
Some Logical Characterizations of the Dot-Depth Hierarchy and Applications

By: Francine Blanchet-Sadri

F. Blanchet-Sadri, "Some Logical Characterizations of the Dot-Depth Hierarchy and Applications." Journal of

Computer and System Sciences, Vol. 51, No. 2, 1995, pp 324-337.

Made available courtesy of Elsevier: http://www.elsevier.com

***Reprinted with permission. No further reproduction is authorized without written permission from

Elsevier. This version of the document is not the version of record. Figures and/or pictures may be

missing from this format of the document.***

Abstract:

A logical characterization of natural subhierarchies of the dot-depth hierarchy refining a theorem of Thomas

and a congruence characterization related to a version of the Ehrenfeucht—Fraïssé game generalizing a theorem

of Simon are given. For a sequence ̅ = (ml , …, mk) of positive integers, subclasses (m1, ...,mk) of languages

of level k are defined. (ml, …, mk) are shown to be decidable. Some properties of the characterizing

congruences are studied, among them, a condition which insures (m1, mk) to be included in (
 , …,

). A

conjecture of Pin concerning tree hierarchies of monoids (the dot-depth being a particular case) is shown to be

false.

Article:

I. INTRODUCTION

Traditionally, algebraic automata theory uses monoids as models for finite state machines. One looks at a finite

state machine as processing sequences of symbols drawn from a finite input alphabet. Denoting the input

alphabet by A, the universe of possible inputs is the free monoid A* and a finite state machine can be thought of

as a quotient of A* by a finite index congruence ~ . A* / ~ being a finite monoid, one is then led to investigate

relationships between the structure of this algebraic system and the combinatorial processing of input

sequences. The theory of varieties of Eilenberg constitutes an elegant framework for discussing these

relationships between combinatorial descriptions of languages and algebraic properties of their recognizers. The

interplay between the two points of view leads to interesting classifications of languages and finite monoids.

Let A be a given alphabet. The regular, or recognizable, languages over A are those subsets of A* constructed

from the finite languages over A by the boolean operations as well as the concatenation product and the star.

The star-free languages consist of those regular languages which can be obtained from the finite languages by

boolean operations and the concatenation product only. According to a fundamental theorem of Schiitzenberger

[25], L A* is star-free if and only if its syntactic monoid M(L) is finite and aperiodic, that is, M(L) contains

only trivial subgroups. For example, (ab)* is star-free since (ab)* =((aA* A*b)\ (A*aaA* A *bbA*)) {1},

where 1 is the empty word. But (aa)* is not star-free, a consequence of the theorem of Schfizenberger. General

references on the star-free languages are McNaughton and Papert [19], Eilenberg [11], or Pin [21].

Natural classifications of the star-free languages are obtained based on the alternating use of the boolean

operations and the concatenation product. Let A
+
 = A* / {1}. Define A

+
 0 = { L

A+
| L is finite or cofinite},

A
+ k+1 = { L A

+
 | L is a boolean combination of languages of the form L1 … Ln (n ≥ 1) with L1 … , Ln A

+

 k}. For technical reasons, only nonempty words over A are considered to define this hierarchy; in particular,

the complement operation is applied with respect to A
+
 . The language classes A

+
 0 , A

+
 1, ... form the so-

called dot-depth hierarchy introduced by Cohen and Brzozowski [9]. The union of the classes A
+

 0 , A
+
 1... is

the class of star-free languages.

http://libres.uncg.edu/ir/uncg/clist.aspx?id=565
http://www.elsevier.com/

Most of our attention will be directed toward a closely related hierarchy, this one in A*. It was introduced by

Straubing [28]. Let A* 0 = {Ø, A*}, A* k+1 ={ L A* | L is a boolean combination of languages of the form

L0a1 L1a2 … anLn (n ≥ 0) with L0, …, Ln A* k and a1, …, an A}. Let A* = k ≥ 0 A* k is star-free if and

only if L A* k for some k ≥ 0. The dot-depth of L is the smallest such k. The Straubing hierarchy appears to

be the more fundamental of the two for reasons explained in [29]. For details concerning the Straubing

hierarchy and its relation to the dot-depth hierarchy, see Pin [21 or 22].

In the framework of semigroup theory, Brzozowski and Knast [6] showed that the dot-depth hierarchy is

infinite, in fact, that A* k+1 A
+
 k for k ≥ 0. Thomas [31] gave a new proof of this result, which shows also

that the Straubing hierarchy is infinite, based on a logical characterization of the dot-depth hierarchy that he

obtained in [30]. His proof does not rely on semigroup theory; instead, an intuitively appealing model-theoretic

technique was applied: the Ehrenfeucht-Fraisse game.

It was the work of Büchi [8] and Elgot [12] that first showed how to use certain formulas of mathematical logic

in order to describe properties of regular languages. These formulas (known as monadic second-order

formulas) are built up from variables x, y, ..., set variables X, Y, ..., a 2-place predicate symbol < and a set { Qa |

a A} of 1-place predicate symbols in one-to-one correspondence with the alphabet A. Starting with atomic

formulas of the form x < y, Qax , Xx, and x = y, formulas are built up in the usual way by means of the

connectives ¬, , and the quantifiers and binding up both types of variables. A word w on A satisfies a

sentence if is true when variables are interpreted as integers, set variables as sets of integers, the predicate <

as the usual relation on integers and the formula Qax as the letter in position x in w is an a.

Ladner [16] and McNaughton [18] were the first to consider the case where the set of formulas is restricted to

first-order, that is, when set variables are ignored. They proved that the languages defined in this way are

precisely the star-free languages.

Thomas [30] showed that the dot-depth hierarchy corresponds in a very natural way with a classical hierarchy

of first-order logic based on the alternation of existential and universal quantifiers. Perrin and Pin [20] gave a

substantially different proof of the result of Thomas for the Straubing hierarchy.

For each k ≥ 0, there is a variety Vk of finite monoids, or M-variety, such that for L A*, L A* k" if and only

if M(L) Vk. An outstanding open problem is whether one can decide if a star-free language has dot-depth k;

this is equivalent to the question "is Vk decidable?," i.e., does there exist an algorithm which enables us to test if

a finite monoid is or is not in Vk? The variety V0 consists of the trivial monoid alone. The variety V1 consists of

all finite -trivial monoids [26]. Straubing [29] conjectured an effective criterion, based on the syntactic monoid

of the language, for the case k = 2. His condition is shown to be necessary, in general, and sufficient in an

important special case, i.e., for an alphabet of two letters. The condition is formulated in terms of a novel use of

categories in semigroup theory, recently developed by Tilson [32].

This paper is concerned with applications of some logical characterizations of the Straubing hierarchy. The aim

of Section 2 is to give those logical characterizations of the star-free languages. They are useful in attacking the

decidability question. A logical characterization of natural subhierarchies of the Straubing hierarchy refining the

logical characterizations of Thomas is given. As an application we can get upper bounds on the dot-depth of

star-free languages by considering their descriptions in the first-order logical language. We state the version of

the EhrenfeuchtFraisse game which was used in [31] to prove that the Straubing hierarchy is infinite. Then we

give a characterization of the star-free languages in terms of congruences defined in that paper generalizing a

result of Simon. A characterization of the varieties of monoids related to the Straubing hierarchy through

Eilenberg's correspondence is stated. For a sequence ̅ =(m1,...,mk) of positive integers, subclasses (m1, ..., mk)

of languages of level k are defined.

In Section 3, we study some properties of the characterizing congruences. This section establishes an induction

lemma and a condition which ensures (m1, ..., mk) to be included in (
 , ...,

)

Section 4 deals with a first application of the above logical characterizations. We show that a conjecture of Pin

concerning tree hierarchies of monoids (the Straubing hierarchy being a particular case) is false. Decidability

and inclusion problems are discussed. (m1, ..., mk) are shown to be decidable. Other applications of the above

logical characterizations are subjects of [l-5]. The study of properties of the characterizing congruences and

equation systems for the varieties of monoids corresponding to the levels of the Straubing hierarchy are closely

related.

In the following, will be called a k-formula if = (Q ̅) , where is quantifier-free and where (Q ̅) is a

string of k alternating blocks of quantifiers such that the first block contains only existential ones. Similarly, if

(Q ̅) consists of k blocks beginning with a block of universal quantifiers, (Q ̅) is a k-formula. A B(k)-

formula will denote a boolean combination of k-formulas. If ~ is a congruence on A*, the set of all ~-classes

will be denoted by A*/ ~ . If L A* is a union of ~-classes, we will say that L is a ~-language. All the

semigroups considered in this paper are finite (except for free semigroups and free monoids). We refer the

reader to the books by Eilenberg [11], Lallement [17], Pin [21], and Enderton [13] for all the other algebraic and

logical terms not defined in this paper.

