation between the 

correct option parameters of the EGCA and the parameters of the RRUM were compared, 

and they were expected to be equivalent. Finally, pCCRs, aCCRs, and 𝐶𝐶𝐶𝐶𝐼𝐼• between the 

EGCA and the RRUM across different conditions are explored in this section.  

4.1.1 Item Parameters Convergence 

As discussed in the Methods section, each replication convergence is evaluated 

using the GRR, which is computed for each item parameter. Thus, the proportion item 

parameters that would be considered converged (using the GRR) are computed for each 

replication within a condition. The median proportion of convergence (PC) across the 50 

replications of each condition is shown in Figure 2 and Table 8. In general, the median 

PC was above .9 for both models for all conditions, with most of the conditions close to 

1. In cases in which the median PC was low (e.g., .9), the boxplot showed many outliers 

that did not converge well; thus, longer MCMC chains may be needed for such cases. 
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Also, when the test length and sample size increased, the median PC increased, and when 

the number of attributes measured by a test increased the mean PC decreased.  

The convergence of non-informative distractors condition is similar to the other 

distractor conditions for four attribute conditions. However, the non-informative 

distractor conditions had more outliers that did not converge as well as the strongly and 

weakly informative distractor conditions when there were six attributes on a test for both 

the EGCA and the RRUM (see Figure 2). This could be due to the fact that the non-

informative distractors did not have the least information to estimate the large attributes, 

and therefore, was more likely to have a convergence problem. The results suggest, 

however, that longer chains should be used for such outlier cases. Moreover, although the 

median PC was not affected by the item quality in general when the test measured six 

attributes, the number of outlier cases for the non-informative distractor condition was 

the highest for the high 𝜋𝜋 and low 𝑟𝑟 condition, followed the low 𝜋𝜋 and low 𝑟𝑟 condition, 

which could affect the interpretation of the results (e.g., CCRs and 𝐶𝐶𝐶𝐶𝐼𝐼•) for these cases. 
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Figure 2. Proportion of Convergence Across All Conditions. 
The proportion of convergence (PC) across different conditions is shown above. Each section of the graph represents 
three distractor conditions, and each color represents an estimated model. The columns represent the quality of the 
item while the rows represent a combination of sample sizes, attribute sizes, and test lengths.   
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Table 8. Median Proportion of Convergence Across All Conditions 

N I K DQ H/H H/L L/H L/L 
    RRUM EGCA RRUM EGCA RRUM EGCA RRUM EGCA 

1000 

20 

4 
None 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 
Weak 1.00 0.94 1.00 0.99 1.00 0.98 1.00 0.99 
Strong 1.00 0.96 1.00 0.96 0.98 0.95 1.00 0.97 

6 
None 0.99 0.99 1.00 1.00 0.96 0.94 0.98 0.98 
Weak 0.99 0.95 1.00 0.97 0.97 0.96 1.00 0.98 
Strong 0.93 0.90 1.00 0.92 0.94 0.91 0.99 0.95 

40 

4 
None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Weak 1.00 0.97 1.00 0.99 1.00 0.99 1.00 0.99 
Strong 1.00 0.96 1.00 0.97 1.00 0.96 1.00 0.99 

6 
None 1.00 1.00 1.00 1.00 0.99 0.99 1.00 1.00 
Weak 1.00 0.96 1.00 0.98 1.00 0.98 1.00 0.99 
Strong 0.99 0.95 1.00 0.96 0.99 0.95 1.00 0.98 

2000 

20 

4 
None 1.00 1.00 1.00 1.00 1.00 0.98 1.00 1.00 
Weak 1.00 0.98 1.00 1.00 1.00 0.98 1.00 0.99 
Strong 1.00 0.97 1.00 0.97 1.00 0.97 1.00 0.99 

6 
None 0.99 1.00 1.00 1.00 0.97 0.97 0.99 0.99 
Weak 0.99 0.96 1.00 0.98 0.99 0.97 1.00 0.99 
Strong 0.95 0.96 1.00 0.97 0.96 0.96 0.99 0.98 

40 

4 
None 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 
Weak 1.00 0.98 1.00 1.00 1.00 0.99 1.00 1.00 
Strong 1.00 0.97 1.00 0.98 1.00 0.98 1.00 0.99 

6 
None 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Weak 1.00 0.98 1.00 0.99 1.00 0.99 1.00 0.99 
Strong 0.99 0.98 1.00 0.99 0.99 0.98 1.00 0.99 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. 
H/H is high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L 
is low 𝜋𝜋 and low 𝑟𝑟 condition. 

 



 

76 

In general, the RRUM had equal or better convergence compared to the EGCA. 

When the RRUM was equivalent to the EGCA with respect to the total amount of 

information obtained from the complete responses (i.e., non-informative distractors), the 

median PC of the RRUM was nearly identical to the mean PC for the EGCA in most 

cases. However, when the polytomous responses using the EGCA provided more 

information than the data was dichotomized for in an estimation using the RRUM (i.e., 

strong- and weak-distractor conditions), the median PC was higher for the RRUM than 

for the EGCA, which could be due to the EGCA’s larger number of parameters.  

4.1.2 Parameters Recovery 

In addition to exploring convergence, item-parameter estimation explored. Note 

that the quality of item parameter estimates directly influences CCRs, which is the 

primary focus of this study. The mean absolute difference and correlation between the 

estimated and true parameters for the EGCA across all conditions were presented. Lastly, 

the correct option parameters of the EGCA were compared to the parameters of the 

RRUM using the MAD and correlation. 

4.1.2.1 Mean Absolute Difference Between the True and Estimated Parameters of EGCA 

The MAD results between the estimated EGCA parameters and the true 

parameters are shown in Figure 3 and Table 9. In general, the MAD of the parameters 

was smaller than .18 for the most of conditions indicating that the parameters were 

recovered well for the model. The MAD of 𝜋𝜋 (.01~.08) was smaller than the MAD of 

𝑟𝑟 (.02~.20), because there are more 𝜋𝜋 than 𝑟𝑟 in all conditions. In addition to the general 

difference between the MADs for estimation of the 𝜋𝜋 and the estimation of 𝑟𝑟, the MAD 
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varied with respect to the number of attributes. Specifically, when using 6 attributes 

(.02~.20), the MAD was higher than the MAD of the 4-attribute (.01~.17) conditions. 

The results could be caused the added complexity (i.e., the number of parameters) 

relative to the lack of increase in sample size for the six attributes when compared to the 

four-attribute conditions. Furthermore, the MAD of the 40-item condition (Mean = .06) 

was lower than the MAD of the 20-item condition (Mean = .07), and the MAD of the 

2,000 sample-size condition (Mean = .06) was lower than the MAD of the 1,000 sample-

size condition (Mean = .08). The results show that the accuracy of estimation is positively 

associated with the sample size and test length.  
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Figure 3. Mean Absolute Difference Between Estimated Parameters and True Parameters for the EGCA Across 
Various Conditions. 
The mean absolute difference (MAD) between the true and estimated parameters across different conditions are 
shown above. Each section of the graph represents the MAD under strong, weak and non-informative distractors. 
The columns represent the quality of the item while the rows represent a combination of sample sizes, attribute 
sizes, and test lengths. Each color represents a kind of parameter (i.e., 𝜋𝜋 and 𝑟𝑟).  
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Table 9. Mean MAD of EGCA 

N I K DQ H/H H/L L/H  L/L 
    𝝅𝝅 𝒓𝒓 𝝅𝝅 𝒓𝒓 𝝅𝝅 𝒓𝒓 𝝅𝝅 𝒓𝒓 

1000 

20 

4 
None 0.02 0.04 0.02 0.03 0.03 0.07 0.02 0.04 
Weak 0.07 0.10 0.05 0.10 0.06 0.11 0.05 0.17 
Strong 0.08 0.11 0.05 0.07 0.08 0.11 0.06 0.09 

6 
None 0.03 0.08 0.03 0.07 0.04 0.11 0.04 0.10 
Weak 0.07 0.11 0.07 0.14 0.07 0.12 0.07 0.20 
Strong 0.08 0.12 0.07 0.10 0.08 0.12 0.08 0.12 

40 

4 
None 0.02 0.04 0.02 0.03 0.02 0.05 0.02 0.03 
Weak 0.06 0.09 0.05 0.09 0.05 0.10 0.05 0.15 
Strong 0.07 0.10 0.05 0.06 0.07 0.10 0.05 0.07 

6 
None 0.02 0.07 0.02 0.06 0.03 0.09 0.03 0.07 
Weak 0.06 0.10 0.06 0.12 0.06 0.11 0.06 0.18 
Strong 0.07 0.10 0.05 0.08 0.07 0.10 0.06 0.09 

2000 

20 

4 
None 0.01 0.03 0.01 0.02 0.02 0.05 0.02 0.03 
Weak 0.05 0.09 0.04 0.07 0.04 0.10 0.04 0.13 
Strong 0.06 0.09 0.04 0.04 0.06 0.09 0.04 0.05 

6 
None 0.02 0.06 0.02 0.05 0.03 0.09 0.03 0.07 
Weak 0.06 0.10 0.06 0.11 0.06 0.11 0.06 0.17 
Strong 0.07 0.10 0.05 0.07 0.07 0.10 0.05 0.08 

40 

4 
None 0.01 0.03 0.01 0.02 0.02 0.04 0.02 0.02 
Weak 0.05 0.08 0.04 0.06 0.04 0.09 0.04 0.11 
Strong 0.05 0.08 0.03 0.04 0.06 0.09 0.03 0.05 

6 
None 0.02 0.05 0.02 0.06 0.02 0.07 0.02 0.06 
Weak 0.05 0.09 0.04 0.08 0.05 0.10 0.05 0.13 
Strong 0.05 0.08 0.04 0.05 0.05 0.08 0.04 0.06 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. 
H/H is high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L 
is low 𝜋𝜋 and low 𝑟𝑟 condition. 
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In addition to the estimation of each parameter, there is a distinction between 

parameters related to the correct response and those associated with the distractors. 

