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Abstract
This note considers an extension of the concept of linear recurrence

to recurrences on ranked posets. Some results on growth rates in the
linear case are then extended to this generalized scenario. The work is
motivated by recent results on multi-dimensional recurrences which have
had applications for obtaining bounds for complex multidimensional
generating functions. Some further connections to Möbius functions
for binary relations and inverses of {0, 1} triangular matrices are also
discussed.
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930 K. S. Berenhaut, A. B. O’Keefe and F. Saidak

1 Introduction

This paper studies an extension of the concept of linear recurrence to recur-
rences on ranked and graded partially ordered sets. In particular, a poset
P = (X, <) is ranked if there exists a ranking function r : P → N such that
r(x) = r(y) + 1 whenever x covers y, and a ranked poset is graded if all maxi-
mal chains have equal length. For further discussion of posets and associated
terminology see, for instance, [18].

For convenience, we include here some additional standard definitions.
Firstly, an antichain in P is a set of pairwise incomparable elements. The
size of the longest antichain in P is referred to as the partial order width
w(P ). We also denote the number of elements in P by ||P ||.

We are particularly interested here in ordinal sums of antichains (also
known as layered posets). Suppose Q = (Y1, <) and R = (Y2, <) are posets
with disjoint underlying sets Y1 and Y2, respectively. Their ordinal sum, Q⊕R,
is defined to be the poset with underlying set Y1

⋃
Y2, with x < y if and only

if x < y in P , or x < y in Q, or x ∈ Y1 and y ∈ Y2, while, the union (or direct
sum) of Q and R, Q + R, is the poset with underlying set Y1

⋃
Y2, with x < y

if and only if x < y in P , or x < y in Q.
In particular, we have that the finite chain with n elements can be written

as n = 1⊕· · ·⊕1 and the n element antichain is a sum n1 = 1+ · · ·+1. The
posets of interest here will also be assumed to be bounded with unique maximal
element 1̂ and unique minimal element 0̂. Hence we will be considering posets
P of the form

P = 0̂ ⊕ l11 ⊕ l21 ⊕ · · · ⊕ ln1 ⊕ 1̂, (1)

for some sequence of positive integers {li}. Here li = ||Vi||, where Vi = {x :
r(x) = i} for i ≥ 0 with r the given ranking function for P and r(0̂) taken to
be zero.

In terms of associated Hasse diagrams, we are restricting attention to
graphs G with a unidirectional flow, n levels and completeness between ad-
jacent levels: G = (V, E) with vertex set V = V0 ∪ V1 ∪ · · · ∪ Vk such that
Vi ∩ Vj = ∅, for every 0 ≤ i < j ≤ k (with ||V0|| = ||Vk|| = 1) and edge set
E = {xy|x ∈ Vi, y ∈ Vi+1, 0 ≤ i < k}. A simple graph of this type is a line
with Vi = {xi} and E = {x0x1, x1x2, x2x3, · · · , xi−1xi, · · · , xn−1xn}. In this
case the recurrences of interest will reduce to the heavily studied simple linear
recursive sequences (c.f. [9]).

Recently, in [3], recurrences on multidimensional lattices were considered in
order to examine zero-free regions for multidimensional complex power series.
In the two dimensional case, the problem there can be expressed in terms
of recurrences for graphs where the levels are left to right diagonals in the
upper right half plane (see Figure 1). For further discussion of multi-variable
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generating functions and related multivariate linear recurrences see [15], [16],
[17], and the references therein.
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Figure 1: A comparison of a Hasse diagram of the sort considered in [3] with
that for the associated ordinal sum.

To define a recurrence on a ranked and graded poset P (with ranking
function r) of order κ, we consider a function f on P satisfying, for x ∈ P ,

f(x) =
∑
y<x

1≤r(x)−r(y)≤κ

αx,yf(y), (2)

for some double sequence {αu,v}.
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Figure 2: Hasse diagram for the poset of Example 1.

