
DEVKOTA, PRATIK. M.S. NEural Models for Ontology annotations - NEMO. (2022)
Directed by Dr. Somya D. Mohanty and Dr. Prashanti Manda. 71 pp.

The rapid progression of technology has allowed a significant increase in the pace of
modern, novel scientific experimentations. Important results from these experiments
are often buried in rather comprehensive documents and thus information retrieval
is difficult. To facilitate retrieval and knowledge discovery, domain experts have
been using ontologies (a formal way to represent knowledge within a domain) to
annotate important entities. These annotations are generally curated manually which
is a slow and laborious process and hence unscalable. As a solution for scalable
ontology annotations, Named Entity Recognition (NER) is critical. NER is the task
of recognizing ontology concepts from the text. Traditionally, entity recognition
was achieved using syntactic analysis, lexical approaches, and traditional machine
learning. In recent years, deep learning has shown improved results in terms of concept
recognition.

This research explores different approaches to improve the state-of-the-art deep learning
models for automated ontology annotations. Here, CRAFT (a manually curated
biomedical corpus for ontologies) is used as a gold standard corpus for training and
evaluating the performance of different deep learning architectures. We augment
the information from CRAFT with several existing knowledge bases. This study
demonstrates that we can improve the prediction accuracy of existing deep learning
models by including additional information as input pipelines to existing architectures.
Additionally, ontologies are hierarchical and have semantic relations between concepts.
While deep learning models generally fail to take this hierarchy into account, our
work also explores the possibility of making the models ontology-aware and shows
improvement over baseline models. Furthermore, we implement a novel concept called
Ontology Boosting to boost the prediction accuracy of pre-trained models through
post-processing steps.

NEURAL MODELS FOR ONTOLOGY ANNOTATIONS - NEMO

by

Pratik Devkota

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro
2022

Approved by

Dr. Somya D. Mohanty

Dr. Prashanti Manda

APPROVAL PAGE

This thesis written by Pratik Devkota has been approved by the following committee
of the Faculty of The Graduate School at The University of North Carolina at
Greensboro.

Committee Co-Chair
Somya D. Mohanty

Committee Co-Chair
Prashanti Manda

Committee Members
Yingcheng Sun

Chunjiang Zhu

Date of Acceptance by Committee

Date of Final Oral Examination

ii

ACKNOWLEDGMENTS

Words cannot express my gratitude to my advisors Dr. Somya D. Mohanty and Dr.
Prashanti Manda for their invaluable supervision and guidance. I am extremely grateful
to them for their continuous support, constructive suggestions, and encouragement. Dr.
Mohanty’s expertise in Data Science and Deep Learning, and Dr. Manda’s expertise
in Natural Language Processing and Bioinformatics were instrumental in bringing this
study to its current form. I am fortunate to have them as my mentors who inspired
me along my journey at the University of North Carolina at Greensboro (UNCG).

I would also like to extend my gratitude to my thesis committee members Dr.
Yingcheng Sun and Dr. Chunjiang Zhu for their enthusiasm toward my work and
their involvement during the defense. I am equally indebted to the Department of
Computer Science at UNCG for providing the resources to run my resource-exhaustive
experiments and for providing access to the lab.

I would be remiss in not mentioning my family, especially my parents and my sisters.
Their emotional support and belief in me kept my spirits high during my master’s
degree. I also want to thank my uncle, aunt, and cousins for their advice and inspiration.
Last, but by no means least, I would like to thank my long-suffering girlfriend Durga
Tandon for her forbearance and motivation throughout this endeavor.

This work is funded by a CAREER grant from the Division of Biological Infrastructure
at the National Science Foundation of the United States of America (#1942727).

iii

Table of Contents

List of Tables . vi

List of Figures . vii

1. Introduction . 1

2. Related Works . 7

3. Background, Data and Preprocessing 11
3.1. Background . 11

3.1.1. Ontology . 11
3.1.2. Gene Ontology . 11

3.2. Dataset . 12
3.3. Data Preprocessing . 13

3.3.1. Sentence segmentation and Tokenization 13
3.3.2. IOB Tagging . 14
3.3.3. Annotation Formats . 15
3.3.4. POS Tagging and Token Encoding 20
3.3.5. BioThesaurus Encoding . 21
3.3.6. Unified Medical Language System (UMLS) Encoding 22

4. GRU based architectures for concept recognition 24
4.1. Methods . 26

4.1.1. Deep Learning Architecture 26
4.1.2. Performance Evaluation Metrics 31

iv

4.2. Results and Discussion . 32

5. Knowledge of the Ancestors . 41
5.1. Methods . 42

5.1.1. Deep Learning Architecture 42
5.1.2. Target Vector Representation 46
5.1.3. Performance Evaluation Metrics 47
5.1.4. Top two predictions . 47

5.2. Results and Discussion . 48

6. Ontology-powered Boosting . 51
6.1. Methods . 51

6.1.1. OB - A two-step process . 51
6.1.2. Deep Learning Architectures 53
6.1.3. Performance Evaluation Metrics 57

6.2. Results and Discussion . 57

7. Conclusion and Future works . 63
7.1. Conclusion . 63
7.2. Future works . 64

References . 65

v

List of Tables

4.1. Coverage of GO ontology concepts and annotations in CRAFT 32
4.2. Performance comparison of nine GRU models 34
4.3. Modified F1 scores from M9 . 35
4.4. Confusion matrix for predictions by GO sub-ontology 35
4.5. Performance comparison between our best model and two variants of

BERT . 37

5.1. Comparison of baseline vs ontology aware model performance 48
5.2. Examples of accurate, partially accurate, and inaccurate annotation

predictions . 49
5.3. Performance comparison between our best model and BERT 50

6.1. Effect of ontology boosting on the two architectures 58
6.2. Impact of boosting on the two architectures 58

vi

List of Figures

3.1. Example of a GO concept with the hierarchy 12

4.1. Architecture of a GRU model using multiple input pipelines 27
4.2. Workings of a GRU model with an example input sequence 30
4.3. Distribution of F1 scores by occurrence frequency of GO terms in CRAFT 36
4.4. Distribution of F1 scores for GO terms with 10 or fewer occurrences in

CRAFT . 37
4.5. Distribution of incorrect and correct predictions with respect to entropy,

probability, and frequency of occurrences. 38
4.6. Distribution of incorrect predictions with respect to entropy, probability,

and frequency of occurrences. 39

5.1. Architecture of GRU model with three input pipelines 43
5.2. Snapshot of GRU model with example input sequence 44

6.1. Architecture of a GRU model for ontology concept recognition 54
6.2. Architecture of intelligent ontology model 56
6.3. Distribution of correct and incorrect predictions with respect to proba-

bility and entropy of predictions. 60
6.4. A1 predictions corrected via Ontology Boosting. 61
6.5. A2 predictions corrected via Ontology Boosting. 62

vii

Chapter 1: Introduction

Named Entity Recognition (NER) or sometimes also referred to as entity identifica-
tion/extraction or annotation is the task of recognizing and associating important
information from a text to some predefined categories. It is widely used in the field of
Natural Language Processing (NLP), for different purposes such as sentiment analysis,
trend analysis, topic modeling, decision support, information retrieval, and much more.
Text/documents for these tasks can be a sentence, paragraphs, dialogue, literature
reviews, or even scientific articles.

Documents like scientific articles, journal publications, and literature reviews often
contain novel experiments and findings which can be used for further analysis or to
use these findings in real-world applications. However, these documents are generally
detailed, and extracting information is often difficult. Traditionally, the process of
knowledge extraction was achieved through manual annotation, syntactic and lexical
analysis, rule-based analysis, dictionary lookup, and machine learning [1]. Manual
annotation is a slow and tedious process that requires domain expertise and the use
of specialized software [2]. Lexical approaches use lexical and semantic similarities
between a piece of text and an ontology concept to annotate the text with the concept
[3]. A rule-based NER system consists of a lexicon and grammar. A lexicon is a
collection of named entities that are known and categorized into classes beforehand.
Grammar is used to recognize and classify entities not present in the lexicon and decide
the class in case of ambiguous entities [4]. These approaches generally have lower
accuracy and lower throughput. However, the recent advancement in deep learning
algorithms have shown promising avenues in NLP because of their increased accuracy
and higher throughput [5–9].

1

Accurate recognition of biological/biomedical entities has made it possible to integrate,
query, and run large-scale analyses on biological data. Computational analyses such as
hypothesizing the genetic bases of evolutionary transitions to predicting gene functions
to understanding rare human diseases can be performed with higher accuracy [10, 11].
With new deep learning architectures, entities described in the literature are recognized
with higher confidence and the rate of missing entity recognition is reduced. This can
help improve the quality of clinical documentation, clinical decision support, clinical
trial matching, computational phenotyping, and much more.

Nonetheless, applying deep learning for recognizing concepts from biomedical liter-
ature possesses significant challenges. Many biomedical concepts (1) are long and
descriptive, (2) have a large number of synonyms, (3) are commonly represented using
abbreviations and mixtures of letters, symbols, and punctuation, and (4) are even
presented differently by different authors [12]. Additionally, biomedical annotations
require experts’ knowledge and specific, detailed guidelines to create a dataset to
feed into deep learning models for training and evaluation purposes. Automation
of these annotations is essential to take advantage of the rapid pace of scientific
publishing. The accuracy of these annotations is crucial to better the quality of
large-scale computational analyses.

As an effort to improve the accuracy of automated annotation using deep learning
models, we test different methods and deep learning architectures and analyze their
performance. For all our experiments, we use the Colorado Richly Annotated Full
Text Corpus (CRAFT) (v4.0.1) as a gold standard corpus for training and evaluation.
A gold standard corpus is a set of textual documents that are manually annotated
across multiple categories of entities. CRAFT is an open-source corpus, semantically
and syntactically annotated to serve as a research resource for NLP tasks. Version
4.0.1 provides a collection of 97 full-length, open-access biomedical journal articles
from PubMed Central Open Access Subset. The collection contains ontologies with
different classes organized across 10 different modules.

An ontology is a formal representation of knowledge within a domain described by
a set of concepts and their relationship to each other. Ontologies not only aim to
standardize concepts used in the domain but also help in the classification, inference,

2

and reasoning. Directed Acyclic Graphs (DAG) are generally used to represent
ontologies where concepts are denoted by nodes and semantic relationships between
concepts by the edge connecting the nodes. Hierarchy exists between concepts and the
directed graph represents both generalization (represents parent) and specialization
(represents children).

For any deep learning model training, the quality of dataset is crucial to achieving good
performance. In our work, we spend a considerable amount of time preprocessing the
CRAFT corpus, making sure that the dataset is sound and complete. CRAFT v4.0.1
introduces some sophisticated annotation formats such as overlapping annotations and
discontinuous annotations. Even though the occurrences of these annotations in the
corpus are relatively low, all of these occurrences are properly addressed and included
in our training and validation dataset. CRAFT has a separate plain-text version of
each of the 97 articles. For each of them, a corresponding XML file is provided that
contains the concept annotations mapped to specific ontologies. We pre-process the
plain text along with the xml file to split the entire document into sentences. To
avoid data leakage between the training and validation dataset, the sentences are
divided into 80-20 splits. Once separated, all preprocessing steps are applied to both
the training and validation datasets. The sentences in either dataset are further split
into tokens and each token is normalized either to a concept or not-a-concept. If
for a given token, the xml contains the annotation, the token is normalized to that
particular annotation. Else, the token is represented as not-a-concept. Additionally,
to correctly represent long words or phrases corresponding to a concept, we use the
IOB tagging format.

IOB tagging, also known as BIO tagging is a common format to tag tokens in tasks
like Named Entity Recognition. The first token belonging to a particular concept is
represented as a B-concept (representing the beginning of a phrase), the rest of the
tokens belonging to the same concept are represented as an I-concept (representing
the inside of a phrase), and any token not belonging to a concept is represented as an
O (representing outside of a phrase). Furthermore, we tag each token of a sentence
with Parts-of-Speech information. To help the model understand the character level
detail of a token, we use character encoding with upper-case characters represented
by ‘C’, lower-case characters by ‘c’, numerals by ‘N’, and punctuation kept as is.

3

In addition, we use Bio-Thesaurus - a web based thesaurus of protein and gene names
[13] and Unified Medical Language System (UMLS) [14] metathesaurus for dictionary
lookup. The presence of a token in these databases would suggest that the token is
more likely to be a concept, thus helping augment the information from CRAFT. Each
article, once preprocessed has a corresponding JavaScript Object Notation (JSON)
file that contains a list where each item in the list is a list of tokens with augmented
information and IOB tags.

All augmented information from preprocessing is used as separate inputs to deep
learning models to explore the effect of these inputs on model performance. These
deep learning models aim to accurately recognize and normalize concepts present in
our corpus. Ontology annotation is generally considered a two-step process. The
first step is Named Entity Recognition (NER), to recognize whether an input token
belongs to a concept or not. Based on the prediction, the token is assigned one of the
IOB tags i.e. the token is either predicted to be a ‘B’ tag, ‘I’ tag, or an ‘O’ tag.
The output/prediction of this step is used for the second step where the task is to
normalize a concept. Named Entity Normalization (NEN) or Concept Normalization
is the process of assigning a concept name or ID to output if a token is predicted
as a concept. After combining the output from both steps, each token is predicted
to be either a ‘B-X’ tag, ‘I-X’ tag or ‘O’ tag, ‘X’ representing concept name/ID
predicted from the second step.

Many treat these two steps separately and either develop two different deep learning
models, one for each step, or develop one deep learning model to predict two separate
outputs (recognition and normalization). We, on the other hand, treat these two
steps as one and develop a deep-learning model to predict the combined output of the
above described steps. We develop different Gated Recurrent Unit (GRU) models [15]
whose architecture differs in the input pipelines added to them. It is concluded from
prior works [9, 16] that GRU-based architecture performs the best on CRAFT corpus
among vanilla RNN, LSTM [17] and GRU models. Over 100 different experiments
are carried out on GRU–based architectures, testing different hyperparameters and
supervised embeddings - dense latent space representations of higher dimensional
inputs. After hyperparameter tuning, a total of 28 different models are recorded
and their performance is evaluated using F1 and Jaccard semantic similarity metrics.

