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Summary: 

Among adult BALB mice fewer than 20% usually have a small or absent corpus callosum (CC) and inheritance 

is polygenic. In the fetus at the time when the CC normally forms, however, almost all BALB mice show a 

distinct bulge in the interhemispheric fissure and grossly retarded commissure formation, and inheritance 

appears to result from two autosomal loci, provided the overall maturity of fetuses is equated. Most fetuses 

recover from the early defect when the CC axons manage to cross over the hippocampal commissure, and thus 

there is developmental compensation for a genetic defect rather than arrested midline development. The pattern 

of interhemispheric connections when the adult CC is very small is topographically normal in most respects, 

despite the unusual paths of the axons, The proportion of mice which fail to recover completely can be doubled 

by certain features of the maternal environment, and the severity of defects in adults can also be exacerbated by 

new genetic mutations which create new BALB substrains. The behavioral consequences of absent CC in mice 

are not known, nor have electrophysiological patterns been examined. The mouse provides an important model 

for prenatal ontogeny and cortical organization in human CC agenesis, because these data are not readily 

available for the human condition. 

Key words: Recombinant inbred strain; hippocampal commissure; fetus; axon guidance; brain development; 

incomplete penetrance; spontaneous mutation; animal model. 

 

Article: 

Introduction 

Surgical section of the human corpus callosum interferes with transmission of information between the cerebral 

hemispheres, producing a sort of 'split brain' syndrome
68

. The operation is usually done to prevent epileptic 

seizures which cannot be controlled With drugs
20,97

. On the other hand, it happens that some people never form 

a corpus callosum, and in these cases the neurological results are profoundly different from surgical section. 

Agenesis or congenital absence of the corpus callosum does not prevent interhemispheric transmission
67

, 

although the speed of transmission may be slightly reduced because there is no direct axonal pathway
50

. 

Agenesis disrupts certain aspects of language and motor coordination
9,28,29

 but its effects are remarkably subtle 

and require sophisticated neuropsychological tests to detect. The dramatic difference between absence and 

section of the structure indicates that there must be substantial plasticity in the processes that form the synaptic 

connection in the forebrai
67

. 

 

Several problems confront those wanting to know more about the causes and consequences of the defect in 

humans, and certain of these can be addressed by studying an animal model. The corpus callosum (CC) arises 

prenatally in humans and is already quite large at birth
60

. The normal sequence of events in development of the 

human fetal brain is fairly well known
54

, but almost nothing is known about sequelae of events that result in 

absence of the CC. This is mainly because there is no way to know whether a fetus lacking a CC at one stage 

would have formed a normal structure later, but also because agenesis is so rare that an immense collection of 

fetuses would be needed to locate enough cases. A mouse model of CC agenesis can provide invaluable data 

about the embryology. 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=3463
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Another problem is that many cases of CC agenesis in humans come to the attention of researchers because of 

some form of neurological impairment or external mal-formation
30,65

. For example, the Andermann syndrome
43

, 

found in a region of Quebec in Canada, also results in neuromuscular degeneration, so it is not at all obvious 

which symptoms should be attributed to neuromuscular defects and which are specific to the absence of the CC. 

Compensatory mechanisms in forebrain development would be better studied in cases where CC agenesis is the 

only anomaly. A mouse model can provide this feature and thus is most useful for basic research on brain 

development, although no mouse model is yet available for clinically significant human syndromes. 

 

Of course, a mouse model cannot be a complete substitute for detailed investigation of the human condition, 

because normal mice lack many human functions, such as language. It is expected that a mouse model will have 

greater validity at earlier stages of ontogeny, when the embryos of mammals are remarkably similar, A primate 

model of CC agenesis would be ideal, but none has yet been reported. Surgical damage to tissue important for 

CC formation can induce a condition in the adult that is virtually the same as hereditary agenesis
45,66

, and this 

procedure might be possible with primates, although at great expense. Nevertheless, hereditary agenesis 

provides certain advantages over a surgical approach and can help to clarify results of early surgical 

intervention, which inevitably damages tissues other than ones of primary interest. 

 

A complete understanding of the role of the CC in cortical development and function can be attained only by 

integrating diverse information from several mammalian species
12,24

, while being careful to note species 

differences. Certain aspects of cortical function may be examined best using a cat with a highly developed 

visual system. For example, it is now apparent that the CC of the cat is very important for establishing normal 

visual acuity and binocular sensitivity of cortical neurons, but that the CC can be sectioned after the end of a 

critical period without a noticeable loss of these functions
13-15

. Electrophysiological study of' the mouse visual 

cortex is certainly possible
48

, but testing of visual acuity and depth perception is not at all easy in this species. 

