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Abstract:  

Objective: To examine the influence of clinical applications of heat and cold on arthrometric 

laxity measurements of the knee. 

 

Design and Setting: The knee joint was submersed 4 inches above the patella in hot and cold 

whirlpools containing water of 40°C and 15°C for 20 minutes. A control was also performed to 

provide a neutral temperature comparison group. 

 

Subjects: Eight males and 7 females with no history of knee injury. 

 

Measurements: The knee was maintained at 20° flexion and tibial rotation at either 15° of 

internal rotation, 15° of external rotation, or a neutral measurement with a modified KT-1000 

knee arthrometer equipped with an LCCB-50 strain gauge that allowed for the digital display of 

the applied distraction forces. Order of testing was counterbalanced. Subjects underwent each 

condition once, with each trial on separate days. Two 2-factor repeated measure analyses of 

variance were performed to test effects of temperature on knee laxity for the dependent measure 

(laxity at 89N and at maximal displacement forces). 

 

Results: There was no thermal effect on displacement at 89N nor at maximal distraction (p 

> .05). A difference was found with respect to test position, with external rotation 

showing a greater displacement than internal rotation (p < .05). 

 

Conclusions: There was no evidence that hot or cold whirlpool treatments alter knee 

laxity as assessed with the KT-1000. Rotation of the tibia does affect the magnitude of 

displacement of the knee. Further research is needed to determine if these findings can be 

applied to ACL-deficient or ACL-reconstructed knees. 
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The anatomy and function of the knee has been classified into muscular, or dynamic, components, 

and ligamentous, or static, components.
6
,
10

 The quadriceps, hamstrings, popliteus, gracilis, 

sartorius, iliotibial band, and gastrocnemius all cross the knee and, with the inclusion of the 

synovial capsule of the knee, can be viewed as secondary restraints
.8,10,15 

The hamstring 
6,10,18,24 

and popliteus
 10,16

 have been most definitively viewed as secondary muscular restraints to anterior 

translation of the tibia on the femur. The ligamentous or static component has been viewed as 

the primary stabilizer of the knee. The role and function of the medial and lateral collateral 

ligaments and the anterior and posterior cruciate ligaments are well documented. 
1,3,4,7,12,13,15,16,19,20

 The anterior cruciate is perhaps the subject of the most research and viewed as 

the most important ligament in terms of maintaining knee stability and function.
5 

 

 

The role of knee arthrometry in quantifying knee laxity has been extensively covered in the 

literature.
2,9,11,17,22,28,29

 The  KT-1000 knee arthrometer (MEDmetric Corporation, San  

Diego, CA) is one of the most accurate and reliable methods of  quantifying knee joint laxity 

when compared to other arthrometers.
2,9,17,22,26,28,29

 

 

Although the effects of exercise on knee joint laxity have been reported,
14,25,27,30 

the effect of 

clinical modalities on knee joint laxity has not been studied. Thermal effects which may influence 

tissue elasticity, muscle tonus, muscle spindle activity, and patient pain threshold
23

 have not been 

investigated in research pertaining to the knee. The purpose of this study was to examine the 

effects of a hot and cold whirlpool treatment on knee joint laxity assessed with the tibia in the 

neutral, internally rotated, and externally rotated positions, with 89N and maximal displacement 

forces applied by a KT-1000. 

METHODS 

Fifteen subjects volunteered for this study (8 males and 7 females; age = 22.8 ± 2.5 yr; ht = 

67.5 ± 5.5 in; wt = 166.7 ± 49.4 lb). Criteria for selection was that all subjects reported no 

history of knee injury. Before enrollment in the study, each subject read and signed a consent 

form approved by the University of Virginia's Institutional Review Board. 

 

A modified KT-1000 knee arthrometer was used to measure anterior laxity in all subjects. The 

arthrometer was equipped with an LCCB-50 strain gauge (Omega Technologies, Inc, Stamford, CT) 

that allowed for digital display of the applied distraction forces. The Tibial Fixator Device
21

 was 

used to maintain knee angle at 20° flexion and to control tibial rotation during the laxity measurements. 