4

Jaccard similarity is a set-based semantic similarity measure specifically designed to
calculate semantic closeness between ontology concepts [18]. The notion of augmenting
biological information with that in the gold standard corpus is explored with different
combinations of input pipelines, hyperparameters, and model architectures.

In all these variants of GRU-based deep learning models, the ontologies are treated as
independent concepts, thus assuming no association between them. However, in reality,
these ontologies can have some semantic association and hence can not be treated
as mutually exclusive concepts. In another study, we introduce a novel approach to
incorporate the ontology hierarchy for training GRU-based models. This is achieved
by creating a target vector as a label encoded vector or sometimes also known as a
multi-hot encoded vector as opposed to a one-hot encoded vector in previous models.

In a one-hot encoded vector, each token corresponds to a row vector of k length, k
representing the total number of ontology concepts in the corpus. Here, the value in
the index of the ground truth concept is set to 1 and all other indexes have 0 value,
therefore signifying mutual exclusiveness. In label encoded vector, however, the value
in the index of the ground truth concept is set to 1 and all other indexes have values
equal to the Jaccard similarity between the ground truth concept and the rest of the
concepts in the corpus. Providing these vectors as target/output allows the model
to learn the ontology hierarchy, therefore, making the model capable of predicting a
semantically close ontology concept (such as a parent or a super-class) when it fails to
make an exact prediction.

To further improve the accuracy of the ontology-aware model, we present another
approach called Ontology-powered Boosting (OB) by using information about the
ontology hierarchy to post-process the model’s prediction. We “boost” all predictions
where the model is relatively less confident about the predictions. Using the entropy and
probability distribution information, we identify low-confidence predictions as potential
candidates for boosting, and boost the prediction probability with the probabilities of
semantically similar concepts. The goal of OB is to combine the model’s preliminary
predictions with knowledge of the ontology hierarchy to selectively increase the
confidence of certain predictions to improve overall prediction accuracy. The method
relies on a computationally inexpensive calculation and avoids bloated machine learning

5

models that cannot be trained or deployed without requiring enormous resources.

6

Chapter 2: Related Works

Substantial work has been conducted in the area of employing automated methods
for identifying ontology annotations. The majority of this work is geared toward
identifying Gene Ontology (GO) annotations since GO is the most widely used
biological ontology. Some of the preliminary work in this space was aimed to assign
GO terms to protein sequences and not to free text in literature.

Similarity-based approaches identify GO annotations based on the similarity between
protein sequences [19–21]. When a sequence database is searched for a protein sequence,
GO terms associated with similar sequences retrieved from the search are assigned to
the query sequence. Probabilistic methods assume that the probability of shared GO
functions is higher between proteins in close proximity on a protein interaction graph
[22–26]. Markov Random Fields and Bayesian frameworks were used to determine
the probability of shared GO functions in these approaches. Later, machine learning
approaches such as Support Vector Machines were used to identify hidden relationships
between protein features such as sequences, structure, etc. to annotate new proteins
[27–30]. The latest developments in this area employ deep learning models for the
task of automatically annotating proteins with GO terms. Various supervised deep
learning architectures like Long Short Term Memory (LSTM), Convolutional Neural
Networks (CNN), Recurrent Neural Networks (RNN), Gated Recurrent Units (GRU),
and Bidirectional RNNs have been shown to perform well at this task.

The early use of automated concept annotation set the stage for more sophisticated
problems such as associating ontology concepts to pieces of text from the scientific
literature. The task of automatically annotating scientific literature with ontology
concepts is the task of focus in our study. Preliminary studies in this area employed

7

the use of lexical, syntactical, and traditional machine learning [1]. In prior work,
we presented a review of these approaches and conducted a performance comparison
using a gold standard dataset [1]. Three concept recognition tools (MetaMap [31],
NCBO Annotator [32], Textpresso [33] were compared [1].These methods can form
generalizable associations between text and ontology concepts leading to improved
accuracy. However, in more recent years, the state of the art has evolved to leverage
deep learning models due to the promise of increased accuracy and speed [5–8]. Deep
learning models use vector representations that enable them to capture dependencies
and relationships between words using enriched representations of character and word
embeddings from training data [34].

In early uses of deep learning for ontology annotation of text, CNNs combined with
LSTMs were used [35]. The work provided a proof-of-concept for the use of deep
learning for ontology annotation and showed improved performance over traditional,
machine learning methods. Other studies conducted performance comparisons among
deep learning models and found that CNNs with enhanced inputs such as character
embeddings were particularly effective for biomedical named entity recognition [36].

In a previous study [16], we compared Gated Recurrent Units (GRUs), Long Short Term
Memory (LSTM), Recurrent Neural Networks (RNNs), and Multi Layer Perceptrons
(MLPs) and evaluated their performance on the CRAFT gold standard dataset.
We also introduced a deep learning architecture that used multiple GRUs with a
character+word based input. The model was compared to seven models from existing
work using the CRAFT corpus as a gold standard. We used data from five ontologies in
the CRAFT corpus as a Gold Standard to evaluate our model’s performance. Results
showed that our GRU-based model outperformed prior models across all five ontologies.
These findings indicated that deep learning algorithms are a promising avenue to be
explored for automated ontology-based curation of data. This study also served as a
formal comparison and guideline for building and selecting deep learning models and
architectures for ontology-based curation.

This work was limited to predicting unigram annotations and did not take into account
the rich semantic information in ontology hierarchies. In 2020, we presented new
architectures based on GRUs and LSTM combined with different input encoding

8

formats for automated Named Entity Recognition (NER) of ontology concepts from
text. We found that GRU-based models outperform LSTM models across all evaluation
metrics. We also created multi-level deep learning models designed to incorporate
ontology hierarchy into the prediction. Surprisingly, the inclusion of ontology semantics
via subsumption reasoning yielded modest performance improvement [9]. This result
indicated that more sophisticated approaches to take advantage of the ontology
hierarchy are needed.

Most recent publications in this area have separated the ontology annotation task into
two sub-tasks - 1) span detection: detecting the part of the text that corresponds to
an ontology concept, and 2) concept normalization: identifying the ontology concept
most appropriate for the identified piece of text [37, 38]. Using the CRAFT corpus
as a training set, the study reports that Bidirectional encoder representations from
transformers for biomedical text mining (BioBERT) resulted in the best performance
(0.81 F1) for the span detection sub-task. The Open-source toolkit for Neural Machine
Translation (OpenNMT) yielded the best performance for concept normalization.
Overall, their results suggest that their approach using BioBERT for span detection
and OpenNMT for concept normalization achieved state-of-the-art performance for
most ontologies in the CRAFT corpus while using substantially fewer computational
resources.

Treating the ontology annotation task as a sequence-to-sequence problem, another
study [39] compared the performance of an LSTM model with BERT. This study di-
vided the ontology annotation task into span detection and named entity normalization
(NEN). However, instead of treating the steps like a pipeline where the output for the
first step feeds into the next, these steps are carried out independently and agreement
between the predictions is examined. The work uses ontology pretraining using names
and synonyms of concepts found in the ontology. This step enables the models to
predict concepts that might not be seen in the training data. The pretraining is further
combined with a rule-based dictionary-lookup system that directly queries concept
names from the ontology. Results show that the pretraining and lookup systems
improve performance. The study reports an F1 score of 0.84 using a bidirectional
LSTM-based architecture. Note that this system currently cannot handle sophisticated
annotation formats such as discontinuous and overlapping annotations as represented

9

in the CRAFT corpus.

The application of deep learning architectures such as RNNs and LSTMs has also
been explored for the task of relationship extraction between ontology concepts [40].
Sousa et. al. discuss neural network models to perform text mining tasks on data
structures such as ontologies. Biological annotation tools such as Textpresso [33]
conduct automatic curation by automatically extracting ontological entities and the
relations between them. Similarly, other studies have facilitated relation extraction
by creating gold standard datasets such as BioRel [41]. BioRel is a large-scale
dataset designed specifically for relation extraction problems using the Unified Medical
Language System as the source. Self attentive networks have also been found to be
promising and have been applied for identifying drug-drug interactions, protein-protein
interactions, as well as for identifying relations between medical concepts [42].

Continuing the work in [9], a 2022 study [43] presented state-of-the-art deep learning ar-
chitectures based on GRUs for annotating text with ontology concepts. We augmented
the models with additional information sources including NCBI’s BioThesauraus and
Unified Medical Language System (UMLS) to augment information from CRAFT for
increasing prediction accuracy. We demonstrated that augmenting the model with
additional input pipelines can substantially enhance prediction performance.

Considering that our previous attempt at creating intelligent prediction systems that
use the ontology hierarchy was not successful, we developed a different approach to
providing the ontology as input to the deep learning model [9]. In 2022, we presented
an intelligent annotation system [44] that uses the ontology hierarchy for training and
predicting ontology concepts for pieces of text. Here, we used a vector of semantic
similarity scores to the ground truth and all ancestors in the ontology to train the
model. This representation allowed the model to identify the target GO term followed
by “similar” GO terms that are partially accurate predictions. This output label
representation also helped the model optimize the weights to target more than one
prediction label. We showed that our ontology-aware models can result in 2% - 10%
(depending upon the choice of embedding) improvements over a baseline model that
doesn’t use ontology hierarchies.

10

Chapter 3: Background, Data and
Preprocessing [43]

3.1 Background

3.1.1 Ontology

Ontologies are formal ways or techniques to represent and share knowledge about
a particular domain by modeling objects in the domain and their relationships [45].
Agreement on a particular ontological representation allows domain experts to use
common vocabulary to describe, store and analyze data. [45]. They also facilitate in
easier handling of knowledge computationally. Therefore, we can see an increasing
trend in the adoption of ontologies in several domains, including biology, medicine,
and bioinformatics. Bio-ontologies are ontologies defined to describe entities in the
biomedical domain. Currently, there are an estimated 958 bio-ontologies containing
more than 55 million annotations (ontological terms together with their descriptions
and synonyms) (as of 1-20-22 from https://bioportal.bioontology.org/).

3.1.2 Gene Ontology

Among the different ontologies, Gene Ontology (GO) is the most comprehensive and
widely used ontology concerning the function of genes [46]. The knowledge base is both
human-readable and machine-readable and is a foundation for computational analysis
of large-scale molecular biology and genetics experiments in biomedical research.
Additionally, the corpus that we use for training and evaluating our model includes

11

https://bioportal.bioontology.org/

the largest number of annotations that are made using the GO.

Figure 3.1. Example of a GO concept with the hierarchy
https://www.ebi.ac.uk/QuickGO/term/GO:0005634

Figure 3.1 is an example of a GO concept - GO:0005634 with its parents/ancestors.
GO describes the knowledge of the biological domain with respect to three aspects:
Biological Process (BP), Molecular Function (MF), and Cellular Component

(CC). The color of the concept represents its sub-domain within the GO ontology.
The type and color of the directed edge from one ontology to another represent their
relationship. GO is loosely hierarchical, meaning the child concept is more specialized
than its parent concept or the parent concept is more generalized than its children.
Additionally, a child can have more than one parent concept. All child concepts (leaf
nodes) lead to one and exactly one of the three parent concepts (root node) (BP, MF,
or CC), and the three root nodes are completely unrelated.

3.2 Dataset

This study uses version v4.0.1 (https://github.com/UCDenver-ccp/CRAFT/releases/
tag/v4.0.1) of The Colorado Richly Annotated Full Text Corpus (CRAFT) [47], a

12

https://www.ebi.ac.uk/QuickGO/term/GO:0005634
https://github.com/UCDenver-ccp/CRAFT/releases/tag/v4.0.1
https://github.com/UCDenver-ccp/CRAFT/releases/tag/v4.0.1

manually annotated corpus containing 97 articles each of which is annotated to 10
ontologies. All of the articles in the CRAFT corpus are part of the PubMed Central
Open Access Subset. We selected GO annotations from the CRAFT corpus as our
training and testing set.

3.3 Data Preprocessing

Each of the 97 articles in the CRAFT corpus has a corresponding xml annotation
file which describes annotations within the sentences using character indexes of the
article. The first step is to preprocess each annotation into a format that can be used
by the deep learning models. All 97 articles are read as UTF-8 encoded strings and
the corresponding xml file for each article is parsed. The following preprocessing steps
are performed to translate annotations from the CRAFT corpus to the desired input
formats for the deep learning models.

3.3.1 Sentence segmentation and Tokenization

As mentioned earlier, annotations for each CRAFT article are recorded in the corre-
sponding xml annotations file via character index spans. The following is an example
of a sentence and its corresponding annotation:

Sentence: “We observed a severe autosomal recessive movement disorder in mice
used within our laboratory.”

Annotation:

<annotation >
<mention id=" GO_CC_2016_02_16_test_Instance_22573 "/>
<annotator id=" GO_CC_2016_02_16_test_Instance_10000">
Mike Bada , University of Colorado Anschutz Medical Campus
</annotator >

<spannedText >autosomal </ spannedText >

</annotation >

<classMention id=" GO_CC_2016_02_16_test_Instance_22573">
<mentionClass id="GO :0030849" > autosome </ mentionClass >

13

</classMention >}

Here, the word “autosomal” with a character span of 115 - 124 is tagged to GO term
“GO:0030849”. To obtain annotations per word, we utilize a sentence segmentation
library called SpaCy (https://spacy.io/). First, the segmenter splits the text into
sentences by accounting for sentence end marks (such as periods, exclamation, question
marks, etc.) and then uses a tokenizer to split the sentences into individual words
(or tokens) by accounting for word boundaries (such as space, hyphen, tab, etc.). For
example, the above sentence is split into individual tokens as follows:

Sentence: “We observed a severe autosomal recessive movement disorder in mice
used within our laboratory.”

Tokens: [‘We’, ‘observed’, ‘a’, ‘severe’, ‘autosomal’, ‘recessive’, ‘movement’, ‘disor-
der’, ‘in’, ‘mice’, ‘used’, ‘within’, ‘our’, ‘laboratory’, ‘.’]

Annotation: {‘start’: 115, ‘end’: 124, ‘spanned_text’: ‘autosomal’, ‘go_term’:
‘GO:0030849’ }

3.3.2 IOB Tagging

The deep learning models need to know if each word/token corresponds to a GO term.
Each extracted word/token is mapped to a GO term or an out-of-concept annotation.
Here we use the range specified in the xml to map the token to one of three tags: 1)
GO to indicate an annotation, ‘O’ for a non-annotation (out-of-concept), and ‘EOS’ to
indicate the end of a sentence. For example, the following sentence would be tagged
as below:

Sentence: “We observed a severe autosomal recessive movement disorder in mice
used within our laboratory.”

