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Abstract: 

The study of the combinatorial properties of strings of symbols from a finite alphabet (also referred to as words) 

is profoundly connected to numerous fields such as biology, computer science, mathematics, and physics. In 

this paper, we examine to which extent some fundamental combinatorial properties of words, such as 

conjugacy, remain true for partial words. The motivation behind the notion of a partial word is the comparison 

of two genes (alignment of two such strings can be viewed as a construction of two partial words that are said to 

be compatible). This study on partial words was initiated by Berstel and Boasson.  

 

Article: 

1. Introduction 

The study of the combinatorial properties of strings of symbols from a finite alphabet is profoundly connected 

to numerous fields such as biology, computer science, mathematics, and physics. The symbols from the 

alphabet are also referred to as letters and the strings as words. The stimulus for recent works on combinatorics 

of finite words is the study of molecules such as DNA that play a central role in molecular biology [1–3, 5–10]. 

The genetic information in almost all organisms is carried by molecules of DNA. A DNA molecule is a quite 

long but finite string of nucleotides of four possible types: a (for adenine), c (for cytosine), g (for guanine), and 

t (for thymine). A protein is a string of amino acids of 20 possible types. The set of the 64 3-letter words over 

the alphabet {a, c, g, t} is the set {aaa, aac, …, ttt} whose elements are referred to as codons. Every codon 

codes a uniquely determined amino acid except for the codons taa, tag, and tga, hence, every codon except taa, 

tag, and tga is referred to as a coding codon. Several codons may code the same amino acid. A (protein coding) 

gene is a string of nucleotides of the form u = xy1y2 … ynyn+1z where y1 = atg, yn+1 ∈ {taa, tag, tga}; y2, …, yn are 

coding codons, and y1 is the first occurrence of atg in u. Proteins are synthesized from genes in the transcription 

– translation process which takes as input a gene like u above and which outputs the string of n amino acids 

corresponding to y1y2 … yn. 

 

Partial words appear in comparing genes. Indeed, alignment of two strings can be viewed as a construction of 

two partial words that are compatible in a sense that will be described in Section 3. More precisely, a word of 

length n over a finite alphabet A is a map from {1, …, n} into A while a partial word of length n over A is a 

partial map from {1, …, n} into A. In the latter case, elements of {1, …, n} without an image are called holes (a 

word is just a partial word without holes). In this paper, we extend some fundamental combinatorial properties 

of words to partial words with an arbitrary number of holes. This study was initiated by Berstel and Boasson 

[2]. In particular, in Section 4, we extend results which were proved for partial words with a single hole to 

partial words with an arbitrary number of holes. The definition of special partial word is crucial for these 

extensions. In Section 5, we extend the important combinatorial property of conjugacy of words to partial words 

with an arbitrary number of holes by answering a question that was raised. 

 

2. Preliminaries on words 

This section is devoted to reviewing basic concepts on words. For more information on the matters discussed 

here, see the book by Lothaire [11] or the Handbook of Formal Languages (Vol. 1, Chapter 6 by Choffrut and 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=565
http://www.elsevier.com/


Karhumäki) [4]. 

 

Let A be a nonempty finite set, or an alphabet. Elements of A are called letters and finite sequences of letters of 

A are called (finite) words over A. The unique sequence of length 0, denoted by ɛ, is called the empty word. The 

set of all words over A of finite length (greater than or equal to 0) is denoted by A*. It is a monoid under the 

associative operation of concatenation or product of words (ɛ serves as identity) and is referred to as the free 

monoid generated by A. Similarly, the set of all nonempty words over A is denoted by A
+
. It is a semigroup 

under the operation of concatenation of words and is referred to as the free semigroup generated by A. The set 

of all words over A of length n is denoted by A
n
 (A* =         A

n
 and A

+
 =      A

n
). 

 

A word of length n over A can be defined by a map u: {1, …, n} → A where u(i) = ai with ai ∈ A and is usually 

represented as u = a1a2 … an. The length of u or n is denoted by |u|. 

 

For any word u and n ≥ 0, the n-power u
n
 is defined as u

0 
= ɛ, u

n
 = uu

n− 1 
for n > 0. A word u is a factor of v if 

there exist words x and y such that v = xuy. The factor u is called proper if u   v. If x = ɛ (respectively, y = ɛ), 

then u is called a prefix (respectively, suffix) of v. 

 

We now state some well-known combinatorial properties of words. 

