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Abstract:  

This paper reviews the concepts associated with isokinetic open chain assessment and exereise of 

the quadriceps and hamstring muscle groups. Following a review of the isokinetic concept of 

exercise, the paper addresses principles of assessment and exercise of the knee, including the 

importance of musculoskeletal and cardiovascular screening, warm-up, body position, 

stabilization, and joint alignment. Gravity correction, test and exercise velocity, and duration of 

exercise are also addressed. Interpretation of an isokinetic evaluation of the knee is also 

addressed within the context of force—velocity relationships, peak torque relative to body 

weight, and bilateral and reciprocal muscle group relationships. Joint range of motion and test 

velocity are also discussed with respect to patellofemoral and tibiofemoral joint forces. Finally, 

recommended protocols for isokinetic assessment and exercise of the quadriceps and hamstring 

muscle groups are presented. 

 

Article: 

Isokinetic resistance is a dynamic, fixed-velocity, and accommodating- resistance form of 

exercise. The primary advantage of isokinetic resistance is that a muscle group may be exercised 

to its maximum potential throughout the knee joint's entire range of available motion. Isokinetic 

exercise may be used to quantify the quadriceps and hamstring muscle groups' abilities to 

generate torque or force and is also useful as an exercise modality in the restoration of either 

muscle group's preinjury level of strength. A comprehensive review of the theory and clinical 

application of isokinetic exercise and assessment for all major joints of the body may be found 

elsewhere (16). 

 

The knee joint is a modified hinge joint formed by the articulation of the distal femur and 

proximal tibia. The joint is capable of flexion and extension, and it is modified in the sense that 

internal rotation and external rotation of the tibia occur in combination with flexion and 

extension, respectively. Twelve muscles croSS the knee joint with the principle extensors being 

the quadriceps femoris muscles, consisting of the rectus femoris, and the vasti medialis, 

intermedius, and lateralis muscles. The primary flexors of the knee include the hamstring muscle 

group, consisting of the biceps femoris, semitendinosus, and 
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semimembranosus muscles. The role of the gastrocnemius muscle in assisting with knee flexion 

should not be forgotten during rehabilitation of the joint. 

 

A muscle has only the capacity to generate tension or to relax. If the force produced by a muscle 

is measured about a joint's axis of rotation, the moment of force is known as torque. Torque may 

be measured as a peak value from the highest point of a given torque curve, or it may be 

expressed as an average value from each point along the entire curve. If the force and distance of 

a given muscle contraction are known, the tension produced by a muscle is expressed as work. If 

the quantity of time required to produce work is known, the ability of the muscle to generate 

power may be determined. Some clinicians believe that assessment of torque at slow isokinetic 

test velocities reflects "strength," while the torque produced at high test velocities represents 

"power." However, torque, power, and work may be assessed at slow, intermediate, or fast 

isokinetic test velocities. The Système International d'Unités (SI) is the preferred method of 

reporting isokinetic values and is presented (with conversions) in Table 1. 

 

Interpretation of the Torque Curve 

From the isokinetic torque curve, the clinician is able to determine peak or average torque, work, 

and power. Computer interfacing with isokinetic dynamometers enables rapid and reliable 

quantification of these values (17). Since isokinetic resistance accommodates to pain, artifacts 

may be seen in a torque curve obtained from a patient experiencing pain in the knee joint during 

assessment. Moreover, some clinicians believe that pathology within a muscle—tendon unit or 

bony articulation manifests itself with characteristic artifacts within an isokinetic torque curve. 

For example, some claim the ability to diagnose injury to the anterior cruciate ligament by the 

appearance of a bimodal torque curve. However, little scientific evidence exists to validate this 

dubious practice. As such, clinicians are advised to confine their interpretation of the torque 

curve to a muscle's ability to produce torque, work, and power. 

 

Principles of Isokinetic Assessment and Exercise of the Knee 

The mechanical reliability of several isokinetic dynamometers in the measurement of torque, 

velocity, and angular position has been reported in the literature (l, 5, 22). The isokinetic 

assessment of humans is somewhat more complex, although with adherence to several sound 

principles, excellent reliability may be obtained during testing of the knee (17). The following 

principles should be considered prior to isokinetic exercise or assessment of the quadriceps and 

hamstring muscle groups. 