Tokens: [‘We’, ‘observed’, ‘a’, ‘severe’, ‘autosomal’, ‘recessive’, ‘movement’,
‘disorder’, ‘in’, ‘mice’, ‘used’, ‘within’, ‘our’, ‘laboratory’, ‘.’]

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘GO:0030849’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’]

14

https://spacy.io/

The above example shows a simple case where a single word is annotated to a GO
concept. In other cases, a sequence of words/tokens is annotated to a GO term. We
utilize the IOB (Inside, Outside, Beginning) [48] standard for annotating multi-span
tokens to account for such annotations. The IOB format uses three prefixes to tag
tokens in a sentence: 1) ‘B-GO’ is used to specify the beginning of the annotation, 2)
‘I-GO’ is used to map the tokens following the beginning of annotation till the end,
and 3) ‘O’ is used to map tokens that don’t correspond to a GO term. The following
sentence shows an example of IOB formatting:

Sentence: “The phosphatidylserine receptor primarily functions in apoptotic cell
clearance.”

Annotation: {‘start’: 1862, ‘end’: 1886, ‘spanned_text’: ‘apoptotic cell clearance’,
‘go_term’: ‘GO:0043277’}]

Tokens: [‘The’, ‘phosphatidylserine’, ‘receptor’, ‘primarily’, ‘functions’, ‘in’, ‘apop-
totic’, ‘cell’, ‘clearance’, ‘.’]

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0043277’,

‘I-GO:0043277’, ‘I-GO:0043277’, ‘EOS’]

In the above example, the phrase “apoptotic cell clearance” is annotated to GO:0043277.
We tag the token ‘apoptotic’ with B-GO:0043277 indicating the beginning of the
annotation. The tokens ‘cell’ and ‘clearance’ are tagged with I-GO:0043277 indicating
the continuation of the annotation. O is used to map the rest of the tokens which do
not correspond to any annotations and EOS is used to map ‘.’ signifying the end of
the sentence.

3.3.3 Annotation Formats

Sentences in the CRAFT corpus are annotated following a set of annotation formats and
guidelines as detailed in https://github.com/UCDenver-ccp/CRAFT/tree/master/

concept-annotation. Below, we describe how sentences that contain annotations in
different formats are represented in the IOB format.

• No annotations: Some sentences in an article might not contain any anno-

15

https://github.com/UCDenver-ccp/CRAFT/tree/master/concept-annotation
https://github.com/UCDenver-ccp/CRAFT/tree/master/concept-annotation

tations. In this case, all tokens are represented by ‘O’ tags except the ending
character which is represented by ‘EOS’ tag.

• Disjoint annotations: A sentence might contain one or more annotations
that don’t overlap in terms of annotation span. In this case, all tokens not
corresponding to an annotation are tagged with O tags. The end of the sentence
character is represented by EOS tag. Tokens that mark the beginning of an
annotation are marked with a B-GO:term followed by I-GO:term to represent
subsequent tokens corresponding to an annotated phrase.

• Overlapping annotations: A sentence might contain a phrase (sequence of
words/tokens) that is annotated to a GO concept, and a word or a sub-phrase
within the original phrase that is annotated to a different GO concept.

In these instances, we make n copies of the sentence where n is the number of
different annotations. Each copy contains a modified sentence that represents
the text needed to convey one of the annotations.

If a sentence contains a case of overlapping annotations and other disjoint
annotations (non-overlapping annotations), we create sentences that capture
the different variations of the overlapping annotations while keeping the disjoint
annotations common.

• Multiple overlapping annotations: Sentences can also have more than one
phrase with sub-annotations. In such a case, where there exist m phrases with
n1, n2, · · · , nm overlapping subphases, there will n1 × n2 × ...× nm copies with
all possible combinations of sub-phrase mappings.

Below we present examples of each of these annotation types and describe how they
are processed for training the models:

• No annotations:

Sentence: “Rescue of Progeria in Trichothiodystrophy by Homozygous Lethal
Xpd Alleles”

Annotations: {None}

16

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’]

• Disjoint annotations:

Sentence: “A cell progressing from anaphase to cytokinesis (pink arrowheads).”

Annotations: {‘anaphase’ — GO:0051322; ‘cytokinesis’ — GO:0000910}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0051322’, ‘O’, ‘B-GO:0000910’,

‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’]

• Overlapping annotations:

Sentence: “Having excluded a direct role in vesicle formation and membrane
fusion, annexin A7 might act by its property as Ca2+-binding protein”

Annotations: {‘vesicle’ — GO:0031982; ‘vesicle formation’ — GO:0006900}

The above example is represented as two sentences with each sentence represent-
ing one of the two annotations.

Sentence 1: “Having excluded a direct role in vesicle and membrane fusion,
annexin A7 might act by its property as Ca2+-binding protein"

Annotations: {‘vesicle’ — GO:0031982}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0031982’ ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’]

Sentence 2: “Having excluded a direct role in vesicle formation and membrane
fusion, annexin A7 might act by its property as Ca2+-binding protein”

Annotations: {‘vesicle formation’ – GO:0006900}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0006900’,

‘I-GO:0006900’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘EOS’]

• Multiple overlapping annotations:

17

Sentence: “Having excluded a direct role in vesicle formation and membrane
fusion, annexin A7 might act by its property as Ca2+-binding protein.”

Annotations: {‘vesicle’ — GO:0031982; ‘vesicle formation’ — GO:0006900;
‘membrane’ — GO:0016020; ’membrane fusion’ — GO:0061025}

In this example, we have two instances of overlapping annotations with two
sub-phrase annotations each. This sentence would be transformed into four
sentences that each represent a unique combination of annotations.

Sentence 1: “Having excluded a direct role in vesicle and membrane, annexin
A7 might act by its property as Ca2+-binding protein.”

Annotations: {‘vesicle’ — GO:0031982; ‘membrane’ — GO:0016020}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0031982’ ‘O’,

‘B-GO:0016020’,‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘EOS’]

Sentence 2: “Having excluded a direct role in vesicle formation and mem-
brane, annexin A7 might act by its property as Ca2+-binding protein."

Annotations: {‘vesicle formation’ — GO:0006900; ‘membrane’ — GO:0016020}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’,‘O’,‘O’, ‘B-GO:0006900’,

‘I-GO:0006900’, ‘O’,‘B-GO:0016020’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’,‘O’, ‘EOS’]

Sentence 3: “Having excluded a direct role in vesicle and membrane fusion,
annexin A7 might act by its property as Ca2+-binding protein.”

Annotations: {‘vesicle’ — GO:0031982; ’membrane fusion’ — GO:0061025}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0031982’, ‘O’,

‘B-GO:0016025’, ‘I-GO:0016025’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘EOS’]

18

Sentence 4: “Having excluded a direct role in vesicle formation and mem-
brane fusion, annexin A7 might act by its property as Ca2+-binding protein.”

Annotations: {‘vesicle formation’ — GO:0006900;
‘membrane fusion’ — GO:0061025}

IOB Tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0006900’,

‘I-GO:0006900’, ‘B-GO:0016025’,‘I-GO:0016025’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘EOS’]

• Discontinuous annotations:

Sentence: “Because the F7 is the most severely affected allele, it is possible that
the difference between the heart and kidney levels is due to a developmental delay
in v/p formation.”

Annotations: “v formation” — GO:0097084

Here we see “v formation” is annotated to GO:0097084, whereas “/p” is not.
In such a case we represent the sentence by removing the tokens/words which
were not annotated (“/p”). This is done to represent the continuous span of the
phrase to GO term mapping.

Transformed Sentence: “Because the F7 is the most severely affected allele,
it is possible that the difference between the heart and kidney levels is due to a
developmental delay in v formation.”

IOB tags: [‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘O’,

‘O’, ‘O’, ‘O’, ‘O’, ‘O’, ‘B-GO:0097084’, ‘I-GO:0097084’, ‘EOS’]

We acknowledge the representation of discontinuous annotations is not ideal. However
given that the majority of annotations in CRAFT are continuous, we prioritized the
data to follow the same pattern. Some sentences might have a combination of disjoint,
overlapping, and/or discontinuous annotations. These sentences are broken down into
smaller cases with precedence in the order of - overlapping, discontinuous, and disjoint
annotations. If there are overlapping annotations, they are treated first i.e., multiple
copies of the sentence are created and mapped for their annotations. Then for each

19

copy, the discontinuous annotations are handled while keeping the disjoint annotations
common between the representations.

While creating multiple copies of the sentences can lead to over-sampling of such
cases, the overall number of such sentences was very low in comparison to the total
number of sentences present in the training data. Furthermore, this is only done in
the training dataset, where the validation data is preprocessed separately leading to
more robust metrics presented in the results.

3.3.4 POS Tagging and Token Encoding

Following the tokenization and IOB tagging, we enrich training data with parts-of-
speech (POS) information and a compressed character representation. POS tagging
looks at the contextual information of the word based on the words surrounding
it in a sentence or a phrase. Here we used the SpaCy POS tagger to evaluate and
tag the tokens of sentences with 15 parts of speech tags — adjective, adposition
(such as - in, to, during), adverb, auxiliary (such as - is, has done, will do, should
do), conjunction, coordinating conjunction, determiner, interjection, noun, numeral,
particle, pronoun, proper noun, punctuation, subordinating conjunction, symbol, verb,
other (not annotated to any of the others), space.

While POS tagging looks at the word-level representation of the context, we also
represent character-level nuances of a token using character encodings. These encodings
represent upper-case and lower-case characters with ‘C’ and ‘c’ respectively. Numbers
are represented using an ‘N’ and punctuation (such as commas, and periods) is retained
in the encoding. Character encodings enable a succinct representation of a token’s
unique characters which can indicate named entities and aid in the model’s learning.

Here we show an example of a sentence tagged with POS and character representations.

Sentence: “Smith-Lemli-Opitz syndrome (SLOS, MIM 270400), a relative common
dysmorphology disorder, is caused by mutations in DHCR7 [2-5], which encodes for
7-dehydrocholesterol ▽7-reductase and catalyzes a final step of cholesterol biosynthesis.”

Character Representation: [‘Ccc-Ccc-Ccc’, ‘ccc’, ‘(’, ‘CCC’, ‘,’, ‘CCC’,

‘N’, ‘)’, ‘,’, ‘c’, ‘ccc’, ‘ccc’, ‘ccc’, ‘ccc’, ‘,’, ‘cc’, ‘ccc’, ‘cc’,

20

‘ccc’, ‘cc’, ‘CCCN’, ‘[’, ‘N-N’, ‘]’, ‘,’, ‘ccc’, ‘ccc’, ‘ccc’, ‘N-ccc’,

‘U’, ‘ccc’, ‘ccc’, ‘c’, ‘ccc’, ‘ccc’, ‘cc’, ‘ccc’, ‘ccc’, ‘.’]

Parts-of-Speech: [‘NNP’, ‘NN’, ‘-LRB-’, ‘NNP’, ‘,’, ‘NNP’, ‘CD’, ‘,’,

‘,’, ‘DT’, ‘JJ’, ‘JJ’, ‘NN’, ‘NN’, ‘,’, ‘VBZ’, ‘VBN’, ‘IN’, ‘NNS’,

‘IN’, ‘NNP’, ‘XX’, ‘CD’, ‘,’, ‘,’, ‘WDT’, ‘VBZ’, ‘IN’, ‘NN’, ‘NN’,

‘CC’, ‘VBZ’, ‘DT’, ‘JJ’, ‘NN’, ‘IN’, ‘NN’, ‘NN’, ‘.’]

3.3.5 BioThesaurus Encoding

In addition to POS and token encoding, which capture sentence and token level context
present in the data, we also include information from existing large-scale knowledge
bases. The first data source we use is BioThesaurus [13], which is a database of protein
and gene names mapped to the UniProt Knowledgebase. The database contains
over 2.8 million names/tokens from separate data sources and is well regarded as a
comprehensive thesaurus mapping words to their molecular/biological entities. We
query BioThesaurus for each of the tokens extracted from the articles. First, we map if
a token is present (1) or absent (0) in the database. If a token is present, we map if it
identifies as a protein name, biomedical terms, chemical terms, and/or macromolecule.
Sometimes, a token can be identified in multiple categories. In the following example
we show the mapping of a token as queried from the BioThesaurus:

Sentence: “Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding
proteins that regulate transcription in concert with coactivators and corepressors.”

Tokens: [‘Hematopoiesis’, ‘is’, ‘precisely’, ‘orchestrated’, ‘by’, ‘lineage-specific’,
‘DNA-binding’, ‘proteins’, ‘that’, ‘regulate’, ‘transcription’, ‘in’, ‘concert’, ‘with’,
‘coactivators’, ‘and’, ‘corepressors’, ‘.’]

Protein: [0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0]

Biomedical: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0]

Chemical: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Macromolecule: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

21

3.3.6 Unified Medical Language System (UMLS) Encoding

Continuing with the information augmentation, we also query the UMLS [14] database
for tokens extracted from the articles. UMLS is another comprehensive database of over
2 million names representing medical and bio-medical terms aggregated from several
databases such as NCBI taxonomy, Gene Ontology, the Medical Subject Headings
(MeSH), OMIM, ICD-10-CM, SNOMED CT, and the Digital Anatomist Symbolic
Knowledge Base.

Here we query the metathesaurus component of the database for the extracted tokens.
Words/tokens associated with a UMLS term are encoded as 1 or 0 otherwise. If a
phrase (sequence of tokens) is found in UMLS, all tokens from the phrase are encoded
as 1 Below we show an example of the mapping:

Sentence: “Hematopoiesis is precisely orchestrated by lineage-specific DNA-binding
proteins that regulate transcription in concert with coactivators and corepressors.”

Tokens: [‘Hematopoiesis’, ‘is’, ‘precisely’, ‘orchestrated’, ‘by’, ‘lineage-specific’, ‘DNA-
binding’, ‘proteins’, ‘that’, ‘regulate’, ‘transcription’, ‘in’, ‘concert’, ‘with’, ‘coactiva-
tors’, ‘and’, ‘corepressors’, ‘.’]

