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Abstract:  
 
We are concerned with the complexity of deciding the avoidability of sets of partial words over 
an arbitrary alphabet. Towards this, we investigate the minimum size of unavoidable sets of 
partial words with a fixed number of holes. Additionally, we analyze the complexity of 
variations on the decision problem when placing restrictions on the number of holes and length 
of the words. 
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Article: 

1. Introduction 
An unavoidable set of (full) words X over an alphabet A is one such that any two-sided infinite 
word over Ahas a factor in X. Partial words, a generalization of full words, may contain “hole 
symbols”, denoted by “⋄ʼs”, which are not considered part of the alphabet A. The ⋄ symbol 
is compatible with, or matches, each letter ofA. An unavoidable set of partial words X over A is 
then defined as a set such that any two-sided infinite full word over A has a factor compatible 
with some element of X. This concept of unavoidable sets of partial words was introduced in [3]. 
 
Efficient algorithms to decide if a finite set X   of full words over an alphabet A   is unavoidable 
are well known[10]. For example, this check can be done by finding whether or not there is a 
loop in the automaton that recognizes A ⁎∖A ⁎ X A ⁎ , which must be finite for a set of words to 
be unavoidable [1]. This algorithm can be adapted to decide if a finite set X   of partial words is 
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unavoidable by determining the avoidability of , the completion of partial words in X  . 
However, the computation is also much less efficient as a word with h  holes can be completed in 
as many as | A | h  ways. AVOIDABILITY, or the problem of deciding the avoidability of a finite set 
of partial words over a k  -letter alphabet, where k⩾ 2 , turns out to be NP-hard [5] and [2], 
which is in contrast with the well-known feasibility results for a set of full words [7] and [10]. 
This can be proved by using a reduction from the 3SAT problem, known to be NP-
complete. AVOIDABILITY also turns out to be in PSPACE [2]. 
 
In this paper, we prove several new results related to the complexity of deciding the avoidability 
of sets of partial words. More specifically, we calculate the minimum cardinality of unavoidable 
sets of partial words of a given length m   with a fixed number of holes over a k  -letter alphabet. 
Previous work has been done in the context of full words. Mykkeltveit, in particular, showed that 
the minimum number of elements in an unavoidable set of full words of length m   over an 
alphabet of size k   is equal to c ( m , k ) , the number of conjugacy classes of words of that length 
over the given alphabet [12]. We also analyze the complexity of variations on the avoidability 
problem building on previous work by Blakeley et al. [2]. In particular, we study the complexity 
of deciding aperiodic (non-ultimately periodic) unavoidable sets of partial words. This notion, 
which is a natural extension of unavoidable sets, was introduced by Higgins and Saker in the 
context of full words [9]. In addition, we provide a new hard counting problem on partial words 
adding to previous work by Manea and Tiseanu [11]. 
 
The contents of our paper is as follows: In Section 2, we present the basic definitions and 
terminology regarding the major problem on unavoidable sets we are concerned with, that is, 
the complexity problem or the complexity of the problem of deciding the avoidability of a finite 
set of partial words over a k-letter alphabet. In Section 3, we provide some bounds on the 
minimum cardinality of unavoidable sets containing partial words of length m with h holes over 
a k-letter alphabet. In Section 4, we analyze the complexity of variations on the avoidability 
problem with restrictions put on the number of holes and length of the words. Additionally, we 
generalize the concept of aperiodic avoidability to sets of partial words and prove that the 
problem of deciding if a finite set of partial words over a k-letter alphabet is avoided by a one-
sided aperiodic word is NP-hard. In Section 5, we present a hard counting problem on partial 
words. Finally in Section 6, we conclude with some remarks. 

2. Preliminaries 
Let A   be a non-empty finite set called an alphabet   whose elements we call letters  . A finite 
full word   (or simply finite word) w   over A   is a finite sequence of letters from A  . We denote 
the length of w   by | w |  and the ( i + 1 ) st letter of w   by w ( i )  (by convention, we index 
positions of w   from zero). By ε   we denote the empty word and by A ⁎  the set of all finite 
words over A. 
A two-sided infinite full word   (or simply infinite word) w   over A   can be viewed as a 
function w : Z → A . We say that w   has period p   for some positive integer p  , and call it p  -
periodic, if w ( i ) = w ( i + p )  for all i∈Z . Ifw   has a period, we call it periodic  . If v   is a non-
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empty finite word, then we denote the unique infinite wordw =⋯ v v v v v⋯  such 
that v = w ( 0 )⋯w ( | v | − 1 )  by v Z . Similarly, a one-sided infinite full word w   can be viewed as 
a function w : N → A . We call w ultimately periodic   if there exist finite words u   and v   (v ≠ ε ) 
such that w = u v v v v⋯ . We call a finite word v   a factor   of a word w   if there exists some 
integer index i   such that v = w ( i )⋯w ( i + | v | − 1 ) . 
 
