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Abstract: 

Production of nitric oxide (NO), an evolutionarily conserved, intercellular signaling molecule, appears to be 

required for the maintenance of the larval state in the gastropod mollusc Ilyanassa obsoleta. Pharmacological 

inactivation of endogenous nitric oxide synthase (NOS), the enzyme that generates NO, can trigger 

metamorphosis in physiologically competent larvae of this species. Neuropils in the brains of these competent 

larvae display histochemical reactivity for NADPH diaphorase (NADPHd), an indication of neuronal NOS 

activity. The intensity of NADPHd staining is greatest in the neuropil of the apical ganglion (AG), a region of 

the brain that contains the apical sensory organ and that innervates the bilobed ciliated velum, the larval 

swimming and feeding organ. Once metamorphosis is initiated, the intensity of NADPHd staining in the AG 

and presumably, concomitant NO production, decline. The AG is finally lost by the end of larval 

metamorphosis, some 4 days after induction. To determine if the neurons of the AG are a source of larval NO, 

we conducted immunocytochemical studies on larval Ilyanassa with commercially available antibodies to 

mammalian neuronal NOS. We localized NOS-like immunoreactivity (NOS-IR) to 3 populations of cells in 

competent larvae: somata of the AG and putative sensory neurons in the edge of the mantle and foot. 

Immunocytochemistry on pre-competent larvae demonstrated that numbers of NOS-IR cells in the AG increase 

throughout the planktonic larval stage. 

 

Article: 

Introduction 

Investigations into the actions of NO during organismal development have begun to reveal some broad patterns 

of nitrergic activity in developing nervous systems. NO production is often transient (Bredt & Snyder, 1994; 

Wu et al., 1994; Truman et al., 1996; Scholz et al., 1998; Cramer & Sur, 1999) and can control aspects of 

cellular proliferation in arthropod and vertebrate nervous systems (Peunova & Enikolopov, 1995; Kuzin et al., 

1996, 2000; Gibbs & Truman, 1998; Enikolopov et al., 1999), most likely through its ability to regulate gene 

expression (Haby et al., 1994; Morris, 1995; Peunova & Enikolopov, 1995; Pilz et al., 1995; Enikolopov et al., 

1999; Kuzin et al., 2000). NO can inhibit DNA synthesis, altering rates of cellular passage through mitosis 

(Sarkar et al., 1995, 1997a,b; Bundy et al., 2000; Chen et al., 2000) and inhibit forms of programmed cell death 

(PCD) (Farinelli et al., 1996; Kim et al., 1997; Mohr et al., 1997; Thippeswamy & Morris, 1997; Estévez et al., 

1998), actions which, if they occur during neural development, can alter organ size and patterns of neural 

connectivity (Kuzin et al., 1996,2000;Gibbs &Truman, 1998; Wright et al., 1998; Enikolopov et al., 1999; 

Schachtner et al., 1999; Cogen & Cohen-Cory, 2000; Bicker, 2001). As implied, studies on developmental 

actions of NO have largely been conducted on arthropod and vertebrate model organisms, with relatively few 

studies focusing on nitrergic actions in the development of other animal phyla (Jacklet, 1997; Bishop et al., 

2001). In particular, in the Mollusca, NOS activity, as demonstrated by NADPHd histochemistry, occurs in the 

central nervous systems (CNSs) of larval and juvenile Ilyanassa obsoleta (Lin & Leise, 1996b), in 

metamorphosing and post-metamorphic encapsulated embryos of the pond snail Lymnaea stagnalis (Serfözö et 

al., 1998) and in larvae of the nudibranch Phestilla sibogae (Meleshkevitch et al., 1997). 
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In the developing nervous system of Ilyanassa, NAD-PHd staining is apparent in all ganglionic neuropils before 

metamorphosis and decreases dramatically once metamorphosis begins (Lin & Leise, 1996b). In larvae, staining 

is especially pronounced in the AG, a ganglion of some 24–26 neurons that has been shown, in related 

gastropods, to innervate the velum, the larval feeding and swimming organ (Kempf et al., 1997; Marois & 

Carew, 1997a–c). In Ilyanassa, as in other gastropod molluscs, the AG houses the apical sensory organ (ASO), 

which contains a number of sensory neurons, including 3–6 that are serotonergic (Kempf et al., 1997; Marois & 

Carew, 1997a; Page & Parries, 2000). Recent experiments strongly suggest that sensory neurons in the ASO of 

