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COOPER, CAROL ANN. A Study of the Effect of Differing Foreperiods on 
Performance of the Forward Grab Swimming Start. (1975) Directed by: 
Dr. Gail Hennis. Pp. 86. 

The purpose of this study was to determine if there is an optimal 

length of foreperiod between the commands given by the starter and the 

sound of the gun to elicit a fast response when the grab start is used 

in competitive swimming. Measured responses were the time of initial 

hand movement (hand movement time) and time of the swimmer's feet 

leaving the block (starting time). 

A specially designed electronic timing device was utilized to 

control the length of the foreperiod interval, to activate the gun, and 

to measure hand movement time and starting time. 

Blocks of four trials at each controlled foreperiod interval of 

.5, 1, and 1.5 seconds and at one interval during which the length of 

the foreperiod was varied for each trial in the block (varied fore-

period) were presented in random order to 24 skilled competitive swim­

mers, 12 males and 12 females. Ages ranged from 12 to 17 years. 

Data were analyzed by a 2 x 4 analysis of variance with repeated 

measures on the last factor. Sex was the first independent variable, 

and length of the foreperiod was the independent variable having 

repeated measures. For hand movement time, a calculated JF (1, 46) = 

3.2549 (jd<.05) indicated that there were significant differences due 

to treatment effects. When the Newman-Keuls procedure was applied, the 

1.5 second interval was shown to elicit slower times than any other 



interval, and the varied foreperiod interval produced slower times than 

the .5 second interval. Neither the effect of sex nor interaction was 

significant. 

For starting time, no significant effects were found due to sex, 

to treatments, or to interaction between the two variables. When 

Pearson Product Moment method of linear correlation was applied to hand 

movement time and starting time, no relationship was found between those 

two variables. 

It was concluded that among the foreperiod intervals of .5, 1, 

and 1.5 seconds and varied foreperiod there was no optimal foreperiod 

interval which elicited a faster response in the grab start racing dive 

than any other interval. 
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CHAPTER I 

INTRODUCTION 

The forward start is used in all swimming races with the excep­

tion of the backstroke. Required specifications for the height and 

angle of the starting blocks are common to the rules of all governing 

bodies. However, none of the official rules set restrictions upon the 

forward start except that a balanced position must be attained prior to 

the start. Within the last five years, the majority of competitors have 

begun to use the grab start. The grab start has been shown to project 

the swimmer into the water in the fastest manner (Hanauer, 1972; Roffer, 

1972; Michaels, 1973; Van Slooten, 1973). 

Although the starting position is somewhat dependent upon indi­

vidual preference, four general styles, differentiated primarily by arm 

patterns, have evolved. From the 1930's to the 1950's, a position with 

the arms held straight back was used almost universally. Because both 

arms were extended back while the body weight was forward over the toes, 

an unstable position was assumed. It was hypothesized that when the 

arms were projected forward, they initiated the forward motion of the 

body. During the 1960's the straight backswing and circular backswing 

became popular. As the arms circled back, the forward body movement was 

initiated by a sudden forward displacement of the center of gravity. As 

the arms swung forward they added to the accelerating forces of the 

body. In the 1970's, the grab start was introduced. In the grab start 

the hands grip the forward edge of the starting block. Although the 
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weight of the body is held forward, the grip of the hands on the block 

allows for the body position to remain stable. 

Early studies of reaction time conducted in the laboratory, as 

cited by Woodworth and Schlosberg (1954), indicated that when the length 

of the foreperiods between the starting command and the sound of the gun 

was increased, the length of reaction time followed a curvilinear 

graphic pattern. Experimental practice established that a time of 

approximately two seconds was optimal. When the foreperiod time greatly 

exceeded two seconds, reaction time slowed. 

Experiments in the laboratory were expanded through studies of 

reaction time in relation to track and field. Walker and Hayden (1933) 

tested the speed of reaction in relation to a track start. Varied 

intervals of one to three seconds were spaced between the sound of the 

gun and the athlete's first movement in the response. Their results 

indicated that an optimal interval of foreperiod was between one and two 

seconds. Tuttle, Armbruster, and Morehouse (1940) duplicated the study 

using the swimming start. Although the starting position for swimming 

was less stable than for track, they, too, found that one to two seconds 

was optimal. False starts occurred more frequently in swimming than in 

track probably because of the relatively unstable position of the 

swimmer. 

Because of the initial unstable position of the early type of 

racing dives, the starter of the swimming meet traditionally has been 

instructed simply to get the complement of swimmers off to a fair start. 

The starter's instructions have been to see that the contestants are 

completely motionless before the gun is fired. The length of the time 
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between the signal and the gun has varied although generally it has been 

between two and four seconds. The starter has varied his timing to 

hinder a swimmer from going down to the balanced position unduly slow so 

that opponents must hold their unbalanced position longer and be vulner­

able to a false start. With the grab start, swimmers under Amateur 

Athletic Union rules have been required to go immediately to the set 

position and the swimmer who has gone down too slowly has been penalized 

with a false start. With the change in starting techniques of the 

swimmers, unrhythmical timing of the starts seem unnecessary. Investi­

gation needs to be made of the length of time of the foreperiod to find 

the optimal length of foreperiod for most effective starts. 

Statement of the Problem 

It was the purpose of this study to investigate the effects of 

varying the time between the starting command and the stimulus (sound of 

the gun) on the time of the hands moving on the blocks and the time of 

the feet leaving the blocks in the forward swimming grab start. Sub-

problems concerning the influence of sex and the interrelationship 

between hand movement time and starting time also were studied. 

Specifically the following questions were to be answered: 

(a) Is there a difference in starting time in the grab start 

after foreperiods of .5, 1, and 1.5 seconds and varied foreperiods 

assigned in random order? 

(b) Is there a difference in hand movement time in the grab 

start after foreperiods of .5, 1, and 1.5 seconds and varied foreperiods 

assigned in random order? 
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(c) Is there a difference in starting time from the grab start 

due to the interaction between sex and the length of the foreperiod? 

(d) Is there a difference in hand movement time in the grab 

start due to the interaction between sex and the length of the fore-

period? 

(e) What is the relationship between hand movement time and 

starting time considering the length of the foreperiod? 

(f) What is the relationship between hand movement time and 

starting time considering sex and the length of the foreperiod? 

Definition of Terms 

Foreperiod. The time between the command, "Take your mark," 

and the sound of the gun is designated as the "foreperiod." 

Controlled foreperiod. The specific foreperiod when the length 

of the interval is selected by the starter and controlled by the timing 

device is called "controlled foreperiod." 

Varied foreperiod. The foreperiod when the starter watches the 

swimmer and fires the gun with the same interval timing as would be used 

in a meet is called "varied foreperiod." The timing device does not 

control the length of the interval. 

Manual start. The starter activates the foreperiod timer by 

pushing the "start" button to effect a "manual start." In the varied 

foreperiod starts, the starter used a manual start with the foreperiod 

being controlled at .1 second which is as close to a purely manual start 

that the limits of the instrument allow. 
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Automatic start. When the swimmer touches the hand switch, and 

the pressure automatically activates the foreperiod counter and the 

timing device, an "automatic start" occurs. 

Hand movement time. The time between the sound of the gun and 

the first movement of the hands in the grab start is called the "hand 

movemen t t ime.11 

Starting time. The time between the starting gun and the feet 

leaving the blocks is designated as "starting time." 

Short-course start. The swimmer has his feet in position on the 

blocks when the starter gives the commands in an AAU official "short-

course start." 

Limitations of the Study 

The following limitations set the scope of the study: 

(a) Subjects were members of the Scottsdale Swim Club senior 

men's and women's teams who had competed for a minimum of one year at 

that level of competition. All swimmers were considered to be highly 

skilled and were expected to be consistent in performance of the grab 

start. 

(b) Subjects were males and females with ages ranging from 12 

to 17. This allowed for study of effects due to sex as well as length 

of foreperiods while controlling for age range. 

(c) Only hand movement time and starting time of each swimmer 

were measured. No attempt was made to study other variables which might 

affect performance. 
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(d) All starts were conducted by the same trained starter. The 

time between the commands and the gunshot was altered according to a 

prearranged schedule having a randomly ordered sequence of varying 

lengths of foreperiods. 

(e) Swimmers were tested in a practice situation. Although 

standard directions which emphasized concentrating on the start as one 

would in competition were given to each swimmer, no effort was made to 

simulate exact competitive situations. 

(f) Only short-course starts off level blocks were studied. 

Remainder of the Thesis 

The remainder of this thesis was divided into four sections. 

Research related to the racing dive and the optimal length of fore-

period is reviewed in Chapter II. In Chapter III the apparatus and 

testing procedures are described. Chapter IV is devoted to presentation 

and discussion of results, and Chapter V includes the summary and 

conclusions. 
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CHAPTER II 

REVIEW OF RELATED LITERATURE 

Varied factors influence the performance of the forward grab 

racing start in competitive swimming. Several contributing variables 

must be assessed in order to understand all ramifications of the 

problem. The nature of the performer, the definition of the task, and 

the parameters of the foreperiod or preparatory interval must be scru­

tinized. An analysis of the precise interaction of that triad of 

factors is the core of this investigation. 

Reaction time or response latency is defined as the time taken 

to respond to a stimulus. Singer's (1975) definition is probably the 

most informative: reaction time involves the visual, auditory, and 

kinesthetic sensors' perception of the stimulus and the time elapsed 

before the initiation of the movement response. Simple reaction time 

occurs when there is only one stimulus which initiates only one 

response. There are no alternatives to complicate the task. 

Studies have been conducted of fractionated reaction time in 

the laboratory. McCormack (1961) subdivided reaction time into several 

components: premotor time consisting of receptor time, afferent nerve 

conduction time, brain time, efferent nerve conduction time; and effec­

tor time. McCormack found that the individual differences in measured 

reaction time are primarily functions of premotor time. Premotor time 

extends from the presentation of the stimulus until the efferent nerve 

impulse activates the effector or response mechanism. 
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Several other terms are frequently associated with reaction 

time. Movement time is the time the body requires to complete a move­

ment once the initial movement response has been initiated. Response 

time is the time required to complete the entire act in that it is a 

combination of foreperiod, reaction time, and movement time (Singer, 

1975). 

The swimming start is classified as a task of simple reaction 

time. A uniform stimulus of the gunshot is presented. An auditory 

stimulus elicits a reaction time of about .150 seconds after some prac­

tice by subjects and as little as .100 to .120 seconds in some indi­

viduals after much practice (Woodworth & Schlosberg, 1954). The uniform 

response is the racing dive. The swimmer knows in advance what the 

stimulus will be and what response he will make. The foreperiod time 

is between the command and the gun signal. Even though the length of 

the foreperiod cannot be predicted by the competitor, there are no major 

alternative stimuli choices to complicate the task. The time between 

the gun sound and the sprinter's response is the reaction time. The 

movement time commences with the first physical response the competitor 

makes to the sound of the gun and ceases when the feet of the swimmer 

leave the blocks. 

Due to the similarities of the starting tasks in track and in 

swimming, studies projecting the optimal temporal sequence for the 

starter to use in order to elicit the fastest response from the com­

petitors will be presented for track as well as for swimming. In swim­

ming the type of forward start which the individual performer chooses 

to utilize can influence the method of collecting the data regarding 
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reaction time and movement time. Studies of the various forward swim­

ming starts will be reviewed, therefore, primarily to analyze the 

instrumentational and methodological procedures. 

Nature of the Performer 

Numerous studies have been completed which emphasize the unique 

characteristics each individual brings to the task. Individual differ­

ences of age and sex as well as skill level and motivation can interact 

to influence measurably data relating to reaction time and movement 

time. 

Reaction time and movement time. Individual differences of 

subjects have contributed to controversy which has existed regarding the 

relationship between the two variables of reaction time and movement 

time. Early studies by Tuttle and Westerland (1931) indicated a corre­

lation coefficient of _r = .836 between reaction time as measured by a 

switch-pressing task and movement time as indicated by the speed with 

which a track sprinter completed the 75-yard dash. Subsequent studies 

of the correlation between movement time and reaction time have shown no 

relationship between the two factors. With specific reference to track, 

Henry and Trafton (1951) found virtually no correlation between reaction 

time and sprint performance in the 50-yard dash. For physical education 

students, the correlation between the two factors was r_ = .14. For 

highly skilled track men, a similar coefficient of j: = .18 was obtained. 

Henry (1952, 1960a) conducted a series of experiments to assess 

the relative independence of reaction time and motor time as well as to 

study additional factors which might have a large influence on those 
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response times. Initially, Henry (1952) used the movement tasks of 

snatching at a suspended tennis ball and pressing a treadle and the 

simple reaction-time task of releasing a key in order to measure inter­

relationships between movement time and reaction time. Sixty college 

males completed 50 trials on the ball-snatching task, and 43 additional 

men completed 20 trials on the treadle-pressing task. Responses were 

divided into reaction time and movement time. Henry interpreted the 

resulting linear correlation coefficient = -.07 as indicating that 

those two factors were independent. 

