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Abstract

We investigate mathematically and experimentally the approach to stability using the Pyragas

delayed proportional feedback control method applied to a chaotic finite difference 1-dimensional

map. This method does not use unstable fixed points or require computational analysis and is

therefore easy to implement experimentally. For measurements we use an analog electronic circuit

realization of a finite difference quadratic return map. Comparison with predictions is facilitated

by doing the linear stability analysis in terms of successive system values instead of errors from

the fixed point. We find that the behavior of the approach to stability can be smooth and steady

or appear erratic depending on the feedback gain.
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It is well known that proportional feedback methods can control chaos for systems de-

scribed by 1-dimensional maps [1, 2, 3, 4]. Typically in these methods a system parameter is

perturbed by an amount proportional to the difference between the current system value and

the unstable fixed point. Pyragas [5] introduced an alternative in which the perturbation is

proportional to the difference between the current system value and a previous system value.

This delayed feedback control (DFC) method successfully controls chaotic behavior in a va-

riety of experiments (see references in Ref. [6]). However, little attention has been paid to

the approach to stability when control is turned on. Here we apply DFC to finite difference

return maps and derive the mathematical form of the approach to stability and verify it

experimentally using an electronic circuit previously used to produce real-time bifurcation

diagrams for the 1-dimensional Hénon map [7]. We find a variety of behaviors for the ap-

proach to stability depending on the gain of the feedback. Some are steady and smooth as

the system values converge to the fixed value, while other cases appear to converge some-

what erratically. In all cases the predictions show good agreement with measurements. This

knowledge should be useful when the performance of the control is being closely monitored

and evaluated.

We consider the 1-dimensional finite difference map for system value x with system pa-

rameter a

xn+1 = f (xn, an) . (1)

Using the DFC method on successive system values, the perturbation of an is

∆an = an − a0 = K (xn − xn−1) (2)

where a0 is the unperturbed parameter value and K is the feedback gain. Feedback is

applied only when the magnitude of (xn − xn−1) is within a specified window for control.

This method is based on the idea that in a neighborhood of a fixed point of Eq. (1) the

difference between successive system values decreases as the distance from the system value

to the fixed value decreases. Therefore DFC has the desired property of the perturbation

vanishing when the system value attains the unstable fixed value.

Pyragas has pointed out that DFC is well suited to experimental implementation since it

works without knowledge of unstable fixed points or orbits, and does not require computa-

tional analysis. Thus DFC has advantages for high speed systems [8] and in situations where

the unstable fixed point is not known or changes with time. We note that the application
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of DFC using successive system values is essentially a derivative control method since the

perturbation uses the difference in system values per iteration [9]. The DFC method used

here is also referred to as a discrete version of time-delay autosynchronization [8].

The goal here is to predict the behavior of the convergence of system values caused by the

control algorithm in Eq. (2). The unperturbed return map is xn+1 = f(xn, a0). The fixed

point x* satisfies x∗ = f(x∗, a0). Chaotic behavior is stabilized by perturbing parameter an

about the value a0 so as to move the system value x towards the unstable fixed point x∗. A

linear expansion of f(xn, an) about x∗ and a0 gives

xn+1 = f(x∗, a0) + fx (xn − x∗) + fa (an − a0) , (3)

where fx and fa are the partial derivatives. This is rewritten as

(xn+1 − x∗) = fx (xn − x∗) + faK (xn − xn−1) , (4)

where we included our perturbation Eq. (2). Fixed point x∗ is added and subtracted to the

third bracketed term and Eq. (4) is rearranged as

(xn+1 − x∗) = (fx + faK) (xn − x∗) − faK (xn−1 − x∗) . (5)

Instead of solving for the behavior of the error terms (xn − x∗) we are interested in differences

of successive system values (xn − xn−1) since these are directly available from measurements.

Therefore we replace n by n − 1 in Eq. (5) and then subtract from Eq. (5) to get

(xn+1 − xn) = (fx + faK) (xn − xn−1) − faK (xn−1 − xn−2) . (6)

We note that Eqs. (5) and (6) have the same form so that (xn − xn−1) and (xn − x∗) have the

same solution, although their initial conditions will be different. The initial conditions for

(xn − xn−1) are readily available from measurements whereas initial conditions for (xn − x∗)

rely on knowledge of x∗.