Recall that, when using the EGCA, the correct option did not include guessing whereas 

the distractors require a guess to some degree. The MAD of 𝜋𝜋 in the strongly informative 

distractor condition was between .03 and .08 and generally similar to the MAD of the 

estimation of 𝜋𝜋 in the weak-distractor condition, which was between .04 and .07. In 

addition, the MAD of both conditions (strong and weak) was higher than the MAD of the 

non-informative distractors condition (.01~.04). Given the same test length and sample 

size, the strong and weak distractor 𝜋𝜋 recovery was worse than the 𝜋𝜋 recovery in the non-

informative distractors because there were more 𝜋𝜋 estimated. Recall that in the non-

informative condition, 𝜋𝜋 values were constrained to be equal to zero for the unlinked 

distractors.  

However, the MAD of 𝑟𝑟 did not follow the sequence, which was the MAD of 𝑟𝑟 in 

a non-informative condition was smaller than the MAD of 𝑟𝑟 in a strongly informative and 

weakly informative distractor condition. The MAD of 𝑟𝑟 was the highest for the weak-

distractor condition, which was between .06 and .20, followed by the strong-distractor 

condition (.04~.12). The non-informative distractor condition (.02~.11) has the lowest 

MAD compared to the other two conditions. The results could be because the values of 𝑟𝑟 

may be more difficult to recover when the values of 𝜋𝜋 are small (i.e., a weak informative 

distractor condition) than the values of 𝜋𝜋 are large (i.e., strongly informative and non-

informative distractor condition). Only in the weakly informative distractor condition is 
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the 𝜋𝜋 for the distractors half the value of the 𝜋𝜋 for the correct option. With small 𝜋𝜋 

values, even a small value of 𝑟𝑟 will have difficulty to recover.  

The estimation of item parameters also depends on the item quality condition. 

Item parameter estimation tends to be the best (i.e., low MAD) for the good-quality item 

condition. The MAD of 𝜋𝜋 was generally low under the high 𝜋𝜋 and low 𝑟𝑟 condition (Mean 

= .04), followed by the low 𝜋𝜋 and low 𝑟𝑟 (Mean =.04). The high 𝜋𝜋 and high 𝑟𝑟 condition 

(Mean = .05) and the low 𝜋𝜋 and high 𝑟𝑟 condition (Mean = .05) had the highest MAD of 

𝜋𝜋. Similarly, The MAD of 𝑟𝑟 was also generally low under the high 𝜋𝜋 and low 𝑟𝑟 condition 

(Mean = .07), followed by the high 𝜋𝜋 and high 𝑟𝑟 (Mean =.08). The low 𝜋𝜋 and low 𝑟𝑟 

condition (Mean = .09) and the low 𝜋𝜋 and high 𝑟𝑟 condition (Mean = .09) had the highest 

MAD of 𝑟𝑟. The results indicate that the magnitude of the parameters directly influenced 

the recovery of the parameters. The results also suggest that the recovery of 𝜋𝜋 and 𝑟𝑟 are 

best when the item quality is high (i.e., high 𝜋𝜋 and low 𝑟𝑟).  

4.1.2.2 Correlation Between True and Estimated Parameters in EGCA 

The results in Figure 4 and Table 10 shows the correlation between the true and 

estimated parameters (i.e., 𝜋𝜋 and r). In general, increases in the number of attributes 

decreased the correlation between the estimates and the true parameters, while increases 

in the sample size and test length led to increased values in the correlation between the 

estimated and true parameters with their respective estimates. The correlation of the true 

values and the estimates for 𝜋𝜋 (Mean = .85) was higher than the correlation for the 

estimates with truth for 𝑟𝑟( Mean = .50) because there are more 𝑟𝑟 than 𝜋𝜋 in all the 
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conditions. The correlation of 𝜋𝜋 (excluding 𝜋𝜋 parameters that are constrained to 0) with 

their corresponding estimates was higher under the non-informative distractor condition 

(Mean = .90) and weak-distractor condition (Mean = .93) than the strong- distractor 

condition (Mean = .73). The reason could be that 𝜋𝜋 in the strong distractor condition was 

rescaled to be smaller than in other conditions (See Table A1) and it was not recovered 

well. The correlation of 𝑟𝑟 parameters with the corresponding estimates were highest 

under the non-informative distractor condition (Mean = .67) followed by the strong-

distractor condition (Mean = .46), with the weak-distractor condition having the lowest 

correlation (Mean = .35). The reason that 𝑟𝑟 in the non-informative distractors condition 

was recovered better than the other two conditions is that the average 𝜋𝜋 was relatively 

larger in the non-informative condition than in other two conditions, and 𝑟𝑟 is difficult to 

recover under the small 𝜋𝜋 condition.  

The correlation between the true and estimated 𝜋𝜋 were also related to item quality. 

The correlation was the highest for the high 𝜋𝜋 and low r condition ( 𝑟̅𝑟 = .92) and lowest 

for the low 𝜋𝜋 and high r condition ( 𝑟̅𝑟 = .82). The low 𝜋𝜋 and low r condition ( 𝑟̅𝑟 = .84) 

and the high 𝜋𝜋 and high r condition ( 𝑟̅𝑟 = .83) are in between. The results showed that 

recovery of the 𝜋𝜋 was influenced by the combination of the value of 𝜋𝜋 and 𝑟𝑟, specifically, 

a good quality of item could result in a better recovery of the 𝜋𝜋. Similarly, the correlation 

of 𝑟𝑟 was the highest for the high 𝜋𝜋 and high r condition ( 𝑟̅𝑟 = .61) and lowest for the low 

𝜋𝜋 and low r condition ( 𝑟̅𝑟 = .38). The low 𝜋𝜋 and high r condition ( 𝑟̅𝑟= .54) and the high 𝜋𝜋 

and low r condition ( 𝑟̅𝑟 = .45) are in between. The results show that a higher value of 𝑟𝑟 in 
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combination with a higher value of 𝜋𝜋 could result in a higher recovery of 𝑟𝑟. In cases in 

which the 𝜋𝜋 values are low, it might be difficult to recover 𝑟𝑟.  
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Figure 4. Correlation Between Estimated and True Parameters for the EGCA Across Various Conditions 
The correlation between EGCA true parameters and estimated parameters across different conditions is shown 
above. Each section of the graph represents the three distractor conditions. The columns represent the quality of the 
item while the rows represent the combination of sample sizes, attribute sizes, and test lengths. Each color represents 
a kind of parameter (i.e., 𝜋𝜋 and r)  
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Table 10. Mean Correlation of EGCA Estimated and True Parameters  

N I K DQ H/H H/L L/H L/L 
    𝝅𝝅 𝒓𝒓 𝝅𝝅 𝒓𝒓 𝝅𝝅 𝒓𝒓 𝝅𝝅 𝒓𝒓 

1000 

20 

4 
None 0.91 0.83 0.93 0.76 0.87 0.68 0.89 0.62 
Weak 0.93 0.47 0.93 0.26 0.91 0.38 0.89 0.16 
Strong 0.58 0.47 0.87 0.37 0.60 0.48 0.67 0.31 

6 
None 0.87 0.58 0.88 0.43 0.80 0.40 0.80 0.27 
Weak 0.91 0.41 0.91 0.20 0.89 0.33 0.88 0.14 
Strong 0.52 0.43 0.80 0.26 0.55 0.41 0.56 0.24 

40 

4 
None 0.93 0.88 0.93 0.80 0.89 0.81 0.90 0.73 
Weak 0.94 0.52 0.94 0.28 0.93 0.43 0.90 0.20 
Strong 0.61 0.52 0.90 0.41 0.64 0.52 0.74 0.37 

6 
None 0.89 0.70 0.89 0.49 0.83 0.56 0.83 0.43 
Weak 0.93 0.46 0.92 0.22 0.91 0.40 0.89 0.18 
Strong 0.61 0.49 0.87 0.35 0.63 0.50 0.67 0.31 

2000 

20 

4 
None 0.96 0.90 0.96 0.86 0.92 0.80 0.94 0.77 
Weak 0.96 0.57 0.96 0.36 0.94 0.47 0.92 0.20 
Strong 0.66 0.55 0.93 0.52 0.70 0.54 0.83 0.46 

6 
None 0.92 0.71 0.93 0.57 0.88 0.53 0.87 0.38 
Weak 0.93 0.48 0.93 0.24 0.91 0.39 0.89 0.16 
Strong 0.61 0.52 0.89 0.38 0.62 0.51 0.70 0.35 

40 

4 
None 0.96 0.94 0.96 0.88 0.90 0.87 0.94 0.83 
Weak 0.97 0.61 0.96 0.39 0.95 0.51 0.93 0.25 
Strong 0.71 0.62 0.95 0.55 0.73 0.61 0.87 0.50 

6 
None 0.94 0.81 0.94 0.56 0.90 0.69 0.89 0.53 
Weak 0.95 0.58 0.95 0.32 0.94 0.48 0.92 0.21 
Strong 0.72 0.62 0.93 0.47 0.74 0.61 0.80 0.43 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. 
H/H is high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L 
is low 𝜋𝜋 and low 𝑟𝑟 condition. 
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Figure 5. Mean Absolute Difference Between the Correct Option Parameters of the EGCA and the Parameters of 
the RRUM 
The mean absolute difference (MAD) between the EGCA correct-option parameters and the RRUM parameters is 
shown above. Each section of the graph represents the three distractor conditions. The columns represent the quality 
of the item while the rows represent a combination of sample sizes, attribute sizes, and test lengths. Each color 
represents a kind of parameter (i.e., 𝜋𝜋 and r). 
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Figure 6. Correlation Between the Correct Option Parameters of the EGCA and the Parameters of the RRUM 
The correlation between the EGCA correct-option parameters and the RRUM parameters is shown above. Each 
section of the graph represents the three distractor conditions. The columns represent the quality of the item while 
the rows represent a combination of sample sizes, attribute sizes, and test lengths. Each color represents a kind of 
parameter (i.e., 𝜋𝜋 and r).  
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4.1.2.3 MAD Between the Correct Option EGCA and the RRUM  

 Furthermore, as a proof of concept, it was shown that the correct option 

parameters of the EGCA were equivalent to the parameters of RRUM. The MAD for the 

estimated EGCA and RRUM parameters (i.e., 𝜋𝜋, r) is shown in Figure 5. In general, the 

MAD was low across all conditions, indicating that the correct option parameters of the 

EGCA and the RRUM parameters were equivalent. In addition, similar to estimation 

accuracy in general, The MAD of 𝜋𝜋 (Mean = .005) was lower than the MAD of r (Mean 

= .027). The range of the MAD of 𝑟𝑟 tended to be higher than the range of the MAD of 𝜋𝜋. 