Slater-Hammel (1952) hypothesized that the specific tasks Henry 

selected might have influenced the results unduly. Slater-Hammel 

designed an instrument to avoid a terminal response which required a 

controlled movement such as snatching a ball or pressing a treadle. He 

compared reaction time and movement time through a movement excursion 

task which involved using a ballistic action of sweeping the right arm 

through a horizontal arc and slamming the arm against a pad 30 degrees 

beyond the midline of the subject's body. Subjects were 25 male physi­

cal education majors who completed 25 trials, each after a randomly 

varied foreperiod of one, two, or three seconds. The correlation coef­

ficients obtained between reaction time and movement time of £ = -.07 to 

_r = .17 indicated no relationship between the two factors. Although 

Slater-Hammel's findings concur with Henry's, Slater-Hammel criticized 

Henry's conclusion that reaction time and movement time were independent 

factors. Slater-Hammel was willing to conclude only that there was no 

relationship between the factors. 
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Henry (1960a) described his "Memory Drum" theory to explain neu­

romotor response patterns. In inspecting the reaction latency between 

simple and more complex reactions, he hypothesized that longer reaction 

latencies were necessary for more complex skills because a more compli­

cated circuit was transversed by neural impulses traveling through the 

coordination centers of the nervous system. 

Three tasks, selected to represent three intervals on a con­

tinuum from simple to complex, were presented: (a) lifting the fore­

finger from a key, (b) reaching forward to grasp a suspended tennis 

ball, and (c) completing a sequential pattern which necessitated touch­

ing two balls in order. All responses were to a gong which was preceded 

by a one to four second foreperiod interval presented in random order to 

avoid anticipation of the stimulus by the subject. 

In Experiment 1, tasks were presented in order ABC in continuous 

rotation trial-by-trial until 10 trials had been completed for each 

task. Experiment 2 involved 10 trials for Task A, followed by 10 trials 

for Task B, then 10 trials for Task C. Order of presentation of trials 

within the sequence was balanced among groups of subjects. 

There was virtually no correlation discovered between reaction 

time and movement time for any task. When sex or age factors were con­

sidered separately, there still was no correlation between the two 

response factors. 

Sensory or motor set. Henry (1960b) compared the effects of 

reaction time after a sensory set to one following a motor set. In a 

sensory set, the individual was told to concentrate on attending to the 

stimulus. In a motor set, the respondent was to concentrate on the 
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motor action he was to perform in response to the stimulus. Henry 

hypothesized that a motor set would yield a slower reaction time than a 

sensory set and that there could be a difference depending upon the sex 

of the subject. 

Following a randomly projected foreperiod of one to four 

seconds, a movement task was presented. The task consisted of lifting 

a finger from a key upon the sound of a gong and then touching a button 

18 inches to the side before returning the hand to sweep a tennis ball 

which was suspended over the key. Forty female and 40 male college 

students completed alternating treatments composed of: (a) spontaneous 

set for 15 trials (set being determined by introspection after each 

trial) and (b) enforced set for a total of 40 trials. The enforced-set 

trials were blocked in groups of 10 trials with each block alternating 

between enforced sensory or enforced motor set. Results indicated that 

a motor set elicited reaction time 2.6% slower than sensory set and 

movement time 2.1% slower than sensory set. When the selection of set 

was left to the performer, faster reaction and movement times were 

elicited in the set of the subject's choice as compared to use of the 

required alternative set. 

Henry (1961) further studied the amount of correlation between 

individual differences in reaction time and movement time. Auditory 

and visual stimuli were utilized as well as simple and discriminatory 

reaction time tasks. The response involved moving the arm through a 

continuum of discrete tasks ranging in difficulty from simple to 

complex. The resulting reaction time and movement time score distribu­

tions were skewed which necessitated converting the scores to their 
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reciprocal or to speed scores. This transformation allowed for normal 

distribution of the scores in each cell. Since there was no difference 

in correlation coefficients between the raw and the transformed data as 

indicated by coefficients of r = .013 and = .003, respectively, no 

need to transform scores in future studies was indicated. Results 

showed that there was no difference in movement time or reaction time 

regardless of the complexity of the task. 

Christina (1973) projected that enforced motor set would lead to 

longer reaction and movement time in a complex task than would an 

enforced sensory set. After a randomly varied foreperiod of one to four 

seconds, a buzzer sound was the stimulus for 30 male college students to 

complete a novel task which involved hitting three switches arranged in 

a diamond-shaped pattern. Two groups were each assigned to either sen­

sory or motor set for the whole experiment. Each subject then completed 

a block of trials on the reaction-time task followed by a block of 

trials on the motor-time task. Scores on this pretest were combined to 

serve as a covariate in the final analysis of the data. During the 

experiment, the total task was completed although the times from the 

reaction-time portion of the task and the motor-time portion were 

recorded separately. Results showed that the variate reaction time was 

slower for motor set than for sensory set. There was no influence of 

enforced set on motor time. Christina felt the lack of influence of set 

on motor time could be moderated if the task was practiced to sufficient 

extent that it could be performed at a subconscious level. 

Sex and age. Secondary to his basic premise regarding the rela­

tionship between reaction time and movement time, Henry related the 
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effects of sex and age to the measurement of the response variables 

(1960a, 1960b, 1961). 

When testing his "Memory Drum" theory, Henry (1960a) found there 

was no difference in reaction time or movement time between college men 

and women nor among persons of ages 8, 12, and 24 years. In all groups, 

reaction time increased as the complexity of the task increased. When 

8-year-olds and 12-year-olds were compared, the younger subjects were 

slower on all movement time responses with the differential being 

greater when the tasks were performed in random order as compared to 

blocked order. For measures of movement time, the women were 40% slower 

than the men in reaching for a ball, but the women were only 14% slower 

in the more complex sequence which involved reaching for two tennis 

balls in order. 

When Henry (1960b) compared results depending upon the use of 

sensory or motor set, women responded 13.9% slower than men on the 

reaction-time criterion and 30.3% slower for the movement-time criterion 

regardless of the set. 

In a later study, Henry (1961) found no difference in movement 

time when different complexities of response tasks were presented to 

subjects with mean ages of 8, 12, 24, and 30 years. There were small 

(.01 seconds) differences in reaction time between members of the sexes 

showing the women to be slightly but significantly slower than the men. 

Sex differentials in speed of movement were .20 to .90 seconds, indi­

cating larger differences than occurred in reaction time. Through the 

continuum of task difficulty, women produced slower mean movement time 

than the men by .45 seconds which was equivalent to a 22% difference. 
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When the maturational effects of ages 8, 12, 24, and 30 years were 

manipulated statistically, the reaction time and movement time correla­

tions showed no influence due to those variables as either a linear or 

curvilinear function. 

Pierson (1959) studied age in relation to the factors of reac­

tion time and movement time as well as the interrelations between the 

two factors. The reaction time task involved releasing a hand switch 

upon a signal, and the movement time task involved moving the hand 

through an 11-inch horizontal sweep to break a beam switch. For male 

subjects correlations between reaction time and movement time were as 

follows: (a) age 12, _r = .50; (b) age 13, _r = .10; (c) age 14, _r = .20; 

(d) age 15, _r = .50; (e) age 16, jc = .35; (f) age 17, _r = .20; (g) age 

22, _r = .58. Overall reaction time and movement time showed a correla­

tion coefficient of r = .31. When 400 subjects' scores were examined 

with the effects of age removed statistically, correlation between the 

two factors was _r = .33. 

Mendryk (1960) used the same task as Pierson to study relation­

ships between reaction time and movement time as well as the reliability 

of measurement of those factors. The nominal mean ages of 12 and 22 

were selected because Pierson's correlations at these ages had been high 

and the age of 48 because Pierson's relationships had been low. The 

intent of the study was to ascertain if the degree of relationship was 

due to the independence of the variables, to task definition, to low 

measurement reliability, or to the heterogeneous grouping of subjects. 

The 22-year-olds were found to be 15% faster than 12-year-olds 

in reaction time and 13% faster than the 48-year-olds. In movement time 
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the 22-year-olds were faster than either the 12- or the 48-year-olds by 

percentages of 15 and 18, respectively. There was no difference in 

either reaction time or movement time between 12- and 48-year-old males. 

There was no statistically significant correlation between the 

factors of reaction time and movement time in any single group. How­

ever, when the groups of subjects were pooled, the resulting correlation 

of _r = .231 was significantly higher than the correlation for the within 

groups of _r = .127. This difference would support the hypothesis that 

the higher reaction time and movement time interrelationships would be 

found in heterogeneous groups. 

Hodgkins (1963) used the same specific task as Pierson and 

Mendryk, but she enlarged her sample of subjects to include both males 

and females at each age level. At all ages within the range of 6 to 84, 

males were faster than females in both reaction time and movement time. 

Times for members of both sexes decreased linearly until early adulthood 

with the exception of boys, who were slightly slower at ages 12 to 15 

when compared to ages 6 to 11. Most decrease for both males (82%) and 

females (86%) occurred between the ages of 6 and 12. The females' reac­

tion time scores tended to remain high until their late 30's or early 

40's while the male's reaction time tended to stabilize around age 20. 

Maturational changes in movement time tended to follow the same pattern. 

However, although males increased in movement speed about 68% between 

the ages of 6 and 12, the increase in movement speed of 81% for the 

females more closely approximated the qualitative pattern of change in 

reaction time for the total group. Reaction time and movement time 

appeared to peak between 18 to 21 years and 15 to 17 years for both 

males and females, respectively. 
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Hodgkins then grouped all ages within the range of ages 6 to 84 

and found the correlation between reaction time and movement time was 

_r = .824; for all females, _r = .540; and for all males, _r = .680. How­

ever, when correlations were computed for reaction time and movement 

time at different ages, the only significant relationships were 22- to 

38-year-old females and males with jr = .453 and _r = .450, respectively, 

and 70- to 84-year-old subjects with a correlation of r = .713. 

Hodgkins' findings agree with Mendryk and Pierson both of whom 

found the correlation between reaction time and movement time to be 

higher in heterogeneous groups than in those groups homogeneous in 

composition with respect to age. Hodgkins attributed the high correla­

tions to lack of control of the type of set, sensory or motor, and to 

the short length of practice time allotted. 

Motivation. Motivation can direct behavior by influencing the 

extent to which an activity is sustained. Motivational constructs may 

be generated intrinsically by the person, or they may be applied exter­

nally through presentation of shock or information. 

Henry (1951), Munro (1951), Howell (1953), and Hippie (1954) 

gave cues to motivate. Information was an implicit part of the moti­

vating agent: shock, bright light, or noise. 

Henry (1951) applied a mild electric shock on the upper arm to 

subjects who performed a simple reaction time task of releasing a key 

after visual stimulus. Groups were equated on mean reaction time. Each 

of 10 men received shock when his reaction time for a given trial was 

slower than his mean reaction time, while each of 10 men in the control 

group received no shock. The information supplied by mild shock was 
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hypothesized to have a motivating effect on the subjects. Comparing 

results of the first five trials with the last five, the experimental 

group improved 9.4% in reaction time as compared to the control group. 

Improvement continued for 25 trials and then plateaued. The control 

group did not change. 

Munro (1951) submitted 60 college men to a series of tests to 

measure retention of a movement speed task in which movement time had 

been decreased through application of mild shock as a motivating agent. 

Tasks developed by Henry (1951) were utilized. It was concluded that 

effects from the motivating treatment lasted seven weeks before the 

reaction and movement time speeds began to regress significantly. 

Henry (1952) used motivating devices of change in illumination, 

presentation of shock, and amplification of sound when the subject 

reached his median time on a given trial. With this motivational infor­

mation, all groups improved in reaction time. Most groups improved in 

movement time depending upon the stimulus received. 

Using Henry's task of hitting a suspended tennis ball, Howell 

(1953) considered reaction time and movement time separately and then 

combined them to find total response time. Electric shock was imposed 

of sufficient magnitude (.7 to .16 amperes) to make the subject "emo­

tionally disturbed." Fifty male subjects were exposed to three series: 

(a) without shock, (b) with shock imposed for slowness, and (c) with 

shock prevented by quickness. At the conclusion of the experiment the 

men evaluated subjectively their degree of tenseness. Using that infor­

mation combined with data from physiological and observational tech­

niques employed by the experimenter, subjects were placed into a "tense 
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group" and a "less tense group." Howell projected that some subjects 

would gain in reaction time and others in movement time so that there 

would be a negative relationship between the two factors. A negative 

correlation of _r = -.382 which was obtained supported this hypothesis. 

The "tense group" improved 33.3% more than the "less tense group" when 

shock was imposed at regular intervals. 

Although Hippie's (1954) purpose was to modify motivation and 

tenseness variables, using 12- to 14-year-old Black and White boys as 

subjects, to find effects on reaction time and movement time, only the 

results of the White sample which would be pertinent to the present 

investigation will be reported. Muscular tension was measured by a 

pneumonic bulb technique developed by Henry. Information motivation was 

assumed to be provided by presentation of a buzzer within the response 

when the reaction became longer than the mean reaction time for that 

subject. Members of the experimental White group increased in reaction 

speed and movement speed as well as gross tenseness when compared with 

the White control group. The increase was 2.5 to 3 times as great for 

the net movement time as for the net reaction time. 

