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 Exposure to environmental chemicals can cause epigenetic transgenerational 

inheritance of altered phenotypes. Chemicals such as the plasticizer bisphenol-A (BPA), 

the fungicidal vinclozolin, and the oral contraceptive component 17-ethinylestradiol 

(EE2) induce epigenetic changes in various species. Each of these chemicals is an 

environmentally pervasive endocrine disrupting compound, as is the case with the 

abundantly used herbicide atrazine, whose endocrine disrupting mechanisms still remain 

unclear. Atrazine (ATZ) is presently one of the most abundantly used herbicides in the 

United States, and a common contaminant of natural water bodies and drinking waters in 

high-use areas. ATZ belongs to the triazine herbicides which specifically target 

photosynthetic tissues, yet ATZ can affect animal health. Fish exposed to ATZ and EE2 

display dysregulation of reproductive processes, which include alterations to the 

hypothalamic-pituitary-gonadal (HPG) axis pathways. However, the potential for ATZ-

induced transgenerational inheritance of reproductive dysfunction has not been 

investigated in fish. The transgenerational reproductive consequences of ATZ exposure 

have been explored in rats, but fish are among the species at greatest risk from ATZ 

exposure, therefore, I chose a model species to represent this environmentally relevant 

scenario. In the present study I analyzed the effects of ATZ and EE2 exposures during 

early development on transgenerational reproductive dysregulation in Japanese medaka 

(Oryzias latipes). F0 medaka were exposed to ATZ, EE2, and a solvent during the first 

twelve days of development with no exposure over the subsequent three generations. 



 

These early developmental exposures overlap with the critical windows of embryonic 

germ cell development, gonadogenesis, and sex determination when gonadal DNA 

methylation is being reprogrammed. Exposed males and females of the F0 treatment 

lineages were bred to produce the F1 generation, the F1 offspring were bred to produce 

the F2 generation, and the F2 offspring were bred to produce the F3 generation. Neither 

ATZ nor EE2 altered sperm parameters, gonadosomatic, or hepatosomatic indices in the 

treated F0 generation. However, the hepatosomatic index was reduced in F2 females 

derived from F0 fish treated with either ATZ or EE2. Hepatosomatic and gonadosomatic 

indices are ratios of liver and gonad weights to the total weight of the fish, which are 

cursory metrics for evaluating energetic and reproductive health. The fecundity of F0 and 

F2 fish was unaffected by exposure to ATZ or EE2; however, the fertilization rate was 

decreased among the F2 fish derived from the low ATZ and low EE2 treated F0 

generation. Moreover, there were significant transgenerational differences in the 

expression of reproductive regulatory genes and genes required for DNA methylation. 

Genomic methylation patterns are catalyzed by DNA methyltransferase enzymes (dnmts) 

that regulate the heritable transcriptional activity of specific regions of DNA essential to 

development. Present results suggest that early life exposure to ATZ and EE2 cause no 

significant effects in the immediate generation, but that future generations of fish are at 

greater risk of reproductive dysfunction. 
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CHAPTER I 

 

INTRODUCTION 

 

 

Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) is an 

abundantly used pre-emergent herbicide that is commonly applied throughout the 

Midwestern United States and other agricultural regions of the world (Gilliom and others, 

2006; Thelin and Stone, 2010). In the United States (US) alone, up to 82 million pounds 

of ATZ may be applied annually (Gilliom and others, 2006; Thelin and Stone, 2010). 

Atrazine (ATZ) is commonly used on corn, sorghum, and sugarcane crops, but is also a 

common additive within many residential herbicides. The compound’s structure renders 

it environmentally stable and mobile, which indicates that it will likely persist and 

translocate between habitats once introduced into the environment (Jayachandran et al., 

1994; Lerch et al., 2010).  

ATZ is a chlorinated symmetrical triazine that was found to control the growth of 

broadleaf weeds and grasses (Solomon et al., 2008). Once ATZ enters plants it is 

transmitted to the foliage by way of transpiration from the roots, and it is in the 

photosynthetic tissues of the foliage where ATZ begins to affect weed growth. ATZ’s 

mode-of-action is to bind to the D1 protein of the multiprotein core of Photosystem II to 

disrupt the electron transfer to the final electron acceptor, oxygen (Gardner, 1989; Fuerst 

and Norman, 1991). The combination of light and photosynthesis blockers causes an 

accumulation of electrons that can lead to damaged chlorophyll molecules and oxidative 
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chemical species (Fuerst and Norman, 1991). While ATZ is considered far more toxic to 

plants than animals because photosynthetic systems are not found in animal cells, there is 

evidence that ATZ affects animal health (Hayes et al., 2011). As previously mentioned, 

the combination of ATZ’s long half-life, water solubility, and the rainfall that 

accompanies the seasonal use of ATZ enables it to contaminate potable and ecological 

water sources (Jayachandran et al., 1994). 

The primary route of aquatic exposure to ATZ is runoff from crops such as corn, 

making it a common contaminant of ground water, surface water, and human drinking 

water, especially due to its water solubility and structural integrity. However, there are 

seasonal surges, or periods when growing regions receive high amounts of rainfall after 

an ATZ field application.  For most of the Midwestern US corn growers this seasonal 

surge occurs approximately 120 days after planting occurs from mid-March to June 

(Giddings et al., 2005). The seasonal ATZ applications generally differ between the types 

of crops and can be affected by climatic conditions and other regionally specific abiotic 

factors that determine when those crops are planted.  Although mean annual 

concentrations of ATZ in fresh water bodies typically conform to the US Environmental 

Protection Agency (USEPA) limit of 3 μg/L, there are however, seasonal surges which 

may exceed 55 μg/L (Battaglin et al., 2005; Thelin and Stone, 2010; Lerch et al., 2010). 

The bodies of water commonly evaluated are ponds, streams, and watersheds adjacent to 

agricultural fields, but other aquatic habitats may also have detectable levels of ATZ. As 

a potential contaminant to humans and wildlife, any effects induced by ATZ would be 

pertinent to both human and ecosystem health (USGS, 2007; USEPA, 2015). Moreover, 
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ATZ is a known endocrine disrupting compound (EDC) capable of dysregulating various 

aspects of endocrine related pathways, and is associated with increasing feminization in 

many lower vertebrate species including multiple frog and fish species (Hayes et al., 

2011). However, the endocrine disrupting mechanisms of ATZ are poorly understood 

(Kucka et al., 2012). 

Endocrine disruptors are chemicals that interfere with the body’s endocrine 

system, producing adverse developmental, reproductive, neurological, and immune 

effects in both humans and wildlife (Vandenberg et al., 2012). A wide range of 

substances, both natural and synthetic, are EDCs including pharmaceuticals, dioxin and 

dioxin-like compounds, polychlorinated biphenyls, plasticizers such as bisphenol-A, 

insecticides, and herbicides such as ATZ. The plastic additive BPA is commonly found in 

the environment and human bodily fluids, and has been experimentally linked to 

reproductive impairment, diabetes, obesity, and cancer (Mathieu-Denoncourt et al., 

2015). Along with the phenotypic consequences of exposure, many EDCs modify the 

epigenome, which is a heritable molecular consequence that can be transmitted to 

offspring if the epigenomic change occurs in the exposed organism’s germ cells (Skinner 

et al., 2011).  

The epigenome can be defined as a suite of epigenetic modifications, or 

attachments, found on and within the genome. Epigenetic changes are molecular 

modulations to the epigenome which subsist after the responsible stimulus is removed. 

Moreover, these may be mitotically and meiotically heritable alterations which cause 

changes in gene expression without simultaneously modifying the nucleic acid primary 
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sequence (Skinner et al., 2010). These changes include histone modifications, DNA 

methylation, and various types of non-coding RNAs. How changes to the epigenome are 

induced by EDC insult is unclear, but other studies have associated EDC associated 

alterations in the epigenome to abnormal phenotypes and other adverse health outcomes 

in various species (Rager et al., 2011; Kundakovic et al., 2013; Markunas et al., 2014). 

