
Periodicity properties on partial words 

 

By: F. Blanchet-Sadri, Kevin Corcoran, Jenell Nyberg 

 

F. Blanchet-Sadri, K. Corcoran, and J. Nyberg, "Periodicity Properties on Partial Words." Information and 

Computation, Vol. 206, 2008, pp 1057-1064. doi:10.1016/j.ic.2008.03.007 

 

Made available courtesy of Elsevier: http://dx.doi.org/10.1016/j.ic.2008.03.007  

 

***Reprinted with permission. No further reproduction is authorized without written permission from 

{Publisher}. This version of the document is not the version of record. Figures and/or pictures may be 

missing from this format of the document.*** 

 

Abstract: 

The concept of periodicity has played over the years a centra1 role in the development of combinatorics on 

words and has been a highly valuable too1 for the design and analysis of algorithms. Fine and Wilf’s famous 

periodicity result, which is one of the most used and known results on words, has extensions to partia1 words, 

or sequences that may have a number of “do not know” symbols. These extensions fal1 into two categories: the 

ones that relate to strong periodicity and the ones that relate to weak periodicity. In this paper, we obtain 

consequences by generalizing, in particular, the combinatoria1 property that “for any word u over {a, b}, ua or 

ub is primitive,” which proves in some sense that there exist very many primitive partia1 words. 

 

Keywords: Formal languages, Combinatorics on words, Fine and Wilf’s periodicity result, Partial words, 

Primitive partial words, Periods, Weak periods 

 

1. Introduction 

The problem of computing patterns in words, or finite sequences of symbols from a finite alphabet, has 

important applications in data compression, string searching and pattern matching algorithms. The notion of 

period of a word is central in combinatorics on words. There are many fundamental results on periods of words. 

Among them is the well known periodicity result of Fine and Wilf [12] which intuitively determines how far 

two periodic events have to match in order to guarantee a common period. More precisely, any word u having 

periods p,q and length at least p + q – gcd(p,q) has also period gcd(p,q). Extensions to more than two periods 

are given in [10,12,17,22]. Other generalizations of Fine and Wilf’s theorem have been made, including a 

generalization for abelian periods [14]. 

 

Partial words, or finite sequences that may contain a number of “do not know” symbols or holes, appear in 

natural ways in several areas such as molecular biology, data communication, DNA computing, etc. In this case 

there are two notions of periodicity: one is that of (strong) period and the other is that of weak period (see 

Section 2.2). The original Fine and Wilf’s result has been generalized to partial words in two ways: 

 

First, any partial word u with h holes and having weak periods p,q and length at least l(h,p,q) has also period 

gcd(p,q) provided u is not (h,p,q)-special. This extension was done for one hole by Berstel and Boasson in their 

seminal paper [1] where the class of (1,p,q)-special partial words is empty; for two-three holes by Blanchet-

Sadri and Hegstrom [8]; and for an arbitrary number of holes by Blanchet-Sadri [2]. Closed formulas for the 

bounds l(h,p,q) were given and shown to be optimal. Extensions to more than two weak periods are given in [9]. 

 

Second, any partial word u with h holes and having (strong) periods p,q and length at least L(h,p,q) has also 

period gcd(p,q). The study of the bounds L(h,p,q) was initiated by Shur and Gamzova [19]. In particular, they 

gave a closed formula for L(h,p,q) in the case where h = 2 (the cases where h = 0 or h = 1 are implied by the above 

mentioned results). In [5], Blanchet-Sadri et al. give closed formulas for the optimal bounds L(h,p,q) in the case 

where p = 2 and also in the case where q is large. In addition, they give upper bounds when q is small and h = 

3,4,5,6 or 7. Their proofs are based on connectivity in graphs associated with partial words. 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=565
http://www.uncg.edu/mat/research/finewilf
http://dx.doi.org/10.1016/j.ic.2008.03.007


In this paper, we obtain consequences of the generalizations of Fine and Wilf’s periodicity result to partial 

words. In particular, we generalize the following combinatorial property: “For any word u over {a,b}, ua or ub 

is primitive.” This property proves in some sense that there exist very many primitive words. The study of 

primitive partial words was initiated in [3]. Testing primitivity of partial words can be done in linear time in the 

length of the word [4]. 