Nash, Phelan, Demas, and Bittner (1966) studied shock treatment 

as a form of induced anxiety in a reaction time task. Two types of 

anxiety measures, general or manifest anxiety as measured by the Taylor 

Manifest Anxiety Test (TMAT) and stress, were introduced into a situation 

which caused subject discomfort. Induced anxiety such as shock treat­

ment has been suggested to influence reaction time more than manifest 

anxiety. 
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Seventeen college students were tested in a pilot study, and an 

interaction between the individual level of manifest anxiety and the 

presence or absence of stress was found. Simple reaction time of the 

person subjected to induced anxiety was slower than that of members of 

the control group. In the final experiment, 36 college females were 

given the TMAT. Results were ranked and subjects were placed in "low," 

"medium," and "high" manifest anxiety groups and in "stress" or "no 

stress" groups at random. The experimental group was administered shock 

of sufficient amplitude to cause distress before trials 1, 3, 5, 6, and 

9 of a task which involved lifting the forefinger from the key upon 

presentation of a visual stimulus. The individual threshold of reaction 

to shock had been predetermined. Simple reaction time scores of women 

subjected to stress were slower than the non-stressed women. Levels of 

manifest anxiety did not affect reaction time. The results were inter­

preted as being caused in part by distraction since the women had two 

concurrent concerns: wondering whether they would receive shock and 

having to respond to the stimulus by lifting the finger from the key. 

Skill. A number of studies have been conducted to compare the 

skilled and unskilled performer on reaction time and movement time 

performance. In general, athletes appear to perform more quickly in 

these variables than nonathletes. 

Keller (1942) attempted to verify the intuition of coaches that 

men who move their bodies adroitly and quickly are successful in 

athletics. Measures of movement time were taken from a task of moving 

diagonally forward to touch a target. Athletes were found to be supe­

rior to nonathletes in this specific task. 
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Belse and Peaseley(1937) completed an early study to differen­

tiate agility, gross reaction time, and gross movement time in total 

body movements. Women were divided into "skilled" and "unskilled" 

groups on the basis of teacher's ratings in college physical education 

classes, scores on a motor ability test, and performance on competitive 

teams. Skilled and unskilled subjects were compared on two tasks. In 

one task, reaction time was indicated as the subject left a switch 

plate and movement time was signaled as the subject stepped on switch 

plates placed in two separate parts of the circuitous path of a motor 

ability test. For the other test, each subject sat near the switch 

plate and pushed down with her hand when a light was flashed. This 

continuous pattern was completed at least five times in sequence. The 

skilled subjects were faster than the unskilled in both tasks. The 

experiment was extended to see if training for seven weeks in a sport 

within a physical education class had any effect on reaction time or 

movement time. No changes in these responses were noted. 

Olsen (1956) designated 300 male college students as (a) ath­

letic (earned varsity letter), (b) intermediate (intramural partici­

pant), and (c) nonathletic (no history of participation). Three tests to 

a visual stimulus were presented which measured simple, choice, or dis­

criminatory reaction responses. Athletes performed faster on all tests 

than did intermediate skilled subjects or nonathletes. The intermediate 

subjects were faster than nonathletes on reaction time measures. When 

athletes' scores on skill were correlated with reaction time, no rela­

tionship was found, possibly due to the homogeneity of the select group. 
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Reaction time and arm movement time scores were compared for 

college women athletes and nonathletes by Youngen (1959). The arm move­

ment task included, after a visual stimulus, lifting the forefinger from 

a key to enact reaction time and then moving the arm toward a target 13 

inches in front of the subject. Closing a photoelectric beam switch 

deactivated the clock which indicated the time of the movement. A 

series of 35 reaction-time and 35 movement-time trials were recorded for 

122 female college subjects who had been subdivided into two nominal 

categories of athletes and nonathletes. Athletes were faster than non-

athletes in both reaction time and movement time. Youngen suggested 

these differences might be caused in part by intrinsic motivation due to 

the competitive attitudes of the athletes. 

Knapp (1961) projected that highly-skilled players of racquet 

sports would have a faster simple reaction time response to a visual 

stimulus as compared to non-playing students who were members of a 

research class. The task was to release a key following a varying fore-

period of one to four seconds. Two blocks of 25 trials each were spaced 

by a one-minute rest period. Using the split-parallel technique to 

assess reliability of the mean of each block of trials, a high coeffi­

cient of r = .846 was obtained when all subject data were pooled. When 

the scores of only the highly-skilled performers were considered, a 

higher estimate of reliability _r = .95 was obtained. When the 50 

responses were used to compute the average reaction time for each sub­

ject, the skilled (.207 seconds mean reaction time) were faster to 

respond than the non-playing subjects (.235 seconds reaction time). 
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Because the estimate of the variance for each group of 25 trials 

for each subject was not normally distributed, transformation was made 

to z, = h loges^. The transformed j: scores showed no difference between 

the first and second block of 25 trials for members of either group. 

Using the jz scores it was found that the variation in simple reaction 

time of the highly-skilled was less than the non-playing subjects. 

Definition of the Task 

The length of the foreperiod and the temporal sequence at which 

the stimulus is presented to the person contribute to performance. Some 

preparatory intervals have been found to induce faster reaction times 

than others. Information compiled by Woodworth and Schlosberg (1954) 

relating to early studies concerning the effects of the length of the 

foreperiod on the ensuing response indicated that the prevalent theory of 

readiness or set which governed the relationship of the length of the 

foreperiod and reaction time was that the two factors were interrelated 

in a curvilinear manner. Consensus was that a series of foreperiods of 

standard length would elicit a faster response than would a series of 

foreperiods of varying lengths. Later theories have considered the 

probability of stimulus occurrence in relation to time decadence within 

the interval and the ordinal length of the foreperiods preceding the 

measured response. Effects of the pattern of variance were postulated 

to cause differing lengths of response. 

Optimal foreperiod. Early studies by Woodrow (1914) and Telford 

(1931) form the base for the theory that set and optimal reaction time 

form a curvilinear graphic pattern. Woodrow (1941) used auditory 
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stimuli in his laboratory to test simple reaction time of three well-

trained subjects in a key-release task. All were given only motor set, 

for the direction to each subject was to focus his attention on the 

motor act of releasing the key rather than on the sensory act of lis­

tening for the stimulus. By extending the foreperiod in intervals of 

1, 2, 4, 8, 12, 16, 20, and 24 seconds, Woodrow found there were dif­

ferences in the length of response time depending on whether the fore-

period remained the same for a series of trials or was varied irregu­

larly and without warning. By controlling the length of the foreperiod 

and presenting the stimuli in a consistently rhythmic pattern, thereby 

aiding the subject to anticipate the arrival of the stimulus, the 

optimal length of the foreperiod was two to four seconds. Longer or 

shorter foreperiods than the optimal interval elicited slower reaction 

times. When the foreperiod was varied in an irregular temporal pattern, 

there was no clear optimal length of the foreperiod. Reaction time 

definitely was faster in the group receiving constant foreperiod length 

as compared to the group receiving varying foreperiod intervals. 

Telford (1931) studied the effects of foreperiods presented at 

intervals of .5, 1, 2, and 4 seconds on simple reaction time to an audi­

tory stimulus. The 8- and 12-second intervals had the same effect as 

the 4-second interval in a pilot study and had been discarded due to 

their redundant contribution. The one- and two-second foreperiod inter­

vals were most favorable for fast reaction time indicating a possible 

curvilinear relationship between the length of the foreperiod and simple 

reaction time. Telford found marked deterioration in reaction time when 

the foreperiod interval was shortened to .5 seconds as opposed to the 

leveling effects found at the longer intervals. 
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Klemmer (1956) concurred with the general consensus that the use 

of constant foreperiods initiated faster reaction time when the order of 

presentation was mixed randomly. He found that individual foreperiods 

of trials had less effect on reaction time compared to the breadth of 

the range in which the foreperiod was positioned. 

Rothstein (1973) studied reaction time to a visual stimulus when 

a 2.5-second common foreperiod was placed in one of three consecutive, 

overlapping two-second ranges of foreperiods. The influence of position 

within the range on temporal expectancy of the subject was assessed. 

Results indicated that when the 2.5-second foreperiod was positioned at 

the faster edge of the .5 to 2.5-second interval and at the midpoint of 

the 1.5 to 3.5-second interval, reaction time was fastest within each 

respective range. However, when the common foreperiod was positioned at 

the lower edge of the 2.5 to 4.5-second interval, reaction time was 

slowest within that particular range. Rothstein projected that a swim­

ming coach might train a swimmer to react to a shorter foreperiod than 

would be utilized in competition. The actual foreperiod in competition 

would position later in the range of expectancy of the swimmer and 

should elicit a faster reaction time. 

Interval order. Two additional theories have been suggested 

regarding the effect of the length of the foreperiod upon the reaction 

time response. One theory involves the "information reduction effect" 

which infers that the subject realizes that as time passes the stimulus 

is more imminent. The ability of the subject to be aware subconsciously 

of orderly time passage depends upon his knowledge of the probability of 

occurrence of the stimulus and his own individual sense of timing. 
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Proponents of this theory state that as time within the expected range 

increases, the probability of occurrence increases as does the subject's 

sense of anticipation and consequent set. 

The "previous foreperiod effect" is a second theory used to 

explain the interrelationship between length of the foreperiod and 

simple reaction time response. The subject is assumed to predict the 

length of a given foreperiod based on his knowledge of the length of the 

previous foreperiod. Therefore, the influence of the relative length of 

foreperiods preceding the measured response is of importance, and 

sequential effects of order would not be expected necessarily to be 

equal for intervals of varying lengths. 

Klemmer (1956) further studied the effects of order of fore-

period signal intervals on simple reaction time and found that the 

slowest reaction times resulted from a short foreperiod preceded by a 

long period. To the contrary, a long foreperiod preceded by a short 

foreperiod obtained the fastest reaction time. Two long or two short 

foreperiods in sequence elicited reaction time equal to the mean at that 

interval. The foreperiod occurring three trials before the reaction 

time being evaluated had no effect on that response. 

Karlin (1959) investigated the effect upon simple reaction time 

of the length of the foreperiod immediately previous to the response. 

Specifically, he was concerned with a careful examination of Woodrow's 

(1914) findings, and therefore, he inspected responses within the two to 

four second optimal length of the foreperiod according to the theory of 

curvilinear relationship. Foreperiods of .5, 1, 2, and 3.5 seconds were 

presented in ascending or descending order or in blocks at 1, 2, and 3.5 
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second intervals. In each block, the median foreperiod was presented as 

were two additional times, one 20% slower than the median time and one 

20% faster. Trend analysis showed that the median times in each block 

elicited the fastest reaction times. Results indicated that whether 

treatments were presented in blocked or sequential order there was no 

difference in reaction time and that foreperiods of .5, 1, 2, and 3.5 

seconds elicited a linear path of reaction time scores from fastest to 

slowest time without inflection. These results clearly were in opposi­

tion to the curvilinear theory. 

Using two college students as subjects, Drazin (1961) set a mean 

foreperiod of 1.5 seconds within a series of ranges of varying widths. 

The reaction time and foreperiod relationship was found to be affected 

when the range width of the foreperiod was .5 seconds or less. Reaction 

time decreased initially tracing a negatively accelerated curve in rela­

tion to the foreperiod length. The length of the foreperiod preceding 

the measured response influenced reaction time to a greater extent than 

the length of the second foreperiod before the measured response. Long 

reaction times tended to follow short foreperiods to a large degree 

while short reaction times tended to follow long foreperiods to a lesser 

extent. 

Botwinick and Brinley (1962) presented foreperiods of .5, 1, 3, 

6, and 15 seconds in both regular and irregular series with combined 

audio and visual stimuli as well as in two separate sets of stimuli in 

two auditory ranges. Women were slower than men in reaction time at 

all intervals under both treatments. Except at the 15-second interval, 

presentation of the foreperiod in regular series elicited faster reac­

tion time than presentation in irregular series. 
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Data were subjected to principal components factor analysis to 

ascertain if length of the foreperiod could be identified as an inde­

pendent factor. The primary component, labeled general reaction time, 

accounted for 63% of the variance for regular presentation and either 

73% or 84% for the irregular presentation. The difference in loadings 

occurred because two separate ranges were utilized in the irregular 

presentation of the stimulus. High positive factor loadings were 

obtained for short foreperiods and negative factor loadings for long 

intervals within each range. Due to the polarity, rotation of axes was 

conducted to attempt to reflect the independent variance of the shortest 

foreperiods. The principal component, general reaction time, accounted 

for 58% or 81% of the variance. The second component was identified as 

the short preparatory interval, for there were high positive loads on 

the short interval and zero loads on the long intervals. Results of the 

factor analysis were tenable regardless of whether the foreperiod was 

controlled or randomized, or, in the case of the two special auditory 

stimuli, the breadth of the range was standard. When data from regular 

and irregular series were pooled, the principal component, general reac­

tion time, accommodated 50% of the variance. Subsequent components 

could not be identified, and rotation of the axes did not clarify 

classification. 