Among the readily detectable epigenetic modifications is DNA methylation, or the 

enzymatic addition of a methyl group to the cystosine residues of cytosine-phosphate-

guanine dinucleotide (CpG) regions in the genome (Razin and Cedar, 1991). The addition 

of these methyl groups can modulate transcription factor and polymerase binding to local 

gene regions, subsequently enhancing expression if the affected region is a repressor, or 

repressing expression if the methyl group is attached to a promoter region. For my project 

I investigated DNA methylation because changes in genome wide DNA methylation are 

easily quantifiable and the genes responsible for catalyzing the addition of methyl groups 

to DNA are characterized in my model species, medaka.  

 An interesting feature of epigenetic modifications is that they are reprogrammed 

twice during development, at which point all epigenetic modifications are reset and DNA 

methylation is erased, then subsequently rewritten (Jacobs et al., 2017). The first event 

occurs at fertilization for zygotic development, and the second event is exclusive to the 

primordial germ cells (PGCs) which become the adult germ cells (Skinner et al., 2010). 

Consequently, if epigenetic modifications escape erasure, or are induced during these 

periods of reprogramming, they will be inherited by the next generation in a phenomenon 

referred to as transgenerational epigenetic inheritance (Skinner, 2011).
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 Transgenerational epigenetic inheritance is the transmission of heritable 

epigenetic modifications within the germline that are associated with phenotypic changes 

in subsequent generations (Skinner et al., 2010; Anway et al., 2005; McBirney et al., 

2017). Several environmental chemicals and non-chemical stressors can induce 

transgenerational inheritance of phenotypic abnormalities. Exposure of ancestral Oryzias 

melastigma to hypoxic conditions impaired gonadal development and reduced sperm 

quality in unexposed F1 and F2 generations (Wang et al., 2016). A component of oral 

birth control, EE2, has been associated with reduced fertilization rates and embryonic 

survival in the grand-offspring of embryonically exposed fish (Bhandari et al., 2015). 

Wirbisky et al., 2016 demonstrated that adult zebrafish exposed only during embryonic 

development exhibited endocrine related transcriptomic changes, and produced offspring 

with morphological alterations in body indices compared to controls. In this study EE2 

was chosen as a positive control for transgenerational epigenetic inheritance, and to 

observe if any transgenerational effects of ATZ appear similar to those of EE2 because it 

has been debated that ATZ has estrogenic properties. This thesis describes the results of 

investigations into the transgenerational effects of embryos exposed to either ATZ or EE2 

on adult reproduction and phenotype-associated molecular alterations in the reproductive 

axis of medaka. 

The following paragraphs outline why I chose certain genes and metric data 

points to evaluate the reproductive status of mature medaka fish. Phenotypic data, 

including length, weight, gonadosomatic and hepatosomatic indices, fecundity, 
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fertilization rate, and various sperm parameters, were used as potential indicators for 

reproductive health. Molecular data were used to assess any changes in gene expression 

that elucidate reproductive perturbations. It is important to note that gross phenotypes 

may not be solely indicative of reproductive health or dysregulation; therefore, molecular 

analyses were necessary to corroborate any significant gross phenotypes.  

The condition of fishes is often cursorily evaluated by measuring their bodily 

weight and length; however, the weights of the gonads and the livers of the fishes relative 

to their body weights are considered useful indicators of reproductive and energetic 

health (Lambert and Dutil, 1997). Physical condition is integral to the reproductive 

capacity of many fishes. Fish in poor condition (i.e. low weight, or stunted growth) may 

experience reduced fecundity or produce unhealthy offspring (Morgan, 2004).  

The relationship between the size of the liver and the body, as well as that of the 

gonad and the body provide two useful metrics when evaluating fish reproductive health. 

Hepatosomatic and gonadosomatic indices (HSI and GSI) are ratios of the liver and the 

gonad weights to the total weight of the fish, which are used to assess energetic and 

reproductive health. The GSI is related to the reproductive condition and frequency of 

spawning events in fishes. The HSI indicates the energetic and metabolic health of fish; 

however, in females the liver further indicates reproductive success as it is the site of egg 

yolk precursor protein synthesis (Lambert and Dutil, 1997). 

I chose the set of genes based on their importance to reproductive development 

and maturation, as well as their suspected involvement in epigenetic regulated 

transgenerational inheritance. In the testes I measured the expression of androgen 
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receptor alpha (ar), follicle stimulating hormone receptor (fsh-r), steroidogenic acute 

regulatory protein (star), DNA methyltransferase 1 (dnmt1), and DNA methyltransferase 

3aa (dnmt3aa). In the ovaries I measured estrogen receptor alpha (er), luteinizing 

hormone receptor (lh-r), cytochrome P450, family 19, subfamily A, polypeptide 1a 

(cyp19a1a, gonadal specific aromatase), DNA methyltransferase 1 (dnmt1), and DNA 

methyltransferase 3aa (dnmt3aa). In the brains of both male and female medaka fish I 

measured kisspeptin I (kiss1), kisspeptin II (kiss2), G-protein-coupled-receptor 54-1 

(gpr54-1), G-protein-coupled-receptor 54-2 (gpr54-2), gonadotropin releasing hormone I 

(gnrh 1), gonadotropin releasing hormone II (gnrh 2), and DNA methyltransferase 1 

(dnmt1).  

Star gene expression controls the production of the transport protein StAR which 

is found on outer mitochondrial membranes. This protein controls the rate-limiting step 

of steroidogenesis by regulating the transfer of cholesterol into the inner mitochondrial 

membrane (Manna and Stocco, 2005). A series of enzymatic conversions taking place in 

the mitochondrion and endoplasmic reticulum will further transform the cholesterol into 

steroid hormones such as testosterone. Consequently, star expression in the vertebrate 

gonads is required due to the interrelatedness of hormones and sexual development and 

reproduction (Clark et al., 1995). Furthermore, cyp19a1a (gonadal aromatase) is an 

enzyme that converts androgens to estrogens in single step conversion process that is 

crucial to sexual maturation and gonadal development in both sexes, even in fish (Wu et 

al., 2008).
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 Ar and er are nuclear receptors the mediate the genomic response in androgen 

and estrogen responsive cells (Katsu et al., 2008). The steroid hormones diffuse across 

the plasma membrane of cells and enter the cytosol where the nuclear receptors are 

located. Once a steroid hormone binds to its cognate nuclear receptor, the receptor and 

hormone dimerize and translocate to the nucleus where they behave as transcription 

factors to hormone responsive elements of the genome (Beato et al., 1996). While 

estrogens, such as estradiol-17, regulate oogenesis, oocyte growth and maturation, and 

likely sexual differentiation in female medaka fish (Chakraborty et al., 2011), the 

androgens, primarily 11-ketotestosterone, are involved in testicular development, 

spermatogenesis, and steroidogenesis (Rolland et al., 2013).  

The neuroendocrine signaling that controls the reproductive axis in medaka, and 

in other tetrapod vertebrates, begins in the hypothalamus (Zohar et al., 2010). In the fish 

hypothalamus there are gonadotropin releasing hormone (GnRH) positive neurons whose 

dendritic projections reach the anterior pituitary gland (APG) gonadotrophic cells (Karigo 

et al., 2012). The discharge of GnRH stimulates the APG gonadotrophs to release the 

gonadotropins, luteinizing hormone (LH) and follicle stimulating hormone (FSH). 

Furthermore, a more recently discovered neuropeptide known as kisspeptin and its 

affiliated receptor G-protein-coupled receptor 54 (GPR54) regulate GnRH secretion and 

concomitantly LH and FSH release (Tena-Sempere, 2006).  

While there are receptors for LH and FSH in various locations within medaka, I 

focused on the receptors located on the gonads for their relation to sexual development. I 

evaluated fsh-r in medaka testes for its role in mediating gonadal growth and
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spermatogenesis through the Sertoli cells. In medaka ovaries I measured lh-r because it 

regulates the production of steroid hormones in the theca cells, but also promotes oocyte 

development and ovulation (Takahashi et al., 2016). 