 

2. Preliminaries 

This section is devoted to reviewing basic concepts on words and partial words.  

 

2.1. Words 

Let A be a nonempty finite set of symbols called an alphabet. Symbols in A are called letters and any finite 

sequence over A is called a word over A. The empty word, that is the word containing no letter, is denoted by ε 

ε. The set of all words over A is denoted by A
*
. 

 
For any word u over A, |u| denotes the length of u. In particular, |ε| = 0. The set of symbols occurring in a word u 

is denoted by α(u). A word of length n over A can be defined by a total function u : {0,…,n − 1} → A and is 

usually represented as u = a0a1,…,an−1 with ai ∈ A. A word v is a factor of u if there exist words x,y such that u 

= xvy. The word v is a prefix of (respectively, suffix of) u if x = e (respectively, y = e). If u = a0,…,an−1 with ai ∈ 

A, then a period of u is a positive integer p such that ai = ai+p for 0 ≤ i < n − p. 

 

A nonempty word u is primitive if there exists no word v such that u = v
n
 with n ≥ 2. Note the fact that the 

empty word is not primitive. If u is a nonempty word, then there exist a unique primitive word v and a unique 

positive integer n such that u = v
n
. 

 

2.2. Partial words 

A partial word u of length n over A is a partial function u : {0, ... ,n − 1 } → A. For 0 ≤ i < n, if u(i) is defined, 

then we say that i belongs to the domain of u (denoted by i ∈ D(u)), otherwise we say that i belongs to the set of 

holes of u (denoted by i ∈ H(u) ). A word over A is a partial word over A with an empty set of holes (we 

sometimes refer to words as full words). 

 

If u is a partial word of length n over A, then the companion of u (denoted by u◊) is the total function u◊ : 

{0,…,n − 1} → A  ⋃ {◊} defined by 

 

        
          ∈     

          
  

 

The bijectivity of the mapping u ↦ u◊ allows us to define for partial words concepts such as concatenation, 

powers and factors in a trivial way. The symbol ◊ is viewed as a “do not know” symbol. The word u◊ = 

abb◊bbcb is the companion of the partial word u of length 8 where D(u) = {0,1,2,4,5,6,7} and H(u) = {3}. For 

convenience, we will refer to a partial word over A as a word over the enlarged alphabet A ⋃ {◊}, where the 

additional symbol ◊ plays a special role. This allows us to say for example “the partial word aba◊aa◊” instead 

of “the partial word with companion aba◊aa◊”. 

 

A (strong) period of a partial word u over A is a positive integer p such that u(i) = u(j) whenever i ,j ∈ D(u) and 

i ≡ j mod p. In such a case, we call u p-periodic. Similarly, a weak period of u is a positive integer p such that 

u(i) = u(i +p) whenever i,i + p ∈ D(u). In such a case, we call u weakly p-periodic. The partial word with 

companion abbobbcbb is weakly 3-periodic but is not 3-periodic. The latter shows a difference between partial 

words and full words since every weakly p-periodic full word is p-periodic. Another difference worth noting is 

the fact that even if the length of a partial word u is a multiple of a weak period of u, u is not necessarily a 

power of a shorter partial word. The minimum period of u is denoted by p(u), and the minimum weak period by 

p'(u). The set of all periods (respectively, weak periods) of u is denoted by P(u) (respectively, P'(u)). 

 



For a partial word u, positive integer p and integer 0 ≤ i < p, define 

 

ui,p = u(i)u(i +p)u(i + 2p) ... u(i + jp) 

 

where j is the largest nonnegative integer such that i + jp < |u|. Then u is (strongly) p-periodic if and only if ui,p 

is (strongly) 1-periodic for all 0 ≤ i < p, and u is weakly p-periodic if and only if ui,p is weakly 1-periodic for all 

0 ≤ i < p. Strongly 1-periodic partial words as well as the full factors, that is factors that are full words, of 

weakly 1-periodic partial words are over a singleton alphabet. 

