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Abstract: 

A logical characterization of natural subhierarchies of the dot-depth hierarchy refining a theorem of Thomas 

and a congruence characterization related to a version of the Ehrenfeucht—Fraïssé game generalizing a theorem 

of Simon are given. For a sequence  ̅ = (ml , …, mk) of positive integers, subclasses  (m1, ...,mk) of languages 

of level k are defined.  (ml, …, mk) are shown to be decidable. Some properties of the characterizing 

congruences are studied, among them, a condition which insures  (m1, mk) to be included in  (  
 , …,   

 ). A 

conjecture of Pin concerning tree hierarchies of monoids (the dot-depth being a particular case) is shown to be 

false.  

 

Article: 

I. INTRODUCTION 

Traditionally, algebraic automata theory uses monoids as models for finite state machines. One looks at a finite 

state machine as processing sequences of symbols drawn from a finite input alphabet. Denoting the input 

alphabet by A, the universe of possible inputs is the free monoid A* and a finite state machine can be thought of 

as a quotient of A* by a finite index congruence ~ . A* / ~ being a finite monoid, one is then led to investigate 

relationships between the structure of this algebraic system and the combinatorial processing of input 

sequences. The theory of varieties of Eilenberg constitutes an elegant framework for discussing these 

relationships between combinatorial descriptions of languages and algebraic properties of their recognizers. The 

interplay between the two points of view leads to interesting classifications of languages and finite monoids. 

 

Let A be a given alphabet. The regular, or recognizable, languages over A are those subsets of A* constructed 

from the finite languages over A by the boolean operations as well as the concatenation product and the star. 

The star-free languages consist of those regular languages which can be obtained from the finite languages by 

boolean operations and the concatenation product only. According to a fundamental theorem of Schiitzenberger 

[25 ], L   A* is star-free if and only if its syntactic monoid M(L) is finite and aperiodic, that is, M(L) contains 

only trivial subgroups. For example, (ab)* is star-free since (ab)* =((aA*   A*b)\ (A*aaA*   A *bbA*))   {1}, 

where 1 is the empty word. But (aa)* is not star-free, a consequence of the theorem of Schfizenberger. General 

references on the star-free languages are McNaughton and Papert [19], Eilenberg [11], or Pin [21]. 

 

Natural classifications of the star-free languages are obtained based on the alternating use of the boolean 

operations and the concatenation product. Let A
+
 = A* / {1}. Define A

+ 
  0 = { L   

A+ 
| L is finite or cofinite}, 

A
+  k+1 = { L   A

+
 | L is a boolean combination of languages of the form L1 … Ln (n ≥ 1) with L1 … , Ln   A

+ 

 k}. For technical reasons, only nonempty words over A are considered to define this hierarchy; in particular, 

the complement operation is applied with respect to A
+
 . The language classes A

+
  0 , A

+
  1, ... form the so-

called dot-depth hierarchy introduced by Cohen and Brzozowski [9]. The union of the classes A
+

  0 , A
+
  1... is 

the class of star-free languages. 
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Most of our attention will be directed toward a closely related hierarchy, this one in A*. It was introduced by 

Straubing [28]. Let A* 0 = {Ø, A*}, A*   k+1 ={ L   A* | L is a boolean combination of languages of the form 

L0a1 L1a2 … anLn  (n ≥ 0 ) with L0, …, Ln   A*  k and a1, …, an   A}. Let A*  =  k ≥ 0 A* k is star-free if and 

only if L   A* k for some k ≥ 0. The dot-depth of L is the smallest such k. The Straubing hierarchy appears to 

be the more fundamental of the two for reasons explained in [29]. For details concerning the Straubing 

hierarchy and its relation to the dot-depth hierarchy, see Pin [21 or 22]. 

 

In the framework of semigroup theory, Brzozowski and Knast [6] showed that the dot-depth hierarchy is 

infinite, in fact, that A* k+1   A
+
  k for k ≥ 0. Thomas [31] gave a new proof of this result, which shows also 

that the Straubing hierarchy is infinite, based on a logical characterization of the dot-depth hierarchy that he 

obtained in [30]. His proof does not rely on semigroup theory; instead, an intuitively appealing model-theoretic 

technique was applied: the Ehrenfeucht-Fraisse game. 

 

It was the work of Büchi [8] and Elgot [ 12] that first showed how to use certain formulas of mathematical logic 

in order to describe properties of regular languages. These formulas ( known as monadic second-order 

formulas) are built up from variables x, y, ..., set variables X, Y, ..., a 2-place predicate symbol < and a set { Qa | 

a   A} of 1-place predicate symbols in one-to-one correspondence with the alphabet A. Starting with atomic 

formulas of the form x < y, Qax , Xx, and x = y, formulas are built up in the usual way by means of the 

connectives ¬,  ,   and the quantifiers   and   binding up both types of variables. A word w on A satisfies a 

sentence   if   is true when variables are interpreted as integers, set variables as sets of integers, the predicate < 

as the usual relation on integers and the formula Qax as the letter in position x in w is an a. 

 

Ladner [16] and McNaughton [18] were the first to consider the case where the set of formulas is restricted to 

first-order, that is, when set variables are ignored. They proved that the languages defined in this way are 

precisely the star-free languages. 

 

Thomas [30] showed that the dot-depth hierarchy corresponds in a very natural way with a classical hierarchy 

of first-order logic based on the alternation of existential and universal quantifiers. Perrin and Pin [20] gave a 

substantially different proof of the result of Thomas for the Straubing hierarchy. 

 

For each k ≥ 0, there is a variety Vk of finite monoids, or M-variety, such that for L   A*, L   A* k" if and only 

if M(L)   Vk. An outstanding open problem is whether one can decide if a star-free language has dot-depth k; 

this is equivalent to the question "is Vk decidable?," i.e., does there exist an algorithm which enables us to test if 

a finite monoid is or is not in Vk? The variety V0 consists of the trivial monoid alone. The variety V1 consists of 

all finite  -trivial monoids [26]. Straubing [29] conjectured an effective criterion, based on the syntactic monoid 

of the language, for the case k = 2. His condition is shown to be necessary, in general, and sufficient in an 

important special case, i.e., for an alphabet of two letters. The condition is formulated in terms of a novel use of 

categories in semigroup theory, recently developed by Tilson [32]. 

 

This paper is concerned with applications of some logical characterizations of the Straubing hierarchy. The aim 

of Section 2 is to give those logical characterizations of the star-free languages. They are useful in attacking the 

decidability question. A logical characterization of natural subhierarchies of the Straubing hierarchy refining the 

logical characterizations of Thomas is given. As an application we can get upper bounds on the dot-depth of 

star-free languages by considering their descriptions in the first-order logical language. We state the version of 

the EhrenfeuchtFraisse game which was used in [31 ] to prove that the Straubing hierarchy is infinite. Then we 

give a characterization of the star-free languages in terms of congruences defined in that paper generalizing a 

result of Simon. A characterization of the varieties of monoids related to the Straubing hierarchy through 

Eilenberg's correspondence is stated. For a sequence  ̅ =(m1,...,mk) of positive integers, subclasses  (m1, ..., mk) 

of languages of level k are defined. 

 



In Section 3, we study some properties of the characterizing congruences. This section establishes an induction 

lemma and a condition which ensures  (m1, ..., mk) to be included in  (  
 , ...,    

  ) 
 

Section 4 deals with a first application of the above logical characterizations. We show that a conjecture of Pin 

concerning tree hierarchies of monoids (the Straubing hierarchy being a particular case) is false. Decidability 

and inclusion problems are discussed.  (m1, ..., mk) are shown to be decidable. Other applications of the above 

logical characterizations are subjects of [l-5]. The study of properties of the characterizing congruences and 

equation systems for the varieties of monoids corresponding to the levels of the Straubing hierarchy are closely 

related. 

 

In the following,   will be called a  k-formula if   = (Q ̅)  , where   is quantifier-free and where (Q ̅) is a 

string of k alternating blocks of quantifiers such that the first block contains only existential ones. Similarly, if 

(Q ̅) consists of k blocks beginning with a block of universal quantifiers, (Q ̅)   is a  k-formula. A B( k)-

formula will denote a boolean combination of  k-formulas. If ~ is a congruence on A*, the set of all ~-classes 

will be denoted by A*/ ~ . If L   A* is a union of ~-classes, we will say that L is a ~-language. All the 

semigroups considered in this paper are finite ( except for free semigroups and free monoids). We refer the 

reader to the books by Eilenberg [11], Lallement [17], Pin [21], and Enderton [13] for all the other algebraic and 

logical terms not defined in this paper. 