 

The following important property, usually referred to as the equidivisibility property or lemma of Levi, holds. 

 
The following two properties on words u and v are equivalent to u and v being powers of the same word. 

 

Theorem 1. Let u and v be words. Then u
k
 =   for some integers k and   if and only if there exists a word w 

such that u = w
m
 and v = w

n
 for some integers m and n. 

 

Theorem 2. Let u and v be words. Then uv = vu if and only if there exists a word w such that u = w
m
 and v = w

n
 

for some integers m and n. 

 

We end this section with the important combinatorial property of conjugacy. 

 

Definition 1. Two words u and v are called conjugate if there exist words x and y such that u = xy and v = yx. 

 

Theorem 3. Two nonempty words u and v are conjugate if and only if there exists a word z such that uz = zv. 

Moreover; in this case there exist words x; y such that u = xy; v = yx; and z = x(yx)
n
 for some n ≥ 0. 

 

3. Preliminaries on partial words 

In this section, we give a brief overview of partial words [2]. Throughout this section, we let A be a finite 

alphabet. 

 

A partial word u of length n over A is a partial map u: { 1, …, n} → A. If 1 ≤ i ≤ n; then i belongs to the domain 

of u (denoted by Domain(u)) in the case where u(i) is defined and i belongs to the set of holes of u (denoted by 

Hole(u)) otherwise. A word over A is a partial word over A with an empty set of holes (we will sometimes refer 

to words as full words). 

 

Let u be a partial word of length n over A. The companion of u (denoted by uo) is the map uo : { 1, …, n} → A 

∪ {o} defined by 

 



The bijectivity of the map u   uo allows us to define for partial words concepts such as concatenation in a 

trivial way. The symbol o is viewed as a ―do not know‖ symbol and not as a ―do not care‖ symbol as in pattern 

matching. The word uo = abbobocbb is the companion of the partial word u of length 9 where Domain(u) = {1, 

2,3,5,7,8,9} and Hole(u) = {4;6}. 

 

Let u be a partial word over A. A period of u is a positive integer k such that u(i) = u(j) whenever i, j ∈ 

Domain(u) and i ≡ j (mod k) (in other words, k divides j − i). In such a case, we call u k-periodic. For example, 

the partial word with companion abboboabb is 3-periodic. 

 

Let u and v be two partial words of length n. The partial word u is said to be contained in the partial word v 

(denoted by u ⊂ v) if Domain(u) ⊂ Domain(v) and u(i) = v(i) for all i ∈ Domain(u). The partial words u and v 

are called compatible (denoted by u ↑ v) if there exists a partial word w such that u ⊂ w and v ⊂ w (in which 

case we define u ∨ v by u ⊂ u ∨ v and v ⊂ u ∨ v and Domain(u ∨ v) = Domain(u) ∪ Domain(v)). As an example, 

uo = abaooa and vo = aooboa are the companions of two partial words u and v that are compatible and (u ∨ v)o = 

ababoa. 

 

The following rules are useful for computing with partial words. 

 

• Multiplication: If u ↑ v and x ↑ y, then ux ↑ vy. 

• Simplification: If ux ↑ vy and |u| = |v|, then u ↑ v and x ↑ y. 

• Weakening: If u ↑ v and w ⊂ u, then w ↑ v. 

 

Lemma 1’s version for partial words can be stated as follows. 

 

 
 

The following lemma was used to prove Theorem 6 that follows. 

 

Lemma 3 (Berstel and Boasson [2]). Let u and v be two words and let w be a partial word with only one hole. If 

w ⊂ uv and w ⊂ vu; then uv = vu. 

 

Theorem 1’s version for partial words can be stated as follows. 

 

Theorem 4 (Berstel and Boasson [2]). Let u and v be partial words. Then u
k
 ↑    for some integers k and   if 

and only if there exists a word w such that u ⊂ w
m
 and v ⊂ w

n
 for some integers m and n. 

 

The following two results relate to extending Theorem 2 to partial words. 

 

Theorem 5 (Berstel and Boasson [2]). Let u and v be partial words. If there exists a word w such that u ⊂ w
m
 

and v ⊂ wn
 for some integers m and n; then uv ↑ vu. 

 

Theorem 6 (Berstel and Boasson [2]). Let u and v be partial words such that uv has at most one hole. If uv ↑ vu; 

then there exists a word w such that u ⊂ w
m
 and v ⊂ wn

 for some integers m and n. 

