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Abstract: 

Discovering the mechanisms by which genetic variation influences phenotypes is integral to 
understanding life-history evolution. Models describing causal relationships among traits in a 
developmental hierarchy provide a functional basis for understanding the correlations often 
observed among life-history traits. In this paper, we evaluate a developmental network model of 
life-history traits based on the perennial herb Arabidopsis lyrata, evaluate phenotypic, genetic, 
and environmental covariance matrices obtained under different scenarios of quantitative trait 
locus (QTL) effects in simulated crosses, test the efficacy of structural equation modeling to 
identify the correct basis for multiple-trait QTL effects, and compare model predictions with 
field data. We found that the trait network constrained the phenotypic covariance patterns to 
varying degrees, depending on which traits were directly affected by QTLs. Genetic and 
environmental covariance matrices were strongly correlated only when direct QTL effects were 
spread over many traits. Structural equation models that included all simulated traits correctly 
identified traits directly affected by QTLs, but heuristic search algorithms found several network 
structures other than the correct one that also fit the data closely. Estimated correlations among a 
subset of traits in F2 data from field studies corresponded closely to model predictions when 
simulated QTLs affected traits known to differ between the parental populations. Our results 
show that causal trait network models can unify several aspects of quantitative genetic theory 
with empirical observations on genetic and phenotypic covariance patterns, and that 
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incorporating trait networks into genetic analysis offers promise for elucidating mechanisms of 
life history evolution. 
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Article: 

1. Introduction 

Discovering the mechanisms by which genetic variation gives rise to variation in life-history 
traits is integral to understanding the nature and patterns of phenotypic evolution. Life-history 
traits (i.e. those related to survival and the timing and patterns of growth and reproduction) 
contribute directly or indirectly to fitness, and are often phenotypically and genetically correlated 
with each other due to processes such as resource allocation trade-offs (Stearns, 1992). 
Traditional quantitative genetic approaches in evolutionary biology have focused on the genetic 
variance–covariance matrix of a set of traits (or G-matrix) as a primary tool to predict the 
evolutionary potential of a population under selection (Arnold et al., 2008, Kelly, 2009, Lande, 
1979, Lande, 1980 and Lande and Arnold, 1983). Genetic covariances can either facilitate or 
interfere with natural selection on a set of traits, depending on the sign and strength of the 
covariances and the nature of the traits' relationship to fitness (see Arnold et al., 2008 for a recent 
discussion). For example, if two traits that are positively correlated with fitness (e.g. fecundity 
and lifespan, or number vs. size of offspring) have negative genetic covariances with each other, 
then it will be difficult to select simultaneously for increases in both. 

While quantitative genetic approaches can be highly useful for predicting evolutionary 
trajectories, genetic correlations alone tell us little about the functional mechanisms underlying 
multiple-trait variation and evolution. Different combinations of pleiotropic effects among genes 
can lead to similar trait correlations but produce drastically different degrees and patterns of 
correlated response to selection (Gromko, 1995). Developmental hierarchies and genetic 
variation in resource acquisition can result in positive genetic correlations even when functional 
trade-offs are present (Björklund, 2004, Houle, 1991, van Noordwijk and de Jong, 
1986 and Worley et al., 2003). A developmental perspective, taking into account the hierarchies 
in which multiple-trait variation is expressed and how it is shaped by environmental variation, 
has the potential to provide a better-resolved functional understanding of phenotypic evolution 
(Pigliucci, 2005, Pigliucci, 2007, Schlichting and Pigliucci, 1998, Stearns et al., 
1991 and Willmore et al., 2007). 

Developmental hierarchies introduce a complex set of inter-trait relationships into the 
multivariate partitioning between genetic and environmental sources of variance (Atchley and 
Hall, 1991). Developmental cascades lead to both genetic and environmental correlations even in 
the absence of direct pleiotropy (i.e. pleiotropic effects of allelic variants in genes that act 
independently in multiple tissues or developmental stages) and direct common-environment 
effects. Moreover, the genetic and environmental covariances will be correlated with each other 



because both include the partial regression coefficients of the causal relationships between the 
traits (see Appendix A). It has long been recognized that genetic and environmental variation can 
influence multiple traits through the same developmental pathways, leading to similar genetic 
and environmental covariance patterns (Cheverud, 1996, Hegmann and DeFries, 
1970 and Lande, 1979). Systematic genetic correlations induced by developmental processes 
(“structured” or “constrained” pleiotropy) thus represent functional constraints on patterns of 
trait variation that can limit the range of trait evolution (de Jong, 1990, Lande, 1979 and Wagner, 
1989) and possibly explain the high degree of similarity often found between genetic and 
phenotypic correlation matrices (Cheverud, 1996, Roff, 1997 and Steppan et al., 2002). 

Path models provide an intuitive tool for interpreting patterns of variation in life-history traits in 
the context of potentially causal developmental mechanisms and quantitative trait locus (QTL) 
effects on individual traits. Path analysis methods were initially developed by Wright, 
1918 and Wright, 1921 as a method to interpret correlations in biological data in terms of 
potential causal models. Path analysis is now typically carried out using structural equation 
modeling (SEM) methods, and provides a potentially more insightful alternative to the more 
traditional Fisherian approaches to variance partitioning for interpreting quantitative genetic data 
(Lynch and Walsh, 1998). Life-history traits are connected in a developmental network of causal 
relationships, with “upstream” traits expressed early in development (e.g. resource acquisition) 
affecting subsequent traits that are “downstream” in developmental hierarchies (e.g. reproductive 
output), and with trade-offs in the form of resource allocation to multiple tissues or functions 
(Björklund, 2004, van Noordwijk and de Jong, 1986 and Worley et al., 2003). Consequently, 
life-history hierarchies and their relationships to fitness lend themselves well to path analysis 
(Atchley and Hall, 1991, Crespi and Bookstein, 1989, Li et al., 2006, Mitchell-Olds and 
Bergelson, 1990, Mitteroecker and Bookstein, 2007 and Scheiner et al., 2000). Nevertheless, 
path models have seen limited use for interpreting patterns of quantitative genetic variation in a 
causal framework. The primary exception is the increasing use of SEM or Bayesian networks in 
systems biology to infer gene regulatory networks from QTL effects on transcript abundance in 
genetic crosses (recently reviewed by Mackay et al., 2009 and Rockman, 2008). Such “genetical 
genomics” or “systems genetics” experiments, however, typically capture global transcript 
abundance data at a single point in time and often from a single tissue, not morphological and 
life-history variation over a developmental hierarchy. 

In this paper, we first examine the properties of the family-level covariance structure of life-
history traits generated by a causal network, using a model based on resource allocation traits in 
the perennial and highly variable herbaceous rosette plant Arabidopsis lyrata. Based on the 
reasoning described above, we examined two related hypotheses: (a) the developmental 
constraints imposed by the causal network would lead to phenotypic buffering, in which the 
phenotypic covariance patterns would be similar regardless of which traits were being directly 
affected by genetic variation, and (b) genetic and environmental covariance matrices would be 
correlated with each other, especially when QTL effects were either distributed among many 



traits or when direct QTL effects were limited to “upstream” traits (i.e. those generally 
functioning relatively early in the causal network). To test these hypotheses, we constructed a 
developmental trait network model for life-history traits. This model was based on observations 
and field study data on seasonal developmental patterns in A. lyrata, combined with trade-off 
theory that took into account potential meristem- and physiologically-based mechanisms. We 
simulated F2 families with and without segregating QTLs directly affecting specified traits or 
trait combinations. We evaluated the extent and significance of differences between the 
phenotypic covariance matrices generated under a null scenario of no genetic variation vs. 
scenarios with genetic effects on different traits or trait combinations. We also partitioned the 
phenotypic matrix into genetic and environmental components and evaluated the degree of 
similarity between the genetic and environmental covariance matrices (G and E, respectively). 

Second, we examined the efficacy of structural equation models for inferring the causal basis for 
QTL effects in the underlying trait networks. We tested whether SEMs specifying the correct 
causal structure of QTL-trait effects fit the covariance structure of simulated datasets better than 
those in which the model was misspecified, including whether SEMs based on an incomplete set 
of the simulated traits produced results consistent with the correct causal structure. 

Finally, we evaluated the realism of the correlation patterns generated by the trait network 
model. This was tested by comparing correlation matrices generated from simulated data with 
those estimated from field study data for progeny of a cross between A. lyrata parents with 
divergent resource allocation patterns. 