 

2. SOME LOGICAL CHARACTERIZATIONS OF THE STRAUBING HIERARCHY 

2.1. A Quantifier Complexity Characterization
  

Let us first state the logical characterization of the Straubing hierarchy mentioned by Thomas. One identifies 

any word w   A*, say of length |w|, with a word model w = < { 1, ..., w}, <
w
, (  

 )a є A>, where the universe {1, 

..., |w|} represents the set of positions of letters in the word w, <
w
 denotes the < -relation in w, and   

  are unary 

relations over { 1, ..., |w|} containing the positions with letter a for each a   A. Sometimes it is convenient to 

assume that the position sets of two words u, v are disjoint; then one takes any two nonoverlapping segments of 

the integers as the position sets of u and v. Let   be the first-order language with equality and nonlogical 

symbols <, Qa, a   A. Then the satisfaction of  -sentence   in a word w, written w    , is defined in a natural 

way, and we say that L   A* is defined by the  -sentence   if L= L( )— {w   A* |w  }. We also consider 

the formulas 0 (false) and 1 (true). Observe that L(0) =   and L(1)= A*. 

 

THEOREM 2.1 (Thomas [30]). A language L   A* belongs to A* k if and only if L is defined by a B(  )- 

sentence of  . 

 

COROLLARY 2.1 (Ladner [16] and McNaughton [18]). A language L is star-free if and only if there exists a 

first-order  -sentence   such that L = L( ). 

 

For k ≥ 1, let us define subhierarchies of A*  as follows: for all m ≥ 1, let A* k, m = { L   A*| L is a boolean 

combination of languages of the form L0a1L1a2 … anLn (0 ≤ n ≤ m) with L0 , …, Ln   A* k - 1 and a1, …, an   A}. 

We have A* k =       A
* k,m. Easily, A*  k, m   A*  k + 1, m , A*  k, m + 1. Similarly, subhierarchies of A

+ k 

can be defined. One can show that  k, m is a *-variety of languages. Let the corresponding M-varieties be 

denoted by  k, m. We have that for k ≥ 1, m ≥ 1, L   A*  k, m if and only if M( L)    k, m. 

 

In A
+ 1 several hierarchies and classes of languages have been studied; the most prominent examples are the β-

hierarchy [7], also called depth-one finite cofinite hierarchy, and the class of locally testable languages. In 

Thomas [30] it was shown that both are characterized by natural restrictions on the form of    -sentences of a 

certain first-order language extending  . 

 

The purpose of this subsection is to give a logical characterization, which follows from an analysis of the proof 

of Theorem 2.1, of the subhierarchies of A*   refining the theorem of Thomas. It will be useful to extend   by 

adding constant symbols s, for every natural number s. For a word model w, the interpretation s
w
 of s will be the 



sth element of w. Let  (x1, …, xm) be a formula in which x1, …, xm are the unique free variables. Let s1,…, sm be 

positive integers. The meaning and usage of  (s1, …, sm) should be quite clear in what follows.  (s1, …, sm) is 

obtained from  (x1, …, xm) by replacing simultaneously all free occurrences of x1 in   by the constant s1, …, xm 

by sm. The interpretation of the formula  ( ̅) =  (x1, …, xm) in a word model w with universe {1, …, |w|} and 

elements s1, …, sm   {1, …, |w|} is defined in the natural way; we write w    (s1, …, sm) if   is satisfied in w 

it when interpreting xi by si for 1 ≤ i ≤ m. 

 

A logical characterization of the subhierarchies of A*   is based on the following two lemmas. In what follows, 

if w = a1 … an is a word and 1 ≤ s ≤  s' ≤ n, w[s, s'], w(s, s'), w(s, s'], and w[s, s' ) will denote respectively the 

segments as …    , as + 1…    ,  1,as + 1 …     and as …      1. 

 

LEMMA 2.1 ( Perrin and Pin [20] ). For k ≥ 0 and for each B( k)-sentence  , there exist B( k)-formulas  1(x), 

 r(x),  m(x, y) in which x (x, y) is (are) the unique free variable(s) and such that for every n and for every word 

w of length n we have 

 

1. w   L( l(s)) if and only if w[1, s)   L( ), and 

 

2. w   L( r(s)) if and only if w(s, n]   L( ) for every integer s such that 1 ≤ s ≤ n, and 

 

3. w   L( m(s, s')) if and only w(s, s' )   L( ) for every integers s, s' such that 1 ≤ s < s' ≤ n. 

 

Proof. We define  m for every formula  .  m is constructed by induction as follows (the constructions are 

similar for  1 and  r): if   is quantifier-free, then  m =  . Otherwise, we set (   )m =  z( (x < z < y    m), 

( z )m =  z( (x < z < y →  m), (     )m =  m    m , (¬ )m = ¬ m , (     )m =  m    m. Then one can verify 

by induction on k ≥ 0 the following properties: 

 

 if   and   are equivalent formulas, then  m and  m are equivalent; 

 

 if   is B( k), then  m is equivalent to a B( k)-formula; 

 

 let   be a sentence. If |w| = n and if 1 ≤ s < s' ≤ n, w satisfies  m(s, s') if and only if w(s, s') satisfies  . 

 

LEMMA 2.2. Given a B( k)-formula  (x1, …, xn)(n ≥ 1 ), there is a system 〈 ̅  〉 j < p of sequences  ̅ = 

〈  
 
     

 〉 of languages   
 
   A* k  and 〈 ̅ 〉j < p of sequences  ̅  =〈  

 
     

 〉,   
 
  A such that for any w and 

s1 < … < sn in {1, ..., |w|}, w    (s1, …, sn) if and only if there is j < p such that 

 

1. w[1, s1)     
 
 and  

  
 

   s1 , 

 

2. w(si, si+1)     
 
 and  

    
 

   si + 1, 1 ≤  i < n,and 

 

3. w(sn , |w| ]     
 

. 

 

Proof: By induction on k (see the proof of Theorem 2.1 [30] . If n = 0, this is just Theorem 2.1).  

 

Let   be an  -sentence. If   is a boolean combination of the  k -sentences  1 , …,  n , define the quantifier 

rank qr( ) to be the maximum number of quantifiers occurring in the leading block of one of the formulas  1, 

…,  n. Let us now prove a refinement of Thomas' theorem. 

 



THEOREM 2.2. Let k ≥ 1, m ≥ 1. A language L   A* is defined by a B(  k)-sentence of  ,  , where qr( ( ) ≤ m 

if and only if L belongs to A* k,m. 

 

Proof. The case k =1 is the following. Let m ≥ 1. Let L be a language of the form A*a1A*a2 … amA*, where ai   

A, i = 1,…, m. We have to find a boolean combination of  1 -sentences defining L such that qr( ) ≤ m. The 

assertion it w   L can be expressed by a  1-sentence as follows:  x1  x2 …  xm (x1 < x2 < … < xm      
x1   … 

     
xm). Hence L is defined by a sentence of the required form. 

 

Conversely, we show that a given  1-sentence  x1 …  xm ( ̅  • • • ax„,g9(,t) defines a language in 

A* 1,m,where  ( ̅) is equivalent to a conjunction of atomic formulas of the form Qax, x < y or x = y (for x, y 

variables and a   A) or their negation. Let ord1( ̅), …, ordr( ̅) be the conjunctions saying    ≤ … ≤    , where 

{i1 … im} = {1, …, m}. Then   ̅ ( ̅) is equivalent to  1 ≤ i ≤ r   ̅(ordi( ̅)    ( ̅)). Let us consider a typical 

member of this disjunction, say   ̅(x1 < … < xm    ( ̅)) (identify variables if equalities occur between the xi's). 

It suffices to show that the language L defined by   =   ̅(x1 < … < xm    ( ̅)) is in A* 1,m. But   defines 

either Ø or is equivalent to a disjunction of formulas of the form   ̅(x1 < … < xm     ( ̅)), where   ( ̅) is a 

conjunction of atomic formulas of the form Qax, ¬Qax for x a variable and a   A. In either case, L is seen to 

belong to A* 1,m. For example, L( xQax) = A*aA*, L( x¬Qax) =            A*bA*, L( y  z (y < z   Qay   

Qbz)) = A*aA*bA* and L( y z(¬(y < z)   Qay   ¬Qbz)) =  L( y(Qay   ¬Qby))   L( y z(z < y   Qay   ¬Qbz)). 

 

Now let us assume that k >1, in 1. Let L be a language of the form L0a1L1a2 … amLm, where ai   A* k-1, 

i=0,...,m. We have to find a boolean combination   of Σk -sentences defining L such that qr( ) ≤ m. By 

Theorem 2.1, let  0
,  1

, …,  m
 be B(Σk-1)-sentences defining L0, L1, …, Lm, respectively. We can find B(Σk-1)-

formulas   
 (x),   

 (x, y),   
 (x, y), …,   

 (x) satisfying Lemma 2.1. Hence the assertion w   L can be 

expressed by the following sentence:  x1  x2 …  xm (x1 < x2 < … < xm      
x1      

x2   …      
xm     

   1, 

x2)     
 (x2, x3)   …     

 (xm)), which is equivalent to a B(Σk)-sentence of the required form since (x1 < … < xm 

     
x1     

 (xm)) is equivalent to a B(Σk 1)-formula or a  k-1-formula. 

