In search of a better mouse test

By: Douglas Wahlsten, Nathan R. Rustay, Pamela Metten, and John C. Crabbe

Made available courtesy of Elsevier: http://www.elsevier.com

Reprinted with permission. No further reproduction is authorized without written permission from Elsevier. This version of the document is not the version of record. Figures and/or pictures may be missing from this format of the document.

Abstract:
To elucidate pathways from specific genes to complex behaviors, assays of mouse behavior need to be valid, reliable and replicable across laboratories. Behavioral assays are proving to be as complex as the intricate cellular and molecular pathways that are the main interest of many mouse users. There is no perfect behavioral test, but we propose some aphorisms to stimulate discussion that is necessary for continued progress in task development. For maximal utility, a behavioral test should yield valid data for most of the commonly used inbred mouse strains. Tests of simple, ubiquitous behaviors usually yield meaningful data for most mice, especially when based on automated scoring or on simple physical measures that are likely to be replicable across laboratories. Extreme test scores resulting from non-performance on a task can inflate the apparent reliability of a test, and devious adaptations to a task can undermine its validity. The optimal apparatus configuration for certain genetic or pharmacological analyses might depend on the particular laboratory environment. Despite our best efforts, the mice will continue to win some innings.

Article:
Many genetic mutations in mice alter the nervous system and thereby change behavior. Consequently, mouse behavior is a phenotype of considerable interest in neuroscience, and comprehensive assessment of a mutation must involve assays of behavior. Although numerous tests of behavior are available [1], we believe that some of the popular tests can be made more reliable, valid and replicable across laboratories. Here, we discuss criteria for building better mouse tests. Behavioral testing should be viewed as a work in progress – an enterprise made more challenging by the daunting complexity of behavior and its sensitivity to factors that are quite subtle [2].

Diversity, the raw material for test evolution
The search for better tests is made a little easier because there is no standard implementation of any single test that is deeply entrenched. Instead, most tests are done in a manner that is unique to each laboratory [3]. For example, on the submerged-platform water-escape task, details of the apparatus and procedures vary widely (Fig. 1). There is considerable evidence that parametric differences in the details of many tasks are important for the outcome of genetic experiments [4–6]. Minor changes in a task can sometimes yield large benefits, as exemplified by the rescue of maze learning in staggerer mutant mice when walls are added to the arms of an elevated maze [7] and by the improved care of pups observed when staggerer mothers and their litters are housed in a cone-shaped cage [8].

Behavioral testing is central to the phenotyping initiatives at the National Institute of Mental Health [9] (see also What’s Wrong with My Mouse? at http://www.mymouse.org), the Mouse Phenome Project (MPP) [10] and the Mouse Phenome Database (http://www.jax.org/phenome). Some of the strains proposed by the MPP present special challenges for behavioral testing (Fig. 2). For example, many have retinal degeneration that can alter behavior in tasks [11–13]; others have age-related hearing loss [14], and wild-derived strains are very difficult to handle in behavioral studies [15]. The wide range of strains also includes some real gems, such as the BTBR T+ tf/tf strain, which shows extraordinarily good rotarod performance [16,17], even though a survey
of 21 inbred mouse strains carried out in two laboratories reveals that BTBR T+ tf/tf have a severely reduced hippocampal commissure and lack the corpus callosum [18].

Inbred strains and mutants: one world
The need to gather behavioral data on a wide range of inbred strains brings into focus the shortcomings of some tests. To have maximal utility, a good behavioral test should yield valid data for most of the commonly used inbred strains. Of course, much contemporary research in neuroscience involves single-gene mutations rather than inbred strains, but the conclusion applies equally to mutants. It is widely appreciated that some strains do not perform well on certain tests [19,20], and the wisdom of choosing a ‘wild-type’ strain that does well on a task as the genetic background of a mutation is generally understood (if not practiced). A less obvious problem can arise when a mutation placed on the high-performance background causes a deficit in performance for the same reason that invalidates the task for certain inbred strains. If the test works well for only a few strains, then perhaps the task itself needs to be improved or even replaced.

When evaluating and refining tests, there are advantages to working in collaboration with several laboratories, with all researchers agreeing to adopt identical physical apparatus and test protocols that yield valid results for most mice [2,21]. The iterative processes of consultation and negotiation identify procedures that are often carried out without any good justification. An alternative is to adopt the methods of one laboratory as the ‘gold standard’ – an approach that risks substituting ego for evidence in the choice of task parameters.