2. SOME LOGICAL CHARACTERIZATIONS OF THE STRAUBING HIERARCHY

2.1. A Quantifier Complexity Characterization

Let us first state the logical characterization of the Straubing hierarchy mentioned by Thomas. One identifies

any word w A*, say of length |w|, with a word model w = < { 1, ..., w}, <
w
, (

)a є A>, where the universe {1,

..., |w|} represents the set of positions of letters in the word w, <
w
 denotes the < -relation in w, and

 are unary

relations over { 1, ..., |w|} containing the positions with letter a for each a A. Sometimes it is convenient to

assume that the position sets of two words u, v are disjoint; then one takes any two nonoverlapping segments of

the integers as the position sets of u and v. Let be the first-order language with equality and nonlogical

symbols <, Qa, a A. Then the satisfaction of -sentence in a word w, written w , is defined in a natural

way, and we say that L A* is defined by the -sentence if L= L()— {w A* |w }. We also consider

the formulas 0 (false) and 1 (true). Observe that L(0) = and L(1)= A*.

THEOREM 2.1 (Thomas [30]). A language L A* belongs to A* k if and only if L is defined by a B()-

sentence of .

COROLLARY 2.1 (Ladner [16] and McNaughton [18]). A language L is star-free if and only if there exists a

first-order -sentence such that L = L().

For k ≥ 1, let us define subhierarchies of A* as follows: for all m ≥ 1, let A* k, m = { L A*| L is a boolean

combination of languages of the form L0a1L1a2 … anLn (0 ≤ n ≤ m) with L0 , …, Ln A* k - 1 and a1, …, an A}.

We have A* k = A
* k,m. Easily, A* k, m A* k + 1, m , A* k, m + 1. Similarly, subhierarchies of A

+ k

can be defined. One can show that k, m is a *-variety of languages. Let the corresponding M-varieties be

denoted by k, m. We have that for k ≥ 1, m ≥ 1, L A* k, m if and only if M(L) k, m.

In A
+ 1 several hierarchies and classes of languages have been studied; the most prominent examples are the β-

hierarchy [7], also called depth-one finite cofinite hierarchy, and the class of locally testable languages. In

Thomas [30] it was shown that both are characterized by natural restrictions on the form of -sentences of a

certain first-order language extending .

The purpose of this subsection is to give a logical characterization, which follows from an analysis of the proof

of Theorem 2.1, of the subhierarchies of A* refining the theorem of Thomas. It will be useful to extend by

adding constant symbols s, for every natural number s. For a word model w, the interpretation s
w
 of s will be the

sth element of w. Let (x1, …, xm) be a formula in which x1, …, xm are the unique free variables. Let s1,…, sm be

positive integers. The meaning and usage of (s1, …, sm) should be quite clear in what follows. (s1, …, sm) is

obtained from (x1, …, xm) by replacing simultaneously all free occurrences of x1 in by the constant s1, …, xm

by sm. The interpretation of the formula (̅) = (x1, …, xm) in a word model w with universe {1, …, |w|} and

elements s1, …, sm {1, …, |w|} is defined in the natural way; we write w (s1, …, sm) if is satisfied in w

it when interpreting xi by si for 1 ≤ i ≤ m.

A logical characterization of the subhierarchies of A* is based on the following two lemmas. In what follows,

if w = a1 … an is a word and 1 ≤ s ≤ s' ≤ n, w[s, s'], w(s, s'), w(s, s'], and w[s, s') will denote respectively the

segments as … , as + 1… , 1,as + 1 … and as … 1.

LEMMA 2.1 (Perrin and Pin [20]). For k ≥ 0 and for each B(k)-sentence , there exist B(k)-formulas 1(x),

 r(x), m(x, y) in which x (x, y) is (are) the unique free variable(s) and such that for every n and for every word

w of length n we have

1. w L(l(s)) if and only if w[1, s) L(), and

2. w L(r(s)) if and only if w(s, n] L() for every integer s such that 1 ≤ s ≤ n, and

3. w L(m(s, s')) if and only w(s, s') L() for every integers s, s' such that 1 ≤ s < s' ≤ n.

Proof. We define m for every formula . m is constructed by induction as follows (the constructions are

similar for 1 and r): if is quantifier-free, then m = . Otherwise, we set ()m = z((x < z < y m),

(z)m = z((x < z < y → m), ()m = m m , (¬)m = ¬ m , ()m = m m. Then one can verify

by induction on k ≥ 0 the following properties:

 if and are equivalent formulas, then m and m are equivalent;

 if is B(k), then m is equivalent to a B(k)-formula;

 let be a sentence. If |w| = n and if 1 ≤ s < s' ≤ n, w satisfies m(s, s') if and only if w(s, s') satisfies .

LEMMA 2.2. Given a B(k)-formula (x1, …, xn)(n ≥ 1), there is a system 〈 ̅ 〉 j < p of sequences ̅ =

〈

 〉 of languages

 A* k and 〈 ̅ 〉j < p of sequences ̅ =〈

 〉,

 A such that for any w and

s1 < … < sn in {1, ..., |w|}, w (s1, …, sn) if and only if there is j < p such that

1. w[1, s1)

 and

 s1 ,

2. w(si, si+1)

 and

 si + 1, 1 ≤ i < n,and

3. w(sn , |w|]

.

Proof: By induction on k (see the proof of Theorem 2.1 [30] . If n = 0, this is just Theorem 2.1).

Let be an -sentence. If is a boolean combination of the k -sentences 1 , …, n , define the quantifier

rank qr() to be the maximum number of quantifiers occurring in the leading block of one of the formulas 1,

…, n. Let us now prove a refinement of Thomas' theorem.

THEOREM 2.2. Let k ≥ 1, m ≥ 1. A language L A* is defined by a B(k)-sentence of , , where qr(() ≤ m

if and only if L belongs to A* k,m.

Proof. The case k =1 is the following. Let m ≥ 1. Let L be a language of the form A*a1A*a2 … amA*, where ai

A, i = 1,…, m. We have to find a boolean combination of 1 -sentences defining L such that qr() ≤ m. The

assertion it w L can be expressed by a 1-sentence as follows: x1 x2 … xm (x1 < x2 < … < xm
x1 …

xm). Hence L is defined by a sentence of the required form.

Conversely, we show that a given 1-sentence x1 … xm (̅ • • • ax„,g9(,t) defines a language in

A* 1,m,where (̅) is equivalent to a conjunction of atomic formulas of the form Qax, x < y or x = y (for x, y

variables and a A) or their negation. Let ord1(̅), …, ordr(̅) be the conjunctions saying ≤ … ≤ , where

{i1 … im} = {1, …, m}. Then ̅ (̅) is equivalent to 1 ≤ i ≤ r ̅(ordi(̅) (̅)). Let us consider a typical

member of this disjunction, say ̅(x1 < … < xm (̅)) (identify variables if equalities occur between the xi's).

It suffices to show that the language L defined by = ̅(x1 < … < xm (̅)) is in A* 1,m. But defines

either Ø or is equivalent to a disjunction of formulas of the form ̅(x1 < … < xm (̅)), where (̅) is a

conjunction of atomic formulas of the form Qax, ¬Qax for x a variable and a A. In either case, L is seen to

belong to A* 1,m. For example, L(xQax) = A*aA*, L(x¬Qax) = A*bA*, L(y z (y < z Qay

Qbz)) = A*aA*bA* and L(y z(¬(y < z) Qay ¬Qbz)) = L(y(Qay ¬Qby)) L(y z(z < y Qay ¬Qbz)).

Now let us assume that k >1, in 1. Let L be a language of the form L0a1L1a2 … amLm, where ai A* k-1,

i=0,...,m. We have to find a boolean combination of Σk -sentences defining L such that qr() ≤ m. By

Theorem 2.1, let 0
, 1

, …, m
 be B(Σk-1)-sentences defining L0, L1, …, Lm, respectively. We can find B(Σk-1)-

formulas
 (x),

 (x, y),
 (x, y), …,

 (x) satisfying Lemma 2.1. Hence the assertion w L can be

expressed by the following sentence: x1 x2 … xm (x1 < x2 < … < xm
x1

x2 …
xm

 1,

x2)
 (x2, x3) …

 (xm)), which is equivalent to a B(Σk)-sentence of the required form since (x1 < … < xm

x1

 (xm)) is equivalent to a B(Σk 1)-formula or a k-1-formula.