2. Methods 

2.1. Model organism 

We developed a trait network model based on developmental and life history patterns 
in Arabidopsis lyrata(L.) O'Kane and Al-Shehbaz (Brassicaceae), a useful model plant for 
studying the genetic and developmental basis for life history variation. A. lyrata is a perennial 
rosette plant with a patchy distribution across northern Eurasia (ssp. petraea) and North America 
(ssp. lyrata) ( Clauss and Koch, 2006, Leinonen et al., 2009 and Riihimäki et al., 2005). In 
eastern North America, populations of ssp. lyrata extend south along the Appalachian Mountains 
into the southern states, and occasionally into the adjacent foothill regions. A. lyrataoccurs 
generally on rocky or sandy sites with low levels of vegetative competition, such as rock 
outcrops, river banks, and sand dunes ( Clauss and Koch, 2006). Seeds typically germinate in 
late summer or fall and the plant develops a primary vegetative rosette of leaves on an 
unelongated main shoot. The reproductive phase begins the following spring or summer with 
elongation (bolting) of the main shoot to produce an indeterminate flowering shoot, which may 
become branched. Axillary meristems from the primary rosette may develop as sessile lateral 
vegetative shoots, resulting in a branched rosette, or as additional flowering shoots ( Fig. 1a and 
b). Flowers are insect pollinated and develop into capsule-like fruits called siliques, each of 



which may produce 5–40 seeds. Lateral vegetative rosettes persist overwinter and repeat the 
cycle described above for the primary rosette in subsequent years ( Clauss and Koch, 
2006 and Leinonen et al., 2009). Many aspects of the A. lyrata life history are likely to be shared 
among a wide variety of herbaceous perennial plants, making it a useful model for understanding 
perennial plant life history evolution. 

 

Fig. 1. Developmental trait network model for Arabidopsis lyrata life-history traits. (a) 
Flowering A. lyrata, Mayodan, NC, USA. (b) Schematic of flowering A. lyrata showing plant 
structure and illustrating the traits included in the trait network model. (c) Trait network model 
diagram. Traits corresponding to the symbols in boxes are shown in Table 1. Meristem traits are 
shown in green boxes, non-meristem traits in blue boxes, and fitness measures in orange boxes. 



Arrows represent cause–effect mechanisms (for interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article). 

We have observed that A. lyrata populations from different regions growing in common garden 
sites show substantial differences in resource allocation patterns, primarily manifested as trade-
offs between the amount of flowering (numbers of flowering shoots and numbers of siliques per 
shoot) and net vegetative growth during the flowering period (Leinonen et al., 2009; P.H. 
Leinonen, D.L. Remington, and O. Savolainen, unpublished data). These patterns may represent 
adaptation to the wide range of environments experienced by different A. lyrata populations, 
which occur in climates that range from alpine subarctic to warm, humid temperate. 

2.2. Trait network development and assumptions 

To construct a developmental trait network model for A. lyrata life history, we identified ten 
potentially measurable traits that represent developmental features expressed over a single 
season and that could presumably be directly affected by genetic variation ( Table 1). Next, we 
developed predictions for direct positive or negative cause–effect relationships between traits 
( Fig. 1c). Mechanisms included (a) allocation of axillary meristems to alternate fates 
(vegetative, reproductive, or remaining latent); (b) acquisition of resources, primarily represented 
by pre-flowering rosette diameter as a surrogate for vegetative biomass and by vegetative 
meristem allocation; (c) allocation of physiological resources to alternate uses, which result in 
limitations on the availability of resources for contemporaneous or subsequent uses; (d) resource 
storage, primarily in roots (represented by root collar diameter, which can be measured non-
destructively); and (e) recycling of resources from root storage or through sacrifice of leaves. 
Reproductive output and survival probability to the next season were included as functions of the 
reproductive allocation and vegetative allocation traits, respectively, to describe how the trait 
network is expected to affect fitness, but we do not explore these relationships in the current 
study. The rationale for each predicted cause–effect relationship is explained in Appendix B. 

Table 1. Traits included in the developmental trait network model. 

Symbol Trait description Distribution 
M Total number of meristems (primary+axillary) Poisson 
VS Number of axillary vegetative shoots Poisson 
RS a Number of flowering (reproductive) shoots Poisson 
D1 a Pre-flowering rosette diameter Normal 
TD1 Pre-flowering taproot diameter Normal 
SilS a Number of siliques per flowering shoot Normal 
Sen Rate of leaf senescence Normal 
dD a Net rosette diameter change during flowering Normal 
TD2 Post-flowering taproot diameter Normal 
a Basic resource allocation traits used in model comparisons. 



While most of the predicted relationships are logically derived from general resource allocation 
theory (de Jong and van Noordwijk, 1992, Koelewijn, 2004, Stearns, 1992 and van Noordwijk 
and de Jong, 1986), some are based on specific observations of A. lyrata development from field 
and growth chamber studies of different populations. First, the directional hierarchical 
relationship between axillary vegetative and reproductive shoots was based on the observation 
that axillary vegetative shoots begin development prior to flowering. For simplicity, our model 
assumed that axillary vegetative shoots do not generally switch to become reproductive during 
the current season and that the switch to reproduction on any shoot is irreversible, both of which 
may not be true in all cases. Similar but not identical patterns of development have been 
described in another perennial Brassicaceae species, Arabis alpina ( Wang et al., 2009). Second, 
our observations suggested that axillary vegetative shoots have much smaller leaves than those 
growing from the primary shoot. Thus, as older large primary leaves die, plants with extensive 
axillary vegetative development tend to have more compact crowns with smaller rosette 
diameters than those that continue to produce leaves exclusively on the primary shoot. For this 
reason, we modeled a negative effect of axillary vegetative shoot number on pre-flowering 
diameter. The path model includes one reciprocal relationship, with bidirectional paths 
connecting siliques per shoot and leaf senescence, as we predicted that either trait could affect 
the other. 

F2 data for segregating progeny (n=500 or n=5000 in the analyses reported here) were simulated 
using a program written in MatLab version 7.4 ( MathWorks Inc., 2007). Values of all six non-
meristem traits were simulated in accordance with a linear model: 

equation(1) 

Yij=μj+ajbij+∑k≠jYikpkj+eij 

where Yij is the phenotypic value of individual i for trait j; μj is the mean trait value, bij=1, 0, or 
−1 for the genotypes Q1Q1, Q1Q2, and Q2Q2 in individual i at a quantitative trait locus (QTL) 
affecting trait jsimulated in accordance with F2 probabilities; aj is the additive genetic effect of 
the Q1 allele; Yik is the phenotypic value of individual i for each trait k≠j; pkj is the non-
standardized path coefficient for the direct effect of trait k on trait j; and eij is a normally-
distributed random residual environmental effect on trait j in individual i. The values 
of aj and bij were set to zero if there were no direct QTL effect on trait j. For simplicity, all non-
meristem trait values were simulated with a mean of zero and a residual environmental variance 
of one; i.e. uj=0 and eij∼N(0,1). It is also possible to simulate genetic effects on the path 
coefficients (pkj in Eq. (1)), which would result in genetic variation in downstream trait 
variances but not means. We did not explore the consequences of these kinds of effects in the 
present study. 



The allocation of axillary meristems to alternate fates as vegetative shoots (VS), reproductive 
shoots (RS), or remaining latent is not well-described by the linear model in Eq. (1), so alternate 
meristem fates were simulated as Poisson-distributed random variables as follows: 

equation(2a) 

 

equation(2b) 

 

equation(2c) 

 

where μM is the mean number of total meristems on the primary shoot, v is the mean proportion 
of total meristems that develop as vegetative shoots, and r is the proportion of non-vegetative 
meristems that develop as reproductive shoots; biM, biv, and bir are the indicators for simulated 
genotypes at QTLs directly affecting M, v, and r, respectively; and aM, av, and ar are the QTL 
allelic effects on M, v, and r, respectively. The algorithm first solved for the meristem allocation 
trait values, which were strictly upstream of all non-meristem traits. The meristem trait values 
were then standardized by subtracting the expected overall trait mean (μM for M, vμM for VS, 
and r(1−v)μM for RS) and dividing by the Poisson residual standard deviation (the square root 
of the expected mean). The values for non-meristem traits were then obtained by solving a 
system of linear equations corresponding to Eq. (1), using the linsolvecommand in MatLab, 
which is able to accommodate reciprocal and cyclical relationships among variables. Solution of 
these equations was simplified by the structure of the model, in which all meristem traits were 
strictly upstream of non-meristem traits. 

The values of μM, v, and r were set at 64, 0.25, and 0.5 for all simulations, which are reasonable 
average values for A. lyrata based on our field and growth chamber data and observations. 
Simulated genetic effects on an individual trait were limited to a single QTL with additive 
effects. QTL effects on multiple traits could be simulated either as a single pleiotropic QTL or 
independent QTLs affecting each trait. All path coefficients (pkj in Eq. (1)) for effects on non-
meristem allocation traits were set at 0.5 for positive effects of trait k on traitj, −0.5 for negative 
effects, and zero if there was no predicted direct path from trait k to trait j. The actual 
standardized effects deviated somewhat from these values because trait values were scaled by 
their environmental variances, which represented different proportions of the total variances in 
different traits depending on the path model and the particular genetic effects that were 
simulated. Standardized path coefficients with absolute values in the vicinity of 0.5 were within 
the range observed in empirical studies with life-history traits ( Lacey and Herr, 
2005 and Scheiner et al., 2000), and were also close to the midrange of estimated values we have 



obtained from simplified path models constructed from observed traits in A. lyrata(D.L. 
Remington, unpublished data). All path coefficients for effects of meristem allocation traits on 
each other were set at zero because these effects were simulated in the meristem model prior to 
solving the linear model. 