Certain questions are better addressed with a cat or monkey than a mouse. Concerning developmental 

anomalies, however, the mouse is the only available non-human source of hereditary CC absence. 

 

The BALB mouse 

A glance at current catalogs of mutant genes in the mouse
51

 will locate the ac gene, representing 'absent corpus 

callosum' reported by Keeler
35

 in 1933. Linkage of the gene was never determined and King expressed doubts 

about its mode of inheritance
37

. Extinction of the stock
36

 left nothing but a rather dubious 'ac' for posterity. 

 

Keeler's stock was derived from descendants of mice bred by Halsey Bagg. The Bagg albino strain was the 

ancestor of today's BALB strains, which are now found in numerous laboratories around the world, where they 

are favorite subjects for studies of the immune system, cancer and behavior. Among inbred strains, BALB is 

almost as popular as the C57BL/6 mouse. Many investigators think that strains such as BALB, C57BL/6 and 

DBA/2 are 'normal' or at least free from major defects, whereas those carrying mutations such as quaking (qk), 

reeler (rl) and staggerer (sg) are 'mutants'. It turns out that almost all of these common strains have distinct 

anatomical or neurological anomalies. The only 'normal' mouse most researchers ever encounter is in the pantry, 

a barn, or a house cat's jaws. 

 

Richard Wimer
94

 reported in 1.965 that the BALB/cJ and 129/J strains have absent CC, and Ile later encouraged 

me to investigate this further with the large samples which would. be required. We had already found some 

novel defects of the fornix and anterior commissure in the A/J strain
74

, but these defects seemed minor com-

pared to the chasm in the middle of the forebrain of some BALB mice. This phenomenon caused such 

excitement that we immediately shifted the emphasis of our work. However, our laboratory was not the first to 

publish a diagram of the defect in BALB. A 1973 report
16

 included photographs showing lesions of the 

amygdala in a C57BL/6J and a BALB/c.1 mouse brain. Perhaps because the nissl stain accentuated cell bodies 

and spared axons, the authors and many readers failed to notice the complete absence of the CC in the BALB. 

Just as a chemical selectively stains certain components of the brain, so our gaze is often directed to a small 

region of immediate interest and we fail to observe something that could provoke even greater interest. 

http://would.be/


Richard Winter (personal communication) has systematically surveyed stained sections of mouse brains from 

over 60 strains maintained at the Jackson laboratory, and his list or those with CC defects now includes 1/1..n.1, 

with total absence of the CC. Ozaki and colleagues
56

 in Japan have also observed CC agenesis in their ddN 

strain. Thus, the acallosal BALB is hardly a rarity among, laboratory mice. It was chosen for further study 

mainly because it was in common use and readily available from many suppliers. 

 

Initial studies
74

 were done with the BALB/cJ strain from the Jackson Laboratory, hut the extremely poor 

reproduction of this strain in our laboratory, most. evident in poor maternal behavior and lactation, prompted a 

search for a substrain of BALB with defects of' the CC and good breeding behavior. Seven substrains from 

different sup-pliers in the United States were tested
76

, and the one from Carworth Farms was chosen for further 

work. The Bailey (By) substrain was later added to our colony. In every substrain where at least 20 mice were 

examined histologically, definite abnormalities of the CC were observed. This pattern suggests strongly that the 

hereditary factors responsible for CC agenesis in BALB arose before the various substrains became genetically 

differentiated from Bagg's original stock, and it leads to a suspicion that absence or the CC in Keeler's mice 

resulted from hereditary material derived from tile BALB ancestor. 

 
a) Criteria for abnormality 

In many neurological mutations, it. is obvious from the behavior or brain anatomy that a certain mouse has a 

particular genotype. 'That is, the quantitative difference between the mutant and its normal littermates is so large 

that it is virtually qualitative. This convenient property does not occur with the CC defect in BALB, however 

(see fig. 1)
82

. Some adult mice have a CC that looks histologically normal, and the cross-sectional area of the 

CC" at the mid-sagittal plane can be anywhere from 1.5 to 0.0 mm
2
 
74

. It is desirable that the line between 

normal and abnormal CC be drawn so that no mouse from a strain lacking CC defects is classified as abnormal. 

Because of continued myelination of the CC for several months alter birth
47,71

, the criterion is age-dependent. It 

need not be judged relative to brain size because the defect of CC in BALB bears no relationship with brain 

size
78

. These considerations lead to the conclusion that at 250 days of age an abnormal CC must have an area 



less than 0.85 mm
2
 and length less than 3.00 mm. At 100 days of age the values are 0.82 mm

2
 and 2.9 mm, 

respectively
79

. Properly speaking, the defect is not total absence of the CC but rather is deficiency of the CC. 