 



Musculoskeletal and Cardiovascular Screening 

All patients should be screened for a healthy knee joint before undergoing isokinetic exercise or 

assessment. For example, both the quadriceps and hamstring muscle groups should be free from 

spasm or muscle contracture. In addition, the knee joint should be free from swelling, 

inflammation, and pain. Assessment of a patient experiencing pain in the knee joint may very 

well reveal false-positive defIcits in strength of either the quadriceps or hamstring muscle 

groups. 

 

The demands of isokinetic assessment on the cardiovascular system should also be considered. 

For example, an elderly patient, a severely obese patient, or a patient significantly deconditioned 

as a result of alienation of the lower extremity should be carefully screened before undergoing 

isokinetic exercise or assessment. Certain medications may also preclude some patients from 

undergoing isokinetic exercise or assessment. For example, one report in the literature described 

a massive hematoma that resulted in the leg of a patient who was receiving the anticoagulant 

coumadin (20). This case certainly illustrates the importance of taking a careful history before 

subjecting older patients to the stresses of isokinetic resistance. 

 

Once both the musculoskeletal and cardiovascular systems have been cleared, the patient is ready 

for the isokinetic form of resistance. 

 

Patient Education, Familiarization, and Warm-Up 

Since isokinetic resistance is a novel sensation for all people, each patient should receive a verbal 

orientation to this form of exercise therapy. The need for this orientation has become even more 

necessary with the creation of "active" isokinetic dynamometry, which enables exercise and 

assessment through both concentric and eccentric modes of contraction. In the case of concentric 

contraction, patients should be instructed to straighten or bend the knee as hard as they can. For 

the eccentric mode of resistance, they should be informed to resist the dynamometer as it 

attempts to push or pull the knee. 

 

Warm-up should also precede isokinetic assessment or exercise of the knee. Static stretching of 

both the quadriceps and hamstring muscle groups is indicated, as well as general body warm-up 

in the form of submaximal stationary cycling. Patients should also be provided both submaximal 

and maximal repetitions for warm-up purposes. A sequence of three submaximal and three 

maximal warm-up repetitions prior to assessment at each isokinetic test velocity has been associ-

ated with reliable isokinetic assessment (17). 

 

Body Position, Stabilization, and Joint Alignment 

For optimal isolation of the quadriceps and hamstring muscle groups, patients should be 

positioned and stabilized with straps on the dynamometer at the chest, waist, and thigh. The arms 

should be crossed over the chest to minimize any contribution from accessory muscle groups that 

might result from pushing and pulling with the hands. Finally, the axes of rotation of the 

dynamometer and the knee joint should be aligned as closely as possible. 

 

Most clinicians assess and exercise the quadriceps and hamstring muscle groups while patients 

are seated, and most normative data in the literature were obtained from this position. However, 

the hamstring muscles are capable of producing higher levels of both concentric and eccentric 



torque from the prone position than the supine position, and either of these positions more 

closely simulates the length—tension relationship of both the quadriceps and hamstring muscle 

groups during activities such as walking and running (25). Clinicians are advised to consider 

these alternative positions during both exercise and assessment of the quadriceps and hamstring 

muscle groups. 

 

Gravity Correction 

Gravitational force tends to enhance the strength of muscles assisted by gravity and to detract 

from muscles opposed by gravity. In the case of the thigh musculature, quadriceps force may be 

underpredicted by 4 to 43% and hamstring force overpredicted by 15 to 519% (14, 24). Thus the 

importance of gravity correction in obtaining valid strength measures of these muscle groups has 

been established (2, 18, 21, 24). Failure to correct for the effects of gravity also confounds 

determination of the hamstring/quadriceps reciprocal muscle group ratio. Since gravity 

correction tends to reduce hamstring torque and increase quadriceps torque, determination of the 

ratio from uncorrected values will in fact inflate the ratio (6, 7). 