UMLS: [1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0]

Before preprocessing, CRAFT articles are divided using an 80-20 split to create training
and testing data. Training and testing data are then processed into sentences, tokenized,
translated into different annotation formats, and encoded using BioThesaurus and
UMLS. The training data is used for the development of the deep learning models
(described in the following section). Testing data is used to evaluate model performance.

Here is an example of a sentence that is preprocessed using the steps described above.
It is extracted from a json file corresponding to an article. The sentence extracted
from the article is positioned between index 27731 and 27769. Each of the information
pertaining to the sentence is stored as key-value pair where the key stores the type of
information and the value stores the values corresponding to the key.

22

{

"annot":[

{ "start": 27750, "end": 27760, "spanned_text": "expression",

"go_term": "GO:0010467"},

{ "start": 27764, "end": 27768, "spanned_text": "RNAi",

"go_term": "GO:0016246"},

],

"text_span":[27731, 27769],

"main": "Knockdown of Alms1 expression by RNAi.",

"tokens":["Knockdown", "of", "Alms1", "expression", "by", "RNAi",

"."],

"iob_tags":["O", "O", "O", "B-GO:0010467", "O", "B-GO:0016246",

"EOS"],

"pos_tags":["NN", "IN", "NNP", "NN", "IN", "NNP", "."],

"encodings":["Ccc", "cc", "CccN", "ccc", "cc", "CCc", "."],

"protein_terms":[0, 0, 1, 0, 1, 0, 0],

"biomedical_terms":[0, 0, 0, 1, 0, 0, 0],

"chemical_terms":[0, 0, 0, 0, 0, 0, 0],

"macromolecule_terms":[0, 0, 0, 0, 0, 0, 0],

"umls_terms":[0, 0, 0, 0, 0, 1, 0],

}

23

Chapter 4: GRU based architectures
for concept recognition [43]

Ontologies have become the de-facto mode of representing biological knowledge since
the development of the Gene Ontology (GO) [49]. Following the widespread adoption
of the GO, other bio-ontologies representing knowledge in disparate aspects of biology
and biomedicine have been created. Today, an estimated 958 bio-ontologies are in
use spanning over 55 million annotations (as of 1-20-22 from https://bioportal.

bioontology.org/). While the use of bio-ontologies and the number of annotations
created using these ontologies have grown exponentially, the methods used to create
these annotations haven’t changed at a comparable pace. The majority of ontology
annotations are still created via manual curation - the process where a human curator
reads scientific literature and manually selects appropriate ontology concepts to
describe phrases/words in the text. The process of manual creation is slow, tedious,
and unscalable to the rapid pace of scientific publishing [2].

Over the past decade, text mining approaches have been developed to conduct ontology
annotation in an automated manner. Preliminary solutions include syntactic, lexical
approaches followed by traditional machine learning applications [1]. Lexical solutions
for automated ontology annotation rely on similarities between a piece of text and
the name of an ontology concept or their synonym to assign annotations [3]. This
approach can be challenging when the text does not match the names of ontology
concepts. Also, some ontology concept names contain a large number of words which
makes text matching difficult [3].

Text mining tools that use machine learning-based methods employed supervised

24

https://bioportal.bioontology.org/
https://bioportal.bioontology.org/

learning techniques using gold standard corpora [1]. These methods can form general-
izable associations between text and ontology concepts leading to improved accuracy.
The rise of deep learning in the areas of image and speech recognition has translated
into text-based problems as well. Preliminary research has shown that deep learning
methods result in greater accuracy for text-based tasks including identifying ontol-
ogy concepts in text [5–9]. Deep learning methods use vector representations that
enable them to capture dependencies and relationships between words using enriched
representations of character and word embeddings from training data [34].

The semantic complexities of identifying the appropriate ontology concept for a
word/phrase are quite challenging. In the simplest case, the name of the ontology
concept is an exact match to the piece of text. For example, the phrase “brain
development” in the sentence “HOMER proteins have also been implicated in axon
guidance during brain development” is annotated to the GO term “brain development
(GO:0007420)”. Sometimes, a match can also be made by comparing the text to the
names of known synonyms of concepts in the ontology. In most cases, there aren’t clear
matches between the words being annotated to the names of the ontology concepts.
For example, the word “olfactory” in the sentence “Class I olfactory receptors are
bracketed, and the remaining olfactory receptors are class II.” is annotated to the GO
term “sensory perception of smell (GO:0007608)”. 80% of the annotations made in
the latest version of the CRAFT corpus has no clear match between the text and
the name of the ontology concept used for annotation. This is a clear indication of
the complexity of the problem at hand, one that cannot be solved just by syntactic
methods or by text matching. These are the cases where effective training can make a
substantial difference.

Training deep learning models requires good quality training datasets. The Colorado
Richly Annotated Full Text Corpus (CRAFT) [47] is a widely used training resource
for automated annotation approaches. The current version of the CRAFT corpus
(v4.0.1) provides annotations for 97 biological/biomedical articles with concepts from
7 ontologies including the GO. CRAFT uses several formats with different levels of
complexity to represent annotations.

One of the challenges in creating effective deep learning models is translating all

25

of CRAFT’s annotations to formats that can be leveraged by the models. This
process involves a substantial amount of preprocessing that’s designed specifically
for each annotation format to ensure that each annotation is represented soundly
and completely in the training data. Another challenge when using machine learning
solutions - including deep learning models is the availability and abundance of training
data. Not all concepts in the ontology are represented in the gold standard corpus
hindering the ability of the trained models to recognize those unseen concepts. Among
the concepts that are present in the training data, some of them occur frequently
while others are sparse. It might be necessary to augment the primary training corpus
with information from other sources to improve prediction accuracy.

The choice of deep learning model and architecture also impacts prediction performance.
We have conducted comparisons of models such as CNNs, GRUs, LSTMs, and RNNs
in previous work [9,16] whose findings enable us to make informed choices in this study.
Here, we present a deep learning architecture that leverages inputs from multiple
sources and in different formats (characters, words, etc.) to improve on the state-of-art
in terms of prediction performance.

We make two contributions in this study - 1) publicly available preprocessed annotations
from the CRAFT corpus for training deep learning models and 2) deep learning
architectures for identifying ontology concepts.

4.1 Methods

4.1.1 Deep Learning Architecture

After all the preprocessing steps described above are complete, we develop multidimen-
sional vectors for each sentence of the articles. Our deep learning architecture (Figure
4.1) consists of three key components — 1) Input Pipelines; 2) Embedding/Latent
Representations; and 3) Sequence Modeler. Below we describe each of the components:

Input Pipelines

The recurrent neural architecture used in our approach requires fixed-size inputs.
Accordingly, we restrict each sentence to contain a maximum of 71 words/tokens. This

26

Figure 4.1. Architecture of a GRU model using multiple input pipelines

is based on the third standard deviation of the distribution of the frequency of words
present in sentences. Sentences with a lower number of words are padded with the
token <PAD> and ones with a higher number of tokens are truncated to a length of 71.
All corresponding input vectors are also adjusted accordingly to reflect the maximum
sequence length representation of a sentence.

Each sentence and each token has six different components that are provided as input
— 1) token (X token

train), 2) character sequence (Xchar
train), 3) token-character representa-

tion (Xrepr
train), 4) parts-of-speech (XPOS

train), 5) BioThesaurus (XBIOT
train), and 6) UMLS

(XUMLS
train).

The token (X token
train) input, is a sequential tensor consisting of 71 tokens, where each

token is represented with a high dimensional one hot encoded vector (for 34,164 unique
words/tokens present within our corpus vocabulary). Apart from the <PAD> token,
we also use <UNK> token to represent unknown tokens. This is done to generalize
the model for words that were not available in the training data but can be present
in the testing dataset. Similarly, the character sequence (Xchar

train) is also a sequential

27

tensor consisting of character sequences present in a word/token. Here, we limit
the maximum character length to 15 based on the third standard deviation of the
character distribution. Tokens with longer sequences are truncated and tokens with
shorter are padded with a <PAD> character identifier. A single input sentence tensor
for Xchar

train has a shape of (1,71,15), for 71 tokens and 15 characters.

Next we provide character representations (Xrepr
train) and POS tags (XPOS

train). Both of
these are based on words/tokens in sentences and are given as an input of 71 vectors.
Biothesaurus encodings (XBIOT

train) contain a four-dimensional vector sequence where
each token is one hot encoded for its association with protein, biomedical, chemical,
and macromolecule categories. UMLS encodings (XUMLS

train) are also provided as one
hot encoded vector sequence, where 1 indicates a token’s presence and 0 indicates
absence in UMLS.

Embedding/Latent Representations

Our architecture utilizes embeddings to provide a compressed latent space repre-
sentation for very high dimensional input components. For example, the one hot
vectorization of an individual word has a dimensionality of 34,166. To represent them
succinctly and with contextual representation, we evaluated three different approaches
for embeddings — 1) supervised embedding layer, 2) GloVe layer, and 3) ELMo layer.

The supervised embedding is a bottleneck layer that learns to map the one hot
encoded input into a smaller dimensional representation. The weights of this layer are
learned from the backpropagation of losses based on the final output of the model.
The resulting embedding learns the mapping of the IOB tags to the tokens of the
sentences. The layer is used with token inputs (X token

train), character sequences (Xchar
train),

and character representation (Xrepr
train), each of which has very high dimensionality in

their original vectors. We utilize a 100-dimensional output representation for each of
the aforementioned outputs, where weights are uniformly initialized at the start of
the model training.

We also evaluate GloVe [50] and ELMo [51] pretrained embeddings for the X token
train

input. Both are unsupervised approaches towards learning contextual representation
of words from large-scale corpora. GloVe uses word co-occurrence statistics to learn

28

the embeddings. Pretrained data from cased Common Crawl with 840B tokens, 2.2M
vocabulary, and a 300-dimensional output embedding vector is used for this. In
comparison, the embeddings in ELMo are learned via a bidirectional language model
where the sequence of the words is also taken into account. We use the pretrained
model on 1 Billion Word Benchmark, which consists of approximately 800M tokens
of news crawl data and has an embedding of 1024 dimensional output embedding
vector. While the embeddings are initialized from pretrained models, we allow for
updates/retraining to the embedding models during the training of our larger model.

Sequence Modeler

To model the input sequences we utilize a deep bi-directional gated recurrent model
(Bi-GRU). Bi-GRU was first proposed by Cho et. al. [15] as a more efficient approach
than Long -Short Term Memory (LSTM) [17] while being able to tackle the vanishing
gradient problem of vanilla Recurrent Neural Networks (RNN). The approach uses a
gated mechanism to decide what information needs to be transmitted to the output
of a single unit.

In our prior work [9,16], we evaluated multiple models based on RNN, LSTM, and
GRU, and concluded that the GRU-based architecture performed the best on CRAFT
v2 annotation data. Building on that result, we employ the Bi-GRU as the base of our
architecture in this work. As shown in Figure 4.1, we utilize Bi-GRUs in two locations
in the architecture, first to model the sequence of characters present in each token
and second as the main Bi-GRU model to concatenate input pipelines together. After
the embedding of the characters, they are passed via the first Bi-GRU (consisting of
150 units) resulting in a sequence representation of the characters in a sentence. 10%
dropout is used in this pipeline to regularize the output to prevent overfitting.

The character sequence representation is then concatenated with other embeddings, i.e.
token (supervised/GloVe/ELMo), character representation, parts of speech, and input
tensors from Bio-Thesaurus and UMLS. This concatenated feature map representing
each sentence is then passed to a spatial dropout, which removes 30% of the 1-D
sequence features from the input to the main Bi-GRU. The main Bi-GRU processes
the feature maps (with 10% dropout), and outputs to a single time-distributed dense

29

layer of 1774 nodes (representing each of the output tags). A sigmoid activation is used
in the last layer, where the final prediction is based on the highest probability value
of the tags. There are 6 hidden layers and thus a total of 8 layers (including input
and output layers) in our models. However, not all the input pipelines go through all
the layers. For instance, UMLS and PROT terms do not pass through the embedding
layer.

Figure 4.2 shows a snapshot of the model architecture in the context of training
and inference of a sample set of tokens. Here we show the training/inference on a
sequence of tokens “vesicle”, “formation”, and “in” (which are parts of a sentence) as it
is evaluated by the network. Each token is preprocessed to obtain the representative
tensors – X token

train , Xchar
train, X

repr
train, XPOS

train, XBIOT
train , and XUMLS

train . X token
train , Xchar

train, X
repr
train,

and XPOS
train which are passed through embedding layers, where the embedding of X token

train

can be a complete pretrained architecture such as GloVe or ELMo.

Figure 4.2. Workings of a GRU model with an example input sequence

The embedding of Xchar
train is also passed via a Bi-directional GRU (Bi-GRU) layer. All

of the resulting values are concatenated to be processed via the main Bi-GRU layer.
Here we show each direction of the GRU layers as they process the input sequence. The

30

first layer processes the sequence in its left to right ordering, i.e. “vesicle”, “formation”,
and “in”, whereas the second layer processes the reverse, i.e. “in”, “formation”, and
“vesicle”. The bi-directionality allows the architecture to learn the preceding and
succeeding sequence patterns within the sequence tokens in a sentence. The states of
both the GRU layers are then concatenated to deliver to the final dense layer, which
is the sigmoid classifier of the architecture that predicts the associated IOB tags for
the input tokens. Here we select the tag with the highest probability for each of the
tokens.

We evaluated the impact of including each pipeline and token embedding approach
to create nine different models that differ in the inputs pipelines provided to them.
We evaluated three embeddings (CRAFT, GloVe, ELMo) in conjunction with these
models to result in a total of 28 experiments. Architecture hyper-parameters, which
include — supervised embedding shape ({20, 50, 100, 150, 200}), dropout ({01, .2, .3,
.5, .7}), number of epochs ({50, 100, 200, 300}), and class weighting, were evaluated
using a grid search approach. We used Adam [52] as our optimizer for all of the
experiments with a default learning rate of 0.0001. Learning rate reduction on a
plateau of loss was used, which reduced the rate by a factor of 0.1 if the loss stayed
constant for 4 epochs. A batch size of 16 was used in all of our experiments.

