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Abstract: 

Cognitive evolution can be studied at several different levels, ranging from complex societies of interdependent 

persons to the DNA molecules coding for enzymes that synthesize neurotransmitter molecules. Genetic models 

of cognitive evolution can be fairly evaluated only if they involve one or two genetic loci, maybe three loci if a 

massive investment of resources is made. If a simple genetic model is seriously proposed, it ought to be tested 

by genetic linkage analysis so that future theorizing can be guided and constrained by facts. For more complex 

behavioural characteristics based on large numbers of genes and intricate interrelations with the environment, 

genetic analysis and genetic theories are not likely to yield conclusive results. Instead, studying individual 

differences in the brain and neural correlates of cognitive processes will likely provide more rapid progress 

toward a deeper understanding of evolution. 
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Article: 

1. Introduction 

The evolution of cognition over many generations can occur via environmentally transmitted changes as well as 

changes in frequencies of genes (Cavalli-Sforza and Feldman, 1978). Without in any way diminishing the 

importance of cultural factors, the present paper addresses mainly the question of genetic effects. Genes could 

conceivably influence the progress of long-term cognitive evolution by modifying the ability of the nervous 

system to sense stimuli, detect associations, store memories, and organize actions. This assertion does not imply 

that genetic change must therefore precede behavioural change. On the contrary, there are good reasons to 

believe that behavioural plasticity may give birth to new habits which in turn create conditions favourable for 

proliferation of particular alleles (e.g. Bateson, 1988; Johnston and Gottlieb, 1990; Plotkin, 1988). Neither is 

this assertion a claim that genes code for nervous system structure. Genes code for protein structure and act 

within cells, whereas brain structure emerges through interactions among cells and different kinds of tissues. 

Suitable genes may be essential for development, but they do not specify the end result of development. 

 

For human cognitive evolution there is not one documented example of a mental characteristic that has changed 

historically because of genetic changes, although environmentally based trends are well known (e.g. Flynn, 

1987). There is no convincing evidence that differences in culture and psychology among nations or tribes has a 

corresponding genetic cause (e.g. Roubertoux and Capron, 1990; Zuckerman, 1990), although environmental 

factors are clearly important (Scan and Weinberg, 1976). Faced with this impasse, investigators often adopt one 

of two approaches to studying genetic changes in evolution. 

 

Selective breeding of laboratory animals for high or low expression of specific behaviours has resulted in 

gradual but substantial changes in geotaxis in fruit flies (Ricker and Hirsch, 1988a), strength of paw preference 

(Collins, 1985) and agonistic behaviour (Cairns et al., 1990; van Oortmerssen and Bakker, 1981) in mice, and 

shock avoidance learning in rats (Brush, 1991), to name a few of the many experiments of this nature. Selection 

can lead to divergence of lines because of a difference at a single locus (e.g. Korpi et al., 1993) but it seems 
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likely that most studies involve the combined effects of several different genes. Hence, the kinds of genetic 

changes effected by these selection experiments remain obscure. These instances of behavioural evolution in 

microcosm provide glimpses of the kinds of change that could possibly result from extreme differential 

reproduction based on a single characteristic of an organism. All these selection studies are of the ' what if' 

variety. Lacking knowledge of the number and properties of relevant polymorphic genes or a thorough 

quantitative genetic assessment of several crosses, we have no way to predict how widely separated the high 

and low lines will become, what other characteristics will diverge because of a close relation with the selected 

behaviour, or whether the lines will converge after selection pressure ceases (see Ricker and Hirsch, 1988b). 

Because the progress of a selection experiment depends decisively on the nature of the foundation population 

and environmental conditions obtaining during the study, the results lack generality. Fascinating as the results 

of these studies of laboratory animals may be, they tell us nothing about the trajectory of human cognitive 

history. As recognized by Darwin, experiments with domestic animals help to convince us of the plausibility of 

cognitive evolution. Validating this kind of model is generally not an issue. 

 

The other approach is to devise a model of the genetic structure of a population, the nature of genetic influence 

on behaviour, and the consequences of the behaviour for reproductive fitness. This hypothesis then yields a 

prediction of the likely course of evolution by natural selection. Models that posit rigid control of complex 

behaviours such as altruism, homosexuality, and aggressiveness by one or two genetic loci abound in Wilsonian 

sociobiology in particular (see critique by Kitcher, 1985). Single locus genetic models of hand preference or 

cerebral lateralization are also current (McManus and Bryden, 1992). A two locus model of niche construction 

is presented in this volume (Odling-Smee, 1995). 

