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CHAPTER 1
INTRODUCTION

1.1 Quadrature Method

The quadrature method, first introduced by Laetsch in [Lae71], is a well-known

tool for studying positive solutions of boundary value problems of the form

—u"(x) = AM(u(z)); 0<x<l,
(1.1)

where A > 0 is a parameter and f : [0,00) — R is a C* function. The quadrature
method is a powerful tool because one can obtain the existence, nonexistence, unique-
ness, and multiplicity of positive solutions by analyzing the relationship between the
parameter A and the supremum norm of the solution wu(z).
This method can also be used to study positive solutions of boundary value prob-
lems of the form
— (Ju'(2) P2 (@) = Mf(u(@); 0<z<1

(1.2)
u(0) =0 =wu(l),

where (|u/[P~%u/), for p > 1, is called the one-dimensional p-Laplacian operator. If
p = 2, then (1.2) reduces to (1.1).
To the best of our knowledge, |[BL0O0| is the first paper where the quadrature

method was employed to investigate the existence of positive solutions for boundary



value problems like (1.2). See [LHO06], [LLYO07], [BL0OO], [KLS11]|, [AB99], [CSO08],
|[FZGO8|, where this method was utilized to study solutions of (1.2) for different
classes of nonlinearity f. In this thesis, we extend the result obtained for p = 2 and
f(0) < 0in [CS88| to the case p > 1. Moreover, we also establish results for the cases
f(0) =0 and f(0) >0

In Section 1.2 we discuss the quadrature method after establishing some prelim-
inary results. In Chapter II, we study the case f(0) < 0. Next in Chapter III, we

study the f(0) > 0 case. In Chapter IV, we investigate the case f(0) = 0.

1.2 Preliminary Results

Throughout the thesis, we assume f’(s) > 0 for s > 0, and by F(s) we mean the
primitive of f(s), that is, F(s) = [ f(t)dt. If f(0) > 0, then since f(s) > 0 for s > 0,
F(s) has no positive zeros. In the case when f(0) < 0, since f is eventually positive,
there exist unique 5 > 0 and 6 > 0 such that f(3) = 0 and F(#) = 0. To consolidate

for the results that follow, we define

0 if £(0) <0
0 if f(0)>0

Uy =

First we gather some preliminary results related to (1.2). The following symmetry

result was proven in [BL0OO| and [MLA13|. Here we provide a different proof.

Lemma 1.1. For fized A > 0, let u(x) > 0 be a solution of (1.2). Let xo € (0,1) and
x1 € (xo, 1] be such that u' > 0 on (0,z), u'(x¢) =0, and v’ < 0 on (xo,x1). Then u

is symmetric about xo = 1/2 and x; = 1.



Proof. Let u be a positive solution of (1.2) and p = u(zg). Then for z € (0,x¢), we

have

—((@)) =M (u). (1.3)
Multiplying (1.3) by «/(x) and integrating from x to x yields

Pl = AP () — Flu(a)],

which implies

p—1 r u' () _\1/p
( ) ) Fp) — Flu@)r

Integrating again on (x,xg) for x € (0, zg), yields

<]%1> : /u;) [F(p) —1F(Z)]1/pd2 = \VP(zy — ).

Now letting = = xy — € for € € [0, min {xg, x1 — zo}], we obtain

(]%> ) /<> F(p) —1F<z>J1/pdz = (1.4)

Next, since u'(x) < 0 on (zg, 1)

— (P72 = Mf(u);  x € (20, 71). (1.5)



Multiplying (1.5) by «/(x) and integrating on (zo, z) yields

]%[—U’(x)]p = AlF(p) = F(u(x))],

which in turn gives

A
( ) ) Fp) — Flu@)r

Integrating again on (z,x) for some = € (z,x;), we obtain

<1%1) : /u;) [F(p) —lF(Z)]l/de = \YP(z — z).

For o =z + € with € € [0, min {xg, z; — z0}|, we have

(%) : /u;oﬂ) [F(p) —1F(z)]1/pd2 = A/re. (1.6)

Then (1.4) and (1.6) imply u(xg — €) = u(xg + €) for € € [0, min {xg, 21 — x¢}]. Thus

u is symmetric about .
Now suppose xy # 1/2 and, without loss of generality, let zo < 1/2. Then

2z € (0,1) and for € = g, we get

o
I

u(0) = u(2x).



However, this is a contradiction since u > 0 in (0,1). Therefore zo = 1/2. Moreover,
it follows from the symmetry of the positive solution u on (0, 1) about xzy = 1/2 that

x1 = 1. This completes the proof. L]

In this thesis, a main point of interest is a function G : [Uy, 00) — (0, 00) defined

by

w0 =2(51)" | o

which arises from the quadrature method. We first discuss some important properties

of G(p) below, which were also discussed in [BL00|. We provide an alternate proof of

Lemma 1.2.

Lemma 1.2. The mapping G : [Uy,00) — (0,00) defined by (1.7) is continuous on
(Uy, ) and lim G(p) exists.

