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Research using network models in psychology has proliferated over the last 

decade. The popularity of network models has largely been driven by their alternative 

explanation for the emergence of psychological attributes—observed variables co-occur 

because they are causally coupled and dynamically reinforce each other, forming 

cohesive systems. Despite their rise in popularity, the growth of network models as a 

psychometric tool has remained relatively stagnant, mainly being used as a novel 

measurement perspective. In this dissertation, the goal is to expand the role of network 

models in modern psychometrics and to move towards using these models as a tool for 

the validation of assessment instruments. This paper presents three simulation studies and 

an empirical example that are designed to evaluate different aspects of the psychometric 

network approach to assessment: reducing redundancy, detecting dimensions, and 

estimating loadings. The first simulation evaluated two novel approaches for determining 

whether items are redundant, which is a key component for the accuracy and 

interpretation of network measures. The second simulation evaluated several different 

community detection algorithms, which are designed to detect dimensions in networks. 

The third simulation evaluated an adapted formulation of the network measure, node 

strength, and how it compares to factor loadings estimated by exploratory and 

confirmatory factor analysis. The results of the simulations demonstrate that network 

models can be used as an effective psychometric tool and one that is on par with more 

traditional methods. Finally, in the empirical example, the methods from the simulations 



 

are applied to a real-world dataset measuring personality. This example demonstrated that 

these methods are not only effective, but they can validate whether an assessment 

instrument is consistent with theoretical and empirical expectations. With these methods 

in hand, network models are poised to take the next step towards becoming a robust 

psychometric tool.
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CHAPTER I 

INTRODUCTION 

Network models have become the definitive approach for modeling complexity 

across the sciences (Barabási, 2012). From mapping the worldwide web (Newman, 2010) 

to the intricate interactions of the brain (Rubinov & Sporns, 2010), networks have 

advanced our understanding of complex systems in nearly every domain. Networks are 

relatively simple, with nodes (circles) representing an element of the system and edges 

(lines) representing relationships between these elements. One type of network in 

psychology has been termed psychometric network models, which are depicted with 

nodes representing variables (e.g., psychopathological symptoms) and edges representing 

the partial correlation between two nodes conditioned on all other nodes (Epskamp & 

Fried, 2018). 

Psychometric network models provide an alternative explanation for the 

formation of psychological attributes (i.e., properties that exist prior to and independent 

of measurement; Loevinger, 1957). Traditionally, observable variables that reflect an 

attribute are thought to co-occur because of an underlying common cause—that is, a 

latent (unobserved) attribute causes the covariation between observed variables (often 

referred to as the common cause model; Schmittmann et al., 2013). Network models 

instead propose that observable variables co-occur because they directly and reciprocally 

reinforce one another, forming a causally connected system (Borsboom, 2008).
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Psychological attributes (e.g., personality traits) therefore reference this system of 

causally connected components (e.g., observable variables; Cramer, 2012; Schmittmann 

et al., 2013). This perspective is referred to as the mutualism model (van der Maas et al., 

2006). 

These two perspectives provide contrasting views on what is being measured and 

how researchers should measure it. On the one hand, the common cause perspective 

proposes that observable variables measure an underlying attribute. On the other hand, 

the mutualism perspective proposes that observable variables do not measure the attribute 

but are instead part of it (Borsboom, 2008; Schmittmann et al., 2013). The former places 

the emphasis on measuring the attribute itself, while the latter places the emphasis on 

measuring the parts of the attribute. The ramifications of these emphases can be 

significant: Should clinicians treat an underlying psychopathological disorder or the 

symptoms that constitute the disorder? 

These differing emphases also have important implications for the development 

and validation of assessment instruments (e.g., questionnaires) in psychology. A notable 

example comes from personality questionnaires, where item content tends to overlap in 

order to measure a specific attribute (e.g., extraversion). This same attribute from the 

network perspective is suggested to be comprised of unique causal components, which 

makes the overlap of item content problematic due to latent confounding (Cramer et al., 

2012; Hallquist, Wright, & Molenaar, 2019). Although this may seem to suggest that 

there is a need to start anew, this is not necessarily the case. It does, however, suggest 
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that the validation of existing and newly developed assessment instruments should be 

reconsidered. 