Bidirectional Encoder Representations from Transformers (BERT) [53] is a popular
attention model developed by Google. BERT has rapidly become the state of the art
in several applications, especially those involving text processing. Instead of looking
at a text sequence in one direction, BERT uses bidirectional training which allows
it to build better representations and context of textual inputs. The classic version
of BERT was pretrained on a large corpus of English data. SciBERT, a variant of
BERT, is trained on a large multi-domain corpus of scientific literature to improve
performance on the prediction of scientific entities. We compared the best model from
our experiments with both versions of BERT.

4.1.2 Performance Evaluation Metrics

The performance of each experiment is evaluated using a modified F1 score. The model
is tasked with predicting non-annotations (indicated by an ‘O’ tag) or annotations

31

(indicated by a ‘GO’ tag). Since the majority of tags in the training corpus are
non-annotations, the model predicts them with great accuracy. To avoid biasing the
F1 score, we omit accurate predictions of ‘O’ tags from the calculation to report a
relatively conservative F1 score.

F1 quantifies whether the model’s prediction matches the actual annotation exactly.
However, ontology-based prediction systems need to be evaluated while accommodating
partially accurate predictions. For example, a model might not retrieve the exact
ontology concept as the gold standard but a related concept (sub-class or super-class)
achieving partial accuracy. Semantic similarity metrics [18] designed to measure
different degrees of similarity between ontology concepts can be leveraged to measure
the similarity between the predicted concept and the actual annotation to quantify
the partial prediction accuracy. Here, we use Jaccard similarity [18] that measures
the ontological distance between two concepts to assess partial similarity.

4.2 Results and Discussion

The CRAFT v4.0.1 dataset contains 18689 annotations pertaining to 974 concepts from
the three GO sub-ontologies across 97 articles. Table 4.1 provides further information
on the coverage of GO terms in CRAFT.

Table 4.1. Coverage of GO ontology concepts and annotations in the CRAFT corpus

GO sub-ontology Concepts
in ontology

Total
annotations
in CRAFT

Unique
occurences
in CRAFT

Biological Process (BP) 30490 18392 710
Cellular Component (CC) 4463 6976 241
Molecular Function (MF) 12257 464 5

Table 4.2 shows the performance scores for Models 1 through 9 (M1 - M9) which
differ in the inputs provided to them. M1 is built with only tokens and no other
inputs. Gradually, we add characters, character representation, parts of speech, and
other inputs in each subsequent model. Each model is tested with three embeddings
(CRAFT, GloVe, and ELMo). F1 and Jaccard semantic similarity are used to evaluate
the models.

32

The base model with only tokens as input results in an F1 score in the range of 0.78 (for
the CRAFT embedding) to 0.81 (GloVe and ELMo) and a semantic similarity of 0.81
to 0.82. The higher semantic similarity indicates that there are instances where the
model misses the exact annotation in the gold standard yet predicts a partially related
concept. These instances are captured and accounted for in the semantic similarity
metric via partial credit whereas they receive a score of 0 in the F1 calculation.

33

Table 4.2. Performance comparison of nine GRU models with different input pipelines. Models are evaluated using
F1 and semantic similarity. Each model includes certain inputs (listed as column headers). When a particular input
type is included, there is a ✓in the corresponding cell.

Model
Input Pipelines Embeddings

X token
test Xchar

test Xrepr
test XPOS

test

XBIOT
test XUMLS

test

CRAFT GloVe ELMo
Prot. Biom. Chem. Macr. F1 Sem. F1 Sem. F1 Sem.

M1 ✓ 0.78 0.79 0.82 0.83 0.81 0.81
M2 ✓ ✓ 0.79 0.80 0.82 0.83 0.82 0.83
M3 ✓ ✓ ✓ 0.80 0.81 0.82 0.83 0.81 0.81
M4 ✓ ✓ ✓ ✓ 0.79 0.80 0.82 0.83 0.82 0.83
M5 ✓ ✓ ✓ ✓ ✓ 0.81 0.82 0.81 0.82 0.84 0.84
M6 ✓ ✓ ✓ ✓ ✓ ✓ 0.79 0.80 0.82 0.83 0.83 0.83
M7 ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.81 0.82 0.82 0.84 0.84 0.84
M8 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.80 0.81 0.82 0.83 0.83 0.84
M9 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 0.80 0.81 0.82 0.83 0.84 0.84

34

Adding character sequences (M2) improves F1 and semantic similarity scores across
almost all embeddings. Adding token-character representation (M3) yields mixed
results. We see an improvement in F1 and Semantic similarity for the CRAFT
embedding. However, both scores stay unchanged with GloVe and decrease with
ELMo. The inclusion of parts of speech (M4) causes a decrease in scores with CRAFT
and ELMo. Both scores remain unchanged with GloVe. Providing protein names from
BioThesaurus (M5) improves both scores for CRAFT and ELMo while we observe
a decrease in Glove. Here, we observe the highest F1 (0.84) and semantic similarity
(0.84) across all models tested so far. M6 - M9 yield comparable results but do not
result in further improvements over M5. In summary, our best model resulted in an
F1 score and semantic similarity score of 0.84 with the ELMo embedding.

Table 4.3. Modified F1 scores from model M9 broken down by GO sub-ontology

Model GO_BP GO_MF GO_CC
M9 0.82 0.96 0.85

Table 4.4. Confusion matrix for predictions by GO sub-ontology (Biological Process
(GO_BP), Cellular Component (GO_CC), and Molecular Function (GO_MF). Note
that this matrix does not include accurately predicted ‘O’ and ‘EOS’ tags since these
instances are omitted during the calculation of the modified F1 score. Results are
from our best model M9.

Predicted Class

True Class

GO_BP GO_MF GO_CC ‘O’ ‘EOS’
GO_BP 3419 1 25 393 0
GO_MF 0 96 1 2 0
GO_CC 7 0 1288 116 0

‘O’ 68 0 34 N/A 4
‘EOS’ 0 0 0 0 N/A

We further analyzed our best model to gather insights into the model’s performance.
First, we show the modified F1 score for the three GO sub-ontologies (Table 4.3). The
model shows similar performance for biological processes and cellular components and
registers a substantially higher score for molecular function. This might be because
the total number of annotations from the molecular function sub-ontology in the
CRAFT corpus is far lower than the other two ontologies (see Table 4.1). Table 4.4

35

shows the false positives, false negatives, true positives, and true negatives among
our predictions broken down by the three GO sub-ontologies. Next, we explored if
the occurrence frequency of a concept in the training corpus impacts the model’s
prediction performance on that concept. Figure 4.3 breaks down the F1 score into five
bins based on the GO terms’ frequency of occurrence in the corpus. We see that GO
terms with a frequency of co-occurrence between 1-10 have substantial variability in
their F1 scores. Most of the GO terms with 10-20 occurrences show F1 scores between
0.6 and 1. We see some outliers in this bin where the F1 scores are lower than 0.6. All
bins with occurrences of 20 and higher show high F1 scores (> 0.8) and low variability.
This figure clearly shows that the model makes incorrect predictions for GO terms
with low occurrences (< 20) in the corpus. We did not observe evident differences
in prediction performance when the 1-10 occurrence bin was further subdivided into
smaller intervals (Figure 4.4).

Figure 4.3. Distribution of F1 scores by occurrence frequency of GO terms in CRAFT

We compared our best model with classic BERT as well as SciBERT (Table 4.5). We
find that SciBERT performs better than BERT by 3 points in F1 and 2 points in
semantic similarity. Our model improves SciBERT’s F1 by 4 points and semantic
similarity by 2 points.

36

Figure 4.4. A closer look at the distribution of F1 scores for GO terms with 10 or
fewer occurrences in CRAFT

Table 4.5. Performance comparison between our best model and two variants of BERT

Model F1 Semantic Similarity
BERT 0.77 0.80

SciBERT 0.80 0.82
M9 0.84 0.84

The model predicted 83.61% of annotations in the test set accurately. 9.34% were
prediction errors where the model miss-classified GO annotations as non-annotations
(‘O’ tags). 1.72% were prediction errors where the model miss-classified ‘O’ tags as
GO terms. Finally, in 5.32% of cases, the model predicted a different GO term than
the GO term in the test corpus.

For each word in a sentence, the model outputs a tensor of the sigmoid (1
(1+exp(−xi))

)
activation outputs. These outputs are then converted to probabilities using a softmax
function (exp(xi)∑

j exp(xj)
). We can calculate the entropy (H(X)) over the tensor of prob-

abilities to observe the level of “information” within the probabilities. For example,
if there is uniformity in the probabilities for the predicted annotations, entropy is
maximized, and vice versa. We visualized the interactions between entropy, predicted

37

probability, and the frequency of annotations, in Figure 4.5. Here, the dots represent
the predicted annotations (annotations with the highest sigmoid activation) by the
model. Incorrect predictions are shown in red and correct predictions are in blue.

Figure 4.5. Distribution of incorrect and correct predictions with respect to entropy,
probability, and frequency of occurrences.

We observe that as the probability score increases (for the top prediction) and the
entropy reduces (across prediction tensor) the model predictions are more accurate.
The high probability of the top prediction indicates the model’s confidence and low
entropy indicates that the model assigned low probabilities to the other potential
predictions thereby offering a clear discrimination between the top prediction and the
rest.

38

In comparison, incorrect predictions (Figure 4.6) are concentrated in a small area
demarcated by low probability, high entropy, and low frequency. These incorrect
predictions happen overwhelmingly at frequencies under 10 and probability values
lower than 0.1. The entropy values of the majority of these predictions are close
to 1 indicating that the model assigned near-uniform probabilities to the potential
predictions. This combined with the low probability indicates that the model was not
confident of any of the predictions it made.

Figure 4.6. Distribution of incorrect predictions with respect to entropy, probability,
and frequency of occurrences.

We tested if there are differences in the entropy, frequency, and probability distributions
between correct vs. incorrect predictions using two-sided independent T-tests. We
found statistically significant differences at the Bonferroni-corrected threshold of

39

α = 0.01 between correct vs. incorrect predictions for entropy (p = 1.5e-221),
frequency of occurrence (p = 2.9e-20), and probability of highest prediction (p=0.0).

We cannot use our results as a direct benchmark against other studies since the CRAFT
corpus version used here might vary but we can remark on a general comparison. Lenz
et al [39] developed a concept recognition system based on LSTMS which resulted in a
0.81 F1 (averaged across the three GO ontologies) as compared to our best model which
results in a 0.84 F1 score. In a 2017 paper, OGER (OntoGene’s Entity Recognizer)’s
method for concept recognition uses dictionary lookup and flexible matching reporting
an F1 score of 0.70 [54]. A systematic evaluation [55] found that ConceptMapper [56]
a dictionary-lookup system performed the best among other tools resulting in an F1
of 0.83 (using earlier versions of CRAFT).

40

Chapter 5: Knowledge of the
Ancestors [44]

In ontology-based NLP tasks, deep learning models have been applied to NER,
NEN, and relation extraction [41, 42, 57]. NER focuses on identifying entities from
unstructured text such as scientific literature while NEN focuses on linking the
entities to unique concepts such as terms in an ontology. Relation extraction focuses
on identifying relations between the identified ontology concepts and enables the
automated creation of structured hierarchies. While our GRU-based deep learning
models presented are successful at performing NER and NEN from biological literature,
they lack awareness of the underlying ontology hierarchy. It is critical for ontology-
based information retrieval systems to know the ontology structure and relationships.
It enables the model to make intelligent predictions for concepts that take into account
patterns learned from the training data as well as semantics embedded in the ontology.

The key difference between traditional information retrieval vs. ontology-based infor-
mation retrieval is the possibility of partial success. Traditional information retrieval
systems are evaluated based on whether the target information is retrieved (success) or
not (failure). In contrast, ontology-based information retrieval systems are evaluated
based on three possibilities: accurate retrieval (success), inaccurate retrieval (failure),
or partially accurate retrieval (partial success).

If a model accurately predicts the ontology concept from the gold standard data, it
is counted as a success and is scored a 1. If the model fails to predict any ontology
concept, it is counted as a failure and is scored a 0. If the model retrieves an alternative
ontology concept from the one in the gold standard (partial success), the model is

41

scored depending on how semantically similar the retrieved concept is to the true
concept. Intuitively, the most semantically similar concept to the true concept would
lie in the near vicinity (such as a sibling, or a parent). Thus, it is important for the
model to be aware of the ontology hierarchy to be able to make intelligent predictions
in cases when it misses the actual concept. The goal of intelligent concept annotation
presented in this study is to maximize accurate retrieval rates and subsequently
maximize partial accuracy in cases where complete accuracy is not achieved thereby
improving overall accuracy.

This nuance of ontology-based concept retrieval means that the first goal of these
models is to predict the true concept. If the first goal is not achieved, the model should
aim to predict the most semantically similar concept to the truth so as to maximize
the partial accuracy score. The ontology hierarchy contains valuable information
regarding the semantics embedded in the ontology. This crucial information has been
ignored in past work resulting in ontology recognition models that are not fully aware
of the ontology semantics. Here, we present intelligent deep learning architectures
that are ontology-aware and use the hierarchies embedded in the ontology to improve
concept prediction accuracy.

5.1 Methods

5.1.1 Deep Learning Architecture

Our deep learning architecture (Figure 5.1) consists of three key components — 1)
input pipelines; 2) embedding/latent representations; and 3) a deep learning model.

Input Pipelines

The neural architectures in this study are designed to use fixed-size inputs. As
established in section 4.1.1, each sentence is transformed to a size of 71 words.
Sentences with a lower number of words are padded with the token <PAD> and ones
with a higher number of tokens are truncated to a length of 71.

We provide three inputs for each word in a sentence - 1) token (X token
train), 2) character

sequence (Xchar
train), 3) parts-of-speech (XPOS

train).

42

Figure 5.1. Architecture of GRU model with three input pipelines

The token (X token
train) input, is a sequential tensor consisting of 71 tokens, where each

token is represented with a high dimensional one hot encoded vector (for 34,164
unique words/tokens present within our corpus vocabulary). Similarly, the character
sequence (Xchar

train) is also a sequential tensor consisting of character sequences present
in a word/token. Each token is transformed into a 15 character sequence; the value
15 is derived from the frequency distribution of characters as described in section
4.1.1. Words with more than 15 characters are truncated to a sequence of 15 and
ones with lower than 15 characters are padded with padding characters to make the
final sequence of 15 characters. Any unique character not present in the corpus can
be used for padding. The choice of character does not really matter as long as the
chosen padding character does not match with the ones present in the corpus since
each character needs to be consistently converted to numbers in the final stage of
model input. Next, we provide POS tags that indicate the type of words in a sentence
(XPOS

train).