Example 1. Consider the poset for which the Hasse diagram is given in
Figure 2, and assign αu,v for u ≤ v according to the following matrix.
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⎡⎢⎢⎢⎢⎣
α2,1

α3,1

α4,1 α4,2 α4,3

α5,1 α5,2 α5,3

α6,1 α6,2 α6,3 α6,4 α6,5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
−0.5
−0.2
−0.3 −1.0 −1.0
−0.2 −0.5 −0.8
−0.7 −0.1 −0.3 −1.0 −0.5

⎤⎥⎥⎥⎥⎦ . (3)

For κ ≥ 3, we then have from (2), that f(1) = 1, f(2) = −0.5(1) = −0.5,
f(3) = −0.2(1) = −0.2, f(4) = −0.3(1) + (−1.0)(−0.5) + (−1.0)(−0.2) = 0.4,
f(5) = −0.2(1) + (−0.5)(−0.5) + (−0.8)(−0.2) = 0.21 and f(6) = −0.7(1) +
(−0.1)(−0.5) + (−0.3)(−0.2) + (−1.0)(0.4) + (−0.5)(0.21) = −1.095.

We now turn to the statement of our results and some applications.

2 Statement of Results

It is known, (c.f. the arguments in [5], [6], [14] and [11]) that for κ = ∞, in
the linear (finite chain) case, if f(0̂) = 1, and αu,v ∈ [−1, 0], for all u, v ∈ P ,
then for i ≥ 1

|f(xi)| ≤ Fi, (4)

where Fi is the ith Fibonacci number. For related results for power series with
restricted coefficients see also [10], [12] and [20]. The question was further
investigated for odd κ in [2]. In this initial foray into the question of bounding
recurrences on partially ordered sets, we prove the following natural (though
nontrivial) extension.

Theorem 1 Suppose that a poset P satisfies (1) for a sequence {li} of positive
integers. If κ = ∞, f(0̂) = 1, and

αu,v ∈ [−1, 0], (5)

for all u, v ∈ P , then for x ∈ P with r(x) = i ≥ 1, we have

|f(x)| ≤ Bi, (6)

where {Bi} is defined by B0 = 0, B1 = 1 and

Bi = li−1Bi−1 + Bi−2, (7)

for i ≥ 2.
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Note that Theorem 1 reduces to the result in (4) in the linear case (li ≡ 1).
Despite its innocent appearance and fundamental nature, the proving of the
result in Theorem 1 provides many interesting and subtle complexities.
Remark. The coefficients of recurrences attaining the maximal value given
by Theorem 1 satisfy αx,y = −1 if r(x) − r(y) is odd, and αx,y = 0 otherwise.
The same characteristic is satisfied for the posets considered in [3] (see Figure
1), for κ odd or infinite, but not for κ even. Hence, we pose the following open
question.

Open Question 1 Suppose κ is fixed, and f is as in (2), where {αu,v} sat-
isfies (5). For what ranked posets P is the maximal value of |f(x)| for each
x ∈ P attained for {αu,v} taken as αu,v = −1 for r(u)− r(v) odd, and αu,v = 0
otherwise?

For results showing that the answer to the question above is negative in
the cases κ = 2, 4, in the linear case, see [7] and [4], respectively.

Applying results from a recent paper of the authors [8], along with Theorem
1, we may obtain immediate bounds for posets of the sort in (1) under certain
constraints, such as fixed width and fixed number of elements. That is, suppose
the sequence {yi} satisfies a general linear recurrence of the form

yn = anyn−1 + yn−2 (n ≥ 1), (8)

where y0 = 0, y1 = 1 and for each i, ai is a positive integer. Note that yn

may be viewed as a function of (a1, a2, . . . , an), and hence we will denote yn

by yn(a1, a2, . . . , an).
In [8] the following two theorems regarding solutions to (8) were proven.

Theorem 2 Suppose that
∑k

i=1 ai = N then

yk(a1, a2, . . . , ak) ≤ yk(w, x, x, . . . , x, w, w, . . . , w), (9)

where x = [N/k] and w = x + 1. Here [s] denotes the integer part of a real
number s. Also note that the number of w’s in (9) is precisely N − kx, while
the number of x’s is k(x + 1) − N .

Theorem 3 Suppose that
∑k+1

i=1 ai = N + M and max ai = M , then

yk+1(a1, a2, . . . , ak+1) ≤ yN+1(M, 1, 1, . . . , 1). (10)

Applying Theorems 1 and 2, we have
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Theorem 4 Suppose that r(1̂) = k + 1 (i.e. the length of P is k + 2) and
||P || = N . If κ = ∞, f(0̂) = 1, and {αu,v} satisfies (5), then for x ∈ P with
r(x) = n, |f(x)| ≤ yn, where {yi} is as given in the right hand side of (9) in
the statement of Theorem 2 with aj = lj for all j.