McCormack (1961) had subjects complete a fine-motor task which 

involved hitting a microswitch as fast as possible after a stimulus 

which arrived from 30 to 90 seconds after the previous one. The task 

continued for a 35-minute period. A linear relation between the length 

of the reaction time and duration of the task was found; that is, as the 
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duration of the experimental period was extended the reaction time of 

the subject became slower. 

Henry (1960a) in explaining his "Memory Drum" theory found when 

trials were blocked at the same level of task complexity reaction time 

at all ages was faster than when task complexity was varied from trial-

to-trial. This, Henry indicated, could be due in part to practice 

effects of having the same subjects in both experimental blocks and 

always completing the blocked trials before the randomly varied trials. 

Thompson, Nagle, and Dobias (1958) studied the effect of varying 

lengths and rhythms of the foreperiod upon a gross motor skill. Foot­

ball offensive signals were presented at even and uneven cadence to find 

which presentation elicited the faster reaction time among football 

linemen. The quarterback called the cadence rhythmically or arhythmi-

cally having told each subject previously on which number he was to 

charge. The quarterback pressed a button to activate the clock on the 

predetermined "hut." When the lineman stepped on a contact plate 18 

inches ahead of the starting line, the clock was stopped, and movement 

time was indicated. Five trials were given on the pretest, but the 

number of trials was shortened to three when the correlation between the 

mean scores of five trials and three trials was _r = .86. Reliability 

coefficients of the test-retest situation were _r = .71 for rhythmic 

presentation and r; = .52 for nonrhythmic presentation. Rhythmic signals 

elicited faster reaction time and movement time for both college and 

high school males than nonrhythmic signals. 

To clarify the potential for fast starts in football to offen­

sive cadence signals, Wilson (1959) studied the relationship of reaction 



30 

time and movement time to a visual stimulus presented within a series of 

visual cue lights which was presented at a rhythmical or arhythmical 

tempo. The laboratory-oriented task involved removing the forefinger 

from a key to enact an arm movement to hit a tennis ball placed 12 

inches in front of the subject. A large light was illuminated in a 

random order within a series of eight smaller lamps arranged horizon­

tally. The smaller lamps were lit in a display of one every second in 

the rhythmical presentation and one every .5, 1, or 1.5 seconds in the 

arhythmical presentation. 

The nonrhythmic presentation of the display resulted in a mean 

reaction time of .210 seconds and the rhythmic presentation in a mean 

time of .198 seconds. The rhythmic presentation elicited significantly 

faster responses. When the shorter irregular interval times and corre­

sponding trials for regular stimuli were discarded, the mean foreperiod 

was one second for each group. Reaction time to irregular tempo of 

presentation still was slower. There was no difference in movement time 

regardless of the method of stimulus presentation. The correlation 

coefficient of r = .308 indicated little relationship existed between 

reaction time and movement time so that they were interpreted as inde­

pendent factors. 

Simon and Slaviero (1975) used a lamp display to count down the 

foreperiod. Eight lights: a warning light, six "count-down" lights, 

and the stimulus light were mounted on a panel. The countdown lights 

were lit every .280 seconds during a constant two-second foreperiod for 

the experimental group. The lights were not activated for the control 

group; hence, the control group received less time-reducing information 
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than the experimental group. Simple and choice reaction time tasks were 

presented to see if time-pacing would help lower choice reaction time 

more than simple reaction time. Experimental group trial times were 

faster than control group times, and simple reaction time was faster 

than choice reaction time for both groups. Interaction effects indi­

cated that although countdown shortened both simple reaction time and 

choice reaction time, the effects were greater on choice reaction time. 

It was suggested that readiness affects both peripheral and central 

processes of discrimination and choice tasks. 

Nature of the Skill 

Armbruster, Allen, and Billingsley (1973) described the me­

chanics of the grab racing swimming start. The swimmer steps up to the 

blocks and places his feet six to ten inches apart with his toes over 

the edge of the blocks. His attention is directed to the starter. Upon 

the command, "Take your mark," the swimmer immediately gets into start­

ing position by bending forward and grasping the front of the block with 

both hands for balance and support. The entire set of the swimmer is on 

the pistol shot. Since the attention of the swimmer occurs in waves, 

the length of time the swimmer is held on the mark is crucial to the 

effectiveness of the start. When the pistol is fired, the swimmer pulls 

forward with his hands and arms as he extends his knees forcefully. 

Gambril (1969), a national-level coach, suggests that since the grab 

start gets the person into the water faster than the traditional forward 

start, the grab start should be used by swimmers who have poor reaction 

time. He concluded that fast swimmers are those who react to the pistol 

shot more quickly than other swimmers. 
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Walker and Hayden (1933) performed the first recorded experiment 

to determine the optimal time between the set signal and the sound of 

the gun in relation to the effectiveness of track performers in the 

sprint start. They assumed that the certain optimal time necessary for 

a performer's attention and the gun sound should coincide. They noted 

that attention tended to fluctuate in that it peaked, subsided, and 

peaked again. They used a gun and attached a chronoscope from the gun 

to the rear foot of the runner on the starting block. The apparatus was 

used to measure temporal factors. A stopwatch was used to measure six 

different intervals between the commands and the gun: 1, 1.2, 1.4, 1.6, 

1.8, and 2 seconds. Each of the 27 subjects completed 168 starts, four 

in each interval, daily for seven days. In order to eliminate fatigue, 

four starts were completed for each interval during each test period, 

and this was a limiting condition. The optimal mean time was 1.6 

seconds. A foreperiod of 1.0 to 1.2 seconds was found to be too short; 

1.4 to 1.6 seconds was optimal; and 1.8 to 2.0 seconds was too long. 

Walker and Hayden concluded that if the sprinter was held about 1.5 

seconds on the mark, the changes were significantly greater that he 

would get an optimal start. 

Nakamura's (1934) work on track starts substantiated the infer­

ence that 1.5 seconds was the optimal length of the foreperiod. He 

noted that in 1934 Japanese track sprinters were held at set position 

for at least two seconds before the gun. Runners were complaining that 

the long wait was distressing. Nakamura tested three time intervals: 

1, 1.5, and 2 seconds. Subjects were assigned by random to groups for 

36 starts. Time intervals were established by using a metronome. The 
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starter was trained and experienced. There was a five-minute rest 

between the trials, and after the tenth trial an additional 10-minute 

rest was provided if necessary. Apparently not all subjects were 

afforded a 10-minute rest, which is a limitation of the study. Each of 

the 10 subjects was asked to write his thoughts after the experiment. 

Subjects reported that when the foreperiod was 1 second, their attention 

was directed to getting into the set position. The time was not long 

enough for them to organize this attention as they were still in the 

process of getting poised. When the foreperiod was extended to 2 

seconds their attention began to fluctuate. To the sprinters, the 

interval of 1.5 seconds felt optimal. 

Tuttle, Morehouse, and Armbruster (1939) studied response time 

(reaction time plus movement time) in the conventional forward swimming 

racing start and the length of foreperiod as controlled by an experi­

enced starter. The starter had practiced controlling the length of the 

foreperiod against a stopwatch. The response times for 10 male varsity 

swimmers was obtained with randomly ordered foreperiods of 1, 1.2, 1.4, 

1.6, 1.8, 2, and 2.2 seconds. The range of 1.6 to 2.2 seconds was 

found to be optimal. 

Tuttle, Morehouse, and Armbruster (1940) considered differences 

in techniques used to initiate the foreperiod in their previous study on 

the swimming start and the results of the study of the track start by 

Walker and Hayden (1933). Techniques of measurement were analyzed to 

see if they accounted for the .5 second difference in the range of 

optimal holding time of the foreperiod for the two gross tasks. Thirty 

swimmers, 15 of whom had swum competitively for three or mora years and 
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15 of whom were untrained, completed five trials at each of three 

intervals: 1, 1.5, and 2 seconds. Swimmers received the same treatment 

as the track runners had in the Walker and Hayden study. After the 

command, "Get set," the foreperiod was measured on a stopwatch and the 

gun was fired after the designated interval. In the previous swimming 

start study, the time the swimmer moved from the vertical to the 

crouched position on the blocks was included in the foreperiod. Con­

clusions were that for trained swimmers the optimal interval was 1.5 

seconds, and for the untrained swimmers the optimal time was 1 second. 

Unfortunately, only raw mean scores were presented, and the data were 

not subjected to statistical analysis. 

Slater-Hammel (1953) suggested that the initial position of the 

knees and distribution of weight could affect total body reaction time. 

The gross task he studied was similar in starting position to the racing 

dive. Slater-Hammel devised a choice reaction time task for gross body 

response by embedding microswitches in the surface of a low platform in 

front of a two-light visual display. The subject placed each foot on a 

microswitch and assumed a specified position relative to bending or 

straightening knees and distributing the body weight over the whole of 

both feet or concentrating the weight on the balls of the feet. When 

one of the lights on the display was illuminated, the subject moved his 

corresponding foot diagonally forward. Analysis through Latin squares 

indicated that knee position was of no consequence. College men reacted 

faster when their weight: was evenly distributed as compared to when 

their weight was concentrated on the balls of the feet. A subsequent 

experiment indicated that when weight was distributed over the balls of 
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the feet, subjects rocked on their heels before removing their feet from 

the platform thereby extending response time. 

Mechanical factors. Several studies have been conducted which 

emphasize mechanical aspects of various styles of racing dives. 

Recently the grab start has been gaining popularity. Research has been 

conducted which is designed to compare the effectiveness of the grab 

start and the conventional starts. 

Heusner (1959) prepared mathematical specifications for the 

racing dive. His problem was to minimize total time needed to dive, 

glide, and swim 75 feet. When using cinematographical analysis to 

establish validity, he found the optimal angle of take-off from the 

blocks at the required height of 2.5 feet to be at an angle 13 degrees 

above the horizontal. By lowering the blocks to 1.5 feet above the sur­

face, the optimal angle decreased one degree. Standing height and 

weight of the swimmer affected the optimal angle of take-off. Variance 

in standing height from 71 to 64 inches raised the optimal angle one 

degree. That is, the shorter person performed better from a starting 

block set at a 14 degree angle to the water surface. The optimal angle 

of take-off of a 110-pound swimmer was 2 degrees less than for a 160-

pound swimmer. 

Groves and Roberts (1972) investigated in depth the optimum 

angle of projection for the generation of horizontal velocity for the 

forward start. Using a film analysis of 16 college men, they measured 

the path of a black circle sewn on the swimmer's trunks in a position to 

coincide with the center of gravity. A background grid was provided to 

indicate units of distance. The center of gravity was plotted at the 
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instant when the feet left the starting block and subsequently was 

plotted when the center of gravity entered the water. The horizontal 

distance between these two points was called the range. By multiplying 

the range by the number of frames per second, the time needed to pass 

the horizontal distance was calculated. The vertical velocity was 

determined by the formula: 

V - % g t2 -yo & ta 

when "yo" is the distance the center of gravity fell while the subject 

was a free-falling body and "ta" was the time the student remained in 

the air while acting as a freely-falling body. The horizontal velocity 

was calculated by dividing the horizontal range by the time spent in the 

air as a freely falling body. The angle of projection was the tangent 

to the vertical velocity divided by the horizontal velocity. 

Heusner (1959) contended that heavier competitors should project 

themselves at a higher angle than competitors with less mass. The 

results of Groves and Roberts contradict that contention. They found 

that each subject, regardless of weight, had an optimal angle of pro­

jection of -13 degrees. Groves and Roberts concluded that any angle 

which does not deviate greatly from -13 degrees results in a dive of 

greater horizontal distance than any angle above the horizontal. 

Comparing three styles of conventional forward dives, Maglischo 

and Maglischo (1968) studied 10 varsity male swimmers. Each of the 

starts: (a) straight backswing, (h) circular backswing, (c) arms-back, 

was compared to the time with which the competitor reached a point in 

the water 15 feet from the block. Subjects were trained in each start 
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until, to an observer, every swimmer could perform each style equally 

well. During the test, every swimmer completed 10 dives of each style 

in rotated order. A Dekan automatic performance analyzer which recorded 

times to .01 seconds was used. A 15-foot control line was attached to 

each swimmer's suit with clips. As the swimmer started, the switch was 

closed manually. When the swimmer reached a point 15 feet from the 

starting block, the control line was pulled from the analyzer which 

stopped the timer. Use of the sign test for the middle six scores indi­

cated that the circular backswing and the arms-back starts were both 

better than the straight backswing start. There was no difference in 

the effectiveness of the circular and arms-back swings. 

Cinematographical analyses. Film analyses have been a source 

of information regarding the differences in performance when the same 

swimmer uses a grab start or a conventional start. Many of the studies 

are purely descriptive in nature while other data are subjected to 

statistical analysis. 

