
DHAWAN, SAHIL, M.A. Analyzing the Topological Properties of 3D STL Files.
(2024)
Directed by Dr. Thomas Weighill. 35 pp.

Part features in 3D objects that are created for the purpose of rapid prototyping
and fabrication using methods such as 3D printing or CNC milling often do not match
the measurements of the finished product’s features due to tolerancing and clearance
design errors. A solution to measuring the range of potential error that the features
of a part can have can be found through the topology and persistent homology of
the chosen truth mesh of that part. Variations of the part feature(s) to be measured,
such as different diameters of a hole, can be created with a sequence of 3D object files
that change the measurements of the selected feature(s) while keeping other features
the same. We use FreeCAD to generate these part variations and export them as
ASCII STL files. A new mesh is created for each of these files to convert them to
Delaunay triangulations. We use the Delaunay triangulation mesh in tandem with the
filtered simpliicial complex generated by the Alpha complex. The Alpha complex is
modified so all its matching simplicies that were present in the Delaunay triangulation
mesh have a birth time of 0 for accurate analysis using persistent homology. We then
generate a persistence diagram for each variation of the 3D part feature to see the
progression of change in topology for the chosen feature with respect to the chosen
truth 3D STL file. Our results show the potential errors of features in a 3D STL file
can be calculated through the topology of part variations which represent different
measurements in tolerance and clearance.
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Chapter 1: Introduction

The goal of this paper is to apply topological data analysis (TDA) methods to
topological features of 3-dimensional data from sterolithography (STL) files generated
by a computer-aided design (CAD) program to measure potential errors in tolerances
and clearances which can frequently arise in manufacturing methods such as 3D
printing. A part’s topology can be analyzed to obtain metrics that can help identify
the margin of error in its features. The possible tolerances of a part can be represented
by alternate 3D files which are variations of the part’s features, such as a hole or
extrusion. While there are many possible simple and complex features a 3D part can
have, we will observe differences in the topology of fundamental part features through
hole diameters, distances between two separate objects, and two different features that
come together which are attached to the same object. These variations in tolerances
of features will result in different birth and death values in the persistent homology of
the part which can be observed through a sequence of persistence diagrams.

TDA is a set of methods in applied mathematics that use topology to understand
the shape of data through transformations into simplicial complexes which allow us to
visualize features in the data such as possible connected components, holes, and voids.
A standard approach in TDA is to transform data into a filtered simplicial complex
which will allow us to observe its persistent homology. Persistent Homology tracks
changes in homology over "time", or, as changes in filtration values. For the purposes
of this paper, we will only be focusing on connected components and holes.

The sample STL file data used for this paper was generated in FreeCAD and then
exported to ASCII STL files, but the methods of this paper can be applied to 3D files
generated by any program. The MeshPy Python library was used to create Delaunay
meshes of each STL file, and the Gudhi Python library was used to create filtered
simplicial complexes and to generate the persistence points of the Alpha complex of
the meshes. We then used the change in filtration values of the simplicial complex for
individual meshes at scale r to visualize connected components and holes represented
by the H0 and H1 homology. Finally, for the sequence as a whole, we compared the
persistent homologies of each 3D part variation to see how the changes to part features
affected the topology of the part.
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1.1 Related Works
Although TDA is relatively new as a field of study, it has applications in many

areas. We will review related works in the fields of geospatial data, image data,
medical/neuroscience, deep learning, and computational geometry.

Geospatial Data

Persistent homology can be used to detect patterns in voting data by margin of
victory for presidential candidate votes using geospatial data [4]. This paper takes
voting data from 24,626 California precincts and uses the geographic locations of
these precincts to create an adjacency graph. The analysis is done with new methods
of creating filtered simplicial complexes: the adjacency complex and the level-set
complex.

Geospatial data and persistent homology can also be used to visualize changes
in the movement of artic ice [7]. This paper uses artic ice binary image data from
NASA from 1999 to 2009 with metadata for geographic information. The images were
assigned weights by the amount of ice per image. Persistence diagrams were created
from the image data to visualize increases and decreases in the amount of artic ice
through the death times of connected components, or points in H0.

Neuroscience

In the field of Neuroscience, persistent homology can be used to detect differences
in cognition and personality with MRI data [1]. Resting state fMRI data of nodes
in a brain network was mapped to a point cloud. Each point was assigned a value
based on its level of association to other nodes in the network. A distance measure
of associativity was mapped to each node in order to have larger correlations create
smaller distances. The Vietoris-Rips complex was applied to the metric space of the
point cloud to generate persistence barcodes in H0 for connected components in the
dataset. The persistence barcode showed differences in cognition and personality over
the spatial domain.

Deep Learning

Machine learning can incorporate topology through trainable neural network
units [10]. This paper uses persistence diagram dissimilarity functions, such as the
Wasserstein and bottleneck distances, to act as the activation function of the unit
which analyzes the shape of data input to the functional unit. The unit was appplied
to classify signals and learn space encodings.
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Topology can be applied to the fields of deep learning and cybersecurity to model
dependencies in neural networks and detect trojaned neural networks [15]. A trojaned
neural network performs a trojan attack by injecting data into a dataset. The paper
uses the neural network architecture as the space to be analyzed with TDA by
converting nodes and connections to vertices and edges.

Computational Geometry, Finite Element Modeling (FEM), and Meshing

Applications of topology and homology exist in meshing and finite element method
applications. Homology is a fundamental building block of TDA with applications
in meshing and analyzing simplicial data. Homology has many possible applications
itself, especially in the field of computational geometry. Homology can be used with
finite element meshing algorithms such as Gmsh, a meshing component of FreeCAD
[12]; algorithms for creating meshes more efficiently [8]; and used to simplify high-
dimensional simplicial shapes for easier analysis [3] [6].