 

Conversely, consider a Σk-sentence  x1 …  xm ( ̅), where  ( ̅) is a B(Σk-1)-formula. As in the proof of the 

case k = 1, m ≥ 1, it suffices to consider a Σk -sentence of the form   =  x1 …  xm (x1 < … < xm    ( ̅)). Then, 

by Lemma 2.2, there is a system 〈 ̅ 〉j<p of sequences  ̅j
 = 〈  

 
     

 〉 of languages   
 
   A* k-1 and 〈 ̅ 〉j < p of 

sequences  ̅  = 〈  
 
     

 〉,   
 
   A such that for any w and s1 < • • • < sm in { 1, ..., |w|}, w   φ(s1 …, sm) if and 

only if there is j<p such that w     
 
  

 
  
 
  

 
 …   

 
  
 

. But for every j<p,   
 
  

 
  
 
  

 
4 …   

 
  
 

   A* k,m. Hence 

  defines a boolean combination of languages of the required form and the proof is complete.  

 

2.2. A Congruence Characterization Related to a Version of the Ehrenfeucht-Fraissé Game 

Thomas [31], in order to show that the dot-depth hierarchy is infinite, defined some congruences which we state 

after describing the version of the Ehrenfeucht-Fraisse game which was used in his proof. Those congruences 

will be shown to characterize the star-free languages. The next three paragraphs restate [31]. 

 

First we define what we mean by  ̅-formulas of  . For a sequence  ̅ =(m1, ...,mk) of positive integers, where k 

≥ 0, let length( ̅) = k and sum( ̅) = m1 + … + mk. The set of  ̅-formulas of   is defined by induction on 

length( ̅): if length( ̅) = 0, it is the set of quantifier-free  -formulas; and for  ̅ = (m, m1,…, mk), an  ̅-formula 

is a boolean combination of formulas  x1 …  xm , where   is an (m1,… mk)-formula. We write u  m v if u and 

v satisfy the same  ̅-sentences of  . For  ̅ = (m1, …, mk), the  ̅-formulas of   are seen to be B(Σk)-formulas   

such that qr( ) ≤ m1. Moreover, languages in A* k,m are defined by (m, m2, …, mk)-formulas for some mi, i = 2, 

..., k and m. The following game   ̅(u, v) is useful for showing  m-equivalence. 

 

The game   ̅(u, v), where  ̅ =(m1, ..., mk), is played between two players I and II on the word models u and v. 

A play of the game consists of k moves. In the ith move, player I chooses, in u or in v, a sequence of mi 

positions; then player II chooses, in the remaining word (v or u), also a sequence of mi positions. Before each 



move, player I has to decide whether to choose his next elements from u or from v. After k moves, by 

concatenating the position sequences chosen from u and chosen from v, two sequences  ̅ =p1 … pn from u and  ̅ 

= q1 … qn from v have been formed, where n = sum( ̅). Player II has won the play if the map pi → qi respects 

< and the predicates Qa, a   A (i.e., pi <
u
 pj if and only if qi <

v
 qj,   

 pi if and only if   
 qi , a   A for 1 ≤ i, j ≤ 

n). Equivalently, the two subwords in u and v given by the position sequences  ̅ and  ̅ should coincide. If there 

is a winning strategy for II in the game to win each play we say that player II wins   ̅(u, v) and write u   ̅ v; 

  ̅ naturally defines a congruence on A* which we will denote also by   ̅ 

 

The standard Ehrenfeucht-Fraissé game is the special case of   ̅(u, v), where  ̅ = (1, ..., 1). For a detailed 

discussion see Rosenstein [24] or Fraissé [14]. If length( ̅) = k and  ̅ = (1, ..., 1) we write  k(u, v) instead of 

  ̅(u, v) and u v instead of u -„ v. Note that in this case the Wi-formulas are up to equivalence just the formulas 

of quantifier depth k (Remark. One should not confuse .(§k(u, v) and 

(k)(u, v); a play of the game k(u, r) consists of k moves but a play of the game (k)(u, v) of 1 move). We have the 

following important. 

 

THEOREM 2.3 (Ehrenfeucht and Fraissé [10] ). For all  ̅ =(m1, ..., mk) with  k> 0 and mi > 0 for i =1, …k, we 

have u   mv  if and only i f u   ̅ v. 

 

Simon [26] calls    ̅ -languages piecewise testable languages. They constitute level 1 of the Straubing 

hierarchy. The purpose of this subsection is to characterize similarly the hierarchy, each level of it and also each 

subhierarchy. 

 

To do so, we use Theorem 2.1 and Theorem 2.2 and follow the technique used in [30]. For a word w, we can 

define, by induction on length( ̅), a sentence   
  which in a certain sense guarantees the satisfaction of all  ̅-

sentences of   which are satisfied by w. We have the following. 

 

LEMMA 2.3. 1. W     
 . 

 

2.   
  is equivalent to a  ̅-sentence. 

 

3. For all w and u, if u     
  then every  ̅-sentence satisfied in w is also satisfied in u. 

 

We can now prove the following. 

 

THEOREM 2.4. L is star-free if and only if L is   -language for some in. 

 

Proof: If L=  , then L is an empty union of classes of some congruence   . If L= A*, L can be taken as the 

union of all classes of some congruence   . Hence consider L   A*  k for some k ≥ 1. Then by Theorem 2.1 L 

is defined by a B(Σk)-sentence of  , or a  ̅-sentence of  ,  , for some  ̅ = (m1, …, mk). Hence L= L( ) = {w   

A* | w    }. Let us show that         (here, x   y if and only if for all u, v   A*, uxv   L, if and only if uyv 

  L and    is the congruence of minimal index with the property that L is a ~-language). Let u, v   A*. Suppose 

that u   v. Suppose that xuy   L.     being a congruence, we have that xuy    xvy. We have assumed that 

xuy   L, which means that xuy    . We want to show that xvy   . But by Theorem 2.3, we get xuy   m xvy, 

which means that xuy and xvy satisfy the same  ̅-sentences of  ,  o being a  ̅-sentence, we get that, since xuy 

   , xvy   . Hence, xvy   L. Similarly, we show that xvy   L implies that xuy   L. Hence u    v. Since      

   we have that L is a   -language. 

 

Let L be a   -language for some  ̅. Then L is a union of classes of the congruence   .    being a finite 

index equivalence relation ( see Rosenstein [24] ), it has only finitely many equivalence classes. Let w1, …, wm 

be a set of representatives. In order to show that L is star-free, it suffices to show that [  ]  
 is star-free for wi   

L.    

 denotes the conjunction of all  ̅-sentences of   satisfied by wi. Note that, since there are only finitely 



many atomic and negated atomic formulas in the language, the conjunction will be of bounded length. We will 

show that [  ]  
 is defined by .    

 , and that .    

  being a first-order sentence, using Corollary 2.1, we will get 

the result. If    
 wi, then using Theorem 2.3, we get v   m wi, implying by Lemma 2.3(1) and (2 ) that v      

 . 

Now let v      

 . Let us show that    
 wi. By Theorem 2.3, we have to show that v and wi satisfy the same  ̅-

sentences. Let   be a  ̅-sentence such that wi   . Since by hypothesis v      

 , using Lemma 2.3(3) we get v 

   . Now, let   be a  ̅-sentence such that v   . Choose the unique j with wj~mv and suppose that j    i. By 

Theorem 2.3, we get wj    . Since wj  m wi, there are two cases which can happen. 

 

Case 1. There is a  ̅-sentence   such that wj     , wi    . Since wi ~m v we get v    . From v      

 , we get  

V   ¬  . Contradiction.
 

u 
 

Case 2. There is a  ̅-sentence   such that wi   , wj    . From v      

  and wi    , we get v   . From wj   

¬   and wj~m v  we get v   ¬  . Contradiction. Hence wi   . 

 

In the course of the proof of Theorem 2.4, using Theorem 2.2, we have in fact proved the following corollaries. 

 

COROLLARY 2.2. L   A* k if and only if L is a ~m-language for some  ̅ =(m1,…, mk). 

 

COROLLARY 2.3. L   A* k,m if and only if L is a ~m-language for some  ̅ =(m, m2, …, mk). 

 

Theorem 2.4 states precisely which are the important congruences related to the study of star-free languages. 

