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Abstract:  
 
A finite Sturmian word w is a balanced word over the binary alphabet {a,b}, that is, for all 
subwords u andv of w of equal length, ||u|a−|v|a|≤1, where |u|a and |v|a denote the number of 
occurrences of the lettera in u and v, respectively. There are several other characterizations, some 
leading to efficient algorithms for testing whether a finite word is Sturmian. These algorithms 
find important applications in areas such as pattern recognition, image processing, and computer 
graphics. Recently, Blanchet-Sadri and Lensmire considered finite semi-Sturmian words of 
minimal length and provided an algorithm for generating all of them using techniques from 
graph theory. In this paper, we exploit their approach in order to count the number of minimal 
semi-Sturmian words. We also present some other results that come from applying this graph 
theoretical framework to subword complexity. 
 
Keywords: Combinatorics on words | Graph theory | Subword complexity | Semi-Sturmian 
words | Euler’s totient function 
 
Article: 
 
1. Introduction 
 
An infinite word w is an infinite sequence of letters from a finite alphabet. Any finite block of 
consecutive letters of w is a factor   or subword   of w. The word w is Sturmian   if, for all non-
negative integers n, there are exactly n+1 distinct subwords of w of length n. In other words, 
the subword complexity  pw(n) of w, which counts the number of distinct subwords of 
length n of w, is equal to n+1. The fact pw(1)=1+1=2implies that w is constructed from two 
distinct letters of the alphabet. Without loss of generality, we call these a and b. The well-known 
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Fibonacci word 
 
abaababaabaababaababaabaababaabaab… 
 
is Sturmian. It is defined by Fn+2=Fn+1Fn, where F0=a and F1=ab. 
 
Sturmian words have been widely studied. Morse and Hedlund introduced the term “Sturmian 
trajectories” and did a first comprehensive study in 1940 in relation to symbolic dynamics  [13]. 
Chapter 2 of Lothaire’s book “Algebraic Combinatorics on Words” provides a systematic 
exposition of Sturmian words, their numerous properties, and equivalent definitions  [11]. 
Sturmian words appear in the literature under various names: rotation sequences, cutting 
sequences, Christoffel words, Beatty sequences, characteristic words, balanced words, 
nonhomogeneous spectra, billiard trajectories, etc. Application areas include linear filters [10], 
routing in networks  [1], pattern recognition  [5], image processing and computer graphics  [6]. 
For example, counting the number of distinct digitized straight lines corresponds to counting the 
number of subwords of a given length in Sturmian words. A formula was conjectured by Dulucq 
and Gouyou-Beauchamps in  [8] and later proved by Mignosi in  [12]. 
 
A finite word w is Sturmian if it is a subword of an infinite Sturmian word. Linear-time 
algorithms have been provided for recognizing finite Sturmian words (see for example, 
Boshernitzan and Fraenkel  [4] and de Luca and De Luca  [7]). Berstel and Pocchiola also 
provided a linear probabilistic algorithm for generating randomly finite Sturmian words  [2]. 
 
Now, a finite word w is semi-Sturmian of order N   if pw(n)=n+1 for n=1,…,N. Note that the 
terminology Sturmian of order N   was previously used by Blanchet-Sadri and Lensmire 
in  [3] for such word, but we decided to adopt the terminology “semi-Sturmian” here to avoid 
confusion with finite Sturmian words. Not all semi-Sturmian words of order N are Sturmian, for 
instance, aabb is a semi-Sturmian word of order 2 but it is not a subword of any infinite Sturmian 
word. However every finite Sturmian word is semi-Sturmian of order Nfor some N. A semi-
Sturmian word of order N is minimal   if it has minimal length among all semi-Sturmian words 
of order N. Equivalently, it is minimal if it has length 2N. In  [3], Blanchet-Sadri and Lensmire 
described an algorithm that generates all minimal semi-Sturmian words of each order N≥3. 
Earlier in  [14], it had been shown that the minimal length of a word w such that pw(n)=Fn+2 for 
all n,1≤n≤N, isFN+FN+2, where (Fn)n≥1 is the Fibonacci sequence and N is a positive integer, and 
an algorithm had been given for generating such minimal words of each order N≥1. 
In this paper, our main result is to count the number of minimal semi-Sturmian words of 
order N for every integer N greater than 1. We show that this number is connected to Euler’s 
totient function ϕ from number theory, where the totient ϕ(n) of a positive integer n is the 
number of positive integers less than or equal ton that are coprime to n. 
 