 

Velocity Spectrum Exercise 

Rehabilitation protocols often include exercise over a range of angular velocities, which has been 

termed "velocity spectrum" exercise. While many clinicians empirically report positive results 

with such a regimen, the physiological rationale for this principle is not well established in the 

scientific literature. Two possible explanations exist and appear to be related either to differential 

muscle fibers or to recruitment patterns within the quadriceps and hamstring muscle groups. The 

muscle fiber theory would suggest that since slow twitch fibers are specialized for use at 

relatively slow velocities and fast twitch fibers are specialized for high velocities, the fiber types 

are selectively recruited during slow and fast isokinetic exercise, respectively. On the other hand, 

since isokinetic exercise is a maximal form of accommodating resistance requiring high levels of 

muscular tension, both slow and fast twitch fibers would be expected to be recruited at both slow 

and fast speeds of movement. Further research is needed to clarify this apparent contradiction in 

theories. 

 

Duration of Exercise 

Duration of isokinetic exercise is of prime importance during rehabilitation of the quadriceps and 

hamstring muscle groups. For example, a comparison of 6 and 30 s of isokinetic knee extension 

exercise reveals substantial increases in muscle lactate only after 30 s (3). The duration of 

isokinetic exercise should also be based on the element of time rather than number of repetitions. 

For example, 30 repetitions at 90°/s through a 90° arc of motion takes 30 s, while 30 repetitions 

at 180°/s through the same range of motion takes only 15 s. 

 

Recommended Test and Exercise Protocols 

A wide range of test and exercise protocols exists among clinicians who incorporate the 

isokinetic concept of exercise in rehabilitation of the knee. In general, isokinetic protocols are 

either continuous or interrupted. Interrupted protocols allow a pause of several seconds between 

contractions, while continuous protocols do not permit a rest interval between subsequent 

contractions. For either continuous or interrupted protocols, several combinations of 

agonist/agonist or agonist/ antagonist contractions are available such as concentric/concentric, 

eccentric/ eccentric, concentric/eccentric, or eccentric/concentric. 



 

Recent research has examined the effect of test protocol and isokinetic device on quadriceps 

torque and found that both protocols are reproducible over time. However, greater torque was 

generated by the quadriceps with an interrupted protocol regardless of exercise device (8). In all 

probability, the use of consistent protocols supersedes the exact nature of the protocol used, 

primarily for assessment, but for exercise as well. The following lists provide guidelines in the 

design of isokinetic test and exercise protocols for the quadriceps and hamstring muscle groups. 

 

Recommended Protocol for Concentric and Eccentric 

Isokinetic Assessment of the Quadriceps and Hamstring Muscle Groups 
 Musculoskeletal screening of quadriceps and hamstring muscle groups and knee joint 

 General body stretching and warm-up 

 Patient setup in seated, prone, or supine position 

 Alignment of joint and dynamometer axes of rotation 

 Verbal introduction to isokinetic concept of exercise 

 Gravity correction procedure 

 Warm-up (3 submaximal, 3 maximal) prior to each test velocity 

 30 s rest 

 Warm-up and maximal test at slow velocity (4-6 repetitions) 

 30 s rest 

 Warm-up and maximal test at fast velocity (4-6 repetitions) 

 30 s rest 

 Warm-up and multiple-repetition endurance test 

 60 s rest 

 Testing of contralateral extremity 

 Recording of test details to ensure replication on retest 

 Explanation of results to patient 

Recommended Exercise Protocol 

for the Quadriceps and Hamstring Muscle Groups 
 Musculoskeletal screening of quadriceps and hamstring muscle groups and knee joint 

 General body stretching and warm-up 

 Patient setup with optimal stabilization 

 Alignment of joint and dynamometer axes of rotation 

 Submaximal warm-up for familiariZation with exercise velocity 

 30 s concentric and eccentric exercise at slow velocity 

 Rest 

 Warm-up and 30s concentric and eccentric exercise at intermediate velocity 

 Rest 

 Warm-up and 30 s concentric and eccentric exercise at fast velocity 

 Rest 

 Repeated exercise bouts from seated and prone or supine positions 

 General body stretching and cool-down 

 20 min ice application to involved joint or muscle group 

 

Interpretation of Isokinetic Evaluation 



Isokinetic evaluation of the knee may be used to monitor an injured patient's progress through a 

rehabilitation program and to determine readiness to return to activities of daily living or athletic 

participation. Interpretation of the isokinetic evaluation necessitates careful analysis of the 

quadriceps and hamstring muscles' abilities to generate torque, power, and/or work. Torque may 

be assessed as an average or peak value of concentric or eccentric force. 