One of the epigenetic mechanisms that influences gene expression, DNA 

methylation, is catalyzed by the DNA methyltransferases (dnmts). Dnmt1 is responsible 

for the faithful transmission of the pattern of DNA methylation to daughter strands during 

DNA replication. Dnmt3aa produces de novo methylation during development and 

possibly in response to endocrine disrupting activity (Damelin and Bestor, 2007). DNA 

methylation dysregulation can alter sexual development when the insult occurs during 

gonadal development (Ribas et al., 2017), which may have further implications for 

transgenerational epigenetic inheritance if there is an impact on the germ cells. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

 

Experimental Design 

The study design, maintenance and exposure of medaka fish, collection of tissues, 

measurements of morphometric parameters, egg collection, and ATZ dosing and uptake 

quantification experiments were performed at the USGS Columbia Environmental 

Research Center (CERC) in Columbia, Missouri. All of the RNA and DNA extractions, 

subsequent molecular experiments, and statistical analyses were performed at the 

University of North Carolina at Greensboro (UNCG) by the author, Jacob Cleary.  

The study was designed to determine if there were any significantly different 

direct and transgenerational reproductive effects in medaka fish exposed to ATZ at an 

environmentally realistic concentration (5 g/L) and a concentration reached during 

seasonal surges of herbicide use (50 g/L). For comparison, we used two concentrations 

of EE2 at standard environmental (0.002 g/L) and higher environmental (0.05 g/L) 

concentrations. Significant differences were evaluated between the ATZ groups and 

controls, EE2 groups and controls, between the ATZ Low and EE2 Low, and the ATZ 

High and EE2 High. This was done to compare the transgenerational effects of both ATZ 

and EE2 to controls, as well as to each other given that ATZ has been argued to be 

estrogenic. EE2 induces transgenerational reproductive phenotypes in medaka, therefore, 

we chose to compare it to any transgenerational differences observed due to ATZ  



11 

exposure (Bhandari et al., 2015), so EE2 was used as a positive control in my 

experiment. Fish were exposed throughout early embryonic development during the 

critical periods for gonadogenesis and germ cell differentiation. The gonadal primordium 

which gives rise to either ovaries or testes forms between 6-8 days after fertilization 

(daf), and differentiation of somatic gonadal structures begins approximately 10 daf 

(Siegfried, 2010). No outbreeding was performed between control and experimentally 

treated fish. Rather, fish were bred within the treatment groups to maintain a situation 

similar to that occurring in natural pond and stream habitats. The fish that were exposed 

as embryos and then developed to adulthood were designated as F0 adults. The F0 

offspring were the F1 generation, and the F1 offspring were the F2 generation. Thus, the 

F2 generation was not directly exposed to test chemicals, rather any effects occurred 

because of ancestral exposure. The required tissues were collected and measured from 

animals sacrificed each generation at approximately 100 daf, or once sexual maturity is 

established. This was done to ensure that a sufficient amount of fertilized eggs could be 

collected to maintain each treatment lineage. Other morphological data including fish 

length, total fish wet weight, wet liver weight, and wet gonadal weight, were taken from 

sacrificed individuals as well. Fecundity and fertilization data were collected each day 

throughout the experiment until each generational sacrifice. Sperm parameters such as 

sperm count, sperm motility, and sperm progression were measured at each generation 

sacrifice after the testes were collected from reproductively mature fish. All F2 data that 

were significantly different from the control results were deemed transgenerational 
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Animal Care and Handling 

All animal procedures were conducted in accordance with the methods described 

by the American Institute of Fishery Research Biologists (AIFRB) (Jenkins et al., 2014); 

and with all US Geological Survey CERC guidelines for the humane treatment of test 

organisms during culture and experimentation. Experimental protocols and the study plan 

was approved by the USGS-CERC Institutional Animal Care and Use Committee and the 

Institutional Animal Care and Use Committee (IACUC) of the University of Missouri.  

Exposure and Maintenance of Fish 

The Hd-rR inbred wildtype strain of medaka were cultured at the USGS-CERC. 

Ten adult medaka, 2 males and 8 females, were placed into each of four broodstock tanks 

so that each tank possessed a breeding group ratio of one male to four females. These 

breeding groups were used to produce embryos for exposure. For the current study, 

fertilized eggs (F0) were collected from approximately 40 total reproductively mature 

medaka. The fertilized eggs were pooled and randomly assigned to 15 glass petri dishes. 

50 fertilized eggs were transferred to each of these 15 petri dishes, all of which contained 

50 mL of well water. Each petri dish became one of three replicates within one of five 

treatment groups, thus 750 fertilized eggs were distributed among fifteen petri dishes. 

Both test chemicals, ATZ and EE2, were dissolved in conditioned water obtained 

from the CERC deep tube well. The four experimental concentrations were 5 g/L and 50 

g/L of ATZ (ATZ Low and ATZ High), and 0.002 g/L and 0.05 g/L of EE2 (EE2 

Low and EE2 High), with one CERC well water control. Approximately 8 hours after 

fertilization (haf), embryos to be treated had their well water replaced with a 
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corresponding solution of ATZ or EE2 dissolved in well water. The low concentrations 

(ATZ Low and EE2 Low) are environmentally realistic contaminant levels and the high 

concentrations (ATZ High and EE2 High) are those reached within seasonal surges, 

during peak crop application season of ATZ from mid-March until early or mid-June, 

depending on the crop. Embryos were exposed from 8 haf until 12 daf so that the 

treatment spanned both gonadogenesis and germ cell differentiation (Kondo et al., 2009). 

40 mL of control and treatment solutions were replaced daily until 12 daf, when most 

embryos had hatched. Upon cessation of the chemical exposures for F0 fish at 12 daf, no 

further exposures were performed for this or any subsequent generation. All juvenile fish, 

or fry, from each replicate were transferred to a corresponding floating meshed container 

after 12 daf, and all three replicates of a treatment regimen were placed in the same 10 L 

aquarium with flow-through water and aeration. Thus, there were approximately 50-70 

fry per treatment with 17-23 fry per replicate in floating meshed containers. 30 daf the fry 

were transferred from the floating meshed containers to aquaria and maintained 

separately based on their exposure. The mature fish of each replicate were split into two 

tanks to ensure maximal egg production and prevent overcrowding. Thus, each replicate 

had a tank of approximately 4 fish and another tank consisting of approximately 12 fish. 

The 4 treatment lineages (ATZ Low, EE2 Low, ATZ High, and EE2 High) and the 

control lineage were cultured until reproductively active adults were produced in the F3 

generation (Fig. 1). 
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Figure 1. A Schematic Diagram Outlining the Maintenance of the Various Treated 

or Control Medaka Lineages. Only F0 embryos were exposed to treatment solutions. 

The F0 embryos were reared into reproductively mature adults and their fertilized eggs 

were collected from each treatment lineage to produce the subsequent generations as 

indicated above. Boxes indicate the adults produced from exposed embryos (F0) and the 

first generation in our experiments to demonstrate transgenerational phenotypes (F2).  

 

 

Atrazine Dosing Solution and Uptake Measurement 

The concentration of ATZ in the exposure solution at the onset of and after the 

exposure was quantified by enzyme linked immunosorbent assay (ELSIA) accordingly to 

Papoulias et al., 2014. The amount of EE2 uptake by medaka embryos, using the same 

nominal concentrations, was previously quantified using the same methods before my 

experiment began (Bhandari et al., 2015). In my investigation, we radioactively labeled 

14C-ATZ to measure ATZ uptake in medaka embryos by scintillation counting. Fertilized 

eggs were collected from the same breeding groups that produced the embryos for ATZ 

and EE2 exposure experiments. 14C-ATZ dosing solutions were prepared at 5 g/L (ATZ 

Low) and 50 g/L (ATZ High) in CERC well water. 50 fertilized eggs were designated 

as control, ATZ Low, and ATZ High treatments. Each treated group was split into three 

replicates so that each replicate contained approximately 16 embryos in a 100 mL petri 

dish filled with 50 mL of the appropriate dosing solution. 25 mL of each dosing solution 

was replaced daily throughout the 12 day exposure period. At 24 hours, 8 days, and 12 
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days, the dosing solutions and embryos (some were fry by this period) were transferred to 

scintillation vials and measured separately to account for all radioactively labeled 14C-

ATZ. The combined embryos and fry were washed three times with a scintillation 

cocktail and the washes were also collected for scintillation counting. The scintillation 

cocktail was a formulation of solvents and scintillators which fluoresce when excited 

with ionizing radiation (REF) After the washes, embryos and fry were transferred into 5 

mL of scintillation cocktail and homogenized. The homogenizer was also washed with 

water and 1 mL from each wash was mixed with 5 mL of the scintillation cocktail. 14C-

ATZ concentrations were then measured by a scintillation counter from the exposure 

media, embryos, fry, and the washes from the embryos and homogenizer. Final uptake 

(pg/mg egg or embryo) was calculated at three time points; at 1, 8, and 12 daf. These time 

points were chosen because they are at 24 hours after treatment, at standard hatching time 

for medaka (8 days), and the final day of exposure in our other experiments.  