+
p—U,

Proof. Let

’ dt
mMZA[Hm_ﬂmw,pE@hW)

and consider the sequence of functions {g,} defined by

1

P dt
)= [ € U




Then g, is a continuous function of p for each n € N. By the Mean Value Theo-

rem, there exists £ € (¢, p) such that

Fp) = F(t) = f(&)(p = 1)

Since f(p) > 0 for p € (Up,00), there exists m > 0 such that f(t) > m > 0 for

t€[p—e¢€p). Then

19(p) — gn(p)| =

/P dt

~1[F(p) - F()])
1 p dt

m_// =1

1 . /p_E dt
= ——— 11In —_—
ml/P e—0 p—% [p — t]l/P

p—1
1 p . 1 P p=1
= lim | | — —€r
mi/Pp—1es0 |\ n

1 P 1\ »
S miPp—1\n '

Therefore |g(p) —gn(p)| — 0 uniformly as n — oco. Thus g(p) is continuous and hence

IN

G(p) must be continuous. Finally, lim G(p) is easily shown to exist (see [BLOO| and

+
p—Uy,

|CS88]). This completes the proof. O

Lemma 1.3. /[BL00] G(p) is differentiable on (Uy, 00) and

, —1\Y" ' H(p) — H(pz)
G =2 (Pt ) . (1.8)
0=2(57) Flp) - Flpa)F

where H(s) = F(s) — 2f(s).

p



The following important result was also established in [BL00| and [MLA13|.
Theorem 1.4 (Quadrature Method). w(z) is a positive solution of (1.2) with A > 0
and p = ||ul|ee = sup |u(z)| = u(1/2) if and only if

xz€(0,1]

AP =G(p);  p € [Uo, 00), (1.9)

where G(p) is given by (1.7).

Proof. Suppose u(z) is a positive solution of (1.2) corresponding to A > 0. Then
Lemma 1.1 implies that u(z) must be symmetric about z = 1/2, p = u(1/2) = ||u|co,

and u/(z) > 0 on (0,1/2). Then

(Ju'[7=2) = (@) @€ (0,1/2). (1.10)

Multiplying (1.10) by «'(x) and integrating over [0, z], for x € (0,1/2), we obtain

‘gihw@w+p;Hw@V:Aqu»+a ze(©0.1/2. (11

At £ =1/2, u(1/2) = p and u/(1/2) =0, so

Then (1.11) becomes

_ 1/p
(pTl) (@) = NP [F(p) = Fu(@)]"?; € (0,1/2).



Note that the quantity [F(p) — F(u(z))]"? > 0 for all p > 1, p € [Up, 00), since

F(p) > F(u(x)) for all z € [0,1/2). Hence,

1/p /
\Up = p—1 u'(x) -
( p > [F(p) — F(u(x))]'”

Integrating over [0, z] for x € (0,1/2), we get

NP pue
e = (]%) /0 : [F(p) —d;(t)]l/p'

Letting x — 1/2, u(x) — p and (1.12) becomes

W= (1) : | o rar

Conversely, suppose

W= (1) : [ o rar

and let u : [0,1/2] — [0, 00) be defined by

NP pue
= (]%) / () F(p) —dtmn”p'

(1.12)

(1.13)

Note that this function is well-defined since both sides are monotonically increasing

on [0,1/2] and are equal when =0 and x = 1/2.



Now define

Note that K € C' at any (z,u) € (0,1/2) x (0, p) and

p—1\"" 1
_ 0.
(2.) ( p > [F(p) — F(u)]"” ’

Thus if (z,u) € (0,1/2) x (0, p) satisfies K(z,u) = 0 (i.e. z,u(x) satisfies (1.13))

then the Implicit Function Theorem implies u is C! at 2. Then differentiating (1.13)

yields

which in turn gives

Differentiability of the right-hand side of the above equation implies that u”(x) exists,

so further differentiation yields

(p = D/ ()P " (2) = =Af (u()).

But (|u/[P~2/) = (p — 1)|/|P~2u", so we see that u(z) satisfies (1.2) on (0,1/2). [



Remark. 1t follows from Theorem 1.4 that the precise study of all positive solutions

of (1.2) can be achieved by analyzing the shape of the curve given by the relation

l/p _ — ]Ll e at or 00
A —G(p)._2< p) /o[F(p)—F(t)]l/p for p € [Up, 00).

Also,

reN p;ll/p ' _H(p) — H(p2) 2 for o0
G<p)_2< P ) /o[F<p>—F<pz>1Td or € (F20)

where H(s) = F(s) — 2f(s). Then

P
G'(p) > 0if H(p) — H(pz) > 0 for z € (0,1), and

G'(p) < 0if H(p) — H(pz) <0 for z € (0,1).

It was observed in [BIS81|, for p = 2, that the sign of G’ can be determined by
analyzing the graph of H(s). This observation remains valid for p # 2 and we utilize

this to obtain our results (also see [KLS11]).
Lemma 1.5. Let L(z) := F(pz)/F(p) for z € [0,1]. Then L(z) < z for all z € [0, 1].

The proof of this lemma is similar to what is shown in [CS88§].

10



(a) L(z) < z when f(0) < 0. (b) L(z) < z when f(0) > 0.
Figure 1. L(z) = F(pz)/F(p) for z € [0, 1].

Lemma 1.6. The function G(p) satisfies the following inequality for all p € (Uy, 00)

() rewsr () Ao e

Proof. Rewrite G(p) as

o =2 (1) Upp/ol o ro

by making the change of variable ¢ = pz. We will prove the left hand inequality

first. Since f’(s) > 0 for all s > 0, the Mean Value Theorem gives F(p) — F(pz) <
PP - 2).