 

Force—Velocity Relationships 

The ability of the quadriceps and hamstring muscles to produce concentric torque is greatest at 

slow isokinetic test velocities and will decrease linearly as test velocity increases. Eccentric peak 

torque tends to be greater than concentric torque at slow velocities and will not decrease with 

increases in test velocity. Some differences exist in the eccentric force—velocity curve between 

intact human muscle and isolated animal muscle. For example, the classic force—velocity curve 

described by Hill (9) and derived from isolated animal muscle showed decreases in concentric 

force with increases in velocity, and increases in eccentric force with increases in velocity. 

However, eccentric force usually exceeds isometric levels in humans but then increases only 

slightly with increases in velocity. 

 

This difference in the force—velocity curve has been postulated to be related to a neural 

inhibitory safety mechanism in humans that prevents injury to muscle during eccentric 

contractions at high velocity (23). The clinical implication is that decreases in concentric torque 

with an increase in test velocity are a normal finding. In contrast, eccentric torque should be 

expected to increase slightly above isometric strength levels but will not continue to increase 

with an increase in test velocity. A decline in eccentric strength with an increase in test velocity 

should be interpreted as an abnormal finding. An extensive listing of normative data for the 

quadriceps and hamstring muscle groups for several populations at a variety of isokinetic test 

velocities may be found elsewhere (16). 

 

Peak Torque Relative to Body Weight 

One special difficulty in comparing normative strength values among patients is the confounding 

influence of body size. To account for marked differences in body size, strength may be 

expressed as a percentage of total body weight (26). In fact, the software of some isokinetic 

dynamometers automatically computes and reports peak torque values of the quadriceps and 

hamstring muscle groups divided by the patient's body weight. Strength values normalized to 

body weight for a variety of populations at several isokinetic test velocities may be found 

elsewhere (16), although caution is advised when interpreting these ratios. For example, values 

expressed as ft  lb torque/lb body weight yield very different ratios than when expressed as N  m 

torque/kg body weight. These differences are related to the unit of measurement rather than to 

actual differences in the peak torque to body weight ratio. 

 

Bilateral and Reciprocal Muscle Group Comparisons 

Comparison of the injured extremity's strength with that of the uninjured extremity is commonly 

used as the standard for return of the injured side to a normal state following rehabilitation (19). 

That is, the injured side quadriceps muscle group is compared with the uninjured side 

quadriceps, and the injured side hamstring muscle group is compared with the uninjured side 

hamstrings. For most populations, values for right and left side quadriceps and hamstring muscle 

group strength are usually within 5 to 10% of each other. However, caution is advised when 



making this comparison in athletes involved in asymmetrical activities such as kicking or 

jumping from one leg. 

 

To produce extension of the knee, the quadriceps muscle group acts as the agonist and the 

hamstring muscle group acts as the antagonist. The opposite occurs during flexion of the knee; 

that is, the hamstring muscle group is the agonist and the quadriceps muscle group is the 

antagonist. The relationship of the hamstring to the quadriceps is known as the reciprocal muscle 

group ratio. Although the quadriceps muscles are naturally stronger than the hamstrings, it has 

been assumed by many clinicians (although not scientifically proven) that gross imbalances 

between these muscle groups predispose one to injury. Thus the hamstring/quadriceps reciprocal 

muscle group relationship has received a considerable amount of attention during rehabilitation 

of the knee. The reciprocal muscle group ratio is determined quite easily by dividing the strength 

of the hamstrings by the strength of the quadriceps. However, determination of a normal ratio 

may be confounded by several factors, including test velocity and presence or absence of a 

gravity correction procedure. For example, a value of .60 is quite normal for the 

hamstring/quadriceps ratio at a slow isokinetic test velocity in some populations, but this value 

typically increases significantly as test velocity increases. Use of gravity correction helps to 

adjust for this error when determining the ratio throughout a velocity spectrum of testing. A 

comprehensive list of normal hamstring/quadriceps reciprocal muscle group ratios for a variety 

of populations across several isokinetic test velocities is available elsewhere (16). 