 

Experimental studies of evolution using artificial selection provide no comfort for models that posit only one or 

two relevant loci. Nevertheless, simpler genetic models have achieved some importance in recent theorizing 

about the evolution of behaviour, and therefore this paper primarily addresses questions about simple models. 

 

2. Two kinds of simple genetic models 

If a model begins with genetic variation at a specific locus in the population and predicts that one allele will 

gain ascendancy at the expense of another, there should no longer be any noteworthy polymorphism in the real 

world and all individuals should have the same genotype at the locus in question. A model of this kind is 

presently beyond empirical testing (unless targeted mutations can be used — see Capecchi, 1994; Monastersky, 

1993) and is no more persuasive than a ‘just so’ story about how the bobcat lost its tail. Two general challenges 

have been posed to this kind of theorizing. The `adaptationist program' has been criticized as a circular 

argument crafted to prove a preconceived conclusion and justify the status quo in human society as biologically 

inevitable or natural (Gould and Lewontin, 1979; Rose et al., 1984). Equally taxing of the imagination is the 

implication that evolution has ceased because the best gene won the contest and society is now in a final, stable 

genetic state, at least until the unpredictable appearance of a novel mutation which will allow another spurt of 

progress in the ability to think. Because most species still possess considerable genetic variation, there are 

abundant opportunities for contemporary changes in gene frequencies. Although human fertility has declined in 

many countries in the past few decades, there are still large differences between individuals in the number of 

viable offspring (e.g. Grindstaff, 1992), which allows for dynamic changes in gene frequencies in humans as 

well. Whether such change is indeed happening now is a question to be answered by data. In any event, 

explanation of how some crucial genetic loci became invariable in the population cannot be evaluated in the 

same way as those that address individual differences. 

 

If, on the other hand, the model expects genetic polymorphism at the present time, it can be readily evaluated. 

The best kind of evidence shows that a putative gene affecting behaviour is located close to a known 'marker' 

gene at a place on a specific chromosome. If the marker and the measured behaviour tend to be transmitted 

together from one generation to the next, the newly discovered gene is said to be linked to the established locus. 

The closer the two genetic loci are to each other on the chromosome, the more likely they are to remained 

joined. Only a decade ago the challenge of detecting genetic linkage was daunting indeed because the locations 



of so few marker genes were known and the alternative forms (alleles) of many of these were too rare to be 

useful in analysing human pedigrees. 

The advent of new molecular genetic techniques has made hundreds of new markers on all chromosomes 

available for research. 'The best of these for linkage analysis involve variations in portions of the DNA 

molecule (introns) that do not code for functional protein and instead are usually neutral with respect to 

reproductive fitness and viability of the organism. As of 1993, over 1500 such markers were known in mice 

(Copeland et al., 1993) and several thousand exist in humans (Cuticchia et al., 1993). Molecular genetic 

methods are now sufficiently powerful that hundreds of new markers can quickly be identified and used for 

linkage studies even in species that heretofore had not been studied extensively by geneticists (Andersson et al., 

1994). 

 

At last it has become feasible to settle some long-standing disputes about the number, location, and functions of 

genes that are alleged to influence a wide range of behaviours in human and nonhuman animals. I contend that 

the time has arrived for advocates of major gene effects on complex behaviours, provided they wish to be taken 

seriously any longer, to show us some convincing evidence. If people believe a major gene determines who is or 

is not an altruist, let them show us where it is on which chromosome. Otherwise, we are entitled to regard their 

writings as sophomoric mind games. The recent availability of thousands of markers for linkage analysis 

(CHLC, 1994) should herald a hiatus for unfettered speculation and a new period when real genetic knowledge 

becomes the firm foundation for future theories of cognitive evolution. 

 

3. Learning lessons from nature 

No doubt some scientists will be trepedatious about efforts to map genes affecting altruism, religious 

conservatism, or sexual preference. After all, this might lend dramatic confirmation to a noxious brand of 

sociobiology. This danger is real, but with the new technology the dagger could strike either side in the dispute, 

unlike the previous situation where major gene models were virtually impervious to refutation. With so many 

markers available in most regions of every chromosome, there is now a real possibility of proving that a 

behavioural or mental characteristic is not influenced by a major gene. Linkage analysis compares (a) the 

probability of observing the actual pattern of inheritance when a putative gene and a marker are a certain 

distance apart on the chromosome with (b) the probability that they are not linked at all. If the evidence strongly 

implies they are not linked, this establishes that for a segment of chromosome on either side of the marker, there 

is no major gene influencing the behaviour in question. For example, analysis of DNA markers in several 