A paper using methods similar to the methods of this thesis is "Computing Mitered
Offset Curves Based on Straight Skeletons", which creates triangulations of polygons
similar to our surface triangulations of polyhedrons [11]. A mitered offset curve is
created by forming offset parallel edges to an original polygon which are offset inward
from the outer edges of the polygon. A straight skeleton is created by forming lines
which trace the vertices of respective edges as they shrink to the new polygon within
the original. The triangulation method this paper uses to compute the mitered offset
curves is kinetic triangulation, which is dynamic in accordance with moving vertices.
As the mitered offset curve algorithm creates new edges, the topology of the new
polygons changes per offset level, so the kinetic triangulation must adapt to these
changes by taking this topology into account.
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Chapter 2: Background

Homology is used to detect the holes present in a shape through the use of simplicial
complexes. Before defining a simplex and simplicial complex, fundamental preliminary
definitions need to be recalled to understand simplicial homology and persistent
homology [9].

Definition 2.1 (Field). A field is a set F endowed with operations addition, +, and
multiplication, •, respectively satisfying the following axioms for all a, b, c ∈ F:

1. (Identity) ∃ an additive identity, 0F s.t. a + 0F = a and a multiplicative identity
denoted 1F s.t. 1F • a = a.

2. (Associativity) Addition and multiplication are associative:

• (a + b) + c = a + (b + c)
• (a • b) • c = a • (b • c)

3. (Commutativity) Addition and multiplication are commutative:

• a + b = b + a

• a • b = b • a

4. (Inverses) Each a ∈ F has additive inverse denoted −a s.t. a + (−a) = 0F and,
excluding 0F, a multiplicative inverse denoted a−1 s.t. a • a−1 = 1F.

5. (Distributivity) Multiplication distributes over addition:

• a • (b + c) = (a • b) + (a • c)

Definition 2.2 (Field over F2). F2 is a field with two elements, 0 and 1, with modulo
2 applied to addition and multiplication.

Definition 2.3 (Free Vector Space). Let F be a field and let S be a finite set. The
free vector space over F on the set S is the vector space VF(S) (or V (S) when the field
is fixed) with underyling set consisting of functions ϕ : S → F .
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Definition 2.4 (Convex). A subset of a set S of Rm is convex if for any points
x, y ∈ S, each point (1 − t)x + ty, t ∈ [0, 1], along the interpolation between x and y
is also contained in S.

Definition 2.5 (Convex Hull). The convex hull of a set S is the smallest convex
subset of Rm which contains S and is denoted cvx(S):

cvx(S) =
⋂

{C | S ⊂ C ⊂ Rmand C is convex}

Definition 2.6 (Affine Subspace). An affine subspace of Rm is a set of the form
x + V = {x + v | v ∈ V } where x ∈ Rm, V ⊂ Rm is a vector subspace.

Definition 2.7 (General Position). Let S = {x0, x1, ..., xn} be a finite subset of Rm.
S is in general position if its points are not contained in any affine subspace of Rm of
dimension less than n where n ≤ m.

Definition 2.8 (Open Metric Ball). An open metric ball in a metric space (X, d),
notated B(x, r), is defined for a center point x ∈ X and a radius r > 0 to be the set:

B(x, r) = {y ∈ X | d(x, y) < r}

Definition 2.9 (Voronoi Cell). For each point in x in a set of points X ⊂ Rm with
distance d, the Voronoi Cell of x is the set of points in Rm closest to x:

Vor(x) = {s ∈ Rm | d(x, s) ≤ d(x, t)∀t ∈ X }

2.1 Simplicial Homology
Simplicial homology analyzes shapes of dimension m through combinations of

fundamental components such as points, edges, triangles, tetrahedra, and so on.

Definition 2.10 (Simplex). For a set X of n points in general position, an (n − 1)-
dimensional simplex, σ(X ), associated to X is formed by the convex hull of X , cvx(X ).

For our purposes, we will only be working over F2 with 0, 1, 2, and 3-simplices.
A 0-simplex is a point; a 1-simplex is an edge; a 2-simplex is a "filled-in" triangle, or
the convex hull of a triangle; and a 3-simplex is a "filled-in/solid" tetrahedron, or the
convex hull of a tetrahedron.

Definition 2.11 (Geometric Simplicial Complex). A geometric simplicial complex is
a collection of simplicies X in Rm satisfying:

1. for any simplex σ ∈ X , all faces of σ are also contained in X .
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2. for any two simplices σ, τ ∈ X , the non-empty intersection σ ∩ τ is also a simplex
and a face of both σ and τ .

Definition 2.12 (Abstract Simplicial Complex). An abstract simplicial complex is
a pair X = (V (X ), Σ(X )), also notated X = (V, Σ), where V (X ), the vertices of
X , is a finite set and Σ(X ), the simplices (or faces) of X , is a collection of subsets
of V (X ), such that for any σ ∈ Σ(X ) and any nonempty τ ⊂ σ, τ ∈ Σ(X ). Faces
containing exactly two vertices are edges. Faces containing exactly (k + 1)-vertices are
k-dimensional faces (or k-faces).

Definition 2.13 (Chain Group). The k-th chain group Ck(X ) of X over F2, or Ck

when the simplicial complex X is fixed, is the free vector space over F2 generated by
the set of k-dimensional simplices of X .

Definition 2.14 (Boundary Map). The boundary map, ∂k, of a simplicial complex,
X, defined on basis elements σ is:

∂k(σ) =
k∑

j=0
∂j

k(σ),

where ∂j
k is a (k − 1)-dimensional face of sigma. ∂k takes a k-simplex to the sum of

(k − 1)-simplices which lie along its boundary. It can also be expressed as:

∂k(σ) =
k∑

j=0

{
τ | τ is a (k − 1)-dimensional face of σ

}

Definition 2.15 (Cycle). The cycle group, Zk(X ) or Zk, is the kernel of the boundary
map ∂k. The elements of Zk are referred to as k-cycles.