One hundred F2 data sets of 5000 progeny each were simulated using the parameters described 
above for each of the following models (Supplementary data, Table S1): (a) a null model with no 
genetic variation; (b) nine models, each with a single QTL affecting one of the traits listed 
in Table 1 except NS, with a=2 residual standard deviation units for each trait except VS (a=3.2); 
(c) a model with positively-correlated pleiotropic effects of a single QTL on M and SilS (a=2 for 
each trait; the M+SilS Model); (d) a model with negatively-correlated pleiotropic effects of a 
single QTL on VS and SilS (a=3.2 and −2, respectively; the VS+SilSModel); (e) a model similar 
to (d) in which a was reduced to −0.75 for SilS (VS+SilS2 Model); and (f) a model with separate 
QTLs affecting each trait in the network, with the value of a for each trait randomly sampled 
from a normal distribution with mean zero and standard deviation of 0.5 (All Model). The larger 
QTL effects onVS were chosen based on our observations that A. lyrata populations are highly 
variable in this trait. Additional data sets with 500 F2 progeny were simulated under the null 
and All models. 

2.3. Covariance matrix comparisons 

Phenotypic variance–covariance matrices (P matrices) for each simulated dataset were estimated 
in the MatLab simulation program for four traits: pre-flowering rosette diameter (D1), number of 
reproductive shoots (RS), number of siliques per shoot (SilS), and rosette diameter change during 
the flowering season (dD). These traits represent the basic measures of resource acquisition (D1) 
and reproductive (RS and SilS) and vegetative (dD) resource allocation that have been scored 
in A. lyrata field studies, and are subsequently referred to as the basic resource allocation traits. 

To test whether P matrices of the resource allocation traits differed significantly between 
datasets simulated under models with QTL effects vs. the null model, we tested for common 
principal components among pairs of variance–covariance matrices as implemented in the 
program CPC (Phillips, 1997). CPC implements likelihood ratio tests of hierarchically nested 
models that share different numbers of principal-component parameters, so the null hypothesis 
for each test is that the two models are identical in the tested component(s). The tested models, in 
order of increasing numbers of shared parameters, were unrelated (the full model in which all 
four principal components were estimated separately for each matrix): the first principal 
component (PC1) in common; PC1 and PC2 in common; all principal components in common; 
proportionality (all principal components in common with proportional eigenvalues); and 
equality (all principal components in common with equal eigenvalues). 

To test whether pairs of P-matrices shared significant similarity, we used the random skewers 
method (Cheverud, 1996, Cheverud and Marroig, 2007 and Cheverud et al., 1983), as 



implemented in the program Skewers (available from the website http://anolis.oeb.harvard.edu/∼
liam/programs/). In contrast with the CPC analyses, the null model in the random skewers test is 
that the tested models are uncorrelated. For each tested pair of matrices, 10,000 random selection 
vectors (skewers) were applied to both matrices, and the phenotypic response vectors to each 
skewer and their correlations between the two matrices were calculated. Each skewer was also 
applied to a pair of random response vectors, and an empirical p-value for matrix similarity was 
calculated as the frequency with which the random response vectors were more highly correlated 
than the actual response vectors from the two matrices. In addition to providing a test of matrix 
similarity, the mean correlation of response vectors for each pair of matrices provided a relative 
measure of similarity in predicted evolutionary response by which different pairs of variance–
covariance matrices could be compared ( Cheverud and Marroig, 2007). 

We also used the random skewers' method to test whether the genetic and environmental 
variance–covariance matrices (G and E matrices, respectively) from individual simulated 
datasets were significantly correlated with each other. The G and E matrices were partitioned 
from the P matrix for all 100 of the 5000-progeny simulations from the All model and one 
simulation under each of the other models, using the manova function in a script written in R 
version 2.11.1 ( R Development Core Team, 2008). Genetic effects were estimated from a 
regression of the multivariate phenotypic matrix on the simulated genotypes for each simulated 
QTL. The G matrix was calculated from the mean squares and cross-products for the summed 
QTL effects in the model, and the E matrix from the residual sum of squares and cross products 
(see Supplementary file 1 for the R script). By definition, there is no response to selection on E, 
which has no genetic variation. However the response vector on the E matrix in the random 
skewers analysis can be interpreted as the mean deviation in the residual multivariate phenotype, 
after adjustment for all genetic effects, in a set of individuals selected on the basis of an index of 
phenotypic values. This is completely analogous to the response vector to selection on 
the G matrix, which represents the deviation in genotypic values in a set of individuals selected 
on an index of phenotypic values ( Cheverud, 1996 and Cheverud and Marroig, 2007). 

2.4. Structural equation modeling 

Structural equation models (SEM) were constructed and tested using the SEM package 
in R version 2.11.1 (Fox, 2006 and R Development Core Team, 2008). SEMs were represented 
by a series of reticular action model (RAM) equations: one equation describing each path in the 
model and one describing the residual variance of each variable with the exception of the QTL 
genotype(s). RAM equations were of the form A->B for model paths (where A and B are the 
causal and the responsive traits, respectively) or A〈-〉A for the residual variance of trait A. A 
variable name was also specified for each path coefficient or residual variance. RAM statements 
can also be included for covariances between variables not connected by causal paths to account 
for unexplained correlations, but covariances were not estimated in any of our models. The SEM 
is described by the matrix of path coefficients (A matrix) and the residual variance–covariance 



matrix (SEM Pmatrix) that maximize the likelihood of the observed variance–covariance matrix. 
(The SEM P matrix should not be confused with the overall P matrix of phenotypic variances 
and covariances among traits, denoted asS in an SEM context.) SEMs were tested on one 
simulated data set from the VS+SilS2 Model (with a pleiotropic QTL directly 
affecting VS and SilS). SEMs were developed sequentially from a starting model that included 
paths from the simulated QTL to all traits but no causal paths between traits. At each step, paths 
with insignificant z values (α=0.05) were first removed and the model was refitted. If there were 
no insignificant paths, the trait-to-trait path from the model with the largest modification index 
for the A matrix was added and the model was refitted. If none of the five largest modification 
indices represented a path in the overall trait network model, the trait network path 
corresponding to the largest modification index for the SEM P matrix was added instead. The 
modification indices represented the approximate improvement to the likelihood ratio chi-square 
value for model fit if a given path (A matrix) or covariance (SEM P matrix) not included in the 
model was to be added. Thus, only trait-to-trait paths represented in the actual model were tested, 
but all potential combinations of QTL effects on traits were tested. This process was repeated 
until no trait-to-trait paths remained to be added or until adding or deleting paths failed to 
improve the fit of the model significantly as determined by a likelihood ratio test. For each SEM, 
the set of path coefficients and residual variances that maximized the likelihood of the observed 
variance–covariance matrix was obtained. A likelihood-ratio χ2 statistic comparing the fit of the 
model to that of a “saturated” model with no degrees of freedom that fully explains the observed 
variance–covariance matrix was calculated, and the likelihood-ratiop-value was estimated. 
Models were also compared using Akaike's Information Criterion (AIC; Akaike, 
1974 and Akaike, 1987), and using unadjusted and adjusted goodness-of-fit indices (GFI and 
AGFI). 

We also used the software package Tetrad 4.0 (Spirtes et al., 2000) to test whether the correct 
paths in the trait network, or other network structures with equivalent statistical support, could be 
found using the QTL genotype and phenotypic data alone, using the same simulation as above 
under the VS+SilS2 Model. In all searches, a knowledge constraint was used to prevent the QTL 
genotype from being downstream of any other trait in the path. Pattern searches were conducted 
using beam and GES algorithms, either using the knowledge-constrained simulated data alone as 
input or using the data in conjunction with directed acyclic graphs generated from the LiNGAM 
algorithm or directed graphs generated from LiNG. With the beam algorithm, we used a beam 
width of 5 (where higher beam widths leading to less pruning of search states at each search 
step), and α-values of 0.05 and 0.005. A limitation of the LiNGAM and GES algorithms is that 
they are based on the assumption that the true causal structure is acyclic, unlike the actual trait 
network model, which contains a reciprocal relationship. 