Conversely, consider a Σk-sentence x1 … xm (̅), where (̅) is a B(Σk-1)-formula. As in the proof of the

case k = 1, m ≥ 1, it suffices to consider a Σk -sentence of the form = x1 … xm (x1 < … < xm (̅)). Then,

by Lemma 2.2, there is a system 〈 ̅ 〉j<p of sequences ̅j
 = 〈

 〉 of languages

 A* k-1 and 〈 ̅ 〉j < p of

sequences ̅ = 〈

 〉,

 A such that for any w and s1 < • • • < sm in { 1, ..., |w|}, w φ(s1 …, sm) if and

only if there is j<p such that w

 …

. But for every j<p,

4 …

 A* k,m. Hence

 defines a boolean combination of languages of the required form and the proof is complete.

2.2. A Congruence Characterization Related to a Version of the Ehrenfeucht-Fraissé Game

Thomas [31], in order to show that the dot-depth hierarchy is infinite, defined some congruences which we state

after describing the version of the Ehrenfeucht-Fraisse game which was used in his proof. Those congruences

will be shown to characterize the star-free languages. The next three paragraphs restate [31].

First we define what we mean by ̅-formulas of . For a sequence ̅ =(m1, ...,mk) of positive integers, where k

≥ 0, let length(̅) = k and sum(̅) = m1 + … + mk. The set of ̅-formulas of is defined by induction on

length(̅): if length(̅) = 0, it is the set of quantifier-free -formulas; and for ̅ = (m, m1,…, mk), an ̅-formula

is a boolean combination of formulas x1 … xm , where is an (m1,… mk)-formula. We write u m v if u and

v satisfy the same ̅-sentences of . For ̅ = (m1, …, mk), the ̅-formulas of are seen to be B(Σk)-formulas

such that qr() ≤ m1. Moreover, languages in A* k,m are defined by (m, m2, …, mk)-formulas for some mi, i = 2,

..., k and m. The following game ̅(u, v) is useful for showing m-equivalence.

The game ̅(u, v), where ̅ =(m1, ..., mk), is played between two players I and II on the word models u and v.

A play of the game consists of k moves. In the ith move, player I chooses, in u or in v, a sequence of mi

positions; then player II chooses, in the remaining word (v or u), also a sequence of mi positions. Before each

move, player I has to decide whether to choose his next elements from u or from v. After k moves, by

concatenating the position sequences chosen from u and chosen from v, two sequences ̅ =p1 … pn from u and ̅

= q1 … qn from v have been formed, where n = sum(̅). Player II has won the play if the map pi → qi respects

< and the predicates Qa, a A (i.e., pi <
u
 pj if and only if qi <

v
 qj,

 pi if and only if
 qi , a A for 1 ≤ i, j ≤

n). Equivalently, the two subwords in u and v given by the position sequences ̅ and ̅ should coincide. If there

is a winning strategy for II in the game to win each play we say that player II wins ̅(u, v) and write u ̅ v;

 ̅ naturally defines a congruence on A* which we will denote also by ̅

The standard Ehrenfeucht-Fraissé game is the special case of ̅(u, v), where ̅ = (1, ..., 1). For a detailed

discussion see Rosenstein [24] or Fraissé [14]. If length(̅) = k and ̅ = (1, ..., 1) we write k(u, v) instead of

 ̅(u, v) and u v instead of u -„ v. Note that in this case the Wi-formulas are up to equivalence just the formulas

of quantifier depth k (Remark. One should not confuse .(§k(u, v) and

(k)(u, v); a play of the game k(u, r) consists of k moves but a play of the game (k)(u, v) of 1 move). We have the

following important.

THEOREM 2.3 (Ehrenfeucht and Fraissé [10]). For all ̅ =(m1, ..., mk) with k> 0 and mi > 0 for i =1, …k, we

have u mv if and only i f u ̅ v.

Simon [26] calls ̅ -languages piecewise testable languages. They constitute level 1 of the Straubing

hierarchy. The purpose of this subsection is to characterize similarly the hierarchy, each level of it and also each

subhierarchy.

To do so, we use Theorem 2.1 and Theorem 2.2 and follow the technique used in [30]. For a word w, we can

define, by induction on length(̅), a sentence
 which in a certain sense guarantees the satisfaction of all ̅-

sentences of which are satisfied by w. We have the following.

LEMMA 2.3. 1. W
 .

2.
 is equivalent to a ̅-sentence.

3. For all w and u, if u
 then every ̅-sentence satisfied in w is also satisfied in u.

We can now prove the following.

THEOREM 2.4. L is star-free if and only if L is -language for some in.

Proof: If L= , then L is an empty union of classes of some congruence . If L= A*, L can be taken as the

union of all classes of some congruence . Hence consider L A* k for some k ≥ 1. Then by Theorem 2.1 L

is defined by a B(Σk)-sentence of , or a ̅-sentence of , , for some ̅ = (m1, …, mk). Hence L= L() = {w

A* | w }. Let us show that (here, x y if and only if for all u, v A*, uxv L, if and only if uyv

 L and is the congruence of minimal index with the property that L is a ~-language). Let u, v A*. Suppose

that u v. Suppose that xuy L. being a congruence, we have that xuy xvy. We have assumed that

xuy L, which means that xuy . We want to show that xvy . But by Theorem 2.3, we get xuy m xvy,

which means that xuy and xvy satisfy the same ̅-sentences of , o being a ̅-sentence, we get that, since xuy

 , xvy . Hence, xvy L. Similarly, we show that xvy L implies that xuy L. Hence u v. Since

 we have that L is a -language.

Let L be a -language for some ̅. Then L is a union of classes of the congruence . being a finite

index equivalence relation (see Rosenstein [24]), it has only finitely many equivalence classes. Let w1, …, wm

be a set of representatives. In order to show that L is star-free, it suffices to show that []
 is star-free for wi

L.

 denotes the conjunction of all ̅-sentences of satisfied by wi. Note that, since there are only finitely

many atomic and negated atomic formulas in the language, the conjunction will be of bounded length. We will

show that []
 is defined by .

 , and that .

 being a first-order sentence, using Corollary 2.1, we will get

the result. If
 wi, then using Theorem 2.3, we get v m wi, implying by Lemma 2.3(1) and (2) that v

 .

Now let v

 . Let us show that
 wi. By Theorem 2.3, we have to show that v and wi satisfy the same ̅-

sentences. Let be a ̅-sentence such that wi . Since by hypothesis v

 , using Lemma 2.3(3) we get v

 . Now, let be a ̅-sentence such that v . Choose the unique j with wj~mv and suppose that j i. By

Theorem 2.3, we get wj . Since wj m wi, there are two cases which can happen.

Case 1. There is a ̅-sentence such that wj , wi . Since wi ~m v we get v . From v

 , we get

V ¬ . Contradiction.

u

Case 2. There is a ̅-sentence such that wi , wj . From v

 and wi , we get v . From wj

¬ and wj~m v we get v ¬ . Contradiction. Hence wi .

In the course of the proof of Theorem 2.4, using Theorem 2.2, we have in fact proved the following corollaries.

COROLLARY 2.2. L A* k if and only if L is a ~m-language for some ̅ =(m1,…, mk).

COROLLARY 2.3. L A* k,m if and only if L is a ~m-language for some ̅ =(m, m2, …, mk).

Theorem 2.4 states precisely which are the important congruences related to the study of star-free languages.

Section four will be concerned with an application of Theorem 2.4 and its corollaries. In the sequel (m1, …,

mk) will denote the class of -languages. We end this section with a few notes on Theorem 2.4.

Kleene's theorem [15], stated in terms of congruences, asserts that L is regular if and only if there exists a finite

index congruence ~ such that L is a ~-language. Schützenberger's theorem [25] states that L is star-free if and

only if there exists a finite index aperiodic congruence ~ such that L is a ~-language. As a consequence of

Theorem 2.4 we get a logical proof of the easiest side of Schützenberger's theorem, the ~m being finite index

aperiodic congruences (see Rosenstein [24] and the results in the next section). Two proofs of the

Schützenberger's theorem have been given so far. Schützenberger's proof is done by recurrence on the

cardinality of the syntactic monoid and uses Green's relations. The other proof, obtained independently by

Cohen and Brzozowski and Meyer, is based on the decompositions as wreath products of semigroups. The last

proof appears in Eilenberg's book [11].

Theorem 2.4 implies that the problem of deciding whether a language has dot-depth k is equivalent to the

problem of effectively characterizing the monoids M = A* / ~ with ~ ~m for some ̅ = (m1 , …, mk), i.e.,

Vk = {A
*
/ ~ | ~ ~m for some ̅ = (m1, ...,mk)} .