The simplest case: exploratory activity
Because deficits are often expected in a study of mutations, a crucial consideration for any test is the meaning of low or zero test scores. It is important that mice do not fail for a reason that is unrelated to what the test purports to measure. We assert that tests of simple, ubiquitously performed behaviors usually yield meaningful data for most mice. For example, the 129S1/SvImJ strain exhibits surprisingly low exploration on the second test trial in an open field or Y-maze (Fig. 3), often sitting quietly in one arm of a Y-maze for an entire trial. Call it boredom if you like, but this pattern clearly requires good long-term memory. But exploration itself is not a test of memory: several other inbred strains (e.g. BALB/cByJ and DBA/2J) show high levels of initial exploration day after day, even though it is known from other studies that these mice have a reasonably good memory for places. Exploration of a simple environment involves gross motor activity, and distance traveled is a good measure of exploratory behavior. A score of nearly zero centimeters traveled does not tell us whether the mouse was sleeping, grooming or paralyzed by anxiety, but it does tell us that the mouse was not exploring its environment.

A single measure such as distance traveled cannot encapsulate everything that a mouse does; additional measures of where the mouse goes are needed to distinguish between repetitive circling and exploration. It is unlikely that any reasonably complex behavior can be represented adequately by a single measure. The variety of behaviors documented and the methods for analyzing patterns of movement can be enhanced [22], and absolute scores will certainly differ with time of day, level of illumination and many other parameters.
Sophisticated descriptors of locomotion can detect consistent patterns of strain differences across laboratories [23], yet distance traveled remains a highly reliable and valid indicator of exploration.

Human versus machine: which to trust?

Another meaningful zero score occurs in a test of hunger, in which mice are observed for a short time in the home cage eating their usual laboratory chow that is presented in a familiar glass dish. The amount of food eaten increases steadily with the duration of deprivation. But there are two ways in which to measure eating: the actual mass of food consumed and the time spent eating, as judged by a trained observer. Within a single laboratory these two measures correlate strongly, but when we made the measurements simultaneously in Edmonton and Portland it became apparent that our technicians used different criteria to record time spent eating the same mass of food, despite detailed written instructions.

We conclude that automated scoring by machine or reliance on simple physical measures is more likely to yield an index of behavior that is replicable across laboratories. The impact of the experimenter on the data is likely to be greatest when the task involves extensive or expert handling of the [6]. When activity or hunger levels are lower in one laboratory than in another, this can be interpreted only if identical measures are being used. Ethologically meaningful measures of behavior are important, but implementing such measures with automation is desirable [13,22].

The dilemma of uncooperative mice

Some tests are effectively undermined by non-performance. For 129S1/ SvImJ mice (Fig. 3), the index of alternation between arms of a Y-maze on the second day often cannot be computed owing to a lack of exploration. A similar problem is encountered with the Barnes maze, a test of spatial memory in which mice must locate an open hole among 12 or more holes along the periphery of a large disk to escape from bright light. Many mice ‘freeze’ in the center of the disk and never escape at all. For these non-performing mice, the Barnes maze yields no valid data. Paradoxically, including such mice in the final analysis can make the test look deceptively good. Test–retest reliability (the correlation of performance on different test occasions) tends to be high when there are extreme scores by some individuals on both occasions. For use of the Barnes maze in Edmonton, reliability is quite high ($r = 0.7$) when non-performing mice are included in the analysis but less so ($r = 0.5$) when those that fail to escape within 60 s are eliminated. Thus, caution is warranted when interpreting data from some tasks, because extreme test scores resulting from non-performance on a task can inflate the apparent reliability of a test at the expense of its validity.

The elevated plus maze – a test of mouse anxiety in which anxious mice avoid open arms and ambulate in arms with high walls – is undermined when the mice remain at the center hub or are inactive for most of a trial. Exploration of open arms correlates with overall levels of activity [24]. This issue could be addressed by removing inactive mice from the analysis [21], but this might bias the results of a genetic experiment. Rather than eliminating data, perhaps experimenters should alter the task itself. In Portland, mice show a much lower level of exploration of open arms on the plus maze than do mice in Edmonton on identical mazes [2]. A low baseline activity on the plus maze has been reported in several other laboratories, precluding its use in studies of drugs or mutations that might be anxiogenic. This problem might be ameliorated by using a slightly higher rim on the open arms of the maze, which increases the amount of open-arm exploration in Portland to the level seen previously in Edmonton (Fig. 4). In another test of anxiety, the mirrored chamber, redesign of apparatus and procedures allows the detection of increased anxiety (C. Kliethermes et al., unpublished).