Groves (1973) used cinematographical analysis of 16-mm films of 

16 male intercollegiate swimmers. The average age was 20, and the 

average years of competitive swimming experience was eight. The diving 

style was not specified. After 20 training sessions of 15 minutes dura­

tion each, a film including the sequence from the flash of the gun 

through the feet leaving the blocks was taken for five trials per man. 

Using a film analyzer, reaction time was measured from the flash of the 

gun until the start of the first movement of any part of the body. 

Movement time was described from the first movement of any part of the 

body until the feet left the blocks. Results were as follows: 
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Table 1 

Reaction Time and Movement Time Scores 

n Range X SD SE~ 

Reaction 
Time (sec) 16 .151-.293 .214 .036 .009 

Movement 
Time (sec) 16 .760-.888 .811 .041 .010 

A Pearson correlation between reaction time and movement time yielded a 

coefficient of _r - -.231 indicating no relationship between these 

o 
factors. The r , coefficient of determination, indicated that 5% of the 

variance of reaction time was associated with movement time. 

Roffer (1972) used nine swimmers, eight males and one female, to 

compare the grab start and the conventional start. The time of each 

swimmer from his leaving the block to his reaching a point 12 feet 

distant was measured. Because the swimmers were not familiar with the 

grab start, a three-week training period consisting of 15 periods of 30 

minutes was initiated. During the test, each swimmer completed 90 

trials, alternating five trials of each style. Roffer used sophisti­

cated cinematographical equipment. Filming was done at 100-feet-per-

second, and timing marks from a signal generator were used for calibra­

tion. Analysis was completed with a Vanguard Motion Analyzer with an 

x-y coordinate system. This enabled efficient calculation of distance 

and velocity. When the data were analyzed, the start time was divided 

into segments: (a) the start time or the time from the gun to when the 
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feet leave the block, and (b) the flight time or the time from when the 

feet leave the block until a point is reached 12 feet from the blocks. 

Results indicated that the grab start elicited a faster start time than 

the conventional start although there was no difference in flight time. 

The conclusion was drawn that the grab start was faster than the tradi­

tional start. 

Hanauer (1972) also conducted a cinematographical study to com­

pare the grab start to the conventional start. Only one subject, an 

accomplished varsity male sprinter who had adopted the grab start suc­

cessfully the previous year, was studied. Only one trial of each type 

of start was filmed. Crucial frames which were analyzed included: 

(a) starting position, (b) release of hands for the grab start, 

(c) upper body parallel to the surface, (d) toes leaving the blocks, 

(e) full flight, and (f) hand entry. Tracings made of crucial frames 

for each diving style were superimposed. A drawing was made of the 

trajectory on each start from the frame when the toes left the block to 

the frame when the hips entered the water. The top of the swimmer's 

trunks was used as the landmark. The parameter of time was measured by 

counting the frames elapsed during the movement. Reaction time was 

determined by counting the number of frames from the flash of the gun 

until the initiation of movement. Frames also were counted for the 

following sequence: (a) toes leaving the block, (b) hands hitting the 

water, (c) feet disappearing into the water, (d) hands passing the edge 

of the picture frame which indicates the horizontal distance of the 

body at entry. 
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Hanauer's study was intended to be descriptive in nature. No 

statistical evidence was offered. Hanauer did indicate that the swimmer 

traveled a greater horizontal distance with the conventional start. 

However, the swimmer left the block faster with the grab start. 

Michaels (1973) used the observational conclusions of Hanauer to 

set his hypothesis that the advantage of the time saved between leaving 

the blocks and entering the water from the grab start would outweigh 

the distance lost when comparing the conventional start and the grab 

start. Subjects were six male varsity college athletes. None had 

attempted the grab start previous to the test. Each was allowed one 

practice start on each type of forward racing dive. Then each subject 

completed 10 trials, alternating grab and conventional starts with half 

of the subjects starting with the conventional start on their first 

trial and the other half beginning with the grab start. An electronic 

timing device which was activated by a starting gun and was stopped by a 

hand button was used. The timer and the operator stood 25 feet from the 

starting block even with a line painted on the pool bottom. At the gun­

shot, the swimmer did the assigned start and held his extended position 

for 25 feet. When his hands passed the line, the clock was stopped. 

Results of Michaels' study indicated that there were fewer (vir­

tually no) false starts for the grab position. The data were not 

treated statistically. The time from the gunshot to the body entering 

the water was shorter for the grab start than for the conventional 

start. However, the conventional start projected the swimmer further 

over the water. This might be due to the fact that in the grab start, 

the center of gravity is further forward over the feet during the set 
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position. The movement of the arms and legs has immediate effect with­

out having to drop the position of the center of gravity forward first. 

In the conventional start, the first movement is to lean forward to move 

the center of gravity forward. This delay would affect the time span of 

the body leaving the blocks. There is time, however, for a greater sum­

mation of forces using the conventional start. The arms describe a more 

circular and wider pattern which produces greater force in the summation 

process. 

Van Slooten (1973) filmed one varsity college male swimmer who 

had never used the grab start before the testing. The path of the 

center of gravity was traced for both the grab and traditional starts. 

He found that the grab start produced greater velocity, faster take-off, 

and a faster time to the water entry. The traditional start produced a 

greater angle of take-off, greater acceleration, and a greater distance 

into the water. 

Summary 

Detailed investigation of the relationship of reaction time and 

movement time in the grab racing start in swimming and interaction of 

those variables with the length of the foreperiod before the gun sounds 

necessitates examination of several factors. The attributes the per­

former brings to the task must be considered. The task itself must be 

clearly defined. This involves analysis of the nature of the foreperiod 

and the effects differing methods of stimulus presentation have upon the 

task. Inspection must be made of those previous investigations which 

have dealt specifically with the swimming start so that techniques and 

methodology may be reviewed. 
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The two factors, reaction time and movement time, have been 

shown to be independent variables. Henry's series of experiments indi­

cate virtually no relationship between the variables. Subsequent 

studies indicate this lack of relationship is not changed by matura-

tional influences of age or by the inherent characteristic of sex. 

Members of highly-skilled groups tend to aggregate faster reaction times 

and movement times than lesser-skilled persons. Higher correlations 

between reaction time and movement time occur when heterogeneous groups 

are compared. 

Reaction time has been shown to vary with age, primarily in 

a curvilinear pattern peaking at age 19. Throughout the teenage years 

an extremely slight, yet apparent, decrease in reaction time occurs. 

Movement time decrements follow basically the same pattern. Men are 

faster in both variables than women. More differences seem to exist 

due to maturational and sex characteristics in movement time as compared 

to reaction time. Movement time changes more with practice and should 

be measured reliably in highly-skilled groups. 

Use of electric shock as a motivator has produced decreases in 

reaction time. The mild shock is administered when a given response 

endures longer than the average response for the specific subject. 

Presentation of shock in this manner is called motivational in that 

some time-keeping knowledge and reinforcement is presented. Levels of 

manifest anxiety did not affect simple reaction time. 

The cue to which the subject attends has been shown to affect 

simple reaction time to a lesser degree than choice reaction time. 

However, even in simple reaction time, a sensory set has been shown to 

elicit a faster response than a motor set. 
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Several theories exist regarding the relation of the length of 

the optimal foreperiod for fast response time. Early studies clearly 

supported the theory that the graphic relation between the preparatory 

interval and the optimal response was curvilinear. Competitors found 

they could not position themselves physically if the foreperiod was too 

short, and they would lose their keen edge of concentration if the fore-

period was too long. From the earliest studies, regular presentation of 

foreperiods has elicited consistently faster responses than irregular 

presentation of foreperiods. 

In recent studies attempts have been made to examine the effect 

of the length of preceding foreperiod intervals on the given response. 

There is agreement that the third interval previous to the response 

does not affect the response time. There is disagreement about the 

precise interrelationship of preceding order of more immediate fore-

periods upon the response. 

Investigations have included inspection of the foreperiod 

embedded within a given range. Placement toward the middle or higher 

end of the range seems to elicit the optimal result, although this 

finding is not conclusive. 

As indicated by the review of literature, study of the optimal 

foreperiod for an effective swimming or track start was most pronounced 

in the 1930's. Results of early investigations agreed that the optimal 

length of foreperiod was approximately 1.5 to 2 seconds. Attention was 

found to be related to the length of the foreperiod in a curvilinear 

pattern. 
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Several studies have been conducted to compare the grab start 

with the conventional start. It has been found that the grab start 

allows the competitor to leave the blocks faster than the traditional 

start. Certainly the grab start eliminates false starts due to the 

unstable starting position of the conventional start. Studies have not 

been completed to evaluate the effect of varying the foreperiod between 

the command and the sound of the gun on starting time by the skilled 

performer of the grab start. 
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CHAPTER III 

EXPERIMENTAL PROCEDURES 

Within this chapter a description of the apparatus and its use 

in measurement is given. Methods of selecting and testing subjects for 

both the pilot study and the experimental study are presented as well as 

projected statistical treatments of the data. 

Description of the Apparatus 

Speed of response was measured by a specially-designed timing 

device. The portable unit (4 inches x 9 inches x 9 inches) contained 

a 6-volt battery as its power source. The device was programmed to con­

trol the length of the foreperiod, to activate a solenoid which fired 

the gun, and to display times at which two pressure-sensitive ribbon 

switches mounted at the hand and foot positions of the swimmer on the 

block were opened. The foreperiod switch either could be activated 

manually by the starter or automatically by the swimmer when he first 

placed his hands on the ribbon switch. For both methods of activating 

the device, the starter held the "start" button down until the gun 

fired. This protective procedure was necessary so that children could 

not play with the switches on the block and make the gun fire. 

On the face of the chassis of the timing device was a foreperiod 

indicator which could be set within the range of .1 to 9.9 seconds in 

intervals of .1 seconds. A digital display which recorded time from 

.001 to 9.999 seconds in .001 second intervals was on the panel. A 
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standard 22-calibre starter's pistol containing a 9-blank cylinder was 

mounted on the chassis. The gun was modified by the addition of a hair-

trigger which provided sufficient sensitivity for the trigger to be 

pulled automatically by a solenoid which exerted 25 ounces of force. A 

15-foot plastic-covered cord was attached to the chassis and to two 

ribbon switches (5/32 inches x 9/16 inches x 24 inches) which were acti­

vated by application of 8 ounces of pressure (Tapeswitch Type 121 BP). 

One of the switches was mounted on the upper edge of the starting block, 

and the other switch was attached on the hand grip so the wire within 

the switch was placed precisely on the lower horizontal edge of the 

grip (see Figure 1). 

The logic of the timing circuit was programmed to count down the 

foreperiod and to reverse at the gun to count up. The starter selected 

the foreperiod. When the unit was activated, the length of the selected 

foreperiod was printed on the digital display, and as the logic program 

of the timer counted down, the display numbers decreased proportion­

ately in .1 second intervals. When the foreperiod ended, the gun was 

activated automatically, and the timer simultaneously began counting up. 

When the hands of the swimmer first moved on the ribbon switch, a split 

time was recorded on the display. When the feet left the ribbon switch 

on the block, the timing circuit terminated its program of counting up. 

If the hands left the ribbon switch before the gun was activated, a 

false start was indicated by the digital readout of 8.888. If the feet 

left the block before the hands, such as when a subject rocked back on 

his heels, the foreperiod switch was reactivated so that the error in 

technique produced obviously unuseable data. 
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Figure 1 

Testing Apparatus 
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Pilot Study 

A pilot study was conducted in order to verify the mechanical 

efficiency of the timing instrument, to test for subject reliability, 

and to smooth operational and clerical techniques. The study was com­

pleted July 2, 1975, at the Cedar Rapids, Iowa, YMCA indoor swimming 

pool. 

Selection of subjects. Swimmers, ages 12 to 17, from a Cedar 

Rapids Amateur Athletic Union team volunteered as subjects. Five swim­

mers, three girls and two boys, participated. The subjects were se­

lected because they were familiar with the grab start and because they 

were among the most highly skilled swimmers on the team. One girl was 

the national YMCA 12-year-old champion in the freestyle sprints; one 

girl was an Iowa high school state champion, and both boys had placed in 

the Iowa high school state swimming championships. 

Testing procedure. All subjects were tested at one session and 

performed individually in successive rotation. Each subject completed a 

block of five dives at the .5 and 1.5 second foreperiod intervals and 

three dives at the 1 and 2 second intervals and at varied foreperiod 

intervals. Order of presentation of the blocks of trials was assigned 

at random. 

Initially, several operational errors of the starter caused the 

subjects to commit false starts. Once the procedures were standardized 

two subjects continually committed false starts and were eliminated from 

the study. The remaining three subjects did not commit a false start on 

any of their trials at the .5, 1, or 1.5 second or varied foreperiod 

intervals. Numerous false starts occurred at the 2 second interval. 
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Trials in which false starts occurred were repeated at the end of each 

sequence. The starting platforms were placed horizontal to the water 

throughout the testing session. An informal study had indicated that an 

unduly larger number of false starts occurred when the platform was 

tilted to -13 degrees. Informal trials had shown also that one strong 

girl could perform 22 starts in succession without fatigue. Therefore, 

in the pilot study when the subjects were rotated in a group of three, 

fatigue was not considered to be a contaminating variable. 