3. SOME PROPERTIES OF THE CHARACTERIZING CONGRUEN CES

3.1. An Induction Lemma

The following lemma is a basic result (similar to one in [24] regarding ~ k) which will allow us to resolve games

with k +1 moves into games with k moves and thereby allows us to perform induction arguments.

LEMMA 3.1. Let ̅ = (m1,…, mk). u if and only if

1. for every p1, …, pm u (p1 ≤ … ≤ pm) there are q1 …, qm v (q1 ≤ … ≤ qm) such that

(a)
 pi if and only if

 qi, a A for 1 ≤ I ≤ m,

(b) u[1,p1) ~ m v[1, q1),

(c) u(pi , pi+1) ~ m v (qi, qi+1) for 1 ≤ i ≤ m - 1,

(d) u(pm , |u|] ~ m v(qm, |v|], and

2. for every q1, … qm v (q1 ≤ … ≤ qm) there are p1 , … pm u (p1 ≤ … ≤ pm) such that (a)-(d) hold.

Proof. Suppose that player II has a winning strategy in (m, m1, … , mk)(u, v) and suppose that p1 , … pm u,

p1 ≤ … ≤ pm. Using the strategy we can find positions q1, …, qm v, q1 ≤ … ≤ qm such that if player I chooses

p1 , …, pm u at his first move, then player II should choose q1, …, qm v. Moreover,
 pi if and only if

 qi,

a A for 1 ≤ i ≤ m. There are now k moves left in the game (m, m1, …, mk)(u, v). Whenever player I chooses

positions in u[1, p1) or if v[1, q1), the strategy, since it produces a win for player II, will always choose positions

in v[1, q1) or u[1, pi). Thus player II's winning strategy for (m, m1, …, mk)(u, v) includes within it a winning

strategy for ̅(u[1, p1), v[1, q1)), and similarly it includes a winning strategy for ̅(u(pi, pi +1), v(qi, qi+1)) for

1 ≤ i ≤ m — 1, and ̅(u(pm, |u|], v(qm, |v|]). This proves 1. By symmetry, 2 also holds.

Conversely, assuming that 1 and 2 hold, we describe a winning strategy for player II in (m, m1, …, mk)(u, v). If

player I chooses positions p1, …, pm u (p1 ≤ … ≤ pm) on his first move, then player II uses 1 to find positions

q1, …, qm v (q1 ≤ … ≤ qm). Thereafter, whenever player I chooses positions of u[1, p1) or v[1, q1), player II

uses his winning strategy in ̅(u[1, p1), v[1, q1)) to respond; and similarly, whenever player I chooses

positions of u(pi, pi+1) or v(qi, qi+1) (u(pm, |u|] or v(qm, |v|]), player II uses his winning strategy in ̅(u(pi,

pi+1), v(qi, qi+1)) (̅(u(pm, |u|], v(qm, |v|])) to reply. Since there are only k subsequent moves in the game and

 implies ~ (
 , …,

) for all
 ≤ mi, player I can choose no more than k times from u[1, p1) or

v[1, q1), (u(pi, pi+1) or v(qi qi+1)) (u(pm, |u|] or v(qm, |v|]) and no more than mi positions each time. Hence player

II's winning strategies in ̅(u[1, p1), v[1, q1)), (̅(u(pi, pi+1), v(qi, qi+1))) (̅(u(pm, |u|], v(qm, |v|])) provides

him with moves in all contingencies. If, on the other hand, player I chooses positions ql, …, qm v, then player

II uses 2 to find his correct first move and then proceeds analogously to the above. Thus player II has a winning

strategy in (m, m1, …, mk)(u, v).

3.2. A Condition for Inclusion

Let us find a condition which ensures (m1, …, mk) (
 , …,

). A trivial condition is the following: k ≤

k' and there exist 1 ≤ i1 < … < ik ≤ k' such that m1 ≤
 , …, mk ≤

 .

Define (m1, …, mk)= (m1 +1) … (mk + 1) — 1.

PROPOSITION 3.1. For N= (M1, …, mk) ≥ 2, xyz
N- 2

 zx xyz
N-1

zx.

Proof. The proof is similar to the one of a property of ~k in [31]. Consider the natural decompositions of u =

xyx
N-2

zx and v = xyx
N-1

zx into x- (y- or z-) segments. Before each move we have in u and v certain segments in

which positions have been chosen, and others where no positions have been chosen. Call a maximal segment of

succeeding x- (y- or z-) segments without chosen positions a gap. (a gap may be empty). Before each move

there is a natural correspondence between the gaps in u and v (given by their order). II should play to what we

call the (mi, …, mk)-strategy, namely guarantee the following condition before each move: when mi + …• + mk

elements are still to be chosen by both players, two corresponding gaps should both consist of any number ≥

 (mi, …, mk) of x-(y- or z-) segments, or else should both consist of the same number < (mi, …, mk) of x- (y-

or z-) segments. By induction on k — i it is easy to see that II always can choose his segments in this manner; of

course, inside his segments, II should pick exactly those positions which match the positions chosen by I in the

corresponding segments.

Note that (1, ..., 1) = 2
k
 — 1. By putting y = z = 1 in the above proposition, we get as a corollary that if m, m'

≥ 2
k
 — 1, then (w)

m
 ~k

. y = z = 1 imply x

N
 x

N + 1
(N = (m1,…, mk)) and N is seen to be the

smallest n such that x
n
 x

n + 1
 |x| = 1. Moreover, we see that if u, v A* and u v, then |u|a =

|v|a < (m1, …, mk) or |u|a, |v|a ≥ (m1, …, mk) (here, |w|a denotes the number of occurrences of the letter a in a

word w). Also, similarly to the above proof, one can show that if u v and k ≥ 2, then either u = v or u

and v have a common prefix and suffix of length ≥ m1 … mk.

PROPOSITION 3.2. 1.

 and 2. .

Proof. By the preceding proposition, choosing |x| = 1, we have

U = = = v.

= is a subword of length (of v but not of u. This gives 2. 1 follows easily from

Lemma 3.1.

Another condition for (m1, …, mk) to be included in (
 , …,

) is stated in the following.

PROPOSITION 3.3. If k ≤ k' and there exist 0 = j0 < … < jk —1 < jk = k' such that mi ≤ (
 , …,

) for

1 ≤ I ≤ k, then

Proof. The result comes from the following observation: for 1 ≤ i <j ≤ k', we have

 (

 , which is a consequence of Proposition 3.2, part 1.

Proposition 3.3 implies that if n ≥ sum(̅) and u ~n v, then u ~ n1 v.

If
(

)

 then

 .

Hence by Proposition 3.2, ((

). Does the condition (k < k' or (k = k' and

 m1)) and (m1 , …, mk) ≤ (

 imply that

 ? For k = 1, it is true. Section 4

includes partial results in this direction. (m1, …, mk) will appear several times in the sequel.

4. AN ANSWER TO A CONJECTURE OF PIN

First we introduce some terminology. The study of the concatenation product leads to the definition of the

Schützenberger product of finite monoids. The reader is referred to [27] for the important properties of this

construction. Let M1, …, Mn be finite monoids. The Schützenberger product of M1 , …, Mn, denoted by ◊n(M1 ,

…, Mn) is the submonoid of upper triangular n × n matrices with the usual product of matrices of the form

p =(pij), 1 ≤ i, j ≤n, in which the (i, j)-entry is a subset of M1 × …× Mn and all of whose diagonal entries are

singletons, i.e.,

1. Pij = if i > j,

2. pii = {(1, ..., 1, mi, 1, ..., 1)} for some mi Mi, (here, mi is the ith component in the tuple),

3. pij {(m1, …, mn) M1 × … × Mn | m1 = … = mi-1 = 1 = mj+1 = … mn}.

Condition 2 allows us to identify the coefficient pii with an element of Mi and condition 3 pij with a subset of Mi

× … × Mj. If µ = (mi, …, mj) ϵ Mi × … × Mj and µ' = (

) ϵ Mj × … × Mk, then we define µµ' = (mi, …,

mj-1, mj

). This product is extended to sets in the usual fashion; addition is given by set union.