 

b) Incomplete penetrance 

According to these criteria, 11% of a sample of 656 BALB/cCF mice were abnormal in the first generation in 

our laboratory
84

. Only 2 % of a sample of 2878 brains had no CC axons crossing between the cerebral 

hemispheres. How could it be that inbred mice with the same genotype had radically different outcomes of 

forebrain development? It was conceivable that there was genetic variability within our BALB strain resulting 

from a spontaneous mutation or even genetic contamination from some other albino strain, which had occurred 

at one supplier of BALB mice
33

 and is a constant danger in any breeding colony
18

. To evaluate this, breeding 

tests were conducted within our colony of BALB/cCF mice to contrast the hypothesis of genetic segregation 

against the alternative that all mice have the same probability (0.11) of showing the defect
84

. There was no 

significant association between the occurrence of abnormality in the parents and frequency of abnormality in 

the offspring, and separate families propagated by full-sib inbreeding did not differ in frequency of the defect 

over the first few generations. Evidently the incomplete penetrance arises from developmental rather than 

genetic variability. 

 

c) Laboratory and maternal environment 

The frequency of deficient CC in two BALB substrains as well as 129/J purchased from commercial suppliers 

was at least twice the frequency in their offspring bred in our laboratory at Waterloo
78

, which demonstrates that 

the laboratory environment can alter the degree of penetrance. The Jackson laboratory husbandry procedures 

differ in many respects from those at Waterloo, but one aspect of the breeding regime is known to be of great 

importance. For reasons of productivity, most commercial suppliers of mice leave the male stud in the cage with 

the mother continuously , so that he can impregnate the female soon after birth of her litter because mice have a 

postpartum estrus. On the other hand, we routinely re-move the male before the litter is born. A controlled study 

revealed that the frequency of CC defects in adult mice which had been in utero while their mother was nursing 

the first litter was 25%, much higher than the 10% seen in second litters which did not overlap the first
80

. The 

breeding regimen is not the only modulator of penetrance. There have been rather large fluctuations in our 

entire colony of BALB mice from one generation to the next, even though no females became pregnant during 

the postpartum estrus. For example, 12.7% of mice in generation 7 in 1980 showed deficient CC and then the 

frequency increased dramatically to 25.4% the next generation, which must have resulted from a change in the 

lab chow diet, water, bedding or some other feature of the environment common to all BALB mice in the lab
84

. 

Whatever the cause, it was not sufficiently strong to create overt signs of' malnutrition. 

 

d) Substrain differentiation 

Spontaneous mutations occur in every breeding laboratory and, if a strain derived from inbred stock is 

perpetuated by a closed system of breeding, will accumulate gradually and give rise to a substrain genetically 

different from the ancestral strain. For a sample of 155 known loci in mice, the probability that a new allele is 

created and incorporated into an inbred strain is about 0.0004 per generation
91

. This may seem comfortably low, 

but one should keep in mind that the same risk occurs every generation and independently in every substrain, 

and that each mouse has vastly more than 155 loci in its chromosomes and mitochondria. The process proceeds 

inexorably, so that the more generations a substrain is removed from its ancestral stock, the more likely it now 

carries one or more new alleles somewhere in the genome. A mutation may not affect the particular 

characteristics of the brain and behavior that are under investigation at the time, but this is essentially a matter 

of luck. 

 

Several substrains have been established from the original Bagg albino stock
1
, and certain of these are known to 

differ at identified loci 
63

. In many others th.ere is a clear difference on a certain phenotype which has not yet 

been associated with a change in genotype. For example, the Bailey (By) substrain is much less likely to engage 

in fighting than the Jackson (J.) substrain
63

. Regarding deficient CC in BALB, the frequency has ranged from 

28% for BALB/d to 2% (1 of 43 mice) for BALB/cDub
76

. Of course, care must be exercised when attributing a 



sub-strain difference to genetic differentiation because environmental differences between suppliers could yield 

the same results. 

 
Substrain differentiation can be seen most clearly when several strains are derived from the same ancestral stock 

and then propagated under identical conditions in the same laboratory. We established 16 lines from BALB 

mice obtained from Carworth Farms in 1976 and 1977. Over the first six generations there were no significant 

variations among them
84

, but in 1980 one line was contaminated by a spontaneous mutation that produced a 

short tail, severe derangement of the foliation of the cerebellum as well as bizarre motor behavior, prompting us 

to call it the 'shaker short-tail' gene
86

 (which turned out to be a new allele at the dreher (dr) locus on chromo-

some 1 and is now symbolized. dr
sst

. For the ongoing research program, something with impact on the CC 

would have been better. This fortuitous event did indeed happen in a different substrain, yielding over 50% of 

mice with defective CC, more than dou.ble the frequency in any other substrain
84

. After certain of the substrains 

had been maintained for over 20 generations by full-sib mating, they were given the international symbol 'Wall', 

comprising the four substrains indicated in figure 2 with stable differences in severity of CC defects. The 

relevant genetic difference between BAL13/cWahl and BALM/ cWah2 is probably at a single locus. More 

recently, another spontaneous mutation producing a kinky tail and almost 100% severe deficiency of the CC has 

been discovered in BALB mice in our laboratory
6
. Thus, substrain differentiation can provide an invaluable 

source of genetic variants. 