 

As stated in Ref. [2], Theorem 6 is false if uv has two holes even if uv ∨ vu has no hole. Take for example uo = 

obb and vo = abbo. 

 

4. Extensions of Berstel and Boasson’s results 

In this section, we extend Berstel and Boasson’s Lemma 3 and Theorem 6 to partial words with an arbitrary 



number of holes. The concept of a special partial word is crucial for these extensions. 

 

Definition 2. Let k and   be positive integers satisfying k ≤  . For 1 ≤ i ≤ k +  , we define the sequence of i 

relative to k and   as       (i) = (i0, i1, i2,…, in, in+ 1) where 

• i0 = i = in+1, 

• for 1 ≤ j ≤ n, ij   i, 

• for 1 ≤ j ≤ n + 1 ; ij is defined as 

 
For example, if k = 4 and   =10, then seq4,10(1)=(1,5,9,13,3,7,11,1) and seq4,10(6) = (6;10;14;4;8;12;2;6). 

 

Definition 3. Let k and   be positive integers satisfying k ≤   and let w be a partial word of length k +  . We say 

that w is {k,  }-special if there exists 1 ≤ i ≤ k such that       (i) = (i0, i1, i2, …, in, in+1) satisfies one of the 

following conditions: 

1.        (i) contains two consecutive positions that are holes of w. 

2.        (i) contains two positions that are holes of w while wo(i0)wo(i1)wo(i2) … wo(in+1) is not 1-periodic. 

 

For example, if k = 4 and   = 10, then 

• The partial word u with companion uo = aboaaboaabaaoo is {4; 10}-special since seq4,10(1) = 

(1,5,9,13,3,7,11,1) contains the consecutive positions 13 and 3 which are in Hole(u) = {3,7,13,14}. 

• The partial word v with companion vo = aobaaboaabaaoo is {4;10}-special since seq4,10(1) contains the 

positions 7 and 13 which are in Hole(v) = {2,7,13,14} while vo(1)vo(5)vo(9)vo(13)vo(3)vo(7)vo(11)vo(1) = 

aaaoboaa is not 1-periodic. 

• The partial word w with companion wo = obababobababob is not {4; 10}-special. 

 

We now extend Lemma 3. The following examples show that the assumption that w is not {|u|, |v|}-special is 

necessary. As a first example, let wo = occaccoccbcc, u = bcc, and v = accaccbcc. Here w ⊂ uv and w ⊂ vu, but 

uv   vu (w is {3,9}-special). As a second example, let wo = aobaaboaabaaoo, u = aaba, and v = abbaabaaab. 

Here w ⊂ uv and w ⊂ vu, but uv   vu (w is {4, 10}-special). 

 

Lemma 4. Let w be a partial word and u, v be full words such that w ⊂ uv and w ⊂ vu. If w is not {|u|, |v|}-

special; then uv = vu. 

 

Proof. Put |u| = k and |v| =  . Without loss of generality, we can assume that k ≤  . The proof is split into cases 

which refer to a given position i of wo. Case 1 treats the situation when 1 ≤ i ≤ k, Case 2 the situation when k < i 

≤  , and Case 3 when   < i ≤   + k (Cases 1 and 3 are symmetric). The following diagram pictures the 

inclusions w ⊂ uv and w ⊂ vu: 

 
Put   = mk + r where 0 ≤ r < k. We first treat the case where r = 0. 

 

Case 1. If i ∈ Domain(w), then w(i) ⊂ u(i) and w(i) ⊂ v(i) and so u(i) = v(i). If i ∈ Hole(w), then we prove that 

u(i) = v(i) as follows. We have 

 

 



 
 

Here wo(i)wo(i + k)wo(i + 2k) … wo(i + mk)wo(i) does not contain consecutive holes and does not contain two 

holes while not 1-periodic (w is not {k, }-special). So u(i) = v(i + (m − 1)k) = v(i + (m − 2)k) = · · · = v(i + k) = 

v(i) (Hole(w) does not contain in particular i + k, i + mk). 