Straubing [27] has demonstrated that if the languages Li A* (0 ≤ i ≤ n) are recognized by the monoids Mi,

then the language L0a1L1a2 … anLn, where the ai are letters, is recognized by the monoid ◊n+1(M0, …, Mn). It is

easy to verify that if 0 ≤ i0 < … < ir ≤n, then ◊r+1(, …,) is a submonoid of ◊n+1(M0 , …, Mn). This

implies that the monoid ◊n+1(M0, …, Mn) recognizes all languages of the form a1 a2 … ar , where is

recognized by . A partial converse has been established. The case n =1 has been treated by Reutenauer [23]

and the general case by Pin [22]. We have that if a language L A* is recognized by ◊n+1(M0, …, Mn) then L is

in the boolean algebra generated by the languages of the form a1 a2 … ar where 0 ≤ i0 < … < ir ≤ n,

where for 0 ≤ k ≤ r, ak ϵ A, and is a language recognized by .

Let W be a M-variety. We define ◊ W to be the variety of all finite monoids that divide some Schützenberger

product ◊n(M1, …, Mn) for some n, where Mi W for i = 1, …, n. From the above discussion, we have that for k

≥ 0, Vk + 1 = ◊Vk. In particular, V1 = J= ◊1 and V2 = ◊J, where I denotes the variety consisting of the trivial

monoid alone and J of all finite -trivial monoids.

4.1. Decidability and Inclusion Problems

Pin [22] demonstrated that the Straubing hierarchy is a particular case of a more general construction obtained

in associating varieties of languages not to integers but to trees under the following fashion. A variety of

languages is associated by definition to the tree reduced to a point. Then to the tree

is associated the boolean algebra generated by the languages of the form a1 a2 … ar with 0 ≤ i0 < … < ir

≤ n, where for 0 ≤ j ≤ r,
 is member of the variety of languages associated to the tree . Since the

Schützenberger product is perfectly adapted to the operation (L0, …, Ln) → L0a1L1a2 … anLn, it permits us to

construct, without reference to languages, hierarchies of varieties of monoids corresponding, via Eilenberg's

theorem, to the hierarchies of languages precedently constructed; i.e., starting with a variety of monoids W, we

associate with each tree t, respectively with each set of trees T, a variety of monoids ◊ t(W) (◊ T(W)).

Descriptions of the hierarchies of monoids are given after a few definitions.

We will denote by the set of trees on the alphabet {a, ̅}. Formally, is the set of words in {a, ̅}* congruent

to 1 in the congruence generated by the relation a ̅ = 1. Intuitively, the words in are obtained as follows: we

draw a tree and starting from the root we code a for going down and ̅ for going up. For example,

is coded by aa ̅aa ̅a ̅a ̅ ̅ ̅a ̅. The number of leaves of a word t in {a, ̅} *, denoted by l(t) is by definition the

number of occurrences of the factor a ̅ in t. Each tree t factors uniquely into t = at1 ̅at2 ̅ … atn ̅, where n ≥ 0

and where the ti's are trees. We have then l(t) = l(ti). Let t be a tree and let t = t1at2 ̅t3 be a factorization

of t. We say that the occurrences of a and ̅ defined by this factorization are related if t2 is a tree. Let t and t' be

two trees. We say that t is extracted from t' if t is obtained from t' by removing in t' a certain number of related

occurrences of a and ̅. We now state the algebraic interpretation of the above stated hierarchy construction

using the Schützenberger product.

To each tree t and to each sequence W1 , ..., Wl(t) of varieties of monoids, we associate a variety of monoids

◊ t(W1, …, Wl(t)) defined recursively by:

1. ◊1(W) = W for every M-variety W,

2. if t = at1 ̅at2 ̅ … atn ̅ with n ≥ 0 and t1, …, tn , ◊ t(W1, ..., Wl(t)) is the variety of monoids M such that

M divides some ◊ n(M1,…, Mn) with M1 (W1, …,) , …, Mn (, …,

).

When W1 = • • • = Wl(t) = W, we denote simply ◊ t(W) the variety ◊ t(W1, …, Wl(t)). More generally, if T is a

language contained in , we denote ◊ T(W) the smallest variety containing the varieties ◊ t(W) with t T.

The following proposition allows us, by recurrence, to describe the languages associated to the varieties

◊ t(W1, …, Wl(t)) for each tree t.

PROPOSITION 4.1 (Pin [22]). Let n be a positive integer and let W0, …, Wn be M-varieties. We denote

respectively by j and the *-varieties of languages corresponding to Wj (0 ≤ j ≤ n) and to ◊ (aa)n+1 (W0, …,

Wn). Then for each alphabet A, A* is the boolean algebra generated by the languages of the form a1 a2

… ar , where 0 ≤ i0 < … < ir ≤ n, where for 0 ≤ j ≤ r, aj A, and
 A*

 .

The above proposition implies that if t =at1 ̅at2 ̅ … atn ̅ with t1, …, tn T, we have ◊ t(W) = ̅ n((W), …,

 (W)).

The Straubing hierarchy Vk can be described in the following fashion. Let Tk be the sequence of languages

defined by T0={1} and Tk +1=(aTk ̅)*. Intuitively, we can represent the languages by trees infinite in width:

PROPOSITION 4.2. For k ≥ 0, Vk = ◊ Tk(I). In particular, (I) = I, (I) = J, (I) = ◊ J.

Proof. It is an immediate consequence of Proposition 4.1.

More precisely, we have the following.

PROPOSITION 4.3. For k ≥ 1, m ≥ 1, Vk,m =
 m + 1 (I).

Proof Let k,m be the *-variety of languages corresponding to

 m + 1 (I) = (

(I)).

We have to establish the equality k,m = k,m. Proposition 4.1 and Vk=
(I) of the preceding proposition

show that for each alphabet A, A* k,m is the boolean algebra generated by the languages of the form L0a1L1a2

… anLn, where 0 ≤ n ≤ m, L0, …, Ln A* k-1, and a1, …, an A. The result clearly follows.

Let ̅ = (m1, …, mk). By induction on k, we define a tree t ̅ as follows: if length(̅) = 1, then t ̅ = ̅ ,

for ̅ = (m, m1, ..., mk), t ̅ = (at(̅1 ...,mk) ̅)
m + 1

. One can also observe that l(t(m1, …, mk)) is (m1, …, mk) +

1.

Let t be a tree and let t be the *-variety of languages associated with ◊ t(I). We have the following.

PROPOSITION 4.4. = (m1, …, mk). (Here, it is understood that for each alphabet A, A*

 is the class of -languages in A*. Let us denote it by A* (m1, …, mk)).

Proof. The proof is by induction on k. If k = 1, then = V1, by Proposition 4.3. The result then

follows from Corollary 2.3. Suppose it is true for k, i.e., letting ̅ = (m1, …, mk), = ̅. Let us show that

 = (m, m1, …, mk). From (I) = (I) = ((I)), using the induction

hypothesis and Proposition 4.1, we can conclude that for each alphabet A, A* is the boolean

algebra generated by the languages of the form L0a1L1a2 · · · amLm, where for 0 ≤ j ≤ m, aj A* and Lj A*

 (m1, …, mk). The result follows since each ~(m, m1,...,mk)-class is a boolean combination of sets of the form

L0a1L1a2 · · · amLm, where each Lj is a -class.

The following result perhaps constitutes a first step towards the general solution of the decidability problem.

PROPOSITION 4.5 (Pin [22]). For each tree t, the variety (I) is decidable.

Using Proposition 4.4 and Proposition 4.5, we get the following.

PROPOSITION 4.6. For, fixed (m1, …, mk), the M-variety (I) is decidable, or the *-variety of

languages (m1, …, mk) is decidable.

Among the many problems concerning these tree hierarchies, is the comparison between the varieties inside a

hierarchy. More precisely, the problem consists in comparing the different varieties (W) (or even (W)). A

partial result and a conjecture on this problem was given in Pin [22]. It was shown that for every variety W, if t

is extracted from t', then ◊ t(W) (W), and it was conjectured that if t, t' T', ◊ t(I) is contained in (I)
if and only if t is extracted from t'. Here, T' denotes the set of trees in which each node is of arity different from

1.

THEOREM 4.1. The above conjecture is false.

To see this, by Lemma 4.7 of the next section. Hence (I) (I) by Proposition 4.4.

But it is easy to verify that the tree t(1, 2) is not extracted from the tree t(2, 1). The main step of the proof of

Theorem 4.1 is given in the next section.

4.2. The Conjecture is False

This section is devoted to the proof of Theorem 4.1 of the preceding section. The proof goes through seven

lemmas, Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. When is
 ? Of course, if

 ≥ m2, it is

true. We will be considering the case when
 < m2, or,

 +1 ≤ m2. Assume that u ~(2,1) v and |u|a, |v|a > 0. Let

u = u0au1 · · · aun, v = v0av1 · · · avm, where n = |u|a, m = |v|a. If
 ,

 for i = 1, ..., n, j = 1, ..., m, then ui =

u(pi, pi+1), i =1, …, n —1, vj = v(qj, qj+1), j = 1, ..., m - 1. u0= u[1, p1), v0 = v[1, q1), un = u(pn, |u|], vm = v(qm, |v|].