Similarly, employing Theorem 3, we have

Theorem 5 Suppose that the width of the poset P is M (i.e. w(P ) = max{li} =
M) and ||P || = N . If κ = ∞, f(0̂) = 1, and {αu,v} satisfies (5), then for x ∈ P
with r(x) = n, |f(x)| ≤ yn, where {yi} is as given in the right hand side of
(10) in the statement of Theorem 3 with aj = lj for all j.

Remark. (Möbius functions on P ). An important example of a recursive
sequence of the sort considered in (2) (in particular, those satisfying κ = ∞
and {αu,v} as in (5)) is the Möbius function of P , i.e. the inverse of its Zeta
function (cf. [22], [19], [14], [13]). In fact, let I(P ) be the incidence algebra of
P . Then, the inverse of any function f ∈ I(P ), with f(x, x) = 1 for all x, that
takes values in [0, 1], would have coefficients as in (5). More broadly the set
of functions being considered here are the inverses of reflexive anti-symmetric
binary relations on X, the ground set of P (c.f. Marenich [14], Stechkin [21],
and Baranov and Stechkin [1]).

Remark. (Entries in inverses of triangular {0, 1} matrices) Some addi-
tional motivation for studying behavior of linear functions on P with coef-
ficients as in (5) stems from connections to triangular {0, 1} matrices with
prescribed zero structures. In particular, suppose the elements in a poset P
as in (1) are enumerated successively via {xi} from 0̂, through the elements in
V1, then the elements in V2, etc. The associated matrix for the Zeta function
of P has a prescribed zero in the (i, j)th entry for i �= j whenever xi and xj are
elements of the same antichain in P . Theorem 1 amounts to obtaining bounds
on the entries in inverses of {0, 1} triangular matrices with prescribed zeroes
in entries near the diagonal.

Example. Consider the class of 6 × 6 (unit diagonal) lower triangular,
{0, 1} matrices, L = (li,j), satisfying the constraint l3,2 = l5,4 = 0. Now, note
that for X = (xi,j) = L−1, we have that x1,1 = 1 and

xi,1 =

i−1∑
j=1

(−li,j)xj,1 (11)

for 2 ≤ i ≤ 5.
Employing Theorem 1, for the poset

P = 0̂ ⊕ 2 1 ⊕ 2 1 ⊕ 1̂, (12)
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we have that |x2,1| ≤ B1, |x3,1| ≤ B1, |x4,1| ≤ B2, |x5,1| ≤ B2 and |x6,1| ≤ B3,
where B1 = 1, B2 = 2 and B3 = 5.

The remainder of the paper proceeds as follows. Section 3 includes some
preliminary lemmas and notation, while the proof of Theorem 1 is contained
in Section 4.

3 Preliminary Notation and Lemmas

Let us write P = {x ∈ P : f(x) ≥ 0} and N = {x ∈ P : f(x) < 0} = Pc.
This partitions the sign configuration of {f(x)}x∈P . Now, define g recursively
via g(0) = 1 and for x with r(x) = i, with i > 1,

g(x) = −
∑
y<x

y∈Ac

g(y), for x ∈ A (13)

where A is either P or N = Pc.
A simple induction with (13) shows that g(y) and f(y) have the same sign

for all y ∈ V , and moreover

|f(x)| ≤ |g(x)| (14)

for all x ∈ V . Also note that for x, y ∈ Vi with f(x), f(y) ≥ 0 (resp.
f(x), f(y) < 0), we have g(x) = g(y). We denote this common value by
b+(i) = g(x) (resp. b−(i) = g(x)).

Much of the work in proving Theorem 1 will involve a comparison of coef-
ficients in expansions of entries in the sequence {Bi}, as defined in (7), with
corresponding entries in the sequences {b+(i)} and {b−(i)}. For that purpose,
we will need the following technical lemma concerning {Bi}.