Applications of heat and cold were administered by submersion of the knee joint 4 inches above the 

patella in whirlpools containing water of 40°C and 15°C, respectively. 

 

Procedure 

Subjects, wearing shorts, were asked to sit on an examining table with knees extended and 

supported for 20 minutes. This was done to allow for a common beginning joint temperature of 

all subjects and to reduce the effects of any pretesting activity by the subjects. Subjects 

were then required to spend 20 minutes with their knee in a hot or cold whirlpool, or in a 

control position with the knee at 90° flexion and the leg hanging off the table in the air. 

The control was performed to provide a neutral temperature comparison group for the hot 

and cold trials. The hanging of the limb off of the table was done to provide gravity effects 



similar to those present during the whirlpool protocols. Each subject underwent each 

condition once, with each trial occurring on a separate day. The order of trial conditions 

was counterbalanced. 

 
Anterior Tibial Displacement (mm) During Normal, Cold, and Hot Conditions (Mean±SD) 

 
External Rotation  Neutral Internal Rotation 

       89N Maximal  89N Maximal  89N Maximal 

No whirlpool 4.1 ± 2.0 6.8 ± 2.8 3.5 ± 2.1 6.1 ± 2.7 3.1 ± 2.1 5.7 ± 2.9 
15°C whirlpool 4.2 ± 2.1 6.7 ± 3.0 3.8 ± 2.0 6.9 ± 3.4 3.3 ± 1.4 6.0 ± 2.2 
40°C whirlpool 3.8 ± 1.9 6.3 ± 2.9 3.4 ± 1.7 5.9 ± 2.7 2.7 ± 1.5 5.4 ± 2.2 

 

Following each whirlpool condition, the subject was placed in the Tibial Fixator Device at 20° 

knee flexion in either 15° of internal rotation, 15° of external rotation, or a neutral position. 

The order of testing positions was counterbalanced. The KT-1000 was then positioned 

on the subject according to standard protocol.
9
 The tibia was anteriorly displaced with a 

recorder marking the newtons of force being applied to elicit 1 mm increments of 

displacement, until no further displacement could be achieved. The subject was then 

repositioned and retested at each of the remaining two positions of tibial rotation. All 

testing was performed by the same individual throughout the study. 

 
Data Analysis 
Statistical analysis was performed on the data using the Statview 512+ (Abacus Concepts, 

Inc, Calabasas, CA) statistical package. Two two-factor (thermal condition and rotation) 

repeated measure analyses of variance were performed to test effects of temperature on 

knee laxity for the dependent measures. Laxity at 89N and at maximal displacement forces 

were the dependent measures. 

 

RESULTS 

There was no thermal effect on displacement at 89N of distraction nor at maximal 

distraction (p > .05; see the Table). A difference was found with respect to test position, 

with external rotation showing a greater displacement than internal rotation (p < .05). 

 

DISCUSSION 

Since hot and cold whirlpool treatments had no effect on anterior displacement of the tibia as 

assessed with instrumented knee arthrometry, we feel that athletes with uninjured knees 

undergoing pre-exercise thermal treatment are not predisposed to increased anterior knee 

laxity. 

 

Our observation that a significant difference in anterior laxity occurred when the knee was 

in 15° of external rotation as compared with the knee at 15° internal rotation is in 

agreement with other researchers.
11,21

 The degree of tibial rotation is important in 

determining intratester and intertester reliability with the KT-1000
.11,25 

 
Clinicians using the KT-1000 for repeated assessments of patients should consider tibial 
position as an important factor in obtaining more consistent results. 
 



Future research is needed to determine whether the findings of this study can be applied to 

ACL-deficient or ACL reconstructed knees. The presence of greater anterior knee laxity may 

show differing results when subjected to similar thermal conditions, because injured or 

reconstructed knees may have a greater muscular stability component than do uninjured 

knees.  
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