A partial word w   of length m  over A   is a 
function w : { 0 , … , m − 1 } → A ⋄  where A ⋄= A∪ { ⋄ }  with⋄∉A . The ⋄ symbol is referred to as 
a “hole”. For the indices 0⩽ i⩽m − 1  such that w ( i )∈A , we say thati   is in the domain of w  , 
denoted by D ( w ) . Otherwise, i   is in the set of holes of w  , denoted by H ( w ) . The set denoted 
by  represents the set of all finite words over A ⋄  (i.e. the set of all finite partial words over A  , 
including the empty word, ε  ). If a partial word can be written as u 1 ⋄ u 2 ⋄⋯⋄ u n − 1 ⋄ u n , then the 
set{ u 1 a 1 u 2 a 2⋯ u n − 1 a n − 1 u n | a i∈A }  is a partial expansion   on u  . Note that the u i ʼs are not 
necessarily full words. In this paper, it is assumed, without loss of generality, that the first and 
last positions of every partial word in a set be defined (i.e. that these positions not be holes). 
 
We say a finite partial word v   is a factor   of a partial word w   if there exist x   and y   such 
that w = x v y . Two partial words u   and v   of equal length are said to be compatible  , denoted 
as u ↑ v , if u ( i ) = v ( i )  for alli∈D ( u ) ∩ D ( v ) . A word w is said to meet a set of partial 
words X if some element of X is compatible with a factor of w. A two-sided infinite word w 
avoids X if no factor of w is compatible with any element of X. If no two-sided infinite word 
avoids X, we say that X is unavoidable. Otherwise, we call X avoidable. In [3], an algorithm is 
given for deciding avoidability on the basis of four reductions that maintain avoidability: 
factoring, prefix–suffix, hole truncation and expansion. This reduction method will be used in 
some of our proofs. 
 
Two full words u   and v   are said to be conjugate   if there exist x   and y   such 
that u = x y  and v = yx . Conjugacy is an equivalence relation, which we can use to form 
equivalence classes of words of a given length m   over a fixed alphabet of size k  . The number 
of conjugacy classes is denoted by c ( m , k ) . 
In the next sections, we examine some complexity problems on partial words related 
to AVOIDABILITY and some variations of it. 

3. Minimum size of unavoidable sets of constant length 
 
In [12], Mykkeltveit proved that for the case of full words, the minimal cardinality of an 
unavoidable set of words of constant length m   over a k  -letter alphabet, α ( m , k ) , is 
precisely c ( m , k ) , the number of conjugacy classes of words of length m   over a k  -letter 
alphabet. The inequality α ( m , k )⩾ c ( m , k )  holds since an unavoidable set needs to contain at 
least one word from each conjugacy class. For example, ifm = 2  and k = 2 , there are three 
conjugacy classes { a a } , { b b }  and { a b , b a }  of words of length two over the binary 
alphabet { a , b } , and so { a a , b b , a b }  is an unavoidable set. 



 
In this section, we are interested in the problem of calculating the cardinality of minimal 
unavoidable sets of partial words of length m   with h   holes over a k  -letter alphabet, which we 
denote by α ( m , h , k ) . Results, in the case of h = 0 , have been obtained (for instance, see [13]). 
Using the algorithm for testing avoidability described in [3], Table 1 was obtained that 
gives α ( m , h , k )  for 2⩽m⩽ 1 0 , 0⩽ h⩽ 8 , and k = 2 . Note that an empty entry in the table 
indicates an impossible case (i.e. too many holes) or an entry that has not yet been discovered 
due to extensive computation time. 
 
Table 1. Some values of α(m,h,2). 

 

2 3 4 5 6 7 8 9 10 

0 3 4 6 8 14 20 36 60 108 
1  3 4 5      
2   3 3 5     
3    3 4 5    
4     3 3 5   
5      3 4 5  
6       3 3 5 
7        3 3 
8         3 
In the following case, we can determine the exact value of α ( m , h , k ) . 
 
Proposition 1. 
For  m⩾ 2 ,  α ( m , m − 2 , k ) = c ( 2 , k ) . 
 