Let yn = xn−xn−1 and look for solutions yn = sn. Equation (6) leads to the characteristic

equation

s2 − (fx + faK) s + faK = 0. (7)

The characteristic multipliers are

s± =
fx + faK

2
±

√

(

fx + faK

2

)2

− faK (8)
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giving solution

yn = c1s
n
+ + c2s

n
−
. (9)

The coefficients c1 and c2 are determined by two consecutive measured values (the initial

conditions) y0 = c1 + c2 and y1 = c1s+ + c2s−. Solving for the coefficients gives

c1 =
−s−y0 + y1

s+ − s−
(10a)

c2 =
s+y0 − y1

s+ − s−
. (10b)

With no perturbation (K = 0) the characteristic multiplier s− = fx < −1 in the neigh-

borhood of the fixed point since the unperturbed map gives chaotic behavior. (And s+ = 0.)

In order to induce stability a positive faK is used in Eq. (8) so that −1 < s− < 0. So for

small K (with sign such that faK > 0) the multipliers in Eq. (8) are negative and real. As

the magnitude of K is increased the multipliers merge and become equal when

K =
2
√

1 − fx − 2 + fx

−fa

. (11)

This is the transition between smooth and non-smooth convergence as shown below. For

larger values of K the multipliers are the complex conjugates

s± =
fx + faK

2
± i

√

faK −
(

fx + faK

2

)2

. (12)

Using the Euler representation of the complex roots, s± = re±iφ, and taking the form of Eq.

(9) the solution is

yn = c
(

reiφ
)n

+ c∗
(

re−iφ
)n

, (13)

where

c =
y0

2
+ i

(

y0Re(s+) − y1

2Im(s+)

)

= c0e
iθ. (14)

Thus the solution is

yn = c0e
iθ

(

reiφ
)n

+ c0e
−iθ

(

re−iφ
)n

= 2c0r
n cos (nφ + θ) , (15)

where

φ = arctan





√

4faK − (fx + faK)2

fx + faK



 , (16)
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and

θ = arctan

(

y0Re(s+) − y1

y0Im(s+)

)

. (17)

The integer n in the cosine term causes non-smooth convergence distinctly different from

the smooth convergence of Eq. (9) that after a few iterations goes as sn
−

(since s− < s+ < 0).

Equation (9) converges to zero as long as s− > −1. Stability analysis gives the condition

faK >
−1 − fx

2
. (18)

Thus the smallest value of K that controls chaos is

Ksmall =
1 + fx

−2fa

. (19)

Convergence of Eq. (15) occurs when r < 1, thus the largest K that controls chaos is

Klarge = 1/fa. (20)

The result is that we predict control of chaos for feedback gain K between

(1 + fx) / (−2fa) and 1/fa, with Eq. (11) giving the transition from smooth convergence

[Eq. (9)] to non-smooth convergerence [Eq. (15)].

As an example we consider the 1-dimensional Hénon map:

f (x, a) = 1 − ax2 (21)

with fixed point

x∗ =
−1 +

√
1 + 4a0

2a0

(22)

and partial derivatives evaluated at (x∗, a0)

fx = −2a0x
∗ = 1 −

√
1 + 4a0 (23)

fa = − (x∗)2 . (24)

For values of a0 between 1.4 and 2 Eq. (21) displays a variety of unstable behavior including

high period oscillations and chaos [7]. For a0 = 1.9 we find fx = −1.93 and fa = −0.259,

so convergence is predicted for values of K between -1.8 and -3.87 with the transition from

smooth to non-smooth convergence at -1.96.

Figure 1 shows the circuit used to apply the control algorithm to a function block circuit

f (x, a) that performs analog computation of a chaotic return map. Here we use the function
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block circuit shown in Fig. 2 that calculates the 1-dimensional Hénon map Eq. (21). We

have also used function block circuits that produce the Logistic map and the tent map.

At the upper left in Fig. 1 the unperturbed parameter value a0 is added to the perturba-

tion ∆an to create system parameter an. This is input, along with system value voltage Vn,

to the f (x, a) circuit block which produces the next system value voltage Vn+1. The sub-

traction op amp creates the difference between the successive system value voltages ∆Vn+1

that is used to create ∆an+1, the perturbation for the next iteration. ∆Vn+1 is passed to an

absolute value/comparator stage and to a gain stage which produces ∆an+1. The output of

the comparison stage (LM339) controls the gate of the FET in the gain stage so that if |∆V |
is larger than the control window then the gate goes to −5 volts turning off the FET and

thereby setting feedback gain K = 0. A nonzero value for K is determined by the inverting

op amp adjacent to the FET. For the values shown, 47kΩ and 13kΩ, K = −3.6. The sign

of K is easily switched by changing the order of inputs Vn and Vn+1 to the subtraction am-

plifier. Prior to the FET |∆V | is divided by 10, the scaling factor of the AD633 multiplier

used in the f (x, a) circuit block, to convert from voltage |∆V | to |∆x|. The sample/holds

(LF398) perform the iteration under the control of the 555 timer circuit. With the 68kΩ

and 0.001µf shown in the schematic the iteration period is about 100µs.