11



Then we have

=* (p; 1)1“’ [f(pfp]l/” /o1 1 —di]l/p

:2( D >(p1)/p p(p—l)/p
p—1 [f(p)]M/P

Hence we have the desired left hand inequality

() Feon

Now we prove the right hand inequality. By Lemma 1.5, we have

= (2%1)/”/ [F(p) —d;<pz>1”p

12



Thus we have

Lemma 1.7. (i) If lim L& =0 then lim G(p) = .
S§—00

P
s pP—00

(ii) If lim Sfp(f)l = oo then lim G(p) = 0.
5—00

p—00

(#i) If lim gp(—f)l = M for some M > 0, then lim G(p) = C(M).
S§—00

p—00

Proof. (i) By Lemma 1.6 we have

o (L)l P ().

p—1 f(p)
Then lim £& =0 implies lim £~ = oo, which in turn implies lim GP(p) =
s—o00 P s—o0 /(5) p—+00

Q.

(ii) By Lemma 1.6 we have

Then lim sp(—f)l = oo implies
5—00

which further implies lim GP(p) = 0.

p—>00

13



(iii) Lemma 1.6 gives

: (p f 1)p1 ;?;; =G =¥ (pﬁ 1>p1

Then lim Sfp(f)l = M implies o < lim GP(p) < pa where
5§—00 §—00

1
a=2P P ’ i
p—1 M

Therefore, there exists u € [, pa such that lim GP(p) = pu.

p—00

14



CHAPTER II
SEMIPOSITONE PROBLEMS

In this chapter, we study positive solutions of (1.2) when f :[0,00) — R is a C?

function satisfying:
e f(0) <0 (semipositone), and
o f'(s)>0fors>0.

This chapter is motivated by the results obtained for the case p = 2 in |[CS88|. In
[AMO5], authors partially extend the results of [CS88]. Theorem 2.1 (below) agrees
with their result. See also [KLS11| where authors use the quadrature method to
study positive solutions of (1.2) when f satisfies the so-called infinite semipositone
structure, Sligi f(s) = —oo. In this thesis we do not deal with singular problems.

Since f is eventually positive, let § > 0 and 6 > 0 be the unique zeros of f and
F respectively, where F(s) := [ f(t)dt is the primitive of f. We recall that if u is
a positive solution of (1.2) corresponding to A > 0, then py := [|ulloc = u(1/2) and
H(s) = F(s) — 2 f(s) for s = 0.

In Section 2.1 we will discuss the p-Superlinear case, in Section 2.2 we discuss the

p-Sublinear case, and in Section 2.3 we discuss the p-Linear case.

2.1 p-Superlinear

Here we consider the case

(H1) lim L% = co. (p-Superlinear)
§—00

sP—

15



Theorem 2.1 (Convex). Let (H1) hold. Suppose
(A1) f"(s) >0 for s >0,
(A2) (p—2)f'(s) <sf"(s) for s =0
Then there exists \* > 0 such that (1.2) has
(i) a unique positive solution for 0 < X < \*, and

(i1) no positive solution for X\ > \*.

Moreover, py increases as \ decreases. In particular, py- = 6 and lim p, = oo.
A—07F

A*

Figure 2. Theorem 2.1 Bifurcation Diagram

16



A prototype example satisfying the hypotheses of Theorem 2.1 is

f(S) - Sp+8p_1 — €,

with € > 0.

The concavity of the nonlinearity f influences the number of solutions of (1.2).

In particular, we have the following result:
Theorem 2.2 (Concave-Convex). Let (H1) hold. Suppose
(B1) f"(s) <0 for s € (0,s0) with so > 0 and f"(s) > 0 for s > s,
(B2) (p—2)f'(s) —sf"(s) <0 for s> sy,
(B3) (p—1)f(0) <01(0),
(B4) Jim [(p— 1)1(5) ~ 7'(5)] < 0, and
(B5) there exists ¢ > 0 such that H(o) > 0.
Then there exist \*, A1, Ay with 0 < Ay < A* < Ay such that (1.2) has
(i) a unique positive solution for 0 < XA < Ay,
(i1) no positive solutions for X\ > \s.
(iii) There exists a range for X in (A1, A*) in which (1.2) has three positive solutions.
(iv) If Ay > X*, (1.2) has at least two positive solutions for X\ € [A\*, A2).

Also py» = 6 and lim p) = oo.
A—0

17



—_—

A A* Ay

A
Figure 3. Theorem 2.2 Bifurcation Diagram
An example satisfying the hypotheses of Theorem 2.2 is
f(s) =s®—as* +bs—c,
where @ > 0,b > 0, and ¢ > 0 satisfy b > 278((;’:3—% and a® > %3—;)0 when

p € [2,8/3). This example was discussed in [CS88] for p = 2. In |[KLS11|, authors

study (1.2) with the nonlinearity

3 _ 2 bs —
f(s) = i assﬁ—l— i Cforﬁe((),l).

Our result agrees with their analysis when 5 = 0.

18



Proofs of Theorem 2.1 and Theorem 2.2
Proof of Theorem 2.1. First we will show that G'(p) < 0 for p € (0, 00). For this, let
s
H(s) = F(s) — ];f(S)

for s > 0. Then H(0) = 0. Since

19 =22 1) = 21105

and f(0) <0, H'(0) < 0. But (A1) — (A2) imply that
H'"(s) = p;zf'(s) — ;f”(s) <0 fors>0.