Proof. 
We first show that α ( m , m − 2 , k )⩽ c ( 2 , k ) . Take a minimal size unavoidable set X   with full 
words of length 2. Then | X | = c ( 2 , k )  by definition. Create a new 
set X ′ = { x ( 0 ) ⋄m − 2 x ( 1 ) | x∈X } , so X ′ contains the elements of X   with m − 2  holes inserted 
into the middle. Note that the only configuration of m − 2  holes in a length m   word is having all 
the holes in the middle, since we specify that a partial word cannot begin or end with holes. 
Also, | X | = | X ′ | . We claim that X ′  is unavoidable, and prove it through contradiction. 
 
Assume that X ′  is avoidable. Then there is some two-sided infinite word v ′  that avoids X  . We 
define the words v i  for 0⩽ i < m − 1  as containing every ( m − 1 ) st symbol from v ′ , starting with 
the i  th symbol. That 
is, v i =⋯ v ′ ( i − j ( m − 1 ) )⋯ v ′ ( i − m + 1 ) v ′ ( i ) v ′ ( i + m − 1 )⋯ v ′ ( i + j m − j )⋯ . Then 
some v i  must avoidX  , since if any 
factor v ′ ( i + j m − j ) v ′ ( i + j ( m − 1 ) + 1 )⋯ v ′ ( i + ( j + 1 ) ( m − 1 ) )  is compatible 
withx ( 0 ) ⋄m − 2 x ( 1 )∈X ′  then x = x ( 0 ) x ( 1 )∈X  must be compatible with the 
factor v i ( j ) v i ( j + 1 ) = v ′ ( i + j ( m − 1 ) ) v ′ ( i + ( j + 1 ) ( m − 1 ) )  of v i . Since X ′  being avoidable 
implies that X   is avoidable, we have a contradiction, so X ′  must be unavoidable. Since there 
exists an unavoidable set of partial words of length m   with m − 2  holes over a k  -letter alphabet, 
we have α ( m , m − 2 , k )⩽ c ( 2 , k ) . 



 
Next we show that α ( m , m − 2 , k )⩾ c ( 2 , k ) = α ( 2 , k ) . Consider an unavoidable set X ′  of 
minimal cardinality containing partial words of length m   with m − 2  holes over a k  -letter 
alphabet. Define a set of full words X = { x ( 0 ) x ( m − 1 ) | x ( 0 ) ⋄m − 2 x ( m − 1 )∈X ′ } . We claim 
that X must be unavoidable as well. 
Suppose that X   is avoided by a two-sided infinite word v  . Let 
 
v ′ = v ( − i ) m − 1⋯ v ( − 1 ) m − 1 v ( 0 ) m − 1 v ( 1 ) m − 1⋯ v ( i ) m − 1⋯  
 
be such that every symbol in v   is repeated m − 1  times. Then v ′  avoids X ′ , since if it does not 
avoid X ′ , some factor v ′ ( i )⋯ v ′ ( i + m − 1 )  is compatible with x = x ( 0 ) ⋄m − 2 x ( m − 1 )∈X ′ , 
and thereforev ( ⌊ i / ( m − 1 ) ⌋ ) v ( ⌊ i / ( m − 1 ) ⌋+ 1 )  is compatible with x ( 0 ) x ( m − 1 )∈X . 
Since X   being avoidable implies that X ′  is avoidable, we have a contradiction. Thus X   is 
unavoidable. Since | X |⩾α ( 2 , k ) = c ( 2 , k )  and | X | = | X ′ | , we have 
that α ( m , m − 2 , k )⩾ c ( 2 , k ) . 
Since we have shown both directions of the inequality, α ( m , m − 2 , k ) = c ( 2 , k ) .  □ 
 

Additionally, from observation of the data along other diagonals in the table, we propose the 
following conjecture, which is a generalization of the previous proposition. 

Conjecture 1. 
 
For  m⩾ n⩾ 2 ,  α ( m , m − n , k )⩽ c ( n , k ) . 
Clearly this conjecture holds for all cases we were able to check using our computer program. 
Bounds determined for some cases we were unable to get exact results for are also consistent 
with those suggested above. We can show the following. 

 
Proposition 2. 
For  m⩾ n⩾ 2 : 
 

 
 
Proof. 
For the lower bound, we first note that any unavoidable set of partial words of length m   over 
a k  -letter alphabet with m − n + 1  holes can be made into an unavoidable set of partial words of 
the same length over the same alphabet with each word having m − n  holes by performing a 
partial expansion on one hole of each word. This gives us the 
inequality α ( m , m − n , k )⩽ k α ( m , m − n + 1 , k ) . By repeatedly applying this inequality, we 
find that  as desired. 
Consider an unavoidable set X   of full words of length n − 1  of minimal cardinality. We 
construct an unavoidable set of partial words of length m   with m − n  holes by first 



appending m − n + 1  holes to the end of each w∈X , to get words of length m  . We then partially 
expand the last position of every word, so the cardinality of the set is multiplied by k  . Since a 
partial expansion of elements of an unavoidable set also gives an unavoidable set, our new set is 
unavoidable and we have α ( m , m − n , k )⩽ k c ( n − 1 , k ) .  □ 
 
Though we believe that these bounds can be improved upon, they do still offer some insight into 
values ofα ( m , m − n , k )  for large values of m and n, which represent cases for which our 
computer program is unable to generate exact results. 
 