 

Heredity and CC in the adult 

Just as the CC in the adult mammal is a very complex structure connecting diverse cortical regions 

homotopically as a commissure and heterotopically as a decussation via many thousands or even millions of 

myelinated and smaller unmyelinated axons
24

, so must the genetic influences on the CC be numerous. The 

cross-sectional area of the adult CC must reflect the developmental rate of the animal, the number of cortical 



neurons sending axon collaterals, the proportion of axons with myelin, the number of lamellae in the myelin 

sheaths, the extent of axon loss following birth, the degree of branching of the dendrites and consequent 

availability of synaptic sites, etc. Several features of the CC are sensitive to environmental influences such as 

enriched experience
3,32 

and malnutrition
40,93

, and these phenomena must involve diverse physiological 

processes. It would not be at all surprising if the precise size of the CC is influenced by the actions of enzymes 

and other proteins derived from several hundred or even thousands of genetic loci on the chromosomes and 

mitochondria. 

 

Genetic analysis seeks to simplify this situation so that the contributions of one or two genes can be better 

understood. Comparing two inbred strains, they may have different alleles at only a few loci pertinent to CC 

structure, whereas they may have the same genotype at hundreds of other important loci. A genetic locus may 

be associated with an enzyme that is of critical importance for CC formation, it may be an integral part of 

heredity, yet it may not be a primary cause of a strain difference. Some strains, especially substrains, differ at 

relatively few loci, whereas others express many allelic differences'. The question thus is asked: If the BALB 

strain has hereditary agenesis of the CC whereas the C57BL/6 strain is genetically 'normal' in this respect, how 

many loci are responsible for the strain difference
72

. The answer to this question will determine the direction of 

future work, because powerful molecular genetic techniques will likely be fruitful only if the genetic difference 

is relatively simple, involving only one or two loci. 

 

The mode of inheritance of deficient CC is clearly recessive. On every occasion when BALB was crossed with 

a strain having CC size in the normal range, all the F1 hybrid offspring were normal
6,74,79

. There is no sex 

difference in frequency of absent CC 
78

, so the recessive gene(s) must be autosomal. 

 

As a test for single locus Mendelian inheritance, back-crosses of an F1 hybrid to BALB should yield 50% of 

mice with the homozygous recessive genotype. The expected frequency of backcross mice with deficient CC 

should then be half the penetrance in BALB. As shown in the table, three separate studies found the frequency 

of CC defects in backcrosses to be far less than expected for single locus inheritance with incomplete 

penetrance
6,74,79

. At least two loci must be involved and probably many more than two. 

 

To proceed further in pursuit of identifiable genes, one could conduct more elaborate breeding experiments with 

even larger samples of adult mice to scrutinize the outcome of CC development, or one could look more closely 

at the processes of CC development around the time when the malformation occurs. We chose the latter. 

 

 
CC development in the fetus 

In most placental mammals the CC axons first cross between the cerebral hemispheres in the fetus, prior to 

birth. If the CC is absent in the adult, it seems likely that something went wrong in the fetus. The sequence of 

formation of the commissures in the hybrid mouse fore-brain
77

 is the anterior commissure (AC) at about 14.5 

days of gestation, the hippocampal commissure (HC) at 15.0 days and finally the CC at about 16.0 clays. Prior 

to crossing of the HC and CC, the region at the middle of the forebrain consists of the thin lamina terminalis at 

the bottom, the primordial septum in the middle, and the primordial subfornical organ and the choroid plexus of 

the third ventricle at the top 
19

 (see fig. 3). Unlike the AC which grows through the septal tissue, the HC and CC 

cross over the top part of the septum
19,66

. The CC axons usually approach the midline region via a transitory 



layer of cells, an extension of the subventricular zone of cells extending from the lateral ventricles towards 

midline, termed the 'sling' or 'scaffold' by 'Jerry Silver and co-workers
22,66

. It is seen in rats
34

 as well as in mice 

99. Some of the early CC axons evidently contact the previously formed HC, but most of them cross via the 

sling a little above and in front of the HC. Once the first wave of axons has traversed the hemispheres, later 

arriving ones fasciculate along previous ones, and the whole CC grows very rapidly, first to the front to form 

tile genu (GCC) and later towards the rear to form the splenium (SCC)
81

. The CC axons extend a considerable 

distance into the opposite hemisphere by three days after birth in rats
26,95 

and reach all layers of the cerebral 

cortex about one week after birth. In the ensuing weeks, large numbers of CC axons perish
38,41,70 

but the size of 

the CC continues to increase because of myelination
47,71

, which commences at about 10 days after birth in the 

mouse
75

. 