Section four will be concerned with an application of Theorem 2.4 and its corollaries. In the sequel  (m1, …, 

mk) will denote the class of           -languages. We end this section with a few notes on Theorem 2.4. 

 

Kleene's theorem [15], stated in terms of congruences, asserts that L is regular if and only if there exists a finite 

index congruence ~ such that L is a ~-language. Schützenberger's theorem [25] states that L is star-free if and 

only if there exists a finite index aperiodic congruence ~ such that L is a ~-language. As a consequence of 

Theorem 2.4 we get a logical proof of the easiest side of Schützenberger's theorem, the ~m being finite index 

aperiodic congruences (see Rosenstein [24] and the results in the next section ). Two proofs of the 

Schützenberger's theorem have been given so far. Schützenberger's proof is done by recurrence on the 

cardinality of the syntactic monoid and uses Green's relations. The other proof, obtained independently by 

Cohen and Brzozowski and Meyer, is based on the decompositions as wreath products of semigroups. The last 

proof appears in Eilenberg's book [ 11]. 

 

Theorem 2.4 implies that the problem of deciding whether a language has dot-depth k is equivalent to the 

problem of effectively characterizing the monoids M = A* / ~ with ~   ~m for some  ̅ = (m1 , …, mk), i.e., 

Vk = {A
*
/ ~ | ~   ~m for some  ̅ = (m1, ...,mk)} . 

 

3. SOME PROPERTIES OF THE CHARACTERIZING CONGRUEN CES 

3.1. An Induction Lemma 

The following lemma is a basic result (similar to one in [24] regarding ~ k) which will allow us to resolve games 

with k +1 moves into games with k moves and thereby allows us to perform induction arguments. 

 

LEMMA 3.1. Let  ̅ = (m1,…, mk). u                if and only if 

 

1. for every p1, …, pm   u (p1 ≤ … ≤ pm) there are q1 …, qm   v (q1 ≤ … ≤ qm) such that 

 

(a )   
 pi if and only if   

 qi, a   A for 1 ≤ I ≤ m, 

 

(b) u[1,p1) ~ m  v[1, q1), 



(c) u(pi , pi+1) ~ m v (qi, qi+1) for 1 ≤ i ≤ m - 1, 

 

(d ) u(pm , |u|] ~ m v(qm, |v|],  and 

 

2. for every q1, … qm   v (q1 ≤ … ≤ qm) there are p1 , … pm   u (p1 ≤ … ≤ pm) such that (a)-(d) hold. 

 

Proof.  Suppose that player II has a winning strategy in  (m, m1, … , mk)(u, v) and suppose that p1 , … pm   u,  

p1 ≤ … ≤ pm. Using the strategy we can find positions q1, …, qm   v, q1 ≤ … ≤ qm such that if player I chooses 

p1 , …, pm   u at his first move, then player II should choose q1, …, qm   v. Moreover,   
  pi if and only if   

 qi, 

a   A for 1 ≤ i ≤ m. There are now k moves left in the game  (m, m1, …, mk)(u, v). Whenever player I chooses 

positions in u[1, p1) or if v[1, q1), the strategy, since it produces a win for player II, will always choose positions 

in v[1, q1) or u[1, pi). Thus player II's winning strategy for  (m, m1, …, mk)(u, v) includes within it a winning 

strategy for   ̅(u[1, p1), v[1, q1)), and similarly it includes a winning strategy for   ̅(u(pi, pi +1), v(qi, qi+1)) for 

1 ≤ i ≤ m — 1, and   ̅(u(pm, |u|], v(qm, |v|]). This proves 1. By symmetry, 2 also holds. 

 

Conversely, assuming that 1 and 2 hold, we describe a winning strategy for player II in  (m, m1, …, mk)(u, v). If 

player I chooses positions p1, …, pm   u (p1 ≤ … ≤ pm) on his first move, then player II uses 1 to find positions 

q1, …, qm   v (q1 ≤ … ≤ qm). Thereafter, whenever player I chooses positions of u[1, p1) or v[ 1, q1), player II 

uses his winning strategy in   ̅(u[ 1, p1), v[1, q1)) to respond; and similarly, whenever player I chooses 

positions of u(pi, pi+1) or v(qi, qi+1) (u( pm, |u|] or v(qm, |v|]), player II uses his winning strategy in   ̅(u(pi, 

pi+1), v(qi, qi+1)) (  ̅(u(pm, |u|], v(qm, |v|])) to reply. Since there are only k subsequent moves in the game and 

           implies ~ (  
 , …,   

 ) for all   
  ≤ mi, player I can choose no more than k times from u[1, p1 ) or 

v[1, q1), (u(pi, pi+1) or v(qi qi+1)) (u(pm, |u|] or v(qm, |v|]) and no more than mi positions each time. Hence player 

II's winning strategies in   ̅(u[1, p1), v[1, q1)), (  ̅(u(pi, pi+1), v(qi, qi+1))) (  ̅(u(pm, |u|], v(qm, |v|])) provides 

him with moves in all contingencies. If, on the other hand, player I chooses positions ql, …, qm   v, then player 

II uses 2 to find his correct first move and then proceeds analogously to the above. Thus player II has a winning 

strategy in  (m, m1, …, mk)(u, v).  

 

3.2. A Condition for Inclusion 

Let us find a condition which ensures  (m1, …, mk)    (  
 , …,    

 ). A trivial condition is the following: k ≤  

k' and there exist 1 ≤ i1 < … < ik ≤  k' such that m1 ≤    
 , …, mk ≤    

 . 

 

Define  (m1, …, mk)= (m1 +1) … (mk + 1) — 1. 

 

PROPOSITION 3.1. For N=  (M1, …, mk) ≥ 2, xyz 
N- 2

 zx           xyz
N-1

zx. 

 

Proof. The proof is similar to the one of a property of ~k in [31]. Consider the natural decompositions of u = 

xyx
N-2

zx and v = xyx
N-1

zx into x- (y- or z-) segments. Before each move we have in u and v certain segments in 

which positions have been chosen, and others where no positions have been chosen. Call a maximal segment of 

succeeding x- (y- or z-) segments without chosen positions a gap. (a gap may be empty). Before each move 

there is a natural correspondence between the gaps in u and v (given by their order). II should play to what we 

call the (mi, …, mk)-strategy, namely guarantee the following condition before each move: when mi + …• + mk 

elements are still to be chosen by both players, two corresponding gaps should both consist of any number ≥ 

 (mi, …, mk) of x-(y- or z-) segments, or else should both consist of the same number <  (mi, …, mk) of x- ( y- 

or z-) segments. By induction on k — i it is easy to see that II always can choose his segments in this manner; of 

course, inside his segments, II should pick exactly those positions which match the positions chosen by I in the 

corresponding segments.  

 

Note that  ( 1, ..., 1) = 2
k
 — 1. By putting y = z = 1 in the above proposition, we get as a corollary that if m, m' 

≥ 2
k
 — 1, then (w)

m
 ~k    

 
. y = z = 1 imply x

N
             x

N + 1 
(N =  (m1,…, mk)) and N is seen to be the 



smallest n such that x
n
            x

n + 1
 |x| = 1. Moreover, we see that if u, v   A* and u            v, then |u|a = 

|v|a <  (m1, …, mk) or |u|a, |v|a ≥  (m1, …, mk) (here, |w|a denotes the number of occurrences of the letter a in a 

word w). Also, similarly to the above proof, one can show that if u            v and k ≥ 2, then either u = v or u 

and v have a common prefix and suffix of length ≥ m1 … mk. 

 

PROPOSITION 3.2. 1.                           
 
 and 2.                             . 

 

Proof. By the preceding proposition, choosing |x| = 1, we have 

U =                       =              = v. 

=               is a subword of length  (           of v but not of u. This gives 2. 1 follows easily from 

Lemma 3.1.  

 

Another condition for  (m1, …, mk) to be included in  (  
 , …,    

 ) is stated in the following. 

 

PROPOSITION 3.3. If k ≤ k' and there exist 0 = j0 < … < jk —1 < jk = k' such that mi ≤  (       
 , …,    

 ) for  

1 ≤ I ≤ k, then     
     

  
                 

 

Proof. The result comes from the following observation: for 1 ≤ i <j ≤ k', we have     
      

      
     

  
     

    
        

      (  
      

       
       

 , which is a consequence of Proposition 3.2, part 1. 

 

Proposition 3.3 implies that if n ≥ sum( ̅) and u ~n v, then u ~ n1 v. 

 

If  
(  

     
  
 )

                then     
      

  
                  .

  

 

Hence by Proposition 3.2,  (               (  
          

 ). Does the condition (k < k' or (k = k' and   
   

 m1)) and  (m1 , …, mk) ≤  (  
        

  imply that     
     

  
                ? For k = 1, it is true. Section 4 

includes partial results in this direction.  (m1, …, mk) will appear several times in the sequel. 