Embedding/Latent Representations

Our architecture utilizes embeddings to provide a compressed latent space represen-
tation for very high dimensional input components. We evaluated three different
approaches for embeddings (shown as Emb. in Figure 5.2) - 1) CRAFT 2) Global

43

Vectors for Word Representation(GloVe), 3) Embeddings from Language Models
(ELMo).

Figure 5.2. Snapshot of GRU model with example input sequence

The supervised embedding layer learns to map the one hot encoded input into a
smaller dimensional representation. The resulting embedding learns the mapping of
the IOB tags to the tokens of the sentences. The layer is used with token inputs
(X token

train), character sequences (Xchar
train), and character representation (XPOS

train), each of
which has very high dimensionality in their original vectors.

We also evaluate GloVe and ELMo embeddings for the X token
train input. GloVe with a

300-dimensional output embedding vector and ELMo with 1024 dimensional output
embedding vector are used in all experiments. While ELMo and GloVe are pretrained
embedding models, we also evaluate the model’s performance using the CRAFT
embedding. Here we use an embedding layer that is co-trained during the model

44

training, where each word is mapped to an embedding vector which is a continuous
vector of 100 dimensions. Initially, the embedding values of the layer are randomly
initialized but are then optimized for word lookup during the model training for the
objective of ontology annotation.

Sequence Modeler

Figure 5.2 shows a snapshot of the model architecture in the context of training
and inference of a sample set of tokens. Here we show the training/inference on a
sequence of tokens “vesicle”, “formation”, and “in” (which are parts of a sentence) as it
is evaluated by the network. Each token is preprocessed to obtain the representative
tensors – X token

train , Xchar
train, XPOS

train which are passed through embedding layers, where
the embedding of X token

train can be a complete pretrained architecture such as GloVe or
ELMo. The embedding of Xchar

train is also passed via a Bi-directional GRU (Bi-GRU)
layer. All of the resulting values are concatenated to be processed via the main
Bi-GRU layer. The bi-directionality allows the architecture to learn the preceding and
succeeding sequence patterns within the sequence tokens in a sentence. The states of
both the GRU layers are then concatenated to provide the final dense layer, which
is the softmax classifier of the architecture and predicts the associated IOB tags for
the input tokens. Here, we select the tag with the highest probability for each of the
tokens.

Architecture hyper-parameters, which include supervised embedding shape ({20, 50,
100, 150, 200}), dropout ({01, .2, .3, .5, .7}), number of epochs ({50, 100, 200, 300}),
and class weighting, were evaluated using a grid search approach. We use the Adam
algorithm with weight decay [58] as our optimizer with an initial learning rate of
0.001. The learning rate is reduced by a factor of 0.1 after the first 10000 training
steps, and reduced further by a factor of 0.1 after the next 15000 steps. The weight
decays by a factor of 0.0001 after the first 10000 steps and further by another factor
of 0.0001 after the next 15000 steps. We use sigmoid focal cross entropy [59] as the
loss function. Sigmoid focal cross-entropy is particularly useful for cases where we
have highly imbalanced classes. It reduces the relative loss for easy to classify, higher
frequency examples, putting more focus on harder to classify, misclassified examples.
This loss function uses α, also called the balancing factor, and β or modulating factor,

45

which are set to 0.25 and 2.0 respectively.

We also compare our approach to a large-scale masked language model - BERT.

5.1.2 Target Vector Representation

Target labels to be predicted are typically provided as a one-hot encoded vector where
the size of the vector equals the number of output labels. In our case, the output
labels correspond to the set of all GO terms. Typically, the value of the GO term to be
predicted is set to 1 and the value of all other GO terms is set to 0. This approach of
representing the target labels, however, does not allow the model to learn the ontology
hierarchy nor does it allow for semantically similar partial predictions.

In this study, we use Jaccard semantic similarity scores as values in the label vector.
The value of the GO term to be predicted is set to 1 and the value of all other GO
terms in the vector is set to the Jaccard similarity score between that term and the
GO term to be predicted. This representation allows the model to identify the target
GO term followed by “similar” GO terms that are partially accurate predictions. This
output label representation also helps the model optimize the weights to target more
than one prediction label. We also add a weighting factor β to modulate the effect
of the Jaccard similarity score on the target vector. So for each output tag, the
representation is as follows:

Y =

l = [1], if T == T̂

l = [β ∗ Jsim(T , T̂)], if T ≠ T̂ & T ̸= O
(5.1)

where, Y is the final target vector, l is the label for the word, T is the ground truth
tag, T̂ is the predicted tag, β is the Jaccard weight, and Jsim is the Jaccard similarity
between T and T̂ . The target vector Y is computed by comparing the true tag (T)
with the possible tags (T̂), where if the T == T̂ == O (no annotation) OR a GO
annotation then the value is set to 1. Else, if the ground truth tag (T) is a GO term,
then we calculate its Jaccard similarity to all possible GO terms and create the target
vector by weighting it with β. We evaluate β values between {0, .25, .5, 1}, where a β

value 0 indicates the traditional one-hot vectorization (baseline in results) and a β

46

value 1 indicates the full Jaccard score taken into account.

The Jaccard similarity (Jsim) of the ground truth concept T and a predicted concept
T̂ [18] is calculated as:

Jsim(T , T̂) =
|S(T) ∩ S(T̂)|
|S(T) ∪ S(T̂)|

(5.2)

where, S(T) is the set of ontology subsumers of T . Specifically, Jsim of two concepts (A,
B) in an ontology is defined as the ratio of the number of concepts in the intersection
of their subsumers over the number of concepts in the union of their subsumers [18].

5.1.3 Performance Evaluation Metrics

The performance of each experiment is evaluated using a modified F1 score as presented
in our previous work [43]. To avoid biasing the F1 score, we omit accurate predictions
of ‘O’ tags from the calculation to report a relatively conservative F1 score.

F1 quantifies whether the model’s prediction matches the actual annotation exactly.
However, ontology-based prediction systems need to be evaluated while accommodating
partially accurate predictions. For example, a model might not retrieve the exact
ontology concept as the gold standard but a related concept (sub-class or super-class)
achieving partial accuracy. Semantic similarity metrics [18] designed to measure
different degrees of similarity between ontology concepts can be leveraged to measure
the similarity between the predicted concept and the actual annotation to quantify
the partial prediction accuracy. Here, we use Jaccard similarity which measures the
ontological distance between two concepts, to access the model’s performance for the
partial similarity between the predicted tags and the actual ground truth.

5.1.4 Top two predictions

The model makes predictions for each GO instance in the test set. These predictions
are expressed as a probability vector where each potential GO term is assigned a
probability. When evaluating the performance of the model, we typically pick the GO
term with the highest probability and use that as the model’s prediction. However, it

47

is typical in NLP evaluations to consider the top 2, 5, and even 10% of probabilities in
evaluating the performance of the model [60–62]. In one of our prior works, we showed
that using the top 2 probabilities can result in a substantial increase in accuracy [9].
Here, we use the same practice of considering predictions with the top 2 probabilities
to evaluate our model’s performance.

5.2 Results and Discussion

The CRAFT v4.0.1 dataset contains 18,689 annotations pertaining to 974 concepts from
the three GO sub-ontologies across 97 articles. The majority of these concepts belong
to Biological Processes followed by Molecular Functions, and Cellular Components.

First, we look at a comparison of the three embeddings - CRAFT, GloVe, and ELMo.
We establish a baseline performance by training the model with a binary target
vector and not using Jaccard similarity scores. This baseline can help understand the
performance improvements resulting from training the model with semantic similarity
scores. Row 1 of Table 5.1 shows the baseline F1 and Jaccard similarity with the
three embeddings. We see that ELMo results in the highest F1 (0.79) and the highest
Jaccard score (0.82). Considering the top 2 predictions increases the F1 to 0.86 and
the Jaccard score to 0.90.

Table 5.1. Comparison of baseline vs ontology aware model performance. Note: F1
scores are modified by omitting accurate predictions of non-annotations (indicated by
‘O’) for a conservative estimate of performance on annotations only.

Model Embedding F1 Jaccard Top two F1 Top two Jaccard

Baseline
CRAFT 0.74 0.75 0.82 0.86
GloVe 0.75 0.76 0.832 0.87
ELMo 0.79 0.82 0.86 0.90

Ontology
aware
model

CRAFT 0.80 0.83 0.86 0.91
GloVe 0.79 0.82 0.86 0.90
ELMo 0.81 0.84 0.87 0.92

We test the prediction performance with four different settings of the weight parameter
β (0.25, 0.5, 0.75, and 1). The best performance is obtained with a weight of 0.5
(Row 2, Table 5.1). In both the baseline and the ontology-aware model, the ELMo

48

embedding outperforms the other two embeddings across all metrics.

The impact of training the model with the ontology hierarchy is starkly noticeable
in both F1 and Jaccard across all three embeddings. The highest improvement is
observed for CRAFT embeddings (8% F1, 10% Jaccard) followed by GloVe (6% F1,
8% Jaccard). ELMo showed modest improvements between the baseline and the
ontology-aware model (2% F1 and Jaccard). These results suggest that intelligent
models that are trained with the ontology hierarchy make more accurate predictions
as compared to those that are trained just on the target ontology concept.

We present a few examples of instances where the model’s predictions match the
ontology term in the gold standard as well as instances where the model generates
false negatives or partially accurate annotations (Table 5.2).

Table 5.2. Examples of accurate, partially accurate, and inaccurate annotation
predictions

Phrase Gold standard
annotation Model’s annotation

Accurate annotation prediction
endogenous intracellular GO:0005622 GO:0005622

cell divisions before developmental GO:0051301 GO:0051301
Partially accurate annotation prediction

proper rhabdomere morphogenesis GO:0061541 GO:0031069
auto regulation of blood flow GO:1903522 GO:0008217

Inaccurate annotation prediction
polysomal - associated RNA-binding protein GO:0005844 O

protein degradation GO:0030163 O

We also compare the transformer based BERT model which has been shown to
perform state of art results in a large of named entity recognition and other NLP
tasks. Results (table 5.3) show that our ontology-aware model outperforms BERT in
both F1 and Jaccard by 5%. The baseline model that shows lower performance than
the ontology-aware model also outperforms BERT in our test.

It is interesting to see that a generic ELMo embedding performs better than a domain-
specific embedding such as CRAFT. However, it is to be noted that the ELMo and
GloVe embeddings are pretrained on large corpora. They are computationally more

49

Table 5.3. Performance comparison between our best model and BERT. Note: F1
scores were modified by omitting accurate predictions of non-annotations (indicated
by ‘O’) for a conservative estimate of performance on annotations only.

Model F1 Jaccard
BERT 0.77 0.80

Ontology aware model (ELMo) 0.81 0.84

expensive to infer during model training and even more expensive to develop. In
contrast, CRAFT utilizes a simple embedding layer with a significantly lower number
of parameters making it more accessible for scientists.

Prior approaches in the area of automated ontology annotation treated ontological
concepts as a binary outcome. In our approach, the Jaccard similarity target vector
teaches the model to understand the latent semantic relationships between the GO
concepts.

50

Chapter 6: Ontology-powered Boosting

Ontology-powered Boosting (OB) is a novel boosting approach that combines the
prediction of a fully trained deep learning model with the graph structure of ontology
concepts. Here, we are trying to improve the semantic similarity performance of
a trained model during post-processing by taking the ontology knowledge graph
into account. The goal of OB is to selectively boost the confidence of an ontology
prediction to improve the overall prediction accuracy. We take a two-step approach,
1) identify candidates for boosting, and 2) boost the predictions with semantically
similar concepts.

6.1 Methods

6.1.1 OB - A two-step process

In the first step, we identify the candidate predictions where the deep learning
models had low confidence. We calculate the uncertainty in the predictions based
on the last layer softmax output. The layer outputs a probability vector (νi =<

p(x0), p(x1), · · · p(xm) >, where i is the i’th input token and p(xj) probability of tag
xj), corresponding to all possible tags (0 · · ·m), for each token that is provided as
input to the model. In general, we calculate the argmax(νi) to select the tag with
the highest probability as the model output. Here we leverage the top k probabilities
from νi vector to calculate the uncertainty in the model’s predictions by evaluating
the entropy H(νi

k) using Shannon’s information entropy where νi
k = p(argmaxk(νi)).

The highest predicted probability of the νi probability vector and the entropy (H(νi))

51

value are used to determine the threshold for the predictions where boosting needs
to be applied. The intuition behind this is to only boost specific predictions where
the model has low confidence. We choose the thresholds for the two parameters by
analyzing the predictions graphs (Figures 6.3a, 6.3b), i.e. visualizing the thresholds
of the parameters where the model makes the most errors. We also select the top k

predictions (argmaxk(x)) from the νi vector to boost. Boosting all of the possible tag
predictions does not benefit the model’s performance and has a detrimental effect on
computational overhead.

The second step boosts the predicted probabilities of the identified candidates by
combining them with the model predictions of the candidate’s ancestors/subsumers.
Specifically, for each token i, we boost the probabilities of top k tags (p(argmaxk(νi)))
with the probabilities of their subsumers using the following computation:

I(xj) = −log(fx/C)

p̃(xj) = β ∗ p(xj) ∗ I(xj) +
d∑

n=1

α ∗ p(xn
j) ∗ I(xn

j)

n

where, we first calculate the information content (I(xj)) of the tag xj (0 ≤ j ≤ m,
where m is the number of tags) as the negative log of concept frequency (fx) over
the total number of available concepts (C). I(xj) is then utilized to calculate the
boosted probability, p̃(xj), which consists of two components, the modulated original
probability (β ∗ p(xj) ∗ I(xj)) and supportive parent boosting (

∑d
n=1

α∗p(xn
j)∗I(xn

j)

n
).

The modulated original probability combines the original probability with a weighting
factor β and the information content of the concept I(xj). The second part of the
computation evaluates all of the subsumer probabilities of xj by individually calculating
the modulated probabilities of parents (α ∗ p(xn

j) ∗ I(xn
j)), where xj has d ancestors

while controlling the influence by normalizing with the depth factor n. Here α is a
weighting parameter used to control the influence of the ancestor probabilities on the
boosting. The calculated parent probabilities are then summed and added to the
modulated probability of xj.