Lemma 1 Suppose that {Bi} satisfies (7) with B1 = 1 and Bj = 0 for j < 1.
Then, for any N > 1 and 1 ≤ s ≤ N − 1,

BN = ΘN(s)BN−s + ΘN(s − 1)BN−s−1, (15)

where ΘN (0) = ΘN (0; {lN−v}) = 1 and for s ≥ 1,

ΘN(s) = ΘN(s; {lN−v}) =
∑

0≤r≤s
r≡s (mod 2)

1≤k1<k2<···<kr≤s

km≡ 1−(−1)m

2 (mod 2)

(
r∏

j=1

lN−kj

)
(16)

with the empty product (in the case of r = 0) taken as 1.
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Proof. The case s = 1 follows directly from (7), since ΘN(1) = lN−1 and
ΘN(0) = 1. Then, expanding via (7), we have

BN = lN−1BN−1 + BN−2 = lN−1(lN−2BN−2 + BN−3) + BN−2

= (lN−1lN−2 + 1)BN−2 + lN−1BN−3

= ΘN (2)BN−2 + ΘN(1)BN−3. (17)

and the lemma holds for s = 2. A simple induction now finishes the proof.

A more general version of our Θ-function will be useful for proofs of other,
more important results. For an arbitrary sequence {aj}i

j=1 we define

Θ({aj}i
j=1) = Θ(i; {aj}i

j=1) =
∑
0≤r≤i

r≡i (mod 2)
1≤k1<k2<···<kr≤i

km≡ 1−(−1)m

2 (mod 2)

(
r∏

j=1

akj

)
. (18)

Note that the indices in each product term in (18) alternate between odd
and even values, as can be seen in the next example.

Example. Note that evaluation of Θ({aj})i
j=1) (as in (18)) for some small i

gives Θ({a1}) = a1, Θ({a1, a2}) = 1 + a1a2, Θ({a1, a2, a3}) = a1 + a3 + a1a2a3,
and Θ({a1, a2, a3, a4}) = 1 + a1a2 + a1a4 + a3a4 + a1a2a3a4.

Before coming to the proof of our main result, we prove the following simple
inequality involving Θ.

Lemma 2 For any i ≥ 1, and positive real numbers, a1, a2, · · · , ai, we have

Θ({aj}i
j=1) ≥

∑
1≤j≤i

aj (19)

Proof. We consider two cases, depending on the parity of i:

i. Case 1 (i odd). If i = 1, then from (18) we have Θ(a1) = a1, and the
statement is true. Hence suppose i ≥ 3. Then, considering the r = 1 and
r = 3 terms in (18), and the fact that a1, ai > 0, we have

Θ({aj}i
j=1) ≥

∑
1≤m≤i

m≡1 (mod 2)

am + a1

⎛⎜⎝ ∑
2≤n≤i−1

n≡0 (mod 2)

an

⎞⎟⎠ ai

≥
∑

1≤j≤i

aj . (20)
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ii. Case 2 (i even) The statement is obvious for i = 0. So suppose i ≥ 2.
Considering the r = 0 and r = 2 terms in (18), and the fact that a1, a2 > 0,
we have

Θ({aj}i
j=1) ≥ 1 + a1a2 + a1

⎛⎜⎝ ∑
4≤m≤i

m≡0 (mod 2)

am

⎞⎟⎠+

⎛⎜⎝ ∑
3≤n≤i−1

n≡1 (mod 2)

an

⎞⎟⎠ ai

≥ (a1 + a2) +
∑

4≤m≤i
m≡0 (mod 2)

am +
∑

3≤n≤i−1
n≡1 (mod 2)

an

=
∑

1≤j≤i

aj , (21)

the second inequality coming from a1a2 +1−(a1 +a2) = (a1−1)(a2−1) ≥
0.

We now turn to a proof of Theorem 1.

4 Proof of Theorem 1

In this section we prove Theorem 1.
The idea of the proof is straightforward. The key is to estimate the value

of the function |g(x)| from (13), and apply (14). The desired upper bound is
obtained by explicitly describing the coefficients ∇(·) of expressions for b+(N)
and b−(N) (see (27)), and then comparing them with the coefficients Θ(·) as
in Lemma 1, for a certain value of s (see (28)). It turns out that the functions
Θ(·) serve as ideal upper bounds for the corresponding ∇(·), when each is
considered as a polynomial in zi = ||Vi ∩ P||. The process results favorably in
effective bounds on |g(x)|.
Proof of Theorem 1. Recall that the sets N and P form a partition of P .
We denote |Vi ∩N| via vi and |Vi ∩P| via zi. Also, recall that b+(i) and b−(i)
are defined as the values of g(x), for x ∈ Vi ∩ P and x ∈ Vi ∩ N , respectively.