The contents of our paper is as follows. In Section  2, we review some basics on semi-Sturmian 
graphs and some graphs corresponding to given sets of words of a fixed length. We also recall 
conditions for the existence of Eulerian paths in graphs. In Section  3, we consider minimal 
words with subword complexity n+1, that is, minimal semi-Sturmian words. We count all 
minimal semi-Sturmian words of order N using a graph theoretical approach based on the above 
mentioned algorithm that generates all such words. We show that any graph produced by this 
algorithm belongs to one of three families of semi-Sturmian graphs that end up playing an 
important role in the counting. In Section  4, we use our techniques to extend our result further to 
include a lower bound on the number of minimal words with subword complexity n+k−1, 
where k is the alphabet size. 
 
2. Preliminaries on graphs 
 
We recall some graph theoretical concepts that will be useful. All graphs in this paper are 
assumed to be directed. The reader is referred to  [9] for more information. 
 
A graph G is said to be semi-Sturmian of order  n if G has n vertices, n+1 edges, and contains an 
Eulerian path. The graph G is also said to be semi-Sturmian   if it is semi-Sturmian of some 
order n. Moreover for any graph G=(V,E), we denote by L(G) its line graph   which is the 
graph G′=(V′,E′) where V′=E, and for all 
,  if  and  for some v1,v2,v3∈V. Fig. 1(c) gives the line graph 
of Fig. 1(b). 
 

 
(a) G2. 
 

 
(b) . 



 
(c) G3. 
 

 
(d) . 
 
Fig. 1 Running Algorithm 1: this sequence of graphs produces, among others, the semi-Sturmian 
word aaabaa of order 3. 
 
Now, let S be a set of words of length n. Combining ideas from de Bruijn and Rauzy graphs, the 
graph GS=(V,E), defined in  [3], is as follows: V is the set of all factors of length n−1 of words 
in S, and E consists of all edges (x,x′) so that there exists a word y∈S with x as a prefix and x′ as 
a suffix. The edge (x,x′)can be identified (or labelled) with the word y. See Fig. 1(a) for an 
example where S={aa,ab,ba,bb}. 
 
It is worth noting that every path in a graph of the form GS corresponds to a word. More 
specifically, let x0,…,xm be a path in GS where x0,…,xm are vertices. Then this path corresponds 
to the word w wherew[0…n−1)=x0,w[1…n)=x1,…,w[|w|−n+1…|w|)=xm (here m=|w|−n+1). 
Moreover if pand q are different paths, then they correspond to different words. A similar 
construction allows us to view every path in the graphs L(GS),L(L(GS)),… as a word. We say 
that if p is a path in some subgraph ofL(⋯(L(GS))⋯), then p corresponds to a word. 
 
We end this section with a well-known result on the existence of Eulerian paths. The 
notation  refers to the indegree of vertex v and  to its outdegree. 



 
Lemma 1. 
 
Let  G be a graph, and let  xand  ybe vertices in  G. 
 

• If  x=y, then there is an Eulerian path from  xto  yif and only if  Gis strongly connected 
and  for all  v. 

 
• If  x≠y, then there is an Eulerian path from  xto  yif and only if  Gis weakly 

connected,  , and  for all 
other vertices  v. 

 
3. Our main result 
 
Our main goal is to prove the following result. Recall that the Euler totient  ϕ(n) of a positive 
integer n is the number of positive integers less than or equal to n that are coprime to n. For 
example, ϕ(9)=6 since 1,2,4,5,7 and 8 are coprime to 9. 
 
Theorem 1. 
 
For  N≥2, the number of minimal semi-Sturmian words of order  N,S(N), satisfies   

 
where  ϕ(n)is the Euler totient function. 
 