Corollary 1. 
For large values of m and n,  α ( m , m − n , k )∼ c ( n , k ) . 
 
Proof. 
Previously, it has been demonstrated that c ( n , k )  is asymptotically equivalent to [14] and [6]. 
This implies that as n   grows large, the ratio of c ( n , k )  to c ( n − 1 , k )  approaches k  , 
or c ( n , k )∼k c ( n − 1 , k ) for sufficiently large n. Thus, though the absolute error between this 
proven upper bound and our conjectured upper bound increases as m and n grow, the relative 
error goes to zero. 
By similar logic, we note that for large values of m   and n  , 
 

 
 
Thus both our upper bound and lower bound on α ( m , m − n , k )  are asymptotically equivalent 
to c ( n , k ) , implying that for large m   and n  , α ( m , m − n , k )∼ c ( n , k ) .  □ 

4. Complexity of avoidability problems 
In [5] and [2], AVOIDABILITY was shown to be both NP-hard and in PSPACE. In this section, we 
first present an alternative, NFA-based approach to the AVOIDABILITY problem that also results 
in a polynomial space algorithm. In this approach we avoid having to transform the input into a 
set of equal length partial words. 
 
Proposition 3. 
AVOIDABILITY is in PSPACE. 
 
Proof. 
Let X = { x 1 , … , x n }  be a set of partial words over an alphabet A   of size k  . For 
each x i∈X  we can define in a natural way a regular expression R i  such that L ( R i )  is the set of 
all full words over A   compatible withx i . For example, let x 1 = b ⋄ ⋄ a ⋄ b  over { a , b } ; 
then R 1 = b ( a + b ) ( a + b ) a ( a + b ) b . Note that the representation of R i  has size O ( k | x i | ) . We 
can then define a regular expression R = A ⁎ ( R 1 + R 2 +⋯+ R n ) A ⁎  so that L ( R )  is the set of 
all words over A   that contain at least one occurrence of a factor compatible with a partial word 



in X  . Note that the size of R   is linear in the size of the representation of X  . Finally, an 
NFA M   accepting L ( R )  can be constructed in linear time from R   in a natural way so 
that M   has at most N = 1 + ∑ x ∈ X | x |  states and O ( k N )  transitions. It follows that there is a 
two-sided infinite word avoiding X   if and only if there are infinitely many words not accepted 
by M  . In other words, X   is avoidable if and only if the complement of L ( M )  is infinite. 
However, the problem of determining if the complement of a language accepted by an NFA is 
infinite is in PSPACE (in fact, this problem is PSPACE-complete) [15, Exercise 16, p. 199]. We 
can therefore decide if X   is avoidable by constructing the NFA M   (in linear time), and then 
applying a polynomial space algorithm to decide if the complement of L ( M )  is infinite.  □ 
 
In [2], the complexity of natural variations of AVOIDABILITY were analyzed. While some of them 
were shown to be NP-hard, others were shown to be efficiently decidable. We next build on this 
work by considering variations of AVOIDABILITY when restrictions are put on the number of 
holes and length of the words. On the one hand, we prove the following two propositions. 
 
Proposition 4. 
The problem of deciding the avoidability of a finite set of partial words with an equal number of 
holes over an alphabet of size  k⩾ 2 is NP-hard. 
 
Proof. 
We provide a reduction from the unrestricted AVOIDABILITY problem. Consider an instance of 
this problem: a finite set X   of partial words over a k  -size alphabet A  . We construct a set X ′  of 
partial words with an equal number of holes. Let h ( w )  denote the number of holes in a partial 
word w  , and let h ′  denote the maximal number of holes in any word in X  . Then we set 
 

 
 
Note that the first part of X ′  has the same avoidability as 

 
 
by an expansion operation, and this set in turn has the same avoidability 
as  by hole truncation. Thus, X ′  has the same avoidability as X  ; that 
is, X ′  is avoidable if and only if X   is avoidable. Finally, the length of the description 
of X   being ‖ X ‖ = ∑ u ∈ X | u | , since the maximum number of holes in a word in X   is upper 
bounded by the length of the longest word in X   and the length of the longest word in X   is in 
turn upper bounded by ‖ X ‖ , we get that ‖ X ′ ‖ < ‖ X ‖ 2 k , so this reduction runs in polynomial 
time. Thus, since AVOIDABILITY has been shown to be NP-hard, we have that our problem is also 
NP-hard.  □ 
 
Proposition 5. 
The problem of deciding the avoidability of a finite set of partial words where each word has 
equal length m and an equal number of holes  h < m − 2 over an alphabet of size  k⩾ 2 is NP-
hard. 