Definition 2.16 (Boundary). The boundary group, Bk(X ) or Bk, is the image of the
boundary map ∂k+1. The elements of Bk are reffered to as k-boundaries.

Through building on the previous definitions, we are finally ready to define homol-
ogy groups through the use of cycles and boundaries.

Definition 2.17 (Homology Group). The k-th homology group of X is the quotient
space Hk(X ) = Zk(X )/Bk(X ).

Different homology groups give us information about different features in X . H0
describes the number of connected components, H1 describes the number of holes,
and H2 describes the number of voids.
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2.2 Persistent Homology
Persistent homology measures the change in the homology of features over "time",

or marked events used to keep track of the changes. Persistence diagrams keep track
of the persistence points that arise over the course of these changes through recording
birth and death moments of simplicies in the complex.

Definition 2.18 (Filtered Simplicial Complex). A filtered simplicial complex is a
collection of K = {Kr}r≥0, r ∈ R, of (finite) simplicial complexes, Kr1 ⊂ Kr2 ⊂ Kr3 ⊂
... ⊂ Krn , and a family of inclusion maps fr,r′ : V (Kr) → V (Kr′) for each pair (r, r′)
with r ≤ r′. The inclusion maps must satisfy the compatibility condition: for all
r ≤ r′ ≤ r′′, we have fr,r′′ = fr′′,r′ ◦fr′,r. The inclusion maps induce maps on homology
im∗ : Hk(Krm) → Hk(Krm+1) for each k.

Definition 2.19 (Persistence Diagram). The Fundamental Theorem of Persistent
Homology [16], states that an input of a filtered simplicial complex, Kr1 ⊆ Kr2 ⊆
... ⊆ Krt gives a basis of homology groups Hk(Kr1) → Hk(Kr2) → ... → Hk(Krt) with
induced maps on homology i1∗, ..., it∗ such that each basis element has a well-defined
birth time, b, and death time, d.

The persistence diagram is obtained from the multiset of these births and deaths,
{(bj, dj)}M

j=1, by plotting each point in the xy-plane (recording multiplicity as nec-
essary). Since bj < dj for each j, the points all appear above the diagonal line
x = y.

There are many different ways to create a filtered simplicial complex. We will
define three methods we can use in order to create the complex. The Čech complex is
the base complex we will build off of.

Definition 2.20 (Čech Complex). Let X be a finite metric space. The Čech complex,
Cr, can be applied to X, where open metric balls grow around points of the metric
space. With each intersection of k + 1 balls, add a k-dimensional simplex to the
filtered simplicial complex.

Cr(X) = {σ ⊆ X | ∩x∈σBr(X) ̸= ∅}

The Vietoris-Rips complex expands upon the Čech complex by introducing a fixed
radius.

Definition 2.21 (Vietoris-Rips Complex). Let (X, d) be a finite metric space. The
Vietoris-Rips complex at parameter r, VR(X, r), for each real number r ≥ 0, can be
applied to X, where:

VR(X, r) = (Vr, Σr), Vr = X for all r, Σr = {σ ⊂ X | d(x, y) ≤ r ∀x, y ∈ σ}
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Example 2.22 (Vietoris-Rips Complex applied to a Point Cloud). The Vietoris-Rips
complex is created from connections between points which form when the distance of
radii between points intersect. When the radii of two points intersect, a connection
appears as a 1-simplex, or an edge. When three radii intersect, a 2-simplex, or a
"filled-in" triangle, appears. These connections keep forming until a chosen final radius,
r. In Fig 2.1, the Vietoris-Rips complex grows until a radius of 1.0.

Figure 2.1. Vietoris-Rips complex of a point cloud as radius r increases.

Example 2.23 (Persistence Diagram of a Vietoris-Rips Complex of a Point Cloud).
When r = 1.0, the persistence diagram shows one point at d = ∞ for H0. This
corresponds to the connected component in the filtered simplicial complex. The points
below infinity on the y-axis show the death times of points as they get added to the
connected component. Notice how there are only points on the y-axis for H0: as Figure
2.1 shows, all points are present when r = 0, this means each point in the complex
has a birth time of 0. There is also a point in H1 point which represents the hole that
is formed at a radius of approximately 0.6 and dies at a radius of approximately 1.45.

Figure 2.2. Plot of a point cloud and persistence diagram of its Vietoris-Rips complex.
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The Čech and Vietoris-Rips complexes can be very computationally expensive, so
an alternative filtered simplicial complex, the Alpha Complex, will need to be applied
to the STL file data. Before we can define the Alpha Complex, we need to define an
essential component of it, the Delaunay Triangulation.

Definition 2.24 (Delaunay). We say a k-simplex whose vertices are in a set of points,
V is Delaunay if there exists a circumsphere in that k-simplex such that no vertex of
V lies inside it [13].

Definition 2.25 (Delaunay Triangulation). A Delaunay triangulation is a unique
triangulation on a vector space which is formed by creating a connection between
points whenever their Voronoi cells (Def 2.9) intersect such that all simplices in the
space are Delaunay. This triangulation is the dual of its Voronoi cells [2][13].

Figure 2.3. Plot of a Delaunay Complex and Voronoi Cells applied to a point cloud.

Definition 2.26 (Gabriel). When a mesh is created with a Delaunay Triangulation,
certain edges in the triangulation can be considered Gabriel when the open ball of the
triangulated edge is empty of points [5]. However, not every edge in a triangulation
needs to be considered Gabriel for it to be considered Delaunay. In R2, the figure
below shows that every open ball, or circumcircle, of an edge contains no inner points.
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Figure 2.4. A Gabriel graph compared to a graph which cannot be Gabriel.