Medaka Lineage Maintenance and Phenotype Characterization  

All the fish were maintained on a 14L:10D photoperiod with water temperature at 

25  0.5°C. Each tank was equipped with an overflow outlet and air supply. After 

collection of fertilized eggs for the next generation, the reproductively active adults were 

sacrificed for tissue collection (Fig. 1). Fecundity, fertilization rate, and embryo survival 

were recorded daily for the F0 through F3 generations. Fecundity was calculated as the 

total egg production by each breeding group/day, and the fertilization rate was calculated 

as the percentage of fertilized eggs within the combined daily egg masses removed from 

female medaka and eggs collected at the bottom of the tanks. The total number of eggs 
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from each tank was counted, and the number of eggs was divided by the number of 

females that produced eggs on the day they were collected. Embryo survival was 

determined as the number of eggs that successfully completed development through 

hatching at 10 daf. Body length, wet body weight, wet gonad weight, and wet liver 

weight were recorded when the fish were sacrificed. The weight of the fish and their 

tissues was recorded in milligrams (mg) to the nearest thousandth after the decimal (i.e, 

0.001). Tissue samples of the gonads and brains with the pituitaries attached were 

collected and preserved in 500 L RNAlater  Stabilization Solution (ThermoFisher 

Scientific, SKU # AM7021) for nucleic acid isolation, according to the manufacturer’s 

instructions. Sperm parameter analysis was performed at the laboratory of Dr. Yuksel 

Agca at the Department of Veterinary Pathobiology, University of Missouri. Collected 

testes were immediately transported to the Agca Laboratory which is approximately 5 

miles from the CERC, and the sperm were activated with a buffer solution before 

computer assisted sperm analysis (CASA) was performed. CASA measures the number 

of sperm, motility, and forward progression using a high resolution microscope 

connected to a computer equipped with software to analyze the data. The sperm analysis 

was completed within 2-4 hrs of isolation of the testes.  

RNA and DNA Isolation from Whole Tissue 

 We extracted the gonads and brains with the pituitaries attached from the largest 

fish in each treatment group with 5 males and 5 females used from each treatment 

replicate during the second spawning event. Whole tissues were collected from each 

generation from F0 through F3. All fish were euthanized with an MS-222 solution prior 
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to tissue extraction as required by the IACUC protocol. Gonads and brains were extracted 

from fish and transferred into RNAlater  Stabilization Solution and the samples were 

kept at -20C until nucleic acid isolation.  

All whole tissue samples were homogenized for RNA and DNA isolation 

following the Zymo Research Z-R Duet MiniPrep Kit (Zymo Research, SKU# D7003) 

protocol. Samples were treated with DNAse I and proteinase K with the following 

amendments: tissues were transferred from RNAlater  Stabilization Solution to 300 l 

of lysis buffer in a 1.5 mL microcentrifuge tube and minced manually with a pestle 

before homogenization with the Benchmark D1000 handheld homogenizer, utilizing 

three 4 second pulses. Samples were briefly centrifuged after homogenization and 

subjected to RNA and DNA analysis. The RNA concentration and quality were assessed 

with a NanoDrop ND-2000 spectrophotometer and bleach gel electrophoresis (Aranda 

et al., 2012), respectively. The DNA concentration and quality were evaluated using only 

the NanoDrop ND-2000 spectrophotometer. 

Reverse Transcription and Quantitative Gene Expression  

The isolated RNA was reverse transcribed into complementary DNA (cDNA) 

using an Applied Biosystems’ High-Capacity cDNA Reverse Transcription Kit (Thermo 

Fisher Scientific, CAT# 4368814) by following the standard manufacturer’s standard 

protocol. cDNA synthesis was performed using an Applied Biosystems’ SimpliAmp 

Thermal Cycler.  Power-Up SYBR Green Master Mix reagents (Applied Biosciences, 

CAT# A25742) were used to assess gene expression with primers specific to medaka 
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genes of interest. Messenger RNA (mRNA) levels were quantified by the quantitative 

polymerase chain reaction (qPCR) Ct method and the expression data were presented 

as fold-change against the control. 

Enzyme Linked Immunosorbent Assay (ELISA) and 5-Methylcytosine Quantification  

The isolated genomic DNA from the ovaries and testes was assayed for total 

genome methylation with the Zymo Research 5-mC DNA ELISA Kit (Zymo Research, 

SKU# D5326) following the manufacturer’s standard protocol. DNA isolated from the 

gonads of each of the 5 fish in a treatment replicate were pooled together and 100 ng 

aliquots of pooled DNA were tested twice, so that each treatment required six wells on a 

96-well ELISA plate. Color was developed for approximately forty minutes before 

absorbance was measured with a BioTekMicroplate Reader at 405-450 nm.  

Statistical Analyses  

This study was designed to examine the exposure-induced transgenerational 

differences in phenotypes and molecular data points, including gene expression and DNA 

methylation (Table 1). Statistical analysis of ATZ uptake, gonadosomatic index (GSI) 

and hepatosomatic index (HSI), fecundity, fertilization, sperm parameters, and gene 

expression was compared between the control and treatment groups within the same 

generation, as well as between the high treatments and between the low treatments of 

ATZ and EE2 (i.e. ATZ Low vs. EE2 Low) of the same generation. Each replicate (tank) 

contained the data from five individual fish. Altogether, three biological replicates were 

used, each containing fifteen fish per treatment. The responses of the five fish within each 

tank were averaged for gene expression analysis, so that each tank was a replicate for 
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statistical purposes (n=3, per treatment). Means were analyzed using two-sample t-tests 

assuming unequal variance between independent treatment and control groups, the two 

high treatment groups (ATZ High vs. EE2 High), and the two low treatment groups (ATZ 

Low vs. EE2 Low) (Microsoft Excel, Data Analysis ToolPak). The confidence level of 

statistical analysis was = 0.05, and the data are presented graphically as the means  

standard error of the means (SEM). Importantly, the low n=3 value for analysis affected 

the statistical power and increased the SEM, thus if two SEM bars on a graph do not 

overlap it is not indicative of statistically different means. Differences between two 

generations were not taken into account. The graphs were generated using GraphPad 

Prism Software. 
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Table 1. Table of the Phenotypic and Molecular Data Points that were Measured in 

the F0 and F2 Generation Medaka. Next to each type of datum is an explanation of 

how it was characterized.  

 

Experimental Measurements and Data  Measurement and Data Points 

Atrazine Uptake pg/mg egg or embryo 

Gonadosomatic Index (GSI) mg gonad/mg body 

Hepatosomatic Index (HIS) mg liver/mg body 

Fecundity  # of eggs per mass/female/day+ # of eggs 

on tank floor/day 

Fertilization Rate # of fertilized eggs within total # of 

eggs/day 

Sperm Count Total sperm per sample 

Motile Sperm Number of motile sperm per sample 

Percent Sperm Motility  Percentage of motile sperm per sample  

Sperm Progression Number of Sperm moving forward rather 

than in a spinning motion or immobile  

Gene Expression Ct method: fold change difference in 

gene expression compared between each 

treatment and the control. 

Enzyme Linked Immunosorbent Assay 

(ELISA) 

Spectrophotometric values of absorbance 

indicating global DNA methylation. 
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CHAPTER III 

 

RESULTS 

 

 

Exposure Concentration and Uptake 

 The ATZ concentrations in each exposure medium were measured (Fig. 2A). 