Now, suppose that {Bi} is as in (7), and that max{|b+(i)|, |b−(i)|} ≤ Bi,
for i < N , and let

I
def
= min{i ≥ 0 : vN−i = 0}. (22)

Since v1 = 0, by definition, I is well defined.
To obtain recursive equations to compare with those established for {Bi}

in Lemma , we note that from (13),

b+(N) =
∑

1≤j<N

−vjb−(j) = −vN−1b−(N − 1) +
∑

1≤j<N−1

−vjb−(j)

= vN−1|b−(N − 1)| + |b+(N − 1)|. (23)
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Expanding further, via (13), we have

b+(N) = vN−1 (zN−2|b+(N − 2)| + |b−(N − 2)|) + (vN−2|b−(N − 2)| + |b+(N − 2)|)
= (vN−1zN−2 + 1)b+(N − 2) + (vN−1 + vN−2)b−(N − 2), (24)

and more generally,

b+(N) = ∇1(N, s)|b−(N − j)| + ∇0(N, s)|b+(N − j)|, (25)

where, for e = 0, 1 the function ∇e(N, s) is defined as

∇e(N, s) =
∑

0≤r≤s
r≡e (mod 2)

1≤k1<k2<···<kr≤s

⎛⎜⎝ ∏
1≤i≤r

i≡1 (mod 2)

vN−ki

∏
1≤j≤r

j≡0 (mod 2)

zN−kj

⎞⎟⎠ . (26)

Note that in the case of the ∇e, the factors in the product terms vary
between entries in {vi} and ones in {zi}, as is indicated in the next example.
Example. Note that for fixed (vN−i, zN−i) = (v̄i, z̄i), 1 ≤ i ≤ 4, evaluation of
∇e(N, 4) (as in (26)) for e = 0, 1 gives

∇0(N, 4) = 1 + v̄1z̄2 + v̄1z̄3 + v̄1z̄4 + v̄2z̄3 + v̄2z̄4 + v̄3z̄4 + v̄1z̄2v̄3z̄4

∇1(N, 4) = v̄1 + v̄2 + v̄3 + v̄4 + v̄1z̄2v̄3 + v̄1z̄2v̄4 + v̄1z̄3v̄4 + v̄2z̄3v̄4.

Since vN−I = 0, we have |b+(N − I + 1)| = |b+(N − I)|, and hence (25)
with the induction hypothesis gives

|b+(N)| = ∇1(N, I − 1)|b−(N − I + 1)| + ∇0(N, I − 1)|b+(N − I)|
≤ ∇1(N, I − 1)BN−I+1 + ∇0(N, I − 1)BN−I . (27)

On the other hand, Equation (15), with s = I − 1 gives

BN = ΘN(I − 1)BN−I+1 + ΘN(I − 2)BN−I . (28)

Hence, in obtaining |b+(N)| ≤ BN , we need only compare (27) and (28). To
that end, for convenience, we introduce the notation

Θ(i, j)
def
=

{
Θ({lN−i, · · · , lN−j}), if i ≤ j
1, otherwise.

(29)

Then, considering {∇1(N, s)}, {∇0(N, s)} and {Θ({lN−m}s
m=1)} as polyno-

mials in variables (zN−1, zN−2, · · · , zN−s) (and recalling that lj = zj +vj for all
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j), we obtain that for r > 0 and 1 ≤ k1 < k2 < · · · < kr ≤ s (with ki−ki−1 > 1

for 1 < i ≤ r, if r > 1), the coefficients of z̃
def
= zN−k1zN−k2 · · · zN−kr in ∇1(N, s)

and ∇0(N, s), are given by

[z̃] ∇1(N, s) =

⎧⎪⎪⎨⎪⎪⎩
r+1∏
m=1

⎛⎝ km−1∑
i=km−1+1

vN−i

⎞⎠, if k1 > 1 and kr < s

0 otherwise

(30)

where we define k0 = 0 and kr+1 = s + 1. Also

[z̃] ∇0(N, s) =

⎧⎪⎪⎨⎪⎪⎩
r∏

m=1

⎛⎝ km−1∑
i=km−1+1

vN−i

⎞⎠, if k1 > 1

0 otherwise

(31)

where we again define k0 = 0.
Example. Note that, referring to the last example, we have ∇0(N, 4) =

1+(v̄1)z̄2 +(v̄1 + v̄2)z̄3 +(v̄1v̄3)z̄2z̄4 and ∇1(N, 4) = (v̄1 + v̄2 + v̄3 + v̄4)+ v̄1(v̄3 +
v̄4)z̄2 + (v̄1 + v̄2)z̄3.