Recently, my colleagues and I developed a conceptual framework for validating 

existing and newly developed assessment instruments from the network perspective 

(Christensen, Golino, & Silvia, under review). In our framework, there is a focus on the 

identification of the unique components in an instrument and how the psychometric 

evaluation of the instrument such as dimensionality and item selection should be 

executed using network models. In the former, the conceptual foundations for a statistical 

measure to identify redundant items in an instrument was introduced. In the latter, 

network models were suggested to provide equivalent statistical information as latent 

variable models (e.g., factors and factor loadings) but were argued to have different 

substantive interpretations. 

Aims of the Present Research 

In this paper, my goal is to systematically and empirically investigate our 

conceptual framework by performing a series of simulation studies, specifically I 

examine the capacity of network methods and measures to identify redundant items, 

detect dimensions, and estimate loadings. To achieve this aim, I’ve organized this 

dissertation into five sections. In Chapter II, I briefly review measurement from the 

network perspective and discuss the importance of identifying unique components in 

networks. The simulation study in this chapter focuses on the evaluation of two novel 

approaches that can be used for detecting redundant nodes in networks. In Chapter III, I 

review the substantive meaning of dimensions from the network perspective and discuss 
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current methods of estimating dimensions in networks. The simulation study in this 

chapter evaluates several community detection algorithms that are used to identify 

dimensions in networks. In Chapter IV, I review a recent set of simulation studies that 

demonstrate that the network measure node strength (i.e., the sum of connections to a 

node) is roughly redundant with confirmatory factor analysis (CFA) loadings. The 

simulation in this chapter evaluates a novel formulation of so-called network loadings, 

which are derived to be roughly equivalent to factor loadings. In Chapter V, I apply these 

network measures and methods to an empirical example to demonstrate the application of 

our conceptual framework in a real-world personality data. Results of each section are 

presented and discussed in turn. In Chapter VI, I conclude with the general implications 

of these studies. 
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CHAPTER II 

REDUNDANCY 

Psychometric network models propose that attributes arise not because of a 

common cause but instead from the mutual interactions between observed variables. This 

implies that some attributes, such as personality traits, do not exist—or at least they do 

not exist in a classical sense of measurement (i.e., causing variation in observable 

variables; Cramer, 2012). Instead, the relationship between a personality trait and an 

assessment instrument (e.g., questionnaire) is a mereological one: items in a 

questionnaire do not measure the trait but are part of it (Borsboom, 2008; Cramer et al., 

2012). 

This suggests that a personality trait is a summary statistic for how components of 

a trait’s network are influenced by one another: the components liking to talk to people, 

liking to go to parties, and liking to meet new people of extraversion are causally coupled 

such that liking to talk to people may lead a person to go to more parties and meet new 

people (Cramer, 2012). In this sense, extraversion is the state of the network or the stable 

organization of dynamic components that are mutually reinforcing one another (Cramer 

et al., 2012; Schmittmann et al., 2013). The network thus represents a system of causally 

connected components that we refer to as extraversion. 

What then are the components of networks? Sticking with the personality 

example, components are defined as “every feeling, thought, or act” that is associated
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with a “unique causal system” (Cramer et al., 2012, p. 415). More generally, components 

refer to causally distinct parts of the system that are not exchangeable with any other part 

of the system. A key part of this definition is that these components are unique in that 

they are causally autonomous (i.e., distinct causal processes). A recent set of simulation 

studies corroborated this point by demonstrating that network measures are affected by 

latent confounding (e.g., similar item phrasings, underlying common causes; Hallquist et 

al., 2019). Therefore, there is a need to identify unique components in networks to (a) 

align with the theoretical perspective of a causal system and (b) ensure the accurate 

interpretation of network measures. 