 

Case 2. If i ∈ Domain(w), then w(i) ⊂ v(i − k) and w(i) ⊂ v(i) and so v(i − k) = v(i). If i ∈ Hole(w), then put i = 

nk + s where 0 ≤ s < k. If s = 0, then 

 

 
 

Here wo(nk)wo((n + 1)k)wo((n + 2)k) … wo(mk)wo((m + 1)k)wo(k)wo(2k) … wo((n − 1)k)wo(nk) does not contain 

consecutive holes and does not contain two holes while not 1 -periodic. We conclude that v(i − k) = v((n − 1 )k) 

= ··· = v(2k) = v(k) = u(k) = v(mk) = v((m − 1)k) = ··· = v(nk) = v(i) (Hole(w) does not contain i + k, i − k in 

particular). If s > 0, then 

 
 

As in the case when s = 0, we conclude that v(i − k) = v((n − 1 )k + s) = ··· = v(k + s) = v(s) = u(s) = v((m − 1)k 



+ s) = v((m − 2)k + s) = · · · = v(nk + s) = v(i). We now treat the case where r > 0. 

 

Case 1. If i ∈ Domain(w), then we proceed as in the case where r = 0. If i ∈ Hole(w), we consider the cases 

where i ≤ r and i > r. If i ≤ r, then 

 

 

 
 

Applying the above repeatedly, we can show that v(i) = u(i). More precisely, in the case where i ≤ r,       (i) = 

(i,i + k, …, i + mk, i + (m + 1)k, i + k – r, …, i) leads to v(i) = v(i + k) = ··· = v(i+(m− 1)k) = v(i+mk) = u(i + k − 

r) = ··· = u(i) since w is not {k,  }-special. Similarly, in the case where i > r,       (i) = (i, i + k, …, i + (m − 

1)k, i + mk, i – r, …,  i) leads to v(i) = v(i + k) = · · · = v(i + (m − 2)k) = v(i + (m − 1)k) = u(i − r) = ··· = u(i). 

 

Case 2. If i ∈ Domain(w), then we proceed as in the case where r = 0. If i ∈ Hole(w), then put i = nk+s where 0 

≤ s < k. If s = 0, then 

 

 



Since       (i) = (i, (n + 1)k, (n + 2)k, …, (m + 1)k, k – r, 2k – r, 3k – r, …, k, 2k, …, i – k, i), we conclude that 

v(i) = v(nk) = ··· = v((m− 1)k) = v(mk) = u(k − r) = · · · = u(k) = v(k) = v(2k) = ··· = v((n − 1 )k) = v(i − k). 

 

If s > 0, then 

 

 
 

Since       (i) = (i, (n + 1 )k + s, (n + 2)k + s, …, (m + 1 )k + s, k − r + s, 2k − r + s, …, s, k + s, …, i – k, i), we 

conclude that v(i) = v(nk + s) = ··· = v((m − 1)k + s) = v(mk + s) = u(k − r + s) = · · · = u(s) = v(s) = v(k + s) = · · 

· = v((n − 1)k + s) = v(i − k). If s > r, we also get 

 

 
 

Since       (i) = (i, (n+ 1)k+s, (n+2)k+s, …, mk+s, s – r, k + s – r, …, s, k + s, …, i−k, i), we conclude that v(i) 

= v(nk + s) = ··· = v((m − 1)k +s) = u(s − r) = ··· = u(s) = v(s) = v(k + s) = ··· = v((n − 1)k + s) = v(i − k). 

 

We now give an extension of Theorem 6 under the needed assumption that neither uv nor vu is {|u|, |v|}-special. 

Refer to the example stated at the end of the preceding section where uo = obb and vo = abbo. Here seq3,4(1) = 

(1, 4, 7, 3, 6, 2, 5, 1) which contains the holes 1,7 of uv while 

(uv)(1)(uv)(4)(uv)(7)(uv)(3)(uv)(6)(uv)(2)(uv)(5)(uv)(1) = oaobbbbo is not 1-periodic implying that uv is {3,4}-

special. 

 

Theorem 7. Let u and v be partial words: If uv is not { |u|, |v|}-special and uv ↑ vu; then there exists a word w 

such that u ⊂ w
m
 and v ⊂ w

n
 for some integers m and n. 

 

Proof. Since uv ↑ vu; uv ⊂ z and vu ⊂ z for some word z. Put z = xy where |x| = |u| and |y| = |v|. We have uv ⊂ xy 

and we will show that uv ⊂ yx. And then, by Lemma 4, we will have xy = yx and thus by Theorem 2, a word w 

such that x = w
m
 and y = w

n
 for some integers m and n. We will then have u ⊂ w

m
 and v ⊂ w

n
 as desired. 