P. sibogae can detect metamorphic cues (Hadfield et al., 2000), a function that has long been postulated for the 

ASO (Bonar, 1978; Chia & Koss, 1982,1984). The ASO is apparently an ontogenetic outgrowth of the 

trochophore apical tuft, which has also been postulated to have a sensory function (Raven, 1966), although little 

physiological work exists to support this idea. In juvenile Ilyanassa, the AG is lost by the 4th day after 

metamorphic induction (Lin & Leise, 1996a) and in the abalone Haliotis rufescens and the sea hare Aplysia 

californica, its neurons are presumed to disappear through a form of programmed cell death (PCD) rather than 

by incorporation into the subjacent cerebral ganglia (Barlow & Truman, 1992; Marois & Carew, 1997b). 

 

Experimental application of NO-donors and pharmacological manipulation of endogenous NO levels in 

competent larvae of Ilyanassa have demonstrated that NO can inhibit serotonergically induced metamorphosis, 

supporting the idea that NO is needed to maintain the larval state (Froggett & Leise, 1999). Presumably, this 

nitrergic action is reflected in the rise of NADPHd activity seen during larval development in the neuropil of the 

AG and in the decline of staining intensity that occurs during metamorphosis. However, the cellular source of 

larval NO has been unknown; NADPHd staining in the nervous systems of competent Ilyanassa failed to reveal 

any neuronal somata (Lin & Leise, 1996b). To determine if neurons of the AG might be nitrergic, we used 

commercially available mammalian anti-neuronal NOS antibodies to study NOS expression in larval Ilyanassa. 

Results of our immunocytochemical procedures revealed NOS-IR cells in the AG and in 2 additional sites in the 

larval epithelium. 

 

Methods 

Adult Ilyanassa were collected from coastal mudflats in Wilmington, NC and maintained in the laboratory in 

aerated tanks. Animals were fed daily, which promoted spawning for most of the year. Detailed descriptions of 

larval culture methods have been published previously (Couper & Leise, 1996; Leise, 1996; Froggett & Leise, 

1999; Leise et al., 2001). In the laboratory, at 24–25°C, larvae require at least 16–18 days of culture to become 

competent (Scheltema, 1961, 1962; Leise, 1996) and they continue to grow during this competent period. To 

estimate competence, we measure shell lengths on 10–15 animals, randomly selected from each culture. At shell 

lengths between 560–650 µm, over85% of larvae will typically metamorphosis in response to 10
−4

 M serotonin. 

We now use a shell length of 600 µm as a benchmark of 100% of larval development. However, because larvae 

grow during competence and because larvae within cultures vary in size, we use animals above 100% of 

development in our experiments. Several stages were used for immunocytochemistry, including larvae at 6 days 

after hatching (about 380 µm shell length or 63% of development), at 12 days after hatching (about 550 µm 

shell length or 92% of development) and at competence (93–108 % of development). These stages were chosen 

because their larvae display significant neuroanatomical differences from younger and older animals (Lin & 

Leise, 1996a). 

 

IMMUNOCYTOCHEMICAL PROCEDURES 

Larvae were decalcified overnight at room temperature in calcium-free or low pH (6.0) artificial seawater 

(Cavanaugh, 1956), rinsed in 0.2 µm filtered Instant Ocean (FIO) for 1 h, then fixed in a chilled vial containing 

a cold mixture of 4% paraformaldehyde in 0.2 M MPB (Millonig’s phosphate buffer with 0.14 M sodium 

chloride; Kempf et al., 1997). Larvae were immediately transferred to a refrigerator at 7C for 2 h, then 

inspected for autofluorescence. Specimens with high background were discarded. Others were washed twice 

with ice cold 0.2 M MPB at 20 minute intervals. After being washed, specimens were made permeable by 

dehydration in an ethanol series to xylene, on ice, and then were rehydrated. Specimens were then rinsed twice 

at 10 min intervals in 20 mM phosphate buffer solution with 0.1% Triton X-100, 0.1% sodium azide, and 0.14 

M sodium chloride (PBS+), as this reduced background fluorescence more than typical rinses in blocking 



medium (BM, 3% goat serum and PBS+; Kempf et al., 1997). Specimens were then transferred to a 24-well 

plastic tissue culture plate and left in BM overnight, in the dark, on a shaker, at 6°C. All subsequent incubations 

occurred in the dark, shaken, and cold. The BM was then removed, replaced by a solution of the primary anti-

body, whole IgG, mammalian anti-neuronal NOS (BIOMOL Research Laboratories, Inc., #SA-202) at 1: 400, 

in BM, and incubated overnight. A control group of specimens containing only the secondary antibody was also 

produced, which showed no non-specific binding of the secondary antibody. 