We begin by recalling an algorithm due to Blanchet-Sadri and Lensmire [3], which we illustrate 
in Fig. 1. 
 

 
 



Theorem 2 [3]. 
 
Algorithm 1  outputs a word  wif and only if  wis a minimal semi-Sturmian word of order  N. 
 
To simplify our exposition, we introduce the following notation: if G=(V,E) is a semi-Sturmian 
graph, then we write G⇒G′ if one of the following holds: 
 

1. L(G) has |E|+1 edges and G′=L(G); 
 

2. L(G) has |E|+2 edges and G′ is formed by removing an edge in L(G) so that G′ has an 
Eulerian path. 

 
In counting minimal semi-Sturmian words, there are some important families of semi-Sturmian 
graphs to consider. 
 
Definition 1. 
 
1. The graph An1,n2;n3 with vertices v0,…,vn1,u0,…,un2,w0,…,wn3−1 is composed of the cycles 
v0,…,vn1,v0, 
 
u0,…,un2,u0, 
 
and the path 
 
v0,w0,…,wn3−1,u0 
 
 (see Fig. 2). 
 

 
 
2. The graph Bn1,n2;n3 with vertices x0,x1,v0,…,vn1−1,w0,…,wn3−1,u0,…,un2−1 is composed of the 
paths 
x0,v0,…,vn1−1,x1, 
 
x0,w0,…,wn3−1,x1, 
 
x1,u0,…,un2−1,x0 



 (see Fig. 3(a)). 
 

 
 
3.The graph Cn1,n2 with vertices v,u0,…,un1−1,w0,…,wn2−1 is composed of the cycles 
v,u0,…,un1−1,v 
 
v,w0,…,wn2−1,v 
 
(see Fig. 3(b)). This can be thought of as a cycle with n1+1 edges attached at one point with a 
cycle with n2+1 edges. 
 
We first prove a few simple properties about the above graphs, since they are the cornerstone for 
the proof of our main result. 
 
Lemma 2. 
 
Let  G be a semi-Sturmian graph with more than one vertex. 
 
1.If  Gis isomorphic to  An1,n2;n3then there is a unique graph  Hso that  G⇒H. Moreover,  His 
isomorphic to  An1,n2;n3+1. 
 
2.If  Gis isomorphic to  Bn1,n2;n3then there is a unique graph  Hso that  G⇒H. If  n2=0then  His 
isomorphic to  Cn1+1,n3+1≅Cn3+1,n1+1. Otherwise it is isomorphic to  Bn1+1,n2−1;n3+1. 
 
3.If  Gis isomorphic to  Cn1,n2,n1≤n2, then there exist exactly four distinct graphs,  H0,H1,H2,H3so 
that  G⇒Hifor each  i. Moreover, up to ordering we get that 
 
(a)H0≅An1,n2;0; 
 
(b)H1≅An2,n1;0; 
 
(c)H2≅Bn1+1,n2−1;0; 
 



(d)If  n1≠0then  H3≅Bn2+1,n1−1;0; otherwise  H3≅C0,n2+1. 
 
Proof. 
 
Assume that G⇒G′,G=(V,E). For Statement (1), it suffices to consider G=An1,n2;n3. 
Then V={v0,…,vn1,u0,…,un2,w0,…,wn3−1}. Let li=(vi,vi+1) for 0≤i<n1,ln1=(vn1,v0). Then 
let ei=(ui,ui+1) for 0≤i<n2,en2=(un2,u0). Finally let f0=(v0,w0),fn3=(wn3−1,u0), 
and fi+1=(wi,wi+1) for 0≤i<n3−1. It follows that L(G) is the graph whose vertices 
are l0,…,ln1,e0,…,en2,f0,…,fn3 consisting of the cycles l0,…,ln1,l0,e0,…,en2,e0, and the 
path ln1,f0,…,fn3,e0. Thus L(G) has |E|+1 edges, so G⇒G′ if and only if G′=L(G). 
Moreover, G′=L(G)≅An1,n2;n3+1. 
 