 

Put |u| = k and |v| =  . Without loss of generality, we can assume that k ≤  . The proof is split into three cases 

that refer to a given position i of (uv)o. Case 1 refers to 1 ≤ i ≤ k, Case 2 to k < i ≤  , and Case 3 to   < i ≤   + k. 

If i ∈ Hole(uv), then there is nothing to prove. Henceforth, we assume that i ∈ Domain(uv). The following 

diagram helps in proving the inclusion uv ⊂ yx: 

 
 



Put   = mk + r where 0 ≤ r < k. We first treat the case where r = 0. 

 

Case 1: Since uv ⊂ xy and vu ⊂ xy, we have u(i) ⊂ x(i) and vo(i) ⊂ y(i) and vo(i) ⊂ x(i). If i ∈ Domain(v), we get 

u(i) = x(i) = v(i) = y(i) as desired. If i   Domain(v), then u(i)vo(i)vo(i + k) … vo(i + (m − 1)k)u(i) does not contain 

consecutive holes and does not contain two holes while not 1-periodic (since uv is not {k, }-special). Since uv 

⊂ xy and vu ⊂ xy, we have 

 
 

We get y(i) = y(i + k) = · · · = y(i + (m − 1)k) = u(i) as desired (in particular, vo(i + k) is full). 

 

Case 2: Since uv ⊂ xy and vu ⊂ xy, we have v(i − k) ⊂ y(i − k) and vo(i) ⊂ y(i) and vo(i) ⊂ y(i − k). If i ∈ 

Domain(v), then v(i − k) = y(i − k) = v(i) = y(i). Otherwise, put i = nk + s where 0 ≤ s < k. If s = 0, then 

 

 
 

We conclude that v(i−k) = v((n− 1)k) = y((n− 1)k) = y((n−2)k) = · · · = y(k) = x(k) = y(mk) = y((m − 1 )k) = · · · 

= y((n + 1 )k) = y(nk) = y(i). 

 

If s > 0, then 

 

 

 
 



 
 

We conclude that v(i − k) = v((n − 1 )k + s) = y((n − 1 )k + s) = y((n − 2)k + s) = · · · = y(k + s) = y(s) = x(s) = 

y((m− 1)k + s)= ··· = y(nk + s) = y(i). 

 

Case 3: Put i =   + j where 1 ≤ j ≤ k. Since uv ⊂ xy and vu ⊂ xy, we have uo(j) ⊂ x(j) and uo(j) ⊂ y(  − k + j) and 

v(  − k + j) ⊂ y(  − k + j). If j ∈ Domain(u), we get v(  − k + j) = y(  − k + j) = u(j) = x(j) as desired. If j   

Domain(u), then uo(j)vo(j)vo(j+k) … vo(j + (m − 1 )k)uo(j) does not contain consecutive holes and does not 

contain two holes while not 1 -periodic (since uv is not {k, }-special). Since uv ⊂ xy and vu ⊂ xy, 

 
 

We get x(j) = y(j) = y(j + k) = ... = y(j + (m — 1)k) = v(j + (m — 1)k) = v(  — k + j) as desired (in particular, 

vo(j) and vo(j + (m — 1)k) are full). 

 

We now treat the case where r > 0. 

 

Case 1: If i ∈ Domain(v), we proceed as in the case where r = 0. Otherwise, we consider the cases where i ≤ r 

and i > r. If i ≤ r, then 

 
 

Here u(i)vo(i)vo(i + k) … vo(i + mk)uo(i + k — r) … u(i) does not contain consecutive holes and does not 

contain two holes while not 1-periodic. If i > r, then 



 

 
 

Here u(i)vo(i)vo(i + k) … vo(i + (m − 1 )k)uo(i − r) … u(i) does not contain consecutive holes and does not 

contain two holes while not 1-periodic. Applying the above repeatedly, if i ≤ r, then we get y(i) = y(i + k) = ··· = 

y(i + mk) = x(i + k − r) = y(i + k − r) = y(i + 2k − r) = ··· = u(i), and if i > r, then we get y(i) = y(i + k) = · · · = 

y(i + (m − 1 )k) = x(i − r) = y(i − r) = y(i + k − r) = ··· = u(i). 

 

Case 2. If i ∈ Domain(v), we proceed as in the case where r = 0. Otherwise, put i = nk + s where 0 ≤ s < k. If s = 

0, then 

 
 

We conclude that y(i) = y(nk) = ··· = y((m − 1)k) = y(mk) = x(k − r) = y(k − r) = y(2k − r) = ··· = y((n − 1)k) = 

v((n − 1 )k) = v(i − k). 