 

If u and v are two partial words of equal length, then u is said to be contained in v, denoted by u ⊂ v, if D(u) 

⊂ D(v) and u(i) = v(i) for all i ∈ D(u). The order u ⊂ v on partial words is obtained when we let ◊ < a and a ≤ a 

for all a ∈ A. A partial word u is primitive if there exists no word v such that u ⊂ v
n
 with n ≥ 2. In this definition 

of primitivity, v is (or can be) assumed to be a “full" word in u ⊂ v
n
 (not just a partial word). Note that if v is 

primitive and v ⊂ u, then u is primitive as well. It was shown in [3] that if u is a nonempty partial word, then 

there exist a primitive word v and a positive integer n such that u ⊂ v
n
. However uniqueness does not hold as 

seen with the partial word u = ◊a (here u ⊂ a
2
 and u ⊂ ba for distinct letters a,b). 

 
Partial words u and v of equal length are compatible, denoted by u ↑ v, if there exists a partial word w such that 

u ⊂ w and v ⊂ w. In other words, u(i) = v(i) for every i ∈ D(u) ∩ D(v). Note that for full words, the notion of 

compatibility is simply that of equality. 

 

3. Fine and Wilf’s periodicity result and generalizations to partial words 

In this section, we discuss in details the two ways Fine and Wilf’s periodicity result has been extended to partial 

words. For easy reference, we recall Fine and Wilf’ s result (the bound p + q – gcd(p,q) was shown to be 

optimal [11]). 

 

Theorem 1 ([14]). 

Let p and q be positive integers satisfying p < q. Let u be a full word. If u is p-periodic and q-periodic and |u| ≥ 

p + q − gcd(p,q), then u is gcd(p,q)-periodic. 

 

First, we review the generalization related to weak periodicity [1,2,8]. 

 

We first recall Berstel and Boasson’s result for partial words with exactly one hole where the bound p + q is 

optimal. 

 

Theorem 2 ([1]). 

Let p and q be positive integers satisfying p < q. Let u be a partial word with one hole. If u is weakly p-periodic 

and weakly q-periodic and |u| ≥ l(1,p,q) = p + q, then u is gcd(p,q)-periodic. 

 

When we discuss partial words with h ≥ 2 holes, we need the extra assumption of u not being (h,p,q)-special for 

a similar result to hold true. Indeed, if p and q are positive integers satisfying p < q and gcd(p,q) =1, then the 

infinite sequence (ab
p−1

◊b
q−p−1

◊b
n
)n>0 consists of (2,p,q)-special partial words with two holes that are weakly p-

periodic and weakly q- periodic but not gcd(p,q)-periodic. 

 

In order to define the concept of (h,p,q)-speciality, note that a partial word u that is weakly p-periodic and 

weakly q-periodic can be represented as a two-dimensional structure. Consider for example the partial word 

 

u= ababa◊◊◊bab◊bb◊bbbbbbbbb                          (1) 

 

where p = 2 and q = 5. The array looks like: 



 
 

A World Wide Web server interface has been established at 

 

www.uncg.edu/mat/research/finewilf 

 

for automated use of a program that builds two- (and three-)dimensional representations out of a partial word 

based on two of its weak periods. 

 

In general, if gcd(p,q) = d, we get d arrays. Each of these arrays is associated with a subgraph G = (V,E) of 

G(p,q) (u) as follows: V is the subset of D(u) comprising the defined positions of u within the array, and E = E1   
∪ E2 where E1 = {{i,i − q} | i,i − q ∈ V} and E2 = {{i,i − p} | i,i − p ∈ V}. For 0 ≤ j < gcd(p,q), the subgraph of 

G(p,q) (u) corresponding to 

 

D(u) ∩ {i | i ≥ ≥ 0andi ≡ j mod gcd(p,q)} 

 

will be denoted by       
 

(u). Whenever gcd(p,q) = 1,       
 (u) is just G(p,q)(u). Referring to the partial word u in 

(1) above, the graph G(2,5) (u) is disconnected (u is (5,2,5)-special). 