 

 
a) Retarded development in BALB 

To identify the anatomical problem in BALB, comparisons must be made with mouse fetuses from strains that 

never show CC defects, such as C57BL/6 and B6D2F2 hybrids. When this is done at 17.0 days gestation age, it 

appears that virtually every measure of BALB mice is significantly less than in controls because the entire 

organism is developmentally retarded prenatally. Judging from external morphology and body size, BALB 

fetuses are more than 1.0 days behind hybrids of the same chronological age
88

. Apparently a BALB fetus can 

show an unusually small or even absent CC for either of two reasons: The whole fetus may be retarded, or the 

CC may be small relative to whole brain or body size
81

. It is extremely important to distinguish between these 

alter-natives, because mere retardation of overall development is not likely to produce permanent deficits 

specific to the CC. Indeed, experimental treatments such as prenatal ethanol can increase the frequency of 

absent CC in fetuses by retarding overall growth
7
, yet not result in deficient CC in the adult

89
. The adult BALB 

brain is quite large
62

 and all commissures except the CC are normal size
82

. Therefore, we want to find fetal 

defects which are specific to the CC and its locale. This requires that we compare BALB fetuses to control 

fetuses matched for external morphology or body size, which in turn requires that BALB and control fetuses 

have different chronological ages. 

 

 



b) Retarded commissure formation 

When BALB fetuses weighing 0.5-0.75 g at 17.0-17.5 days are compared with equivalent size control fetuses at 

16.0-16.5 days, several interesting results appear
82

. a) Unlike adults, almost all BALB fetuses show obvious 

defects at this stage, and this complete penetrance of the BALB heredity greatly aids genetic analysis; b) the HC 

forms relatively late in BALB but grows at a normal rate once formed; c) there is a large bulge in the 

longitudinal cerebral fissure and the sling does not extend close to midline. The problem is not specific to CC 

axons but rather resides in the substrate for axon growth near midline. In most BALB fetuses the CC axons do 

eventually find a path via the HC, but this happens rather late on day 18 or even 19, just before birth. The later 

the crossing, the smaller the CC will be in the adult, because many ClC axons turn longitudinally and grow into 

a Probst bundle
57,58,66

, when they fail to locate a bridge across the gap between the hemispheres. Partial absence 

or reduced size of the adult CC is not the result of arrested midline development, us was previously 

believed
46,57,77

, but is the result of compensatory or plastic processes of development. 

 

If the CC axons have not found a path to the other hemisphere by day 19, they never will. There is a critical 

period for CC formation, and fetuses with the most severe defects of the sling and the largest bulge at midline 

are never able to cross the threshold. Precisely why there is a midline bulge and failure of sling formation 

remains to be learned. 

 

Heredity and CC in the fetus 

These discoveries about the fetal BALB brain were crucial for achieving a better understanding of the genetics 

of CC defects. 

 

a) Index of abnormality 

Any genetic crossing experiment which examines fetuses at the same chronological age is going to confound 

variation in overall rate of development with effects specific to the structure of interest. Generally speaking, 

hybrid fetuses develop faster than inbred fetuses
88

, and development in a hybrid maternal environment is faster 

than in an inbred mother
4
. Furthermore, within a litter conceived at the same time there are often large 

differences in rate of progress amounting to more than one day's growth at 17 or 18 days of gestation. To know 

whether a particular fetus has a CC or HC that is abnormally small in relation to the maturity of the whole 

animal, fetuses can be obtained in a fairly narrow range of body sizes, such as 0.5-0.8 g, and then we can 

construct an index of the degree of commissure retardation which will allow meaningful comparison of fetuses 

at different body sizes. This has been done for the combined areas of the HC and CC of a standard series of 

mouse fetuses (see fig. 4)
87

. The result is two quadratic equations, one providing the value of CC + HC areas 

expected for a fetus given its body size, and the other providing the expected standard deviation of the measure 

at a given body size. For any fetus in a genetic experiment, a standard score (z) is derived by dividing a) the 

difference between its actual CC + HC and the CC + HC value expected from its body size, by b) the expected 

standard deviation. A fetus with a z score less than — 2.0 is considered to have abnormally retarded 

commissure growth. 