 

4. AN ANSWER TO A CONJECTURE OF PIN 

First we introduce some terminology. The study of the concatenation product leads to the definition of the 

Schützenberger product of finite monoids. The reader is referred to [27] for the important properties of this 

construction. Let M1, …, Mn be finite monoids. The Schützenberger product of M1 , …, Mn, denoted by ◊n( M1 , 

…, Mn) is the submonoid of upper triangular n × n matrices with the usual product of matrices of the form          

p =(pij), 1 ≤ i, j ≤n, in which the (i, j)-entry is a subset of M1 × …× Mn and all of whose diagonal entries are 

singletons, i.e., 

 

1.  Pij =   if i > j, 

 

2.  pii = {(1, ..., 1, mi, 1, ..., 1)} for some mi   Mi, (here, mi is the ith component in the tuple ), 

 

3.  pij   {(m1, …, mn)   M1 × … × Mn | m1 = … = mi-1 = 1 = mj+1 = … mn}. 

 

Condition 2 allows us to identify the coefficient pii with an element of Mi and condition 3 pij with a subset of Mi 

× … × Mj. If µ = (mi, …, mj) ϵ Mi × … × Mj and µ' = (  
      

 ) ϵ Mj × … × Mk, then we define µµ' = (mi, …, 

mj-1, mj  
      

      
 ). This product is extended to sets in the usual fashion; addition is given by set union. 

 

Straubing [27] has demonstrated that if the languages Li   A* (0 ≤ i ≤ n) are recognized by the monoids Mi, 

then the language L0a1L1a2 … anLn, where the ai are letters, is recognized by the monoid ◊n+1(M0, …, Mn). It is 



easy to verify that if 0 ≤ i0 < …  < ir ≤n, then ◊r+1(   , …,    ) is a submonoid of ◊n+1(M0 , …, Mn). This 

implies that the monoid ◊n+1(M0, …, Mn) recognizes all languages of the form    a1   a2 … ar   , where     is 

recognized by    . A partial converse has been established. The case n =1 has been treated by Reutenauer [23] 

and the general case by Pin [22]. We have that if a language L   A* is recognized by ◊n+1(M0, …, Mn) then L is 

in the boolean algebra generated by the languages of the form    a1   a2 … ar    where 0 ≤ i0 < … < ir ≤ n, 

where for 0 ≤ k ≤ r, ak ϵ A, and     is a language recognized by    . 

 

Let W be a M-variety. We define ◊ W to be the variety of all finite monoids that divide some Schützenberger 

product ◊n(M1, …, Mn) for some n, where Mi   W for i = 1, …, n. From the above discussion, we have that for k 

≥ 0, Vk + 1 = ◊Vk. In particular, V1 = J= ◊1 and V2 = ◊J, where I denotes the variety consisting of the trivial 

monoid alone and J of all finite  -trivial monoids.  

 

4.1. Decidability and Inclusion Problems 

Pin [22] demonstrated that the Straubing hierarchy is a particular case of a more general construction obtained 

in associating varieties of languages not to integers but to trees under the following fashion. A variety of 

languages is associated by definition to the tree reduced to a point. Then to the tree 

 
is associated the boolean algebra generated by the languages of the form    a1   a2 … ar    with 0 ≤ i0 < … < ir 

≤ n, where for 0 ≤ j ≤ r,    
 is member of the variety of languages associated to the tree    . Since the 

Schützenberger product is perfectly adapted to the operation (L0, …, Ln) → L0a1L1a2 … anLn, it permits us to 

construct, without reference to languages, hierarchies of varieties of monoids corresponding, via Eilenberg's 

theorem, to the hierarchies of languages precedently constructed; i.e., starting with a variety of monoids W, we 

associate with each tree t, respectively with each set of trees T, a variety of monoids ◊ t(W) (◊ T(W)). 

Descriptions of the hierarchies of monoids are given after a few definitions. 

 

We will denote by   the set of trees on the alphabet {a,  ̅}. Formally,   is the set of words in {a,  ̅}* congruent 

to 1 in the congruence generated by the relation a ̅ = 1. Intuitively, the words in   are obtained as follows: we 

draw a tree and starting from the root we code a for going down and  ̅ for going up. For example, 

 
is coded by aa ̅aa ̅a ̅a ̅ ̅ ̅a ̅. The number of leaves of a word t in {a,  ̅} *, denoted by l(t) is by definition the 

number of occurrences of the factor a ̅ in t. Each tree t factors uniquely into t = at1 ̅at2 ̅ … atn ̅, where n ≥ 0 

and where the ti's are trees. We have then l(t) =        l(ti). Let t be a tree and let t = t1at2 ̅t3 be a factorization 

of t. We say that the occurrences of a and  ̅ defined by this factorization are related if t2 is a tree. Let t and t' be 

two trees. We say that t is extracted from t' if t is obtained from t' by removing in t' a certain number of related 

occurrences of a and  ̅. We now state the algebraic interpretation of the above stated hierarchy construction 

using the Schützenberger product.  

 

To each tree t and to each sequence W1 , ..., Wl(t) of varieties of monoids, we associate a variety of monoids        

◊ t(W1, …, Wl(t)) defined recursively by: 

 

1. ◊1( W) = W for every M-variety W, 



2. if t = at1 ̅at2 ̅ … atn ̅  with n ≥ 0 and t1, …, tn    , ◊ t(W1, ..., Wl(t)) is the variety of monoids M such that 

M divides some ◊ n(M1,…, Mn) with M1       (W1, …,        ) , …, Mn      (                      , …, 

               ). 

 

When W1 = • • • = Wl(t) = W, we denote simply ◊ t(W) the variety ◊ t(W1, …, Wl(t)). More generally, if T is a 

language contained in  , we denote ◊ T( W) the smallest variety containing the varieties ◊ t( W) with t   T. 

 

The following proposition allows us, by recurrence, to describe the languages associated to the varieties 

◊ t( W1, …, Wl(t)) for each tree t. 

 

PROPOSITION 4.1 ( Pin [ 22] ). Let n be a positive integer and let W0, …, Wn be M-varieties. We denote 

respectively by  j and   the *-varieties of languages corresponding to Wj (0 ≤ j ≤ n) and to ◊ (aa)n+1 (W0, …, 

Wn). Then for each alphabet A, A*  is the boolean algebra generated by the languages of the form    a1   a2 

… ar    , where 0 ≤ i0 < …  < ir ≤ n, where for 0 ≤ j ≤ r, aj   A, and    
   A*   

 . 

 

The above proposition implies that if t =at1 ̅at2 ̅ … atn ̅ with t1, …, tn   T, we have ◊ t(W) =     ̅ n(   (W), …, 

   (W)). 

 

The Straubing hierarchy Vk can be described in the following fashion. Let Tk be the sequence of languages 

defined by T0={1} and Tk +1=(aTk ̅)*. Intuitively, we can represent the languages by trees infinite in width: 

 
PROPOSITION 4.2. For k ≥ 0, Vk = ◊ Tk(I). In particular,    (I) = I,    (I) = J,    (I) = ◊ J. 

 

Proof. It is an immediate consequence of Proposition 4.1.  

 

More precisely, we have the following.  

 

PROPOSITION 4.3. For k ≥ 1, m ≥ 1, Vk,m =    
     m + 1 (I). 

 

Proof Let  k,m be the *-variety of languages corresponding to 

    
     m + 1 (I) =         (     

(I)). 

 



We have to establish the equality  k,m =  k,m. Proposition 4.1 and Vk=    
(I) of the preceding proposition 

show that for each alphabet A, A*  k,m is the boolean algebra generated by the languages of the form L0a1L1a2 

… anLn, where 0 ≤ n ≤ m, L0, …, Ln   A*  k-1, and a1, …, an   A. The result clearly follows.  

 

Let  ̅ = (m1, …, mk). By induction on k, we define a tree t ̅ as follows: if length( ̅) = 1, then t ̅ =    ̅     , 

for  ̅ = (m, m1, ..., mk), t ̅ = (at( ̅1 ...,mk)  ̅)
m + 1

. One can also observe that l(t(m1, …, mk)) is  (m1, …, mk) + 

1. 

 

Let t be a tree and let  t be the *-variety of languages associated with ◊ t(I). We have the following. 

 

PROPOSITION 4.4.            =  (m1, …, mk). (Here, it is understood that for each alphabet A, A* 

            is the class of           -languages in A*. Let us denote it by A*  (m1, …, mk)). 