The entire group of five subjects was given the following 

instructions: 

You will each complete 20 short-course starts, rotating one 
person after the other. When the starter says, "Take your 
mark," drop immediately into position. Try to concentrate 
on the start as you would in a race. You want to get a good 
start and to avoid any false starts. Are there any questions? 

The starter cocked the gun before initiating his commands. He 

selected the assigned foreperiod for the subject, and he pushed the 

"reset" button to clear the timing device. The instrument was placed 

12 feet to the front of the swimmer and to the side of the block on a 

ledge 4.5 feet above the deck where the starter is positioned during 

meets at the YMCA pool. The starter gave the command and pushed the 

"start" button. The device was activated for the set foreperiods by 

having the swimmer touch the hand switch; for the varied foreperiods, 

the gunshot was initiated by the starter who pushed the "start" button. 

When the swimmer left the blocks, a recorder wrote on the data sheet the 

time the hands first moved. The recorder then pushed the "foot" button 

and recorded the time at which the feet left the blocks. After each 

eight trials, the starter reloaded the gun. 
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Analysis of data. Two subjects' scores were not used. One girl 

consistently committed a false start and one boy rocked back onto his 

heels continuously. Neither subject yielded useable data, and both were 

dropped from the study after five attempts to get acceptable data. 

determine reliability of the trials. Using the Pearson Product Moment 

Method of linear correlation to compare the odd and even trials, scores 

from the first four trials at the .5 and 1.5 second intervals were 

analyzed to establish reliability coefficients. The resulting range of 

coefficients was from .92 to .99 (see Table 2). The subjects were 

highly reliable. 

The data from the remaining three subjects were analyzed to 

Table 2 

Correlation Coefficients For Hand Movement 

Time and Starting Time in the Pilot Study 

Foreperiod Intervals in Seconds 

Correlational 
Technique n .5 1.5 

Hand Movement Time 
Pearson Correlation 
Spearman-Brown 
Prophecy Formula 

3 
.80 
.92 

.97 

.99 

Starting Time 
Pearson Correlation 
Spearman-Brown 
Prophecy Formula 

3 
.93 
.98 

.89 

.96 
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Experimental Study 

The experimental study was completed July 15, 16, and 17, 1975, 

at the Scottsdale Swim and Tennis Club in Walnut Creek, California. 

Data were collected at swim practices between 7:00 and 9:00 a.m. at the 

outdoor pool. 

Selection of sub.jects. Twenty-four swimmers, 12 boys and 12 

girls, were selected from the members of the senior swim team. All 

swimmers had achieved Pacific Association Amateur Athletic Union "AA" 

times. Ages ranged from 12 to 17. Each subject had been a team member 

for a minimum of one season, and each swimmer used the grab start exclu­

sively in swimming meets (see Table 3). 

Table 3 

Distribution of Subjects By Age and Sex 

Age in Years 

Sex 12 13 14 15 16 17 

Male 3 1 3 2 2 1 

Female 3 3 2 3 1 0 

Testing procedure. Use of the equipment and the procedures fol­

lowed were similar to the methods utilized in the pilot study. The 

timing device was placed 10 feet to the side of the starting block on a 

table raised four feet above the deck. The top surface of the starting 

block was horizontal to 30 inches above the water level. The pressure 
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switches were mounted on the upper horizontal edge of the block and on 

the hand grip precisely over the center of the grip. 

Four trials were blocked for each of the four foreperiods: .5, 

1, 1.5 seconds and varied foreperiods. The 2-second foreperiod interval 

was eliminated after the pilot study results indicated that a substan­

tial number of false starts occurred at that interval. Each block of 

trials was presented in random order to each swimmer. Blocked trials 

presented in random intervals minimize the effects of order of presenta­

tion of intervals and the effects of order of presentation of trials. 

Subjects were tested in groups of four. A rotation order was 

used so that one subject was tested at a time, but the swimmer always 

remained in the same order of rotation with respect to other members of 

the group. One trial was initiated each 30 seconds. After each eight 

trials, the gun was reloaded during a 30 second interval. The length of 

each interval was measured from the pace clock utilized by the swimmers 

in the workout. This sequence allowed four swimmers to complete a 

testing period in 40 minutes if there were no false starts. In the 

case of a false start, that trial was repeated at the end of the block 

of trials at that interval. 

Three testing personnel were used. The starter was experienced 

in starting AAU meets. A member of the parents' club volunteered to be 

recorder. Both the recorder and the starter followed the same procedure 

outlined in the pilot study. Another person watched for rolling starts 

which were counted as false starts and for swimmers falling into the 

water rather than diving out over the water. Those "fall-in's" also were 

recorded as false starts. 
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Treatment of the Data 

All subjects received randomly ordered treatments of four 

blocked trials at foreperiod intervals of .5, 1, and 1.5 seconds and at 

one interval of varied foreperiods. Subject reliability at each inter­

val was assessed through use of reliability coefficients derived from 

Pearson Product Moment Method of linear correlation between odd and 

even trials. Resulting coefficients were stepped up through use of the 

Spearman-Brown Prophecy Formula to establish the reliability coeffi­

cients for the total of four trials at each interval. 

The dependent variables of hand movement time and starting time 

were analyzed in separate 2x4 analyses of variance (ANOVA) with sex as 

one independent variable and with repeated measures on the last inde­

pendent variable, the foreperiod interval, to determine if there were 

an optimal length of foreperiod for effective performance in the grab 

start. 

The main advantage of the repeated measure design as compared to 

ANOVA for independent groups is that some control is established over 

the effects of individual subject differences. When the same subject is 

given several treatments, differences among treatment means do not con­

tain the differences between members of the independent groups. There­

fore, the error term for the repeated measure design is smaller than 

for the ANOVA for independent groups. 

Certain assumptions concerning the distribution of scores must 

be met in order to utilize values listed in the JF table which are based 

upon the theoretical J] distribution. The two critical assumptions for 

the repeated measures design are the homogeneity of within treatment 
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variances and the homogeneity of covariance between pairs of treatment 

conditions. 

The assumption relating to homogeneity of within treatment vari­

ances considers both subjects within groups and treatment times subjects 

within groups. Equal variability of scores in each treatment population 

is expected. The j[-Max test (Winer, 1971) was used to assess if this 

assumption were tenable. 

The second assumption for the repeated measures design is homo­

geneity of covariance between pairs of treatment conditions. The 

ability of subjects to maintain their relative ranking in each repeated 

measure is tested by establishing a variance-covariance matrix for each 

group of subjects, male and female, and testing by X analysis to see if 

the matrices are homogeneous and symmetrical (Winer, 1971). If the 

matrices are homogeneous and symmetrical, a pooled matrix can be used in 

the error term thereby increasing the degrees of freedom. 

ANOVA with repeated measures has been found to be relatively 

robust to deviations from normality particularly if equal sample sizes 

are used (Winer, 1971; Keppel, 1973). If the assumptions are violated 

and the regular error term is used to calculate the _F ratio, a posi­

tively biased _F is obtained. Therefore, an _F ratio which appears to be 

significant j><.05 would in effect be significant at approximately £<.08 

or .10 level. Greenhouse and Geisser (Winer, 1971) suggest using a con­

servative test of significance when the assumptions are violated. The 

degrees of freedom used in selecting the critical value of _F are reduced 

so that the ensuing test is made assuming maximum departure from the 

assumptions. 
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Results of the ANOVA were analyzed. Significant main effects 

were isolated by use of the Newman-Keuls procedure to find where the 

differences among the treatment means occurred. If there were interac­

tion, examination was made of simple effects. Analysis of power was 

conducted to determine how sensitive the test was to rejecting the null 

hypothesis when the hypothesis should be rejected. A Pearson correla­

tion was utilized to assess the relationship between hand movement time 

and starting time at each interval. 
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CHAPTER IV 

RESULTS AND DISCUSSION 

Results 

Reliability Scores 

Swimmers completed four successive trials blocked at each of 

four foreperiod intervals: .5, 1, 1.5 seconds and varied foreperiods. 

Subject reliability was assessed by correlating the odd and even trials 

at each level using the Pearson Product Moment Method of linear correla­

tion. The Spearman-Brown Prophecy Formula was applied to find subject 

reliability for all four trials at each interval (see Table 4). The 

stepped-up reliability coefficients of .88, .84, .87, and .82 for hand 

movement time and .87, .92, .88, and .71 for starting time indicated 

that the subjects performed in a highly consistent pattern for each 

foreperiod interval. 

Analyses of Variance 

Separate analyses were conducted for the hand movement time and 

the starting time scores. Data were subjected to a 2 x 4 analysis of 

variance with repeated measures on the second factor, foreperiod 

interval. 

Hand movement time. Homogeneity assumptions for hand movement 

scores were tested. Homogeneity of variance was measured by the J?-Max 

test. The resulting within subjects JF-Max (2, 33) of 3.2549 indicated 

that the two groups were not homogeneous with regard to the variance 
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assumption (see Table 5). When the assumption of covariance was tested, 

2 the resulting X of 28.7 was significant at the .05 level, indicating 

that the variance-covariance matrices were not homogeneous (see Table 6). 

Table 4 

Reliability Coefficients For Hand Movement 

Time and Starting Time 

Foreperiod (in seconds) 

Correlational 
Technique 

n . 5 1.0 1.5 Varied 

Hand Movement Times 

Pearson Correlation 
Odd-Even Trials 

24 .78* .73* .77* .69* 

Spearman-Brown 
Prophecy Formula 

24 .88* .84* .87* .82* 

Starting Times 

Pearson Correlation 
Odd-Even Trials 

24 .77* .84* .79* .56* 

Spearman-Brown 
Prophecy Formula 

24 .87* .92* .88* .71* 

*£ <.01. 

Table 5 

Homogeneity Tests For Hand Movement Time 

Source SS F-Max df F 

Between Subjects 
Error 
Female 
Male 

.0202 

.0064 

.0138 
2, 11 2.1562 

Within Subjects 
Error 
Female 
Male 

.0217 

.0051 

.0166 
2, 33 3.2549* 

*£ <.05. 



58 

Table 6 

Variance-Covariance Matrices 

For Hand Movement Time 

Females: 
bl b2 b3 b4 

h .0002 .0003 .00009 .0003 

>2 .0001 .0002 0 

»3 .0003 .0003 

Determinant: /52/ 

.0003 

Males: v, K u "k 
bl 2 3 4 

bl 
.0006 .00009 .0005 .0003 

b2 
.0004 .00009 .00009 

b3 
.001 .0005 

b4 
Determinant: /63/ 

.0003 

Pooled: x K u u 
bl 2 3 4 

bi 
.0004 .0002 .00005 .0003 

b2 .0002 .0001 0 

>3 .0006 .0004 

>4 

Determinant: /134/ 

.0003 

X2 = 28.7, £ <.05. 
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Mean scores for hand movement time at each interval were calcu­

lated (see Table 7). Measures of hand movement time were subjected to 

a 2 x 4 analysis of variance with sex as the first independent variable, 

and the length of the foreperiod as the independent variable having 

repeated measures. An alpha level of .05 was established as necessary 

for statistical significance (see Table 8). 

Table 7 

Mean Scores For Hand Movement Time 

Foreperiod ri X SD SE-
X 

.5 24 .5207 .0234 .0048 

1.0 24 .5214 .0167 .0034 

1.5 24 .5397 .0276 .0056 

Varied 24 .5217 .0211 .0043 

Table 8 

Summary of Analysis of Variance 

For Hand Movement Time 

Source SS df MS F 

Between Subjects 
Sex .0015 1 .0015 1.67 
Error .0202 22 .0009 
Total 23 

Within Subjects 
Treatments .0061 3 .0020 6.67* 
Interaction .0018 3 .0006 2.00 
Error .0218 66 .0003 
Total 72 

*£ <.05. 
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Because the homogeneity assumptions were not tenable, results of 

the ANOVA were evaluated by using the Greenhouse-Geisser (Kepler, 1973) 

approximation of the F-ratio. Therefore, when the foreperiod treatment 

yielded a normal _F (3, 66) of 6.67 which was significant beyond the .05 

level, the conservative Greenhouse-Geisser standard of J? (1, 46) was 

applied. The treatment _F of 6.67 was still significant at the .05 

level. None of the other _F ratios were significant. 

Subsequently, all treatment means were compared by the Newman-

Keuls procedure to find where the difference in treatments existed. 

Treatment means were ordered from fastest to slowest. The standard 

error of the mean of all treatment effects was computed. The degrees of 

freedom were 66, the same as for the within subject error term in the 

ANOVA. Distances between ranked means (r) were calculated, and the 

appropriate, terms were selected from a table of critical values for the 

.05 level of significance for the Newman-Keuls test. The standard of 

comparison to determine significance (Sgqr) was computed by multiplying 

the standard error of the mean by the appropriate factor for each 

distance. Results indicated that the 1.5 second interval elicited 

times which were slower than at any of the other intervals and that the 

varied foreperiod interval elicited slower responses than the .5 second 

foreperiod interval period (see Table 9). 