These concentrations ranged from 3.41 to 4.79 g/L for the ATZ Low group (5 g/L) and 

from 48.50 to 58.01 g/L for the ATZ High group (50 g/L). These data indicated that 

the 5 g/L exposure concentrations were actually 18-32% below nominal concentration 

while the 50 g/L treatments were 5-16% greater than the nominal concentration (Fig. 

2A). ATZ uptake by the embryos during the experimental period was between 15.80 and 

22.94 pg/mg for the ATZ Low group and between 207.96 and 221.62 pg/mg for ATZ 

High group (Fig. 2B). These data suggest that ATZ uptake by the embryo reaches a 

maximal concentration within 24 hours of exposure and remains stable thereafter. There 

were no differences in solvent well water control or uptake of ATZ between the 

replicates.
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Figure 2. Exposure Concentration of ATZ at the Onset of and After Exposure (A) 

and Uptake of ATZ by Embryos or Fry at Three Different Time Points (B). The 

actual concentration in the ATZ Low group (5 g/L) was below nominal concentration 

while the ATZ High group (50 g/L) was above nominal concentration, and neither 

changed throughout the experiment. Maximal ATZ uptake for both the ATZ Low and 

ATZ High groups was reached at 24 hours and did not significantly change during the 

12-day exposure period. The error bars represent the mean  SEM, n=3 per treatment.  

 

 

Fish Length and Weight  

 

 The final lengths and weights of sacrificed fish were measured after euthanization 

but prior to tissue removal. No significant differences were observed in the bodily 

weights or lengths of either male or female medaka fish due to any treatments when 

compared to the control groups in both generations (Fig.3A-D). Furthermore, there were 

no significant differences between the lengths and weights in low concentration treatment 

groups, EE2 Low vs. ATZ Low, or between the high concentration treatment groups, 

EE2 High vs. ATZ High (Fig.3A-D).
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Figure 3. Morphological Assessment of Sexually Mature Medaka Body Length for 

Males (A) and Females (B), and Total Body Weight for Males (C) and Females (D). 

Length was measured from the rostral snout to the end of the caudal fin. No significant 

differences were observed in body length or weight for male or female medaka in either 

generation due to any treatments compared to the control groups. The error bars represent 

the mean  SEM, n=3 per treatment except for the F2 generation ATZ Low (n=2). 
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Body Somatic Indices 

 The gonadosomatic index (GSI) was not significantly different among any 

treatment lineage for F0 or F2 generations in male or female medaka (Fig. 4B, D). 

Similarly, the hepatosomatic index (HSI) was not significantly different in F0 or F2 male 

fish for any treatment lineages (Fig. 4A). There were significant reductions in the HSI of 

the EE2 Low (p < 0.05), ATZ Low (p < 0.05), and ATZ High (p < 0.01) treatment 

lineages when compared to the control group within the female F2 generation (Fig. 4C). 

Neither HSI nor GSI were significantly different within the male F0 and F2 generations 

between any treatment lineage and the control (Fig. 4A, B). There were no significant 

differences in the males or the females for either the HSI or GSI between the low 

concentration treatment groups, EE2 Low vs. ATZ Low, or between the high 

concentration treatment groups, EE2 High vs. ATZ High (Fig.4A-D).
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Figure 4. Transgenerational Differences in Hepatosomatic and Gonadosomatic 

Indices of Male (4A and 4B) and Female (4C and 4D) Medaka. The F0 and F2 

generation males did not demonstrate significant differences in HSI or GSI between the 

control and treatment lineages (4A and 4B). The F0 and F2 female GSI did not exhibit 

changes (4D), but there were significant HSI (4C) decreases in the low treatment lineages 

(p<0.05), and in the ATZ High lineage (p<0.01). Asterisks indicate statistical significance 

compared to the control (*, p<0.05; **, p<0.01). The error bars represent the mean  

SEM, n=3 per treatment except for the F2 generation ATZ Low (n=2). 
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Fecundity and Fertilization  

The fecundity, or total number of eggs, of medaka exposed to ATZ was 

statistically similar to the fecundity of unexposed control medaka (Fig. 5A). This was 

observed in both the F0 and F2 generations. The fertilization rate was only significantly 

increased in the ATZ High treatment lineage (p < 0.05) compared to the control group 

within the F0 generation (Fig. 5B). The difference in the mean fertilization success 

between the F0 generation control and ATZ High lineages was approximately 14.31 

fertilized eggs/day, or a 15.27% increase in the number of fertilized eggs in the F0 

generation ATZ High lineage. The number of fertilized eggs was significantly reduced in 

the F2 generation in the EE2 Low (p < 0.05) and ATZ Low (p < 0.05) lineages compared 

to the control lineage (Fig. 5B), indicating the existence of transgenerational impacts on 

fertilization success of future generations. The EE2 Low lineage produced 20.65 fewer 

fertilized eggs/day, or a decrease of 22.42%, while the ATZ Low lineage produced 16.93 

fewer fertilized eggs/day, or a decrease of 18.38%, compared to the control lineage. The 

fecundity and fertilization rate were statistically similar between the low concentration 

treatment groups, EE2 Low vs. ATZ Low, and between the high concentration treatment 

groups, EE2 High vs. ATZ High (Fig.5A, B). 
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Figure 5. Transgenerational Differences in Fecundity (A) and Fertilization Rate (B) 

of the F2 Generation Adults Caused by ATZ Exposure to the Grandparent F0 

Embryo. Fertilization success was increased by 15.27% in the F0 generation ATZ High 

treatment and declined by 22.42% and 18.38% in the F2 generation EE2 Low and ATZ 

Low lineages compared to the F2 control lineage. Asterisks indicate statistical 

significance compared to the control (*, p<0.05). The error bars represent the mean  

SEM, n=3 per treatment except for the F2 generation ATZ Low (n=2). 

 

 

Sperm Parameters 

Sperm count, number of motile sperm, sperm progression, and percentage of 

sperm motility were unaffected by all of the treatments in the F0 generation (Fig. 6A-D). 

There were significant reductions in the total sperm count in the F2 EE2 Low (p < 0.05) 

and in the ATZ Low treatment lineages (p < 0.01) by 32.49% and 48.82%, respectively, 

when compared to the F2 control lineage (Fig. 6A). The number of motile sperm was 

reduced in the F2 generation EE2 Low (p < 0.05), ATZ Low (p < 0.05), and ATZ High 

lineages (p < 0.05) by 55.15%, 57.79%, and 55.28% (Fig. 6B). Sperm forward 

progression was significantly reduced in the F2 generation EE2 Low (p < 0.05) and ATZ 

B A 
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Low treatment lineages (p < 0.05) by 53.50% and 50.21% (Fig. 6C). The percentage of 

sperm motility was significantly reduced in the F2 generation EE2 Low (p < 0.05) and 

ATZ High (p < 0.05) treatment lineages by 32.14% and 38.27% (Fig.6D).  

The sperm count was calculated as the number of sperm per sample in millions of 

sperm per milliliter (Fig. 6A). The number of motile sperm was determined as the 

number of sperm in millions per milliliter that were moving, but the type of movement 

was not characterized (i.e, wiggling or forward movement) (Fig. 6B). Sperm progression 

is the number of sperm in millions per milliliter that are moving forward, rather than in 

circles or in an irregular pattern of movement (Fig. 6C). Forward movement does not 

indicate that there were particular directions the sperm moved in, but rather they were 

flagellating forward instead of left or right from their individual points-of-origin. The 

percentage of sperm motility is the number of motile sperm within the sample divided by 

the total number of sperm (Fig. 6D). 
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Figure 6. Transgenerational Differences in Total Sperm Count (A), Motile Sperm 

(B), Sperm Progression (C), and Percent Sperm Motility (D) in Adult Males of the 

F2 Generation Caused by ATZ Exposure to the Grandparent F0 Embryos. The 

decrease in mean sperm count in the F2 generation of the EE2 Low and ATZ Low 

treatment groups was between 26.46 and 39.76 million sperm per milliliter (A). There 

were mean decreases ranging from 20.55 to 21.54 million motile sperm per milliliter in 

the F2 generation EE2 Low, ATZ Low, and ATZ High lineages (B). The decreased mean 

number of sperm demonstrating forward progression in the F2 generation EE2 Low and 

ATZ Low lineages was 13.27 and 12.46 million per milliliter (C). The percentage of 

motile sperm per milliliter was also decreased in the F2 generation EE2 Low and ATZ 

High lineages by 32.14% and 38.27% (D). Asterisks indicate statistical significance 

compared to the control (*, p<0.05). The error bars represent the mean  SEM, n=3 per 

treatment except for the F2 generation ATZ Low (n=2). 
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Gonadal Gene Expression Changes   

 The transgenerational gene expression profiles for male and female gonads (Fig. 