 

We now define the concept of speciality. 

 

Definition 1 ([2]). 

Let p and q be positive integers satisfying p < q, and let h be a nonnegative integer. Let 

 

           
 
 

 
                               

  
 

 
                   

   

 

Let u be a partial word with h holes of length at least l(h,p,q). Then u is (h,p,q)-special if       
 

(u) is disconnected 

for some 0 ≤ j < gcd(p,q). 

 

It turns out that the bound l(h,p,q) is optimal for a number of holes h. 

 

Theorem 3 ([2]). 

Let p and q be positive integers satisfying p < q, and let u be a non (h,p,q)-special partial word with h holes. If 

u is weakly p-periodic and weakly q-periodic and |u| ≥ l(h,p,q), then u is gcd(p,q)-periodic. 

 

Now, we review the generalizations related to strong periodicity [5,18,19,20]. Note that there exists an integer L 

such that if a partial word u with h holes has periods p and q satisfying p < q and |u| ≥ L, then u has period 

gcd(p,q) [20]. Let L(h,p,q) be the smallest such integer L. 
 

The following result is a direct consequence of Berstel and Boasson’s result. 

 

Theorem 4 ([1]). 

The equality L(1,p,q) = p + q holds. 

 

For at least two holes, we have the following results.  

 

http://www.uncg.edu/mat/research/finewilf


Theorem5 ([19,20]). 

The equality L(2,p,q) = 2p + q − gcd(p,q) holds. 

 

Theorem 6 ([5,18–20]). 

The equality L(h,2,q) = (2 
 

 
  + 1)q + h mod q + 1 holds. 

 

Setting h = nq + m where 0 ≤ m < q,L(h,2,q) = (2n + 1)q + m + 1. Now let Wh,p,q = {w | w has periods p and q,  || 
H(w) || = h and |w| = L(h,p,q) − 1} and let Vh,p,q = {v | v ∈ Wh,p,q and v does not have period gcd(p,q)}. Consider the 

word u = ◊
m
w(◊

q
w)

n
 where w is the unique element in V0,2,q of length q. Note that u is an optimal word. Indeed, 

|u| = (2n + 1)q + m, u has h holes, and since w is not 1-periodic, we also have that u is not 1-periodic. It is easy 

to show that u is 2- and q-periodic. 

 

In [19], the authors proved that if q > p ≥ 3 and gcd(p,q) = 1 and h is large enough, then 

 
  

     
                

   

     
         

 

4. Consequences of Fine and Wilf’s generalized periodicity results 

In this section, we consider some combinatorial properties of words and extend them to partial words. In 

particular, Propositions 1 and 2, Theorem 8, Lemma 1 and Theorem 9 are consequences of the generalizations 

of Fine and Wilf’s periodicity result of Section 3. 

 

To motivate this section, an unexpected result of Guibas and Odlyzko [15] states that for every word u over an 

arbitrary alphabet A, there exists a word v of length |u| over the alphabet {0,1} such that the set of all periods of 

u coincides with the set of all periods of v. The proof of this result is somewhat complicated and uses properties 

of correlations. In [16], Halava et al. gave a simple constructive proof which computes v in linear time. This 

result was later proved for partial words with one hole by extending Halava et al.’s approach which is based on 

properties mentioned in this section. More specifically, Blanchet-Sadri and Chriscoe [6] showed that for every 

partial word u with one hole over A, a partial word v over {0,1} satisfying (1) |v| = |u|; (2) P(v) = P(u); (3) P'(v) 

= P~ (u); and (4) H(v) ⊂ H(u) can be computed in linear time. More recently, Blanchet-Sadri et al. [7] showed 

that Conditions (1)–(3) can be satisfied simultaneously for any partial word u. However all the four conditions 

cannot be satisfied simultaneously in the case of two holes or more. For the partial word abaca◊◊acaba can be 

checked by brute force to have no such binary reduction. Can we characterize the partial words that have such a 

binary reduction? We believe that some of the results in this section may help answering this open question. 