To evaluate the predictive value of SEMs when only a subset of traits was measured, abbreviated 
SEMs including only the basic resource allocation traits (RS, SilS, D1, and dD) were also 
estimated for the same simulated dataset. SEMs were fit sequentially as described above, except 



that the path to be added at each step was determined by testing all remaining appropriate trait-
to-trait paths among the basic resource allocation traits and adding the path that contributed the 
largest reduction in the χ2 statistic for fit. Paths between the basic resource allocation traits were 
considered appropriate if they were present in the overall model as a single step or as multiple 
steps passing through unmeasured traits. In addition, D1 was tested upstream of RS and dD, 
as D1 is downstream of the unmeasured VS and might therefore function as a partial surrogate 
for the effects of VS on D1 and dD. This stepwise addition process was repeated with the unused 
paths until any additional unused path did not significantly improve the model fit. In addition, 
abbreviated models that included a latent (unmeasured) variable were tested to evaluate whether 
the simulated QTL effects on VS and the effects of VS on downstream traits could be correctly 
inferred if VS was not measured directly. Model paths involving the latent variable and its 
residual variance were specified using RAM statements as described above. We evaluated the 
abbreviated path models, both with and without the latent variable, for how the missing variables 
affected the overall fit of the model and the causal relationships detected among the remaining 
traits. 

2.5. Field study data 

The covariance structures of the basic resource allocation traits in the simulated models were 
compared with those from two A. lyrata field studies in which these traits were measured. The 
design, establishment, and data collection for the field studies is described in detail elsewhere 
( Leinonen et al., 2011). Briefly, common-garden field plantings of A. lyrata were established in 
the summer and fall of 2005 at Spiterstulen, Norway (61°38′ N, 8°24′ E, altitude 1106 m), 
and Greensboro, NC, USA (36°04′ N, 79°44′ W, altitude 235 m), as part of an 
evolutionary genetic study of local adaptation. These plantings included outcross F2 populations 
from a cross between phenotypically divergent parents from Spiterstulen, Norway (collected 
adjacent to the Spiterstulen study site), and Mayodan, NC, USA (36°25′ N, 79°58′ W, 
altitude 225 m). Measurements of vegetative traits, reproductive traits, and survival were 
collected for the 2006 growing season at Greensboro and for the 2006–2008 growing seasons in 
Norway. Measurements at both field sites included the four basic resource allocation traits 
(D1; RS; siliques per shoot, SilS; and dD). For the Spiterstulen site, only the 2006 data was used 
in the analyses reported here. Phenotypic variance–covariance matrices were estimated from 419 
F2 plants at Spiterstulen and 357 F2 plants at Greensboro for which complete data were available. 

The phenotypic correlations from the two field studies were compared with one simulated data 
set from each of the models described above, using CPC to test for significant differences in the 
correlation matrices and random skewers to test for significant similarities. We used correlation 
matrices rather than variance–covariance matrices for the random skewers analyses comparing 
simulated and field data, because the units of measurement for the simulated vs. measured traits 
were heterogeneous between traits. Thus, identical selection vectors applied to field and 
simulated data sets would not be equivalent if applied to non-standardized data. 



3. Results 

3.1. Trait variation under the null model 

Simulations under the null model with no genetic variation resulted in strong correlations 
between the four basic resource allocation traits representing resource acquisition (pre-flowering 
rosette diameter, D1), reproductive allocation (reproductive shoots; RS; and siliques per 
shoot, SilS), and vegetative allocation (net rosette diameter change during flowering, dD; Table 
2). Specifically, the null model produced trade-offs between reproductive and vegetative 
allocation, and also trade-offs between the two reproductive allocation traits, with more 
flowering shoots associated with fewer siliques per shoot. In addition, the null model produced a 
positive correlation between pre-flowering diameter and siliques per shoot and a negative 
correlation between pre-flowering diameter and vegetative allocation. The only traits that were 
essentially uncorrelated were pre-flowering diameter and the number of reproductive shoots. 
Replicate simulations under the null model showed only minor run-to-run variation, especially 
when the larger progeny sample size (n=5000) was used ( Table 2). 

Table 2. Summary of phenotypic correlations from F2 progeny sets of n=500 (top) and n=5000 
(bottom) simulated under the null model (no genetic variation). Data are the mean phenotypic 
correlations (above diagonals) and standard deviations (below diagonals) from 100 simulations 
for each sample size. Standard deviations for other models were similar in magnitude. Trait 
abbreviations are given in Table 1. 

Trait Trait 
RS SilS D1 dD 

n=500 
RS 1 −0.185 0.030 −0.483 
SilS 0.0413 1 0.410 −0.205 
D1 0.045 0.035 1 −0.294 
dD 0.032 0.040 0.041 1 
 n=5000 
RS 1 −0.183 0.034 −0.487 
SilS 0.012 1 0.407 −0.205 
D1 0.014 0.011 1 −0.293 
dD 0.010 0.012 0.013 1 
 

A substantial proportion of the simulated phenotypic variation in all traits except for M was 
generated by the cause–effect relationships between traits ( Supplementary data, Table S2). The 
proportion of phenotypic variance that was developmentally-induced ranged from 0.20 for VS to 
0.68 for SilS. The traits with the highest R2net values (SilS, dD, and Sen) were all directly 
downstream of three or more of the other traits in the model. 

3.2. Effects of genetic variation 



When single large-effect QTLs affecting individual traits were included in the simulations, the 
covariance patterns were altered to varying degrees from the null model. From a qualitative 
standpoint, only the models with direct QTL effects on vegetative shoots (VS Model), 
reproductive shoots (RS Model), or pre-flowering rosette diameter (D1 Model) produced 
substantial changes in the covariances among the basic resource allocation traits ( Fig. 2a). 
The VS Model introduced strong positive covariances between D1 and RS, which had little 
correlation in the other models, and the negative covariances of D1 and RS with dD became 
much stronger. The trade-offs of RS with SilS and dD became stronger in the RS Model, and 
the D1 Model led to a much stronger positive covariance between D1 and SilS. The SilS Model 
and the Sen Model caused modest increases in the trade-off between SilS and dD. Pleiotropic 
models with QTLs affecting either M or VS plusSilS induced positive covariances 
of RS with SilS and/or D1, depending on the specific model, and theVS+SilS Models increased 
the negative covariances of SilS and D1 with dD. The mean correlations from 100 simulations 
under the All model were very similar to the null model. 

 



Fig. 2.  (a) Comparison of trait covariances obtained with trait network simulations (mean of 100 
simulations, n=5000) under the null model and under models in which different traits were 
subject to direct segregating QTL effects. (b) Comparison of trait correlations (mean of 100 
simulations, n=5000) obtained under selected network simulations with field data from North 
Carolina (NC) and Norway study sites. QTL additive effects in environmental standard deviation 
units (a) are 2.0 environmental standard deviation units for all traits except VS (a=3.2) 
and SilS under the VS+SilS (0.75) model (a=0.75). Trait abbreviations are as shown in Table 1. 

The first principal component (PC1) in the simulated models was generally interpretable as a 
trade-off between resource acquisition (D1) and reproductive allocation (RS and SilS) vs. 
vegetative (dD) allocation (Table 3). However, the relative PC1 loadings on the two reproductive 
allocation traits varied substantially between models. The D1 Model and SilS Model had PC1 
coefficients of nearly zero for RS, and the RS Model changed the sign of the SilS coefficient. PC2 
generally represented a trade-off between the two reproductive allocation traits, with coefficients 
for the other two traits generally but not always having the same sign as that of RS. The PC1 and 
PC2 coefficients and their eigenvalues were highly stable for replicate simulations from the same 
model. The first principal component was significantly different from that of the null model (α
<0.05) for all models except the M, TD1, and TD2 Models in the common principal components 
analysis (CPC; Table 4). The TD2 Model lacked significant differences from the null model at all 
hierarchical levels in the CPC analysis, which was expected because the TD2 trait is strictly 
downstream from all four basic resource allocation traits in the trait network model. Results were 
similar when the number of simulated F2progeny was reduced from 5000 to 500 (data not 
shown). 

Table 3. Eigenvalues and eigenvector coefficients for the first two principal components from 
model simulations and field data, using the four basic resource allocation traits. Simulated data 
are for one representative simulation with 5000 progeny under each model scenario. 