Definition 2.27 (Alpha Complexes). The Alpha complex (or α-complex) exists within
a finite metric space with Euclidean distance. The alpha complex builds upon the
Delaunay Triangulation with its use of Voronoi cells by introducing a radius parameter
for an open metric ball.

αr(X) = {σ ⊆ X | ∩x∈σ(Br(X) ∩ Vorx) ̸= ∅}

By convention we report birth and death times of points with r2. At r2 = 0, the
filtered simplicial complex consists only of the set of points in the metric space as
individual connected components. As r2 increases, the balls grow up to the boundary
of or beyond their Voronoi cell. When two balls intersect, a connected component
between those two points is formed. This continues until r2 grows to create a simplex
equivalent to the Delaunay triangulation.

The Alpha complex is the ideal filtered simplicial complex to use when analyzing
the homology of 3D objects as it can show us when connected components and holes
are born and die in the persistent homology of the object while the growth of r2 is
self-contained to the maximum diameter of the object. The end growth point being
the object’s Delaunay triangulation also allows for the Alpha complex to be the least
computationally expensive persistent homology method of the three we have defined.
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Example 2.28 (Alpha Complex applied to a Point Cloud). Fig 2.5 shows an Alpha
complex created with the python library Gudhi. To understand events at certain radii,
we denote plots with r2 for birth and death times, and r for Euclidean distance.

Two holes were created with birth times of r2 = 0.2308 and r2 = 0.3068. The first
hole dies at r2 = 0.8045. To understand why the second hole dies relatively quickly at
r2 = 0.3069, we can compare it to the filled-in triangle formed between r2 = 0.2308
and r2 = 0.2900. The points of the triangle which make up the second hole have
voronoi cells which intersect close to or exactly at the intersection point of all three
voronoi cells. As one of the three balls grows slightly, the hole gets filled in r2 = 0.0001
later. Three voronoi cells of points from the filled-in triangle all intersect at different
times, creating the filled-in triangle instantly upon the third intersection.

Figure 2.5. Progression of the Alpha complex on a point cloud and the persistence
diagram of the completed complex.
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Example 2.29 (Persistence Diagram of an Image). Fig 2.6 uses a grayscale image of
a white square with a black circle in the center to create a persistence diagram from
an Alpha complex. Unlike previous examples, the dataset that creates the image is
not a point cloud but is image data as a 50 × 50 pixel array of decimal values. The
white pixels in the image contain values of 1.0 and the black pixels contain no data,
or values of 0.0. This causes the black circle to appear as a hole in the data.

This hole can be seen as a point in H1 with a birth time of 0 and a radius of 10
pixels. As r increases to a Euclidean distance of 10, the hole gets filled in because balls
on the circumference of the black hole finally intersect. The intersection at r = 10 is
shown as a death time of r2 = 100.

On a persistence diagram, in most cases, the points along or relatively close to the
diagonal line which are not on the y-axis can be considered noise and disregarded.

Figure 2.6. Plot of a white square with a hole and persistence diagram of its Alpha
Complex.
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2.3 Background on the STL Filetype
An STL file is a filetype created for use with 3D data generated by computer-aided

design (CAD) programs for 3D printing and other rapid-prototyping applications.
STL is acronym which can be an abbreviation for Stereolithography, Standard Tri-
angle Language, or Standard Tesselation Language. These files are built through
triangulation: every set of points creates a triangle which acts as a facet of the object.
These triangles are "filled-in" 2-simplices, and will be fundamental in analyzing the
topology of STL files. In terms of the contents of an ASCII STL file, a facet should
not be confused with a face: a facet must be a triangle, while a face of a polyhedron
can be subdivided into multiple facets to achieve triangulation. The information in an
STL file can be encoded using binary or in ASCII as a .ast (ASCII STL) file. For
our purposes, we will be using .ast files to extract and analyze 3D object data [14].

Figure 2.7. The contents and 3D plot of an ASCII STL file for a tetrahedron.

STL files contain descriptions of facets which make an object (or objects). Fig 2.7
shows these descriptions contain the facet normal vectors and the three vertices used
to create it. The contents of an STL file do not specify topological information, such
as connections to other vertices, which vertices make up a face, etc. Instead, STL files
describe each vertex as many times as it appears in the file until the overall shape is
built. To analyze the topological data within STL files, we can parse the .ast files for
four strings which are used to denote the beginning and end of the description of facets
and vertices: ‘facet normal’, ‘end facet’, ‘outer loop’, and ‘end loop’, respectively.
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Chapter 3: Methods

3.1 Main Method

3.1.1 Creating a Mesh from an STL file
To compute the persistence of the variations of the "truth" of an STL file, the data

must be processed and transformed with meshing in order to be properly analyzed.
Although STL files contain a mesh upon creation, this mesh is not adequate for our
purposes as the triangulated mesh an STL file contains is not necessarily a subcomplex
of the Delaunay triangulation. We will call a simplex a Delaunay simplex if it is
contained in the Delaunay triangulation of the vertices of the mesh. A simplicial
complex is called a sub-Delaunay complex if every simplex in it is Delaunay. The
completed Alpha complex of a mesh is its Delaunay triangulation, so we require
the 3D object’s original mesh to be sub-Delaunay because in the next step of our
method we will alter the filtered simplicial complex based on the data of the initial
simplicial complex, K0. K0 will be compared with the Alpha complexes as r2 grows to
include new simplices. Without K0 being sub-Delaunay, our filtration and subsequent
persistence analysis may show incorrect results.