Using the aforementioned approach, p̃(xj) combines the predicted probabilities of the

52

tags with their ancestor’s predictions from a single model. This is done only for the
GO annotations, where a specific annotation probability might be boosted to make
it the top prediction if it had supporting parent predictions from the model. The
information content parameter modulates the effect on the boosted probability by
taking the frequency of occurrence of a concept and its hierarchy into account. α and
β parameters can further control the emphasis we put on the parental contribution vs
original probability, where a β value of 0 nullifies the parental contribution and of 1
includes the parental support completely. As we go higher in the ancestor path, the
depth factor n enforces lower contributions coming from higher subsumers.

We utilize Bayesian optimization to evaluate the different values of k (top k predictions),
entropy threshold (H(νi)), α, and β to maximize the model prediction accuracy.
Specifically, we utilize Tree-structured Parzen Estimators (TPE) [63] approach to
derive the optimal values for each of the parameters for maximizing our objective
function. The objective function in the experiment is defined to maximize the mean
semantic similarity. α and β are evaluated with continuous values between 0.0 to 1.0,
while k was evaluated for values between 1 - 10. The range of entropy was defined
to be continuous values ranging from 0.0 to the highest value of entropy of the top k

predictions for each token.

We demonstrate the efficacy of the Ontology Boosting approach on two deep learning
architectures from our previous work [43,44].

6.1.2 Deep Learning Architectures

We evaluate our boosting approach on two deep learning architectures from our prior
work [43, 44]. We describe the two architectures briefly here. For details refer to
[43,44].

Architecture 1 - Externally Augmented Predictor (A1)

Figure 6.1 shows the three key components of A1 — 1) Input Pipelines; 2) Em-
bedding/Latent Representations; and 3) Sequence Modeler. This architecture was
originally published in [43].

53

Figure 6.1. Architecture of a GRU model for ontology concept recognition.
Figure originally published in [43]

Input Pipelines Each sentence and each token are provided six different components
as input — 1) token (X token

train), 2) character sequence (Xchar
train), 3) token-character

representation (Xrepr
train), 4) parts-of-speech (XPOS

train), 5) BioThesaurus (XBIOT
train), and 6)

UMLS (XUMLS
train).

For more details about the pipeline, refer to section 4.1.1.

Embedding/Latent Representations The supervised embedding is a bottleneck
layer that learns to map the one hot encoded input into a smaller dimensional repre-
sentation. We used ELMo pretrained embeddings for the X token

train input. Embeddings
in ELMo are learned via a bidirectional language model where the sequence of the
words is also taken into account. We use the pretrained model on a 1 Billion Word
Benchmark, which consists of approximately 800M tokens of news crawl data and has
an embedding of 1024 dimensional output embedding vectors.

54

Sequence Modeler We utilize Bi-GRUs in two locations in the architecture, first
to model the sequence of characters present in each token and second main Bi-GRU
model to concatenate input pipelines together. After the embedding of the characters,
they are passed via the first Bi-GRU (consisting of 150 units) resulting in a sequence
representation of the characters in a sentence. 10% dropout is used in this pipeline to
regularize the output to prevent overfitting.

The character sequence representation is then concatenated with the ELMo embeddings,
character representation, parts of speech, and input tensors from Bio-Thesaurus and
UMLS. This concatenated feature map representing each sentence is then passed to a
spatial dropout, which removes 30% of the 1-D sequence features from the input to
the main Bi-GRU. The main Bi-GRU processes the feature maps (with 10% dropout),
and outputs to a single time-distributed dense layer of 1774 nodes (representing each
of the output tags).

Architecture hyper-parameters, which include — supervised embedding shape ({20,
50, 100, 150, 200}), dropout ({01, .2, .3, .5, .7}), number of epochs ({50, 100, 200,
300}), and class weighting, were evaluated using a grid search approach. We used
Adam [52] as our optimizer for all of the experiments with a default learning rate of
0.0001.

Architecture 2 - Intelligent Predictor (A2)

A2, as shown in figure 6.2, uses an intelligent prediction system by using the ontology
hierarchy structure as opposed to A1 [44]. This architecture was originally published
in [44] and be referred from section 5.1.1.

The overall structure of the A2 is similar to A1 in terms of the Sequence Modeler and
Embedding/Latent Representation components. This architecture varies in the Input
Pipelines provided as well as how the target vector is represented for training the
model.

Input pipelines We provide three inputs for each word in a sentence - 1) token
(X token

train), 2) character sequence (Xchar
train), 3) parts-of-speech (XPOS

train).

55

Figure 6.2. Architecture of intelligent ontology model.
Figure originally published in [44].

Target Vector Representation In A2, we use Jaccard semantic similarity scores
as values in the label vector. The value of the GO term to be predicted is set to
1 and the value of all other GO terms in the vector is set to the Jaccard similarity
score between that term and the GO term to be predicted. This representation allows
the model to identify the target GO term followed by “similar” GO terms that are
partially accurate predictions. This output label representation also helps the model
optimize the weights to target more than one prediction label. For more details about
the creation of label vector and Jaccard semantic similarity, refer to section 5.1.2.

Sequence Modeler The sequence modeler for A2 is similar to the sequence modeler
in A1. The differences are in the optimizer, the loss function, and the activation
function in the final output layer. A softmax activation is used in the final layer
which normalizes the output of the model to a probability distribution over the output
tags. We use the Adam algorithm with weight decay [58] as our optimizer with an
initial learning rate of 0.001. The learning rate is reduced by a factor of 0.1 after the
first 10000 training steps, and reduced further by a factor of 0.1 after the next 15000
steps. The weight decays by a factor of 0.0001 after the first 10000 steps and further
by another factor of 0.0001 after the next 15000 steps. We use sigmoid focal cross
entropy [59] as the loss function. Sigmoid focal cross-entropy is particularly useful
for cases where we have highly imbalanced classes. It reduces the relative loss for

56

easy to classify, higher frequency examples, putting more focus on harder to classify,
misclassified examples. This loss function uses α, also called the balancing factor, and
β or modulating factor, which are set to 0.25 and 2.0 respectively.

6.1.3 Performance Evaluation Metrics

Our primary evaluation metric in this study is semantic similarity. Semantic similarity
metrics [18] designed to measure different degrees of similarity between ontology
concepts can be leveraged to measure the similarity between the predicted concept
and the actual annotation to quantify the partial prediction accuracy. Here, we use
Jaccard similarity [18] that measures the ontological distance between two concepts to
assess partial similarity.

We also provide a modified F1 score for our architectures. Since the majority of tags in
the training corpus are non-annotations, the model predicts them with great accuracy.
In order to avoid biasing the F1 score, we omit accurate predictions of ‘O’ tags from
the calculation to report a relatively conservative F1 score.

6.2 Results and Discussion

Table 6.1 presents a summary of how boosting affected the results of the two archi-
tectures. First, we see that the majority of tokens are selected for boosting via the
Bayesian selection process (Row 2). However, the majority of tokens that are boosted
remain unchanged indicating that when the model makes correct predictions, the
boosting process largely retains the correct prediction (Row 3). Reassuringly, boosting
does not change any of the GO predictions to an ‘O’ tag (Row 4). The majority of
incorrect predictions made by the models happen when the ground truth is a GO
concept but the model incorrectly predicts an ‘O’ (non-annotation). Boosting makes
a substantial difference in this case by changing these instances from an ‘O’ to a GO
concept (Row 5). Of these instances, 37% (A1) - 41% (A2) are corrected from an ‘O’
prediction to an exactly matching GO concept as the ground truth (Row 6). When
boosting corrects an ‘O’ prediction to a GO term (exact or partial match to the ground
truth), the average semantic similarity of these instances lies between 53 % - 60%.

57

Table 6.1. Effect of ontology boosting on the two architectures

Row Description A1 A2

1 Total number of tokens 5439 5495
2 Number of tokens boosted 4972 5197
3 Number of tokens boosted but unchanged 4411 4587

4 Number of tokens boosted from GO to O 0 0

5 Number of tokens boosted from O to GO 534 366
6 Number of tokens boosted from O to an exact GO 197 152

7 Average Semantic Similarity for O to GO 0.53 0.60

We examine the impact of our boosting approach on improving the prediction accuracy
of the two architectures presented above (Table 6.2). The base scores refer to the
output of the architecture before boosting was applied and the boosted scores reflect
performance after boosting is applied. We see that boosting improves Jaccard semantic
similarity scores by 7% for A1 and 5.8% for A2. The F1 scores experience a modest
improvement of 2.5% for A1 and no improvement for A2.

Table 6.2. Impact of boosting on the two architectures

Architecture Semantic Similarity Modified F1

A1
Base 0.84 0.83

Boosted 0.90 0.85

A2
Base 0.85 0.81

Boosted 0.90 0.81

Ontology Boosting corrected 201 incorrect predictions (A1) while changing 6 correct
predictions to a semantically similar concept to the ground truth. Similarly, boosting
corrected 174 incorrect predictions (A2) while changing 113 correct predictions to a
different GO concept (semantically similar). The net effect of these two contributions
appears to result in modest improvements or keeps the F1 score unchanged. However,
the real contribution of boosting is reflected in the semantic similarity scores which
show an improvement.

58

Figures 6.3a and 6.3b show the probability of the highest prediction and entropy (of
the top 5 predictions) across all tokens in the dataset. Correct predictions are shown
in blue and incorrect ones are shown in red. These graphs indicate the probability
and entropy zones where the architectures make incorrect predictions that can be
corrected using boosting. We use the Bayesian method described above to select
incorrect predictions on this graph to be boosted.

Figure 6.4a shows the incorrect predictions by A1. Like above, the majority of these
instances were cases where the ground truth is a GO concept and the prediction is an
‘O’ term (non-annotation). Figure 6.4b shows instances incorrectly predicted as ‘O’
that were corrected by boosting. In this figure, blue instances represent cases where the
boosted prediction was an exact match to the ground truth (100% accuracy) whereas
the purple instances represent cases where the boosted prediction was a partial match
to the ground truth. The size of the purple instances reflects the degree of partial
relatedness to the ground truth - larger indicates higher semantic similarity to the
ground truth. We see that boosting has a substantial effect on correcting inaccurate
predictions.

Figure 6.5a shows the incorrect predictions by A2. The majority of these instances
were cases where the ground truth is a GO concept and the prediction is an ‘O’ term
(non-annotation). Figure 6.5b shows instances incorrectly predicted as ‘O’ that were
corrected by boosting.

59

(a) Architecture A1.

(b) Architecture A2.

Figure 6.3. Distribution of correct and incorrect predictions with respect to probability
and entropy of predictions.

60

(a) Incorrect predictions.

(b) Corrected predictions after boosting.

Figure 6.4. A1 predictions corrected via Ontology Boosting.

61

(a) Incorrect predictions.

(b) Corrected predictions after boosting.

Figure 6.5. A2 predictions corrected via Ontology Boosting.

62

Chapter 7: Conclusion and Future
works

7.1 Conclusion

Using GRU as our deep learning architecture and biomedical literature as our corpus,
we develop different models capable of automating ontology annotations. The results
from these models underscore the positive impact they have in accuracy over other
variants of existing deep learning models. The augmentation of biological information
from different knowledge bases to those present in the gold standard corpus shows a
distinct improvement in prediction accuracy.

We can further improve the model’s performance by incorporating the ontology
hierarchy into model training so that the model can make more accurate concept
predictions for text. We show that our intelligent ontology-aware model results in
higher annotation accuracy over a naive baseline model. Here, the focus is more
on improving the model’s accuracy in terms of semantic similarity than in terms of
F1 score. This is because F1 metrics completely focus on accurate prediction and
do not consider the significance of partially accurate prediction. Semantic similarity
metrics, on the other hand, give a better evaluation of the model’s performance for
this approach. This work also paves the way for more sophisticated approaches for
enabling deep learning architectures to gain an understanding of the ontology space
and semantics.

As another approach to integrating the ontology hierarchy into concept prediction,

63

we present a novel approach called Ontology Boosting. It allows post-processing of
ontology predictions by already trained deep learning models to selectively improve
the confidence of certain predictions by using information from the ontology such
as immediate parent or subsumers, information content, depth of a concept in the
ontology, etc. We show that this computationally inexpensive step can result in
substantial improvements to our key performance metric - semantic similarity. Our
results clearly show that the predictions made by the deep learning model are closer
to the human ground truth after applying the boosting process as compared to before.

Even though this study uses GO ontologies for all purposes, the scope of this work is
not limited to just GO or even bio-ontologies. These approaches can be implemented
in any other domain that has established a formal representation to describe their
entities and relationship. These measures are also applicable in other deep learning
architectures based on one’s requirements.

7.2 Future works

We observe from the analysis of predicted ontologies that concepts/annotations that are
underrepresented in the gold standard corpus i.e. there are present in lower frequency
across the entire corpus are less confident in making predictions. Furthermore, most of
the incorrect predictions have lower frequency terms as ground truth. To overcome this
shortcoming, we can use synonyms of underrepresented terms from the GO ontology
to increase their frequency. GO ontology already contains synonyms for all ontology
concepts and thus can be used to properly represent all annotations in the corpus.

Additionally, we explore a few approaches to integrate the information from the
ontology hierarchy to improve prediction accuracy. Capitalizing on ontology hierarchy,
we can help the deep learning models learn low-dimensional presentation or graph
embedding. Knowledge graph embedding or simply graph embedding is a deep learning
algorithm to learn the low-dimensional representation of knowledge graph’s entities
and relationships while maintaining their semantic properties. Using these embedded
representations, we can potentially improve the deep learning model’s prediction
accuracy. Furthermore, we can predict ontologies that are present outside our gold
standard corpus, with good accuracy.

64

References

[1] L. Beasley and P. Manda, “Comparison of natural language processing tools for
automatic gene ontology annotation of scientific literature,” Proceedings of the
International Conference on Biomedical Ontology, 2018.

[2] W. Dahdul, T. A. Dececchi, N. Ibrahim, H. Lapp, and P. Mabee, “Moving the
mountain: analysis of the effort required to transform comparative anatomy into
computable anatomy,” Database, vol. 2015, 05 2015.