Hand movement data were subjected to power tests as described by 

Keppel (1973) and Cohen (1969) (see Table 10). A high degree of sensi­

tivity was indicated, and because power indicates the probability of 

rejecting the null hypothesis when the null is in fact true,the effects 

due to sex or interaction should have been evident had they existed. 
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Table 9 

Newman-Keuls Analysis 

For Hand Movement Time 

Intervals .5 1.0 Varied 1.5 

Means (.5207) (.5214) (.5217) (.5397) r Sgqra (r, 66) 

.5 .0007 .001* .0190* 4 .0131 

1.0 .0003 .0193* 3 .0119 

Varied .0180* 2 .0099 

aSg = .0035. 

A 
< . 05. 

Table 10 

Power For Analysis of Variance 

For Hand Movement Time 

Source df n/cell 0 Power (.05) 
num 

Sex 1 48 1.8 .74 

Treatment 3 24 3.6 .99 

Interaction 3 12 3.6 .99 

Starting time. The time elapsed between the sound of the gun 

and the swimmer's feet leaving the block was the dependent measure of 

starting time. The mean starting time for each interval was calculated 

(see Table 11). 
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Table 11 

Mean Scores For Starting Time 

Foreperiod n. X SD SE-

.5 24 .8236 .0328 .0067 

1.0 24 .8282 .0322 .0066 

1.5 24 .8335 .0334 .0068 

Varied 24 .8274 .0371 .0076 

When the data were subjected to tests for the assumption of 

homogeneity of variance, the _F-Max tests indicated that the assumption 

was tenable (see Table 12). When the variance-covariance matrices were 

2 inspected, a X of 46.0 was significant beyond the .05 level of confi­

dence, indicating that the matrices were not homogeneous and could not 

be pooled (see Table 13). 

Table 12 

Homogeneity Tests For Starting Time 

Source SS F-Max df 

Between Subjects 
Error .0576 
Female .0207 2, 11 1.7971 
Male .0372 

Within Subjects 
Error .0428 
Female .0158 2, 33 1.7089 
Male .0270 
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Table 13 

Variance-Covariance Matrices 

For Starting Time 

Females: 
bl b2 b3 b4 

bi 
.0003 .00001 .0001 .0003 

>2 .0015 .0003 .0006 

>3 .0004 .0004 

b4 
Determinant: /64/ 

.0011 

Males: •k x u u 
bl 2 3 4 

bl 
.0019 .0007 .0009 .0009 

>2 .0007 -.0001 .0008 

b3 
.0018 .0003 

. b4 
Determinant: /177/ 

.0017 

Pooled: u V, K 
bl 2 3 4 

bl .0011 .0004 .0005 .0006 

b2 .0011 .0001 .0007 

b3 
.0011 .0004 

*4 
Determinant: /725/ 

.0014 

X2 = 46.0, £< .05. 
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A repeated measures analysis of variance was completed with sex 

as one independent variable and the length of the foreperiod as the 

independent variable having repeated measures. Results of the analysis 

indicated that no significant effects existed at the established .05 

alpha level. There was no difference in starting time due to sex, fore-

period interval, or the interaction between the two variables (see 

Table 14). 

Table 14 

Summary of Analysis of Variance 

For Starting Time 

Source SS df MS F 

Between Subjects 
Sex .0002 1 .0002 .0769 
Error .0579 22 .0026 
Total 23 

Within Subjects 
Treatments .0028 3 .0009 1.5 
Interaction .0024 3 .0008 1.33 
Error .0428 66 .0006 
Total 72 

When the power was calculated, the ANOVA was fairly sensitive to 

interaction as indicated by a power rating of .60. The power of treat­

ment effects was .34 which was low and the statistical power of sex was 

.07 which was quite poor (see Table 15). 

Correlation Between Variables 

Using Pearson Product Moment Method of linear correlation, the 

relationship between the variables of hand movement time and starting 
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time was assessed. Coefficients were determined for males, females, and 

for all swimmers for performances at each foreperiod interval of .5, 1, 

1.5 seconds and varied foreperiods. Coefficients of .20, .28, -.20, and 

.31 were computed for all swimmers at intervals of .5, 1, 1.5 seconds 

and varied foreperiods, respectively. For males, at the corresponding 

intervals, coefficients of .24, .02, -.34, and .34 were obtained. When 

females' scores were considered, coefficients of .10, .54 (£<.05), .24, 

and .24 were calculated (see Table 16). 

Table 15 

Power For Analysis of Variance For Starting Time 

Source df n/cell 0 Power (.05) num ' 

Sex 1 48 .3 .07 

Treatment 3 24 1.0 .34 

Interaction 3 36 1.5 .60 

Table 16 

Correlation Coefficients For Hand 

Movement and Starting Times 

Foreperiod Intervals (in seconds) 

n .5 1 1.5 Varied 

24 .20 .28 -.20 .31 

12 .24 .02 -.34 .34 

12 .10 .54* .24 .24 

Pooled 

Males 

Females 

*£ <-05. 



66 

Discussion 

Reliability Scores 

Reliability coefficients ranging from .71 to .92 indicated that 

the subjects were extremely reliable in performance of the grab swimming 

start. This high reliability would be expected since all the swimmers 

met criteria of having used the grab start exclusively in meets for one 

year and having been a senior level club swimmer for at least one year. 

Each swimmer had practiced the grab dive over a period of time, and each 

had developed a high level of skill. 

In performance of any gross skill some inconsistency of perfor­

mance would be expected. Thompson, Nagle, and Dobias (1958) found a 

reliability coefficient of _r = .71 for college football players respond­

ing to a rhythmical signal cadence with gross body movements. The 

reliability of the swimmers' performances compared favorably to 

Thompson's findings. However, Knapp (1961) found that adults who were 

highly skilled racquet sport performers had a reliability coefficient 

of .95 in a fine-motor skill reaction time task. The lower reliability 

coefficients of the swimmers would be expected primarily because the 

complexity of the task of performing the grab racing start is greater 

than enacting the fine movement task required in Knapp*s experiment. 

Henry (1961) indicated that consistency of performance is reduced as the 

complexity of the task is increased. Also, although the movement time 

of the 12-to 17-year-old age group can be expected to be relatively 

equal, peak efficiency in movement time is achieved in the 15 to 17 year 

age range (Hodgkins, 1963). Some of the swimmers would not have reached 

their peak in this variable. Adults who had reached their full level of 
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movement time efficiency could be expected to be more reliable than 

younger performers. 

Sex Effects 

When data from the starting time and the hand movement times 

were subjected to separate analyses of variance with repeated measures 

on the foreperiod variable, no differences were found between the per­

formance of members of the sexes. The hand movement time and the start­

ing times were in effect two movement times. The hand movement would be 

a less complex skill than the starting movement which was a result of 

several contributing movements. Henry (1961) found no difference in 

movement time in arm movement skills between members of both sexes. 

Hodgkins (1963) found women to be slower than men in movement time. 

However, her sample was drawn from a general population. Swimmers in 

this study were a highly select group basically homogeneous in compo­

sition. Less difference in scores between males and females would be 

predicted in this select group as compared to the general population. 

Treatment Effects 

The four foreperiods of .5, 1, 1.5 seconds and varied fore-

periods all produced equal starting times. These results conflict with 

early studies of both track and swimming starts (Walker & Hayden, 1933; 

Nakamura, 1934; Tuttle, Morehouse & Armbruster, 1940) who found 1.5 

seconds to be the optimal foreperiod of time to hold the swimmer or 

track man on his mark between the command and the sound of the gun. 

Tuttle, Morehouse, and Armbruster (1940) found an interval of .5 seconds 

to be the optimal time to hold untrained college male swimmers on the 
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block. At least three plausible explanations for these differences 

exist: 

First, the mechanical efficiency of timing devices used in the 

1930's and the 1940's was not as exacting as the sophisticated elec­

tronic circuitry used to measure the foreperiod, to activate the gun, 

and to record the times of the swimmers in this study. The ability to 

measure accurately a foreperiod in .5 second intervals with a .10-second 

stopwatch or a chronoscope must be questioned. Statistical analysis of 

the data is more refined than the methods used for analysis in the 

1940's. 

Second, the swimming start used in early studies was a different 

skill than the grab start utilized throughout this study. The conven­

tional starts of earlier swimmers were enacted from a relatively 

unstable position as compared to the grab start. Also the exact posi­

tioning for the start was less consistent in the traditional starts. 

When both the hands and the feet are placed in the same position for 

each dive as in the grab start, a more reliable starting position is 

achieved than when just the feet are placed securely on the blocks and 

the hands are positioned in the air. In the grab start, the balanced 

position is reached momentarily after the swimmer's hands grasp the 

block and the balanced position can be maintained easily. 

Third, the swimmers used in this study may have become condi­

tioned to shorter foreperiod intervals than 1.5 seconds. In northern 

California, starters in meets hold swimmers on the blocks less than 2 

seconds and tend to produce a foreperiod of .5 to 1 seconds. Therefore, 

swimmers may have been conditioned to the .5 to 1.5 seconds range before 
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the testing began. Informal preliminary studies showed a substantial 

number of false starts occurred when swimmers were held on the blocks 

for 2 seconds. Since suitable data could not be gathered at the 2 

seconds foreperiod interval, that interval was eliminated in the experi­

mental study. Partial explanation of increased number of false starts 

at the longer interval could be due to use of the information reduction 

theory. As the length of time within the expected range of foreperiods 

increased, the swimmer's sense of anticipation of the gunshot in rela­

tion to his own timing system increased until his personal limit of 

timing was reached at which point he completed his dive even though the 

gun had not been fired. 

Results did not concur with Telford's (1931) conclusion that 

while the 1 and 2 second intervals were optimal for reaction time 

responses, a marked slowing in movement time was observed at the .5 

second interval. 

That there was no difference in the responses at the .5, 1, and 

1.5 seconds foreperiod intervals was not in accord with Karlin's (1959) 

findings that reaction time was expressed in a linear relationship of 

decreasing speed from a .5, 1, 2, and 3.5 seconds series of intervals. 

Although reaction time and movement time are not the same variable and 

have been shown to not be related (Henry, 1952, 1960a; Slater-Hammel, 

1952), the graphic increases at each variable due to maturational 

effects have been shown to be similar (Hodgkins, 1963). 

When the hand movement time scores were analyzed, male and 

female scores did not differ. Since hand movement time represents a 

movement time measure similar to, although less complex than, the 
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starting time, the lack of differentiation between the times of males 

and females on both of the two dependent measures is not unexpected. 

The exact contribution of the hand movement time to the total 

performance of the grab start is not clear. The sequence of performance 

of the grab start seems to be dropping of the head simultaneous with 

rounding of the shoulders as the hands grasp more tightly to hold the 

body in position. This sequence is not in total agreement with 

Armbruster, Allen, and Billingsley (1973) who indicate that pulling with 

the hands is the initial movement in the grab start. The hands do 

appear to leave the block before the knees extend fully and the feet 

leave the block. It would be thought that the hand movement time would 

vary somewhat with the timing of an individual's own diving style. 

There was significantly slower hand movement time at the 1.5 second 

foreperiod interval compared to all other foreperiods and at the varied 

foreperiod interval as compared to the .5 second interval. One possible 

explanation is that as the diver's anticipation of the gunshot in­

creases, he grasps more tightly with his hands to avoid a false start. 

Any tenseness in the grip could necessitate a slower hand release time. 

Although the hands left the blocks more slowly at the 1.5 second inter­

val than at the other treatment levels, there was no difference in 

starting time at the 1.5 second interval as compared to the other start­

ing forperiods. Somewhere in the timing sequence of the complete dive, 

the slower time of the hands leaving the blocks was balanced in the 

timing since the starting times were equal for all intervals. So the 

time to enact the start as a whole at the 1.5 second foreperiod was not 

slow. 
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Previous studies of fine movement and gross movement tasks seem 

to agree that signals presented in a rhythmic pattern elicit faster 

response times than signals presented in arhythmic patterns (Woodrow, 

1914; Klemmer, 1956; Thompson, Nagle & Dobias, 1958; Wilson, 1959). For 

this reason, four trials were blocked in a series for each interval of 

.5, 1, and 1.5 seconds. The varied foreperiod treatment consisted of 

four trials conducted by the starter in his normal manner. That meant 

that the foreperiod intervals were presented in an arhythmical pattern 

for the varied foreperiod treatment. It was expected that the response 

time to the varied intervals might be slower than for the rhythmical 

presentations at all other intervals. This was not the case, as ANOVA 

results indicated that there was no difference due to treatments for 

starting time at any interval and that for hand movement time the varied 

foreperiod treatment was equal to or faster than the other foreperiods. 

Studies which were reviewed used a much longer series of trials 

(20 to 50) when the experiments were conducted in the laboratory. 