The MAD of 𝜋𝜋 between the two models was the lowest when the item quality was high. 

Specifically, the MAD of 𝜋𝜋 was lowest under a high 𝜋𝜋 and a low 𝑟𝑟 condition, and highest 

under a low 𝜋𝜋 and a high 𝑟𝑟 condition. Similarly, the MAD of 𝑟𝑟 was lowest under a high 𝜋𝜋 

and a high 𝑟𝑟 and a high 𝜋𝜋 and low 𝑟𝑟 condition, and highest under a low 𝜋𝜋 and a high 𝑟𝑟 

condition. The results showed that the MAD of 𝑟𝑟 between the two models was low when 

the 𝜋𝜋 was large because the low 𝜋𝜋 may lead to difficulty of recovering 𝑟𝑟.  

Moreover, the MAD between the two models was the lowest for 𝑟𝑟 when the 

distractor was non-informative. As the distractor became more informative, the MAD of 

𝑟𝑟 increased as well, and the MAD of 𝜋𝜋 was similar across all distractor conditions. The 

result could be that, for strongly and weakly informative distractor conditions, the 𝜋𝜋 of 

the distractors were small, which could lead to difficulty of recovering 𝑟𝑟. 

  Additionally, increases in the number of attributes measured by the assessment 

led to an increase in MAD between the two models, but increases in the sample size and 
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test length both led to decreases in all MAD estimates. When the test length or the sample 

size was small, or the attribute number measured by the assessment was large, the EGCA 

parameters were not recovered well, and thus, the MAD between the EGCA and RRUM 

would almost necessarily increase. Despite that, the average MAD between the two 

models was small (below .1), which was sufficient to demonstrate the fact that the item 

parameters of the two models were equivalent under the non-informative distractor 

condition. 

4.1.2.4 Correlation Between the Correct Option EGCA and the RRUM  

 The correlations between the estimated parameters (i.e., 𝜋𝜋 and 𝑟𝑟) when the EGCA 

was estimated versus the estimates obtained from the RRUM across different conditions 

are shown in Figure 6. In general, the results of the correlation between these estimates 

was consistent with the results when computing the MAD. Increasing the sample size and 

test length or decreasing the number of attribute measured an increase in the correlation 

between the correct option parameters of the EGCA and the RRUM parameters.  

As in the MAD between the two models, the correlation between the two models 

was the highest for 𝑟𝑟 when the distractor was non-informative and, as the distractor 

became more informative, the correlation of 𝑟𝑟 decreased as well. The correlation of 𝜋𝜋 

was similar across all distractor conditions. The 𝜋𝜋 ( 𝑟̅𝑟 = .99) between the two models was 

very highly correlated across all the conditions, and 𝑟𝑟 ( 𝑟̅𝑟 = .92) had a very high 

correlation overall. The 𝑟𝑟 was the lowest in the good-quality condition (High 𝜋𝜋 and Low 

𝑟𝑟 condition; 𝑟̅𝑟 = .89) and moderate-quality condition (Low 𝜋𝜋 and Low r condition; 𝑟̅𝑟 =
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 .88) compared to the high 𝜋𝜋 and high 𝑟𝑟 condition ( 𝑟̅𝑟 = .97) and the low 𝜋𝜋 and high 𝑟𝑟 

condition ( 𝑟̅𝑟 = .93). Such results could be due to convergence. Recall that the proportion 

of converged parameters was lower for the EGCA under the non-informative condition 

for the high 𝜋𝜋 and low r and the low 𝜋𝜋 and low r conditions when the attribute size was 6. 

However, the difficulty of obtaining a converged solution for all parameters in these 

conditions did not affect the estimates of the attributes (i.e., correct classification rates did 

not appear to be affected). 
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Table 11. Ranges of Rescaled 𝜋𝜋 (Mean Min~ Mean Max) Across Different Conditions 

N I K DQ H/H H/L L/H L/L 

1000 

20 

4 
None 0.71~0.89 0.71~0.89 0.51~0.69 0.51~0.69 
Weak 0.28~0.82 0.34~0.89 0.25~0.69 0.25~0.69 
Strong 0.35~0.62 0.40~0.85 0.33~0.63 0.38~0.70 

6 
None 0.71~0.89 0.71~0.89 0.51~0.69 0.51~0.69 
Weak 0.26~0.81 0.28~0.89 0.24~0.69 0.25~0.69 
Strong 0.35~0.63 0.40~0.85 0.34~0.64 0.38~0.69 

40 

4 
None 0.70~0.90 0.71~0.90 0.51~0.69 0.51~0.69 
Weak 0.28~0.82 0.33~0.89 0.25~0.70 0.25~0.70 
Strong 0.34~0.63 0.39~0.86 0.32~0.65 0.37~0.70 

6 
None 0.71~0.90 0.71~0.89 0.50~0.70 0.51~0.69 
Weak 0.25~0.82 0.27~0.89 0.24~0.69 0.25~0.69 
Strong 0.34~0.64 0.39~0.87 0.33~0.65 0.37~0.69 

2000 

20 

4 
None 0.71~0.89 0.71~0.89 0.51~0.69 0.51~0.69 
Weak 0.29~0.82 0.34~0.89 0.25~0.69 0.25~0.69 
Strong 0.35~0.61 0.40~0.86 0.33~0.62 0.38~0.70 

6 
None 0.71~0.89 0.71~0.89 0.51~0.69 0.51~0.69 
Weak 0.26~0.81 0.28~0.88 0.25~0.69 0.25~0.69 
Strong 0.35~0.63 0.40~0.85 0.34~0.64 0.38~0.69 

40 

4 
None 0.71~0.90 0.70~0.89 0.51~0.70 0.50~0.70 
Weak 0.28~0.82 0.33~0.89 0.25~0.69 0.25~0.70 
Strong 0.34~0.63 0.39~0.86 0.32~0.64 0.37~0.70 

6 
None 0.70~0.90 0.71~0.89 0.51~0.69 0.51~0.70 
Weak 0.25~0.82 0.28~0.89 0.24~0.69 0.25~0.69 
Strong 0.34~0.66 0.39~0.86 0.33~0.66 0.37~0.70 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. H/H is 
high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L is low 𝜋𝜋 and 
low 𝑟𝑟 condition. 
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Figure 7. pCCRs Across Different Conditions  
The profile correct classification rates (pCCRs) across different conditions are shown above. Each section of the 
graph represents three distractor conditions (i.e., strong, weak, and none) in which the EGCA and RRUM were used. 
The columns represent the item quality while the rows represent a combination of sample sizes, attribute sizes, and 
test lengths. Colors represent models. 
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Table 12. Mean pCCRs Across Different Conditions 

N I K DQ H/H H/L L/H L/L 
    RRUM EGCA RRUM EGCA RRUM EGCA RRUM EGCA 

1000 

20 

4 
None 66.48 66.82 74.79 74.80 52.96 54.43 66.43 65.88 
Weak 61.30 71.44 74.42 82.94 52.37 61.43 67.60 73.61 
Strong 43.86 60.69 67.57 85.08 42.13 61.42 65.44 79.72 

6 
None 35.72 35.93 38.66 38.31 27.21 26.45 31.05 30.65 
Weak 28.65 43.99 43.75 57.43 24.43 37.06 34.35 45.67 
Strong 19.17 40.67 33.52 64.62 20.43 40.87 29.86 57.42 

40 

4 
None 81.97 81.98 83.41 83.41 71.64 71.83 78.61 78.53 
Weak 78.77 87.80 84.45 92.76 71.19 79.84 79.01 86.60 
Strong 61.23 79.33 79.98 95.04 61.28 79.35 77.37 92.64 

6 
None 50.39 50.38 49.03 48.35 41.56 41.84 44.50 43.65 
Weak 49.31 65.75 60.19 75.80 43.15 57.15 53.19 63.99 
Strong 32.78 64.46 52.80 87.62 33.89 63.98 50.23 81.88 

2000 

20 

4 
None 66.51 67.25 75.53 75.52 54.16 55.92 67.49 67.28 
Weak 61.51 72.05 74.35 83.65 53.60 62.21 67.58 73.48 
Strong 45.89 62.36 68.06 85.71 44.71 62.35 64.63 80.83 

6 
None 35.98 36.04 37.96 38.80 26.40 27.61 30.39 30.08 
Weak 30.35 45.84 44.94 58.52 23.61 37.56 33.71 46.33 
Strong 18.49 42.48 33.74 66.66 19.62 42.14 30.45 59.61 

40 

4 
None 82.41 82.32 84.00 84.03 72.39 72.33 79.22 79.18 
Weak 78.74 87.89 83.92 92.92 71.80 80.51 79.44 87.18 
Strong 62.20 80.78 80.06 95.18 62.55 80.32 78.03 93.02 

6 
None 50.57 50.49 48.92 47.94 42.14 41.86 44.32 43.77 
Weak 50.49 66.56 61.60 77.66 42.66 57.40 55.35 66.25 
Strong 33.32 65.78 52.54 87.79 32.95 65.24 49.18 82.73 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. 
H/H is high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L 
is low 𝜋𝜋 and low 𝑟𝑟 condition. 
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4.1.3 Effect of Item Parameters Rescaling 

Rescaling was used to ensure the simulated item parameters satisfy the constraint 

for the EGCA, which is 𝑆𝑆𝛼𝛼 < 1. As mentioned in the Methods section, the rescaling only 

happened in 𝜋𝜋, not in 𝑟𝑟. The ranges of simulated 𝜋𝜋 after rescaling across all conditions is 

shown in Table 11. There were two conditions of 𝜋𝜋: high and low. When the distractors 

were not informative, the parameters were not rescaled. However, when the distractors 

were weakly or strongly informative, the mean largest possible 𝜋𝜋 decreased for all 

conditions expect for low 𝜋𝜋 and low 𝑟𝑟 condition. For the high 𝜋𝜋 and high 𝑟𝑟 condition, the 

mean largest 𝜋𝜋 decreased drastically compared to the other distractor conditions.  