 

First, we characterize the set of periods and weak periods of partial words. We consider the following 

combinatorial property of words [16]: “For any word u over an alphabet A, if q is a period of u satisfying |u| ≥ 

p(u) + q, then q is a multiple of p(u).” 

 

The following proposition gives the structure of the set of weak periods of a partial word u with h holes. 

 

Proposition 1. Let u be anon (h,p'(u),q)-special partial word with h holes over an alphabet A. If q is a weak 

period of u satisfying |u| ≥ l(h,p'(u),q), then q is a multiple of p'(u). 

 

Proof. By Theorem 3, gcd(p'(u),q) is a period of u since |u| ≥ l(h,p'(u),q). Since p(u) is the minimum period of u 

and p'(u) is the minimum weak period of u, we get p'(u) ≤ p(u) ≤ gcd(p'(u),q). We conclude that p'(u) = 

gcd(p'(u),q) and so p'(u) divides q.                   ∎ 
 

Another version of the property and a similar consequence follow in the case of strong periodicity.  

 



Proposition 2. Let u be a partial word with h holes over an alphabet A. If q is a (strong) period of u satisfying 

|u| ≥ L(h,p(u),q), then q is a multiple of p(u). 

 

Second, we consider the following combinatorial property of words: “For any non empty word u over an 

alphabet A with minimum period p(u), there exist a positive integer k, a (possibly empty) word v, and a 

nonempty word w such that u = (vw)
k
v and p(u) = |vw|.” 

 

Proposition 3. 

Let u be a nonempty partial word over an alphabet A with minimum weak period p'(u). Then there exist a 

positive integer k, (possibly empty) partial words v1,v2, ...,vk+1, and nonempty partial words w1,w2, ... ,wk 

such that 

 

u = v1w1v2w2 ... vkwkvk+1 

 

where p'(u) = |v1w1| = |v2w2| = ··· = |vkwk|, where |v1| = |v2| = ··· = |vk| = |vk+1|, and where vi ↑ vi+1 for all 1 ≤ i ≤ k, 

and wi ↑ wi+1 for all 1 ≤ i < k. 

 

Proof. Let u be a nonempty partial word over A with minimum weak period p'(u). Then |u| = kp' (u) + r where 0 

≤ r < p'(u). Put u = v1w1v2w2 ...vkwkvk+1 where |v1w1| = |v2w2| = ··· =|vkwk| = p'(u) and|v1| = |v2| = ··· = |vk| = |vk+1| = 

r. If wi is empty, then r = |vk+1| = |vk|= p'(u), a contradiction. If k = 0, then u = vk+1 and u has weak period |vk+1|< 

p'(u) contradicting the fact that p'(u) is the minimum weak period of u. Since p'(u) is the minimum weak period 

of u, we get viwi ↑ vi+1wi+1 for all 1 ≤ i < k and vk ↑ vk+1. The result follows.                 ∎ 

 

Third, we consider the following combinatorial property of words [21]: “For any word u over an alphabet A, if a 

and b are distinct letters of A, then ua or ub is primitive.” This property has been generalized to partial words 

with one hole by Blanchet-Sadri and Chriscoe [6]. 

 

The following result treats the one-hole case. 

 

Theorem 7 ([3]). 

Let u be a partial word with one hole over an alphabet A which is not of the form xox for any word x. If a and b 

are distinct letters of A, then ua or ub is primitive. 

 

Note that Theorem 7 does not hold for partial words with at least two holes. Consider for example u = a◊a◊a. 

Neither ua nor ub is primitive since ua ⊂ a
6
 and ub ⊂ (ab)

3
. 