LEMMA 4.1. 1. u0 ~1 v0, u1 ~1 v1, un 1 ~1 vm 1, un ~1 vm,

2. u2au3 … aun 2~1 v2av3 … avm ..2.

Proof 1. Player I, in the first move chooses two consecutive a's among the first or the last two ones (of u or v).

Since u ~(2,1) v, player II chooses two consecutive a's, the same occurrences among the first or the last two ones

(of v or u). The result follows from Lemma 3.1.

2. Let w be a subword of length ≤1 of u2au3 · · · aun 2 (or of v2av3 · · · avm - 2). Hence w is a subword of v2av3 ·

· · avm - 2 (or of u2au3 · · · aun - 2) because aawaa is a subword of length ≤ (2, 1) = 5 of u (or of v) (~(2,1)

) by Proposition 3.2(I).

Proof: 1. Let 1 ≤ i ≤ 3. Let w be a subword of length ≤2 in uiaui+1 · · · aun. Consider w' = a
i
w of length ≤ i + 2 ≤

 (2, 1). u v (Proposition 3.2(1)) and the fact that w' is a subword of u of length ≤ (2, 1) imply that

w' is also a subword of v and, hence, w a subword in viavi+1 · · · avm. Similarly, for subwords of viavi+1 · · · avm.

For 2, we consider wa
i
.

LEMMA 4.3. 1. u0 ~(2) v0,

2. un ~(2) vm.

Proof 1. Let w = w1 … be a subword of length ≤2 in u0. Let p, p' u be such that p ≤ p' < p1 and
 p,

 p'. Consider the following play of the game (2, 1)(u, v). In the first move, player I chooses p and p1.

Using Lemma 3.1, there is q v, q < q1,
 q, and u(p, p1) ~1 v(q, q1). Since is a subword of length ≤1 in

u(p, p1) and u(p, p1) ~1 v(q, q1), is a subword of length ≤1 in v(q, q1). Hence w is also a subword in v0.

Similarly, for subwords of v0. For 2, let w = w1 … be a subword of length ≤2 in un. Let p, p' u be such

that pn < p' ≤ p and
 p,

 p'. In the first move, player I chooses pn and p. The result follows similarly as 1.

LEMMA 4.4. 1. u0au1~ (2) v0av1,

2. un – 1 aun~(2) vm 1avm.

Proof. 1. We will show that u0au1 ~(2) v0av1. The proof is similar for 2. Let w = w1 … be a subword of

length ≤2 in u0au1 (similar if starting with v0av1). We want to show that w is a subword of v0av1. If w is a

subword of u0, w is also a subword of v0 by Lemma 4.3(1). If not, let j, 1 ≤ j ≤ |w|, be the first index such that w1

… wj is not a subword of u0 but w1 … wj - 1 is a subword of u0. We have that w1 … wj - 1 is a subword of v0 by

Lemma 4.3(1) but we do not have that w1 … wj is a subword of v0 (if we had, w1 … wj would be in u0 for the

same reason). If wj = a, w1 … wj is a subword of u0a and v0a, and since u1 ~1 v1 by Lemma 4.1(1) and 1 ≤ j ≤|w|,

w is a subword of v0av1. If wj ≠ a, let p be the first position in u after p1 such that

 p. Now, since u1 ~1 v1 by

Lemma 4.1(1), wj occurs between q1 and q2. Let q be the first position in v after q1 such that

 q. If |wj …

 | ≤ 1, the proof is complete. If not, i.e., |wj … | > 1 then j = 1, |w| = 2. Consider the following play of the

game (2, 1)(u, v). Player I in the first move, chooses positions p and p2 in u. Player II should choose q in v. If

not, II would choose a position q' in v such that q' > q because he needs at least one a before q', and q is the first

position in v after q1 such that
 q. But then, player I, in the second move could choose an occurrence of w1

from v[1, q') (not possible for II in u[1, p) from the choice of j and the fact that wj ≠ a). Player II cannot choose

a position q" such that
 q" before q2 because he needs at least one a before q. Since there is no a between p

and p2, there should not be any between q and q". Hence player II should choose q and q2. Hence u(p, p2) ~1 v(q,

q2) and 1 follows.

Similarly, for every

 ,
 v(

 ,
) (

 <
), there exist

 ,
 u(

 ,
) (

 <
) such that d and

e hold.

Proof: 1 holds since u ~(2.1) v, by Section 3, implies that |u|b= |v|b < (2, 1) = 5 or |u|b, |v|b ≥ (2, 1) for every b

 A.

2 holds, since ~(2,1) ~(1,1) and we may consider the plays of the game (1, 1)(u, v), where player I in the first

move chooses
 for some i, 1 ≤ i ≤ s.

3 follows from the arguments in the proofs of Lemma 4.2 and Lemma 4.3, since
 (

) is either the first or the

last occurrence of a letter in u(v) (in Lemma 4.2 and Lemma 4.3 we were considering p1 (q1) which are the first

occurrences of the letter a in u (v) and pn (qm) which are the last occurrences of that letter in u (v)).

4, 5, and 6 follow by considering different plays of the game (2, 1)(u, v). First, from the choice of the
 ’s and

the
 ’s and Lemma 3.1, if

 (
) is among the positions chosen in u (v) by player I in the first move, then

(
) should be among the ones chosen in v (u) by player II in the first move. Second, if the positions chosen by

player I in the first move are in u(
 ,

)(v(
 ,

 ,)), then the positions chosen by player II in the first move

should be in v(
 ,

) (u(
 ,

)) for the same reasons. For 4, consider the play of the game (2, 1)(u, v),

where player I, in the first move, chooses
 and

 ; for 5, I chooses
 and p', or p' and

 ; for 6, he

chooses
 and

 .

LEMMA 4.6. Let
 , …,

 in u (
 < … <

)(
 , …,

 in v(
 < … <

)) be the positions which spell the

first and last occurrences of every letter in u (v) so (satisfying) 2, 3, 4, 5, and 6 of Lemma 4.5. For i fixed

between 1 and s -1, let
 , …,

 in u(
 ,

) (
 < … <

) (
 , …,

 in v(
 ,

) (
 < … <

)) be

the positions which spell the first and the last occurrences of every letter in u(
 ,

) (v(
 ,

)). Then

1. si =

2.

 if and only if

 , b A for 1 ≤ j ≤ si and

3. u[1,
) ~(2) v[1,

) and u(
 , |u|] ~(2) v(

 , |v|] for 1 ≤ j ≤ si.

Proof. By 4 of Lemma 4.5 we have u(
 ,

) ~1 v(
 ,

). Now, if in one of these segments, either u(
 ,

) or v(

 ,
), there is only one occurrence of some letter and in the other segment there are two or more

occurrences of that same letter, then player I in the first move could choose two of these occurrences (not

possible for II in the remaining segment, contradicting 6 of the preceding lemma). Hence 1 holds.

For 2, consider any two letters, say b ≠ c, in u(

) (and, hence, in v(

) by Lemma 4.5(4)) and

consider their first and last occurrences in u(
 ,

) and v(
 ,

) (by 1, the numbers of these occurrences

agree). We claim that we have the same pattern: there are six possibilities, namely, pattern 1, bbcc; or pattern 2,

bcbc; or pattern 3, bccb; or pattern 4, cbbc; or pattern 5, cbcb; or pattern 6, ccbb. Expressed differently, the

subwords formed by these occurrences are the same (the proof is similar if only one occurrence of a letter

instead of a first and a last: the patterns would be shorter words). Let us separate different patterns by

considering plays of the game (2, 1)(u, v). We will illustrate the plays by diagrams. The first move of I will be

indicated by [circle with 1 in middle] and the first move of II by [square with 1 in middle]. In each diagram, the

segment between the positions chosen by I in move 1 , the segment between the positions chosen by II in

move 1, in contradiction with Lemma 4.5(5) or (6). We show how to separate patterns 1-2-3 from patterns 4-5-

6, pattern 1 from patterns 2 and 3, and pattern 2 from pattern 3. The separation of the patterns 4, 5, and 6 is

similar to the separation of 1, 2, and 3. To separate patterns 1-2-3 from patterns 4-5-6:

The above diagram is in contradiction with Lemma 4.5(5) (II has to choose the first occurrence of b but there is

an occurrence of c between the positions that he chooses which is not the case for I). To separate patterns 1 and

3,

Here, player II cannot choose two b's separated by a c (in contradiction with Lemma 4.5(6)).