Model or 
data a 

PC1 PC2 
 

Eigen-
value 

D1 Rs SilS dD Eigen-
value 

D1 Rs SilS dD 

Null 4.216 −0.31
1 

−0.20
8 

−0.60
4 

0.70
3 

3.115 −0.12
2 

0.502 −0.69
4 

−0.50
1 

D1 6.698 −0.59
5 

−0.01
7 

−0.74
6 

0.30
0 

3.476 −0.09
2 

0.515 −0.26
4 

−0.81
0 

VS 11.112 −0.38
9 

−0.36
9 

−0.04
7 

0.84
3 

3.484 −0.23
8 

0.297 −0.92
4 

−0.03
1 

VS+SilS 16.483 −0.32
0 

−0.25
3 

−0.50
9 

0.75
8 

3.193 −0.15
7 

0.487 −0.75
5 

−0.41
0 

VS+SilS2 11.996 −0.37
2 

−0.32
7 

−0.26
2 

0.82
9 

3.413 −0.21
5 

0.403 −0.86
4 

−0.21
1 

M+SilS 7.271 −0.04 −0.31 −0.85 0.40 3.122 0.007 0.512 −0.51 −0.69



0 2 9 4 1 0 
M 4.293 −0.35

5 
−0.10
9 

−0.68
4 

0.62
8 

3.332 −0.16
1 

0.686 −0.49
3 

−0.51
0 

RS 5.981 −0.05
5 

−0.68
4 

0.173 0.70
6 

3.989 −0.34
2 

0.159 −0.86
2 

0.338 

Sen 5.925 −0.20
9 

−0.11
2 

−0.66
5 

0.70
9 

3.132 −0.10
4 

0.541 −0.63
6 

−0.54
1 

SilS 7.441 −0.16
6 

0.013 −0.93
0 

0.32
9 

3.248 0.103 0.531 −0.29
0 

−0.79
0 

dD 5.444 −0.18
1 

−0.21
5 

−0.29
6 

0.91
3 

3.371 −0.26
0 

0.328 −0.87
1 

−0.25
7 

TD1 4.066 −0.32
5 

−0.17
9 

−0.65
0 

0.66
3 

3.310 −0.08
5 

0.483 −0.66
5 

−0.56
4 

TD2 4.252 −0.33
1 

−0.14
3 

−0.67
2 

0.64
6 

3.162 −0.09
4 

0.526 −0.61
9 

−0.57
5 

 Field data 
Greensbo
ro 

1681.30
0 

−0.56
0 

−0.26
8 

−0.08
7 

0.77
9 

505.13
0 

−0.40
3 

−0.73
3 

−0.03
7 

−0.54
7 

Norway 2.349 −0.61
3 

−0.52
7 

−0.19
4 

0.55
5 

1.013 −0.05
2 

0.349 −0.93
4 

−0.05
2 

a Trait(s) with direct QTL effects in model simulations. a=2 in residual standard deviation units 
for all traits except for VS (a=3.2). 

Table 4. Summary of response correlations and common principal components comparisons to 
null model. 

Simulated model (vs. 
null) a 

Response 
correlation b 

P-value of CPC model comparison c 
 
E vs. 
P 

P vs. 
C 

C vs. 
C2 

C2 vs. 
C1 

C1 vs. 
U 

D1 0.9477 0 0 0.2770 0 0 
VS 0.9079 0 0 0.1960 0.9068 0 
VS+SilS 0.9021 0 0 0.9668 0.5399 0.0008 
VS+SilS2 0.9202 0 0 0.1765 0.4944 0 
M+SilS 0.9145 0 0 0.0002 0.0114 0 
M 0.9869 0 0 0.0003 0 0.0545 
RS 0.9635 0 0 0.1681 0.3405 0 
Sen 0.9845 0 0 0.1931 0.0902 0 
SilS 0.9534 0 0 0.0442 0.1205 0 
dD 0.9789 0 0 0.0014 0.0000 0 
TD1 0.9989 0.8436 0.0184 0.2484 0.0145 0.7410 
TD2 0.9996 0.7783 0.9454 0.5067 0.8141 0.2703 
a Trait(s) with direct QTL effects. a=2 in residual standard deviation units for all traits except 
for VS (a=3.2). 



b Mean of 10,000 random skewers. All reported correlations are significant (α=0.05). 

c CPC Model abbreviations: E=equality; P=proportionality; C=all principal components in 
common; C2=first two principal components in common; C1=first principal component in 
common; U=unrelated (full model). Boldface P-values represent models that are not rejected (α
=0.05) using hierarchical (“step up”) criteria. 

In the random skewers' comparisons, all of the single-QTL models had response vector 
correlations of 0.90 or greater with the null model (Table 4). All of these correlations were 
individually significant (α<0.05) when compared empirically to the correlations of random 
response vectors. The highest response correlations were for models with QTL effects on traits in 
relatively downstream positions in the model, except that the MModel, in which the trait with 
direct QTL effects is strictly upstream of all other traits, had one of the highest correlations with 
the null model. 

3.3. Comparisons of G and E matrices 

None of the single-QTL models showed a significant correlation between the G and E matrices 
in random skewers' analysis (Table 5). Contrary to our predictions, the M Model, in which the 
QTL effects are strictly upstream of all other traits, did not result in a significant correlation 
between the G and E matrices ( Table 5;r=0.28, p=0.322). Inspection of the estimated G matrix 
from the M Model revealed that the genetic variances for SilS and dD were both close to zero, 
leading to very small genetic covariances with other traits. QTL effects on M generated positive 
genetic covariances between VS and RS in the trait network model, which in turn had opposite 
effects on both SilS and dD that largely canceled each other. By contrast, 81 out of 100 
simulations under the All Model, with separate QTLs of random effect sizes affecting each trait, 
showed significant correlations (α=0.05) between the G and E matrices. The lowest correlation 
value out of the 100All Model simulations was 0.656, higher than the correlations for any of the 
single-QTL models. 

Table 5. Skewers' comparison of correlations between G and E matrices in simulated datasets. 

Simulated model Correlation between G and E † 
 
Correlation P-value 

M 0.279242 0.322 
RS 0.48699 0.1955 
VS 0.565908 0.1699 
SilS 0.540611 0.1723 
Sen 0.574336 0.1598 
D1 0.453174 0.2239 
dD 0.456191 0.2138 
TD1 0.428803 0.242 



M+SilS 0.399973 0.2464 
VS+SilS 0.652123 0.1161 
VS+SilS2 0.595286 0.1466 
All (mean of 100 simulations) 0.858158 0.0341‡ 
†Analyses done with 10,000 skewers. Significant values are in boldface (p≤0.05). 

‡Correlations were significant at the α=0.05 level in 81 of 100 simulations. 

3.4. Structural equation modeling 

We used structural equation modeling (SEM) to evaluate the degree to which the QTL-trait 
covariance structure was informative about the underlying causal network. We fit SEMs to a 
complete set of genotype and trait data from a model with pleiotropic QTL effects 
on VS and SilS (VS+SilS2 model). An SEM exactly matching the simulated effects, containing all 
trait-to-trait paths in the simulated trait network ( Fig. 1) with additional paths from the QTL 
genotype to VS and SilS, was the only tested SEM with a strong fit to the simulated data (χ
2=26.99, df=23, p=0.256, AIC=−19.01, GFI=0.999, AGFI=0.997). All path coefficients in this 
model were significant (α=0.05), and coefficients of all paths leading to non-meristem traits 
were close to the simulated values of 0.5 or −0.5 ( Supplementary data, Table S3). Removal of 
any path from the SEM, including either one of the reciprocal paths connecting SilS and Sen, 
resulted in an SEM with a significant lack of fit. Reversing the direction of the path 
from VS to RS, which had the smallest estimated coefficient of any path in the model, also 
significantly reduced the model fit ( Supplementary data, Table S4). 

When we treated the trait network as unknown, with the QTL genotype constrained to be strictly 
causal in the network, predictions from several algorithms produced well-supported networks 
(Appendix C). None of the predicted networks identified the reciprocal relationship 
between SilS and Sen, due at least in part to the limitations of some of the algorithms used. 
Otherwise, each of the predicted networks contained all the paths in the actual simulated 
network, although the directions of some paths were sometimes reversed, and each predicted 
network included paths not present in the actual network. A beam search with α=0.005 (with or 
without using LiNG or LiNGAM-generated trees as search input) produced a model that differed 
from the true network only in missing one of the reciprocal paths between SilS and Sen, and 
including additional direct paths from the QTL and D1 to Sen ( Supplementary data; Fig. S2b). 

When only the basic resource allocation traits and QTL genotypes were included in the SEM 
(abbreviated SEM), the best-fitting model found with a stepwise-addition approach included 
pleiotropic QTL effects on all four basic resource allocation traits (Fig. 3a). The signs of the 
estimated QTL effects on D1, RS, and dD were consistent with the positive coefficient of the 
simulated QTL effect on VS, which is directly upstream of each of the basic resource allocation 
traits. A path from D1 to dD, not present in the simulated model, had a strongly negative path 
coefficient in the abbreviated SEM. This path was expected to occur because D1functions in the 



abbreviated SEM as a partial surrogate for the unmeasured VS. D1 is directly downstream 
ofVS in the simulated model, with a negative path coefficient, and the simulated path 
from VS to dD is positive. This model deviated significantly but not strongly from a complete fit 
to the simulated covariance matrix (p=0.016; AIC=3.794; AGFI=0.993). 