7, 8). Fsh-r expression was reduced in each treatment group in the male F0 generation 

compared to the controls, while expression was increased in the male F2 generation EE2 

Low (p < 0.05) and EE2 High (p < 0.05) lineages (Fig. 7A). The F0 generation EE2 Low 

and ATZ Low treatment groups were also statistically different (p < 0.05) (Fig. 7A). All 

of the other comparisons of fsh-r gene expression between treatment groups were 

statistically similar in both the F0 and F2 generations (Fig, 7A). Ar expression was 

upregulated in the male F0 generation EE2 Low treatment (p < 0.001) and downregulated 

in the male F0 generation ATZ High treatment (p < 0.05) (Fig. 7B). In the F0 generation, 

ar gene expression among the EE2 Low and ATZ Low treatment groups was 

statistically different (p < 0.05) (Fig. 7B). The ar gene expression in the F2 generation 

was statistically similar between all of the treatment lineages and the control lineage, as 

well as between the low treatment lineages and between the high treatment lineages (Fig. 

7B). Star expression was significantly reduced in the male F0 generation ATZ High 

treatment (p < 0.05), but the expression was upregulated in the male F2 generation ATZ 

Low (p < 0.05) and ATZ High lineages (p < 0.05) when compared to the controls (Fig. 

7C). The star gene expression profiles were statistically similar between the low 

concentration treatment groups, EE2 Low vs. ATZ Low, and between the high 

concentration treatment groups, EE2 High vs. ATZ High (Fig. 7C).  
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 Star expression was statistically similar between all treatment groups and the 

controls in the F0 and F2 generation females (Fig. 8A). The star expression was 

significantly different between the F2 generation EE2 Low and ATZ Low treatment 

lineages (p < 0.05) (Fig. 8A). There was an upregulation in cyp19a1a expression in the 

female F0 generation EE2 High (p < 0.05) and ATZ High (p < 0.05) treatments, while 

there were no transgenerational differences in the F2 generation between treatment and 

control groups (Fig. 8B). Cyp19a1a gene expression was statistically similar between the 

low concentration treatment groups, EE2 Low vs. ATZ Low, and between the high 

concentration treatment groups, EE2 High vs. ATZ High, in both the F0 and F2 

generations (Fig. 8B). Er was significantly downregulated in the ATZ High (p < 0.05) 

treatment group of the F0 generation females (Fig. 8C). There were no other significant 

differences in er expression between high and low treatment groups or between 

treatment and control groups (Fig. 8C). All lh-r gene expression profiles were statistically 

similar between treatment and control groups within the F0 and F2 generation females 

(Fig. 8D).  
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Figure 7. Transgenerational Differences in fsh-r (A), ar (B), and star (C) Gene 

Expression in Adult Male Testes. Fsh-r expression was reduced in the EE2 Low 

(p<0.05), EE2 High (p<0.05), ATZ Low (p<0.001), and ATZ High (p<0.001) treatment 

groups compared to the F0 controls (Fig. 7A). Asterisks indicate statistical significance 

compared to the control (*, p<0.05; **, p<0.01; ***, p<0.001). Crosses indicate 

statistically significant differences between low concentration treatments (EE2 Low vs. 

ATZ Low) or between high concentration treatments (EE2 High vs. ATZ High) (†, 

p<0.05). The error bars represent the mean  SEM, n=3 per treatment except for the F2 

generation ATZ Low (n=2). 
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Figure 8. Transgenerational Differences in star (A), cyp19a1a (B), er (C), and lh-r 

(D) Gene Expression in Adult Female Ovaries. There were no transgenerational 

changes in gene expression in the analyzed ovarian genes (Fig. 8). Asterisks indicate 

statistical significance compared to the control (*, p<0.05). Crosses indicate statistically 

significant differences between low concentration treatments, EE2 Low vs. ATZ Low, or 

between high concentration treatments, EE2 High vs. ATZ High, (†, p<0.05). The error 

bars represent the mean  SEM, n=3 per treatment except for the F2 generation ATZ Low 

(n=2). 

 

 

 

A B 

C D 



34 

Brain Gene Expression Changes 

 The transgenerational gene expression profiles for male and female brains (Fig. 9, 

10). Kiss1 was significantly upregulated in the male F0 generation EE2 Low (p < 0.01) 

and ATZ Low (p < 0.01) treatment groups compared to the control group (Fig. 9A). The 

male kiss1 gene expression profiles were also statistically different between the EE2 Low 

and ATZ Low treatment groups (p < 0.01) (Fig. 9A). Kiss2 expression was increased in 

the male F2 generation EE2 High (p < 0.05) and ATZ Low (p < 0.05) treatment lineages 

compared to the control lineage, while there were no significant differences between the 

high concentration and low concentration treatment lineages (Fig. 9B). Similar to kiss1, 

gpr54-1 expression was significantly increased in the male F0 generation EE2 Low (p < 

0.05) and ATZ Low (p < 0.01) treatments compared to the control group, and the EE2 

Low and ATZ Low treatment groups (p < 0.001) were also statistically different (Fig. 

9C).  There was only an increase in male F2 generation gpr54-1 gene expression in the 

EE2 High (p < 0.01) treatment lineage compared to the control lineage (Fig. 9C). Gpr54-

2 expression was unaffected by all treatments in the male F0 generation compared to the 

control group (Fig. 9D) However, the gpr54-2 expression in the EE2 High and ATZ High 

treatments of the male F0 generation were statistically different from each other (p < 

0.05) (Fig. 9D). The F2 generation male gpr54-2 expression was upregulated in the EE2 

High (p < 0.05) and ATZ Low (p < 0.01) treatment lineages compared to the control 

lineage, and the EE2 Low and ATZ Low lineages were also significantly different from 

one another (p < 0.05) (Fig. 9D). There were no significant differences between treatment 

lineages and the control, high concentrations, or low concentrations in either gnrh1 or 
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gnrh2 in the male F2 generation (Fig. 9E, F). Gnrh1 was upregulated in the male EE2 

Low (p < 0.05) and ATZ High (p < 0.05) treatment groups compared to the control (Fig. 

9E). Gnrh2 expression was increased in the male F0 generation EE2 Low (p < 0.05), 

ATZ Low (p < 0.05), and ATZ High (p < 0.01) treatments, but there were no significant 

transgenerational changes in gnrh2 expression in the male F2 generation (Fig. 9F). The 

gnrh2 EE2 High and ATZ High treatment lineages were also significantly different (p < 

0.05) from each other (Fig. 9F).  

 Gnrh2 expression in the female F0 generation EE2 High (p < 0.05) treatment was 

significantly upregulated compared to the control (Fig. 10F). Gpr54-2 expression was 

statistically different between the female EE2 Low and ATZ Low treatment lineages in 

the F2 generation, but there were no significant differences between treatment and 

control lineages (Fig. 10F). There were no other significant changes in gene expression in 

the female brain for either generation due to any of the treatments (Fig. 10A-E).  
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Figure 9. Transgenerational Differences in kiss1 (A), kiss2 (B), gpr54-1 (C), gpr54-2 

(D), gnrh1 (E), and gnrh2 (F) Gene Expression in Adult Male Brains. Asterisks 

indicate statistical significance compared to the control (*, p<0.05, **, p<0.01). Crosses 

indicate statistically significant differences between low concentration treatments (EE2 

Low vs. ATZ Low) or between high concentration treatments (EE2 High vs. ATZ High) 

(†, p<0.05; ‡, p<0.01, †‡, p<0.001). The error bars represent the mean  SEM, n=3 per 

treatment except for the F2 generation ATZ Low (n=2). 
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Figure 10. Transgenerational Differences in kiss1 (A), kiss2 (B), gpr54-1 (C), gpr54-2 

(D), gnrh1 (E), and gnrh2 (F) Gene Expression in Adult Female Brains. Asterisks 

indicate statistical significance compared to the control (*, p<0.05). Crosses indicate 

statistically significant differences between low concentration treatments (EE2 Low vs. 