Since H'(0) < 0, we obtain H'(s) < 0 for all s > 0. Hence H(p) — H(pz) < 0 for
p>6and z € (0,1). Therefore G'(p) < 0 for p > 6.
It follows from Lemma 1.7 (i7) that lim G(p) = 0. Hence the shape of G is as
pP—00

depicted in Figure 3. This completes the proof of Theorem 2.1. O]

19



H(s) G(p)

(a) H(s) (b) G(p)
Figure 4. Theorem 2.1 - H(s) and G(p)

Proof of Theorem 2.2. First we will show that there exist o; € (0,00); i = 1,2,3,4
with 01 < 09 < 03 < 04 such that G'(p) < 0 for 6 < p < oy and p > o4, while G'(p) >
0 for o2 < p < 03. To this end, let H(s) = F(s)—£f(s) for s > 0. Then H(0) = 0 and
(B5) implies that H (o) > 0 for o > 0. Since H'(s) = ]%f(s) — 2 f'(s) and f(0) <0,
H'(0) < 0. Moreover, (B3) — (B4) imply H'(f) < 0 and SlLrglo H'(s) < 0, respectively.
Furthermore, since H”(s) = ’%Zf’(s) — 2["(s), it follows from (B1) — (B2) that
H"(s) > 0 on (0,s0) and H"(s) < 0 for s > sg, respectively. Therefore, there exist
oi; 1 =1,2,3,4 such that H(p) — H(pz) <0 for § < p <oy and p > o4 for z € (0,1).
This implies G'(p) < 0 for § < p < oy and p > 4. Also, H(p) — H(pz) > 0 for
o9 < p <oz on (0,1) and thus G'(p) > 0 for o5 < p < 3.

Hence the graphs of H and G are of the forms shown in Figure 4. Finally,
lim G(p) = 0 follows from Lemma 1.7 (i) and thus completing the proof of Theorem

p—00

2.2. [

20



H(s)
G(p)

0 o

é (;'1 (;'2 6'3 o7 r
(a) H(s) (b) G(p)
Figure 5. Theorem 2.2 - H(s) and G(p)

2.2 p-Sublinear

We consider the case

(H2) Slijgo s];(f)l = 0. (p-Sublinear)

Theorem 2.3. (Concave) Let (H2) hold and suppose

(C1) f"(s) <0 for s> 0,

(C2) (p—1)f(0) <0f'(0), and

(C3) Jim[(p—~ 1)1(s) ~ 57'(9] > 0.

Then there exists \*, py, po with 0 < p; < X\* < po such that (1.2) has
(i) no positive solutions for 0 < X\ < iy,

(ii) at least one positive solution for A > p,

(iii) ezxactly two positive solutions for pg < XA < \*,

(1v) a unique positive solution for X\ > ps.

21



Also py= =60 and lim p) = oco.
A—r00

P

M1 A* H2

Figure 6. Theorem 2.3 Bifurcation Diagram

It can be verified that the hypotheses of Theorem 2.3 are satisfied by
f(S) - eaanS -1,
where a << 1 and n > 1.

Proof of Theorem 2.3

Proof of Theorem 2.3. First we will show that there exist 6 > 0,7 > 0 such that
6 <0 <~vyand G'(p) < 0on (6,0] and G'(p) > 0for p > . Solet H(s) = F(s)—2f(s)

p

for s > 0. Then H(0) = 0. Since H'(s) = ’%lf(s) — 2f'(s) and f'(0) <0, H'(0) <O0.

22



Moreover, (C2) — (C3) imply H'(f) < 0 and Slirglo H'(s) > 0. Furthermore, it follows
from (C1) that H"(s) = ’%Qf’(s)—if”(s) > 0 for s > 0. Therefore, H(p)—H(pz) <0
for 6 < p < § and z € (0,1). This implies G'(p) < 0 for § < p < 4. Also,
H(p) — H(pz) > 0 for p >~ and z € (0,1), which implies G’(p) > 0 for p > ~.
Finally, plglolo G(p) = oo follows from Lemma 1.7 (i) giving the shape of G as shown

in Figure 6. This complete the proof of Theorem 2.3. O

Glp)

(a) H(s) (b) G(p)
Figure 7. Theorem 2.3 - H(s) and G(p)

2.3 p-Linear

Here we assume

(H3) SILIEO ;;(fl = M, where 0 < M < co. (p-Linear)
Theorem 2.4 (Concave). Let (H3) hold. Suppose
(D1) f"(s) <0 fors>0,

(D2) (p—1)f(0) <0(0), and

(D3) I [(p ~ Df(s) ~ 5(5)] > 0.
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Then there exists N*, 1, and po with 0 < py < pg < X* such that (1.2) has

(i) no solutions for X < py and XA > \*,

(ii) at least one positive solution for X\ > py,

(iii) ezxactly two positive solutions for py < X < o,
(iv) a unique positive solution for g < A < \*.
Further, py- =60 and lim p = oco.

)\4)/1,2

Remark. In this case, the curve bifurcating from infinity at us may exhibit different
behavior depending on the conditions assumed on the nonlinearity f. In particular,

it may not turn around and cross over jo as A increases.

M1 M2 A*

Figure 8. Theorem 2.4 Bifurcation Diagram
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Theorem 2.5 (Convex). Let (H3) hold. Suppose

(E1) f"(s) >0 for s> 0, and

(E3) (p—2)f'(s) <sf’(s) for s> 0.

Then there exists p with 0 < pr < X\* such that (1.2) has

(1) no positive solutions for A < u and X > \*,

(2) a unique positive solution for p < X < \*.