 

If s > 0, then 

 

 



 
 

We conclude that y(i) = y(nk + s) = ··· = y((m − 1 )k + s) = y(mk + s) = x(k − r + s) = y(k − r + s) = y(2k − r + 

s) = · · · = y((n − 1 )k + s) = v((n − 1 )k + s) = v(i − k). If s > r, we also get 

 

 
 

We conclude that y(i) = y(nk + s) = ··· = y((m − 1)k + s) = x(s − r) = y(s − r) = y(s − r + k) = ··· = y((n − 1)k + 

s) = v((n − 1)k + s) = v(i − k). 

 

Case 3: By putting i =   + j where 1 ≤ j ≤ k, we can see that this case is symmetric to Case 1. 

 

5. Conjugacy 

This section is concerned with conjugacy of partial words. In particular, we extend Theorem 3 to partial words. 

 

Definition 4. Two partial words u and v are called conjugate if there exist partial words x and y such that u ⊂ xy 

and v ⊂ yx. 

 

Conjugacy on words is known to be an equivalence relation. Conjugacy on partial words is trivially reflexive 

and symmetric. However, it is not transitive as the following example shows. Consider, uo = aobabboa, vo = 

obooaaoo, and wo = baobbbaa. By putting xo = aob and yo = abboa, we get u ⊂ xy and v ⊂ yx showing that u 

and v are conjugate. Similarly, by putting   
  = obbbaa and   

  = ba, we get v ⊂ x'y' and w ⊂ y'x' showing that v 

and w are conjugate. But we can see that u and w are not conjugate. 

 

We now answer a question that was raised in Ref. [2]. Consider nonempty partial words u, v, z such that uz ↑ zv. 

Under mild assumptions, do partial words x, y exist such that u ⊂ xy, v ⊂ yx, and z ⊂ x(yx)
n
 for some n ≥ 0? As 

noted in Ref. [2], this is false even if uzv has only one hole. Consider for example u = a, v = b, and zo = obb 

(here uz ∨ zv = abbb is not 1 -periodic). The next theorem shows that under the assumption that uz ∨ zv is |u|-

periodic, such partial words x, y exist. 

 

Theorem 8. Let u and v be nonempty partial words. 

1: If u and v are conjugate; then there exists a partial word z such that uz ↑ zv: Moreover; in this case there 

exist partial words x; y such that u ⊂ xy; v ⊂ yx; and z ⊂ x(yx)
n
 for some n ≥ 0. 

2: If there exists a partial word z such that uz ↑ zv and uz ∨ zv is |u| -periodic; then there exist partial words 

x; y such that u ⊂ xy; v ⊂ yx; and z ⊂ x(yx)
n
 for some n ≥ 0. 

 

Proof. To prove Statement 1, let u, v be nonempty partial words. Suppose that u and v are conjugate and let x, y 

be partial words such that u ⊂ xy and v ⊂ yx. Then ux ⊂ xyx and xv ⊂ xyx and so for z = x we have uz ↑ zv. 

 

To prove Statement 2, assume that uz ↑ zv and that uz ∨ zv is |u|-periodic. Let m be such that m|u| > |z| ≥ (m − 

1)|u|. Put u = x1y1 and v = y2x2 where |x1| = |x2|= |z| − (m − 1)|u| and |y1| = |y2| (here |u| = |v|). Put z =   
   

   
   

  … 

    
     

   
  where |  

 | = · · · = |    
 | = |  

 | = |x1| = |x2| and |  
 | = · · · = |    

 | = |y1| = |y2|. Since uz ↑zv, we 

get 



 
is 1 -periodic, say with letter bi in A ∪ {o}. Create xo =a1a2 …       and yo = b1b2 …      . We conclude that x1 

⊂ x and x2 ⊂ x and y1 ⊂ y and y2 ⊂ y and thus, u = x1y1 ⊂ xy and v = y2x2 ⊂ yx. Moreover, z =   
   

   
   

  … 

    
     

   
  ⊂ x(yx)

m−1 
and the result follows. 

 

Note that if uz ↑ zv and z is full, then uz ∨ zv is |u|-periodic (in the proof of Theorem 8, we get   
  =   

  = · · · = 

    
  =   

  = x and   
  =   

  = · · · =     
  =y in such a case). 
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