 
We now characterize all partial words u with at least two holes over an alphabet A such that if a and b are 
distinct letters of A, then ua or ub is primitive. Let u be a partial word with at least two holes, and let H denote 
||H(u)||, the cardinality of H(u). Set u = u1◊u2◊... uH◊uH+1 where the uj’s do not contain any holes. We define a 
set SH as follows: For all 1 ≤ m ≤ H, if there exist a word x and integers 0 = i0 < i1 < i2 < · · · < im ≤ H such that 

 

u1◊u2◊ ... ◊    ⊂ x, 

     ◊     ◊ ... ◊    ⊂ x, 

⋮ 
       ◊       ◊...◊    ⊂ x, 

     
◊     

◊...◊     ⊂ x, 

 

then put u in the set SH. Otherwise, do not put u in SH. For example, S2 consists of the partial words of the form 

x◊x◊x for a word x, or x1 ◊x2◊x1 ax2 or x1 ax2◊x1 ◊x2 for words x1, x2 and letter a. 

 

 



Theorem 8. 

Let u be a partial word with at least two holes over an alphabet A which is not in S||H(u)||. If a and b are distinct 

letters of A, then ua or ub is primitive (or there exists at most one letter λ such that uλ is not primitive). 

 

Proof. 

Set ||H(u)|| = H. Assume that ua ⊂ v
k
, ub ⊂ w

l
 for some primitive full words v,w and integers k,l ≥ 2. Both |v| and 

|w| are periods of u, and, since k,l ≥ 2, |u| = k|v| − 1 = l|w| − 1 ≥ 2 max{|v|,|w|} − 1 ≥ |v| + |w| − 1. Without loss of 

generality, we can assume that k ≥ l or |v| ≤ |w|. Set u = u1◊u2◊...uH◊uH+1 where the uj’s do not contain any holes. 

Since v ends with a and w with b, write v = xa and w = yb. We have u ⊂ (xa)
k−1

x and u ⊂ (yb)
l−1

y. 

 

Case 1. k = l 

Here |v| = |w| and |x| = |y|. Note that 2 ≤ k = l ≤ H + 1. First, assume that k = l = H + 1. In this case, it is clear that 

u1 =u2 = ··· = uH+1 = x, a contradiction since u ∉ SH. Now, assume that k = l ≤ H. There exist integers 0 = i0 < i1 

< i2 < ··· < ik−1 ≤ H such that 

 

     ◊     ◊...    ◊ ⊂ xa and      ◊...◊   ◊ ⊂ yb, 

     ◊     ◊...    ◊ ⊂ xa and      ◊...◊   ◊ ⊂ yb, 

⋮ 
       ◊       ◊...◊     

◊ ⊂ xa and
         ◊       ◊...◊     

◊ ⊂ yb, 

       ◊       ◊...◊uH+1 ⊂ x and        ◊       ◊...◊uH+1 ⊂ y. 

 

We get 

 

     ◊     ◊...    ⊂ x,  

     ◊     ◊...    ⊂ x,  

⋮ 
       ◊       ◊...◊     

 ⊂ x,  

       ◊       ◊...◊     ⊂ x, 

 

a contradiction with the fact that u  ∉ SH. 

 

Case 2. k > l 

Here |v| < |w| and |u| ≥ |v| + |w| (otherwise, |u| = |v| + |w| − 1 and k = l = 2). 

 

First, assume that |u| ≥ L(H,|v|,|w|). Referring to Section 3, u is also gcd(|v|,|w|)-periodic. However, gcd(|v|,|w|) 

divides |v| and |w|, and so u ⊂ z
m
 with |z| = gcd(|v|,|w|). Since v ends with a and w with b, we get that z ends with 

a and b, a contradiction. 

 

Now, assume that |u| < L(H,|v|,|w|). Set k = lp + r where 0 ≤ r < l. We consider the case where r = 0 (the case where 

r > 0 is similar). We have that k = lp. The latter and the fact that k > l imply that p > 1. Since ua ⊂ (xa)
lp

 and ub 

⊂ (yb)
l
, we can write y =x1b1x2b2...xp−1bp−1xp where |x1| = ··· = |xp| = |x| and b1,...,bp−1 ∈ A. The containments u ⊂ 