 

b) Simplified genetics 

In a series of classical crosses between BALB/cWah and C57BL/6.1, the z index was very successful in 

correcting for maternal effects on and within-litter variations in overall rate of development
87

. As would be 

expected, inbred and F1 hybrid groups with no genetic variation had variances of the z index close to 1.0. Single 

locus inheritance was ruled out because the distribution of scores in the backcrosses was not bimodal, but the 

rather high frequency of extreme negative z scores in backcross fetuses contrasted sharply with the rarity of CC 

defects in adults and suggested a two locus difference. Fetuses were also obtained from the Bailey strains 

BALB/cByJ and C57BL/6ByJ, their F1 hybrid and their seven recombinant inbred strains (CXBD, E, G, H, I, J 

and K). The 10 genetic groups showed mean z scores in four clusters: (C57, F1 , CXBI), (CXBD, CXBE, 

CXBK), (CXBH, CXBJ) and (BALB). The only overlap between these clusters was for CXBG. Several but not 

all CXBG fetuses were as severely affected as extreme BALB fetuses. These data indicate two loci are 

involved
2
. 

 



 
 

The results for fetuses allow a prediction about CC defects in adults of the recombinant inbred strains. Data for 

BALB/cWah fetuses suggest that only those about — 5.0 standard deviations or more below the expected value 

would fail to recover from the prenatal defect. Among the Bailey recombinant inbred strains, many (all but 

CXBI) show z scores below — 2.0 but only CXBG is ever below — 5.0. Therefore, only CXBG should ever 

show deficient CC in the adult. This was confirmed, except for one surprising CXBD strain mouse
87

. 

 

c) In search of single gene differences 

Recombinant inbred strains provide valuable information about the number of loci producing a difference 

between two parent inbred strains
2
, but they can also simplify the genetics even further. If BALB and C57 differ 

at only two loci pertinent to the CC defect, then certain pairs of recombinant inbred strains derived from them 

must differ at only one locus, which should greatly facilitate the search for a specific developmental process 

related to Et specific gene. Suppose two loci are involved, called A and B. The defect in BALB is recessive, so 

BALB would have genotype aa bb and C57 would be AA BB. Being homozygous at one locus might produce a 

more severe defect than the other so that aa BB would have lower z score than AA bb. If this scheme were 

correct, then C57 and CXBI should be AA BB; CXBE should be AA bb; CXBH should be aa BB; and BALB 

should be aa bb. 

 

Taking further advantage of the two spontaneous mutations in our lab which affected severity of CC defects
6,84

, 

there are now available several pairs of strains which may differ at a single locus relevant to the CC defect. 

 

BALB/cWahl  vs BALB/cWah2 

BALB/c 'tail mutant' vs Siblings 

CXBI/By  vs CXBE/By 

C57BL/6ByJ  vs CXBH/By 

BALB/cByJ  vs CXBE/By 

BALB/cByJ  vs CXBH/By 

 

The difference between a particular pair will very likely involve a locus unique for that pair. There is no reason 

to suspect that the kinky tail mutation was at the same locus as the enhancer of CC defects in BALB/cWahl, 

although this is possible and warrants a direct test of allelism. 

 



Incomplete penetrance as an analytical device 

If genetically identical organisms have radically different outcomes of ontogeny, investigation of the genetics 

will require larger samples and more elaborate breeding tests than when penetrance is complete, and molecular 

genetic analysis will be especially difficult. To some researchers, deficiency of the CC may seem just too messy 

for effective experimentation. A closer look reveals invaluable uses of this phenomenon for the study of 

developmental processes. 

 

a) An elegant experiment of nature 

Suppose one wants to find out why a mutation causes a constellation of effects on brain structure and alters 

certain behaviors. For example, neurological mutations such as staggerer (sg) or weaver (wv) result in loss or 

deficits of several types of cells in several brain regions. Is the change in one cell type secondary to loss of 

another cell type and its trophic influence, or does the mutation act separately in the two cell types? The 

pathways of causation are extremely difficult to analyze because all cells possess the aberrant genotype and 

many of them may express it simultaneously. There is irony in the tact that the very consistency of gene effects 

which makes genetic analysis easy makes developmental analysis difficult. Researchers have turned to chimeras 

formed by fusing genetically different embryos in order to determine sites of primary gene effects and 

secondary consequences
23,25

. 

 

In this regard, incomplete penetrance provides an elegant experiment of nature for analyzing development. In 

the case of the .BALB mouse, genetically identical littermates conceived at the same time and nurtured in the 

same uterus have slightly different degrees of a defect limited to the midline of the forebrain, and these slight 

differences in degree are magnified by a threshold to produce radically different axonal wiring patterns in the 

cerebral cortex. This is achieved without surgery and its inevitable damage to the meninges and blood vessels. 