For Statement (2), it suffices to consider G=Bn1,n2;n3. The result then follows by a similar 
argument to the above, 
since G⇒L(G) where L(G)≅Cn1+1,n3+1 if n2=0 and L(G)≅Bn1+1,n2−1;n3+1 otherwise. 
 
For Statement (3), it suffices to consider G=Cn1,n2, where n1≤n2. Assume n1=0, the other case 
being similar. Then Cn1,n2 is isomorphic to the graph with V={w0,…,wn2} and 
with E={l0,…,ln2,e}where li=(wi,wi+1) for 0≤i<n2,ln2=(wn2,w0), and e=(w0,w0). Thus L(G) is the 
graph with vertices {l0,…,ln2,e} and 
edges  for  andf1=(e,l0). Let H0 be the 
subgraph we get by removing f0,H1 the subgraph we get by removing f1,H2the subgraph we get 
by removing e′, and H3 the subgraph we get by removing . It is easy to see 
thatH0,H1,H2 and H3 are all distinct, and 
that H0≅An1,n2;0,H1≅An2,n1;0,H2≅Bn1+1,n2−1;0 andH3≅C0,n2+1. Moreover, by definition, G⇒Hi for 
all i. 
 
Therefore all that remains is to show that these are the only such graphs. To see this assume 
that G⇒G′. This implies G′ is produced from L(G) be deleting one edge. If we 
delete  or f1 then it is one of theHi’s. Therefore G′ must be produced by 
deleting  from L(G) for some i,0≤i<n2. If we remove then ln2 has two outgoing edges and 
no incoming ones, so G′ cannot contain an Eulerian path, which is a contradiction. 
Therefore 0≤i<n2−1. Removing  means that li+1 has one outgoing edge and no incoming edge, 
so any Eulerian path in G′ must start at li+1 by Lemma 1. However, since ln2 has two outgoing 
edges and one incoming edge, any Eulerian path must also start at ln2. This is a contradiction. 
Therefore G′ must be one of H0,…,H3, as we wanted. □ 
 
Lemma 3. 
 
Let  be a sequence produced by Algorithm    



 1. Then there exist  n 1 , n 2 , n 3 so that  is isomorphic to one 
of  C n 1 , n 2 , B n 1 , n 2 ; n 3 or  A n 1 , n 2 ; n 3 . 
 
Proof. 
We proceed by induction. It is easy to check that this holds for N = 2 . Therefore consider N > 2 . 
Then, for input N − 1 , Algorithm 1 can produce the sequence . Thus by 
induction  is isomorphic to one of C n 1 , n 2 , B n 1 , n 2 ; n 3  or A n 1 , n 2 ; n 3 . Since , 
we get by Lemma 2 that  is isomorphic to one of  or  for some 
. □ 
 
It is the above lemma that makes C n 1 , n 2 , B n 1 , n 2 ; n 3  and A n 1 , n 2 ; n 3  important for our purposes. 
Each of these families of graphs has numerous important quantities associated with it, introduced 
and denoted as follows, where N ≥ 2 : 
 

 
 
We would like to establish relationships between these quantities. We begin with a lemma that 
tells us that all words produced by Algorithm 1 are produced by a unique choice of 
graphs  and path p. 
 
Lemma 4. 
 
Let  w be a minimal semi-Sturmian word of order  N>1. Then the following hold: 
 
1. Let  be a chain of graphs produced by Algorithm 1. Moreover, let  pbe an Eulerian 
path in  that corresponds to a word  w. Then  p is the only path in  that corresponds to  w. 
 
2. Let  be a chain produced by Algorithm    1, where some Eulerian path in  



corresponds to the word  w. Then  for all  isuch that  1<i≤N. 
 
Proof. 
 
For Statement (1), assume that q is another Eulerian path in  that corresponds to the semi-
Sturmian wordw. Then the first vertex in both p and q must be the vertex corresponding to the 
word w[0…N−1). Then the next vertex of both must correspond to the word w[1…N), and so on. 
Therefore the ith vertex in p is the same as the ith vertex in q, so p=q. 
 