ATZ Low) or between high concentration treatments (EE2 High vs. ATZ High) (†, 

p<0.05). The error bars represent the mean  SEM, n=3 per treatment except for the F2 

generation ATZ Low (n=2). 
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Epigenetic (DNA Methylation) Genes 

 

 Dnmt3aa and Dnmt1 expression was quantified as a measure of epigenetic 

changes in the brains and gonads of male and female medaka fish (Fig. 11A-F). Dnmt1 

expression was unaffected in the testes by any treatment group in the F0 generation, but 

there was an increase in expression in the testes of the F2 generation EE2 Low treatment 

(p < 0.05) (Fig. 11A). The expression of dnmt1 was statistically different between the 

EE2 Low and ATZ Low (p < 0.01) treatment groups in the F0 generation testes (Fig. 

11A). Dnmt3aa expression was significantly downregulated in the ATZ Low (p < 0.001) 

and ATZ High (p < 0.01) treatments in F0 generation testes, but it was unaffected by all 

treatments by the F2 generation (Fig. 11B). The F0 generation testes exhibited significant 

differences in dnmt3aa expression between the EE2 Low and ATZ Low (p < 0.001) 

treatment groups (Fig. 11B).  

 Dnmt1 expression in the ovaries of the F0 generation was significantly 

downregulated in the EE2 High (p < 0.01) and ATZ High (p < 0.05) treatments, while the 

downregulation in the ovaries of the F2 generation was in the ATZ Low (p < 0.05) 

lineage (Fig. 11C). Dnmt3aa expression in the ATZ Low (p < 0.01) and ATZ High (p < 

0.05) F0 generation ovaries was significantly downregulated, and there were no observed 

transgenerational changes in dnmt3aa expression in the F2 generation ovaries (Fig. 11D). 

The EE2 Low and ATZ Low (p < 0.05) treatment groups in the F0 generation ovaries 

were also significantly different (Fig. 11D).  Dnmt1 expression in the male brain was 

unaffected by treatment in the F0 generation, but was significantly downregulated in the 
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male brain F2 generation EE2 Low (p < 0.01), EE2 High (p < 0.01), ATZ Low (p < 

0.05), and ATZ High (p < 0.01) lineages (Fig. 11E). The dnmt1 expression in the male 

brains was significantly different between the EE2 Low and ATZ Low (p < 0.05) 

treatment groups in the F0 generation (Fig. 11E). There were no significant changes in 

dnmt1 expression in the female brain in either generation due to treatments (Fig. 11F).  
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Figure 11. Transgenerational Differences in dnmt1 Gene Expression in the Testes 

(A), Ovaries (C), Male Brain (E), and Female Brain (F), and dnmt3aa Expression in 

the Testes (B), and Ovaries (D). Asterisks indicate statistical significance compared to 

the control (*, p<0.05, **, p<0.01, ***, p<0.001). Crosses indicate statistically significant 

differences between low concentration treatments (EE2 Low vs. ATZ Low) or between 

high concentration treatments (EE2 High vs. ATZ High) (†, p<0.05; ‡, p<0.01, †‡, 

p<0.001). The error bars represent the mean  SEM, n=3 per treatment except for the F2 

generation ATZ Low (n=2). 

A B 

C D 

E F 



41 

Global DNA Methylation 

 Global DNA methylation of the testes and ovaries was quantified to determine if 

changes in the total gonadal methylome were observable (Fig.12A, B). Global 

methylation was reduced in the ATZ high treatment testes of the F0 generation (p < 0.01) 

(Fig. 12A). The global DNA methylation was statistically similar between all of the 

treatment groups and controls, as well as between the high concentration and low 

concentration groups (Fig. 12B). There were no significant transgenerational differences 

in global DNA methylation in either the testes or ovaries (Fig. 12A, B).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Transgenerational Differences in DNA Methylation in the Whole Testes 

(A) or Ovaries (B) in Medaka Fish.  Asterisks indicate statistical significance compared 

to the control (*, p<0.05). The error bars represent the mean  SEM, n=3 per treatment 

except for the F2 generation ATZ Low (n=2). 

 

 

 



42 

CHAPTER IV 

 

DISCUSSION 

 

 

In the United States, ATZ can be detected in surface water, with the highest 

concentration during the period of its application in the field. While it has been 

previously demonstrated that direct exposure to ATZ may pose minor risk to animals, it 

has not been assessed whether an environmentally relevant exposure model, such as a 

teleost fish, will transmit reproductive impacts to subsequent generations due to their 

early life exposure to ATZ. The present study, therefore, studied ATZ exposure effects in 

medaka embryos using two concentrations: one environmentally relevant and the other 

the concentration that can reach during seasonal surge. My results demonstrate that ATZ 

exposure to medaka embryos does not induce phenotypic abnormalities in the directly 

exposed generations, but impacts future generations by altering the reproductive capacity 

of fish at both the whole sperm and the molecular levels. Additionally, alterations in the 

expression of DNA methyltransferase genes (dnmt3aa and dnmt1) suggest the 

involvement of epigenetic transgenerational effects in the gonads.  

An early life exposure to ATZ did not alter GSI (relative gonad weight) and 

fecundity in females in both immediate and future generations; very few studies have 

demonstrated developmental exposure effects in adulthood or in future generations. In 

zebrafish, ATZ exposure at a concentration of 30 parts per billion (30 ng/L) during the 

first 72 hours of life caused a significant decrease in spawning and a significant increase 
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in follicular atresia at adulthood, with structural defects in immediate offspring (Wirbisky 

et al, 2016). No change in body or testes weight, gonadosomatic index, testes histology, 

or levels of 11-ketotestosterone or testosterone were observed in the males with the same 

treatment (Wirsbisky et al., 2016). Because fewer studies focused on early developmental 

exposure effects in adults and offspring, it is difficult to compare discrepancies in effects 

of exposure that could be due to ATZ concentration differences, species-specificity and 

differences in early life history stages of the test animal.  

There were no observed differences in fecundity between any treatment lineages 

and controls within either the F0 or F2 generation. However, grand-offspring (F2) of the 

EE2 Low and ATZ Low lineage medaka fish exhibited significantly reduced fertilization 

success compared to control lineage fish of the same generation. It is interesting to note 

that the transgenerational differences in fertilization success coincide with a 

transgenerational decrease in sperm quality within the same treatment lineages while 

there were no transgenerational impacts on fecundity. Because the exposed fish 

exclusively copulated with fish from the same exposure regimen, it may be possible that 

the observed decrease in fertilization success in the two affected treatment lineages is due 

to male reproductive impairment. My data demonstrate that the sperm count, number of 

motile sperm, and sperm progression were all significantly decreased in the F2 generation 

EE2 Low and ATZ Low lineage males. These data are in accordance with recent studies 

that suggest male reproductive function is more sensitive to endocrine disruptor insult 

(Nordkap et al., 2012). The Transgenerational impairment of fertilization success has 
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been experimentally demonstrated in marine medaka fish exposed to hypoxic conditions 

(Wang et al., 2016), freshwater medaka embryos exposed to BPA or EE2 (Bhandari et 

al., 2015), and juvenile zebrafish exposed to 2,3,7,8 tetrachlorodibenzo-p-dioxin (TCDD) 

(Baker et al., 2014). These results suggest that early developmental exposure to 

endocrine disruptors, such as ATZ, may not pose reproductive risk into adulthood of 

exposed fish, but rather induces molecular changes in the gametes in such a way that it 

produces transgenerational phenotype in the offspring two generations later.  