Detecting Redundancy in Networks 

Identifying unique components of the system is thus the first step of assessment 

from the network perspective. This step holds for whether the assessment instrument 

already exists or is being developed. To do this, identifying components that are 

redundant and handling that redundancy (e.g., removing all but one component or 

merging components) is necessary. My colleagues and I have proposed two approaches 

to first identify redundancy: one from the network perspective and the other from the 

traditional psychometrics perspective (Christensen et al., under review). 

The network approach uses the network measure called weighted topological 

overlap (Zhang & Horvath, 2005). The weighted topological overlap measure quantifies 

the extent to which two nodes share the same connections and similar weights in those 

connections. Such a measure has been useful for identifying genes or proteins that share 

similar biological pathways or functions (Nowick, Gernat, Almaas, & Stubbs, 2009). In 
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this sense, greater topological overlap suggests that two genes may belong to the same 

functional class relative to other genes. In the context of a psychological network, greater 

topological overlap would suggest that two observed variables have similar processes or 

an underlying common cause.  

The traditional approach can be derived from more traditional psychometrics 

where residual correlations of a factor model can provide inference into which variables 

have redundant information. A simpler method would be to simply obtain a partial 

correlation matrix where the relationship between each pair of variables in conditioned 

over all other variables. This matrix is often referred to as the precision matrix. In 

psychometric networks, it is precisely this matrix that is used to estimate the network 

with some elements in the matrix being zero. 

This makes determining what a “high” partial correlation means more 

complicated than computing statistical significance because significance is already one of 

the criteria used in the estimation of the network (i.e., determining which edges should be 

retained). An alternative that is still based on statistical significance is to obtain the 

empirical distribution of the non-zero values of the topological overlap or partial 

correlations. Using the absolute values between each unique pair of nodes, a best fitting 

distribution can be obtained, and the parameters of the distribution can be used to then 

determine statistical significance. Importantly, there are large number of parameters that 

are estimated (e.g., every value in the lower triangle of the partial correlation matrix), so 

a multiple comparison method should be applied.
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Present Research 

For the purpose of this study, my goal was to investigate whether these two 

approaches could effectively detect redundant items in a factor model. Within these 

approaches, I also wanted to examine several different multiple comparison methods to 

determine which method was most effective for this purpose. To do so, I derived an 

algorithm that implemented the approaches I described above. A Monte Carlo simulation 

was used to determine how well each approach (and their multiple comparison methods) 

could identify redundant items in a factor model. To evaluate the performance of these 

methods, I used sensitivity and specificity measures. The focus of these performance 

measures was on the accurate detection of redundant nodes (true positives and false 

negatives) and the avoidance of detecting non-redundant nodes (false positives). 

Method 

Data Generation 

The data generation for all population models across all simulations generally 

followed the same approach (Golino et al., in press), unless otherwise noted. First, the 

reproduced population correlation matrix was computed: 

 

𝑹𝑹 = 𝜦𝜱𝜦′, 

where 𝑹𝑹 is the reproduced population correlation matrix, lambda (𝚲) is the k (variables) 

× r (factors) factor loading matrix, and 𝚽 is the r × r correlation matrix. The population 

correlation matrix, 𝑹𝑷, was then obtained by putting the unities on the diagonal of 𝑹𝑹. 

Next, Cholesky decomposition was performed on the correlation matrix such that:  
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𝑹𝑷 = 𝑼′𝑼. 

If the population correlation matrix was not positive definite (i.e., at least one 

eigenvalue ≤ 0) or any single item’s communality was greater than 0.90, then 𝚲 was re-

generated and the same procedure was followed until these criteria are met. Finally, the 

sample data matrix of continuous variables was computed: 

 

𝑿 = 𝒁𝑼, 

where 𝒁 is a matrix of random multivariate normal data with rows equal to the sample 

size and columns equal to the number of variables. 