(xa)
lp−1

x and u ⊂ (x1b1x2b2...xp−1bp−1xpb)
l−1

x1b1x2b2...xp−1bp−1xp allow us to write 

 

u = v1◊v2◊... vl−1◊vl 

 

where 

 

vj ⊂ x a x a … x a x 

vj ⊂ x1 b1 x2 b2 … xp-1 bp-1 xp 

 



for all 1 ≤ j ≤ l. If l − 1 = H, then vj = uj = (xa)
p−1

x for all j, and we obtain a contradiction with the fact that u ∉ 

SH. If l − 1 < H, then there exist integers 0 = i0 < i1 < i2 < ··· < il−1 ≤ H such that 

 

     ◊     ◊…◊   ◊ =   , 

     ◊     ◊…◊   ◊ =   , 

⋮ 
       ◊       ◊…◊     

◊ =     , 

       ◊       ◊…◊     =   . 

 

We get 

 

     ◊     ◊…◊    ⊂ (xa)
p-1

 x, 

     ◊     ◊…◊    ⊂ (xa)
p-1

 x, 

⋮ 
       ◊       ◊…◊     

 ⊂ (xa)
p-1

 x, 

       ◊       ◊…◊     ⊂ (xa)
p-1

 x, 

 
a contradiction with the fact that u ∉ SH.                  ∎ 

 

Finally, we characterize a class of special partial words u with two holes over the binary alphabet {a,b} where 

both ua and ub are non-primitive. 

 

The concept of (2,p,q)-speciality can be rephrased as follows. 

 

Definition 2 ([8]). 

Let p and q be positive integers satisfying p < q. A partial word u with two holes is called (2,p,q)-special if at 

least one of the following holds: 

 

(1) There exists 0 ≤ i < p such that i + p,i + q ∈ H(u) (the position i is said to be 1-isolated), 

(2) q = 2p and there exists p ≤ i < |u| − 4p such that i + p,i + 2p ∈ H(u) (the position i is said to be 2-isolated),  

(3) There exists |u| − p ≤ i < |u| such that i − p,i − q ∈ H(u) (the position i is said to be 3-isolated). 

 

Lemma 1. 

Let u be a partial word with two holes over the alphabet {a,b} which is (2,p,q)-special according to Definition 

2(1) for some integers p < q. Let i be the only position with letter a and assume that i is 1-isolated by i + p and i 

+ q where 0 ≤ i < p. Then the following hold: 

 

(1) ua ⊂ v
2
 for some word v imply |ua| = 2q and i = q − p − 1, 

(2) ua ⊂ v
3
 for some word v imply |ua| = 3p, q < 2p and i = p − 1, 

(3) ua ⊂ v
4
 for some word v imply |ua| = 4p, q = 2p, and i = p − 1, 

(4) ua ⊂ v
k
 and ub ⊂ w

k
 for some words v,w and integer k > 1 imply k = 2, 

(5) ub ⊂ w
l
 for some word w and integer l > 2 imply |ub| = 3|w| = 3p and q = 2p. 

 

Proof. We prove Statement 2 (the other statements are similar). So suppose ua ⊂ v
3
 for some word v. 

Partitioning ua into segments of size |v| 

 

u(0) u(1) … (|v| - 2) u(|v| - 1) 

u(|v|) u(|v| + 1)… u(|v| - 2) u(2|v| - 1) 

u(2|v|) u(2|v| + 1)… u(3|v| - 2) a 



all the elements in each column must be contained within the same letter c for some c ∈ {a,b}. Thus |v| − 1,2|v| 

− 1 have symbol ◊ or a. There are three cases to consider: 

 

Case 1. |v| − 1 = i and 2|v| − 1 = i + p 

 

We have |v| − 1 = i and 2|v| − 1 = i + p imply |v| = p and i = p − 1. Also, i + q ≤ 3 p – 2 , so q < 2p. 

 

Case 2. |v| − 1 =i and 2|v| − 1 = i + q 

 

Then |v| = q where |v| − 1 = i. But i < p, so we have q − 1 < p, which implies q ≤  p, a contradiction. 