For Statement (2), consider i such that 1<i≤N. We proceed by induction on i. For i=2 the result 
follows trivially. Therefore assume i>2, and assume that the result holds for i−1. Then  must 
be the subgraph of  whose vertices correspond to all subwords of w of 
length i−1 and whose edges correspond to all subwords of w of length i. However  must also 
equal said graph, so , and the result follows inductively. □ 
 
Lemma 5. 
 
If  N>1, then  |G(N)|=aN+bN+cNand the following equalities hold: 
 

 
 

 
 

 
 
Proof. 
 
Note that if An1,n2;n3≅Am1,m2;m3 then ni=mi for each i. Therefore 
if (n1,n2,n3)≠(m1,m2,m3)then An1,n2;n3 is disjoint from Am1,m2;m3. Moreover, we have that 

 
 
Thus the collection of all An1,n2;n3 with n1+n2+n3+2=N form a partition of AN, so 

 
 



The proof is identical for bN, except with An1,n2;n3 replaced by Bn1,n2;n3. Also, we need to take into 
account the fact that Bn1,n2;n3≅Bn3,n2;n1. The proof is almost identical for cN, except we need to 
take account of the fact that Cn1,n2≅Cn2,n1. 
 
To see that |G(N)|=aN+bN+cN, we begin by noting that Am1,m2;m3 is not isomorphic to Bn1,n2;n3 for 
any choice of parameters. Similarly Am1,m2;m3 is not isomorphic to Cn1,n2 and Cm1,m2 is not 
isomorphic to Bn1,n2;n3 (the fact that none of these are isomorphic is a simple consequence 
of Lemma 2). ThusAN,BN,CN is a partition of G(N), so 
|G(N)|=|AN|+|BN|+|CN|=aN+bN+cN. 
 □ 
 
Lemma 6. 
 
If  N>1, then  , where  denotes the number of Eulerian paths 
in  . 
 
Proof. 
Consider the map ψ from the set 

 
 
to the set {w:w  is a minimal semi-Sturmian word of order  N}, that maps (g,p) to the word 
corresponding to p. We know that ψ is well defined and onto by Theorem 2. Moreover, 
by Lemma 4it is one-to-one, so ψ is a bijection. Then note that since 
 

 
 
and S(N)=|{w:w  is a minimal semi-Sturmian word of order  N}|, the fact that ψ is a bijection of 
finite sets implies our equality. □ 
 
To use Lemma 6, we need the following. 
 
Lemma 7. 
 
1.An1,n2;n3has exactly one Eulerian path. 
 
2.Bn1,n2;n3has exactly two Eulerian paths. 
 
3.Cn1,n2has exactly  n1+n2+2Eulerian paths. 
 



Proof. 
 
We use the same notation as in Definition 1. For Statement (1), An1,n2;n3 has exactly one Eulerian 
path, namely v0,…,vn1,v0,w0,…,wn3−1,u0,…,un2,u0. 
 
For Statement (2), x0 has two outgoing edges and one incoming edge, x1 has two incoming edges 
and one outgoing edge, and every other vertex has exactly one incoming and one outgoing edge. 
It is easy to see that this implies that Bn1,n2;n3 has at most two Eulerian paths. We are able to show 
that two such paths exist: 
 
x0,v0,…,vn1−1,x1,u0,…,un2−1,x0,w0,…,wn3−1,x1 
 
x0,w0,…,wn3−1,x1,u0,…,un2−1,x0,v0,…,vn1−1,x1. 
 
For Statement (3), the proof is very similar to the above. There are exactly two Eulerian paths 
starting at v, and exactly one Eulerian path starting at each of the n1+n2 other vertices 
(Cn1,n2 has n1+n2+1vertices). Therefore the total number of Eulerian paths 
is 2(1)+1(n1+n2)=n1+n2+2. □ 
 
Lemma 8. 
If  N>2, then  S(N)=aN+2bN+(N+1)cN. 
 
Proof. 
Denote by  the number of Eulerian paths in . By Lemma 6, we have 
 

 
 
By Lemma 7, this equals 

 
 
 □ 
Lemma 9. 
 