Scottish families where there was a high frequency of schizophrenia (St. Clair et al., 1989) established that there 

was not a gene in a region of chromosome 5 that had earlier been identified as the site of a gene leading to 

schizophrenia; the probability that the marker was not linked to a gene related to schizophrenia was more than 

10
10

 times higher than the probability they were closely linked. If there are enough markers, it becomes possible 

to prove that schizophrenia, for example, is not a problem caused by one or two major genes located anywhere 

on the chromosomes. A few years ago a bold claim was made on the basis of linkage analysis that manic-

depressive psychosis among the Amish in Pennsylvania, USA, is caused by a gene on human chromosome 11 

(Egeland et al., 1987). One commentator remarked triumphantly that "for the first time psychiatry has entered 

the realm of molecular biology." (Kolata, 1987). However, further data on the same extended Amish family 

revised the linkage estimate and led to retraction of the claim (Kelsoe et al., 1989; see also Baron et al., 1993). 

The search for linkage in the same pedigree continued with a large array of 250 markers, and compelling 

evidence was found that no such gene for manic-depressive psychosis was located in vast regions of the human 

genome (Ginns et al., 1992). Whether further searching will be futile is difficult to surmise. There is far less to 

fear from genuine knowledge of biology than from unfalsifiable assertions of rigid genetic determinism made 

by famous personages. 

 

In many instances the discovery of a major gene effect and elucidation of the mechanisms by which the gene 

influences development have provided little comfort to deterministic ideology. Experience has shown 

repeatedly that the imagination of nature is far richer than our own. When a major gene has been identified that 

influences a behaviour, the pathway between the gene's primary action and an effect of interest to psychologists 

sometimes proves to be rather indirect. For instance, the 'brindled' mutation in mice (Mo
br

), which is located on 



the X chromosome, results in males which have unusually low motor activity, dilute pigmentation, and curly 

whiskers. Does this constellation of effects (pleiotropic gene action) signal some profound connection between 

brain mechanisms governing exploratory behaviour and growth on the face? Should we then expect men with 

kinky beards to be lethargic introverts? Biochemical studies of the brindled mice uncovered a 

surprising source for the correlated characteristics (Hunt, 1974). The primary defect occurs in the intestine, 

where there is inadequate transport of dietary copper into the bloodstream. Consequently, the activity of all 

copper-dependent enzymes in cells far from the gut is reduced (see Fig. 1). One of these is dopamine-β-

hydroxylase which converts the neurotransmitter dopamine to norepinephrine, a molecule associated with motor 

activity. Another is lysyl oxidase that aids the synthesis of long chains of molecules in body hairs. Thus, the 

source of both defects is in the gut, not the brain. Similarly, the primary enzymatic defect in human 

phenylketonuria (PKU), which when untreated results in severe mental deficiency, is in the liver, not the brain 

(Woo, 1991). Simply because a genetic mutation can alter behaviour or cognition does not tell us that the gene 

acts in the nervous system or that its effects are inevitable. For both the brindled mouse and the PKU child, 

symptoms can be ameliorated to a large extent by controlling the diet. Indeed, a genetic mutation often renders 

an individual more sensitive to variation in the environment, rather than confining ontogeny to a deep rut. 

 

Genetic defects often become known because of a dramatic alteration of a prominent brain structure or overt 

behaviour, yet further investigation reveals the alteration is a secondary consequence of a more subtle disorder 

of development. Consider hereditary absence of the corpus callosum (CC), a bundle of nerve fibres that 

normally connects the two cerebral hemispheres (Lassonde and Jeeves, 1994). When first reported (Keeler, 

1933), it was believed to be a single gene effect, but subsequent studies proved several genes were involved 

(Livy and Wahlsten, 1991; Wahlsten and Schalomon, 1994). Observations of the growth of axons in the embryo 

brain demonstrated that the CC axons are themselves quite normal but they cannot traverse the fissure between 

the hemispheres because a suitable bridge is missing (Ozaki and Wahlsten, 1993). That bridge is another 

commissure which connects the two halves of the hippocampus, and the hippocampal commissure usually 

forms well before the CC axons arrive at the bridgehead (Livy, 1994). Thus, although the defect is generally 

known as "callosal agenesis" (Lassonde and Jeeves, 1994), absent CC is secondary to an anatomical defect in 

formation of the hippocampal commissure. 