The phenomenon provides an excellent opportunity to investigate processes of axonal guidance and the 

behavioral consequences of altered cortical organization. 

 

b) Cortical organization in CC agenesis 

A great deal of evidence supports the existence of competition between axonal inputs from different brain 

regions for available synaptic sites on a neuron
10,11,59

. Experimental removal or reduction of inputs from one 

source often results in expanded innervation from another region
24,49,52,61,96

. These plastic processes appear to be 

part of the normal COUBC of development, because projections from one region to another early in ontogeny 

are often diffuse and later become topographically patchy or discrete
42

. For example, a tracer molecule such as 

horseradish peroxidase (HRP) injected into the occipital cortex of one hemisphere a few days after birth of a rat 

or mouse is transported to cells of origin in most zones of -the occipital cortex on the other side
24,26

, whereas the 

same procedure done in an adult rodent reveals that callosal connections are now concentrated at the border of 

cortical areas 17 and 18 but are no longer abundant in the centers of these zones
98

. These patterns can be altered 

to some extent by experience
24,49 

or by removing one eye soon after birth
52,61,96

. However, not every region in 

every species exhibits the diffuse to discrete transition; some connections may be discrete from their inception
8
. 

 

How is the BALB cortical organization altered when there is no CC or a very small CC? Total absence of the 

CC eliminates direct interhemispheric connections between most cortical regions. The callosal axons do not 

find an alternative route via the anterior commissure (AC)
53,85

 and the size of the AC is not altered by absence 

of the CC
85

. The acallosal BALB mouse is not a reversion to the marsupial pattern wherein transcortical axons 

from the visual cortex cross via an enlarged AC
31

. Rather, putative CC axons divert to form a novel adult 

structure, the longitudinal bundle of Probst. In the Probst bundle of the dc-IN mouse strain there is an orderly 

correspondence between the area from which axons originate and their location in the longitudinal bundle
58

, 

although the course of individual fibers appears 'tortuous and convoluted' within a general region of the bundle 
57

. Axons from the Probst bundle do not enter the AC in this strain
57

, either. When the CC is completely absent, 

the topographic pattern of ipsilateral cortical connections does not appear to be markedly abnormal in either 

BALB
27,53 

or ddN
58

, and quantitative analysis will probably be required to detect more subtle changes. Whether 

the putative CC axons that never cross to the opposite hemisphere form functional synapses is not yet known. 

No electrophysiological studies of acallosal mice have been reported. 



The situation is quite different when absence of the CC is caused by prenatal gamma radiation, which destroys 

many of the cortical neurons that would have given rise to CC axons
64

. In this case there is no Probst bundle. 

Partial absence of the CC allows close examination of interhemispheric connections. It might be expected that 

certain cortical regions would lack all CC connections because the sparse innervation simply could not compete, 

or that the remaining, projections would be quite diffuse. Careful tracing of pathways in BALB mice reveals 

that neither pattern occurs
53

. On the contrary, when the CC is very small, the topographic distribution of cortical 

connections shows the patchiness typical of the normal adult, but the density of interhemispheric connections is 

substantially reduced. This occurs despite the exceptionally long and disordered path of the axons from visual 

cortex to the opposite side. In the ddN mouse with a very small CC just dorsal to the FIC, axons some-times 

enter the Probst bundle on one side, exit the bundle and cross over the HC, then enter the bundle on the opposite 

side, and again leave it to reach their destination in a homotopic site in lateral cortex
58

. This evidence supports 

the notion that factors guiding growth of CC axons over long distances are distinct from those shaping the 

pattern of synapses at the destination. 

 

c) Behavioral consequences of absent CC 

It would be instructive to run a large number of BALB mice through a battery of tests that may be sensitive to 

interhemispheric communication and then process them histologically to find out which had no CC. The 

behavioral testing would necessarily be blind with respect to CC status because the acallosal-mice have no 

obvious behavioral deficits. Two particular problems arise in the study of the role of the CC in BALB, however. 

 

First, the anatomical results of Olavarria et al.
53

, strongly suggest that behavioral deficits in mice with even a 

very small CC will be minimal. If there is going to be a substantial change in behavior, it will likely appear in 

mice with total absence of the CC. If a sample of mice has none or very few with total CC absence, a non-

significant correlation between CC size and a measure of behavior will be inconclusive. In some BALB 

substrains total CC absence occurs in only 2 or 3% of mice
84

, which makes for a dreadfully inefficient 

experiment. The occurrence of severe defects in BALB/cWahl should greatly aid behavioral studies (see fig. 2) 

because a sample of 100 mice should yield at least 20 of each extreme, making the test reasonably powerful. 