If  N>2, then  2cN−1=aN−aN−1. 
 
Proof. 
 



Note that 

 
 
However, we know from Lemma 2 that 

 
 
is equal to 1 if , is equal to 2 if , and is equal to 0 
otherwise. Putting the above together, we get that aN=aN−1+2cN−1. □ 
The proofs of the next three lemmas use almost identical techniques to those in Lemma 9. 
 
Lemma 10. 
 
If  N>2, then  |G(N)|=aN−1+bN−1+4cN−1. 
 
Proof. 
 
Note that 

 
 
Also note that if  or , then 
by Lemma 2 there is exactly one  such that . If, on the other 
hand,  then there are four ’s such that . Plugging this 
into the above, we get that 

 
 
 □ 
 



Lemma 11. 
1.If  n>1, then  cn,0=c0,n=c0,n−1; 
2.If  n1,n2>0,n1≠n2, then  cn1,n2=bn1−1,0;n2−1+bn2−1,0;n1−1; 
3.If  n1,n2>0,n1=n2, then  cn1,n2=bn1−1,0;n2−1. 
 
Proof. 
 
We prove that for n>1,cn,0=cn−1,0, the other proofs are similar. Let N=n+1. Note that 

 
 
By Lemma 2, we see that if  then 

 
 
is equal to 1 and otherwise it is equal to 0. Plugging this into the above equation, we get 

 
 □ 
 
Lemma 12. 
 
Assume that  n1+n2+n3+2>2,ni≥0. Then the following hold: 
 
1.If  n1=0, then  bn1,n2;n3=0; 
 
2.If  n1,n3>0, then  bn1,n2;n3=bn1−1,n2+1;n3−1; 
 
3.If  n3=0,n1>0and  n1−1≠n2+1, then  bn1,n2;0=cn1−1,n2+1; 
 
4.If  n3=0,n1>0and  n1−1=n2+1, then  bn1,n2;0=2cn1−1,n2+1. 
 
Proof. 
 
We prove Statements 2 and 4, the other statements are similar. For Statement 2, let N=n1+n2+2. 
Moreover assume n1≥n3, the other case being trivial. Note that 



 
 
By Lemma 2, we see that if  then 

 
 
is equal to 1 and otherwise it is equal to 0. Plugging this into the above equation, we get 

 
 
For Statement 4, let N=n1+n2+2. Note that 

 
 
By Lemma 2, Cn1−1,n2+1⇒Bn1,n2;0 when n1−1≤n2+1 and Cn2+1,n1−1⇒Bn1,n2;0 whenn2+1≤n1−1. We 
see that if  then 
equation(1) 

 
 
is equal to 1, if  then the sum  (1) is also equal to 1, and otherwise it is 
equal to 0. Plugging these into the above equation, we get 

 
 □ 
 
Lemma 13. 
1. If  n1+n2+1≥2,n1,n2≥0, then 

 
 
2. If  m1+m2+m3+2≥2,m1,m2,m3≥0, then 



 
 
Proof. 
 
We prove this by induction on N=n1+n2+1=m1+m2+m3+2. Note that this holds for the case N=2. 
Therefore assume that N>2. 
 
For Statement (1), first consider the case n1=0. Then cn1,n2=c0,n2=c0,n2−1 by Lemma 11(1). Since 
gcd(0+1,0+n2−1+2)=1 we know that c0,n2=c0,n2−1=2. Since gcd(0+1,0+n2+2)=1 it follows that the 
claim holds in this case. The case with n2=0 is almost identical. So assume that n1,n2>0. 
Ifn1=n2 then cn1,n2=bn1−1,0;n2−1 by Lemma 11(3); since n1−1=n2−1 it follows by induction 
thatcn1,n2=0. Therefore assume that n1≠n2. Consider the case n1<n2, the other being similar. Then 
by Lemma 11(2), cn1,n2=bn1−1,0;n2−1+bn2−1,0;n1−1. Since n1<n2 it follows that bn1−1,0;n2−1=0, 
so cn1,n2=bn2−1,0;n1−1. Then note that gcd(n2−n1,n2+1)=gcd(n1+1,n2+1)=gcd(n1+1,n1+n2+2), so it 
follows by induction that 