 
These examples point to the necessity of a thorough physiological and developmental study of any hereditary 

defect that may impact on cognition. Effects on cognition may be highly indirect and secondary to some other 

effect. Indeed, a novel feature of the brain or behaviour might itself emerge in evolution not because it 

conferred adaptive advantage on the individual organism but because it was a 'side effect' of some other 

adaptive change elsewhere in the body. The physiological integration of the organism means that a single gene 



can have many diverse consequences, some of which may be very useful while others are neutral or even 

disadvantageous for survival and reproduction. One of the clear lessons from selective breeding studies is that 

the experimenter can carefully choose which characteristic will be enhanced or attentuated in the population, yet 

many other characteristics will change according to their physiological connections with the criterion measure. 

So it happens that selecting hens to lay more eggs results in smaller eggs. This is one good reason why models 

of cognitive evolution that consider only one or two supposedly direct effects of changing gene frequencies are 

not to be taken very seriously. A better approach is to investigate the actual genetic variation in living 

organisms that is relevant to cognition and be guided in theorizing by nature itself. 

 

4. Simple versus complex genetic effects 

In searching for new genetic loci which influence cognition, there is always the gruesome possibility that there 

are no genes with major effects awaiting discovery and that instead there are dozens of genes with minuscule 

and obscure effects. Given the availability of thousands of new markers, perhaps the best way to evaluate these 

alternatives is to proceed with linkage analysis. If a major gene lurks in the labyrinth of DNA, linkage testing 

should be able to locate it. The quarry in this hunt is the quantitative trait locus (QTL) which presumably 

modifies the average measure of a behaviour but does not cause a qualitative shift in the distribution of 

measures (see Hill, 1975; Lander and Schork, 1994; Smith, 1975; Tanksley, 1993). 

 

As useful as this approach may seem in theory, it has profound limitations in practice. The smaller the effect of 

a QTL gene on a behaviour and the further it is from a marker gene, the more animals must be tested in order to 

yield a reasonably good chance of detecting its presence. The more QTL genes that are relevant for a behaviour, 

the smaller will be the average effect of each one and the more likely its effects will pass unseen amidst the 

welter of more numerous and noteworthy effects, including those of the environment. Especially when working 

with birds or mammals, the expense and logistics of conducting a large linkage study limit the number of QTL 

genes that can readily be detected to two or three loci. Statistical difficulties in addition to power and sample 

size also confront those hoping to document the roles of more than two or three genetic loci acting on the same 

characteristic (Neumann and Collins, 1991). 

 

Suppose we begin our search with two inbred strains of laboratory mice, each of which is genetically uniform, 

such that the variance within a strain (  
 ) is entirely nongenetic. Taking the midpoint between the strains as 0 

and assigning the deviation of each strain mean from 0 the values + g and — g, the genetic variance for the two 

strains (  
 ) is g

2
. The magnitude of the strain difference can also be expressed relative to within-strain variation 

as effect size δ0 = 2g/σN. 

 

Now suppose the strains are crossed to produce an F1 hybrid and then the F1 hybrids are crossed to yield F2 

hybrids with plenty of genetic variation. Each F2 mouse is given a test of behaviour and then its DNA is 

extracted for testing. For a marker locus (M), the F2 sample will include mice with genotypes MM, Mm, and 

mm. Comparing behavioural test scores for MM and mm mice, their means should be significantly different if 

the M locus is close to a QTL which affects the behaviour. The closer M and the QTL are on the chromosome, 

the smaller will be the value of Θ, the probability they will recombine during formation of egg or sperm, and the 

larger will be 1 — Θ, the probability they remain joined and are transmitted together to the F2 mouse. If there 

are in fact L loci and the locus in question has an effect that is approximately the average for these loci, then the 

difference between the two homozygotes for the QTL should be about g/L. 