Further, py- =60 and lim p = oo
A=

P

R N N N e e e

Figure 9. Theorem 2.5 Bifurcation Diagram
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Proofs of Theorem 2.4 and Theorem 2.5

Proof of Theorem 2.4. First we will show that there exist § > 0,7+ > 0 such that
0 <6 <~yand G'(p) <0 for § < p <4, while G'(p) > 0 for p > ~. For this, let
H(s) = F(s) = 2 f(s) for s 2 0. Then H(0) = 0. Since H'(s) = ’%lf(s) — 2 f'(s) and
f(0) < 0, H'(0) < 0. Moreover, (D2) — (D3) imply H'(#) < 0 and Sli_glo H'(s) > 0.
Furthermore, since H"(s) = ’%f’(s) — 2f"(s), it follows from (D1) that H"(s) > 0
for all s > 0. Therefore, there exist d,y such that § < § <~y and H'(6) =0, H(y) = 0.
Consequently, H(p) — H(pz) < 0 for § < p < ¢ and z € (0,1). Then this implies
G'(p) <0for 0 < p<d. Also, H(p) — H(pz) > 0 for p > v and z € (0, 1), which in
turn implies G’(p) > 0 for p > .

Finally, lim GP(p) = p for some p > 0 follows from Lemma 1.7 (éi7). Thus G has

pP—00
the desired shape as in Figure 9 to conclude the proof of Theorem 2.4. [
e G(p)
— y T
i v
(a) H(s) (b) G(p)

Figure 10. Theorem 2.4 - H(s) and G(p)

Proof of Theorem 2.5. First we will show that G’(p) < 0 for all p > 6. So let H(s) =
F(s)—=2f(s) for s = 0. Then H(0) = 0. Since H'(s) = L=l f(s)—2f'(s)and f(0) <O,

p

H'(0) < 0. Furthermore, (E1) — (E2) imply that H”(s) = E=2f/(s) — 2f"(s) <0

p
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for s > 0. Since H'(0) < 0, we obtain H'(s) < 0 for all s > 0. Then it follows that
H(p) — H(pz) <0 for p >0 and z € (0,1). Therefore, G'(p) < 0 for p > 0.
Finally, lim G?(p) = u for some p > 0 follows from Lemma 1.7 (¢iz). This
p—00

completes the proof of Theorem 2.5. O

H(s) G(p)

(a) H(s) (b) G(p)
Figure 11. Theorem 2.5 - H(s) and G(p)
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CHAPTER III
POSITONE PROBLEMS

In this chapter, we study positive solutions of (1.2) when f :[0,00) — R is a C?

function satisfying:
e f(0) > 0 (positone), and
e f'(s) >0 for s > 0.
3.1 p-Superlinear
Theorem 3.1. (Convez) Let (H1) hold. Suppose
(F1) f"(s) >0 for s >0,
(F2) (p—2)f'(s) < sf"(s) for s >0, and
(F3) lim [(p — DS(5) — 5(5)] < 0
Then there exists > 0 such that (1.2) has
(i) no positive solutions for X\ > p,
(i1) a unique positive solution at X\ = p,

(111) exactly two positive solutions for 0 < X < p.
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L A

u

Figure 12. Theorem 3.1 Bifurcation Diagram

Proof of Theorem 3.1

Proof of Theorem 3.1. First we will show that there exist § > 0, v > 0 such that
d < vand G'(p) > 0 for 0 < p < 4, while G'(p) < 0 for p > ~. For this, let
H(s) = F(s) = 2 f(s) for s = 0. Then H(0) = 0. Since H'(s) = ’%lf(s) — 2f'(s)
and f(0) > 0, H'(0) > 0. Moreover, (F'3) implies sh—glo H'(s) < 0. But (F1) — (F2)
imply H"(s) = ’%Qf’(s) — 2f"(s) <0 for s > 0. Hence there exist § >0, v > 0 such
that § < vy and H'(6) = H(y) = 0. Therefore, H(p) — H(pz) > 0 for 0 < p < § and
z € (0,1), which implies G'(p) > 0 for 0 < p < §. Also, H(p) — H(pz) < 0 for p >~
and z € (0,1). Thus G'(p) < 0 for p > ~.

Finally, /l)ig(l) G(p) = 0 and lim G(p) = 0 follow from Lemma 1.6 and Lemma 1.7

p—00

(17), respectively. O
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H(s
(s) G(p)

(a) H(s) (b) G(p)
Figure 13. Theorem 3.1 - H(s) and G(p)

3.2 p-Sublinear

Theorem 3.2. Let (H2) hold. Suppose
(G1) (p—1)f(s) > sf'(s) for s > 0.

Then (1.2) has a unique positive solution for all A > 0. Furthermore, }\in% px =0 and
—

lim p) = oo.
A—00
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Figure 14. Theorem 3.2 Bifurcation Diagram

Theorem 3.3 (Convex-Concave). Let (H2) hold. Suppose
(I1) f"(s) >0 for s € (0,s0) and f"(s) <0 for s> s,
(I12) (p—2)f'(s) < sf"(s) for s € (0,50),

(13) Jim [(p = 1)S(5) = 5/(5) > 0, and

(I4) there exists a o > 0 such that H(o) < 0.