[3] D. Rebholz-Schuhmann, S. Kafkas, J.-H. Kim, C. Li, A. J. Yepes, R. Hoehndorf,
R. Backofen, and I. Lewin, “Evaluating gold standard corpora against gene/protein
tagging solutions and lexical resources,” Journal of Biomedical Semantics, vol. 4,
p. 28, Oct 2013.

[4] G. Petasis, F. Vichot, F. Wolinski, G. Paliouras, V. Karkaletsis, and C. D. Spy-
ropoulos, “Using machine learning to maintain rule-based named-entity recognition
and classification systems,” in Proceedings of the 39th Annual Meeting on Associ-
ation for Computational Linguistics, ACL ’01, (USA), p. 426–433, Association
for Computational Linguistics, 2001.

[5] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer, “Neural
architectures for named entity recognition,” arXiv preprint arXiv:1603.01360,
2016.

[6] M. Habibi, L. Weber, M. Neves, D. L. Wiegandt, and U. Leser, “Deep learning with
word embeddings improves biomedical named entity recognition,” Bioinformatics,
vol. 33, no. 14, pp. i37–i48, 2017.

65

[7] C. Lyu, B. Chen, Y. Ren, and D. Ji, “Long short-term memory rnn for biomedical
named entity recognition,” BMC bioinformatics, vol. 18, no. 1, p. 462, 2017.

[8] X. Wang, Y. Zhang, X. Ren, Y. Zhang, M. Zitnik, J. Shang, C. Langlotz, and
J. Han, “Cross-type biomedical named entity recognition with deep multi-task
learning,” arXiv preprint arXiv:1801.09851, 2018.

[9] P. Manda, S. SayedAhmed, and S. D. Mohanty, “Automated ontology-based
annotation of scientific literature using deep learning,” in Proceedings of The
International Workshop on Semantic Big Data, SBD ’20, (New York, NY, USA),
Association for Computing Machinery, 2020.

[10] P. Manda, J. P. Balhoff, H. Lapp, P. Mabee, and T. J. Vision, “Using the
phenoscape knowledgebase to relate genetic perturbations to phenotypic evolu-
tion,” genesis, vol. 53, no. 8, pp. 561–571, 2015.

[11] T. Groza, S. Köhler, D. Moldenhauer, N. Vasilevsky, G. Baynam, T. Zemojtel,
L. M. Schriml, W. A. Kibbe, P. N. Schofield, T. Beck, et al., “The human
phenotype ontology: semantic unification of common and rare disease,” The
American Journal of Human Genetics, vol. 97, no. 1, pp. 111–124, 2015.

[12] H. Cho, W. Choi, and H. Lee, “A method for named entity normalization in
biomedical articles: application to diseases and plants,” BMC Bioinformatics,
vol. 18, p. 451, Oct 2017.

[13] H. Liu, Z.-Z. Hu, J. Zhang, and C. Wu, “Biothesaurus: a web-based thesaurus of
protein and gene names,” Bioinformatics, vol. 22, pp. 103–105, 11 2005.

[14] O. Bodenreider, “The unified medical language system (UMLS): integrating
biomedical terminology,” Nucleic Acids Research, vol. 32, pp. 267D–270, Jan.
2004.

[15] K. Cho, B. van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk,
and Y. Bengio, “Learning phrase representations using RNN encoder–decoder
for statistical machine translation,” in Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP), pp. 1724–1734,
Association for Computational Linguistics, oct 2014.

66

[16] P. Manda, L. Beasley, and S. Mohanty, “Taking a dive: Experiments in deep learn-
ing for automatic ontology-based annotation of scientific literature,” Proceedings
of the International Conference on Biomedical Ontology, 2018.

[17] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[18] C. Pesquita, D. Faria, A. O. Falcão, P. Lord, and F. M. Couto, “Semantic similarity
in biomedical ontologies,” PLOS Computational Biology, vol. 5, pp. 1–12, 07 2009.

[19] G. Zehetner, “Ontoblast function: From sequence similarities directly to potential
functional annotations by ontology terms,” Nucleic acids research, vol. 31, no. 13,
pp. 3799–3803, 2003.

[20] S. Khan, G. Situ, K. Decker, and C. J. Schmidt, “Gofigure: Automated gene
ontology™ annotation,” Bioinformatics, vol. 19, no. 18, pp. 2484–2485, 2003.

[21] S. Hennig, D. Groth, and H. Lehrach, “Automated gene ontology annotation for
anonymous sequence data,” Nucleic Acids Research, vol. 31, no. 13, pp. 3712–3715,
2003.

[22] M. Deng, T. Chen, and F. Sun, “An integrated probabilistic model for functional
prediction of proteins,” Journal of Computational Biology, vol. 11, no. 2-3, pp. 463–
475, 2004.

[23] M. Deng, Z. Tu, F. Sun, and T. Chen, “Mapping gene ontology to proteins based
on protein–protein interaction data,” Bioinformatics, vol. 20, no. 6, pp. 895–902,
2004.

[24] S. Letovsky and S. Kasif, “Predicting protein function from protein/protein
interaction data: a probabilistic approach,” Bioinformatics, vol. 19, no. suppl_1,
pp. i197–i204, 2003.

[25] N. Nariai, E. D. Kolaczyk, and S. Kasif, “Probabilistic protein function prediction
from heterogeneous genome-wide data,” Plos one, vol. 2, no. 3, p. e337, 2007.

[26] Y. A. Kourmpetis, A. D. Van Dijk, M. C. Bink, R. C. van Ham, and C. J. ter
Braak, “Bayesian markov random field analysis for protein function prediction

67

based on network data,” PloS one, vol. 5, no. 2, p. e9293, 2010.

[27] A. Vinayagam, C. del Val, F. Schubert, R. Eils, K.-H. Glatting, S. Suhai, and
R. König, “Gopet: a tool for automated predictions of gene ontology terms,” BMC
bioinformatics, vol. 7, no. 1, pp. 1–7, 2006.

[28] A. Lobley, M. B. Swindells, C. A. Orengo, and D. T. Jones, “Inferring function
using patterns of native disorder in proteins,” PLoS computational biology, vol. 3,
no. 8, p. e162, 2007.

[29] J. Jung, G. Yi, S. A. Sukno, and M. R. Thon, “Pogo: Prediction of gene ontology
terms for fungal proteins,” BMC bioinformatics, vol. 11, no. 1, pp. 1–9, 2010.

[30] R. You, Z. Zhang, Y. Xiong, F. Sun, H. Mamitsuka, and S. Zhu, “Golabeler:
improving sequence-based large-scale protein function prediction by learning to
rank,” Bioinformatics, vol. 34, no. 14, pp. 2465–2473, 2018.

[31] A. R. Aronson, “Effective mapping of biomedical text to the umls metathesaurus:
the metamap program.,” in Proceedings of the AMIA Symposium, p. 17, American
Medical Informatics Association, 2001.

[32] C. Jonquet, N. Shah, C. H Youn, M. Musen, C. Callendar, and M.-A. Storey,
“Ncbo annotator: Semantic annotation of biomedical data,” 01 2009.

[33] H.-M. Müller, E. E. Kenny, P. W. Sternberg, and M. Ashburner, “Textpresso:
an ontology-based information retrieval and extraction system for biological
literature,” PLoS biology, vol. 2, no. 11, p. e309, 2004.

[34] M. A. Casteleiro, G. Demetriou, W. Read, M. J. F. Prieto, N. Maroto, D. M.
Fernandez, G. Nenadic, J. Klein, J. Keane, and R. Stevens, “Deep learning meets
ontologies: experiments to anchor the cardiovascular disease ontology in the
biomedical literature,” Journal of biomedical semantics, vol. 9, no. 1, p. 13, 2018.

[35] Y. Shen, H. Yun, Z. C. Lipton, Y. Kronrod, and A. Anandkumar, “Deep active
learning for named entity recognition,” arXiv preprint arXiv:1707.05928, 2017.

[36] Q. Zhu, X. Li, A. Conesa, and C. Pereira, “Gram-cnn: a deep learning approach
with local context for named entity recognition in biomedical text,” Bioinformatics,

68

vol. 34, no. 9, pp. 1547–1554, 2018.

[37] M. R. Boguslav, N. D. Hailu, M. Bada, W. A. Baumgartner, and L. E. Hunter,
“Concept recognition as a machine translation problem,” BMC bioinformatics,
vol. 22, no. 1, pp. 1–39, 2021.

[38] N. D. Hailu, M. Bada, A. T. Hadgu, and L. E. Hunter, “Biomedical concept
recognition using deep neural sequence models,” bioRxiv, p. 530337, 2019.

[39] L. Furrer, J. Cornelius, and F. Rinaldi, “Uzh@ craft-st: a sequence-labeling
approach to concept recognition,” in Proceedings of The 5th Workshop on BioNLP
Open Shared Tasks, pp. 185–195, 2019.

[40] D. Sousa, A. Lamurias, and F. M. Couto, “Using neural networks for relation
extraction from biomedical literature,” in Artificial Neural Networks, pp. 289–305,
Springer, 2021.

[41] R. Xing, J. Luo, and T. Song, “Biorel: towards large-scale biomedical relation
extraction,” BMC bioinformatics, vol. 21, no. 16, pp. 1–13, 2020.

[42] S. Yadav, S. Ramesh, S. Saha, and A. Ekbal, “Relation extraction from biomedical
and clinical text: Unified multitask learning framework,” IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 2020.

[43] P. Devkota, S. D. Mohanty, and P. Manda, “A gated recurrent unit based
architecture for recognizing ontology concepts from biological literature,” BioData
Mining, vol. 15, no. 1, pp. 1–23, 2022.

[44] P. Devkota, S. Mohanty, and P. Manda, “Knowledge of the ancestors: Intelligent
ontology-aware annotation of biological literature using semantic similarity,”
Proceedings of the International Conference on Biomedical Ontology, 2022.

[45] O. Bodenreider and R. Stevens, “Bio-ontologies: current trends and future direc-
tions,” Brief. Bioinform., vol. 7, pp. 256–274, sep 2006.

[46] T. G. O. Consortium, “The gene ontology resource: 20 years and still GOing
strong,” vol. 47, pp. D330–D338, jan 2019.

[47] M. Bada, M. Eckert, D. Evans, K. Garcia, K. Shipley, D. Sitnikov, W. A.

69

Baumgartner, K. B. Cohen, K. Verspoor, J. A. Blake, and L. E. Hunter, “Concept
annotation in the craft corpus,” BMC Bioinformatics, vol. 13, p. 161, Jul 2012.

[48] L. Ramshaw and M. Marcus, “Text chunking using transformation-based learning,”
in Third Workshop on Very Large Corpora, p. 6, 1995.

[49] A. Segev and Q. Z. Sheng, “Bootstrapping ontologies for web services,” IEEE
Transactions on Services Computing, vol. 5, no. 1, pp. 33–44, 2010.

[50] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word
representation,” in Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pp. 1532–1543, 2014.

[51] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettle-
moyer, “Deep contextualized word representations,” CoRR, vol. abs/1802.05365,
2018.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[53] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[54] M. Basaldella, L. Furrer, C. Tasso, and F. Rinaldi, “Entity recognition in the
biomedical domain using a hybrid approach,” Journal of biomedical semantics,
vol. 8, no. 1, pp. 1–14, 2017.

[55] C. Funk, W. Baumgartner, B. Garcia, C. Roeder, M. Bada, K. B. Cohen, L. E.
Hunter, and K. Verspoor, “Large-scale biomedical concept recognition: an evalua-
tion of current automatic annotators and their parameters,” BMC bioinformatics,
vol. 15, no. 1, pp. 1–29, 2014.

[56] M. Tanenblatt, A. Coden, and I. Sominsky, “The conceptmapper approach to
named entity recognition,” in Proceedings of the seventh international conference
on language resources and evaluation (LREC’10), 2010.

[57] M. Sung, M. Jeong, Y. Choi, D. Kim, J. Lee, and J. Kang, “Bern2: an ad-
vanced neural biomedical named entity recognition and normalization tool,”

70

arXiv preprint arXiv:2201.02080, 2022.

[58] I. Loshchilov and F. Hutter, “Decoupled weight decay regularization,” 2017.

[59] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense
object detection,” 2017.

[60] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S.
Bernstein, J. Bohg, A. Bosselut, E. Brunskill, et al., “On the opportunities and
risks of foundation models,” arXiv preprint arXiv:2108.07258, 2021.

[61] J. M. Johnson and T. M. Khoshgoftaar, “Survey on deep learning with class
imbalance,” Journal of Big Data, vol. 6, no. 1, pp. 1–54, 2019.

[62] S. Pouyanfar, S. Sadiq, Y. Yan, H. Tian, Y. Tao, M. P. Reyes, M.-L. Shyu, S.-C.
Chen, and S. S. Iyengar, “A survey on deep learning: Algorithms, techniques, and
applications,” ACM Computing Surveys (CSUR), vol. 51, no. 5, pp. 1–36, 2018.

[63] J. Bergstra, D. Yamins, and D. Cox, “Making a science of model search: Hyper-
parameter optimization in hundreds of dimensions for vision architectures,” in
Proceedings of the 30th International Conference on Machine Learning (S. Das-
gupta and D. McAllester, eds.), vol. 28 of Proceedings of Machine Learning
Research, (Atlanta, Georgia, USA), pp. 115–123, PMLR, 17–19 Jun 2013.

71

	List of Tables
	List of Figures
	Introduction
	Related Works
	Background, Data and Preprocessing
	Background
	Ontology
	Gene Ontology

	Dataset
	Data Preprocessing
	Sentence segmentation and Tokenization
	IOB Tagging
	Annotation Formats
	POS Tagging and Token Encoding
	BioThesaurus Encoding
	Unified Medical Language System (UMLS) Encoding

	GRU based architectures for concept recognition
	Methods
	Deep Learning Architecture
	Performance Evaluation Metrics

	Results and Discussion

	Knowledge of the Ancestors
	Methods
	Deep Learning Architecture
	Target Vector Representation
	Performance Evaluation Metrics
	Top two predictions

	Results and Discussion

	Ontology-powered Boosting
	Methods
	OB - A two-step process
	Deep Learning Architectures
	Performance Evaluation Metrics

	Results and Discussion

	Conclusion and Future works
	Conclusion
	Future works

	References