 

This model leads to a derivation of the expected effect size for the difference between marker genotypes MM 

and mm in terms of δ0 (size of the original strain difference), Θ (recombination probability) and L (number of 

relevant QTLs). This value of effect size can then be inserted into a simple formula to determine the necessary 

sample size (n) per genotype when the probability of a Type I error of inference is a and the desired power of 

the test is 1 — β(see Wahlsten, 1991). This simplified approach to finding sample size to confer adequate power 

deliberately ignores results for the heterozygote Mm because no hypothesis is made a priori about the mode of 

inheritance and intermediate inheritance makes the same numerical prediction as the null hypothesis that the 

genes are not linked. The result derived from the simple model is a large equation given elsewhere (Wahlsten, 



1995). If the original strain difference is δ0 = 1.0 standard deviation and power is to be 90%, the necessary 

sample sizes when recombination probability is 0.1 are shown in Table 1 in relation to the number of relevant 

QTLs. The required n is approximately a function of L
2
, and the total number of animals required for the 

experiment is 4n. Because of continuing dispute about the acceptable level of Type I error (α) in a QTL linkage 

study, estimates of sample size for several choices of this parameter are given. Lander and Schork (1994) 

recommend α = 0.0001, two-tailed, for a study of mice. 

 
 

The expense of such a study is related to costs of breeding so many mice, doing all the behavioural testing, and 

screening over 100 genetic markers with biochemical methods. Few laboratories in the world would have 

adequate financial resources to assess over 500 mice in such a manner, which effectively limits the QTL method 

to finding only two or three major gene effects. For loci having smaller effects, chances of detecting and then 

replicating a significant association are not good. 

 

5. Comprehending combined effects of several genes 

Once a few QTL effects have been identified, it is then time to find out how the genes work. One approach 

would be to locate the relevant portion of the DNA molecule with greater precision and then clone and sequence 

the gene. For those interested mainly in the behavioural consequences, this biochemical enterprise is best left to 

other labs with the requisite expertise. Interesting experiments are nonetheless possible by combining the 

various QTL alleles in different ways to determine whether they act independently or instead interact. The 

question of interaction is of great importance for models of cognitive evolution. Models with independent and 

additive genetic effects are much simpler mathematically and yield interesting predictions with relatively little 

effort. On the other hand, when effects of a gene at one locus depend on the organism's genotype at another 

locus (epistatic interaction), there is no way to predict the outcome of future experiments because so many kinds 

of interaction are possible. Instead, the central task becomes the understanding of the mechanisms of the 

interaction itself. 

 

Many interactions among genetic loci have been documented in neurogenetics by creating 'double mutants,' 

animals which are afflicted by two different genetic disorders at the same time. If each gene modifies behaviour 

by a certain amount, independence of genetic effects requires that the double mutant behave according to the 

sum of the separate effects of the two loci. Interaction, on the other hand, might lead to synergistic 

multiplication of the effects or perhaps sparing. The latter results occurred for the mutations Lurcher (Lc) and 

staggerer (sg) which lead to malformations of the cerebellum of mice. 'The Lurcher mutation by itself causes 

the complete loss of all the large Purkinje neurons in the cerebellum, yet when Lurcher is combined with the 

staggerer defect, many of the Purkinje cells survive (Messer et al., 1991) for reasons that are not understood. 

Epistatic interaction reveals that the different genetic loci act jointly during development and that the 

consequences of a genetic abnormality at one locus depend strongly on what forms of genes are present at other 

loci. 

 

It seems that there are limitations on our abilities to detect epistatic interactions, just as there are for linkage. 

Suppose there are two loci ( A and B) where recessive mutations (aa and bb) exert similar effects on a measure 



of behaviour. Epistasis is evaluated by creating double mutant animals (aa bb) and analysing the data for four 

genotypes with a two-way analysis of variance to test for interaction. In Fig. 2, a model predicts that epistasis 

will result in a higher score (3g) for the double mutant than would be expected via independent effects (g + g = 

2g). The sample size per group that is needed to detect the interaction effect with a specified degree of 

sensitivity (power = 1 — β) can readily be determined (Wahlsten, 1991). Likewise, a model for three loci would 

require eight groups, one of which will be a 'triple mutant' (aa bb cc), and epistasis will be tested by both the 

two-way and three-way interaction effects. For a model where the group afflicted by all the recessive mutations 

is one unit of g higher than the respective mutants affected by one less recessive genotype, the requisite number 

of animals increases rapidly with the number of relevant loci (Wahlsten, unpublished manuscript), as shown in 

Table 2. It is evident that for genes with modest effects on behaviour, it will be feasible to study the combined 

effects of only two or three of them in any one experiment. 

 
 

If scientists can expect to investigate in depth the joint functioning of only two or three genetic loci, two 

conclusions are apparent. First, models of cognitive functioning which involve more than three loci probably 

cannot be evaluated for practical reasons, and classical genetic and biochemical pathway analyses are likely to 

remain intractable. Second, we will be able to achieve an adequate understanding of only a small portion of the 

total system of enzymatic, biochemical relations that form the substrate for cognition. It has been estimated that 

in humans there are more than 50000 distinct genetic loci, 30000 of which are expressed as unique proteins in 

the brain at some time during the life span (Sutcliffe, 1988). In other mammals these frequencies will be of the 

same order of magnitude. 