Then there exist puy, o with 0 < py < po such that (1.2) has

(i) a unique positive solution for A < py and X\ > s,

(ii) exactly three positive solutions for X € (u1, pz).
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Furthermore, lim py =0 and lim p) = oo.
A—=0 A—r00

H H
Figure 15. Theorem 3.3 Bifurcation Diagram

Proofs of Theorem 3.2 and Theorem 3.3

Proof of Theorem 3.2. First we will show that G'(p) > 0 for all p > 0. To this end,
let H(s) = F(s) — 2f(s) for s = 0. Then H(0) = 0. Since H'(s) = ’%f(s) = 21'(s)
and f(0) > 0, H'(0) > 0. Moreover, (G1) implies H'(s) > 0 for s > 0. Therefore,
H(p) — H(pz) >0 for p >0 and z € (0,1). Hence, G’(p) > 0 for p > 0.
Finally, liné G(p) =0 and lim G(p) = oo follow from Lemma 1.6 and Lemma 1.7
p—

pP—00

(1), respectively. ]
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H(s) G(p)

(a) H(s) (b) G(p)
Figure 16. Theorem 3.2 - H(s) and G(p)

Proof of Theorem 3.3. First we will show that there exist o; € (0,00); 1 = 1,2,3,4
with 07 < 09 < 03 < 04 such that G'(p) > 0 for 0 < p < oy and p > o4, while
G'(p) < 0 for o2 < p < 03. For this, let H(s) = F(s) — 7 f(s) for s > 0. Then
H(0) = 0 and (/4) implies that H(o) < 0. Since H'(s) = Z%If(s) — 2/'(s) and
f(0) > 0, H'(0) > 0. Moreover, (I3) implies Sl'i)r& H'(s) > 0. Furthermore, since
H'"(s) = ’%Qf’(s) — 2f"(s), it follows from (/1) — (12) that H"(s) < 0 on (0, sp) and
H"(s) > 0 for s > sg. Therefore, there exist o; € (0,00); i = 1,2,3,4 such that
H(p) — H(pz) > 0 for 0 < p < oy and p > o4 for z € (0,1). This implies G'(p) > 0
for 0 < p < oy and p > o4. Also, H(p) — H(pz) < 0 for 03 < p < o3 on (0,1) and
thus G'(p) < 0 for o9 < p < 3.

Finally, EL% G(p) =0 and lim G(p) = oo follow from Lemma 1.6 and Lemma 1.7

p—+00

(4)- O
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G(p)

Figure 17. Theorem 3.3 - H(s) and G(p)

3.3 p-Linear

Theorem 3.4 (Concave). Let (H3) hold. Suppose
(J1) f"(s) <0 for all s >0, and
(J2) (p—1)f(s) > sf'(s) for all s >0,
Then there exists a p > 0 such that (1.2) has
(i) no positive solutions for X\ > p,
(i1) a unique positive solution for \ < p,

Furthermore, lim py = 0 and lim p) = oo.
A—0 A=
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U
Figure 18. Theorem 3.4 Bifurcation Diagram

Theorem 3.5 (Convex). Let (H3) hold. Suppose

(K1) f"(s) >0 for s >0,

(K2) (p—2)f'(s) <sf"(s) for s >0, and

(K3) Jim ((p— DS(5) ~ 57/(5)] < 0

Then there exist pn > 0, pg > 0 such that py < po and (1.2) has
(i) no positive solutions for X\ > ps,
(i1) a unique positive solution for A\ < uq,

(iii) ezactly two positive solutions for X\ € (1, fi2).
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Furthermore, lim p =0 and lim p = oo.
A—0 A=y

M1 ,lllz

Figure 19. Theorem 3.5 Bifurcation Diagram

Proofs of Theorem 3.4 and Theorem 3.5

Proof of Theorem 3.4. First we will show that G'(p) > 0 for p > 0. For this, let
H(s) = F(s) — 2f(s) for s > 0. Then H(0) = 0. Since H'(s) = ’%f(s) — 2 f'(s)
and f(0) > 0, H'(0) > 0. Moreover, (J2) implies H'(s) > 0 for s > 0. Furthermore,
since H"(s) = ’%Qf’(s) — 2f"(s), it follows from (J1) that H"(s) > 0 for s > 0. Since
H'(0) > 0, we obtain H'(s) > 0 for s > 0. Hence H(p) — H(pz) > 0 for p > 0 and
z € (0,1). Therefore, G'(p) > 0 for p > 0.

Finally, }g% G(p) =0 and lim GP?(p) = p for some p > 0 follow from Lemma 1.6

p—00

and Lemma 1.7 (ii7), respectively. O
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H(s)
G(p)

(a) H(s) (b) G(p)
Figure 20. Theorem 3.4 - H(s) and G(p)

Proof of Theorem 3.5. First we will show that there exist 6 > 0, v > 0 such that
d < yand G'(p) > 0 for 0 < p < ¢, while G'(p) < 0 for p > ~. To this end, let
H(s) = F(s) = 2f(s) for s = 0. Then H(0) = 0. Since H'(s) = ’%f(s) = 21'(s)
and f(0) > 0, H'(0) > 0. Moreover, (K3) implies lim H'(s) < 0. Furthermore,
5—00

since H"(s) = 222 f'(s) — 2f"(s), it follows from (K1) — (K2) that H"(s) < 0 for
s > 0. Hence there exist § > 0, v > 0 such that 6 <~ and H'(6) = H(y) = 0. Then
H(p)—H(pz) >0for 0 < p<§andz € (0,1), which implies G'(p) > 0 for 0 < p < 6.
Also, H(p) — H(pz) <0 for p >~y and z € (0,1). Thus G'(p) < 0 for p > 7.