Rhythmic series elicited faster results than arhythmical presentations 

conclusively. Thompson, Nagle, and Dobias (1958), however, used only 

three trials for reaction to football cadence signals and found faster 

movement time response to rhythmic presentations as compared to arhyth­

mical series. Also, in this study, although the starter's foreperiod 

intervals were presented varied in sequence and at random, the starter 

used a starting range within the limits controlled in the experiment. 

Even though the starter was not familiar to the swimmers, his timing of 

the foreperiods was typical of AAU starters. In this sense his timing, 

although irregular, would be a comfortable pattern for the swimmer. 
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Correlation Between Variables 

Only one significant correlation coefficient was found between 

the variables of hand movement time and starting time. A correlation 

of .54 was found at the 1 second foreperiod interval. All additional 

correlations were both low and not significant. Little information 

regarding the relationship between two movement time variables of dif­

fering complexity was available. The results seem to indicate that 

although both responses are movement responses, the hands moving and 

the feet leaving the blocks are separate skills. Henry (1960a) did note 

that in arm movement tasks, women more closely approximated men's 

response times as the complexity of the task increased. Since the cor­

relations obtained in this study were not significant, that information 

could not be assessed. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

Summary 

The speeds at which man reacts and at which man moves histori­

cally have been popular topics of concern. Some of the earliest re­

corded studies in track and swimming assess the speed at which a contes­

tant leaves the starting blocks (Walker & Hayden, 1933; Nakamura, 1934; 

Tuttle, Morehouse & Armbruster, 1940). Logic would suggest that the 

variable of fast reaction time would have a high relationship with speed 

in running a race. Studies by Tuttle and Westerland (1931) confirmed 

this theory. However, later experiments conducted by Henry and Traft 

(1951) using more sophisticated measurement tools and research design 

refuted that theory. No relationship was found between reaction time 

and running time in a track race. 

Concurrently, in the laboratory, exploration of the relationship 

of reaction time and movement time in finer movement skills was being 

initiated. When reaction time and movement time scores were compared by 

Henry (1952a, 1960), and Slater-Hammel (1952) little or no relationship 

was found between the two variables. Subsequent studies by Henry 

(1960b, 1961) revealed that sensory set produced faster reaction time 

than motor set. Christina (1973) extended those studies and found that 

sensory set elicited faster response than motor set regardless of the 

task complexity. 



74 

Hodgkins (1963) found that maturational changes affect reaction 

and movement times. Reaction time and movement time tended to peak 

between ages 18 to 21 and 15 to 17, respectively, for both males and 

females. Women (Henry, 1960a) tend to be slower in movement time tasks 

and slightly slower in reaction time than men (Henry, 1961). 

Persons skilled in sports exhibited faster reaction time and 

movement time in both fine and gross skills when compared to average-

skilled persons (Kelly, 1952; Beise & Preaseley, 1937; Olson, 1956; 

Youngen, 1959; Knapp, 1961). High reliability was found when scores 

from reaction and movement speed tasks were correlated for highly 

skilled adult performers (Knapp, 1961). 

In formulating and testing the curvilinear theory of anticipa­

tion, Woodrow (1914) and Telford (1931) found that 1 to 2 second fore-

period intervals were optimal to elicit fast response in laboratory • 

tasks. Early studies of the track and swimming starts (Walker & Hayden, 

1933; Nakamura, 1934; Tuttle, Morehouse & Armbruster, 1940) found the 

optimal length of the foreperiod between when the starter gave the com­

mands and the sound of the gun to be 1.6 to 1.8 seconds as measured by 

stopwatches and chronoscopes. Slower performances followed longer or 

shorter foreperiods. 

Karlin (1959) refuted the curvilinear theory when he found a 

linear relationship from fast to slow response from foreperiods of .5, 

1, 2, and 3.5 seconds. Simon and Slavenko (1975) completed a study 

related to the time-reduction theory of anticipation which is a con­

flicting theory to the curvilinear theory. Reaction time was decreased 

by using a lamp display to help subjects estimate the progressively 

decreasing time of the foreperiod. 
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All studies seem to agree that rhythmic presentation of a fore-

period or signal decreases reaction and movement times (Henry, 1960a; 

Klemmer, 1956; Woodrow, 1914). Thompson, Nagle, and Dobias (1958) and 

Wilson (1951) discovered that when total-body skills were enacted by 

football players, the rhythmical cadence of signal presentation effected 

faster response than arhythmical cadence. 

Recently the grab start has become popular in competitive 

swimming. Not only has the grab style of dive been shown to project 

the swimmer off the blocks more quickly than the conventional starts 

(Hanauer, 1972; Roffer, 1972; Michaels, 1973; Van Slooten, 1973) but 

significantly fewer false starts have occurred when the grab start has 

been used (Michaels, 1973). The reduction in number of false starts 

probably has been because the starting position is more stable in the 

grab start than in the conventional start. Many studies have been con­

ducted using cinematographical analysis of the grab start (Roffer, 1972; 

Groves, 1973; Hanauer, 1972; Michaels, 1973; Van Slooten, 1973). Since 

the 1940's no effort has been made to see if there is an optimal fore-

period time to hold the swimmers on the blocks in order for the swimmer 

to have his fastest starting time. 

Therefore, it was the purpose of this study to determine if 

there is an optimal foreperiod between the commands given by the starter 

and the sound of the gun to elicit a fast response when the grab start 

is used in swimming competition. An electronic timer was designed to 

measure hand movement time and starting time and varied foreperiods. 

The equipment also standardized the foreperiod timed intervals of .5, 1, 

and 1.5 seconds. Four trials were blocked and presented at each 



76 

foreperiod interval and presented in random order to 24 California AAU 

swimmers, 12 males and 12 females, between the ages of 12 and 17. 

The dependent variables of hand movement time and starting time 

were subjected to separate analyses of variance with sex as one inde­

pendent variable and the length of the foreperiod as the independent 

variable having repeated measures. Subject reliability was quite good 

as indicated by coefficients determined by correlating the odd and even 

trials using the Pearson technique and stepping up the results to the 

reliability coefficient of all four trials by use of the Spearman-Brown 

Prophecy Formula. The range of coefficients was jr = .56 to .92. 

Results indicated there was no optimal foreperiod within the 

range of .5, 1, and 1.5 seconds and varied foreperiod for starting time. 

For hand movement time an F (3, 66) of 6.67 was significant beyond the 

.05 level of confidence indicating a difference in treatment effects. 

Treatment means were analyzed further through the Newman-Keuls procedure 

and the 1.5 second foreperiod was shown to elicit a slower hand movement 

speed than all other intervals, and the varied foreperiod interval 

initiated slower hand responses than did the .5 second interval. 

Findings 

Within the limitations of this study, the following findings 

were accrued: 

(a) There was no difference in starting time in the grab start 

after foreperiods of .5, 1, 1.5 seconds and varied foreperiods assigned 

in random order. 

(b) There was no difference in hand movement time in the grab 

start after foreperiods of .5 second, 1 second, and varied foreperiods 
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presented at random intervals. At the 1.5 second interval the hand 

movement times were slower than at the other treatment levels. Hand 

movement times after the varied foreperiod interval were slower than 

after the .5 second interval. 

(c) There was no difference in starting time in the grab start 

due to the interaction between sex and the length of the foreperiod. 

(d) There was no difference in hand movement time in the grab 

start due to the interaction between sex and the length of the fore-

period. 

(e) For the total group, correlation between hand movement time 

and starting time was significant only at the 1 second interval where a 

substantial relationship wais found. 

(f) For subgroups of males and females no significant relation­

ship existed between hand movement time and starting time at any fore-

period interval. 

Conclusion 

It was concluded that among the foreperiod intervals of .5, 1, 

and 1.5 seconds and varied foreperiod there was no optimal foreperiod 

interval which elicited a faster starting time in the grab start racing 

dive than any other interval. 

Implications for Further Study 

As a result of completing this study, investigation could be 

extended to the following topics: 

(a) The study could be repeated with a larger sample to in­

crease the power of the statistical analysis for starting time. 



78 

(b) An effort could be made to simulate actual competitive 

situations in the testing experience. Several swimmers could be started 

at once. Either all could be timed or, if equipment is unavailable, one 

could be timed and placebo pressure-switches could be placed on the 

alternate blocks so that all competitors would think they were being 

tested. 

(c) Times could be charted in actual competitive situations. 

It might be expected that the starting times would be quicker when only 

one all-out effort is required. 

(d) An accurate measure of reaction time could be incorporated 

into the electronic timing device. This might involve placing elec­

tronic devices on the shoulders or ears of the competitor. Or at least 

film analysis could be used to roughly estimate the reaction time so 

that it could be compared to starting time as registered on the elec­

tronic timing device. 

(e) Sensory or motor set could be enforced to see if there were 

an effect by this variable on starting time. 

(f) Speed leaving the blocks after the stimulus of a starter's 

pistol as used in the United States could be compared to starting time 

after the sound of a gong under each starting block as is used in inter­

national competition. 

(g) Age as a variable affecting starting time could be assessed. 

In Master Level AAU swimming, ages range from 25 to 75. If older sub­

jects could be found who performed the grab start in a reliable manner, 

comparative data could be gathered. Better, data could be gathered 

longitudinally at Master AAU national swim meets. 
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APPENDIX A 

Order of Presentation of 

Foreperiod Intervals 

Group Subject Sex 12 3 4 

01 
01 
01 
01 

01 
02 
03 
04 

M 
M 
M 
M 

1.0 
.5 
1.5 
Var 

Var 
Var 
1.0 
.5 

.5 
1.0 
Var 
1.0 

1.5 
1.5 
.5 
1.5 

02 
02 
02 
02 

05 
06 
07 
08 

F 
F 
M 
M 

1.5 
1.5 
1.5 
1.5 

.5 
1.0 
.5 
1.0 

Var 
Var 
Var 
Var 

1.0 
.5 
1.0 
.5 

03 
03 
03 
03 

09 
10 
11 
12 

M 
M 
F 
F 

1.5 
.5 
Var 
.5 

1.0 
1.0 
1.5 
Var 

.5 
Var 
1.0 
1.0 

Var 
1.5 
.5 
1.5 

04 
04 
04 
04 

13 
14 
15 
16 

M 
M 
M 
F 

1.0 
1.5 
Var 
1.0 

Var 
.5 
1.0 
Var 

1.5 
Var 
.5 
.5 

.5 
1.0 
1.5 
1.5 

05 
05 
05 
05 

17 
18 
19 
20 

F 
F 
F 
F 

Var 
Var 
Var 
1.5 

1.5 
1.0 
1.0 
.5 

1.0 
1.5 
.5 
Var 

.5 

.5 
1.5 
1.0 

06 
06 
06 
06 

21 
22 
23 
24 

M 
F 
F 
F 

Var 
.5 
.5 
1.0 

.5 
1.5 
1.0 
1.5 

1.5 
1.0 
Var 
.5 

1.0 
Var 
1.5 
Var 
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APPENDIX B 

Hand Movement Time Scores 

Foreperiod Intervals (Seconds) 

Subject Sex .5 1.0 1.5 Varied 

05 F . 536 .541 .528 .511 
06 F .553 .511 .536 .538 
11 F .538 .543 .535 .521 
12 F .508 .497 .516 .499 
16 F .517 .521 .501 .543 
17 F .551 .538 .537 .542 
18 F .527 .510 .546 .523 
19 F .529 .536 .571 .546 
20 F .501 .543 .545 .516 
22 F .542 .527 .561 .566 
23 F .522 .517 .532 .523 
24 F .535 .501 .542 .512 

01 M .488 .506 .497 .525 
02 M .516 .526 .510 .532 
03 M .526 .543 .501 .515 
04 M .492 .510 .566 .526 
07 M .537 .510 .558 .535 
08 M .511 .487 .526 .501 
09 M .478 .538 .546 .521 
10 M .523 .551 .516 .476 
13 M . 466 .511 .549 .481 
14 M .499 .501 .545 .506 
15 M .554 .547 .620 .549 
21 M .548 .499 .571 .516 

mean (in seconds) of four trials. 
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APPENDIX C 

Starting Time Scores 

Foreperiod Intervals (Seconds) 

Subject Sex .5 1.0 1.5 Varied 

05 F .800a .894 .809 .831 
06 F .847 .864 .860 .876 
11 F .810 .862 .812 .829 
12 F .829 .752 .788 .790 
16 F .805 .794 .844 .805 
17 F .815 .806 .818 .789 
18 F .806 .812 .822 .844 
19 F .809 .836 .822 .814 
20 F .818 .831 .814 .799 
22 F .855 .876 .861 .877 
23 F .830 .810 .828 .882 
24 F .844 .817 .808 .835 

01 M .793 .813 .866 .793 
02 M .827 .794 .906 .853 
03 M .890 .873 .896 .888 
04 M .872 .829 .899 .792 
07 M .807 .870 .790 .890 
08 M .868 .847 .789 .824 
09 M .791 .819 .831 .836 
10 M .851 .838 .835 .822 
13 M .725 .784 .785 .745 
14 M .821 .812 .837 .802 
15 M .822 .820 .846 .812 
21 M .832 .824 .838 .831 

mean (in seconds) of four trials. 