Additionally, the largest 𝜋𝜋 in the strong distractor condition appears to be smaller 

than the largest 𝜋𝜋 in the weak- and non-informative distractor conditions, which can lead 

to better item quality for the weak-distractor condition when 𝜋𝜋 and 𝑟𝑟 were both high. 

Lastly, the same size, test length, and attributes did not appear to affect the range of the 

𝜋𝜋, and the 𝑟𝑟 was not affected by rescaling (See Table A1 in Appendix A) 

4.1.4 Correct Classification Rates for the Profile (pCCRs) 

Given the good item parameters in general, the results of pCCRs can be 

interpreted with confidence. Figure 7 and Table 12 show the results of the mean pCCRs 

across different conditions. Recall that the pCCR is the proportion of times that an 

examinee’s estimated profile perfectly matched the true (simulated) attribute profile. In 

general, as the sample size and test lengths increased, the mean pCCRs increased, and as 

the number of attributes measured by a test increased, the mean pCCRs decreased. The 
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mean pCCRs ranged from 18% to 84% for the RRUM and 26% to 95% for the EGCA, 

indicating some conditions might have acceptable classifications and others might not 

have acceptable classification rates of a complete profile.  

In terms of the average effect of item quality, the high 𝜋𝜋 and low r condition had 

the highest pCCRs for the RRUM (Mean = 51.08%) and the EGCA (Mean = 74.28%), 

the low 𝜋𝜋 and low 𝑟𝑟 for the RRUM (Mean = 56.57%) and the EGCA (Mean = 67.09%) 

condition and the high 𝜋𝜋 and high 𝑟𝑟 for the RRUM (Mean = 51.08%) and the EGCA 

(Mean = 62.91%) had the medium pCCRs, and the low 𝜋𝜋 and high r condition had the 

lowest pCCRs for the RRUM (Mean = 45.34%) and the EGCA (Mean = 56.75%). Again, 

as previously discussed, although the rescaling did have some marginal effect, these 

results suggest that the rescaling of items to satisfy the requirements of the EGCA did not 

have an effect. Specifically, because the 𝜋𝜋 of all options were rescaled if 𝑆𝑆𝛼𝛼 was greater 

than 1, the results suggest that the rescaling did not change the order of the different 

combination of 𝜋𝜋 and 𝑟𝑟. For example, the high 𝜋𝜋 and low 𝑟𝑟 had the highest pCCRs in a 

previous study (Oksana et al. 2016) and it still had the highest pCCRs. The results also 

confirmed that the quality of the item was influenced by the value of 𝜋𝜋 and r of the 

options. The EGCA (Mean = 56.03%) and RRUM (Mean = 55.92%) had essentially 

equal (within a small margin of error) pCCRs across most conditions when there was no 

information in the distractor. In cases where the convergence of parameters was an issue 

for the EGCA, specifically, under the condition of high 𝜋𝜋 and low r—that is, 6 attributes, 

40 items with 1,000 or 2,000 simulees—the RRUM (Mean = 48.06 %) had similar 
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pCCRs than the EGCA (Mean = 47.73%). The results in this particular instance indicate 

that CCRs were not much affected by the convergence of item parameters. 

 However, for the EGCA, when there was information in the distractors, with the 

exception of the high 𝜋𝜋 and high r condition, there was a relationship between the amount 

of information in the distractors and pCCRs. Specifically, a strong-distractors condition 

(Mean = 74.69%) always had the highest pCCRs, which was followed by pCCRs when 

using weak distractors (Mean = 68.29%). The non-informative distractor condition had 

the lowest pCCRs (Mean = 55.14%). As for the high 𝜋𝜋 and high 𝑟𝑟 condition, it is 

believed that the different effect could have contributed to the need for rescaling the 

parameters. Specifically, for the high 𝜋𝜋 and high 𝑟𝑟 condition, as previously mentioned, 

the maximum rescaled 𝜋𝜋 was higher for the weak- distractor condition than for the 

strong-distractor condition, and the maximum rescaled 𝜋𝜋 was higher for the non-

informative distractor condition than for the weak-distractor condition. The results could 

be because pCCRs were lower for the strong-distractor condition than for the weak-

distractor condition and lower for the weak-distractor condition than for the non-

informative distractor condition when the 𝜋𝜋 and r were high. 

Furthermore, the EGCA outperformed the RRUM across all conditions (e.g., 

different conditions of 𝜋𝜋 and r, number of attributes, number of items) when the options 

were informative. The differences between the EGCA and the RRUM were even more 

prominent for the strong distractor conditions (14~35%) than for the weak distractor 

condition (6~17%). In other words, the advantage of the EGCA over the RRUM with 

respect to pCCRs was higher when the distractors were strongly discriminated (Mean = 
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23.02%) compared to conditions when the distractors were weakly discriminated (Mean 

= 11.18%). The results indicated that the EGCA could utilize the information provided in 

the distractors to provide a more accurate profile and attributes classification 

One finding that was not quite consistent with expectations was that pCCRs 

changed for the RRUM across distractor conditions when all other conditions were held 

constant. Note that, based on the definition of the EGCA, the RRUM is defined such that 

the item parameters are identical to the parameters of the EGCA correct option. Within 

conditions when manipulating the quality of the distractors, the overall quality of the 

correct response should not change and, as a result, the item quality when using the 

RRUM should not change. However, these results could be caused by a combination of 

several factors. Due to the effect or to rescaling, the largest 𝜋𝜋 decreased all item quality 

conditions except for the low 𝜋𝜋 and low 𝑟𝑟 condition, which explain the similarities of 

pCCRs for the low 𝜋𝜋 and low 𝑟𝑟 condition and a decrease in pCCRs for other item quality 

conditions for the RRUM. 

4.1.5 Marginal Correct Classification Rates for an Attribute (aCCRs) 

The results of aCCRs are discussed in this section. Figure 8 and Table 13 show 

the results of aCCRs across different conditions respectively. The mean aCCRs ranged 

from 75% to 98% for the EGCA and 71% to 95% for the RRUM. As the sample size and 

test length increased, or the number of attributes measured by a test decreased, the aCCRs 

increased, which is similar to the trends observed with the pCCR. The high 𝜋𝜋 and low r 

condition had the highest aCCRs for the RRUM (Mean = 88.50%) and the EGCA (Mean 

= 98.06%), and the low 𝜋𝜋 and high r condition had the lowest aCCRs for the RRUM 
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(Mean = 82.35%) and the EGCA (Mean = 94.54%). The aCCRs of the other 𝜋𝜋 and r 

conditions were somewhere between the two conditions. The EGCA (Mean = 86.22%) 

and RRUM (Mean = 86.10%) had equal aCCRs across most of the conditions when there 

was no information in the distractors. In cases where the convergence of parameters was 

an issue for the EGCA (i.e., high 𝜋𝜋 and low r, 6 attributes, 40 items) in the non-

informative distractor condition, the RRUM and the EGCA still had the same aCCRs. For 

the EGCA, except for the high 𝜋𝜋 and high 𝑟𝑟 condition, the strong-distractor condition 

(Mean = 93.66%) always had higher aCCRs than the non-informative distractor condition 

(Mean = 85.80%), and the aCCRs of the weak distractor condition (Mean = 91.50%) was 

between the aCCRs of the strong distractor and non-informative distractor condition. The 

results may be also due to the rescaling of the 𝜋𝜋 as discussed in the previous section. As 

with the results of pCCRs, the EGCA outperformed the RRUM across all conditions 

under 3L. The advantage of the EGCA over the RRUM was more prominent for the 

strong-distractor condition (Mean = 9.38%) than for the weak-distractor condition (Mean 

= 4.67%).
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Figure 8. aCCRs Across Different Conditions.  
The profile correct classification rates (aCCRs) across different conditions are shown above. Each section of the 
graph represents three distractor conditions (i.e., strong, weak, and none) where the EGCA and RRUM were used. 
The columns represent the quality of the item while the rows represent a combination of sample sizes, attribute 
sizes, and test lengths. Colors represent models. 