 

 



 

 

6. An alternative approach to complex genetic systems 

It follows that for the complex systems of gene products (hormones, enzymes, neurotransmitters, etc.) involving 

dozens, hundreds or even thousands of different genes combining in the process of brain development leading 

to cognition, analysis at the biochemical genetic level will probably not provide a very satisfactory 

understanding of cognitive evolution. In this event, cognitive evolution can better be explored by studying 

processes that occur at a level of reality much closer to the thinking of the whole individual existing in a 

society. This level involves the primary organ of thought, the brain. Brain-behaviour relationships can be 

fruitfully explored in the absence of a good understanding of the genetics of the brain (Raichle, 1994). For 

example, interesting behavioural consequences of an alteration in the anatomy of the mossy fibre projection in 

the mouse hippocampus have been documented (Crusio et al., 1993; Lipp et al., 1989; Roullet and Lassalle, 

1992), even though the genes responsible for the anatomy are not known. Likewise, the behavioural effects of 

hereditary absence of the corpus callosum can be explored without knowing precisely how many genes are 

involved (Bulman-Fleming et al., 1992). 

 

7. Conclusions 

Cognitive evolution can be studied at several different levels, ranging from complex societies of interdependent 

persons to the DNA molecules coding for enzymes that synthesize neurotransmitter molecules. Genetic models 

of cognitive evolution can be fairly evaluated only if they involve one or two genetic loci, maybe three loci if a 

massive investment of resources is made. If a simple genetic model is seriously proposed, it ought to be tested 

by genetic linkage analysis so that future theorizing can be guided and constrained by facts. For more complex 

behavioural characteristics based on large numbers of genes and intricate interrelations with the environment, 

genetic analysis and genetic theories are not likely to yield conclusive results. Instead, studying individual 

differences in the brain and neural correlates of cognitive processes will likely provide more rapid progress 

toward a deeper understanding of evolution. 

 

References 

Andersson, L., Haley, C.S., Ellegren, H., Knott, S.A., Johansson, M., Andersson, K., Andersson-Eklund, L., 

Edfors-Lilja, I., Fredholm, M., Hansson, I., Hakansson, J. and Lundstrom, K., 1994. Genetic mapping of 

quantitative trait loci for growth and fatness in pigs. Science, 263: 1771-1774. 

Baron, M., Freimer, N.F., Risch, N., Lerer, B., Alexander, J.R., Straub, R.E., Asokan, S., Das, K., Peterson, A., 

Amos, J., Endicott, J., Ott, J. and Gilliam, T.C., 1993. Diminished support for linkage between manic 

depressive illness and X-chromosome markers in three Israeli pedigrees. Nature Genetics, 3: 49-55. 

Bateson, P., 1988. The active role of behaviour in evolution. In: M.-W. Ho and S.W. Fox (Editors), 

Evolutionary Processes and Metaphors. Wiley, New York, pp. 191-207. 

Bulman-Fleming, B., Wainwright, P. and Collins, R.L., 1992. The effects of early experience on callosal 

development and functional lateralization in pigmented BALB/c mice. Behav. Brain Res., 50: 31-42. 

Brush, F.R., 1991. Genetic determinants of individual differences in avoidance learning: Behavioral and 

endocrine characteristics. Experientia, 47: 1039-1050. 

Cairns, R.B., Gariepy, J.-L. and Hood, K.E., 1990. Development, microevolution, and social behavior. Psychol. 

Rev., 97: 49-65. 

Capecchi, M.R., 1994. Targeted gene replacement. Sci. Amer., 270 (3): 52-59. 

Cavalli-Sforza, L.L. and Feldman, M.W., 1978. The evolution of continuous variation. III. Joint transmission of 

genotype, phenotype, and environment. Genetics, 90: 391-425. 

CHLC: Cooperative Human Linkage Center, 1994. A comprehensive human linkage map with centimorgan 

density. Science, 265: 2049-2054. 

Collins, R.L., 1985. On the inheritance of direction and degree of asymmetry. In: S.D. Glick (Editor), Cerebral 

Lateralization in Nonhuman Species. Academic, New York, pp. 41-71. 