 

Fig. 3. Best-fitting abbreviated structural equation models (basic resource allocation traits only) 
including (a) QTL effects and basic resource allocation traits only, and (b) QTL effects, basic 
resource allocation traits, and a latent variable (LVS). Standardized path coefficients for each 
path are shown. For both models, χ2=5.79 (1 df), p=0.016, AIC=3.79, GFI=0.999, AGFI=0.993. 

We added a latent variable (LVS) downstream of the QTL genotypes but upstream of other traits 
in the abbreviated SEM to represent VS, which was directly affected by the QTL in the 
simulation used for this analysis. The best-fitting SEM we found under this scenario was 
statistically equivalent to the abbreviated SEM lacking the latent variable ( Fig. 3b), 
with LVS replacing the effects of D1 on dD and the effects of the QTL on D1 and dD. This SEM 
included direct QTL effects on RS in addition to SilS and LVS. The value of RSis dependent on 
total meristems (M), both directly and indirectly through the effects 
of M on VS (Eqs. (2b) and(c)). Thus, the detected QTL effect on RS may be due to the joint 
dependency of VS and RS on M, which was not represented in the abbreviated model. Removing 
the QTL effect on RS and adding a path from the latent variable to RS, which would be 
structurally more consistent with the simulated model, resulted in an SEM with a substantially 
poorer fit (AIC=58.37; AGFI=0.928). The predicted effects of the QTL on the latent variable 
were almost identical to those on VS in the SEM on the full network (standardized coefficient of 
0.89 vs. 0.90), but the predicted QTL effects on SilS were greatly reduced (standardized 
coefficients of −0.06 vs. −0.29). 



3.5. Comparisons of simulated vs. field data 

If the trait network model were to describe realistic aspects of causal relationships among traits 
in A. lyrata, we predicted that the correlation matrices between simulated and field data would 
show significant similarities. Secondly, since population data from the field sites show that the 
Spiterstulen and Mayodan populations are strongly differentiated genetically for the basic 
resource allocation traits ( Leinonen et al., 2011), we predicted that at least some simulations 
incorporating QTL effects would provide a better fit to the field data than the null model does. 

The basic resource allocation traits in the two field datasets showed similar correlation patterns 
to the simulated data under the null model and most of the models with single-trait direct QTL 
effects. However, the correlation between reproductive shoots and pre-flowering rosette diameter 
was strongly positive in both field datasets, and the correlation between the two reproductive 
allocation traits (reproductive shoots and siliques per shoot) was positive rather than negative in 
the Greensboro data (Fig. 2b). PC1 showed similar trade-off patterns in the field data to those in 
the simulations, though the PC1 eigenvectors for both sets of field data were significantly 
different from those of all simulations except for the Norway-VS model comparison (Table 6). 
The two sets of field data were highly similar to each other in random skewers' response vectors 
(response correlation=0.96). Both sets of field data showed significant response-vector 
similarities to all simulated datasets. Both sets of field data showed somewhat higher response 
similarities to the VS andVS+SilS2 Models than to the null model, and the Greensboro data also 
showed higher response similarities to the VS+SilS and TD1 Models than to the null model. The 
models that included QTL effects on VS were unique in replicating the moderately strong 
positive correlation observed between RS and D1 found in both sets of field data, and 
the VS+SilS Model (which was developed with prior knowledge of the correlation structure of 
the Greensboro but not the Norway field data) showed the positive correlation 
between RS andSilS found in the Greensboro data. 

Table 6. Summary of matrix correlations and common principal components comparisons to 
Greensboro field data. 

Model a Response correlation ‡ P-value of model comparison b 
 

 P vs. C C vs. C2 C2 vs. C1 C1 vs. U 
Greensboro vs. 
 Null 0.9057 <0.0001 <0.0001 <0.0001 <0.0001 
 D1 0.9000 <0.0001 0.6849 <0.0001 <0.0001 
 VS 0.9204 <0.0001 <0.0001 0.0321 <0.0001 
 VS+SilS 0.9224 <0.0001 <0.0001 <0.0001 0.0061 
 VS+SilS2 0.9352 <0.0001 <0.0001 0.0002 0.0185 
 M+SilS 0.8880 <0.0001 0.0054 <0.0001 <0.0001 
 M 0.8689 <0.0001 0.0011 <0.0001 <0.0001 
 RS 0.8558 <0.0001 0.0015 <0.0001 0.0001 



 Sen 0.9120 <0.0001 0.0013 <0.0001 0.0004 
 SilS 0.9065 <0.0001 <0.0001 <0.0001 <0.0001 
 dD 0.9063 <0.0001 0.7998 <0.0001 0.0011 
 TD1 0.9232 <0.0001 0.0662 <0.0001 <0.0001 
 TD2 0.8895 <0.0001 <0.0001 <0.0001 <0.0001 
 Norway vs. 
 Null 0.8924 <0.0001 0.1262 <0.0001 <0.0001 
 Greensboro 0.9592 <0.0001 0.0283 0.6370 0.0013 
 D1 0.8773 <0.0001 <0.0001 <0.0001 <0.0001 
 VS 0.9769 <0.0001 0.0016 0.0369 0.0726 
 VS+SilS 0.8925 <0.0001 <0.0019 <0.0001 <0.0001 
 VS+SilS2 0.9549 <0.0001 0.0025 <0.0001 0.0001 
 M+SilS 0.8173 <0.0001 <0.0001 0.3180 <0.0001 
 M 0.8316 <0.0001 0.0352 <0.0001 <0.0001 
 RS 0.8736 <0.0001 0.4117 <0.0001 <0.0001 
 Sen 0.8820 <0.0001 0.1177 <0.0001 <0.0001 
 SilS 0.8888 <0.0001 0.5327 <0.0001 <0.0001 
 dD 0.8807 <0.0001 0.0688 <0.0001 0.0003 
 TD1 0.8963 <0.0001 0.1970 <0.0001 <0.0001 
 TD2 0.8702 <0.0001 0.2472 <0.0001 <0.0001 
a Trait(s) with direct QTL effects. a=2 in residual standard deviation units for all traits except 
for VS (a=3.2). 

b Model abbreviations: P=proportionality; C=all principal components in common; C2=first two 
principal components in common; C1=first principal component in common; U=unrelated (full 
model). 

‡Mean of 10,000 random skewers. All response correlations are significant (p≤0.05). 

4. Discussion 

4.1. Effects of developmental networks on stability of trait correlations 

We hypothesized that developmental networks with cause–effect relationships among traits 
would have a stabilizing effect on trait covariances. The stabilizing effect is predicted to occur 
because the effect of variation in a developmentally upstream trait on a downstream trait 
(reflected in the Yikpkj terms in our model; Eq. (1)) is the same whether the source of variation in 
the upstream trait is genetic or environmental. In accordance with this hypothesis, our simulation 
results showed strong and somewhat stable patterns of multiple-trait phenotypic correlations, 
including trade-offs in vegetative vs. reproductive resource allocation. Even large segregating 
single-gene direct effects on some individual traits resulted in relatively minor changes in the 
phenotypic covariance matrix relative to that of a null model with no genetic variation, as 
reflected by stability in trade-off patterns and predicted selection responses. Nevertheless, the 
strengths and in some cases signs of the pairwise trait correlations differed substantially among 



models, as shown by the common principal component analyses. These results suggest that 
phenotypic buffering imposed by developmental networks is far from absolute. 

The hypothesized strong correlations between G and E matrices were not found for most models. 
Notably, the weakest correlation was found with the M Model, in which the QTL effects were on 
the trait farthest upstream in the network. Our conceptual hypothesis was that the common 
transmission of genetic and environmental variation from M to the rest of the network would 
lead to relatively strong correlations betweenG and E in the M Model. Instead, we found that 
effects transmitted through multiple paths largely canceled each other out, leading to a near-
absence of genetic variance on some downstream traits. Our results show that the effects of 
causal networks on the G-matrix may be difficult to generalize due to the complexity induced by 
a large number of paths. 

Nevertheless, for biologically realistic situations in which genetic variation is likely to be due to 
the effects of many loci distributed among many traits, developmental networks may result 
in G and E matrices that are highly similar (Cheverud, 1996, Hegmann and DeFries, 
1970 and Lande, 1979). Evidence for this is provided by the significant correlations 
between G and E in most of the All Model simulations, in which QTL effects were distributed 
among many traits. However, segregation at large-effect QTLs could result in large changes 
in G, depending on which traits are directly affected by the QTLs, the size and distribution 
pattern of QTL effects, and the detailed structure of the causal model. Moreover, relatively stable 
phenotypic covariance patterns can occur due to the large influence of developmentally-induced 
covariance patterns in the E-matrix even if the G-matrix is highly variable. For example, the 
phenotypic covariance structures of the M Model simulations (G+E) were highly similar to those 
of the null model (E only) even though G and E were poorly correlated under the M Model. 