 

 
 

100 

Table 13. Mean aCCRs Across Different Conditions 

N I K DQ H/H H/L L/H L/L 
    RRUM EGCA RRUM EGCA RRUM EGCA RRUM EGCA 

1000 

20 

4 
None 89.69 89.24 92.15 92.07 85.21 84.21 89.39 89.42 
Weak 91.67 87.43 95.10 91.99 88.14 84.03 92.22 89.96 
Strong 88.11 80.20 95.95 89.82 88.39 79.48 93.88 89.09 

6 
None 80.12 79.99 79.42 79.66 75.78 75.98 76.43 76.69 
Weak 85.38 77.04 89.15 83.43 82.59 74.70 85.27 79.56 
Strong 84.79 72.19 91.80 79.06 84.84 73.08 89.72 77.30 

40 

4 
None 94.25 94.18 94.54 94.52 91.30 91.03 93.23 93.22 
Weak 96.67 93.19 98.04 95.03 94.32 90.86 96.26 93.38 
Strong 94.37 87.43 98.72 93.73 94.39 87.52 98.08 92.97 

6 
None 86.00 86.04 84.57 84.78 83.04 82.90 82.67 82.83 
Weak 92.28 86.52 94.55 89.77 89.84 84.41 91.38 87.52 
Strong 92.34 80.07 97.56 87.16 92.22 80.40 96.25 86.33 

2000 

20 

4 
None 89.86 89.28 92.45 92.38 85.82 84.76 89.93 89.83 
Weak 91.93 87.64 95.36 91.96 88.48 84.52 92.17 89.85 
Strong 88.69 81.20 96.18 90.04 88.68 80.64 94.71 88.91 

6 
None 80.08 80.24 79.93 79.75 76.53 75.65 75.82 76.69 
Weak 86.03 78.06 89.61 84.22 82.90 74.04 85.63 78.61 
Strong 85.46 71.65 92.35 78.26 85.35 71.36 90.30 77.00 

40 

4 
None 94.41 94.36 94.80 94.77 91.43 91.36 93.49 93.48 
Weak 96.72 93.33 98.10 94.76 94.53 91.10 96.41 93.57 
Strong 94.79 87.91 98.77 93.75 94.64 88.04 98.19 93.21 

6 
None 86.25 86.25 84.54 84.74 83.18 83.25 82.85 82.86 
Weak 92.55 86.90 95.02 90.11 89.97 84.11 92.01 88.24 
Strong 92.66 79.92 97.57 87.35 92.55 79.99 96.45 86.17 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. 
H/H is high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L 
is low 𝜋𝜋 and low 𝑟𝑟 condition. 
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Figure 9. 𝐶𝐶𝐶𝐶𝐼𝐼• Across Different Conditions  
The test-level cognitive discrimination index (𝐶𝐶𝐶𝐶𝐼𝐼•) across different conditions are shown above. Each section 
represents three distractor conditions (i.e., strong, weak, and none) where the EGCA and RRUM were used. The 
columns represent the quality of the item while the rows represent a combination of sample sizes, attribute sizes, and 
test lengths. Colors represent models.  
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Table 14. Mean 𝐶𝐶𝐶𝐶𝐼𝐼• Across Different Conditions 

N I K DQ H/H H/L L/H L/L 
    RRUM EGCA RRUM EGCA RRUM EGCA RRUM EGCA 

1000 

20 

4 
None 6.73 6.38 11.49 11.33 4.26 3.86 7.22 6.95 
Weak 5.60 7.20 11.40 13.73 4.13 4.87 7.36 8.34 
Strong 3.05 5.26 7.74 14.10 3.06 5.20 6.46 10.91 

6 
None 4.58 4.59 5.88 5.89 3.15 3.15 4.08 4.08 
Weak 4.09 5.33 6.86 8.55 3.30 4.16 4.90 5.86 
Strong 2.60 4.67 4.49 8.95 2.62 4.69 4.05 7.31 

40 

4 
None 12.86 12.73 22.76 22.73 7.82 7.56 14.32 14.24 
Weak 10.51 14.39 22.63 27.53 7.74 9.78 14.32 16.74 
Strong 5.51 10.47 15.38 28.80 5.53 10.54 12.58 21.92 

6 
None 8.81 8.82 11.63 11.67 5.89 5.89 7.76 7.84 
Weak 7.77 10.60 13.70 17.39 6.33 8.19 9.68 11.79 
Strong 4.61 9.32 9.01 18.53 4.61 9.30 7.91 15.02 

2000 

20 

4 
None 6.79 6.42 11.62 11.46 4.27 3.89 7.50 7.21 
Weak 5.63 7.26 11.59 14.05 4.16 4.94 7.42 8.46 
Strong 3.11 5.39 7.89 14.44 3.08 5.34 6.63 11.25 

6 
None 4.54 4.55 6.05 5.99 3.12 3.12 4.26 4.19 
Weak 4.04 5.44 7.01 8.90 3.33 4.25 5.00 6.00 
Strong 2.61 4.80 4.64 9.47 2.55 4.70 4.15 7.78 

40 

4 
None 12.91 12.77 22.87 22.84 7.78 7.76 14.47 14.40 
Weak 10.53 14.48 22.98 28.17 7.70 9.79 14.43 16.96 
Strong 5.55 10.70 15.63 29.63 5.62 10.75 12.76 22.71 

6 
None 8.75 8.76 11.84 12.01 5.86 5.87 7.94 8.06 
Weak 7.76 10.79 14.02 18.04 6.21 8.19 9.99 12.20 
Strong 4.61 9.53 9.14 18.81 4.59 9.42 8.03 15.56 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. 
H/H is high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L 
is low 𝜋𝜋 and low 𝑟𝑟 condition. 
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4.1.6 𝐶𝐶𝐶𝐶𝐼𝐼• 

 The correlation between 𝐶𝐶𝐶𝐶𝐼𝐼• and the classification accuracy across all conditions 

was first examined. Because previous literature has shown that the correlation between 

𝐶𝐶𝐶𝐶𝐼𝐼• and pCCRs are not linear (Henson et al. 2008), the Pearson correlation between the 

log of 𝐶𝐶𝐶𝐶𝐼𝐼• and pCCRs were used. The results show that the correlation between the log 

of 𝐶𝐶𝐶𝐶𝐼𝐼• and pCCRs was .82, and between the log of 𝐶𝐶𝐶𝐶𝐼𝐼• and aCCRs was .81 for the 

EGCA. They were .80 and .82 respectively for the RRUM. The strong positive 

correlation between the log of 𝐶𝐶𝐶𝐶𝐼𝐼• and CCRs for the different models indicates that 

𝐶𝐶𝐶𝐶𝐼𝐼• can be used as an accuracy indicator for the classification of polytomous and 

dichotomous DCM models. 

The results of the mean 𝐶𝐶𝐶𝐶𝐼𝐼• across different conditions were summarized in 

Figure 9 and Table 14. In general, the results of 𝐶𝐶𝐶𝐶𝐼𝐼• were similar to the results of 

pCCRs and aCCRs. The 𝐶𝐶𝐶𝐶𝐼𝐼• ranged from 2.56 and 22.98 for the EGCA and from 3.13 

and 29.32 for the RRUM. Since 𝐶𝐶𝐶𝐶𝐼𝐼• is a function of test length, the mean 𝐶𝐶𝐶𝐶𝐼𝐼• doubled 

as the test lengths increased from 20 items to 40 items. The mean 𝐶𝐶𝐶𝐶𝐼𝐼• increased slightly 

as the number of examinees increased. The mean 𝐶𝐶𝐶𝐶𝐼𝐼• decreased as the number of 

attributes measured by a test increased. Additionally, 𝐶𝐶𝐶𝐶𝐼𝐼• values were impacted by 

different values of 𝜋𝜋 and 𝑟𝑟. High 𝜋𝜋 and low 𝑟𝑟 had a higher 𝐶𝐶𝐶𝐶𝐼𝐼• (Mean = 15.92) than low 

𝜋𝜋 and low 𝑟𝑟 (Mean = 11.05) and high 𝜋𝜋 and high 𝑟𝑟 (Mean =8.34), which were higher 

than low 𝜋𝜋 and high 𝑟𝑟 (Mean = 6.35) for the EGCA. The results confirmed that the item 
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quality was the highest when the item quality was high, and lowest when item quality 

was low.  

 When no information was measured by the distractors, the EGCA (Mean = 8.66) 

and RRUM (Mean = 8.75) had the same mean 𝐶𝐶𝐶𝐶𝐼𝐼•, even in conditions where the EGCA 

parameters had an issue with convergence. Similar to the results of classification, for the 

EGCA, the strong distractor condition (Mean =13.05) always had higher 𝐶𝐶𝐶𝐶𝐼𝐼• values on 

average than the weak distractors condition, and the weak distractor (Mean = 11.53) 

condition had higher 𝐶𝐶𝐶𝐶𝐼𝐼• than the non-informative distractors condition (Mean = 8.84). 

This trend was generally true, except for the High 𝜋𝜋 and High r conditions, which may be 

due to the rescaling issue (See Table 12) that was also described with respect to CCRs. 

The results indicated that strongly informative distractors had a higher discrimination 

than the weakly informative distractors, which had higher discrimination than the non-

informative distractor condition. 𝐶𝐶𝐶𝐶𝐼𝐼• of the EGCA model (Mean = 12.29) was higher 

than 𝐶𝐶𝐶𝐶𝐼𝐼• of the RRUM (Mean = 7.53) across all conditions when the distractors were 

informative. The differences between the EGCA and the RRUM were even larger when 

the distractors were strongly discriminated than when the distractors were weakly 

discriminated.  

The highest mean 𝐶𝐶𝐶𝐶𝐼𝐼• for the EGCA was when a test had 40 good-quality (i.e., 

high 𝜋𝜋 and low r) items that contained strong-informative distractors, measured 4 

attributes, and had 2,000 examinees; the mean 𝐶𝐶𝐶𝐶𝐼𝐼• was 20.63 for the EGCA, and it 

dropped to 9.97 when the RRUM was used. The results indicate that when the distractors 
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had more useful information, the EGCA model would have a higher 𝐶𝐶𝐶𝐶𝐼𝐼• than the 

RRUM model. Otherwise, a lot of information would be lost if the RRUM was used, 

which was also reflected in the classification accuracy. 