To generate polytomous data, each continuous variable was categorized with a 

random skew ranging from -2 to 2 on a 0.5 interval from a random uniform distribution 

(Table 1). As an example: if a continuous variable had a skew of -1.5, then the value 

ranges from the second skew column would be used to categorize its values, specifically 

values less than the first boundary in the column (i.e., -1.62) would be categorized as 1. 

Values greater than or equal to the first boundary in the column and less than the second 

boundary in the column (i.e., -1.16) would be categorized as 2. Categorization continues 

down the skew column until the last boundary where values greater than or equal to the 

last boundary (i.e., -0.41) would be categorized as 5. 

It’s important to note that factor models were used to generate data for network 

models. Recent research has pointed out that despite different hypothesized data 

generating mechanisms (i.e., factors causing covariation between items vs. direct causal 
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relations between items) these models can be shown to be statistically equivalent 

(Epskamp et al., 2018a; Fried, 2020; Marsman et al., 2018; van der Maas, 2006). These 

equivalences extend into the first (means) and second (variance-covariance matrix) 

moments, which means that any covariance matrix can be represented as a latent variable 

and network model (van Bork et al., 2019). Therefore, simulating data from a factor 

model does not inhibit the effectiveness of network models. 

Psychometric Network Model 

The Gaussian Graphical Model (GGM; Lauritzen, 1996) was used as the 

psychometric network model. The GGM is a network model where nodes represent 

variables and edges represent the partial correlation between two nodes given all other 

nodes in the network. The graphical least absolute shrinkage and selection operator 

(GLASSO; Friedman, Hastie, & Tibshirani, 2008) has been the most commonly applied 

GGM network estimation method in the network psychometrics literature (Epskamp, 

Waldrop, Mõttus, & Borsboom, 2018b). The least absolute shrinkage and selection 

operator (LASSO; Tibshirani, 1996) of the GLASSO is a statistical regularization 

technique that reduces parameter estimates, with some estimates becoming exactly zero 

(for the mathematical notation, see Epskamp & Fried, 2018). The aim of this technique is 

to achieve a sparse model—non-relevant edges are removed from the model, leaving 

only a subset of relevant (not necessarily significant) edges. 

This sparsity is controlled by a parameter called lambda (𝜆). Lower values of 

lambda remove fewer edges, increasing the possibility of including spurious associations, 

while larger values of lambda remove more edges, increasing the possibility of removing 
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relevant edges. When 𝜆 = 0, then the estimates are equal to the ordinary least squares 

solution (i.e., the partial correlation matrix). This parameter is thus an important part of 

model selection, striking a balance between sensitivity (i.e., selecting relevant edges that 

are truly relevant) and specificity (i.e., removing edges that are truly not relevant). 

The popular approach in the network psychometrics literature is to compute 

models across several values of 𝜆 (usually 100) and to select the model that minimizes 

the extended Bayesian information criterion (EBIC; Chen & Chen, 2008; Epskamp & 

Fried, 2018). The EBIC model selection uses a hyperparameter (𝛾) to control how much 

it prefers simpler models (i.e., models with fewer edges; Foygel & Drton, 2010). Larger 𝛾 

values lead to simpler models, while smaller 𝛾 values lead to denser models. When 𝛾 =

0, the EBIC is equal to the Bayesian information criterion. In the psychometric network 

literature, this approach has been termed EBICglasso and is applied via the qgraph 

package (Epskamp, Cramer, Waldorp, Schmittmann, & Borsboom, 2012) in R (R Core 

Team, 2020). For continuous data, Pearson’s correlations were computed; for polytomous 

data, polychoric correlations were computed. 

Redundant Node Approaches 

To evaluate whether nodes are redundant, I’ve developed two novel approaches 

that were described in the Introduction section of this chapter. The first approach uses 

what’s called weighted topological overlap (wTO), which uses the network’s structure to 

determine how much the shared (and not shared) connections of two nodes “overlap” 

with respect to weight, signs, and quantity (Zhang & Horvath, 2005). The second 

approach simply uses the absolute values of the partial correlation matrix. The former 
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approach is specifically designed for network models, while the latter is a more general 

form. Both approaches produce a symmetric matrix where the elements are weights 

(either topological similarity or partial correlation) between two nodes. 