Example 3.1 (Comparison of ASCII STL mesh and Delaunay Triangulation Mesh).
Fig 3.1a shows the open circumsphere of a facet, emphasized by three large black
points, and its circumsphere on the original triangulation for an ASCII STL file.
This facet’s circumsphere does contain all three vertices of the facet on its surface
boundary but it also contains every vertex which makes up the hole in the center of
the object within the interior of the circumsphere. This inclusion of vertices within
the circumsphere means the entire object’s triangulation is not Delaunay.

Fig 3.1b shows the open cirumspheres of three facets of a Delaunay triangulation
of the same object. The surface boundary of each facet’s circumsphere contains the
three vertices of its respective facet while containing other facet vertices on its surface
boundary as well. The circumsphere only containing vertices on its surface boundary
but not within its interior means the object’s new mesh is a Delaunay triangulation.
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(a) Original mesh from ASCII STL. (b) Delaunay triangulation mesh.

Figure 3.1. The original input mesh of the data from an ASCII STL file and its
Delaunay triangulation mesh.

3.1.2 Creating and modifying an Alpha Complex
Now we are ready to generate an Alpha complex. The sub-Delaunay complex mesh

K0, created by the Delaunay triangulation, contains every edge and triangle present
in the original 3D object mesh while retaining its boundaries, so the topology is not
altered as it will be with the Alpha complex. The sub-Delaunay K0 is a subset of
the completed Alpha complex, therefore every simplex present in the K0 complex is
present as a simplex in the Alpha complex of the vertices for some scale parameter r.

The Alpha complex grows to include simplices which were not originally in the K0
sub-Delaunay complex. These Alpha complex simplices are checked against the K0
simplices to determine which simplices were present originally. All simplices that were
present originally will be given a new filtration value of 0 to denote they appear in the
K0 complex. Replacing the filtration values in this way is done to ensure the original
simplices from K0 have a corresponding birth time of b = 0, while all new simplices
created by the Alpha complex will retain their assigned r2 filtration.

3.1.3 Computing a Persistence Diagram
Now that we have created and reassigned the appropriate filtration values that

make up our filtered simplicial complex, we compute a persistence diagram using Def
2.19. We then create persistence diagrams of each variation of the 3D object to see the
progression of its homology over the changes to a feature or features of a part. The
death axes on the sequence of persistence diagrams are constrained to the maximum
death time within the sequence to keep the plots consistent and monitor its change
over the variations.
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Example 3.2 (Example of Methods with a Single 3D Object). Fig 3.2 shows the
progression of transformations to the STL file data. Initially, the object is loaded in
and parsed to create the 3D plot of its original mesh in Fig 3.2a. Then, the data is
meshed to create a Delaunay Triangulation (additional points are added to the mesh
which will be expanded on in Sec 3.2.3) in Fig 3.2b. Finally, we compare the simplices
in 3.2b to the simplices in the alpha complex of the meshed 3D object and plot its
persistence in 3.2c to show 1 connected component in H0 and 1 hole in H1.

(a) (b) (c)

Figure 3.2. A triangular prism with a triangular hole, its Delaunay triangulated mesh,
and the persistence diagram of the Delaunay triangulated mesh

3.2 Implementation
The methods of this paper are implemented in Python using many libraries, most

notably MeshPy for mesh creation, Gudhi for TDA, Plotly to visualize 3D plots, and
Matplotlib to visualize persistence diagrams.

3.2.1 Creating STL Files with FreeCAD
STL files from online sources such as Thingiverse can be processed through the

program, but these files are often too complex and therefore very computationally
expensive. For this reason, we create our own dataset to test our methods using
FreeCAD to keep complexity to a minimum while covering basic test cases that
demonstrate potential tolerancing errors. The parts are all exported to an ASCII STL
(.ast) which encodes the data as text to allow for the data to be easily read in by
Python.

16



3.2.2 Parsing the STL File Data
We will discuss two methods to load in the data an ASCII STL file. We can parse

data directly from the .ast file and load it into lists and tuples, or we can use the
load_stl() attribute of the MeshPy MeshInfo object.

For "simplicity", we will use the load_stl() attribute. To use this method with
a .ast file, we will pass in the full file path of the .ast file, but first we must use
Python to create a temporary copy with the extension renamed to .stl even though
the content of the file will stil be ASCII text. Without creating a temporary copy
that renames the .ast to .stl, load_stl() will not work. This temporary .stl file
is then passed in to load_stl() to create our MeshInfo object which will be used to
build the new Delaunay triangulation mesh.

Although we use MeshPy to load in the data, the following paragraph is an example
of how ASCII STL file data could be loaded in if we wanted to do it manually. Loading
in the code manually can be advantageous if we want to directly alter the ASCII
STL data of the chosen "truth" .ast file to create variations of part features by
manipulating the facets and vertices and saving these manipulations as new .ast files
to be analyzed sequentially.

As shown in Fig 2.7, an ASCII STL file is delimited by the formatting of its
facets and vertices. We use the strings ‘facet normal’, ‘end facet’, ‘outer loop’, ‘end
loop’, and newline character delimiters to identify the faces and vertices of the 3D
object. For each facet, the ASCII data gives us the normal vector of the facet and the
coordinates of each of the three points that makes up the facet. At this point, we can
use the parsed data to add or manipulate points, edges, or facets if we choose to do
so. We can then use the parsed or manipulated data to create a list of points where
each unique point is numbered numerically. All point names would be 1-indexed, or
begin naming at 1, to match the indexing of Gudhi. The list of unique edges can be
extracted from the list of facets and matched with their vertex names to create a list
of edges described by two vertex names instead of coordinates. The same can be done
to describe each facet by the three vertex names that create it. This relational point
name data can then be passed in to Gudhi if the triangulation is Delaunay.