 

Special Rehabilitation Considerations 

The goal of rehabilitation of the knee is to return the quadriceps and hamstring muscle groups to 

normal preinjury levels of strength, with special reference to the bilateral and reciprocal muscle 

group relationships. However, the complexity of the knee joint may create special challenges to 

the clinician during the rehabilitation of a variety of industrial or athletic injuries. Patellofemoral 

and tibiofemoral joint forces must be considered, and the role of weight-bearing activities in a 

comprehensive rehabilitation program deserves attention. 

 

Patellofemoral Joint Forces 

A healthy patellofemoral articulation is essential to the normal biomechanics of the knee joint. 

Patellofemoral joint pain not only can confound accurate assessment of the quadriceps and 

hamstring muscle groups but can also impede the return of these muscle groups to preinjury 

levels of strength. Many clinicians have observed that isokinetic exercise at slow velocities 

through a full range of knee motion tends to exacerbate the symptoms of patellofemoral pain. 

This clinical observation has at least in part been confirmed through scientific investigation. 

Kaufman et al. (11) used a mathematical model to calculate the patellofemoral compressive 

forces during full-range isokinetic exercise of the knee at 60 and 180°/s. In general, compressive 

forces were found to be low at knee flexion angles less than 20° and were highest at 70 to 75° of 

knee flexion, approaching 5.1 times body weight during testing at 60°/s. These compressive 

forces were only slightly lower (4.9 times body weight) at 180°/s. 

 

The obvious clinical implication of these findings is that when patellofemoral joint pain is 

present, full-range isokinetic exercise should be avoided, although limited-range exercises may 

be indicated in the last 20° of knee extension. The findings of Kaufman et al. (11) would suggest 

that the problems of isokinetic exercise in the presence of patellofemoral joint pain are more 



related to range of knee motion than to exercise velocity. This fact would seem to contradict the 

long-standing clinical impression that joint compressive forces are significantly reduced with 

increases in joint angular velocity. 

 

Tibiofemoral Joint Forces 

Isokinetic exercise of the quadriceps muscle group with the resistance pad placed at the distal 

tibia has been shown to create considerable tibiofemoral shear forces. This anterior force acts 

primarily in the last 40° of knee extension and is approximately 0.2 to 0.3 times body weight 

(11). The anterior cruciate ligament is responsible for checking anterior displacement of the tibia 

on the femur. Thus caution is advised when providing isokinetic resistance during knee extension 

in patients experiencing injury or reconstruction of the anterior cruciate ligament. 

 

The magnitude of the anterior shear force may be significantly reduced by moving the resistance 

pad closer to the proximal end of the tibia (15). The pad should be placed proximally during the 

early phases of isokinetic exercise during rehabilitation of the anterior cruciate ligament injured 

or reconstructed knee, and should be moved distally along the tibia in gradual increments. A 

dual-pad resistance device is also commercially available to reduce this anterior shear force (10). 

The proximal placement or dual-pad device should be used during knee extension and not during 

knee flexion, as the anterior shear may actually be increased with proximal placement during 

knee flexion exercises. 

 

Closed Chain Exercises 

Isokinetic resistance is very effective in returning the strength of the quadriceps and hamstring 

muscle groups to preinjury levels. However, a comprehensive rehabilitation program should also 

include strengthening and functional activities from a weight-bearing position, which has been 

termed "closed chain" exercise. An isokinetic dynamometer may be used as a leg press device (4, 

13), or simple isotonic activities such as squats may be incorporated into the rehabilitation 

program. Clinicians are also advised to incorporate a variety of weight-bearing functional 

activities into the program, which may provide exercise and allow the clinician to assess progress 

through rehabilitation (12). 

 

Summary 

Isokinetic resistance is a dynamic, fixed-velocity, and accommodating-resistance form of 

exercise that may be used for assessment and exercise of the quadriceps and hamstring muscle 

groups. Reliable assessment necessitates adherence to several principles related to familiarization 

and warm-up, body position, stabilization, joint alignment, and gravity correction. Interpretation 

of the isokinetic evaluation includes assessment of peak torque with respect to bilateral and 

reciprocal muscle group relationships. Sound exercise programs are based on velocity spectrum 

exercise, adequate duration of exercise, and attention to the patellofemoral and tibiofemoral joint 

forces associated with isokinetic resistance. 
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