The general strategy for both approaches uses the lower triangle of the symmetric 

weight matrix to avoid redundant values (i.e., weights are counted only once). The 

absolute values of the lower triangle are obtained and values equal to zero are removed. 

The largest values that remain are likely redundant; however, a statistical criterion is 

necessary. It’s important to note that these values imply that two nodes, rather than a 

single node, are redundant with each other. 

To derive statistical significance, a normal and gamma distribution are fit to the 

distribution of the weights using the fitdistrplus package (Delignette-Muller & Dutang, 

2015) in R. These two distributions were chosen because they can be efficiently 

estimated with maximum likelihood and reflect the distributions that were most often 

found in several datasets I tested. The fitdist function of the fitdistrplus package outputs 

Akaike information criterion (AIC), which is used to determine which distribution has the 

lowest (best fitting) AIC value. The parameters of the best fitting distribution—mean and 

standard deviation for normal, and rate and shape for gamma—are then derived using the 

MASS package (Venables & Ripley, 2002) in R. p-values for each weight are obtained 

using this empirical distribution. Because there are typically a substantial number of 

comparisons being made, I tested several multiple comparison correction methods: 

standard alpha (𝛼 = .05), Bonferroni correction, false-discovery rate (FDR; Benjamini & 

Hochberg, 1995), and adaptive alpha (𝛼𝑎𝑑𝑎𝑝𝑡; Pérez & Pericchi, 2014). 
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The standard alpha simply selects all weights that have a p-value less than .05. 

The Bonferroni correction (also known as the familywise error rate) is the standard alpha 

value divided by the number of comparisons (e.g., total number of weights). The FDR 

controls the false positive rate of significance tests by using the expected number of false 

positive results (e.g., 5% with an 𝛼 = .05) to adjust for the total number of significant 

results. The number of false positives is controlled by a q-value, which is can be set with 

a slightly more liberal value (e.g., q = .10). The q-value suggests that rather than 10% of 

all tests resulting in false positives, 10% of all significant results will be false positives. 

Finally, the adaptive alpha adjusts the standard alpha level by accounting for a reference 

sample size. It’s well-known that as sample size increases, the likelihood of a small effect 

becoming significant also increases. 

To account for this, Pérez and Pericchi (2014) provide the following formula: 

𝛼𝑎𝑑𝑎𝑝𝑡 =  
𝛼∗ √𝑛0×(log(𝑛0)+𝜒𝛼

2(1))

√𝑛∗×(log(𝑛∗)+ 𝜒𝛼
2(1)) 

, 

where 𝑛0 is the reference sample size, 𝑛∗ is the actual sample size, and 𝛼 is the standard 

alpha. The reference sample size can be computed using a power analysis. For my 

purposes, this power analysis was computed using the pwr package (Champely, 2018) in 

R for a correlation with a medium effect size, alpha of .05, and power of .80. This yields 

a reference sample size of 84.07. The actual sample size will be the number of weights 

used in the distribution. Both approaches were applied using the node.redundant 

function in the EGAnet package (Golino & Christensen, 2020) in R. 
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Baseline comparison. To provide a baseline comparison method, I used a 

threshold of partial correlations where if a connection between two nodes was greater 

than .20, then the nodes were considered redundant. This threshold serves as a benchmark 

independent of statistical significance, which may sometimes produce false positives 

because there can always be points on a distribution in which values are considered 

significant. 

Design 

The population models were simulated from a multidimensional multivariate 

normal distribution. Across population models, factor loadings for each item were 

randomly drawn from values between .40 and .70 to mimic more realistic data conditions. 