3.2.3 Creating a Delaunay Triangulation with MeshPy

MeshPy is a library that creates meshes by adapting the TetGen mesh generation
program to python. As per the TetGen documentation [13], Tetgen creates Delaunay
tetrahedralizations (triangulations for our purposes) by default. Additional switches
can be added to the code to enhance or alter the mesh. While there are dozens of
possible switches to use, for simplicity, we will only be using -p and -q.
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Switch -p: Tetrahedralize a Piecewise Linear Complex

The switch -p Tetrahedralizes a piecewise linear complex (PLC). According to the
documentation, a PLC is defined as the following:

Definition 3.3 (Piecewise Linear Complexes). A 3D piecewise linear complex X is a
set of cells that satisfies the following properties:

1. The boundary of each cell in X is a union of cells in X

2. If two distinct cells f, g ∈ X intersect, their intersection is a union of cells in X .

The boundary of a 3D PLC is the set of cells whose dimensions are ≤ 2:t

1. A 0-dimensional cell is a vertex

2. A 1-dimensional cell is a segment, or an edge

3. A 2-dimensional cell is a facet

The -p is how Fig 3.1 retains its original shape’s boundary but consists of new
points and edges to allow for the mesh to be Delaunay. However, the specific Delaunay
triangulation used with this switch is a Constrained Delaunay Tetrahedralization
(CDT - again, triangulation for our purposes). A CDT differs slightly from a Delaunay
triangulation in that open circumspheres of facets on the outer surface of a mesh are
allowed to contain other facet’s vertices on its surface boundary, as seen in Fig 3.1b.

Switch -q: Refine Mesh

The -q switch can be used in combination with -p to improve the quality of the
mesh by inserting additional points into the mesh. This is done with two constraints.
The first constraint is a maximum radius-edge ratio bound. This ratio is found by
dividing the radius of the circumsphere of a tetrahedron (facet, in our case) by the
length of the shortest edge of that facet. This constraint limits the maximum ratio
up to a default value of 2.0. A smaller ratio means more triangulations will be made.
The second constraint is a minimum dihedral angle bound. A dihedral angle is the
angle between two planes. This constraint has a default value of 0 degrees. Choosing
a larger minimum dihedral angle bound will cause the facets to be larger than they
would be otherwise.

3.2.4 Creating and modifying an Alpha Complex with Gudhi

Gudhi is a python library which contains functions to analyze the topology of a
dataset. We will be using it to do this through generating an Alpha complex and
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modifying it as outlined in Sec 3.1.2. By comparing the simplices of the Delaunay
triangulation mesh generated by MeshPy and the simplices of the alpha complex
generated by Gudhi, we change the filtration values so that every original simplex
from the Delaunay triangulation has a filtration value of 0 and appears in K0 while
the remaining simplices generated from the Alpha complex will retain their assigned
filtration.

3.2.5 Persistence Diagram Construction
Using the Matplotlib python library in tandem with the persistence points

generated by Gudhi, we create a persistence diagram, like the persistence diagram
of the tetrahedron from Fig 2.7. We will use a sequence of diagrams to show the
progression of change in the topology of variations of 3D object features.

Figure 3.3. Persistence diagram of a tetrahedron.
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Chapter 4: Results

The datasets used for these experiments was created with the CAD software
FreeCAD, then exported to an ASCII STL as an input to MeshPy. The images of
the 3D objects are displayed with the Python library Plotly. For each experiement,
a feature of a file was chosen to be manipulated by changing a measurement over a
series of alternate version files. This was done to show how our method lets us observe
the change in homology as these measurements change across the file variations. We
will dicuss the results in Chapter 5.

4.1 Two Cubes with Three Pockets Moving Closer
A CAD pocket operation subtracts an area from a face by some depth. This can

also create a hole which goes through an object’s face. This operation was done to a
cube on the top, front, and right faces to create three intersecting pockets through
each face of the cube, as shown in Fig 4.1.

Figure 4.1. Cube with three pockets.
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50 mm apart 40 mm apart

30 mm apart 20 mm apart

10 mm apart 00 mm apart

Figure 4.2. MeshPy plots displayed with Plotly of two cubes with three CAD pocket
operations that move closer together until combining.
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Figure 4.3. Persistence Diagrams of two cubes with three CAD pocket operations that
move closer together until combining.
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4.2 Cube with Equilateral Triangle Hole
An equilateral triangle was sketched onto the top face of a cube and a pocket

operation was done through the cube. The equilateral triangle hole starts with an
edge length of 8mm until it shrinks completely and dissapears.

Equilateral Triangle Hole, 8 mm Equilateral Triangle Hole, 7 mm Equilateral Triangle Hole, 6 mm

Equilateral Triangle Hole, 5 mm Equilateral Triangle Hole, 4 mm Equilateral Triangle Hole, 3 mm

Equilateral Triangle Hole, 2 mm Equilateral Triangle Hole, 1 mm Equilateral Triangle Hole, 0 mm

Figure 4.4. MeshPy plots displayed with Plotly of a cube with an equilateral triangle
hole that decreases in size to the original shape.
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Figure 4.5. Persistence Diagrams of a cube with an equilateral triangle hole that
decreases in size to the original shape.
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4.3 Rectangular Prism Ring with Cut
A rectangular prism ring was created as a topologically equivalent model of a solid

torus. This was done to allow for faster compute times from a simpler triangulation
with less facets. The initial state of the object has a 40mm cut which shrinks and
dissapears.