Finally, hII(l) G(p) = 0 and lim GP?(p) = p for some p > 0 follow from Lemma 1.6

p— p—00

and Lemma 1.7 (ii7), respectively. ]
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H(s) G(p)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
1

(a) H(s) (b) G(p)
Figure 21. Theorem 3.5 - H(s) and G(p)
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CHAPTER IV
£(0) = 0 PROBLEMS

In this chapter, we study positive solutions of (1.2) when f :[0,00) — R is a C?

function satisfying:

e f'(s) >0 for s > 0.

Note that u = 0 is a solution of (1.2) for all A > 0.

Lemma 4.1. If lir%ﬁ,% = m for some m > 0, then lir%G(p) = C(m) for some
S— p—

C(m) > 0.

Proof. Lemma 1.6 gives

r () rmsewsr () #

f'(s)

sp—2

for all p € (0,00). Then lir% = m implies
5—

n < lim GP(p) < pn,
p—0

where
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Thus there exists p € [n, pn] such that lim G?(p) = p.

p—0

4.1 p-Superlinear

Theorem 4.2. Let (H1) hold. Suppose

(L1) f"(s) >0 fors>0,

(L2) (p—2)f'(s) < sf’(s) for s >0,

(L3) (p—1)f(s) < sf'(s) for s >0, and

(L4) il_r)r(l) % =m for some m > 0.

Then there exists pn > 0 such that (1.2) has
(i) no positive solutions for \ > p,

(i1) a unique positive solution at 0 < A\ < p,

Furthermore, lim py = 0 and lim p\ = 0o
A=t A—0
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u
Figure 22. Theorem 4.2 Bifurcation Diagram

Proof of Theorem }.2

Proof of Theorem 4.2. First we will show that G'(p) < 0 for all p > 0. For this, let
H(s) = F(s) = 7 f(s) for s 2 0. Then H(0) = 0. Since H'(s) = Z%If(s) — 2 f'(s) and
f(0) =0, H'(0) = 0. Moreover, (L3) implies H'(s) < 0 for s > 0. Furthermore, since
H'"(s) = ’%Qf’(s) — 2f"(s), it follows from (L1) — (L2) that H"(s) < 0 for s > 0.
Hence H(p) — H(pz) < 0 for p > 0 and z € (0, 1), which implies G'(p) < 0 for p > 0.

Finally, plg]go G(p) = 0 follows from Lemma 1.7 (i7), which implies /1\13(1] pr = 0.

By Lemma 4.1 and (L4) we get that liH(l) G(p) = p for some g > 0. This shows
p—

lim py = 0. O]
A=
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H(s) G(p)

(a) H(s)

(b) G(p)

Figure 23. Theorem 4.2 - H(s) and G(p)

4.2 p-Sublinear

Theorem 4.3 (Concave). Let (H2) hold. Suppose
(M1) f"(s) <0 for s> 0,

(M2) (p—1)f(s) > sf'(s) for s >0, and

(M3) lim L) —m;m >0
Then there exists a p > 0 such that (1.2) has
(i) no positive solutions for \ < p,

(i1) a unique positive solution for X\ > p,

Furthermore, lim py = 0 and lim p) = oo.
A—p A—00
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Figure 24. Theorem 4.3 Bifurcation Diagram

Theorem 4.4 (Convex-Concave). Let (H2) hold. Suppose
(N1) f"(s) > 0 for s € (0, 50) and f"(s) < 0 for s > so,
(N2) (p—2)f'(s) <sf"(s) for s € (0,5),

(N3) (p—1)f(s) <sf'(s) for s € (0, s0),

(N4) lim [(p — 1)f(5) — f(5)] > 0,

(N5) there exists a o > 0 such that H(c) <0, and

sp—2 T

(N6) lin% S —m for some m > 0.
S5—
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Then there exist pq > 0, po > 0 with py < po such that (1.2) has
(i) no positive solutions for X\ < py,

(i1) a unique positive solution for X\ > s,

(1ii) exactly two positive solutions for X\ € (uy, fia).

Furthermore, lim py =0 and lim p) = oo.
A= A—00

H e —— ,Ltzk

Figure 25. Theorem 4.4 Bifurcation Diagram

Proofs of Theorem 4.3 and Theorem J.}

Proof of Theorem 4.3. First we will show that G'(p) > 0 for p > 0. For this, let
H(s) = F(s) = 2f(s) for s = 0. Since H'(s) = ’%lf(s) — 2 f'(s) and f(0) = 0,

H'(0) = 0. Moreover, (M2) implies H'(s) > 0 for s > 0. Furthermore, since H"(s) =
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p=2 1 _ s : 1" .
E=1'(s) = 2f"(s), it follows from (M1) that H"(s) > 0 for s > 0. Hence H(p)
H(pz) > 0 for p >0 and z € (0,1), which implies G'(p) > 0 for p > 0.
Finally, lim G(p) = oo follows from Lemma 1.7 (i), which implies /\lim Py = 00.
pP—00 —00

By Lemma 4.1 and (M3) we get that 111% G(p) = p for some p > 0. This shows
p—

lim py = 0. [l

A=l

H(s) G(p)

(a) H(s) (b) G(p)
Figure 26. Theorem 4.3 - H(s) and G(p)