 
Proof. 
We proceed by reduction from the DIRECTED HAMILTONIAN CIRCUIT problem, known to be NP-
complete [8]. Consider an instance of the problem: a digraph G = ( V , E ) . We want to determine 
whether G   contains a Hamiltonian circuit. We construct a set X   of partial words of equal 
length with an equal number of holes such that X   is avoidable if and only if G   has a 
Hamiltonian circuit. Let our alphabet be V = { v 1 , v 2 , … , v n } . Then our set X   consists of the 
three parts , , 
and . 
Suppose there exists some Hamiltonian circuit ( u 1 , u 2 , … , u n , u 1 )  in G  . Then the 
word ( u 1 u 2⋯ u n ) Z avoids X  . Notice that since ( u i , u i + 1 )∈E , for all 1⩽ i < n , 
and ( u n , u 1 )∈E , this word avoids the first part of X. Since it is n-periodic, it avoids the second 
part of X, and since no vertex can appear twice in a Hamiltonian circuit, instances of a particular 
letter are spaced n apart, thus avoiding the third part of X. 
 
Next suppose there exists a two-sided infinite word w   which avoids X  . To avoid the second 
part of X  , it must be the case that every n  th letter is the same, so w   is n  -periodic, 
say w = ( u 1 u 2⋯ u n ) Z . By the third part of X  , each letter can appear only once per period, and 
by the first part, each set of consecutive letters inX   must represent an edge in G  . 
Thus, ( u 1 , … , u n , u 1 )  must be a Hamiltonian circuit in G. 
While every word here has length n + 2  with precisely three defined positions, we can extend the 
result to all sets such that each word has equal length and an equal number of holes, since if we 
could solve that problem efficiently, we could solve the specific case with three defined positions 
efficiently.  □ 
 
On the other hand, since k h  is a constant when we fix the number of holes h and the alphabet 
size k, the following proposition shows that for an avoidable set X of partial words with a fixed 
number of holes, the minimal period of an avoiding word is polynomial with respect to the 
length of the words, m, and the cardinality of X, n. 
 
Proposition 6. 
Given an avoidable set X of n words of length m with h holes over a k-letter alphabet, X is 
avoided by a word of period at most  k h m n . 
 
Proof. 
Let Y   be the expansion of all the words in X   into full words. Then there are at 
most k h n  elements in Y  . By Proposition 3 given in Blakeley et al. [2], there is some avoiding 
word with period at most k h m n .  □ 
 
We define AVOID-H as the problem of deciding the avoidability of a set X of n partial words of 
length m with a fixed number of holes h over a fixed k-letter alphabet. 
 
Proposition 7. 
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AVOID-H is in P. 
 
Proof. 
First, we prove that AVOID-H is in NP. If X   is avoidable, by Proposition 6 there is an avoiding 
word u   with period polynomial with respect to m   and n  . Choose non-deterministically a finite 
subword v   of length m + p of u  , where p   is the minimal period of u  . Then v   has length that 
is polynomial with respect to m , n , and vavoids X if and only if u avoids X. We can check in 
polynomial time if v avoids X, and thus if u avoids X. 
 
Moreover, we can modify an automaton given in [10, p. 31] to decide AVOID-H in polynomial 
time. The automaton is as follows: Given a set of full words X, create a graph G such that the 
vertices are the prefixes of the elements of X, and there is an edge between two vertices u and v if 
there is some letter a in the alphabet such that u is the longest suffix of va. There, it is proved 
that a set X is unavoidable if and only if every cycle in G contains a vertex in X. 
 
Now, we prove that AVOID-H is in P. Given a set X   of n   partial words of length m   with a 
fixed number of holes h   over a fixed k  -letter alphabet, we can use the graph G   associated 
with the set Y  , the full expansion of X  . The graph G   has at most k h m n  nodes, which is 
polynomial with respect to m and n. We can compute all the strongly connected components in 
polynomial time by using Tarjanʼs strongly connected components algorithm [16]. We can also 
check if each component has a node in Y in polynomial time. Thus, we can check if X is 
avoidable in polynomial time.  □ 
 
We define AVOID-MAX-H to be the problem of deciding the avoidability of a set X   of n   partial 
words of lengthm   over a fixed k  -letter alphabet, with each word having at most h   holes. 
Since h   is an upper bound on the number of holes per word, k h n  is an upper bound on the 
number of elements in the expansion of X, giving us the following corollary. 
 