40 mm cut 35 mm cut 30 mm cut 25 mm cut

20 mm cut 15 mm cut 10 mm cut 05 mm cut

03 mm cut 02 mm cut 01 mm cut 00 mm cut

Figure 4.6. MeshPy plots displayed with Plotly of a rectangular prism ring with a cut
that decreases to the original shape.
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Figure 4.7. Persistence Diagrams of a rectangular prism ring with a cut that decreases
to the original shape.
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Chapter 5: Discussion

5.1 Two Cubes with Three Pockets Moving Closer
Section 4.1 features a test case of two cubes with three pocket operations on three

orthogonal faces. The cubes move closer together until combining to form one object,
as shown in Fig 4.2. The three pocket operations on the cube may appear to create 6
holes, but similar to how a non-filled-in tetrahedron has three holes, each cube only
has five holes. This can be seen in the figure below of topologically equivalent graphs
for a tetrahedron and the cube with three pocket operations (or a non-filled-in cube).

Figure 5.1. Network graphs of a non-filled-in tetrahedron and cube.

The decreasing distance between the objects and the change in topology which
occurs when the objects combine are represented in Fig 4.3 as a sequence of persistence
diagrams. Initially the two cubes appear as two connected components in H0 with
birth-death points at (0, 625) and (0, ∞). One connected component dies at r2 = 625.
This is equivalent to a Euclidean distance of r = 25mm which means the open balls
of each connected component intersect at the halfway point of the distance, 50mm,
between each object. The other connected component was chosen by Gudhi to be the
first point in the complex, so it does not die and has a death time of r2 = ∞. As the
two cubes move closer together, we can convert their distance apart to an H0 death
time by taking the square of their circumradius, which in this case is the shortest
distance of two vertices between the two inward faces of each cube: Death = (Dist

2 )2.
Conversly, the H0 death time of a cube can be used to find the distance between two
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cubes: Dist = 2
√

Death. This also explains the value for the death times of H1 points
that represent the holes of the cubes. Each hole is a 5mm square and has a death
time of r2 = 12.5. This is equivalent to r2 = (5

√
2

2 )2, where 5
√

2 is the distance of
the diagonal of the squares. The additional H1 points on the diagonal are noise and
appear when the open balls of vertices between the two inward faces of each cube
intersect.

Distance
(mm)

Connected
Component
Death Time

50 625
40 400
30 225
20 100
10 25
0 ∞

Table 5.1. Distances between cubes and the corresponding H0 death times.

In Table 5.1, as the distance shrinks between the two cubes, we can see the death
time of the second connected component move closer to 0. When the two cubes
combine, there is only one point in H0 with a death time of ∞ because there is only
one connected component. The merger of cubes also shows one of the holes no longer
exists as there are 9 H1 points instead of 10.

In terms of tolerancing between two 3D parts, we can use the base formulas of
d = r2 and r =

√
d, where r is euclidean radius and d is death time, along with

intuition about how to choose the radii for the formula (set radius equal to half the
distance apart in this case) to determine which death time would create the optimal
tolerance in fabrication and vice versa. For example, if a fabrication method such as
3D printing had a tolerance of 3mm (this is a realistic tolerance for large-scale printers
which print car prototyping parts), we can use d = (3

2)2 to find that the H0 death
time of a part feature would need to have a margin of error of ±2.25 to ensure a good
fit with other part features in close proximity to it.
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5.2 Cube with Equilateral Triangle Hole
Section 4.2 features a test case of a cube with a pocket of an equilateral triangle

through the entire object, creating an equilateral triangle hole. The equilateral
triangle hole begins with an edge length of 8mm and decreases in length until the
hole dissapears. As expected, there is only one connected component as a point in H0
with a death time of ∞.

The nature of how the Delauanay triangulation mesh was generated from the
original STL mesh affects the resulting persistence diagrams. The differences between
hole death times in Table 5.2 depends on the fineness of the mesh generated by MeshPy.
To understand the reasons why the differences occurred, we will use the following
formula to find the circumradius of an equilateral triangle:

r = l√
3

, where l is the edge length.

We will also use the radius of a triangle’s inscribed circle. The inscribed circle of
an equilateral triangle exists within the triangle and is tangent to each edge in the
triangle. The formula to find the inscribed radius is the following:

r = l

2
√

3
, where l is the edge length.

Edge
Length
(mm)

Inscribed
radius

(mm), ri

Circum-
radius

(mm), rc

d = r2
i

(Lower
Bound)

d = r2
c

(Upper
Bound)

Figure 4.5
H1 Death

Time

Original STL
H1 Death

Time
8 2.309 4.619 5.333 21.333 5.333 21.333
7 2.021 4.041 4.083 16.333 4.567 16.333
6 1.732 3.464 3.000 12.000 9.000 12.000
5 1.443 2.887 2.083 8.333 8.333 8.333
4 1.155 2.309 1.333 5.333 5.333 5.333
3 0.866 1.732 0.750 3.000 2.999 2.999
2 0.577 1.155 0.333 1.333 1.333 1.333
1 0.289 0.577 0.083 0.333 0.333 0.333

Table 5.2. Equilateral triangle hole edge lengths and their corresponding death time
comparisons between predictions calculated from triangle circumradius and inradius
with observed death times from the MeshPy Delaunay triangulation mesh and the
original STL file mesh.

The death times of an equilateral triangle for a more coarse mesh are expected to
be found from using the square of the circumradius, rc. The expanding balls from each
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of three vertices in the plane of an equilateral triangle will meet at the intersection of
the three perpendicular bisectors of each triangle edge, and the radius of these balls at
the intersection will be equal to the the radius of the triangle’s circumsphere. Thus,
taking the square of rc will give us the death time of this triangle if it is not "filled-in".

The column of H1 death times from persistence diagrams in Fig 4.5 shows the
death times for edge lengths 5mm through 1mm all match the death times calculated
with rc. We can see the reason for this correlation in the sequence of meshes created
with MeshPy in Fig 4.4: meshes for edge lengths 5mm through 1mm all consist of only
three points to create the triangle.