The diagrams above show that any two letters obey the same pattern.

 if and only if

 is clear. Now,

by induction on j, assume

 , if and only if

 for 1 ≤ k ≤ j. Suppose, say

 + and

 with b ≠

c. But b and c have the same pattern in u(
 ,

] and in v(
 ,

] by the induction hypothesis and the result

follows.

We now prove 3. Let 1 ≤ j ≤ si. We will show that u[1,
) v[1,

) (the proof is similar for u(
 , |u|]

 v(
 , |v|]). Let w = w1 … be a subword of length ≤ 2 in u[1,

) (it is similar if in v[1,
)). We

want to show that w is a subword of v[1,
). If |w| = 1, then there is an occurrence of w1 in u[1,

] (and,

hence, in v[1,
]) from the choice of the

 ’s and the
 's and Lemma 4.5(1, 2) and the proof is complete. If |w|

= 2, and w is in u[1,
), then w is in v[1,

) by Lemma 4.5(3). If there is an occurrence of w1 in u[1,
) (and,

hence, in v[1,
) by Lemma 4.5(3)) and

 (and hence

 by Lemma 4.5(2)) the proof is complete.

Otherwise, there is an occurrence of w1 in u[1,
] (and, hence, in v[1,

]) from the choice of the
 's and

 's and Lemma 4.5(1, 2) and also an occurrence of w2 in u(

 ,
). From the choice of the

 's, there exists k,

k < j, such that

 . Hence, from the choice of the
 ’s and (1, 2),

 .

LEMMA 4.7. .

Proof. Suppose that u ~(2,1) v. Then there is a winning strategy for player II in the game (2, 1)(u, v) to win

each play. Let us describe a winning strategy for player II in the game (1, 2)(u, v) to win each play. Let p be a

position in u chosen by player I in the first move. Suppose
 p for some a A.

Case 1. |u|a = |v|a <5 = (1, 2) = (2, 1). If p is the ith occurrence of a in u chosen by player I in the first

move, then player II chooses the same occurrence of a in v, say position q. The fact that u[1, p) ~(2) v[1,q) and

u(p, |u|] ~(2) v(q, |v|] follows from Lemmas 4.2, 4.3, and 4.4.

Case 2. |u|a = |v|a = 5. Same as case 1.

Case 3. |u|a = 5, |v|a > 5. We include this case because the strategy here for player II is very easy but the

arguments in Case 4 are enough to prove the lemma. If p is the ith occurrence of a in u (1 ≤ i ≤ 2) chosen by

player I in the first move, then player II chooses the same occurrence of a in v, say position q. If p is the (6 - i)th

occurrence of a in u (1 ≤ i ≤ 2), player II chooses the (m — i + 1)th occurrence of a in v. The fact that u[1, p)

~(2) v[1,q) and u(p, |u|] ~(2) v(q, |v|] follows from Lemmas 4.2, 4.3, and 4.4. If p = p3, then player II chooses q, an

a, among the middle ones in v, i.e., among q3, …, qm-2. Lemma 4.2 implies that u3au4au5 ~(2) v3av4 … avm and

u0au1au2 ~(2) v0av1 … avm-3. Observe that if we show u0au1au2 ~(2) v0av1av2 and u3au4au5 ~(2) vm-2avm-1avm the

proof is complete, since we will have u0au1au2~(2) v[1,q) and u3au4au5~(2) v(q, |v|] for any position q among

q3, …, qm-2. If player I had chosen p among the middle positions in v, then player II would choose p3 in u. So let

us show that u0au1au2~(2) v0av1av2. The proof of u3au4au5~(2) vm-2avm-1avm is similar.

First, let w be a subword of length ≤ 2 in v0av1av2. Then w is a subword of length ≤2 in v0av1 … avm-3. But since

u0au1au2~(2) v0av1 … avm-3, w is a subword of u0au1au2.

Now, let w = w1 … be a subword of length ≤2 in u0au1au2. We want to show that w is a subword of

v0av1av2. If w is a subword of u0au1, w is a subword of v0av1 by Lemma 4.4(1). If not, let j be the first index

such that w1 … wj is not a subword of u0au1 but that w1 … wj-1 is a subword of u0au1. We have to consider the

case where j = 1 and the case where j= 2. In each case, u0au1au2~(2) v0av1av2 will follow by considering different

plays of the game (2, 1)(u, v). We will illustrate the plays by diagrams. The first move of I will be indicated by

[circle with 1 in middle] and the first move of II by [square with 1 in middle].

j = 1. We have that w1 is not a subword of v0av1 ; w1 ≠ a since otherwise w1 would be in u0au1, contradicting the

choice of j. So let p' be the first position in u after p2 such that
 p'. Now, since u0au1au2~(2) v0av1 … avm-3 and

w1 is not in v0av1, w1 occurs between q2 and qm-2. Let q' be the first position in v after q2 such that
 q'; q' is not

between q2 and q3 in v because then we would have w1aaaa in v but not in u. Hence q' is between q3 and qm-2.

Consider the following play of the game (2, 1)(u, v) (illustrated in the diagram below). Player I in the first

move chooses q2 and q'. Player II should choose an occurrence of a before the first occurrence of w1 in u (which

is in u2) because in v0av1 there is no occurrence of w1 and, since he needs at least one a before the occurrence of

a that he chooses, he has to choose p2. II also needs at least one a between and after the positions that he

chooses. Player II cannot win this play of the game, a contradiction on the fact that u ~(2,1) v (II cannot win,

since there is no occurrence of w1 between the positions chosen by player I in the first move, but there is an

occurrence of w1 between the positions chosen by player II in the first move). Hence j = 1 is eliminated.

(Remark. That j = 1 is eliminated can also be seen by considering the play of the game (2, 1)(u, v), where

player I in the first move chooses q1 and q3. There is no occurrence of w1 between q1 and q3 but there is one

between p1 and p3 or p1 and p4.)

j = 2. We have that w1 is a subword of v0av1 , but we do not have that w1w2 is a subword of v0av1. If w2 = a,

w1w2 is a subword of v0av1a and, hence, of v0av1av2. So, assume that w2 ≠ a and let p' be the first position in u

after p2 such that
 p'. Now, since u0au1au2 v0av1 … avm-3, w2 occurs between q2 and qm-2. Let q' be the

first position in v after q2 such that
 q'. Suppose that q' is not between q2 and q3 in v. If the first occurrence of

w1 in v is in v1 (and hence in u1 by Lemma 4.1(1)), consider the following play of the game (2, 1)(u, v)

(illustrated in the diagram below). Player I in the first move chooses the first occurrence of w1 in v and q3 in v.

Player II cannot win this play of the game, a contradiction on the fact that u (2,1) v (II cannot win, since there is

no w2 between the positions chosen by player I in the first move, but there is an occurrence of w2 between the

positions chosen by player II in the first move):

If the first occurrence of w1 in v is in v0a, player I in the first move chooses q1 and q3 in v. Player II cannot win

this play of the game, for the same reason as above. Hence q' should be between q2 and q3.

Case 4. |u|a > 5, |v|a > 5. Let
 , …,

 in u (
 < … <

) (
 , …,

 in v (
 < … <

)) be the positions which

spell the first and the last occurrences of every letter in u (v) satisfying (2, 3, 4, 5, 6) of Lemma 4.5. Now if

p is any middle position in u (among p3, …, pn-2) chosen by player I in the first move, then p u(
 ,

) for

some i, 1 ≤ i ≤ s — 1. Then player II chooses a middle position q in v (among q3, …, qm-2) as follows. Let
 ,

…,
 in u(

 ,
) (

 < … <
) (

 , …,
 in v(

 ,
) (

 < … <
)) be the positions which spell the

first and the last occurrences of every letter in u(
 ,

) (v(
 ,

)) satisfying (2, 3) of Lemma 4.6. First, if p

=
 for some j, 1 ≤ j ≤ si, then let q =

 ; u[1, p) (2) v[1, q) and u(p, |u|] ~(2) v(q, |v|] follow from Lemma

4.6(3). Second, if p u(
 ,

) for some j, 1≤ j ≤ si — 1, then q will be chosen according to the following

rules, rules 1 to 4, which describe different plays of the game (2, 1)(u, v). Rules 1 to 4 depend on
 and

being first or last occurrences of letters in u(
 ,

) (Remark. It can happen that, for example,
 is both a

first and a last occurrence of a letter; in such a case, q will be chosen according to any of the rules that apply).

We will illustrate the plays by diagrams. The first move of I will be indicated as before by [circle with 1 in the

middle] and the first move of II by {square with 1 in the middle].