Similarly, cross-loadings were generated following a random normal distribution with a 

mean of zero and a standard deviation of .10. This procedure follows previous simulation 

work described in Garcia-Garzón, Abad, and Garrido (2019). These cross-loadings 

represent data conditions that are more likely to be found in real-word data (Bollmann, 

Henne, Küchenhoff, & Bühner, 2015). 

Two and four factors were simulated to provide multidimensional structures that 

are commonly found in the psychological literature (Henson & Roberts, 2006). There 

were six, twelve, and eighteen variables per factor, which were chosen to evenly split the 

number of variables for the percentage of redundant items. These percentages were 0%, 

16.7%, 33.3%, and 50%. The condition of zero redundant items is particularly important 

for estimating the consistency for which methods identify false positive redundancy (i.e., 

redundancy when there is none). Correlations between factors were manipulated to be 
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orthogonal (.00), small (.30), moderate (.50), and large (.70). Finally, very small (250), 

small (500), medium (1000), and large (5000) samples sizes were generated. 

The simulation design of the current study allowed for a mixed factorial design: 2 

× 3 × 4 × 4 × 4 × 2 (number of factors × variables per factor × percentage of redundant 

items × correlations between factors × sample size × number of responses) for a total of 

768 simulated condition combinations. 

Simulating Redundancy 

To simulate redundancy, the following approach was used. First, the number of 

redundant items per factor was manipulated a priori (i.e., percentage of redundant items). 

Second, from each factor, a subset of items (equivalent to the percentage of redundant 

items; e.g., 33.3% × 18 items = 6 items) was randomly sampled without replacement. 

This subset is referred to as the replace set. Third, excluding the subset of items already 

selected in the replace set, another subset of items within the same factor were randomly 

sampled with replacement. This subset is referred to as the copy set. 

From the copy set, 20% of the values in each item were copied to “replace” the 

corresponding values in the replace set. Because direct copies of values would introduce 

perfect collinearity, random noise was added to the values that reduced this effect. This 

random noise, on average, added or subtracted one standard deviation from the copied 

value. This strategy generally led to larger increases in correlation between items that 

started out with smaller correlations—that is, smaller correlations had a greater increase 

in magnitude than larger correlations. It’s worth noting that because the copy set was 

sampled with replacement, it was possible for items to be redundant with more than one 
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item. The same values, however, were not used to avoid increasing the number of 

redundant items beyond the intended manipulation. 

Statistical Analyses 

To evaluate the performance of the two redundancy approaches, four types of 

alpha, and a threshold method, I used sensitivity and specificity measures (Table 2). More 

specifically, I used false discovery rate ( 𝐹𝑃

(𝑇𝑃+𝐹𝑃)
), false negative rate ( 𝐹𝑁

(𝐹𝑁+𝑇𝑃)
), and critical 

success index ( 𝑇𝑃

(𝑇𝑃+𝐹𝑃+𝐹𝑁)
). Given that there were a large number of true negatives (i.e., 

nodes that are not redundant that are identified as not redundant), measures were chosen 

that did not include them. 

False discovery rate was used to determine the number of incorrectly estimated 

redundant items versus the total number of the estimated redundant items. This measure 

represents an approach’s (or type of alpha’s) tendency to over-identify redundant items 

relative to the number of actual redundant items. False negative rate was used to 

determine the number of type II errors or the number of items that were estimated as not 

redundant when they were redundant versus the total number of the estimated redundant 

items. This measure represents an approach’s (or type of alpha’s) tendency to under-

identify redundant items relative to the number of actual redundant nodes. Critical 

success index was used as an overall accuracy measure, giving an equal weight to true 

positives as false positives and negatives. This measure represents an approach’s (or type 

of alpha’s) tendency to correctly identify redundant nodes, with few false positives and 

false negatives.
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Results 

For the presentation of the results, I focused on breaking down the FDR, false 

negative rate (FNR), and critical success index (CSI) by number of responses (continuous 

× polytomous), percentage of item redundancy (per factor), and sample size. The 

percentage of item redundancy was the most critical factor in each approach’s and alpha 

type’s performance across sensitivity and specificity measures. The next most important 

factor was sample size, which is the most obvious factor when analyzing the data (i.e., a 

researcher may not know how many items per factor are redundant). The other conditions 

(number of factors, variables per factor, and correlation between factors) were not 

substantial contributors to variability in performance and therefore are not discussed. 