 

Proof. The proof is by induction on k. If k = 1, then           = V1,    by Proposition 4.3. The result then 

follows from Corollary 2.3. Suppose it is true for k, i.e., letting  ̅ = (m1, …, mk),    =   ̅. Let us show that 

              =  (m, m1, …, mk). From               (I) =          (I) =         (    (I)), using the induction 

hypothesis and Proposition 4.1, we can conclude that for each alphabet A, A*              is the boolean 

algebra generated by the languages of the form L0a1L1a2 · · · amLm, where for 0 ≤ j ≤ m, aj   A* and Lj   A* 

 (m1, …, mk). The result follows since each ~(m, m1,...,mk)-class is a boolean combination of sets of the form 

L0a1L1a2 · · · amLm, where each Lj is a           -class.  

 

The following result perhaps constitutes a first step towards the general solution of the decidability problem. 

 

PROPOSITION 4.5 ( Pin [22]). For each tree t, the variety   (I) is decidable. 

 

Using Proposition 4.4 and Proposition 4.5, we get the following. 

 

PROPOSITION 4.6. For, fixed (m1, …, mk), the M-variety            (I) is decidable, or the *-variety of 

languages  (m1, …, mk) is decidable. 

 

Among the many problems concerning these tree hierarchies, is the comparison between the varieties inside a 

hierarchy. More precisely, the problem consists in comparing the different varieties      (W) (or even      (W)). A 

partial result and a conjecture on this problem was given in Pin [22]. It was shown that for every variety W, if t 

is extracted from t', then ◊ t(W)           (W), and it was conjectured that if t, t'   T', ◊  t(I) is contained in     (I) 
if and only if t is extracted from t'. Here, T' denotes the set of trees in which each node is of arity different from 

1. 

 

THEOREM 4.1. The above conjecture is false. 

 

To see this,                by Lemma 4.7 of the next section. Hence           (I)             (I) by Proposition 4.4. 

But it is easy to verify that the tree t(1, 2) is not extracted from the tree t(2, 1 ). The main step of the proof of 

Theorem 4.1 is given in the next section. 

 

4.2. The Conjecture is False 

This section is devoted to the proof of Theorem 4.1 of the preceding section. The proof goes through seven 

lemmas, Lemmas 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and 4.7. When is       
           ? Of course, if   

  ≥ m2, it is 

true. We will be considering the case when   
  < m2, or,   

  +1 ≤ m2. Assume that u ~(2,1) v and |u|a, |v|a > 0. Let 

u = u0au1 · · · aun, v = v0av1 · · · avm, where n = |u|a, m = |v|a. If   
   ,   

    for i = 1, ..., n, j = 1, ..., m, then ui = 

u(pi, pi+1), i =1, …, n —1, vj = v(qj, qj+1), j = 1, ..., m - 1. u0= u[1, p1), v0 = v[1, q1), un = u(pn, |u|], vm = v(qm, |v|]. 

 



LEMMA 4.1.     1. u0 ~1 v0, u1 ~1 v1, un 1 ~1 vm  1, un ~1 vm, 

2. u2au3 … aun  2~1 v2av3 … avm ..2. 

 

Proof 1. Player I, in the first move chooses two consecutive a's among the first or the last two ones (of u or v). 

Since u ~(2,1) v, player II chooses two consecutive a's, the same occurrences among the first or the last two ones 

(of v or u). The result follows from Lemma 3.1. 

 

2. Let w be a subword of length ≤1 of u2au3 · · · aun    2 (or of v2av3 · · · avm - 2). Hence w is a subword of v2av3 · 

· · avm - 2 (or of u2au3 · · · aun - 2) because aawaa is a subword of length ≤  (2, 1) = 5 of u (or of v) (~(2,1)   

         ) by Proposition 3.2( I ).  

 

 
 

Proof: 1. Let 1 ≤ i ≤ 3. Let w be a subword of length ≤2 in uiaui+1 · · · aun. Consider w' = a
i
w of length ≤ i + 2 ≤ 

 (2, 1). u          v (Proposition 3.2( 1)) and the fact that w' is a subword of u of length ≤  (2, 1) imply that 

w' is also a subword of v and, hence, w a subword in viavi+1 · · · avm. Similarly, for subwords of viavi+1 · · · avm. 

For 2, we consider wa
i
.  

 

LEMMA 4.3. 1. u0 ~(2) v0, 

2.   un ~(2) vm. 

 

Proof 1. Let w = w1 …      be a subword of length ≤2 in u0. Let p, p'   u be such that p ≤ p' < p1 and    
 p, 

     
 p'. Consider the following play of the game  (2, 1)(u, v). In the first move, player I chooses p and p1. 

Using Lemma 3.1, there is q   v, q < q1,    
  q, and u(p, p1) ~1 v(q, q1). Since      is a subword of length ≤1 in 

u(p, p1) and u(p, p1) ~1 v(q, q1),      is a subword of length ≤1 in v(q, q1). Hence w is also a subword in v0. 

Similarly, for subwords of v0. For 2, let w = w1 …     be a subword of length ≤2 in un. Let p, p'   u be such 

that pn < p' ≤ p and     
 p,    

  p'. In the first move, player I chooses pn and p. The result follows similarly as 1.  

 

LEMMA 4.4. 1. u0au1~ (2) v0av1, 

2. un – 1 aun~(2) vm 1avm. 

 

Proof. 1. We will show that u0au1 ~(2) v0av1. The proof is similar for 2. Let w = w1 …      be a subword of 

length ≤2 in u0au1 (similar if starting with v0av1). We want to show that w is a subword of v0av1. If w is a 

subword of u0, w is also a subword of v0 by Lemma 4.3(1). If not, let j, 1 ≤ j ≤ |w|, be the first index such that w1 

… wj is not a subword of u0 but w1 … wj - 1 is a subword of u0. We have that w1 … wj - 1 is a subword of v0 by 

Lemma 4.3(1) but we do not have that w1 … wj is a subword of v0 (if we had, w1 … wj would be in u0 for the 

same reason). If wj = a, w1 … wj is a subword of u0a and v0a, and since u1 ~1 v1 by Lemma 4.1(1) and 1 ≤ j ≤|w|, 

w is a subword of v0av1. If wj ≠ a, let p be the first position in u after p1 such that    

  p. Now, since u1 ~1 v1 by 

Lemma 4.1( 1 ), wj occurs between q1 and q2. Let q be the first position in v after q1 such that    

 q. If |wj … 

    | ≤ 1, the proof is complete. If not, i.e., |wj …     | > 1 then j = 1, |w| = 2. Consider the following play of the 

game  (2, 1)(u, v). Player I in the first move, chooses positions p and p2 in u. Player II should choose q in v. If 

not, II would choose a position q' in v such that q' > q because he needs at least one a before q', and q is the first 

position in v after q1 such that    
 q. But then, player I, in the second move could choose an occurrence of w1 



from v[1, q') (not possible for II in u[1, p) from the choice of j and the fact that wj ≠ a). Player II cannot choose 

a position q" such that   
 q" before q2 because he needs at least one a before q. Since there is no a between p 

and p2, there should not be any between q and q". Hence player II should choose q and q2. Hence u(p, p2) ~1 v(q, 

q2) and 1 follows.  

 
Similarly, for every   

  ,   
     v(  

 ,     
 ) (  

   <   
  ), there exist   

   ,   
     u(  

 ,     
 ) (  

   <   
  ) such that d and 

e hold. 

 

Proof: 1 holds since u ~(2.1) v, by Section 3, implies that |u|b= |v|b <  (2, 1) = 5 or |u|b, |v|b ≥  (2, 1) for every b 

  A. 

 

2 holds, since ~(2,1)   ~(1,1) and we may consider the plays of the game  (1, 1)(u, v), where player I in the first 

move chooses   
  for some i, 1 ≤ i ≤ s. 

 

3 follows from the arguments in the proofs of Lemma 4.2 and Lemma 4.3, since   
  (  

 ) is either the first or the 

last occurrence of a letter in u(v) (in Lemma 4.2 and Lemma 4.3 we were considering p1 (q1) which are the first 

occurrences of the letter a in u (v) and pn (qm) which are the last occurrences of that letter in u (v)). 

 

4, 5, and 6 follow by considering different plays of the game  (2, 1 )(u, v). First, from the choice of the   
 ’s and 

the   
 ’s and Lemma 3.1, if   

  (  
 ) is among the positions chosen in u (v) by player I in the first move, then   

  

(  
 ) should be among the ones chosen in v (u) by player II in the first move. Second, if the positions chosen by 

player I in the first move are in u(  
 ,     

 )(v(  
 ,     

 ,)), then the positions chosen by player II in the first move 

should be in v(  
 ,     

 ) (u(  
 ,     

 )) for the same reasons. For 4, consider the play of the game  (2, 1)(u, v), 

where player I, in the first move, chooses   
  and     

 ; for 5, I chooses   
  and p', or p' and     

 ; for 6, he 

chooses   
   and   

  . 