4.2 Real Data  

In addition to a simulation study, a real-world data analysis was performed to 

examine the difference between the EGCA and the RRUM. As for the convergence of 

item parameters, the PC is .92 for the EGCA, and 1.00 for the RRUM. However, it 

seemed that item parameters with high values of GRR converged in a large range (with a 

large standard error) after the MCMC chains were visually inspected. Therefore, the 

results regarding classification and CDI can be meaningfully interpreted. 

4.2.1 Classification 

 In the real data analysis, although the true parameters are not known, there are 

specific results that can be compared. Absolute deviance (AD) between posterior 

probability and .5 were summed across all examinees for each attribute for the EGCA 

and the RRUM (Figure 10). The higher the sum of AD is associated with higher 

classification discrimination. The results show the EGCA had a higher AD for Attribute 

1(Skill 1) and Attribute 3(Misconception 2) than the RRUM. However, the RRUM had 

higher AD for Attribute 2 (Misconception 1) than the EGCA. The results indicate that the 

posterior probabilities of mastery when analyzing the polytomous data using the EGCA is 

higher than the posterior probability of mastery when analyzing the corresponding 

dichotomous data using the RRUM.  
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Figure 10. The Sum of the Absolute Deviance Between the Posterior Probability and .5 
for Each Attribute Estimated Using EGCA and RRUM.  
Note that: A1 is Skill 1, and A2 and A3 are Misconceptions 1 and 2. The A2 and A3 of 
the RRUM were recoded using 1- the posterior probability to make a fair comparison.  
 
 

Figure 11 shows the attribute classification between the EGCA and RRUM 

analysis. The results show that the EGCA classified more examinees to have Skill 1 

(62%) than the RRUM (39%). In addition, The EGCA classified fewer examinees (43%) 

to master Attribute 2 (Misconception 1) than the RRUM (68%). The EGCA also 

classified (26%) fewer examinees to master Attribute 3 (Misconception 2) than the 

RRUM (39%). There were big differences between the two models’ classification. 

However, without knowing the true attributes the assessment measured, it is difficult to 

tell which model is closest to reality. However, the percentage of agreement of attribute 
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profiles between the two models was 48%, which indicates some similarity between the 

two models’ classification. 

 

Figure 11. The Proportion of Examinees That Mastered Each Attribute Estimated Using 
EGCA and RRUM.  
Note that: A1 is Skill 1, and A2 and A3 are Misconceptions 1 and 2. The A2 and A3 of 
the RRUM were recoded from 0 to 1 to make a fair comparison.  

 

In addition to describing the general classification of examinees, it is possible to 

describe the association between an examinees’ classification and his or her responses to 

the items. It is assumed that a better model would do a better job at predicting behavior. 

In the real data analysis, the correct answers measured Skill 1 or lack of Misconception 1 

or the lack of Attribute 2. The misconception option in the real-world data analysis only 
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measures Misconception 1 or Misconception 2 (see Table 7 for the Q-matrix). It is 

expected that individuals matching the Q-matrix entry would be more likely to match that 

entry. This association is measured using a correlation between whether an individual 

matched the Q-matrix and the sum of the items with that option. Therefore, whether the 

examinees were classified as mastering the Skill 1 and lacking Misconception 1 was 

correlated with the number of correct options selected by examinees for items 1–5 that 

only measured Skill 1 and Misconception 1. The correlation was .33 for the EGCA 

and .03 for the RRUM. Additionally, whether the examinees were classified as mastering 

the Skill 1 and lacking Misconception 2 was correlated with the number of correct 

options they chose for items 6–12 that only measured Skill 1 and Misconception 2. The 

correlation was .36 for the EGCA and close to 0 (-.01) for the RRUM. The results show 

that the classification of examinees associated with the profile diagnosed by the correct 

options was moderately correlated with the correct options chosen by examinees using 

the EGCA. This was not the case for the RRUM. 

The detailed classification corresponding to the number of the correct options 

chosen is shown in Table 14. The results illustrate that for examinees who did not select 

any correct options that measured mastery of Skill 1 and non-mastery of Misconception 1 

were never classified as having mastered Skill 1 and not having mastered Misconception 

2 when modeling the assessment using the EGCA. However, many examinees were 

classified to have mastered Skill 1 and not mastered Misconception 1 under the RRUM. 

In addition, the proportion of examinees mastering Skill 1 and not mastering 

Misconception 1 was directly related to the number of items answered correctly. When 
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more correct options were chosen, the both EGCA and RRUM analyses resulted in more 

examinees classified to have mastered Skill 1 and to lack Misconception 1. In particular, 

when the number of misconception options chosen was 4 or 5 by the examinees, both 

models classified the examinees to master Skill 1 and to lack Misconception 1.  

 
Table 15. The Number of Selected Correct Options and the Corresponding Classification 

Number of 
Correct Options 

Skill 1+ Misconception 1 Skill 1+Misconception 2 
EGCA RRUM EGCA RRUM 

 0 1 0 1 0 1 0 1 
0 478 0 332 146 834 0 801 33 
1 345 4 158 191 342 0 274 68 
2 258 144 117 285 209 12 104 117 
3 46 299 37 308 103 93 42 154 
4 1 237 1 237 7 115 8 114 
5 0 199 0 199 0 116 0 116 
6     0 98 0 98 
7     0 82 0 82 

Note: 0 means that not mastering the attribute profile, and 1 means mastering the attribute 
profile. For instance, if an examinee masters Skill 1 and lacks Misconception 1, then it is 
1. If an examinee masters Skill 1 as well as Misconception 1, then it is 0.  
 
 
Table 16. The Number of Selected Misconception Options and the Corresponding 
Classification 
 

Number of 
Misconception 

Options 

Misconception 1 Misconception 2 

EGCA RRUM EGCA RRUM 
 0 1 0 1 0 1 0 1 

0 478 0 332 146 834 0 801 33 
1 345 4 158 191 342 0 274 68 
2 258 144 117 285 209 12 104 117 
3 46 299 37 308 103 93 42 154 
4 1 237 1 237 7 115 8 114 
5 0 199 0 199 0 116 0 116 
6     0 98 0 98 
7     0 82 0 82 

Note: 0 means lacking the misconception and 1 means mastering the misconception. 
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Having the attribute profile (mastering Skill 1 and lacking Misconception 2) was 

more aligned with the number of correct options selected by the examinees using the 

EGCA model than using the RRUM. For the other attribute profile (i.e., mastering Skill 1 

and lacking Misconception 2), the results were similar. When 0 correct options were 

selected, the EGCA diagnosed no examinees to master Skill 1 and lack Misconception 2. 

However, this was not the case for the RRUM because some examinees were still 

classified to have that profile (i.e., mastering Skill 1 and lacking Misconception 2). Both 

models diagnosed the same number of the profiles when the number of correct options 

chosen was 5–7. The results were consistent with the findings of the correlation study, 

indicating that the EGCA was more realistic than the RRUM when used to model the 

skill and misconceptions of the correct option. 

Moreover, for Misconception 1, the correlation between the examinees classified 

as mastering Misconception 1 and selecting the option related to that misconception was 

0.81 for the EGCA, which was higher than 0.54 for the RRUM. For Misconception 2, the 

correlation for the EGCA was still higher (0.85) than the correlation for RRUM (0.76). 

The results show that the classification of the EGCA, which took into account the 

distinction between distractors that measured misconceptions, had a stronger correlation 

with the number of misconception options chosen than the RRUM.  

The detailed classification of the misconception corresponding to the number of 

misconception options chosen is shown in Table 15. The results show that none of the 

examinees who chose 0 of the misconception options were diagnosed to have the 

corresponding misconception under the EGCA. However, some examinees were 
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diagnosed to have the same misconception when analyzing the data using the 

dichotomized data and the RRUM. When more misconception options were chosen, both 

the EGCA analysis and the RRUM analysis classified more examinees to master the 

misconceptions. In particular, when the number of misconception options chosen by the 

examinees was 5–7, both models classified the examinees to have misconceptions. The 

results indicate that the EGCA is more predictive than the RRUM in diagnosing the 

misconceptions. 

4.2.2 Item/Test Quality (𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 / 𝐶𝐶𝐶𝐶𝐼𝐼•) 

 The 𝐶𝐶𝐶𝐶𝐼𝐼• was 8.81 for the EGCA and 7.51 for the RRUM, which indicates that if 

the model fits the data, the EGCA results in item characteristics that would be predicted 

as more discriminating than the RRUM results. Table 17 shows the 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 for each item by 

the EGCA analysis and the RRUM analysis estimates. The 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 differences between the 

EGCA and RRUM are shown in Figure 12. For the first 10 items, the 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖  was higher for 

the EGCA than the RRUM and for the last two items the 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖  was higher for the RRUM 

than for the EGCA. This was not expected because the EGCA should always have higher 

or equal 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 estimates than the same value computed using the parameters estimates 

from the RRUM analysis. A comparison of the item parameters between the two models 

for items 11 and 12 did not show any major problem (See Appendices B1 and B2). This 

result could be due to the misspecification of the Q-matrix. In general, the results support 

the finding that the EGCA was more discriminating than the RRUM in diagnosing 

examinees’ attributes.  
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 Moreover, because items 1–5 measured Skill 1 and Misconception 1, and items 7–

12 measured the same skill and Misconception 2, the sum differences between the EGCA 

and the RRUM for items 1–5 and items 6–12 were summarized (see Table 16). The 

results show that differences in 𝐶𝐶𝐶𝐶𝐼𝐼• were .86 for the first 5 items and .43 for the last 7 

items. Combined with strong positive correlations between the CCRs and the 𝐶𝐶𝐶𝐶𝐼𝐼• in the 

simulation study, the results indicate that the EGCA most likely has an advantage over 

the RRUM in discriminating the attributes for the first 5 items than for the last 7 items 

and, as a result, would be predicted to have a CCR. The findings are consistent with 

previous classification results, which showed that the correlation between the 

misconception and the number of the options measuring the misconception chosen by the 

examinees was 0.81 for the EGCA and 0.54 for the RRUM in the first five items 

compared to 0.85 for the EGCA and 0.76 for the RRUM for the last seven items. The 

results suggest that the last seven items that were used to measure Skill 1 and 

Misconception 2 may contain poor distractors, which could lead to a smaller difference 

between the EGCA and the RRUM concerning 𝐶𝐶𝐶𝐶𝐼𝐼•. 
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Figure 12. 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 Difference Between the EGCA and RRUM by Item.  
Note: Each bar indicates the difference (EGCA minus RRUM) of the 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 
 