False Discovery Rate 

For the general trends, the number of responses did appear to have an effect on 

FDR, with both approaches and most alpha types having better performance when the 

data were continuous (except for weighted topological overlap when n = 250; Figure 1). 

This is somewhat expected as the continuous number of responses has greater variability 

in the responses, which leads to better differentiation of whether items are redundant. In 

contrast, when the continuous data were categorized, the variability between items is 

reduced and collapsed into bins, which allows for greater redundancy to appear when 

there may not be. Similar to the number of responses, the FDR across all approaches and 

alpha types decreased as the sample size and number of redundant items increased. 

 As far as the best performing methods, the Bonferroni and false discovery rate 

(multiple comparisons method) had very few false positives relative to their total 
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positives. This result is relatively misleading, however, because these alpha types 

generally did not identify redundant nodes across conditions. This can be seen in the 

breakdown of the false negative rate (FNR) results (Figure 2) where both of these alpha 

types had FNRs near 1, suggesting that they were consistently not detecting any 

redundant items (regardless of approach). Because these methods performed so poorly 

(see Figure 3), they won’t be discussed. 

 This turns the attention to the other three alpha types: standard, adaptive, and 

threshold. In general, the adaptive alpha had the lowest FDR across approaches and 

conditions. Adaptive alpha for the weighted topological overlap approach appeared to 

fare better when there were fewer redundant items (i.e., 0% and 16.7%) and was 

comparable to the partial correlation approach when there were more redundant items 

(i.e., 33.3% and 50%). Notably, the threshold method performed comparably to all other 

approaches and alpha type combinations when the sample size was small (n = 500), and 

outperformed them when sample size was moderate (n = 1,000) or large (n = 5,000). 

False Negative Rate 

 Similar to the FDR results, the FNR decreased as the sample size increased 

(Figure 2). In contrast to the FDR results, the percentage of redundant items did not 

appear to affect the FNR values (except for weighted topological overlap when n = 250). 

For the approaches, the partial correlation approach generally had fewer false negatives 

than the weighted topological overlap approach. It’s worth noting that across all 

approaches and alpha types that there were FNR values of 0 for the 0% redundant items 
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condition. This is because there were no redundant items in the population and therefore 

could be no false negatives. 

 When looking across the alpha types, the standard alpha generally had the fewest 

false negatives, suggesting it was more likely to discover most redundant nodes. This 

contrasts with the FDR where it had the most false positives. Taken in combination, this 

result suggests that the standard alpha may not have discriminated which items were 

redundant very well. The adaptive alpha, however, tended to have lower FNR values than 

the threshold, which usually held across the number of responses (except when n = 250). 

Interestingly, these results are the reverse of the FDR results, specifically the threshold 

method has a higher FDR and lower FNR when the sample size is very small, while 

adaptive alpha has a higher FDR and lower FNR when the sample size is small, 

moderate, and large. 

Critical Success Index 

 As the overall metric for accuracy, the CSI reflects the combination of the FDR 

and FNR where their minimization leads to the most optimal outcome. For the general 

trends, CSI increased as sample size and percentage of redundant items increased. The 

number of responses did not seem to affect the CSI values for either approach. Across 

these conditions, the partial correlation approach had higher CSI values than the weighted 

topological overlap approach for each respective alpha type (Figure 3). 

For the alpha types, the adaptive alpha (particularly for the partial correlation 

approach) had the largest CSI across conditions and the difference from other alpha types 

increased as the sample size and percentage of redundant items increased. The standard 
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alpha and threshold method had comparable CSI when there were 50% of items that were 

redundant; otherwise, the threshold method had the second largest values of CSI. 