Our results also suggest that a developmental trait network concept can serve to unify several 
aspects of theory and empirical data on multivariate quantitative trait variation. In empirical 
studies, the genetic, environmental, and phenotypic variance–covariance matrices are often 
found to be highly correlated (Cheverud, 1996). It has long been speculated that these 
correlations occur because traits are related through physiological or developmental mechanisms 
(Cheverud, 1996, Hegmann and DeFries, 1970 and Lande, 1979). Transmission of both genetic 
and environmental sources of variation to downstream traits through the same paths in a causal 
trait network provides such a mechanism. The transmission of genetic effects through the trait 
network also represents a mechanism to generate stable pleiotropic effects both in new 
mutational variation and standing genetic variation. Stable pleiotropic patterns of mutational 
variation are a factor that can favor G-matrix stability (Cheverud, 1996), and genetic variation 
acting through an organism's developmental framework can generate “structured” or 
“constrained” pleiotropy (de Jong, 1990 and Wagner, 1989). At the same time, genes with 
different combinations of pleiotropic effects offer opportunities for genetic correlations, and thus 
the trajectory of adaptive evolution, to change over time (Lande, 1980 and Wagner, 1989). A 



causal trait network provides a mechanistic set of constraints on pleiotropic effects but, as our 
simulations show, the resulting genetic correlation patterns can be strongly influenced by the 
particular network nodes that are the direct targets of large-effect QTLs. Trait network 
simulations in which genetic variation directly affecting individual traits is modeled as random 
effects, rather than fixed effects as we have done, may be useful for testing network effects 
on G-matrix stability in a population context. 

4.2. Utility of life-history trait networks 

The availability of analytical tools to test trait network models that include QTLs provides 
opportunities both to test the validity of such models as explanations for life-history trait 
correlations and to predict which traits are the direct targets of QTL effects. Identifying where 
and when effects of genetic variation occur in development will be a critical step in developing a 
unified understanding of the evolution of form and life histories (Pigliucci, 2007 and Schlichting 
and Pigliucci, 1998). SEM analysis results provided highly specific support for the correct 
model, and the best-fitting model presented a reasonable approximation of the correct causal 
relationships between QTL and traits even when only four of the simulated traits were included 
as measured variables. The abbreviated model, however, was incorrect in some details, due both 
to the incomplete measurement data and degrees-of-freedom limitations. Correctly distinguishing 
direct vs. indirect QTL effects on traits, and thus obtaining useful insights on the functional basis 
for developmental variation, is likely to depend on relatively detailed data on traits representing 
nodes in the causal structure. 

Realistically, most empirical studies will not measure all traits in a hypothesized developmental 
network. Moreover, some measured traits are likely to be only indirect measures of the “true” 
nodes in a causal QTL-trait network. For these reasons, our abbreviated SEM structure is 
probably a more realistic example of both the capabilities and limitations of SEM or other 
empirical approaches to trait network analysis. 

Exploratory algorithms that made no a priori assumptions about the network structure (other 
than constraining QTLs to be strictly causal) identified several networks with strong statistical 
support, with varying degrees of similarity to the actual network. Exploratory network 
algorithms that incorporate QTLs have been proposed as tools for inferring causal trait networks 
(e.g. Chaibub Neto et al., 2008 and Liu et al., 2008). Our results suggest that exploratory 
methods may provide evidence for the overall structure of the true QTL-trait network but are 
likely to be incorrect in many details. Factors such as heterogeneous measurement errors, 
environmental or developmental heterogeneity in sample populations, and some patterns of 
pleiotropy in QTL effects may also favor models that are incorrect and even ones that are clearly 
implausible from a biological standpoint ( Remington, 2009 and Rockman, 2008). Exploratory 
path analysis approaches may be highly useful when there is uncertainty over causal structures, 
but some attempt at a priori identification of biologically reasonable paths is warranted when 



such methods are used ( Shipley, 1997). Further experimental verification of model predictions 
from empirical studies is also clearly warranted. 

A number of recent studies have used quantitative approaches to investigate the mechanistic 
basis for developmental variation (Jamniczky and Hallgrímsson, 2009, Márquez, 2008, Salazar-
Ciudad and Jernvall, 2002, Tonsor and Scheiner, 2007 and Willmore et al., 2007). From a 
quantitative genetics perspective, several proposed models to explain correlated traits and 
resource allocation trade-offs have used bifurcating networks to represent developmental 
hierarchies (Björklund, 2004, de Jong, 1993, Slatkin, 1987 and Worley et al., 2003). The use of 
path models instead of simple bifurcating models offers the additional flexibility of 
accommodating more complex reticulating relationships between traits, which is often predicted 
in theoretical models of life-history evolution (Byers, 2005, Johnson et al., 2008, Kingsolver and 
Schemske, 1991, Mitchell-Olds and Bergelson, 1990, Scheiner et al., 2000, Shipley, 
1997, Tonsor and Scheiner, 2007 and Weis and Kapelinski, 1994). In adding QTL effects to a 
path model framework, the modeling approach we have used is similar to those being used in 
“systems genetics” studies to model the integration of QTL effects with gene regulatory 
networks (Liu et al., 2008, Mackay et al., 2009, Rockman, 2008, Schadt et al., 2005 and Zhu et 
al., 2004), which can be extended to other traits that form interacting networks (Chaibub Neto et 
al., 2008, Li et al., 2006 and Remington, 2009). 

The utility of trait networks also depends on the degree to which the hypothesized networks 
actually shape patterns of multiple-trait variation. Trait correlations in data simulated under the 
trait network models showed a significant degree of similarity with those from field data despite 
the fact that the simulated path coefficients were arbitrary except for their sign. This indicates 
that a causal network with the overall structure used for our simulations is a plausible 
explanation for observed trait variation patterns in A. lyrata. Furthermore, models that 
incorporated QTL effects on traits known to differ between the two parental populations of the 
F2 family (VS and VS+SilS models) generated the strongest correlations with data from both the 
Greensboro and Norway field sites. The Greensboro data by themselves do not provide a 
rigorous test of the trait network, as some aspects of the model were based in part on 
observations from the Greensboro study site, and the model scenarios were developed with prior 
knowledge of the Greensboro correlation structure. Data from the Norway site, however, provide 
stronger support for the model because data from the Norway study site were not available to us 
when the model scenarios were developed. In addition, the consistency between the Norway and 
Greensboro phenotypic correlations in these widely different environments suggests that the 
correlation patterns have a common developmental basis. This supports the hypothesis that these 
patterns are indeed shaped by cause–effect relationships between developmental traits. 
Nevertheless, it must be borne in mind that many different causal mechanisms could possibly 
result in very similar patterns of genetic and phenotypic trait correlations, but with distinctly 
different implications in terms of selective response ( Gromko, 1995 and Houle, 1991). This may 
be of special concern when the set of measured traits is incomplete, as in our case. 



Genetic marker data have been assayed for the F2 populations from the Norway and Greensboro 
study sites in our example, so QTL analyses can be used for further tests of model predictions. In 
particular, the close fit of models with QTL effects on vegetative meristem allocation, including 
pleiotropic effects on siliques per shoot in the Greensboro environment, provides hypotheses that 
can be tested in QTL analyses. Further studies in which data from segregating crosses are 
collected on all traits used in the model would provide more definitive tests. Finally, the model 
could be extended to predict effects of resource allocation traits and the underlying QTLs on 
survival over multiple years in different environments, and tested in multiple environments to 
evaluate how variation in life history traits contributes to local adaptation. 

In summary, trait network models such as the one we have developed show promise for 
integrating theoretical aspects of life history variation and evolution with empirical data. They 
provide a causal framework for understanding the functional basis of phenotypic and genetic trait 
correlations and their consequent effects on evolutionary trajectories, and can be tested using 
QTL studies. This modeling approach is not limited to any particular organism, but can be 
flexibly adapted to a variety of plant and animal developmental processes and life histories. 
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Appendix A. Genetic and environmental correlations under a two-trait developmental hierarchy 

As described in the text of the paper, developmental hierarchies or networks introduce trait 
correlations that are not readily explained by the multivariate partitioning between genetic and 
non-genetic (or environmental) sources of variance (Atchley and Hall, 1991). Developmental 
networks will lead to both genetic and environmental correlations even when both direct 
pleiotropy (as defined in the text) and direct common-environment effects are absent. Moreover, 
the trait network will induce correlations between genetic and environmental correlation (or 
covariance) matrices themselves because the two matrices are influenced by the same causal 
factors. 