However, for edge lengths 8mm through 6mm, the MeshPy switch -q caused the
mesh to include many new points in close proximity to each other due to the relatively
smaller distances between the vertices of the triangle hole and the edges of the top
and bottom faces of the cube. The additional points were also added to the triangle
hole edges for these lengths, which caused the Alpha complex to form a hole sooner
in r2 with smaller open metric balls due to the triangles containing more than the
minimum three points. This results in the death times of the H1 points being much
smaller than the calculated death time with rc.

The death times from Fig 4.5 for edge lengths ranging 8mm through 6mm all
either match the death times calculated from the inscribed radius ri (8mm), are
close to the death times from ri (7mm), or are in between the death times from ri

or rc (6mm and 7mm). The square of the inscribed radius is the lower bound of
possible radii to compute the death time of an equilateral triangle. This is becuase
it is possible for the smallest distance from points on an equilateral triangle edge to
the intersection points of perpendicular bisectors of its three edges to be the distance
from the midpoint to that intersection point, or l

2
√

3 . Therefore the lower bound death
time for an equilateral triangle is r2 = ( l

2
√

3)2.
In most cases, more points need to be added to the mesh in order to make the

original STL mesh a Delaunay triangulation. However, as we have seen this can affect
the persistence points in H1. Table 5.2 also shows the death times of triangle holes
using the original STL mesh as the input for the Alpha complex. In cases such as these,
the desired feature of analysis, the triangle hole, is already a Delaunay triangulation, so
increasing the fineness of the mesh through MeshPy is not necessary because the death
times of the ASCII STL mesh all match (taking into account possible floating-point
error) the death times calculated with rc.
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5.3 Rectangular Prism Ring with Cut
Section 4.3 features a rectangular prism ring, meant to be a simplified model of

a solid torus, which has a portion cut out of it. The cut starts at 40mm wide and
decreases in length until the cut dissappears to the final shape of a ring.

The three H1 points of holes slightly above the diagonal can be considered noise
for the same reason as the noise in Fig 4.3 as we discussed in Section 5.1. However,
the H1 point which is not noise represents the time it takes for the hole to form once
the gap of open metric balls in the Alpha complex intersect.

Length of
Cut (mm) Birth Time Death Time

40 400.0000 500.0000
35 306.2500 425.0000
30 225.0000 431.6406
25 156.2500 415.2588
20 100.0000 406.2500
15 56.2500 401.9775
10 25.0000 400.3906
5 6.2500 400.0244
3 2.2500 400.0032
2 1.0000 400.0006
1 0.2500 400.0001
0 0.0000 400.0000

Table 5.3. Cut lengths and the birth and death times of holes, from Fig 4.7.

The birth times of the holes are formed through the same type of motion as in
Section 5.1 where two features move closer together until combining. This causes the
birth times to follow the same pattern of Dist = 2

√
Death. Aside from the cut length

of 30mm, the death times also follow a pattern of decreasing from 500 to converge
to 400. The death times converge to 400 because the width of the square hole in the
rectangular prism ring is 40mm, so we can calculate that 400 should be the death
time by Death = (Dist

2 )2.
While the birth time or death time could be used for choosing a tolerance or

clearance value for a part’s design, it would be easier to choose these values based on
birth time. The death times also correspond to the length of the cuts, but in order to
choose a tolerance value closer to 0.5mm or lower, floating-point errors could begin to
be a problem with the difference between death time and r2 = 400.
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Chapter 6: Conclusion

6.1 Findings
In this paper we outlined a method for analyzing 3D ASCII STL files to determine

metrics for when a feature of a part may have a margin of error in its tolerance or
clearance which could cause issues in fabrication. We first pass in the STL data to
MeshPy to generate a Delaunay triangulation of the surface of the object. This is done
to ensure features of parts are accurately represented in H0 and H1 by the Alpha
complex filtered simplices. However, depending on the part feature to be analyzed,
meshing can cause irregular death times to occur (see Sec 5.2). We then compare
the simplices of the Alpha complex to the simplices of the Delaunay triangulation
mesh to assign a birth time of 0 to the Alpha complex simplices which were originally
in the Delaunay triangulation mesh. Using these modified persistence point values,
we visualize the persistent homology of a part with a persistence diagram. We then
repeat these steps for a sequence of variations of altered part feature measurements as
separate STL files to determine potential patterns in the birth and death times of the
feature.

6.2 Future Work
For computational efficiency, the implementation could be improved by checking

if the mesh originally contained within a 3D object file is Delaunay or not upon
parsing to determine if it is necessary to create a new mesh with meshpy. Potentially
eliminating this step would reduce the overall computational expense of the program.

The variations of the three cases of 3D objects were created manually in FreeCAD,
but creating the variations could be automated. This can happen either through
using the FreeCAD python library and editing the original FreeCAD .FCStd file or by
editing the text of the exported ASCII STL file to manipulate facets and vertices to
change part features to simulate different tolerances.

The methods of this paper can be improved upon by computing a measure of
topological stability to determine the error from the "truth" of an STL file through
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analyzing the different persistence diagrams of the different versions of the file. The
"truth" value of the 3D object would be the persistence vector of the preselected object
and the error would be computed through the differences in the persistence diagrams
of the variations.

This paper only analyzes connected components and holes. When the MeshPy
meshes of 3D objects were created, it only triangulated the outer surfaces of objects.
So when an object with a void was given to the program, it created a mesh of only
the outer surface and inner surface of the void, but it did not tetrahedralize the space
between the two surfaces. This led to voids having a birth time not equal to r2 = 0
after the step of modifying filtration values. The methods of this paper can also be
improved through finding the correct meshing algorithm to tetrahedralize the space
between surfaces in an object containing a void, as well as fully enclosed objects.
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