Copeland, N.G., Jenkins, N,A., Gilbert, D.J., Eppig, J.T., Maltais, L.J., Miller, J.C., Dietrich, W.F., Weaver, A., 

Lincoln, S.E., Steen, R.G., Stein, L.D., Nadeau, J.H. and Lander, E.S., 1993. A genetic linkage map of the 

mouse: current applications and future prospects. Science, 262: 57-66. 



Crusio, W.E., Schwegler, H. and Brust, I., 1993. Covariations between hippocampal mossy fibres and workine 

and reference memory in spatial and non-spatial radial maze tasks in mice. Eur. J. Neurosci., 5: 1413-1420. 

Cuticchia. A.J., Chipperfield, M.A., Porter, C.J., Kearns, W. and Pearson, P.L., 1993. Managing all those bytes; 

the Human Genome Project. Science, 262: 47-48. 

Egeland, J.A., Gerhard, D.S., PauIs, D.L., Sussex, J.N., Kidd, K.K., Allen, C.R., Hostetter, A.M. and Housman, 

D.E., 1987. Bipolar affective disorders linked to DNA markers on chromosome 11. Nature, 325: 783-787. 

Flynn, J.R., 1987. Massive IQ gains in 14 nations: what IQ tests really measure. Psychol. Bull., 101: 171-191. 

Ginns, E.I., Egeland, J.A., Allen, C.R., PauIs, D.L., Falls, K., Keith, T.P. and Paul, S.M., 1992. Update on the 

search for 

DNA markers linked to manic-depressive illness in the Old Order Amish. J. Psychiat. Res., 4: 305-308. 

Gould, Si. and Lewontin, R.C., 1979. The spandrels of San Marco and the panglossian paradigm: a critique of 

the adaptationist programme. Proc. R. Soc. London, 205: 581-598. 

Grindstaff, C.F., 1992. A vanishing breed: women with large families: Canada in the 1980s. Canad. Studies 

Pop., 19: 145-162. 

Hill, A.P., 1975. Quantitative linkage: a statistical procedure for its detection and estimation. Ann. Hum. Genet. 

London, 38: 439-449. 

Hunt, D.M., 1974. Primary defect in copper transport underlies mottled mutants in the mouse. Nature, 249: 852-

854. Johnston, T.D. and Gottlieb, G., 1990. Neophenogenesis: a developmental theory of phenotypic evolution. 

J. Theor. Biol., 147: 471-495. 

Keeler, C.E., 1933. Absence of the corpus callosum as a Mendelizing character in the house mouse. Proc. Natl. 

Acad. Sci. U.S.A., 19: 609-611. 

Kelsoe, J.R., Ginns, E.I., Egeland, J.A., Gerhard, D.S., Goldstein, A.M., Bale, S.J., PauIs, D.L., Long, R.T., 

Kidd, K.K., Conte, G., Housman, D.E. and Paul, S.M., 1989. Re-evaluation of the linkage relationship between 

chromosome Ilp loci and the gene for bipolar affective disorder in the Old Order Amish. Nature, 342: 238-243. 

Kitcher, P., 1985. Vaulting Ambition. Sociobiology and the Quest for Human Nature. MIT Press, Cambridge, 

MA, 456 pp. Kolata, G., 1987. Manic-depression gene tied to chromosome 11. Science, 235: 1139-1140. 

Korpi, E.R., Kelingoor, C., Kettenmannn, H. and Seeburg, P.H., 1993. Benzodiazepine-induced motor 

impairment linked to point mutation in cerebellar GABA, receptor. Nature, 361: 356-359. 

Lander, E.S. and Schork, N.J., 1994. Genetic dissection of complex traits. Science, 265: 2037-2048. 

Lassonde, M. and Jeeves, M.A., 1994. Callosal Agenesis. A Natural Split Brain? Plenum, New York, 308 pp. 

Lipp, H.-P., Schwegler, H., Crusio, W.E., Wolfer, D.P., Leisinger-Trigona, M.-C., Heimrich, B. and Driscoll, 

P., 1989. 

Using genetically-defined rodent strains for the identification of hippocampal traits relevant for two-way 

avoidance behavior: a non-invasive approach. Experientia, 45: 845-859. 

Livy, D., 1994. Callosal agenesis is secondary to defects in hippocampal commissure formation in mouse 

embryos. Soc. Neurosci. Abstr., 20: 1683. 

Livy, D. and Wahlsten, D., 1991. Tests of genetic allelism between four inbred mouse strains with absent 

corpus callosum. J. Hered., 82: 459-464. 