As a simple example, consider a situation in which variation in a trait (T  1) expressed early in 
development affects the value of a second trait (T  2) expressed later in development, with 
means μ  1 and μ  2. Assume that variation in each trait is directly affected by independent sets 
of genes, with effects g  1 and g  2, and independent environmental effects e  1 and e  2; i.e. 
functional pleiotropy and correlation of the environmental effects are both absent. Let b  12 be the 
partial regression coefficient of the effect of T  1 on T  2. Thus, linear models for T  1 and T  2 in 
individual i   can be expressed as follows: 



equation(A1a) 

T1i=μ1+g1i+e1i 

and 

equation(A1b) 

T2i=μ2+g2i+b12(T1i−μ1)+e2i 

with variances: 

equation(A2a) 

 

and 

equation(A2b) 

 

and the covariance between T  1 and T  2 is 

equation(A2c) 

 

where  and  are the “direct” genetic and environmental variances associated with gi and ei, 
respectively. 

The total genetic variance for T  2 (which we designate ) includes not only the direct genetic 
variance  but also the indirect effect of the genetic variance in T1 on T2. Thus 

equation(A3a) 

 

and similarly 

equation(A3b) 

 

The effects of T1 on T2 result in a phenotypic correlation between the two traits, in spite of the 
independence of both the direct genetic and environmental effects on the traits, as follows: 

equation(A4) 



 

The genetic and environmental correlations (r12G and r12E, respectively) are obtained by 
including only the variances associated with the direct genetic and environmental components of 
the respective traits from Eq.(A4). Specifically: 

equation(A5a) 

 

and 

equation(A5b) 

 

Note that the signs of r  12P, r  12G, and r  12E are all the same as that of b  12, which will result in 
a degree of concordance between the genetic and environmental correlations. The strength of this 
relationship will depend on the magnitude of the path coefficient and the ratios of  to  for the 
two traits. In the extreme case where the ratios of  to  are the same for both traits, the 
phenotypic, genetic, and environmental correlations will all be identical. 

None of the above should be taken to suggest that genetic and environmental variances and 
covariances cannot be partitioned under a causal network model. Genetic and environmental 
components remain separable based on the origin of the variation, whether in upstream or 
downstream traits, as the above equations make clear. However, the genetic and environmental 
covariances (or covariance matrices in the extension to more than two traits) will be correlated 
because they share b12 terms in the equations above. If the direct environmental effects on the 
two traits (e1 and e2) were correlated (i.e. common environmental effects in the usual sense), or if 
the direct genetic effects were correlated (i.e. “direct” pleiotropy), the path-induced correlations 
could be reinforced, weakened, or counteracted depending on the signs and the magnitudes of the 
direct-effects' correlations. Furthermore, in more complex models including more traits, 
covariances between traits could be either reinforced or weakened by the coefficients of multiple 
paths connecting pairs of traits, as discussed elsewhere in the paper. 

Appendix B. Reasoning for Trait Network Paths 

Here we describe in detail the rationale for each predicted causal relationship among the 
developmental and life history traits in A. lyrata that are depicted in the trait network model. 



Allocation of meristems, which was simulated using Eqs. (2a), (2b) and (2c), is described first, 
followed by the remaining allocation pathways depicted by linear equations (Eq. (1)). 

B.1. Meristem allocation paths 

Axillary meristems develop on the upper side of each node where the base of a leaf intersects 
with the vegetative shoot (i.e. the leaf axil). We are here concerned specifically with the number 
and alternate fates of axillary meristems in the unelongated vegetative (pre-flowering) portion of 
the primary shoot. It is assumed that lateral vegetative shoots do not generally switch to become 
reproductive during the same growing season, but it seems likely that this would occasionally 
happen in reality. Thus, a Poisson rather than binomial model was used to simulate numbers of 
vegetative and reproductive shoots, which allows for a non-zero probability that the number of 
lateral vegetative plus reproductive shoots could exceed the total number of axillary meristems. 

M→VS 

Increasing the total number of axillary meristems proportionately increases the number of 
meristems available to become lateral vegetative shoots. 

M→RS 

Increasing the total number of axillary meristems proportionately increases the number of 
meristems available to become reproductive shoots. 

VS→RS 

An increase in the proportion of axillary meristems that develop as lateral vegetative shoots 
results in a proportionate reduction in the number of remaining axillary meristems potentially 
available to develop as reproductive shoots. 

B.2. Paths in linear equations 

VS→D1 

The plant has a limited amount of resources for lateral vegetative development. There is a 
tradeoff between number of lateral vegetative shoots and the diameter of leaves growing from 
vegetative shoots, thus leading to reduced rosette diameter on plants with more lateral vegetative 
shoots. 

VS→dD 

Loss of rosette diameter from the death of older leaves is counteracted by the growth of new 
leaves from vegetative shoots. Moreover, vegetative shoots increase the rate of resource 
acquisition during the reproductive period through photosynthesis. The resources gained from 
photosynthesis can be used to increase the plant's rosette diameter. 



M→TD1 

Total number of meristems is a component of the plant's pre-reproductive resource acquisition, 
and allows for an increased amount of resources produced through photosynthesis. This 
increases the amount of photosynthate stored in roots, resulting in a larger taproot. 

VS→Sen 

More vegetative shoots increase the amount of resource acquisition through photosynthesis. This 
lessens the need to recycle photosynthate in leaves through senescence as an alternate source of 
resources to produce other tissues. 

VS→SilS 

More vegetative shoots increase the net amount of available resources through photosynthesis. 
These resources can be used to increase the number of siliques per reproductive shoot. 

RS→dD 

The more resources allocated to making reproductive shoots, the fewer resources there are for 
increasing rosette diameter. Thus, increasing the number of reproductive shoots leads to a greater 
decrease or a lesser increase in rosette diameter during the reproductive season. 

RS→SilS 

The more resources allocated to making reproductive shoots, the fewer resources there are for 
producing flowers and ripening siliques on these shoots, thus reducing the number of siliques per 
shoot. 

RS→Sen 

Allocating more resources to producing reproductive shoots leads to a decrease in resources 
available for producing other tissues. To replace these used resources, increased senescence of 
leaves will occur in order to recycle the photosynthate they contain for other uses. Thus, an 
increase in reproductive shoots leads to an increased rate of senescence. 

Sen→SilS 

Senescence of leaves recycles resources that can be used for producing other tissues. These 
resources can be used to develop more siliques per shoot. 

Sen→dD 

Senescence results in loss of leaves from the plant's rosette. This leads to a net decrease in rosette 
growth during the reproductive season. 



SilS→Sen 

Allocating more resources to flowering and silique ripening leads to a decrease in resources 
available for producing other tissues. To replace these used resources, increased senescence of 
leaves will occur in order to recycle the photosynthate they contain for other uses. Thus, an 
increase in the number of siliques per shoot leads to an increased rate of senescence. 

D1→SilS 

A larger pre-flowering rosette diameter is one component of pre-reproductive resource 
acquisition, and allows for an increased amount of resources produced through photosynthesis. 
The increase in resources from photosynthesis can in turn be used to increase the number of 
siliques per shoot. 

D1→TD1 

A larger pre-flowering rosette diameter is one component of pre-reproductive resource 
acquisition, and allows for an increased amount of resources produced through photosynthesis. 
This increases the amount of photosynthate stored in roots, resulting in a larger pre-reproductive 
taproot. 

dD→TD2 

A greater net increase or reduced net decrease in rosette diameter results in a larger post-
reproductive rosette diameter and allows for an increased amount of resources produced through 
photosynthesis. This increases the amount of photosynthate stored in roots, resulting in a larger 
taproot at the end of the reproductive season. 

TD1→SilS 

The taproot is used for storing photosynthate. An increased pre-reproductive taproot diameter 
thus represents increased resource storage. These resources can be used to produce more siliques 
per shoot. 

TD1→Sen 

An increased pre-reproductive taproot diameter represents increased resource storage. 
Senescence of leaves is also used to recycle resources for other uses, so a larger taproot lessens 
the need for senescence. 

TD1→TD2 

A larger initial taproot leads to a larger final taproot. 

B.3. Paths affecting fitness traits (not explicitly modeled in this study) 



VS→Survival 

More vegetative shoots increase the amount of resource acquisition through photosynthesis. This 
leads to more resource allocation to plant maintenance, resulting in a higher survival rate. 

Sen→Survival 

Senescence of leaves leads to a decrease in the number of leaves available for photosynthesis. A 
lower photosynthesis rate leads to a lower resource acquisition rate, which results in a lower 
survival rate. Therefore, a higher senescence rate causes a lower survival rate. 

TD1→Survival 

An increased pre-reproductive taproot diameter represents increased resource storage, which 
results in an increased amount of available resources for plant maintenance. This leads to a 
higher survival rate. 

dD→Survival 

A greater net increase or reduced net decrease in rosette diameter results in a larger post-
reproductive rosette diameter and allows for an increased amount of resources produced through 
photosynthesis. This results in more available photosynthetic resources for plant maintenance, 
and leads to a higher survival rate. 

RS→Reproduction 

An increased number of reproductive shoots leads to an increase total silique and seed 
production, and thus greater reproductive output. 

SilS→Reproduction 

An increased number of siliques per shoot leads to greater seed production, and thus a greater 
reproductive output. 
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