 

LEMMA 4.6. Let   
 , …,   

  in u (  
  < … <   

 )(   
 , …,   

  in v(  
  < … <   

 )) be the positions which spell the 

first and last occurrences of every letter in u (v) so (satisfying) 2, 3, 4, 5, and 6 of Lemma 4.5. For i fixed 



between 1 and s -1, let   
 , …,    

   in u(  
 ,     

 ) (  
   < … <    

   ) (  
  , …,  

  
 

   in v(  
 ,     

  ) (  
  < … <  

  
 

   )) be 

the positions which spell the first and the last occurrences of every letter in u(  
  ,     

  ) (v(  
 ,     

  )). Then 

 

1. si =   
   

 

2.   
   

   if and only if   
   

   , b   A for 1 ≤ j ≤ si and 

 

3. u[1,   
  ) ~(2) v[1,   

  ) and u(  
   , |u|] ~(2) v(  

   , |v|] for 1 ≤ j ≤ si. 

 

Proof. By 4 of Lemma 4.5 we have u(  
  ,     

 ) ~1 v(  
 ,     

 ). Now, if in one of these segments, either u(  
 , 

    
 ) or v(  

  ,     
 ), there is only one occurrence of some letter and in the other segment there are two or more 

occurrences of that same letter, then player I in the first move could choose two of these occurrences (not 

possible for II in the remaining segment, contradicting 6 of the preceding lemma). Hence 1 holds. 

 

For 2, consider any two letters, say b ≠ c, in u(  
      

 ) (and, hence, in v(  
      

 ) by Lemma 4.5(4)) and 

consider their first and last occurrences in u(  
 ,     

 ) and v(  
  ,     

 ) (by 1, the numbers of these occurrences 

agree). We claim that we have the same pattern: there are six possibilities, namely, pattern 1, bbcc; or pattern 2, 

bcbc; or pattern 3, bccb; or pattern 4, cbbc; or pattern 5, cbcb; or pattern 6, ccbb. Expressed differently, the 

subwords formed by these occurrences are the same (the proof is similar if only one occurrence of a letter 

instead of a first and a last: the patterns would be shorter words). Let us separate different patterns by 

considering plays of the game  (2, 1)(u, v). We will illustrate the plays by diagrams. The first move of I will be 

indicated by [circle with 1 in middle] and the first move of II by [square with 1 in middle]. In each diagram, the 

segment between the positions chosen by I in move 1   , the segment between the positions chosen by II in 

move 1, in contradiction with Lemma 4.5(5) or (6). We show how to separate patterns 1-2-3 from patterns 4-5-

6, pattern 1 from patterns 2 and 3, and pattern 2 from pattern 3. The separation of the patterns 4, 5, and 6 is 

similar to the separation of 1, 2, and 3. To separate patterns 1-2-3 from patterns 4-5-6: 

 

 
The above diagram is in contradiction with Lemma 4.5(5 ) (II has to choose the first occurrence of b but there is 

an occurrence of c between the positions that he chooses which is not the case for I). To separate patterns 1 and 

3, 
 

 



 

 
Here, player II cannot choose two b's separated by a c (in contradiction with Lemma 4.5( 6)). 

 

The diagrams above show that any two letters obey the same pattern.   
   

   if and only if   
   

   is clear. Now, 

by induction on j, assume   
   

  , if and only if   
   

   for 1 ≤ k ≤ j. Suppose, say   
     

   + and   
     

   with b ≠ 

c. But b and c have the same pattern in u(  
 ,   

  ] and in v(  
 ,   

  ] by the induction hypothesis and the result 

follows. 

 

We now prove 3. Let 1 ≤ j ≤ si. We will show that u[ 1,   
   )      v[1,   

   ) (the proof is similar for u(  
  , |u|] 

     v(  
  , |v|]). Let w = w1 …      be a subword of length ≤ 2 in u[ 1,   

   ) (it is similar if in v[1,   
   )). We 

want to show that w is a subword of v[ 1,   
   ). If |w| = 1, then there is an occurrence of w1 in u[ 1,   

 ] (and, 

hence, in v[1,   
 ]) from the choice of the   

 ’s and the   
 's and Lemma 4.5(1, 2) and the proof is complete. If |w| 

= 2, and w is in u[ 1,   
 ), then w is in v[1,   

 ) by Lemma 4.5(3 ). If there is an occurrence of w1 in u[ 1,   
 ) (and, 

hence, in v[1,   
 ) by Lemma 4.5( 3)) and    

   
  (and hence    

   
  by Lemma 4.5(2 ) ) the proof is complete. 

Otherwise, there is an occurrence of w1 in u[ 1,   
 ] ( and, hence, in v[ 1,   

 ] ) from the choice of the   
 's and 

  
 's and Lemma 4.5(1, 2) and also an occurrence of w2 in u(  

 ,   
   ). From the choice of the   

  's, there exists k, 

k < j, such that    
   

  . Hence, from the choice of the   
  ’s and (1, 2),    

   
  . 

 

LEMMA 4.7.                . 

 

Proof. Suppose that u ~(2,1) v. Then there is a winning strategy for player II in the game  (2, 1 )(u, v) to win 

each play. Let us describe a winning strategy for player II in the game  (1, 2 )(u, v) to win each play. Let p be a 

position in u chosen by player I in the first move. Suppose   
 p for some a   A. 

 

Case 1. |u|a = |v|a <5 =  (1, 2) =  (2, 1). If p is the ith occurrence of a in u chosen by player I in the first 

move, then player II chooses the same occurrence of a in v, say position q. The fact that u[1, p) ~(2) v[1,q) and 

u(p, |u|] ~(2) v(q, |v|] follows from Lemmas 4.2, 4.3, and 4.4. 

 

Case 2. |u|a = |v|a = 5. Same as case 1. 

 



Case 3. |u|a = 5, |v|a > 5. We include this case because the strategy here for player II is very easy but the 

arguments in Case 4 are enough to prove the lemma. If p is the ith occurrence of a in u (1 ≤ i ≤ 2 ) chosen by 

player I in the first move, then player II chooses the same occurrence of a in v, say position q. If p is the (6 - i)th 

occurrence of a in u (1 ≤ i ≤ 2), player II chooses the (m — i + 1 )th occurrence of a in v. The fact that u[1, p) 

~(2) v[1,q) and u(p, |u|] ~(2) v(q, |v|] follows from Lemmas 4.2, 4.3, and 4.4. If p = p3, then player II chooses q, an 

a, among the middle ones in v, i.e., among q3, …, qm-2. Lemma 4.2 implies that u3au4au5 ~(2) v3av4 … avm and 

u0au1au2 ~(2) v0av1 … avm-3. Observe that if we show u0au1au2 ~(2) v0av1av2 and u3au4au5 ~(2) vm-2avm-1avm the 

proof is complete, since we will have u0au1au2~(2) v[1,q) and u3au4au5~(2) v(q, |v|] for any position q among 

q3, …, qm-2. If player I had chosen p among the middle positions in v, then player II would choose p3 in u. So let 

us show that u0au1au2~(2) v0av1av2. The proof of u3au4au5~(2) vm-2avm-1avm is similar. 

 

First, let w be a subword of length ≤ 2 in v0av1av2. Then w is a subword of length ≤2 in v0av1 … avm-3. But since 

u0au1au2~(2) v0av1 … avm-3, w is a subword of u0au1au2. 

 

Now, let w = w1 …      be a subword of length ≤2 in u0au1au2. We want to show that w is a subword of 

v0av1av2. If w is a subword of u0au1, w is a subword of v0av1 by Lemma 4.4( 1). If not, let j be the first index 

such that w1 … wj is not a subword of u0au1 but that w1 … wj-1 is a subword of u0au1. We have to consider the 

case where j = 1 and the case where j= 2. In each case, u0au1au2~(2) v0av1av2 will follow by considering different 

plays of the game  (2, 1)(u, v). We will illustrate the plays by diagrams. The first move of I will be indicated by 

[circle with 1 in middle] and the first move of II by [square with 1 in middle]. 

 

j = 1. We have that w1 is not a subword of v0av1 ; w1 ≠ a since otherwise w1 would be in u0au1, contradicting the 

choice of j. So let p' be the first position in u after p2 such that    
 p'. Now, since u0au1au2~(2) v0av1 … avm-3 and 

w1 is not in v0av1, w1 occurs between q2 and qm-2. Let q' be the first position in v after q2 such that    
 q'; q' is not 

between q2 and q3 in v because then we would have w1aaaa in v but not in u. Hence q' is between q3 and qm-2. 