 

Following incubation with the primary antibody, specimens were washed for 6, 1 h rinses with PBS+ to reduce 

background and remove excess primary antibody. A final rinse occurred overnight in PBS+. Specimens were 

incubated in a goat-anti-rabbit secondary antibody conjugated to either fluorescein or Texas Red (Vector 

Laboratories) that was diluted in BM at 6.5 µl/ml. Finally, specimens were rinsed in PBS+ 5 to 8 times at 45 

min intervals then kept overnight in PBS+ in the refrigerator. 

 

PREADSORPTION CONTROL 

A control peptide solution (500 µg/mL of control peptide and a 1: 400 dilution of the BIOMOL #SA-202 anti-

neuronal NOS primary antibody in BM) was incubated overnight in the dark at 6°C. After incubation, the 

solution was centrifuged at 100,000× g for 30 min at 4°C in a Beckman TL-100 Tabletop Ultracentrifuge with a 

Beckman TLA-100.2 fixed angle rotor. The supernatant was added to the specimens during the primary 

antibody incubation step and the remainder of the protocol was conducted as described above. 

 

WHOLE MOUNT PREPARATION 

Specimens to be viewed were placed in mixtures of 20 %, 50 % and 80% glycerol in FIO for 15 minutes each. 

They were then mounted on a slide in 80% glycerol in FIO under a coverslip supported by plasticine feet and 

viewed under a fluorescence microscope equipped with a 470–490 nm exciter filter, 500 nm beam splitter and 

515 nm emission filter for fluorescein isothiocyanate or with a 533–590 nm exciter filter for Texas Red 

specimens. Specimens were photographed with a Kodak DCS 420c digital camera, images were adjusted with 

Adobe Photo-shop, stored in digital format on compact disks, and printed with a Kodak DS 8650 color dye 

sublimation printer. 

 

SECTION PREPARATION 

Specimens to be sectioned were embedded in Spurr’s (1969) resin after immunocytochemistry (ICC) was 

completed and sectioned at 10 μm on a Reichert-Jung 1040 Autocut microtome. Sections were mounted in 

Fluoromount (BDH Laboratories Supply), a non-fluorescing mounting medium and viewed under Differential 

Interference Contrast and fluorescence optics as appropriate, then photographed. Files were handled as 

described above. 

 

SPECIFICITY 

Specificity of NOS staining was tested by comparing specimens prepared with the BIOMOL primary antibody 

(#SA-202) to specimens prepared with similar mammalian anti-NOS antibodies from Affinity BioReagents, 

Inc., Chemicon Int’l., Inc., and Calbiochem-Novabiochem Corp. Similar results were detected with the 3 

additional antibodies, supporting the idea that the antibodies were binding to neuronal NOS proteins. 

 

Results 

Whole mounts of metamorphically competent larvae displayed 3 major populations of NOS-IR cells (Fig. 1). In 

the anterior portion of the larval head, 2 clusters of neuronal somata, each with about 13 cells, were revealed 

with the BIOMOL antibody (Fig. 1A). In sections, these clusters of immunoreactive neurons were found to lie 

in the apical ganglion, above the cerebral commissure (Fig. 2). Few neural processes were immunoreactive. In 

addition to the NOS-IR somata of the AG, we routinely detected 6–8 putative sensory neurons along the edge of 

the mantle (Fig. 1B). Each cell had a process that extented to the surface of the epithelium, but no axonal 

projections could be discerned. A similar set of 4–5 putative sensory neurons occurred in the edge of the 

propodium, the anterior portion of the foot (Fig. 1C). Again, cells displayed dendritic processes but no 

projections into the CNS. Pre-absorption of the primary antibody with the NOS control peptide extinguished all 



immunoreactivity (data not shown). Because results with all other commercial primary antibodies displayed 

only subsets of the neurons we observed with the BIOMOL antibody, but never additional immunoreactivity, 

we did not pursue results with these other antibodies. As examples, ICC with an anti-neuronal NOS antibody 

obtained from Calbiochem-Novabiochem revealed low levels of NOS-IR in 8–10 cells of the apical ganglion, 

while ICC with the Chemicon primary antibody revealed only 3 or 4 punctate structures in the mantle edge, 

instead of the 6–8 cells typically seen with the BIOMOL anti-neuronal NOS antibody. 