 

Case 3. |v| − 1= i + p and 2|v| − 1= i + q 

 

If |v| − 1 = i + p and 2|v| − 1 = i + q, then the column containing i also contains i + |v|, which has letter b. Then 

ua ∉ v
3
, a contradiction.                    ∎ 

 

Theorem 9. Let u be a (2,p,q)-special partial word according to Definition 2(1) with two holes over the binary 

alphabet {a,b} where i is the only position with letter a and assume that i is 1-isolated by i + p and i + q where 

0 ≤ i < p. Then ua ⊂ v
k
 and ub ⊂ w

l
 for some words v,w and integers k,l ≥ 2 if and only if one of the following 

holds: 

 

(1) ua ⊂ v
2
 and ub ⊂ w

2
 where |ua| = |ub| = 2q and i = q − p − 1, 

(2) ua ⊂ v
3
 and ub ⊂ w

2
 where |v| = p, |w| = q, i = p − 1 and p = 2m, q = 3m for some integer m ≥ 1, 

(3) ua ⊂ v
4
 and ub ⊂ w

2
 where |ua| = 4p, |ub| = 2q, i = p − 1 and q = 2p. 

 

Proof. 

First, we claim that if uc ⊂ v
k
 for some word v, integer k ≥ 2, and letter c ∈ A, then k ≤ ||H(u)|| + ||I(u)|| + 1 

where I(u) = {i ∈ D(u) | i’s letter is c}. To see this, partitioning uc into segments of size |v|, consider the column 

containing position k|v| − 1, which has letter c. Every other element in the column has symbol c or ◊. The 

elements in u which satisfy this requirement are the elements in H(u) or I(u). Thus, the number of rows in our 

array is less than or equal to ||H(u)|| + ||I(u)|| + 1. 

 

Now, suppose ua ⊂ v
k
, ub ⊂ w

l
 for some words v and w and k,l ≥ 2. It must be the case that k ≤ 4 and l ≤ 3 by 

the above claim and Lemma 1(5). Let us consider our possibilities: 

 

Case 1. k = 2, l = 2 

 

By Lemma 1(1), |v| = q and i = q – p − 1. 

 

Case 2. k = 2, l = 3 

 

By Lemma 1(1), we have that |ua| = 2q and i = q − p − 1. Now ub ⊂ w
3
 for some word w. So it must be the case 

that i + |w| = i + p, i + 2|w| = i + q, which implies |w| = p, q = 2p, and i ≠ p − 1. Observe that i = q − p − 1 = p − 

1. We therefore have a contradiction and conclude that k = 2, l = 3 can never happen. 

 

Case 3. k = 3, l = 2 

 

By Lemma 1(2), we have |v| = p, q < 2p, and p − 1 = i. Since ub ⊂ w
2
, we also have i + |w| = i + p or i + |w| = i + 

q, and 2|w| − 1 > i + q. This implies that p + q < 2|w| and so |w| = q. In sum, we have that ua ⊂ v
3
 and ub ⊂ w

2
 

where |v| = p and |w| = q. Here |ua| is a positive multiple of lcm(k,l), so we have that p = 2m and q = 3m for 

some integer m ≥ 1. 



Case 4. k = 3, l = 3 

 

By Lemma 1(4), this can never happen. 

 

Case 5. k = 4, l = 2 

 

By Lemma 1(3), we have |ua| = 4p, q = 2p, and i = p − 1. Therefore, |ub| = 4p = 2q. 

 

Case 6. k = 4, l = 3 

 

By Lemma 1(3) and Lemma 1(5), we have |v| =p, |w| = p, which is a clear contradiction.            ∎ 

 

The converse is trivial.  

 

5. Conclusion 

In this paper, we presented some new periodicity properties on partial words which are built on Fine and Wilf’ s 

periodicity result generalized to partial words. As was discussed in Section 3, these generalizations fall into two 

categories: the ones that relate to strong periodicity and the ones that relate to weak periodicity. Our main result 

shows that there exist very many primitive partial words. We believe that some of the results in Section 4 can 

have interesting applications, such as answering the open question that was discussed at the beginning of 

Section 3. 
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