Proof of Theorem /.4. First we will show that there exist 6 > 0, v > 0 such that
0 < vand G'(p) < 0 for 0 < p < 6, while G'(p) > 0 for p > 7. To this end,
let H(s) = F(s) — > f(s) for s > 0. Then H(0) = 0 and (N5) implies H(o) < 0.
Since H'(s) = ’%lf(s) — 2f'(s) and f(0) = 0, H'(0) = 0. Moreover, (N3) — (N4)
imply H'(s) < 0 on (0,s0) and lim H'(s) > 0, respectively. Furthermore, since
5—00
H"(s) = ’%f’(s) — 2f"(s), it follows from (N1) — (N2) that H"(s) < 0 on (0, )
and H"(s) > 0 for s > sg. Hence there exist § > 0, v > 0 such that 6 < 7 and
H'(0) = H(y) = 0. Then H(p) — H(pz) < 0 for 0 < p < 6 and z € (0,1), which
implies G'(p) < 0 for 0 < p < 4. Also, H(p) — H(pz) > 0 for p > ~. Thus G'(p) > 0

for p > 7.
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Finally, lim G(p) = oo follows from Lemma 1.7 (7), which implies /\lim Py = 00.
pP—>00 —00
By Lemma 4.1 and (N6) we get that lin% G(p) = po for some puy > 0. This shows
p—

lim py = 0. [l
A=l

H(s) G(p)

(a) H(s) (b) G(p)
Figure 27. Theorem 4.4 - H(s) and G(p)

4.3 p-Linear
Theorem 4.5 (Concave). Let (H3) hold. Suppose

(01) f"(s) <0 fors>0,

(02) (p—1)f(s) > sf'(s) for s >0,

(03) £1LI(1) f;(i) =m for some m > 0.

Then there exist p3 > 0, o > 0, with py < pa, such that (1.2) has
(i) no positive solutions for X < py and X\ > ps,

(i1) a unique positive solution for X\ € (uq, ji2).

Furthermore, lim py =0 and lim p) = oo.
A—rp1 A= 12
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Remark. 1t would be interesting to analyze the behavior of the curve bifurcating from

infinity at po depending on the location of py with respect to po.

M H2

Figure 28. Theorem 4.5 Bifurcation Diagram
Theorem 4.6 (Convex). Let (H3) hold. Suppose
(P1) f"(s) >0 for s >0,
(P2) (p—2)f'(s) < sf"(s) for s >0,
(P3) (p—1)f(s) <sf'(s) for s >0, and

(P4) lil% % =m for some m > 0.
S—>
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Then there exist piy, ja, with 0 < pq < pg, such that (1.2) has
(i) no positive solutions for X < p; and X > po,
(ii) a unique positive solution for X € (uy, p2).

Furthermore, lim py = 0o and lim py = 0.
)\—>,U,1 )\—>,U2

My

Figure 29. Theorem 4.6 Bifurcation Diagram

Proofs of Theorem 4.5 and Theorem /.6

Proof of Theorem 4.5. First we will show that G'(p) > 0 for p > 0. For this, let
H(s) = F(s) = 2 f(s) for s = 0. Then H(0) = 0. Since H'(s) = ’%lf(s) — 2f'(s)
and f(0) =0, H'(0) = 0. Moreover, (O2) implies H'(s) > 0 for s > 0. Furthermore,
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since H"(s) = ’%2]"’(3) — 2"(s), it follows from (O1) that H"(s) > 0. Therefore
H(p) — H(pz) > 0 for p >0 and z € (0, 1), which implies G’(p) > 0 for p > 0.
Lemma 1.7 (i27) implies that there exists a o > 0 such that lim GP(p) = po. This
pP—00

shows /\lim pr = oo. By Lemma 4.1 and (O3) we get that liII(l) G(p) = py for some
p—

2
w1 > 0. This shows lim py = 0. [
)\4)/141
(a) H(s) (b) G(p)

Figure 30. Theorem 4.5 - H(s) and G(p)

Proof of Theorem 4.6. First we will show that G'(rho) < 0 for p > 0. For this, let
H(s) = F(s) = 2f(s) for s = 0. Since H'(s) = ’%lf(s) — 2 f'(s) and f(0) = 0,
H'(0) = 0. Moreover, (P3) implies H'(s) < 0 for s > 0. Furthermore, since H"(s) =

P2 f1(5) — > f"(s), it follows from (P1) — (P2) that H"(s) < 0 for s > 0. Hence

p

H(p) — H(pz) <0 for p >0 and z € (0,1). Therefore, G'(p) < 0 for p > 0.

Lemma 1.7 (i27) implies that there exists a gy > 0 such that lim GP(p) = p;. This

p—r00

shows /\lim pr = oo. By Lemma 4.1 and (P4) we get that liH(l) G(p) = po for some
p—

—p1

po > 0. This shows /\lim px = 0. Therefore, the shape of the bifurcation diagram is as

2

depicted in Figure 29. However the figure does not show ps, at which )\lim pa=0. [
— 2
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H(s)

G(p)

-

(a) H(s) (b) G(p)
Figure 31. Theorem 4.6 - H(s) and G(p)
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CHAPTER V
SUMMARY AND FUTURE DIRECTIONS

By way of the quadrature method we were able to construct bifurcation diagrams
that allowed us to observe how varying the behavior of f near the origin, near infinity,
and its concavity affected the existence and mulitplicity of positive solutions to (1.2).
During our investigation into the number of positive solutions for (1.2) we observed, in
the semipositone case, that the existence of multiple positive solutions only occurred
when f exhibited concavity. In comparison, the positone problems we studied required
convexity to guarantee multiple solutions. In the f(0) = 0 case, only when f was
concave and convex, did we see the existence of multiple solutions. For future research,
we are interested in utilizing the quadrature method to study (1.2) with boundary

conditions other than Dirichlet.
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