 
An examination of NOS activity in younger larvae indicated that the number of NOS-IR cells increases in the 

AG throughout development (Fig. 3). In whole mounts of 6 day-old larvae, two somata were NOS 

immunoreactive. (Fig. 3A). The number of NOS-IR cells increases to approximately 7–10 in each cluster in 12 

day-old larvae (Fig. 3B) and to about 13 per cluster in competent larvae (Fig. 1A). 



 

In sections, we detected non-specific staining in some regions of the head (Fig. 2, white arrowheads). This 

staining was seen inconsistently from larva to larva and we have no explanation for it, other than perhaps some 

specimens were insufficiently rinsed after application of the primary antibody solution. 

 

Discussion 

In the CNS of larval Ilyanassa, NOS immunoreactivity occurred in 2 clusters of somata. ICC with anti-NOS 

antibodies from Affinity BioReagents, Chemicon and Calbiochem displayed subsets of the cells detected with 

the BIOMOL antibody, but no additional neurons or cellular processes. We have no explanation for the 

difference in results with these antibodies, except that perhaps the residues (#724–739) used to produce the 

#SA-202 antibody resulted in an antibody with more affinity for the molluscan protein than the other 

commercial antibodies. NOS activity in the periphery occurred in putative sensory neurons with apical dendrites 

that are similar to sensory neurons described for congeneric adults (Crisp, 1971). We detected no centrally 

projecting axons. Earlier studies with NADPHd histochemistry displayed staining only in neuropilar 

arborizations (Lin & Leise, 1996b). These results suggest either a localization of NOS to neuronal somata, or 

the presence of NOS in the neurites that contains different sequences or post-translational modifications that 

interfered with antibody binding sites. Further investigations with molluscan probes may be the only way to 

resolve this apparent paradox, as the BIOMOL SA-202 antibody is no longer being produced. In preliminary 

experiments, Meleshkevitch et al. (1997) demonstrated NADPHd activity in putative sensory neurons of the 

ASO in larval P. sibogae, but we are unable to infer specific functions for the NOS-IR neurons in the AG of 

Ilyanassa. 

 

Preadsorption of the BIOMOL #SA-202 anti-NOS antibody did indeed extinguish staining, but we are unable to 

include these data as images were not recorded from our initial control procedures. As we are now unable to 

obtain this antibody, we cannot recreate these investigations. 

 

Our immunocytochemical results indicate that neurons of the AG gain NOS activity as they develop. At 63% of 

development, when the AG contains about 8 neurons (Lin & Leise, 1996a), only two cells displayed NOS 

activity. By 92% of development, shortly before competence, the AG contains some 14-18 neurons (Lin & 

Leise, 1996a), and our results showed NOS activity in most, if not all of them. ICC on competent larvae 

revealed approximately 26 IR cells. Thus, the initial appearance of NOS immunoreactivity is delayed relative to 

the births of AG neurons, but by competence, nearly all somata of the AG displayed NOS-IR. We had 

anticipated conducting an examination into levels of NOS-IR in cells of the AG during metamorphosis, but 

because our supply of the BIOMOL antibody was limited, we were unable to conduct this investigation. We 

expect NO production to rapidly cease after metamorphosis is triggered, but we do not yet know if this occurs 

through a destruction of NOS or alterations in its activity, perhaps by a decrease in its binding to 

Ca
+2

/calmodulin. 

 

Overnight decalcification in low Ca
+2

 seawater often resulted in a high percentage of metamorphosis, even in 

the absence of an inducer substance, so we discontinued this treatment in favor of low pH decalcification. This 

procedure resulted in fewer metamorphosing individuals. However, it is worth noting that we do not know if 

either procedure affected binding of the anti-body to the NOS protein. 

 

The cellular function for NO in larval I. obsoleta is still unclear and we are considering several possibilities. 

Cells of the AG innervate the velum (Kempf et al., 1997; Marois & Carew, 1997a—c), so NO could be 

involved in modulating circuits controlling larval swimming or feeding. These activities cease during 

metamorphosis, which parallels the metamorphic decrease in NOS activity detected with NADPHd 

histochemistry (Lin & Leise, 1996b). While further investigations are needed to determine if NO modulates any 

of these larval activities, NO is known to be active in adult feeding and locomotory circuits. For example, NO is 

a neurotransmitter in chemosensory and feeding neurons in L. stagnalis, where it can initiate and regulate 

aspects of feeding (Elphick et al., 1995; Park et al., 1998; Sadamoto et al., 1998). NO acts as a co-transmitter in 

the feeding circuit of the sea hare Aplysia californica (Koh & Jacklet, 1999) and can modulate activity of cells 



in feeding and locomotory circuits of the pteropod Clione limacina (Moroz et al., 2000). While it is not 

unreasonable for NO to be active in similar larval circuits, the production of NO by such a large proportion of 

cells in the AG suggests a broader action. 