 
 
which is what we wanted. 
For Statement (2), assume m1≤m3. Then by a simple inductive argument on m1 and Lemma 12, 
we get that bm1,m2;m3=b0,m2+m1;m3−m1=0. If m1>m3, a similar argument gives us 
thatbm1,m2;m3=bm1−m3,m2+m3;0. There are two cases to consider. First if m1−m3−1≠m2+m3+1, we 
obtain by induction that 

 
as desired. 
 
Therefore assume that m1−m3−1=m2+m3+1. Then we get thatbm1−m3,m2+m3;0=2cm1−m3−1,m2+m3+1=0, 
where the last equality follows since 
gcd(m1−m3−1+1,m1−m3−1+m2+m3+1+2)=gcd(m1−m3,2(m1−m3−1)+2)=gcd(m1−m3,2(m1−m3))≥
m1−m3=m2+m3+2>1, so cm1−m3−1,m2+m3+1=0 by the inductive hypothesis. However, note that 
sincegcd(m1−m3,m1+m2+2)=gcd(m1−m3,m3+m2+2)=gcd(m1−m3,m1−m3)=m1−m3=m2+m3+2>1, 
the result follows. □ 
 
Lemma 14. 
 
If  N≥2, then the following equalities hold: 
 
1.cN=ϕ(N+1); 



2. ; 

3. . 
 
Proof. 
 
Consider N≥2. For Statement (1), 

 
 
By Lemma 13(1), this equals 

 
 
where the above equality follows since the map ξ from the set 
{(n1,n2):gcd(n1+1,n1+n2+1)=1,n1+n2+1=N,0≤n1≤n2} 
 
to the set 

 
 
defined by ξ(n1,n2)=n1 is a bijection. Setting m=n1+1 tells us that the above equals 

 
 
By noting that gcd(m,N+1)=1 if and only if gcd(N+1−m,N+1)=1, we get that 

 
 
So plugging this into the above chain of equalities, we deduce that 

 
 
where the second to last equality follows since, if  then . 



Therefore we get the result we wanted. 
 
For Statement (2), we prove this by induction on N. It holds when N=2, so assume N>2. Then by 
the previous part of the proof and Lemma 9, we get that 
 

 
 
For Statement (3), we proceed by induction on N. We know that the claim holds when N=2, so 
assume thatN>2. By Lemma 10, |G(N)|=aN−1+bN−1+4cN−1. Moreover, |G(N)|=aN+bN+cN. 
Thus aN−1+bN−1+4cN−1=aN+bN+cN. Solving for bN, it follows by induction that 

 
 □ 
 
We conclude this section with the proof of Theorem 1: 
 
Proof. 
 
For N=2, we can easily check that this holds. For N>2, this follows 
from Lemma 8 and Lemma 14. □ 
 
4. Conclusion 
 
Our techniques can help count minimal words with subword complexity other than f(n)=n+1. In 
particular they can help with those with complexity f(n)=n+k−1, where k is the size of the 
alphabet. For N>0, how many words w of minimal length exist such 
that pw(n)=n+k−1 for n=1,…,N? Theorem 3 gives a lower bound on this number. 
 
Lemma 15. 
 
Let  N>2, let  Abe a  k-letter alphabet, let  be any spanning subgraph of  G{ab:a,b∈A}such 
that  has an Eulerian path and  k+1edges, and let  be any sequence such 
that  for  2≤i<N. If  wis a word corresponding to an Eulerian path in  , then  wis a 
minimal word of order  Nwith subword complexity  f(n)=n+k−1. 
 
Proof. 
The proof is identical to that of Theorem 2. □ 
 



Lemma 16. 
Let  Abe a  k-letter alphabet. 
 
1.There are at least  spanning subgraphs of  G{ab:a,b∈A}isomorphic to some graph of the 
form  An1,n2;n3. 
2.There are at least  k!spanning subgraphs of  G{ab:a,b∈A}isomorphic to some graph of the 
form  C0,n. 
 