Previous studies characterizing ATZ’s impact on steroidogenesis have 

demonstrated significant alterations in steroid hormone synthesis, but few studies 

examined the effects of an embryonic exposure on adult steroid hormone activity, or the 

activity of the subsequent generation. Steroidogenic acute regulatory protein (StAR) is a 

rate limiting protein in the synthetic steroidogenic pathway which is required to sequester 

cholesterol in the mitochondria (Kiriakidou et al., 1996). Without proper expression of 

this transport protein gene, the available amount of steroid hormones and regulation of 

lipid accumulation is affected (LaVoie, 2017). My F0 results demonstrated a 

downregulation of star expression due to a developmental exposure to a high 

concentration of ATZ. Star expression has been found to both increase (Suzawa and 

Ingraham, 2008) and decrease (Pogrmic et al., 2009) after ATZ exposures. Interestingly, 

in the present study, the F2 generation exhibited increases in both ATZ Low and ATZ 

High treatment lineages, suggesting that the consequences of early developmental 

exposures pose a dissimilar risk to the grand-offspring of the exposed generation than it 



45 

does to the exposed generation. Transgenerational effects appear to differ from direct 

toxic effects of exposure and require careful explanation as the germline effects at F0 

generation can be inherited by both the germ cells and the somatic cells of the subsequent 

generation. These effects may be elucidated only when the ATZ-induced reprogramming 

of germ cells, including the gametes in adult males, is characterized step-by-step across 

three generations as demonstrated previously for mice (Hao et al, 2016) and rats 

(McBirney et al, 2017).   

While ar expression was unaffected in the grand-offspring (F2) males, there was 

a significant increase in the EE2 Low and decrease in the ATZ High treated F0 

generation. Similarly, there were no transgenerational changes in er expression. Nuclear 

receptors such as ar and er  translate the condition of the lipid environment of cells 

and tissues into a genetic response that modulates the transcription of endocrine and 

developmental gene pathways (Ozgyin et al., 2015). Therefore, if EDCs such as ATZ 

affect the lipid environment in an organism, it is likely the nuclear receptors will be 

involved in the subsequent endocrine response. While the nuclear receptor may mediate 

the response of an exogenous agent within an organism, the effect of concomitant DNA 

methylation associated with the exogenous agent’s presence may further exacerbate that 

response (Ozgyin et al., 2015). Previous studies demonstrated that synthetic estrogens 

like BPA modify the methylation state of various promoter regions in the genome, 

including some estrogen responsive promoters in the first generation of offspring 

produced by exposed organisms (Bromer et al., 2010). My results demonstrate dissimilar 
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patterns of altered nuclear receptor expression and simultaneous changes in dnmt1 or 

dnmt3aa expression. ATZ did not significantly impact the transgenerational expression of 

ar, however, the ATZ High treatment group did downregulate er, dnmt1, and dnmt3aa 

expression in the F2 generation female medaka.  

Furthermore, ATZ is an alleged estrogenic compound, and the use of EE2 in my 

study was to compare the effects of ATZ to a known estrogenic substance. My data 

indicate that the responses between EE2 Low and ATZ Low, and sometimes between 

EE2 High and ATZ High, treatment groups often differ from each other in both direct and 

transgenerational effects. Therefore, my data do not demonstrate that ATZ produces an 

estrogenic response in the neuroendocrine system or throughout the HPG axis.  

Our study was the first to evaluate the transgenerational changes in brain gene 

expression profiles in a fish model after embryonic ATZ exposure. There are few studies 

that have characterized the effect of ATZ on the brain in the offspring of exposed 

organisms, and fewer that have characterized transgenerational consequences in the brain 

in any model. Of those studies, none of them quantify the effects on key HPG axis gene 

expression such as kisspeptin (Kiss I and Kiss II) and its cognate receptors (Gpr54-I and 

Gpr54-II), or gonadotropin releasing hormones (GnRHI1 and GnRH II).  

Neuroendocrine regulation in the brain begins with kisspeptin (kiss 1, kiss 2) 

agonizing the Gpr54-1 and Gpr54-2 receptors located on GnRH positive neurons that 

stimulate GnRH release (Jin and Yang, 2014; Nejad et al., 2017). GnRH (gnrh 1 and gnrh 

2) stimulates the gonadotropes of the anterior pituitary gland (APG) to relaease 
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luteinizing hormone (LH) and follicle stimulating hormone (FSH), which act on discrete 

cells within the testes and ovaries, as well as maintain the regulatory feedback loop of 

gonadotropin release (Jin and Yang, 2014; Nejad et al., 2017; Wirbisky et al., Freeman, 

2016).  

Snapping turtles exposed to 2ppb ATZ during embryonic development exhibited 

an increase in kisspeptin 1 in male and female hatchlings (Russart and Rhen, 2016), with 

similar effects on kisspeptin 1 observed in female rats exposed to ATZ (Goldman et al., 

2013). These results are consistent with our observations of kiss1 in the brains of male 

medaka after exposure to low concentrations of EE2 and ATZ. Conversely, both kiss1 

and kiss 2 were downregulated in the F2 generation males of the EE2 high and ATZ low 

treatment lineages, and a decrease in kiss 2 was observed in the ATZ high treatment 

lineage F2 males. These data indicate that kisspeptin, a neuropeptide necessary for 

pubertal onset, reproductive maturity, and fertility, is affected by ATZ treatment in both 

directly exposed organisms and in their grandoffspring.  

Gnrh 1 and gnrh 2 were unaffected in males and females by all treatment groups 

in the F2 generations. The F0 generation males exhibited increases in gnrh 1 and gnrh 2 

in both EE2 and ATZ treatments, with no changes in F0 females except for the EE2 high 

treatment lineage. Other studies on GnRH and ATZ are limited and inconsistent as ATZ 

did not affect GnRH in rats (Foradori et al., 2014), or snapping turtles (Russart and Rhen, 

2016), but was decreased in exposed quails (Qin et al., 2015). While our data do not 
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indicate whether ATZ directly affects GnRH or kisspeptin neurons, it is apparent that 

ATZ can alter the neuroendocrine system in a transgenerational manner.   

Interestingly, Dnmt1 expression was decreased in both male and female medaka 

gonads. The decreased expression was observed in female medaka F0 EE2 High and 

ATZ High treatment lineages, and F2 ATZ Low lineage. However, only male medaka in 

the F2 ATZ Low lineage exhibited decreased Dnmt1 expression. These F0 results parallel 

those of Xing et al., 2015 who found that ATZ decreased the DNA methylation and 

various dnmts expression in the brain and gonad of common carp.  

Transgenerational alterations in sperm differential DNA methylation regions 

(DMR) have also been demonstrated after embryonic ATZ exposure in mice, which 

promote the transmission of transgenerational phenotypes (McBirney et al., 2017). 

Changes in sperm DMRs, possibly promoting transgenerational inheritance, was recently 

reported in human males treated with chemotherapy during adolescence compared to 

males that have not received chemotherapeutics (Shnorhavorian et al., 2017).  

Exposure to environmental contaminants during early developmental periods of 

sex determination and gonadogenesis may imprint novel patterns of DNA methylation on 

the primordial germ cell epigenome (Jirtle and Skinner, 2007; Skinner et al., 2011). If an 

aberration of DNA methylation occurs during this period, it is more likely to avoid DNA 

methylation erasure events prior to epigenetic reprogramming in the germ line (Jirtle and 

Skinner, 2007; Skinner, 2015). When new epigenetic information, such as a change in 

DNA methylation, occurs in the primordial germ line, it will be transmitted to the
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offspring and subsequent generations in what is known as transgenerational epigenetic 

inheritance (Jirtle and Skinner, 2007; Skinner et al., 2011; Xin et al., 2015). Phenotypic 

deficits, disease susceptibility, and genomic instability may be inherited across 

generations once this epigenetic change has occurred in the ancestral germ line, even 

without further chemical exposure in the subsequent generations (Bernal and Jirtle, 2010; 

Xin et al., 2015). 

Our results are the first to demonstrate transgenerational differential DNA 

methyltransferase activity in the gonads of both male and female medaka. The present 

study is contributing to the growing body of evidence suggesting that chemical exposure 

during critical developmental windows can induce heritable aberrations in DNA 

methylation. 
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