 

NO is an important mediator of olfactory processing in the pulmonate Limax maximus (Gelperin, 1999; 

Gelperin et al., 2000, 2001) and we have considered a similar role for NO in larval Ilyanassa. Recent 

experiments on larvae of P. sibogae indicate that the ASO is required for larval perception of a natural 

metamorphic cue (Hadfield et al., 2000). Arkett et al. (1989) had previously suggested that sensory neurons of 

the foot in the nudibranch Onchidoris bilamellata might also be chemosensory. We detected NOS-IR cells in 

both locations, so NO may be involved in processing information about metamorphic cues in Ilyanassa. The 

metamorphic decline in NOS activity, as indicated by a decrease in NADPHd staining (Lin & Leise, 1996b), 

might reflect a reduction in chemosensory activity during metamorphosis, but such correlations fail to explain 

why injections of NOS inhibitors induce metamorphosis (Froggett & Leise, 1999), unless NO plays multiple 

roles in competent larvae. 

 

As mentioned earlier, NOS is often expressed transiently during development and NO has been found to be 

involved in regulating synaptogenesis (Wu et al., 1994; Wang et al., 1995; Truman et al., 1996; Gibbs & 

Truman, 1998; Scholz et al., 1998; Wright et al., 1998; Cramer & Sur, 1999; Posada & Clarke, 1999; 

Schachtner et al., 1999; Cogen & Cohen-Cory, 2000; Gibbs, 2001) and controlling the interplay between 

cellular proliferation, growth arrest, cell death, and differentiation, processes fundamental to correct 

organogenesis (Peunova & Enikolopov, 1995; Sarkar et al., 1995,1997a,b; Kuzin et al., 1996, 2000; Ogura et 

al., 1996; Enikolopov et al., 1999; Wildemann & Bicker, 1999). NADPHd histochemistry revealed NOS 

activity in the neuropils of ganglia in competent I. obsoleta (Lin & Leise, 1996b), all of which, except for the 

AG, are retained in adults. NO may regulate some crucial step in the formation of adult circuitry, but again, this 

idea does not suggest a mechanism whereby NOS inhibition promotes metamorphosis. 

 

NO has been identified as both an inducer and an inhibitor of apoptosis, a form of PCD, but its ability to induce 

apoptosis is most often the result of tissue stress or disease (Nicotera et al., 1997; Brüne et al., 1998, 1999; Liu 

& Stamler, 1999; Murphy, 1999). Where NO protects cells from undergoing PCD, it can do so by directly 

binding to and inactivating cellular caspases (Kim et al., 1997) and by a cGMP-dependent pathway (Farinelli et 

al., 1996; Mohr et al., 1997; Thippeswamy & Morris, 1997; Estévez et al., 1998). Because of the long duration 

of NO production in larval neurons and its nearly ubiquitous occurrence in cells of the AG, we favor the 

hypothesis that NO is protecting these cells from PCD. A nitrergic inhibition of premature PCD would 

also explain why the inactivation of NOS induces metamorphosis. Loss of the velum, one of the first and most 

obvious morphological change of metamorphosis, includes loss of epithelial, muscle and nervous tissue (Fretter, 

1967; Fretter, 1969; Bonar & Hadfield, 1974; Mackie et al., 1976). After exposure to a metamorphic inducer, 

the delay to velar loss can vary, and in gastropods like Ilyanassa, may be 12 to 24 hours. The reason for this 

long delay has prompted much speculation, but if cell death of neurons within the apical ganglion must be 

initiated for velar loss to occur, then the time lag be-comes understandable. The initiation of PCD can take 

several hours from the application of an appropriate stimulus (Locksin & Williams, 1965; Dimmeler et al., 

1998), but may only be morphologically recognizable after one or more days (Kerr et al., 1972; Streichert et al., 

1997). The delay from stimulus to visible metamorphic changes in Ilyanassa certainly falls with this time 

period. Experimental tests of this idea are currently in progress. 
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