Proof. 
 
For Statement (1), let A1 consist of all subsets of A containing two elements and A2 consist of all 
orderings of the elements in A. Then A1×A2 has  elements. Therefore to prove our result it 
suffices to produce a subgraph of G{ab:a,b∈A} isomorphic to some An1,n2;n3 for each element 
in A1×A2. So consider the element ({ar,as},(a0,…,ak−1)) in A1×A2. Without loss of generality we 
can assume that r<s. Then consider the graph which contains the path a0,…,ak−1, and so contains 
the edges(ai,ai+1) for all i such that 0≤i<N, as well as the edges (ar,a0) and (ak−1,as). Then this is a 
spanning subgraph of G{ab:a,b∈A} isomorphic to Ar,k−1−s;s−r−1. Moreover, each element 
in A1×A2produces a different graph, so our result follows. 
 
For Statement (2), since there are k! orderings of the elements in A, it suffices to construct a 
subgraph ofG{ab:a,b∈A} isomorphic to some C0,n for each ordering. So let a0,…,ak−1 be such an 
ordering. Then consider the graph whose vertices are a0,…,ak−1, and where (ai,ai+1) is an edge for 
each i such that0≤i<N. Moreover, let (ak−1,a0) and (a0,a0) be edges. Then this graph is uniquely 
determined by the ordering of the letters in A and is isomorphic to C0,k−1. Moreover, it is a 
spanning subgraph ofG{ab:a,b∈A}. □ 
 
Lemma 17. 
 
Let  Abe a  k-letter alphabet. 
 
1.There are at least  k!sequences  such that  is a subgraph of  G{ab:a,b∈A}having an 
Eulerian path and  k+1vertices,  for all  isuch that  2≤i<N, and  for some  n. 
 
2.There are at least  sequences  such that  is a subgraph 
of  G{ab:a,b∈A}having an Eulerian path and  k+1vertices,  for all  i such that  2≤i<N, 
and  for some  n1,n2,n3. 
 
Proof. 
 



For Statement (1), we proceed by induction on N. We know that this holds for N=2. Therefore 
assume thatN>2 and that the claim holds for N−1. Then for each 
sequence  with  for somen, we know that there exists a unique 
graph  so that  and  is isomorphic to C0,n for some n (see Lemma 2(3)(d)). 
Therefore the claim follows by induction. 
 
For Statement (2), we also proceed by induction on N. This holds for N=2. Therefore assume 
that N>2 and that the claim holds for N−1. For each sequence  with  for 
some n, there exist two graphs  and  so that , and 
both  and  are isomorphic to someAn1,n2;n3 (see Lemma 2(3)(a,b)). Also for each 
sequence  with  for somen1,n2,n3, there exists a unique  so 
that  and so that  for some n1,n2,n3(see Lemma 2(1)). Therefore the 
claim follows inductively. □ 
 
We now prove our bound. 
 
Theorem 3. 
 
For  N≥2, the number of minimal words of order  Nover a  k-letter alphabet with subword 
complexity  f(n)=n+k−1,S(N,k), satisfies 

 
 
Proof. 
 
By Lemma 17 there are at least k! sequences , where  is a subgraph 
of G{ab:a,b∈A}having an Eulerian path and k+1 vertices,  for 2≤i<N, and  for 
some n. Moreover, each such  has k+N−1 Eulerian paths (since  where n=N+k−3), 
so these graphs contribute k!(k+N−1) to the total. Moreover, there are at 
least  sequences , where  is a subgraph of G{ab:a,b∈A} having an 
Eulerian path and k+1 vertices,  for 2≤i<N, and  for some n1,n2,n3. Each 
of these sequences contributes one word to the total (since An1,n2;n3 has exactly one Eulerian 
path). Thus adding everything up gives us our result. □ 
Note that the above bound can be improved by including more families of graphs (as opposed to 
justAn1,n2;n3 and C0,n), but the proof becomes trickier. 
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