Corollary 2. 
AVOID-MAX-H is in P. 
 
Remark 1. 
We can generalize Proposition 7 and Corollary 2 to the case when the set X consists of words of 
length less than or equal to m. Indeed, since the graph defined in [10, p. 31] does not require the 
members of X to be of the same length, we can use m as an upper bound on the length and keep 
the same bounds as proven above. That is, deciding the avoidability of a set X of n words of 
length at most m with at most h holes can be done in polynomial time, with exactly the same 
proof as in Proposition 7. 
Shifting focus somewhat, we define l-AVOIDABILITY to be the problem of deciding whether a 
finite set of partial words is avoided by a two-sided infinite word with period l. In addition, we 
define l-CIRCUIT to be the decision problem of determining whether a graph has a simple circuit 
of length l. The l-CIRCUIT problem can easily be shown to be NP-complete by a reduction from 
the well-known HAMILTONIAN CIRCUIT problem. 



 
Proposition 8. 
l-AVOIDABILITY is NP-complete. 
 
Proof. 
In [2, Lemma 1], it was shown that given a finite word w   and a finite set Y   of partial words, it 
can be determined in polynomial time whether the infinite periodic word w Z  avoids Y  . So we 
can decide a set X   by non-deterministically selecting a word w   of length l   and verifying 
that w Z  avoids X. Thus, l-AVOIDABILITY is in NP. 
 
Next we show the problem is NP-hard by reducing from the l  -CIRCUIT problem. Given an 
instance G = ( V , E ) ,l   of the l  -CIRCUIT problem, we construct a set X   of partial words such 
that G   contains a simple circuit of length l   if and only if X   is avoided by some two-sided 
infinite word of period l  . Let the alphabet be V = { v 1 , v 2 , … , v n }  and 
set X = { v i v j | ( v i , v j )∉E }∪ { v i ⋄ j v i | 0⩽ j⩽ l − 2 } . 
 
Suppose there exists a simple circuit ( u 1 , u 2 , … , u l , u 1 )  in G   (where u i∈V ). Then the 
word( u 1 u 2⋯ u l ) Z  avoids X ,since ( u l , u 1 )∈E , ( u i , u i + 1 )∈E  and u i ≠ u j  for 
every 1⩽ i , j⩽ l − 1 , i ≠ j . Now suppose there exists a word w = ( u 1 u 2⋯ u l ) Z  which avoids X  . 
Then any factor of w   of length l   contains distinct letters. Additionally, each pair of adjacent 
letters in w   must be an element in E  . Thus ( u 1 , … , u l , u 1 )  must be a simple circuit in G of 
length l.  □ 
 
Extending the concept of aperiodic (non-ultimately periodic) avoidability of Higgins and 
Saker [9], we now investigate aperiodic unavoidable sets of partial words. We call a set of partial 
words X over a finite alphabetA aperiodic unavoidable or a-unavoidable if every one-sided 
infinite aperiodic word over A has a factor compatible with some element of X, and a-
avoidable otherwise. Note that all unavoidable sets are a-unavoidable, but the converse does not 
hold. 
 
We define a-AVOIDABILITY to be the problem of deciding whether a finite set X   of partial words 
over an alphabet of size k⩾ 2  is a-avoidable. In [2], Blakeley et al. provided a polynomial space 
algorithm that decides whether a finite set of partial words is a-unavoidable, so a-
AVOIDABILITY is in PSPACE (the same algorithm also decides if the number of words of 
length n avoiding a given finite set of partial words grows polynomially or exponentially with n). 
 
Proposition 9. 
a-AVOIDABILITY is NP-hard. 
 
Proof. 
We model our proof after the one that AVOIDABILITY is NP-hard [5]. We proceed by reduction 
from the 3SAT problem, which is well known to be NP-complete [8]. Consider an instance of 
3SAT: a set of binary variablesx 1 , x 2 , … , x n  and m clauses each containing three literals (i.e. 



either a variable or its negation). We want to determine whether there exists a truth assignment 
for the variables such that each clause has at least one literal that is true. 
 