Data were collected with a Tektronix TDS 3000 oscilloscope. The control circuit was

periodically gated on and off (by holding the FET’s gate to −5 volts during the off phase,

circuitry not shown) so that it was possible to trigger from the gating signal in order to

capture the entire control of chaotic behavior. Figures 3 and 4 show measured voltages for

the system values Vn = 10xn and parameter values an for a0 = 1.9, a value that gives chaotic

behavior. The effect of the gating and the control window are apparent. Control was gated

on at t = 0 in both cases, but in Fig. 3 |∆V | was not within the control window until about

t = 4.5 ms. Figure 3 uses feedback gain K = −1.96 corresponding to the transition [Eq. (11)]

between smooth and nonsmooth convergence, and Fig. 4 uses K = −3.53 corresponding to

non-smooth convergence.

The DFC algorithm uses feedback proportional to the difference between successive sys-

tem values, yn = xn − xn−1. When the system is successfully controlled yn → 0. The

approach to zero for yn may be smooth and steady [Eq. (9)] or may appear somewhat er-

ratic [Eq. (15)]. Figures 5, 6, and 7 show data and prediction for yn (actually ∆Vn = 10yn)

for three values of K showing the variety of convergence. Predictions were made by using
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two successive measured system value differences for y0 and y1 in Eqs. (10) and (14) to

determine the coefficients for Eqs. (9) or (15). The convergence in Fig. 5 is smooth and

steady, in Fig. 6 it appears somewhat erratic, and in Fig. 7 a pattern is apparent although

the convergence is not steady. In all cases there is good agreement between the prediction

and measurement.

We note that for simple proportional feedback using parameter perturbation ∆a =

K (xn − x∗) applied to the Hénon map with a = 1.9, the optimal feedback gain is

−fx/fa = −1.93/0.259 = −7.45 [2]. Half of this value is within our predicted range of

−1.8 to −3.87 for K using DFC. This is reasonable since the difference from the system

value to the fixed point (xn − x∗) can be expected to typically be about half of (xn − xn−1),

so the simple proportional feedback method needs gain about twice that of the DFC gain

in order to get a similar perturbation ∆a.

We have shown that a variety of behavior is expected for the approach to stability when

applying DFC to a finite difference 1-dimensional chaotic map. This may be valuable in

situations in which the convergence is being closely monitored since erratic and non-steady

behavior could be mistaken for a faulty control mechanism.
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FIG. 1: The circuit for controlling chaotic behavior of the return map xn+1 = f(xn, an). Op amps

are LF412.
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FIG. 2: Henon function block circuit for f (x, a). Relation between voltage and system value is

x = V/10. The ×10 noninverting amplifier at the output accounts for both a and the +1 not being

multiplied by 10, the scaling factor of the AD633 multiplier.
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FIG. 3: Measured system value voltages Vi = 10xi for smooth control of Henon system with

feedback gain K = −1.96. Control was gated on at t = 0 and off at t = 0.012. Also shown is the

paramater value a = a0 + ∆a with a0 = 1.9.
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FIG. 4: Measured system value voltages Vi = 10xi for non-smooth control of Henon system with

feedback gain K = −3.53. Control was gated on at t = 0 and off at t = 0.012. Also shown is the

paramater value a = a0 + ∆a with a0 = 1.9.
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FIG. 5: Data (dots) and prediction (open circles) showing the difference of successive system values

∆Vi = 10yi = 10(xi − xi−1) for smooth-convergence, K = −1.9. The connecting dashed lines are

for visual aid only.
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FIG. 6: Data (dots) and prediction (open circles) showing the difference of successive system values

∆Vi = 10yi = 10(xi − xi−1) for nonsmooth-convergence, K = −2.3. Connecting dashed lines are

for visual aid only.
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FIG. 7: Data (dots) and prediction (open circles) showing the difference of successive system values

∆Vi = 10yi = 10(xi − xi−1) for nonsmooth-convergence, K = −3.5. Connecting dashed lines are

for visual aid only.
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