McManus, I.C. and Bryden, M.P., 1992. The genetics of handedness, cerebral dominance and lateralization. In: 

I. Rapin and S.J. Segalowitz (Editors), Handbook of Neuropsychology, Vol. 6: Child Neuropsychology. 

Elsevier, Amsterdam, pp. 115-144. 

Messer, A., Eisenberg, B. and Plummer, J., 1991. The Lurcher cerebellar mutant phenotype is not expressed on 

a staggerer mutant background. J. Neurosci., 11: 2295-2302. 

Monastersky, G.M., 1993. Transgenic animals: from growth hormone to knockouts. Transgene, 1: 27-31. 

Neumann, P.E. and Collins, R.L., 1991. Genetic dissection of susceptibility to audiogenic seizures in inbred 

mice. Proc. Natl. Acad. Sci. USA, 88: 5408-5412. 

Odling-Smee, J., 1995. Some effects of niche construction ongenetic and cultural evolution. Behav. Process., 

195-205. Ozaki, H.S. and Wahlsten, D., 1993. Cortical axon trajectories and growth cone morphologies in 

fetuses of acallosal mouse strains. J. Comp. Neurol., 336: 595-604. 

Plotkin, H.C. (Editor), 1988. The Role of Behavior in Evolution. MIT Press, Cambridge MA, 198 pp. 

Raichle, M.E., 1994. Visualizing the mind. Sci. Amer., 270 (4): 58-64. 



Ricker, J.P. and Hirsch, J., 1988a. Genetic changes occurring over 500 generations in lines of Drosophila 

melanogaster selected divergently for geotaxis. Behav. Genet., 18: 13-25. 

Ricker, J.P. and Hirsch, J., 1988b. Reversal of genetic homeostasis in laboratory populations of Drosophila 

melanogaster under long-term selection for geotaxis and estimates of genetic correlates: evolution of behavior-

genetic systems. J. Comp. Psychol., 102: 203-214. 

Rose, S., Kamin, L.J. and Lewontin, R.C., 1984. Not in Our Genes. Biology, Ideology and Human Nature. 

Penguin, New York, 322 pp. 

Roubertoux, P.L. and Capron, C., 1990. Are intelligence differences hereditarily transmitted? Cahiers Psychol. 

Cogn., 10: 555-594. 

Roullet, P. and LassaIle, J.M., 1992. Behavioural strategies, sensorial processes and hippocampal mossy fibre 

distribution in radial maze performance in mice. Behav. Brain Res., 48: 77-85. 

Scarr, S. and Weinberg, R.A., 1976. IQ test performance of black children adopted by white families. Amer. 

Psychol., 31: 726-739. 

Smith, C.A.B., 1975. A non-parametric test for linkage with a quantitative character. Ann. Hum, Genet. 

London, 38: 451-460. 

St. Clair, D., Blackwood, D., Muir, W., Baillie, D., Hubbard, A., Wright, I. and Evans, H.J., 1989. No linkage 

of chromosome 5q11-q13 markers to schizophrenia in Scottish families. Nature, 339: 305-309. 

Sutcliffe, J.G., 1988. mRNA in the mammalian central nervous system. Ann. Rev. Neurosci., 11: 157-198. 

Tanksley, S.D., 1993. Mapping polygenes. Ann. Rev. Genet., 27: 205-233. 

van Oortmerssen, G.A. and Bakker, Th.C.M., 1981. Artificial selection for short and long attack latencies in 

wild Mus musculus domesticus. Behav. Genet., 11: 115-126. 

Wahlsten, D., 1991. Sample size to detect a planned contrast and a one degree-of-freedom interaction effect. 

Psychol. Bull., 110: 587-595. 

Wahlsten, D., 1995. Sample size for detecting linkage of a quantitative trait locus in an F2 hybrid cross. 

Unpublished manuscript. 

Wahlsten, D. and Schalomon, P.M., 1994. A new hybrid mouse model for agenesis of the corpus callosum. 

Behav. Brain Res., 64: 111-117. 

Woo, S.L.C., 1991. Molecular genetic analysis of phenylketonuria and mental retardation. In: P.R. McHugh and 

V.A. McKusick (Editors), Genes, Brain and Behavior. Raven Press, New York, pp. 193-203. 

Zuckerman, M., 1990. Some dubious premises in research and theory on racial differences. Amer. Psychol., 45: 

1297-1303. 