Rule 1. Rule 1 is an application of Lemma 4.5(5). If
 and

 are first occurrences of letters in u(
 ,

),

then consider the play of the game (2, 1)(u, v), where in move 1, player I chooses
 and p. Player II should

choose
 and a position q in v(

 ,
) such that

 q and u(
 , p) ~1 v(

 , q). Since
 and

 (and hence

(
 and

) are first occurrences of letters in u(
 ,

) (v(
 ,

)), q must be in v(
 ,

) (otherwise

there would be contradiction with u(
 , p) ~1 v(

 , q)). More precisely, q is not in v(
 ,

) and q ≠
 since

otherwise there would be an occurrence of the letter of
 in u(

 , p) but not in v(
 , q); q is not in v(

 ,

), since otherwise there would be an occurrence of the letter of

 in v(
 , q) but not in u(

 , p); q ≠

since otherwise

 and, hence,

 , contradicting the fact that
 is the first occurrence of a letter in

u(
 ,

) (
 p and p <

):

Rule 2. Rule 2 is an application of Lemma 4.5(5). If
 and

 are last occurrences of letters in u(
 ,

),

then player I, in the first move chooses p and
 . Player II should choose

 and a position q in v(
 ,

)

such that
 q and u(p,

) ~1 v(q,
). Similarly as in Case 1, q must be in v(

 ,
):

Rule 3. If
 is the last occurrence of a letter in u(

 ,
) and

 is the first occurrence of a letter in u(
 ,

), then player I, in the first move chooses

 and
 . Hence there exist q' and q" in v(

 ,
)(q' < q")

such that
 q' if and only if

 if and only if

 ,

 q'' if and only if

 if and only if

 , b

A and u(
 ,

) ~1 v(q' , q''). q' ≤
 (since

 is the last occurrence of the letter of q' and
 in v(

 ,
))

and
 ≤ q" (since

 c is the first occurrence of the letter of q" and
 in v(

 ,
)); q' <

 or
 <

q" would contradict u(
 ,

) ~1 v(q', q"). More precisely, q' <
 (

 < q") would imply an occurrence of

the letter of
 (

) in v(q', q") but there is no such occurrence in u(
 ,

). Hence q' =
 and q" =

 .

Since u(
 ,

) ~1 v(
 ,

), there exists q in v(
 ,

) such that
 q:

Rule 4. If

 is the first occurrence of a letter in u(
 ,

) and
 is the last occurrence of a letter in u(

 ,

), then player I, in the first move chooses

 and
 . Hence there exist q' and q" such that

 ≤ q' < q'' ≤

 and satisfying

 q' if and only if

 if and only if

 ,
 q'' if and only if

 if and only if

 , b A, and u(
 ,

) ~1 v(q', q"). Since u(
 ,

) ~1 v(q', q"), there exists q in v(q', q") such that

 q:

In Rules 1 to 4, the facts that u[1, p) ~(2) v[1,q) and u(p, |u|] ~(2) v(q, |v|] will follow similarly as Lemma 4.6(3).

We show u(p, |u|] ~(2) v(q, |v|] for Rule 4. Let w = w1 … w|w| be a subword of length ≤2 in v(q, |v|] (it is similar if

in u(p, |u|]). We want to show that w is a sub-word of u(p, |u|]. If |w| = 1, then there is an occurrence of w1 in

v[
 |v|] (and hence in u[

 , |u|]) from the choice of the
 ’s and the

 's and Lemma 4.5(1, 2) and the

proof is complete. If |w| = 2, and w is in v(
 , |v|], then w is in u(

 , |u|] by Lemma 4.5(3). If there is an

occurrence of w2 in v(
 , |v|] (and, hence, in u(

 , |u|] by Lemma 4.5(3)) and

 (and hence

by Lemma 4.5(2)) the proof is complete. Otherwise, there is an occurrence of w2 in v[
 , |v|] (and, hence, in

u[
 , |u|]) from the choice of the

 's and the
 ’s and Lemma 4.5(1, 2) and there is also an occurrence of w1

in v(q,
). From the choice of the

 's, there exists k, k ≥ j+ 1, such that

 . Hence, from the choice of

the
 's and Lemma 4.6(1, 2),

 . The result follows.

REFERENCES

1. F. Blanchet-Sadri, "Some Logical Characterizations of the Dot-Depth Hierarchy and Applications," Ph.D.

thesis, McGill University. May 1989.

2. F. Blanchet-Sadri, Games, equations and the dot-depth hierarchy, Comput. Math. App!. 18 (1989), 809-822.

3. F. Blanchet-Sadri, On dot-depth two, RAIRO Inform. Theor. Appl. 24 (1990), 521-529.

4. F. Blanchet-Sadri, Games, equations and dot-depth two monoids, Discrete App!. Math. 39 (1992), 99 III.

5. F. Blanchet-Sadri, Equations and dot-depth one, Semigroup Forum 47 (1993), 305-317.

6. J. A. Brzozowski and R. Knast, The dot-depth hierarchy of star-free languages is infinite, J. Comput. System

Sci. 16 (1978), 37-55.

7. J. A. Brzozowski and I. Simon, Characterizations of locally testable events, Discrete Math. 4 (1973), 243

271.

8. J. R. Bilchi, Weak second-order arithmetic and finite automata, Z. Math. Logik Grundlag. Math. 6 (1960), 66

92.

9. R. S. Cohen and J. A. Brzozowski, Dot-depth of star-free events, J. Comput. System Sci. 5 (1971), 1-15.

10. A. Ehrenfeucht, An application of games to the completeness problem for formalized theories, Fund. Math.

49 (1961), 129-141.

11. S. Eilenberg, "Automata, Languages and Machines," Vol. B, Academic Press, New York, 1976.

12. C. C. Elgot, Decision problems of finite automata design and related arithmetics, Trans. Amer. Math. Soc.

98 (1961), 21-52.

13. H. B. Enderton, "A Mathematical Introduction to Logic," Academic Press, New York, 1972.

14. R. Fraisse, "fours de Logique Mathematique," Tome 2, Gauthiers Villars, Paris, 1972.

15. S. C. Kleene, Representation of events in nerve nets and finite automata, in "Automata Studies, pp. 3-42,"

Princeton Univ. Press, Princeton, 1956.

16. R. E. Ladner, Application of model theoretic games to discrete linear orders and finite automata, Inform.

Control 33 (1977), 281-303.

17. G. Lallement, "Semigroups and Combinatorial Applications," Wiley, New York, 1979.

18. R. McNaughton, Algebraic decision procedures for local testability, J. Math. Systems Theory 8 (1974), 64-

76.

19. R. McNaughton and S. Papert, "Counter-free Automata," MIT Press, Cambridge, MA, 1971.

20. D. Perrin and J.-E. Pin, First-order logic and star-free sets, J. Comput. System Sci. 32 (1986), 393-406.

21. J.-E. Pin, "Varietes de Langages Formels," Masson, Paris, 1984. ("Varieties of Formal Languages," Plenum,

London, 1986.)

22. J.-E. Pin, Hierarchies de concatenation, RAIRO Infirm. Theor. 18 (1984), 23-46.

23. C. Reutenauer, Sur les varietes de langages et de monoides, in "Lect. Notes in Comput. Sci., Vol. 67, pp.

260 265," Springer-Verlag, Berlin, 1979.

24. .1. G. Rosenstein, "Linear Orderings," Academic Press, New York, 1982.

25. M. P. Schützenberger, On finite monoids having only trivial subgroups, Inform. Control 8 (1965), 190-

194.

26. I. Simon, Piecewise testable events, in "Proceedings, Second Cl Conf.," Lect. Notes in Comp. Sci. 33,

Springer-Verlag, Berlin, 1975,214-222.

27. H. Straubing, A generalization of the Schützenberger product of finite monoids, Theoret. Comput. Sci. 13

(1981), 137 150.

28. H. Straubing, Finite semigroup varieties of the form V* D, J. Pure Appl. Algebra 36 (1985), 53-94.

29. H. Straubing, Semigroups and languages of dot-depth two, in "Proceedings, Thirteenth ICALP," Lect. Notes

in Comput. Sci., Vol. 226, pp. 416-423, Springer-Verlag, New York, 1986.

30. W. Thomas, Classifying regular events in symbolic logic, J. Comput. System Sci. 25 (1982), 360-376.

31. W. Thomas, An application of the Ehrenfeucht Fraisse game in formal language theory, Bull. Soc. Math.

France 16 (1984), 11-21.

32. B. Tilson, Categories as algebra, J. Pure App!. Algebra 48 (1987), 83-198.