Now, in a very similar way, we can compute the coefficients of z̃ in Θ({lN−m}s
m=1)

and Θ({lN−m}s−1
m=1). We have

[z̃] Θ({lN−m}s
m=1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

r+1∏
j=1

Θ(kj−1 + 1, kj − 1), if kr < s

r∏
j=1

Θ(kj−1 + 1, kj − 1), if kr = s

(32)

where k0 = 0 and kr+1 = s + 1. Similarly, changing s to s − 1, we obtain

[z̃] Θ({lN−m}s−1
m=1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r∏
j=1

Θ(kj−1 + 1, kj − 1), if kr < s − 1 ,

r−1∏
j=1

Θ(kj−1 + 1, kj − 1), if kr = s − 1 ,

0 otherwise

(33)

with k0 = 0 and kr+1 = s.
Here let us note that the constant terms (i.e. those free of z) in the

expansions of ∇1(N, s), ∇0(N, s), Θ(s, {lN−m}s
m=1) and Θ({lN−m}s−1

m=1) are∑s
i=1 vN−i, 1, Θ(1, s) and Θ(1, s − 1), respectively.
Combining this with Lemma 2 and (30)–(33) gives the following result.
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Lemma 3 We have

1. If kr < i, then

[z̃] Θ({lN−m}s
m=1) ≥ [z̃] ∇1(N, s) and [z̃] Θ({lN−m}s−1

m=1) ≥ [z̃] ∇0(N, s).

2. If kr = s, then

[z̃] Θ({lN−m}s
m=1) ≥ [z̃] ∇1(N, s) = 0 = [z̃] ∇0(N, s) = [z̃] Θ({lN−m}s−1

m=1).

3. Moreover

[1] Θ({lN−m}s
m=1) ≥ [1] ∇1(N, s) and [1] Θ({lN−m}s−1

m=1) ≥ [1] ∇0(N, s).

By necessity, the sequence {Bi} is non-decreasing, and hence, the results for
b+(N) follow upon employing Lemma 3, (28) and (27). In particular, when
kr = s = I − 1, we have, by Lemma 3(2),

([z̃] ∇1(N, I − 1))BN−I+1 + ([z̃] ∇0(N, I − 1))BN−I

= ([z̃] ∇0(N, I − 1))BN−I ≤ ([z̄]ΘN(I))BN−I ≤ ([z̄]ΘN(I))BN−I+1

= ([z̄]ΘN (I − 1))BN−I+1 + ([z̄]ΘN(I − 2))BN−I . (34)

By Lemma 3(3),

([1] ∇1(N, I − 1))BN−I+1 + ([1] ∇0(N, I − 1))BN−I

≤ ([1]ΘN(I − 1))BN−I+1 + ([1]ΘN(I − 2))BN−I , (35)

and similarly, by Lemma 3(1), if kr < s = I − 1,

([z̃] ∇1(N, I − 1))BN−I+1 + ([z̃] ∇0(N, I − 1))BN−I

≤ ([z̄]ΘN (I − 1))BN−I+1 + ([z̄]ΘN(I − 2))BN−I . (36)

Combining (34)–(36) with (27) and (28), we have |b+(N)| ≤ BN , as re-
quired.

A similar argument works when considering b−(N) in place of b+(N). Here,

in place of (22), we define I∗ def
= min{i > 0 : zN−i = 0}, and proceed as before.

Note that while z1 = ||P ∩ V1|| may not be zero, since f(0̂) = 1, we have for
x ∈ P∩V1, f(x) = 0 and hence for the purpose of maximizing |f(y)|, for y ∈ P
with r(y) > 1, we may assume that z1 = 0, which guarantees the existence of
I∗.
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