 
Table 17. 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 Between the EGCA and RRUM by Item 

Item No. EGCA  RRUM  

Difference 
Between Sum 
of Items 1–5 

Difference 
Between Sum 
of Items 6–12 

1 0.63 0.44   
2 0.84 0.76   
3 0.69 0.44   
4 1.12 0.9   
5 0.49 0.36 .86  
6 0.98 0.83   
7 0.85 0.82   
8 0.62 0.48   
9 0.34 0.28   

10 0.59 0.28   
11 0.67 0.77   
12 0.99 1.15  .43 

Sum 8.81 7.51   
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CHAPTER V 
 

DISCUSSION 
 
 

The study investigated the performance of a polytomously scored data analysis 

versus a dichotomously scored analysis with the same data. The EGCA, a submodel of 

the GDCM-MC, was first introduced as a polytomous data analysis that could be directly 

compared to a dichotomous data analysis (the RRUM) without model-induced bias due to 

misfit. A simulation study was designed to compare the two approaches under a broad set 

of conditions that included the informativeness of distractor, item quality, sample size, 

test length, and attribute size. Within the simulation study, parameter-convergence 

estimations of both the EGCA and RRUM were evaluated to ensure any differences in 

CCRs between approaches could be attributed to the model and not to the estimation. The 

results showed that the item parameters of both the RRUM and EGCA did converge in 

most of the conditions. Even in conditions where there was a small portion of non-

convergence, the CCRs and 𝐶𝐶𝐶𝐶𝐼𝐼• were still acceptable. Therefore, the results could be 

meaningfully interpreted. 

The study also hypothesized that the EGCA analysis using polytomous data 

would be better than the RRUM analysis with dichotomous data when using multiple-

choice items with informative distractors, although the two approaches are expected to 

behave similarly when the distractors are not informative. This difference is expected 

because the EGCA directly models the polytomous responses as opposed to only 
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right/wrong responses. As a result, the EGCA shows not just that an examinee misses an 

item, but also how the item was missed. In contrast, the RRUM only models the correct 

option versus the incorrect option.  

The results show that when the item distractors are not informative, both models 

produce equivalent CCRs (i.e., pCCRs and aCCRs) and item parameters. However, when 

the distractors are informative, the EGCA produced higher CCRs than the RRUM across 

all conditions. Furthermore, this difference in CCRs was larger as the distractors were 

more informative. However, the CCRs of the EGCA increased as the distractors became 

more informative across all item quality conditions with the exception of the high 𝜋𝜋 and 

high 𝑟𝑟 condition. Recall that in this condition, rescaling changed the item quality. The 

largest 𝜋𝜋 values in the strong distractor condition were much smaller than the largest 

rescaled 𝜋𝜋 values in the weak and non-informative distractor condition because the 𝜋𝜋 

values had to be scaled to ensure that the requirement 𝑆𝑆𝛼𝛼 < 1 was maintained. Therefore, 

the CCRs of the RRUM were not the same for the diffferent distractors condition when 

the values of 𝜋𝜋 and 𝑟𝑟 were high. Despite that, the results confirmed the second research 

aim, that is, the importance of using the EGCA to model multiple-choice items when the 

distractors were strongly informative. Additionally, the results showed that that the CCRs 

of both models would increase when the sample size, test length, and item quality 

increased and decreased when the number of attributes increased. The CCRs in the good-

quality item condition (i.e., high 𝜋𝜋 and low 𝑟𝑟) were better estimated than those in the 

low-quality item condition. 
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 As for the test-level discrimination index 𝐶𝐶𝐶𝐶𝐼𝐼•, the results were consistent with 

the third research aim. The correlation between a measure of test quality (log of 𝐶𝐶𝐶𝐶𝐼𝐼•) 

and the CCRs was relatively high for both the EGCA and the RRUM estimates ( 𝑟̅𝑟 = .81 

and 𝑟̅𝑟 = .80, respectively). Note that the relationship was also shown to be strong when 

using the aCCRs. The results were consistent with previous literature, which showed a 

strong correlation between classification accuracy and the 𝐶𝐶𝐶𝐶𝐼𝐼• (Henson & Douglas, 

2005). As the number of attributes decreased or the sample size increased, the mean 𝐶𝐶𝐶𝐶𝐼𝐼• 

increased. The effect could be because the test could better differentiate fewer attributes 

than more attributes given the same amount of information, and that the increase in 

sample size could increase the test level of discrimination. As the test length increased 

from 20 items to 40 items, the 𝐶𝐶𝐶𝐶𝐼𝐼• doubled because it was a function of test length. In 

addition, in a simulated condition with high-item quality (i.e. high values of 𝜋𝜋 and low 

values of 𝑟𝑟) 𝐶𝐶𝐶𝐶𝐼𝐼•, values were highest, whereas for poor-quality item condition (low 

values of 𝜋𝜋 and high values of 𝑟𝑟), the 𝐶𝐶𝐶𝐶𝐼𝐼• was lowest. Also, because the EGCA is 

essentially equal to the RRUM when using noninformative distractors, it was 

demonstrated that the EGCA and RRUM had an equal 𝐶𝐶𝐶𝐶𝐼𝐼• when there were no 

informative distractors. Noticeably, when the distractors were informative, the EGCA 

produced much higher 𝐶𝐶𝐶𝐶𝐼𝐼• than the RRUM. The EGCA advantage was even more 

prominent when distractors were strongly discriminating when compared to weakly 

discriminating distractors.  
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The simulation study results could provide useful guidelines in designing 

diagnostic assessments based on multiple-choice items for assessment developers. When 

distractors are not informative, both models can be used interchangeably. When 

distractors have embedded information regarding skills or misconceptions and item 

quality is high, the EGCA is preferred over the RRUM. In order to have the best 

classification, it is preferred to have a larger sample size and a longer test with good 

quality items and good distractors. Previous literature has suggested that using partial 

correct answers that may not contain all required skills could create good distractors (Ali 

et al., 2016). Additionally, the distractor-driven assessment used in this study 

incorporated the student misconceptions in the concept of distractors. However, future 

research is needed to explore more ways to create strongly informative and less- 

informative distractors. 

 A real distractor-driven assessment with informative distractors was used to 

compare the two models. The profile classification-agreement rate between the two 

models was 48%, and the classification of each attribute was different. The EGCA 

classified more students as masters of the first skill and fewer students to master the two 

measured misconceptions when compared to student results using the RRUM. This could 

be because the EGCA used the information provided in the distractors, which was 

ignored by the RRUM. Further exploration of the association between the option 

classification and selection showed stronger predictive validity evidence of using the 

EGCA instead of the RRUM. The profile diagnoses associated with the correct option 

were more correlated with the number of correct options chosen using the EGCA analysis 
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when compared to the RRUM analysis. The classification of misconceptions was more 

likely to be associated with misconception options chosen by examinees using the EGCA 

than the RRUM. The results indicate that the EGCA provides more meaningful 

classification than the RRUM because the classifications were more aligned with the type 

of options selected by the examinees. In addition, the EGCA estimation of item 

parameters produced a higher 𝐶𝐶𝐶𝐶𝐼𝐼• than the RRUM analysis. Most of the items have 

higher a 𝐶𝐶𝐶𝐶𝐼𝐼𝑖𝑖 for the EGCA than for the RRUM, which indicates that if the model is 

appropriate, the EGCA is most likely more discriminating than the same assessment 

when using the RRUM with dichotomous data as long as the additional information was 

measured by the distractors. The results provide evidence that the use of the EGCA for 

modeling the distractor-driven assessment would be more helpful in examinee 

classification when compared with a dichotomized RRUM analysis.  

 Distractors of multiple-choice items have been shown to influence the item 

quality. Previous literature shows that the quality of distractors has been correlated with 

item difficulty and item discrimination. When non-informative distractors were replaced 

by informative distractors, item difficulty increased even to the level of difficulty of free 

responses (Ali et al., 2016). If non-informative distractors are added to an item, the item 

difficulty and discrimination are not affected (Cizek & O’Day, 1994). Similarly, the 

results of this study showed that non-informative distractors did not add 

discrimination(i.e., CDI) to items using either the dichotomously scored model (RRUM) 

or the polytomously scored model (EGCA), and including informative distractors in 
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items that increased the discrimination of the items when the polytomously scored model 

(EGCA) was used. 

Moreover, a previous study showed that data simulated from a polytomous DCM 

and analyzed by the polytomous model has better classification accuracy than that 

diagnosed by the corresponding dichotomous DCM when options of test items measured 

certain attributes (de la Torre, 2009a). While it is expected that modeling the distractors 

and capitalizing on such additional information will increase the CCRs, this study has a 

possible confound. Specifically, the study did not consider the dichotomous model misfit, 

and as a result, it is at least possible that the improved CCRs are partially due to a lack of 

fit for the dichotomous model. In this study, the EGCA was introduced that could fit both 

dichotomous and polytomous data when the distractors have no information. The study 

showed that the correct EGCA option parameters were equivalent to the RRUM item 

parameters that only used the correct option information. In addition, the study showed 

that the EGCA was equivalent to the RRUM with respect to the CCRs when no skills or 

misconceptions are measured by the incorrect options. Furthermore, the results of the 

study showed that the EGCA provided better classification and test discrimination than 

the RRUM when the distractors were informative. The previous study showed that the 

profile CCRs of the polytomous DCM (i.e., MC-DINA) was 20% higher than the profile 

CCRs of the DINA (de la Torre, 2009a), while the current study demonstrated that, if 

distractors were constructed intelligently, the EGCA could capitalize on the additional 

information in a way that the RRUM model ignores. This additional information can 

increase the profile CCRs by as much as 35% in certain situations.  
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 Previous research has also shown that polytomous scoring that takes into account 

the partial ability measured by distractors results in a different ability distribution when 

compared to the ability distribution that results from a dichotomous scoring analysis (Jiao 

et al., 2012). Although the general location may change for examinees in these cases, it 

was also found that the normality of the distribution may not be impacted (Grunert et al., 

2013). Whether the differences in ability estimation stem from model differences or 

information from the distractors is unknown.  