Consider the following play of the game  (2, 1)(u, v) (illustrated in the diagram below). Player I in the first 

move chooses q2 and q'. Player II should choose an occurrence of a before the first occurrence of w1 in u (which 

is in u2) because in v0av1 there is no occurrence of w1 and, since he needs at least one a before the occurrence of 

a that he chooses, he has to choose p2. II also needs at least one a between and after the positions that he 

chooses. Player II cannot win this play of the game, a contradiction on the fact that u ~(2,1) v (II cannot win, 

since there is no occurrence of w1 between the positions chosen by player I in the first move, but there is an 

occurrence of w1 between the positions chosen by player II in the first move). Hence j = 1 is eliminated. 

(Remark. That j = 1 is eliminated can also be seen by considering the play of the game  (2, 1 )(u, v), where 

player I in the first move chooses q1 and q3. There is no occurrence of w1 between q1 and q3 but there is one 

between p1 and p3 or p1 and p4.) 

 

 
j = 2. We have that w1 is a subword of v0av1 , but we do not have that w1w2 is a subword of v0av1. If w2 = a, 

w1w2 is a subword of v0av1a and, hence, of v0av1av2. So, assume that w2 ≠ a and let p' be the first position in u 

after p2 such that    
 p'. Now, since u0au1au2     v0av1 … avm-3, w2 occurs between q2 and qm-2. Let q' be the 

first position in v after q2 such that    
 q'. Suppose that q' is not between q2 and q3 in v. If the first occurrence of 



w1 in v is in v1 ( and hence in u1 by Lemma 4.1(1)), consider the following play of the game  (2, 1)(u, v) 

(illustrated in the diagram below). Player I in the first move chooses the first occurrence of w1 in v and q3 in v. 

Player II cannot win this play of the game, a contradiction on the fact that u  (2,1) v (II cannot win, since there is 

no w2 between the positions chosen by player I in the first move, but there is an occurrence of w2 between the 

positions chosen by player II in the first move): 

 
If the first occurrence of w1 in v is in v0a, player I in the first move chooses q1 and q3 in v. Player II cannot win 

this play of the game, for the same reason as above. Hence q' should be between q2 and q3. 

 

Case 4. |u|a > 5, |v|a > 5. Let   
 , …,   

  in u (  
  < … <   

 ) (  
 , …,   

  in v (  
  < … <   

 )) be the positions which 

spell the first and the last occurrences of every letter in u (v) satisfying (2, 3, 4, 5, 6 ) of Lemma 4.5. Now if 

p is any middle position in u (among p3, …, pn-2) chosen by player I in the first move, then p   u(  
  ,     

 ) for 

some i, 1 ≤ i ≤ s — 1. Then player II chooses a middle position q in v ( among q3, …, qm-2) as follows. Let   
  , 

…,    
   in u(  

 ,     
 ) (  

   < … <    
  ) (  

  , …,    
   in v(  

 ,     
 ) (  

   < … <    
  )) be the positions which spell the 

first and the last occurrences of every letter in u(  
 ,     

 ) (v(  
 ,     

 )) satisfying (2, 3) of Lemma 4.6. First, if p 

=   
   for some j, 1 ≤ j ≤ si,  then let q =   

   ; u[1, p) (2) v[1, q) and u( p, |u|] ~(2) v(q, |v|] follow from Lemma 

4.6( 3). Second, if p   u(  
  ,     

  ) for some j, 1≤ j ≤ si — 1, then q will be chosen according to the following 

rules, rules 1 to 4, which describe different plays of the game  (2, 1)(u, v). Rules 1 to 4 depend on   
   and     

   

being first or last occurrences of letters in u(  
 ,     

 ) (Remark. It can happen that, for example,   
   is both a 

first and a last occurrence of a letter; in such a case, q will be chosen according to any of the rules that apply). 

We will illustrate the plays by diagrams. The first move of I will be indicated as before by [circle with 1 in the 

middle] and the first move of II by {square with 1 in the middle]. 

 

Rule 1. Rule 1 is an application of Lemma 4.5(5). If   
   and     

   are first occurrences of letters in u(  
 ,     

 ), 

then consider the play of the game  (2, 1)(u, v), where in move 1, player I chooses   
  and p. Player II should 

choose   
  and a position q in v(  

 ,     
 ) such that   

 q and u(  
 , p) ~1 v(  

 , q). Since   
   and     

   ( and hence 

(  
   and     

  ) are first occurrences of letters in u(  
 ,     

 ) (v(  
 ,     

 )), q must be in v(  
  ,     

  ) (otherwise 

there would be contradiction with u(  
 , p) ~1 v(  

 , q)). More precisely, q is not in v(  
 ,   

  ) and q ≠   
   since 

otherwise there would be an occurrence of the letter of   
   in u(  

 , p) but not in v(  
 , q); q is not in v(    

  , 

    
 ), since otherwise there would be an occurrence of the letter of     

   in v(  
 , q) but not in u(  

 , p); q ≠     
   

since otherwise   
     

   and, hence,   
     

  , contradicting the fact that     
   is the first occurrence of a letter in 

u(  
 ,     

 ) (  
 p and p <     

  ): 

 

 



Rule 2. Rule 2 is an application of Lemma 4.5(5 ). If   
   and     

   are last occurrences of letters in u(  
 ,     

 ), 

then player I, in the first move chooses p and     
 . Player II should choose     

  and a position q in v(  
 ,     

 ) 

such that   
 q and u(p,     

 ) ~1 v(q,     
 ). Similarly as in Case 1, q must be in v(  

  ,     
  ): 

 
 

Rule 3. If   
   is the last occurrence of a letter in u(  

 ,     
 ) and     

   is the first occurrence of a letter in u(  
 , 

    
 ), then player I, in the first move chooses   

   and     
  . Hence there exist q' and q" in v(  

 ,     
 )(q' < q") 

such that   
 q' if and only if   

   
   if and only if   

   
   ,   

 q'' if and only if   
     

   if and only if   
     

   , b   

A and u(  
   ,     

  ) ~1 v(q' , q''). q' ≤   
   (since   

    is the last occurrence of the letter of q' and   
    in v(  

 ,     
 )) 

and     
   ≤ q" (since     

   c is the first occurrence of the letter of q" and     
    in v(  

 ,     
 )); q' <  

    or     
    < 

q" would contradict u(  
  ,     

  ) ~1 v(q', q"). More precisely, q' <   
    (    

    < q") would imply an occurrence of 

the letter of   
    (    

  ) in v(q', q") but there is no such occurrence in u(  
  ,     

  ). Hence q' =   
    and q" =     

  . 

Since u(  
  ,   

    ) ~1 v(  
   ,     

  ), there exists q in v(  
   ,     

  ) such that   
 q: 

 
Rule 4. If   

   is the first occurrence of a letter in u(  
 ,     

 ) and     
  is the last occurrence of a letter in u(  

 , 

    
 ), then player I, in the first move chooses   

   and     
  . Hence there exist q' and q" such that   

   ≤ q' < q'' ≤ 

    
   and satisfying   

 q' if and only if   
   

   if and only if   
   

  ,   
 q'' if and only if   

     
   if and only if 

  
     

  , b   A, and u(  
   ,     

  ) ~1 v(q', q"). Since u(  
  ,     

  ) ~1 v(q', q"), there exists q in v(q', q") such that 

  
 q: 

 
In Rules 1 to 4, the facts that u[ 1, p) ~(2) v[1,q) and u(p, |u|] ~(2) v(q, |v|] will follow similarly as Lemma 4.6(3). 

We show u(p, |u|] ~(2) v(q, |v|] for Rule 4. Let w = w1 … w|w| be a subword of length ≤2 in v(q, |v|] (it is similar if 

in u(p, |u|]). We want to show that w is a sub-word of u(p, |u|]. If |w| = 1, then there is an occurrence of w1 in 

v[    
   |v|] (and hence in u[    

 , |u|] ) from the choice of the   
 ’s and the   

 's and Lemma 4.5( 1, 2) and the 

proof is complete. If |w| = 2, and w is in v(    
 , |v|], then w is in u(    

 , |u|] by Lemma 4.5(3). If there is an 

occurrence of w2 in v(    
 , |v|] (and, hence, in u(    

 , |u|] by Lemma 4.5( 3 ) ) and    
     

  (and hence    
     

  

by Lemma 4.5(2)) the proof is complete. Otherwise, there is an occurrence of w2 in v[    
 , |v|] (and, hence, in 

u[    
 , |u|]) from the choice of the   

 's and the   
 ’s and Lemma 4.5(1, 2) and there is also an occurrence of w1 

in v(q,     
 ). From the choice of the   

  's, there exists k, k ≥ j+ 1, such that    
   

  . Hence, from the choice of 

the   
   's and Lemma 4.6(1, 2),    

   
  . The result follows.  
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