 

Ward and co-workers
92

 reported a significant correlation between area of the CC and the strength of paw 

preference in 129/I mice but no significant relation among BALB/cCF mice. Unfortunately, not one of the 35 

BALB mice had complete absence of the CC, so further work will be needed before any firm conclusions can 

be drawn from a non-significant correlation. 

 

A second problem is posed by the reliability of the behavioral tests, evident when an animal is tested twice with 

the same apparatus. If the reliability is relatively low, as is sometimes the case for simple tests for mice
55

, a real 

correlation between brain structure and a behavioral process may not be apparent to the researcher because of 

measurement error. This has special relevance for BALB mice because the strain lacks genetic variability. 

Reliability of a test is not a property of the apparatus and procedure in themselves; it also depends strongly upon 

the magnitude of true individual differences in the population being studied. If the population contains large 

genetic variation, the range of individual differences will be relatively wide. On the other hand, for an inbred 

strain reared in a carefully controlled laboratory situation, stable individual differences ought to be rather small, 

and much of the variation in behavior may reflect transitory reactions to the test and day-to-day fluctuations that 

engender measurement error. If so, very large samples will be required to detect a real correlation amidst the 

noise. 

 

d) The origins of incomplete penetrance 

Studies of anatomical and behavioral sequelae of failure to form a CC will leave one very intriguing question 

unanswered. Why is it that one fetus suffers permanent absence while its littermate recover§ completely? In 

terms of the z score of abnormality, why are some BALB fetuses below — 5.0 and others are in the normal 

range above — 2.0? Some would reply that, because BALB has no genetic variation, all individual differences 

in the CC must therefore arise from small differences in the uterine environment. On the other hand, there are 

reasons to believe a third source of individual differences exists within the organism proper and cannot be 



attributed to either genetic or environmental sources
69,83

, although this third source may very well interact with 

these variations. Several kinds of sporadic malformations give the appearance of randomness
39,44

. Perhaps 

minor fluctuations in the configuration of cells at the time of a critical bifurcating process in development can 

create the appearance of chance
21

. 

 

Of course, the uterine environment is not uniform, and local variations could induce severe CC defects in 

certain fetuses. For example, the uterine location of male and female fetuses relative to one another creates a 

heterogeneity of the hormonal environment which can affect early endocrine maturation and later reproductive 

behavior in adult rodents
73

. The spatial distribution of males and females in the uterus is itself random
17

 because 

of the nature of meiosis in spermatogenesis and subsequent fertilization of ova. Thus, it will be difficult to 

distinguish between a random pattern of defects occasioned by processes internal to the embryo and a similar 

pattern produced in response to randomly distributed features of the prenatal environment. Defects of the CC 

provide a favorable situation for assessing these alternatives. 

 

In a sample of 52 BALB/cWah litters observed at 17.5 days of gestation, there was no clear correlation between 

severity of the retardation of the CC + HC index and any measure of the uterine environment, and the spatial 

distribution of severely and mildly abnormal fetuses did not depart significantly from randomness
5
. It may be 

objected that crucial features of the environment were not measured, but this possibility must be weighed 

against evidence that rather large experimental changes in the prenatal environment have no effect on the 

severity of adult CC defects
4,89,90 

and that other influences increase the severity to some extent but never 

produce even close to 100% of mice with total absence of the CC
78,80

. Either there must be really potent 

variations in the uterine environment which remain undetected, or the origin of the individual variation in 

BALB is not located in the uterine environment. 

 

Conclusions 

The BALB mouse can provide useful information about the ontogeny and cortical organization of the 

mammalian brain which cannot be obtained from humans. Already the discovery of dynamic processes of 

recovery from a severe prenatal defect in BALB has led to a new interpretation of variable degrees of the defect 

in adult humans. The notion that arrested midline development causes partial CC absence was originally derived 

from comparisons of brain anatomy of abnormal adult cases with the sequence of ontogeny in normal human 

fetuses. However, direct observation of mouse fetuses destined to be abnormal as adults invites a fresh look at 

the human data. The presence of the Probst bundle in adult mice and humans is now seen as a symptom of a 

prenatal defect in the substrates of axon guidance near midline rather than in the axons themselves, which 

appear to reach the inter-hemispheric fissure on schedule. The data for CC ontogeny in BALB demonstrate very 

clearly that genetically identical organisms can have radically different out-comes of development, depending 

upon the precise circumstances in each embryo and fetus. These findings contradict the simple idea that the 

genes provide a 'blueprint' for brain structure. The origins of the variable outcomes are riot known for sure, but 

available facts suggest there may be a third source of individual differences in brain structure which is neither 

genetic nor environmental. If so, the BALB brain will contribute greatly to the growth of theory in the 

behavioral and brain sciences. 
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