The real-world data analysis in this study explored the effect on the ability 

distribution when comparing polytomously scored items versus dichotomously scored 

items. Although this study focused on a diagnostic model as opposed to a continuous 

ability model, the results of the real-data study suggest that the polytomous DCM has 

stronger validity evidence than the dichotomous DCM in modeling a distractor-driven 

assessment. Specifically, the student profiles associated with the profile-measured correct 

option was more correlated with the actual selection of the correct answers using the 

EGCA than the RRUM. Furthermore, the students’ diagnosed misconceptions were more 

correlated with the selected options that measured misconceptions using the EGCA than 

the RRUM. The findings of this study indicate that classification from the EGCA has 

more predictability than the classification from the RRUM for distractor-driven 

assessments. 

 This study also has certain limitations. There are more non-convergence cases for 

the EGCA model when the distractors are non-informative than when the distractors are 

informative. One possibility of having non-convergence cases in the non-informative 
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distractor cases may be due to the large attribute size because the non-convergence 

occurred more often in the six attributes condition than the four attributes condition, and 

it is difficult to estimate a large number of parameters with little information under the 

non-informative distractor condition. However, the mean CCRs and 𝐶𝐶𝐶𝐶𝐼𝐼• of this 

condition did not appear to be affected by the non-convergence, because the two models 

have the same values of mean CCRs and 𝐶𝐶𝐶𝐶𝐼𝐼• across all conditions. The possible 

explanation for the good recovery of the CCRs—given the potential convergence issues 

with the item parameters—could be related to the EGCA. The EGCA is a relatively 

complicated model, and the identification condition of the Q-matrix is not well 

understood. It is possible for the method that was used to generate Q-matrices to such 

matrices that result in a nonidentified item for the EGCA. In these instances, the item 

parameters may not be uniquely identified (i.e., more than one set of item parameters 

results in the same predicted probability for examinees). In this case, although 

convergence of the item parameters would directly be affected, actual examinee 

classification would not be effected.  

In the simulation study, the correct option Q-vectors in the EGCA were used in 

the RRUM. The misconceptions Q-matrix entries 0s of the EGCA were recoded as 1s 

(i.e., “lack of the misconception” attribute) and used for the RRUM. However, the skills 

Q-matrix entries of the EGCA were the same as those of the RRUM. The simulation 

study only examined the classification of attributes as a whole, not separately. The skills 

classification may be different from the misconception classification for the EGCA and 

the RRUM because misconceptions were coded differently in the RRUM Q-matrix, 
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which may lead to a CCRs’ difference in skills and misconceptions between the two 

models. Further study can examine the classification of skills and misconceptions 

separately for both simulation and real-data studies. 

Additionally, as this study only used the GDCM-MC ERUM kernel as the base 

model, a future study could also compare other versions of the GDCM-MC (e.g., EDINA, 

EDINO) and their corresponding dichotomous DCMs (e.g., DINA, DINO). Lastly, the 

assessment used in this study is limited in that it only measured one skill and two 

misconceptions and contained five true distractor-embedded, multiple-choice items. 

Seven out of 12 items used in this study were the selected responses items, and they were 

restructured to be multiple-choice items, which could affect the generalizability of the 

results. Future research could also explore different assessments with more items that 

measure more skills and misconceptions. 

In past decades, as large-scale summative educational assessments were required 

to provide multiple achievement levels (e.g., basic, proficient, or advanced) rather than 

just pass/fail levels (NCLB, 2001), it became more important to differentiate the 

information assessed by the test so that detailed feedback could be provided to various 

stakeholders (e.g., students, teachers). Formative assessment using DCMs can offer richer 

diagnostic information about student strengths and weaknesses that summative 

assessment cannot (Cizek, 2001). Therefore, the demand of implementing formative 

assessment using a DCM framework may be promising. However, longer tests and large 

sample sizes are needed for dichotomous DCMs to provide accurate diagnoses of 

students’ attributes, because only the correct option attributes are considered in those 
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cases. The results of the current study show that a polytomous DCM can take into 

account distractor information and provide as much diagnostic accuracy as the 

dichotomous DCM with shorter tests and smaller sample sizes. For instance, a 20-item 

test with strong distractors condition had similar CCRs compared to a 40-item test for the 

RRUM. The results indicate that a polytomous DCM can be more useful than its 

analogous DCM informative educational testing. 

In summary, formative educational assessments are an essential tool to assess 

students attributes. However, longer tests may be needed to assess accurate student-

attribute information using dichotomous DCMs, which can hinder DCM application. 

Polytomous DCMs can obtain more accurate diagnoses of students’ attributes with 

shorter tests because they utilize information provided in the distractors. The motivation 

of this study is not new; polytomous models have been compared to dichotomous models 

in the past (de la Torre, 2009a; Jiao et al., 2012). Although previous studies have shown 

that the polytomous models can provide better information about the examinees’ 

attribute(s), results were confounded with model misfits. This study is the first to 

introduce a submodel of the GDCM-MC, the EGCA. Out of all the item options modeled 

by the EGCA, the correct option parameters are equivalent to parameters of its analogous 

dichotomous DCM, which only considers attributes measured by the correct option of the 

multiple choice items. The EGCA can model and measure any additional distractor 

information measured by the item, but this is not possible with the analogous DCM. 

Furthermore, assuming good distractors can be provided, the advantages (i.e., CCRs, and 

𝐶𝐶𝐶𝐶𝐼𝐼•) of the EGCA-ERUM over the RRUM are even higher. Finally, this study provides 



 

124 

a real-world example in which the EGCA-ERUM and the RRUM are compared. The 

results suggest that the EGCA-ERUM classification has more predictability of correct or 

misconception options selected by examinees than the RRUM.  
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APPENDIX A 

RANGE OF RESCALED 𝑟𝑟 ACROSS DIFFERENT CONDITIONS 
 
 

N I K DQ H/H H/L L/H L/L 

1000 

20 

4 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

6 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

40 

4 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

6 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

2000 

20 

4 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

6 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

40 

4 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

6 
None (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Weak (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 
Strong (0.20~0.50) (0.05~0.20) (0.20~0.50) (0.05~0.20) 

Note: N is the sample size, I is the test length, K is the number of attributes, and DQ is the quality of the distractors. 
H/H is high 𝜋𝜋 and high 𝑟𝑟 condition, H/L is high 𝜋𝜋 and low 𝑟𝑟 condition, L/H is low 𝜋𝜋 and high 𝑟𝑟 condition, and L/L 
is low 𝜋𝜋 and low 𝑟𝑟 condition. 
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APPENDIX B1  

ESTIMATED PARAMETERS USING THE EGCA 
 
 

Item No. Option No. 𝝅𝝅 𝒓𝒓𝟏𝟏 𝒓𝒓𝟐𝟐 𝒓𝒓𝟑𝟑 
1 1 0.564 0.073 0.045 - 
1 2 0.65 - 0.142 - 
1 3 0.615 0.159 - - 
2 1 0.926 0.284 0.136 - 
2 2 0.281 - 0.047 - 
2 3 0.507 0.127 - - 
3 1 0.683 0.222 0.039 - 
3 2 0.887 - 0.214 - 
3 3 0.277 0.13 - - 
4 1 0.944 0.102 0.071 - 
4 2 0.559 - 0.006 - 
4 3 0.518 0.31 - - 
5 1 0.554 0.228 0.054 - 
5 2 0.643 - 0.155 - 
5 3 0.381 0.065 - - 
6 1 0.985 0.711 - 0.174 
6 2 0.818 - - 0.012 
6 3 0.009 0.249 - - 
7 1 0.862 0.404 - 0.12 
7 2 0.675 - - 0.01 
7 3 0.257 0.458 - - 
8 1 0.703 0.26 - 0.114 
8 2 0.785 - - 0.011 
8 3 0.137 0.869 - - 
9 1 0.562 0.277 - 0.17 
9 2 0.362 - - 0.097 
9 3 0.53 0.482 - - 
10 1 0.616 0.225 - 0.195 
10 2 0.504 - - 0.012 
10 3 0.778 0.456 - - 
11 1 0.921 0.448 - 0.16 
11 2 0.463 - - 0.105 
11 3 0.085 0.138 - - 
12 1 0.961 0.415 - 0.097 
12 2 0.641 - - 0.03 
12 3 0.21 0.031 - - 
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APPENDIX B2  

ESTIMATED PARAMETERS USING THE RRUM 
 
 

Item No. 𝝅𝝅 𝒓𝒓𝟏𝟏 𝒓𝒓𝟐𝟐 𝒓𝒓𝟑𝟑 
1 0.665 0.301 0.073 - 
2 0.962 0.752 0.153 - 
3 0.765 0.452 0.128 - 
4 0.922 0.655 0.052 - 
5 0.657 0.397 0.123 - 
6 0.989 0.938 - 0.246 
7 0.980 0.473 - 0.192 
8 0.812 0.344 - 0.162 
9 0.587 0.574 - 0.139 

10 0.609 0.573 - 0.158 
11 0.982 0.628 - 0.209 
12 0.990 0.746 - 0.083 
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