We construct a set X   of partial words over the alphabet A = { 0 , T , F }  such that X   is a-
avoidable if and only if there exists an appropriate truth assignment for our 3SAT instance. The 
elements of X   are divided in three parts. 
First, X   contains 0 T 0 , 0 T ⋄ 0 , … , 0 T ⋄ n − 2 0 , 0 F 0 , 0 F ⋄ 0 , … , 0 F ⋄ n − 2 0 . 
Second, X   containsT ⋄ n − 1 T , T ⋄ n − 1 F , F ⋄ n − 1 T , F ⋄ n − 1 F . Third, for each clause in our 3SAT 
instance, we add a word of length n + 2 . This word begins and ends with zeros, and each 
character in between represents the correspondingly indexed variable x i . If x i  does not appear in 
a clause, the i  th index of the corresponding word will be a hole. Otherwise, if x i  appears in the 
clause, F   appears in the i  th index or if the negation of x i appears in the clause, T   appears in 
the i  th index. As an example, suppose we have n = 4  and the clause x 1 ,x 2 , … ,x n∈{ T , F} . 
Then the word 0 F ⋄T F 0  represents this clause in X. 
 
Suppose there exists an assignment x 1 , x 2 , … , x n∈ { T , F }  satisfying our 3SAT instance. 
Letw = x 1 x 2⋯x n . Then we claim the one-sided infinite aperiodic 
word v = 0 n w 0 2 n w 0 3 n w⋯  avoids X. 
Notice that v   always has precisely n   truth values between blocks of zeros, so v   avoids the first 
part of X  . Additionally, since v   never has more than n   consecutive truth values and blocks of 
truth values are always separated by at least n   zeros, v   avoids the second part of X  . Finally, 
the third part of X   is avoided because any factor of length n + 2  beginning and ending with 
zeros is precisely 0 x 1⋯x n 0 . This factor is not compatible with any element in the third part 
of X, as this would imply that the corresponding clause in the 3SAT instance is not satisfied. 
Thus, v avoids X. 
 
Now suppose X   is a-avoidable. Then there exists some one-sided infinite aperiodic 
word v   avoiding X  . The second part of X   tells us that v   must contain some zero; on the other 
hand, v   cannot be all zeros past some point since this would be a periodic word, so v   must also 
contain some truth value character. In particular, v   must contain a zero followed by some truth 
value, which must be eventually followed by another zero by the second part of X  . In fact, the 
first part of X   forces precisely n   truth values between these two zeros. This gives us a factor of 
the form 0 x 1 x 2⋯x n 0 . This factor must avoid all the clause patterns in the third part, implying 
the assignment of truth values x 1 , x 2 , … , x n  satisfies all clauses of our 3SAT instance. 
 
To extend this proof to larger size alphabets, simply include the additional letters in X  . We can 
extend this proof to binary alphabets by using binary triples to represent each of 0 , T , F . For 
details on this extension, we refer the reader to the proof of Theorem 2 in [5].  □ 
This result has direct implication on variations of the a-AVOIDABILITY problem. 
 
Corollary 3. 
The problem of deciding the a-avoidability of a finite set of partial words where each word has 
equal length m over an alphabet of size  k⩾ 2 is NP-hard. 



 
Corollary 4. 
The problem of deciding the a-avoidability of a finite set of partial words where each word has 
an equal number of holes over an alphabet of size  k⩾ 2 is NP-hard. 
Both of these corollaries can be proved by reduction from a-AVOIDABILITY by making use of the 
above proposition. The reduction is similar to the one of AVOIDABILITY to the corresponding 
variations of fixing length or number of holes. 
 
We end this section with a generalization of the avoidability problem, AVOID-MEET, which we 
define to be the problem of deciding, given two finite sets of partial words X   and Y   over an 
alphabet of size k⩾ 2 , whether every word that avoids X meets Y. That is, if any 
word u avoids X, must some factor of u be compatible with a word in Y? 
Proposition 10. 
AVOID-MEET is co-NP-hard. 
 
Proof. 
A typical co-NP-complete problem is CO-3SAT, or UN3SAT, which is the problem of deciding 
given a logical formula, if all assignments of truth values renders the formula false. We 
reduce CO-3SAT to AVOID-MEET, using a technique similar to the one used in the proof given 
in [5] that AVOIDABILITY is NP-hard. Given a formulaϕ   over variables x 1 , … , x n , we want to 
determine if every assignment of truth values makes ϕ   evaluate to FALSE. We build a set X   of 
partial words over the alphabet { 0 , T , F }  such that the only possible avoiding words are 
periodic with each period being a concatenation of words of the form 0 n v , where v∈ { T , F } n . 
The exact way to construct X   is given in [5], and the size of X   is polynomial with respect to n  . 
We then build a set of partial words Y   such that for every clause in ϕ  , we add a word of length 
2n   to Y   with 0 for the last n   positions, an F   in the i  th position if x i  appears in the clause, 
and a T   in the i  th position if ¬ x i appears in the clause. 
 