Thus, we reluctantly conclude that, for tests that are especially sensitive to laboratory conditions, the optimal apparatus configuration for certain genetic or pharmacological experiments could depend on the particular laboratory environment. Equating apparatus and protocols across laboratories is highly desirable, but differences in apparatus sometimes might be required to yield equivalent behaviors in different laboratories.
Fig. 2. Some salient features of strains selected for the Mouse Phenome Project in four priority groups, with Group A having the highest priority for phenotyping. Strains shown in red type are albino and can be expected to have mild vision defects [36,39]. Strains in green type are wild-derived and often are hard to handle in behavioral studies. Strains underlined often have cancerous tumors present in older mice. Major defects present in four or more strains include absent corpus callosum (ACC; dark blue), hearing loss (HL; yellow) and retinal degeneration (RD; gray [http://www.jax.org]). Other defects or unusual features include autoimmune abnormalities (AI), adrenal lipid depletion (ALD), arthritis (AR), blood-clotting deficiency (von Willebrand disease model) (B), cataracts (CT), diabetes Type I or II (D.I or D.II, respectively; asterisk indicates diabetes seen in mice on a high-fat diet), glaucoma (G), the mice being hard to handle [16] (HH), myopathy and muscle weakness (M), platelet spotting (Hirschprung disease model) (P), and sinking in water-escape tests (S). Data were compiled from the Jackson Laboratory website on mouse models [http://jaxmice.jax.org/jaxmicedb.shtml/models.shtml] and observations from our laboratories. Not all of the 40 strains have been assessed for all phenotypes.
The challenge of devious adaptations

Equally vexing are devious adaptations to complex tasks. Mice trained to avoid electric shock in a two-way shuttle box often resort to clever ruses to avoid shock without running, including widely splayed legs to bridge grid bars of the same voltage safely, standing on one bar and leaning nonchalantly against a plastic wall, and finding a safe zone between photocell beams. Even the simple rotarod test of motor coordination can be circumvented by our furry subjects. Many mice flatten themselves and hold tight to the rotating rod to ride passively instead of running on top of it, thereby compromising the validity of the test. It turns out that a larger diameter rod (6.5 cm; the ‘rat’ size supplied by some manufacturers) covered with number-320 grit emery paper almost completely eliminates passive rotation by mice and yields excellent data for evaluating the effects of ethanol on the coordination of many inbred strains [16]. Because the rotarod surface gradually wears with use, like an automobile tire, regular renewal of the surface gives stable results over long periods of time – a feature that can be important for studies of aging.
Sink, swim or float: those are the options

The advantages and disadvantages of using escape from water to motivate learning in mice are well known [25,26]. Neuroscientists have been warned that many strains perform poorly on the submerged-platform water-escape test task [19], which is better suited to rats than to mice [27], yet it is used widely for the study of memory in mice. The A/J strain is an implacable wall-hugger in the circular water tank [21]. Most of the variance among different mouse strains and mutants is attributable to wall-hugging and floating, and not to spatial memory [28]. The way in which the test is done is known to be very important [5], so perhaps the task can be altered to rescue poor performance. Adding clear plastic walls to create four wide arms, while keeping the escape platform and extra-maze stimuli the same as in the open version of the tank, might allow A/J mice to remain close to a wall to reach the platform. However, this is a nice idea that proves to be wrong for this mouse strain. When there is a submerged platform in every arm of the water maze, so that there is an easy way out whichever arm is chosen, almost all mice learn to swim very quickly; by contrast, when they are required to discriminate among options to find the platform, many mice give up and float like little corks (Fig. 5).

The search continues for satisfactory results for most strains on water-escape learning, but our initial enthusiasm for the quest has been dampened considerably. Perhaps the submerged-platform water-escape test should be replaced as the task of first choice for evaluating memory, rather than rejecting all mouse strains that persist in floating, hugging the walls or slowly sinking beneath the waves (the C58/J strain).

An obvious problem with no easy solution

Further work needs to be done on several behavioral tests to ensure that valid data can be obtained for most of the commonly used inbred mouse strains. If low scores are not interpretable for some inbred strains because of non-performance or devious adaptations, then it is possible that a knockout strain might perform poorly for the same reasons. If one wishes to explore the genetics of memory, for example, it is essential that low scores on a task be valid indicators of poor memory. This point is simple, even obvious, but the solution to the challenges posed by mice of different genotypes is neither simple nor obvious for complex behaviors.

References

15 Wahlsten, D. et al. A rating scale for wildness and ease of handling laboratory mice: results for 21 inbred strains tested in two laboratories. Genes Brain Behav. (in press)
18 Wahlsten, D. et al. Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/ + tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Res. (in press)
37 Frick, K.M. et al. (2000) Mice are not little rats: species differences in a one-day water maze task. Neureport 11, 3461–3465
41 Holschneider, D.P. et al. (1999) Lack of protection of monoamine oxidase B-Deficient mice from age-related spatial learning deficits in the Morris water maze. Life Sci. 65, 1757–1763
42 Lee, B. et al. (2000) LP-BM5 infection impairs spatial working memory in C57BL/6 mice in the Morris water maze. Brain Res. 856, 129–134
45 Oitzl, M.S. et al. (1997) Severe learning deficits in apolipoprotein E-knockout mice in a water maze task. Brain Res. 752, 189–196
46 Rissanan, A. et al. (1999) In mice tonic estrogen replacement therapy improves non-spatial and spatial memory in a water maze task. NeuroReport 10, 1369–1372