Assume that there exists some assignment x 1 , … , x n  such that ϕ   evaluates to TRUE. Then the 
word( 0 n x 1⋯x n ) Z  avoids X   and does not meet Y  , since the assignment cannot let any of the 
clauses evaluate to FALSE. Conversely, if there is some word u   that avoids X   and does not 
meet Y  , there is some factor of u   of the form 0 u 1⋯ u n 0 , for u i∈ { T , F } . If we let u i  be an 
assignment of x i , then this assignment does not evaluate to FALSE in any clause and 
so ϕ evaluates to TRUE. Thus we have reducedCO-3SAT to AVOID-MEET for alphabets of size 
three, and we can generalize the result to alphabets of any size of at least two by using 
techniques similar to the ones in [5].  □ 

5. A hard counting problem 
In [11], Manea and Tiseanu presented a number of hard counting problems for partial words and 
showed them# P -complete. One of these problems is the following, which deals with counting 
full words, over a restricted alphabet, that are compatible with factors of a given partial word. 
 



Problem 1. 
Given a partial word w   over an alphabet A   with | A |⩾ 3 , and a symbol $∈A , count the full 
wordsv∈ ( A∖ { $ } ) ⁎ , with 0 < | v |⩽ | w | , that are compatible with some factor of w. 
 

We examine the problem of counting the full words compatible with some factor of any element 
in a set of partial words. 

Problem 2. 
Given a list of partial words X = { w 1 , w 2 , … , w n }  over an alphabet A   with | A |⩾ 2 , count the 
wordsv∈A ⁎  that are compatible with some factor of some w i . 
Note that we do not make restrictions on the lengths of elements of X or the lengths of factors, 
differentiating this problem from others presented in [11]. We show that Problem 2 is a hard 
counting problem by giving a Turing reduction from Problem 1. 
 
Proposition 11. 
Problem 2is #P-complete. 
 
Proof. 
We first show that the problem is in # P . Note that any v∈A ⁎  that is compatible with a factor of 
an element of X   must have length less than or equal to the length of the longest element of X  . 
Then there are only finitely many possible words that can be compatible with a factor of an 
element of X  . We can create a non-deterministic Turing machine that non-deterministically 
guesses a word v   that satisfies the length bound and checks if v   is compatible with a factor of 
an element of X  . This check can be done in polynomial time, and this Turing machine has 
exactly as many accepting paths as the number of words v   that are compatible with a factor 
of X  , so the problem is in # P . We next must show that it is complete for the class. 
 
Assume that there exists a function solve(X  ) that can compute a solution to Problem 
2 efficiently, taking as input the set X  . Consider an instance of Problem 1: w   is a partial word 
over some alphabet A   with | A |⩾ 3 and $ is a symbol in A  . We construct our set X   by stepping 
through w  . Every time we encounter the symbol $, we end an element. For example, the 
word w 1 $ $ $ w 2 $ w 3 $  where w 1 , w 2 , w 3  are partial words over A∖ { $ }  becomes the 
set { w 1 , w 2 , w 3 } . Clearly we can manage this operation in polynomial time. 
 
Since we count factors excluding the $ symbol, by construction no factor counted for Problem 
1 can cross between elements of X  . Additionally, since each w i∈X  is a factor of our original 
word w  , no extra factors have been introduced. Thus, by running solve on our constructed set, 
we obtain the answer to Problem 1. Then if there exists an efficient solution to Problem 2, we 
must also have an efficient solution to Problem 1. However, since Problem 1 has been shown to 
be # P -complete, Problem 2 must also be # P -complete.  □ 

6. Conclusion 



In this paper, we have given bounds on the minimum cardinality of an unavoidable set of partial 
words of constant length m   with h   holes over an alphabet of size k  . We have given an 
alternative proof that the problem of deciding the avoidability of a finite set of partial words over 
an arbitrary alphabet can be solved in polynomial space. We have analyzed the complexity of 
variations on this problem with restrictions on the number of holes and length of the words. We 
have extended the concept of aperiodic avoidability to sets of partial words and have analyzed 
the complexity of deciding if a finite set of partial words over a k  -letter alphabet is avoided by 
an aperiodic one-sided infinite word. We have also proved that counting the full words that are 
compatible with some factor of some element in a given set of partial words is # P -complete. 
Another problem related to the complexity of deciding avoidability is that of computing bounds 
on the minimum period of words avoiding sets of partial words. Blakeley et al. [2] found a 
polynomial bound for sets of full words. We gave a polynomial bound for sets with a fixed 
number of holes. Proving a polynomial bound for the minimum period, without the hole 
restriction, would give a proof of the membership of AVOIDABILITY in NP. 
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