Similar to the FNR, there was no measure of CSI for the 0% redundant items 

because it was not possible to have true positives. Therefore, the best marker of 

performance for 0% redundant items is the FDR metric (Figure 1). Here, the threshold 

method had the best performance when the sample size was very small; otherwise, the 

adaptive alpha should be preferred (weighted topological overlap approach for 

continuous data and partial correlation approach for polytomous data). 

Discussion 

This study evaluated the effectiveness of two approaches to estimating statistical 

redundancies among items in an assessment instrument. Across the conditions tested, 

both approaches appeared to be effective but were limited in their effectiveness by the 

type of alpha used, specifically standard alpha and adaptive alpha performed the best of 

the alpha types with Bonferroni and FDR multiple comparison corrections being too 

stringent to detect any redundancies when they were present. In the end, only the adaptive 

alpha method surpassed the baseline comparison of the threshold method for achieving 

better rates of false positives (lower), false negatives (lower), and overall accuracy 

(higher).  

When taking in the results as a whole, there seemed to be a trade-off between 

detecting all of the redundant items (i.e., avoiding false negatives) and detecting only the 

redundant items (i.e., avoiding false positives). A primary example was the standard 

alpha, which had consistently high false positives and low false negatives relative to the 
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adaptive alpha and threshold methods. When considering this trade-off, greater emphasis 

should be placed on avoiding false negatives rather than false positives. This emphasis is 

because this procedure serves as a statistical basis for human judgment of whether items 

are from a theoretical common cause. Therefore, it’s better to err on the side of detecting 

too much redundancy rather than too little because researchers will have the definitive 

decision for whether two or more items are theoretically redundant. Nonetheless, an 

optimal approach would strike a balance between the two. 

The adaptive alpha and threshold methods struck the best balance between false 

positives and negatives under certain conditions. When sample size was very small (n = 

250), the threshold method had the best CSI. It’s notable, however, that no combination 

of approach and alpha type fared well in this condition. This suggests that this 

redundancy analysis should be avoided when sample sizes are very small. When sample 

size is small (n = 500), moderate (n = 1,000), or large (n = 5,000), the adaptive alpha 

method struck the best balance between false positives and negatives. This was 

particularly true for the partial correlation approach. In general, the partial correlation 

approach appeared to outperform the weighted topological approach in most conditions, 

but these differences were relatively small. The choice between either approach will 

likely come down to the conditions expected in the data such as the expected number of 

redundant items per factor. 

When evaluating these results, there was a significant limitation to acknowledge: 

the factor loadings varied randomly while the redundant items were also selected at 

random. This means that an item with a high loading may have been made more 
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redundant with an item that had a low loading (and vice versa) rather than making 

already similar items more similar (i.e., high loading items more redundant with high 

loading items). As a consequence, some of the redundant items may have been harder to 

detect because although they were becoming more similar, they were perhaps not as 

similar as some high loading items on the same factor that were not manipulated to be 

redundant. This limitation may mean that the results of this study are more conservative 

estimates of the effectiveness of these approaches and alpha types. 

To my knowledge, this is the first simulation to attempt to statistically detect 

redundancy in assessment instrument conditions. This simulation therefore serves as a 

starting point more than a definitive conclusion. There is clearly room for improvement, 

such as the strategy for generating redundant items. Future research, for example, may 

consider generating redundancy by introducing minor factors that have large loadings 

within major factors. This choice would better reflect more common scale development 

practices and likely lead to more robust results. As for the approaches implemented here, 

the adaptive alpha appears to be the decisive go-to method for the best results. The 

adaptive alpha was consistently better than the baseline of using a threshold (both 

approaches) and demonstrated the lowest false discovery rate when there was no 

redundancy between items (weighted topological overlap). In sum, the statistical 

detection of redundancy in assessment instruments seems feasible and will be a useful 

tool for deriving concise assessment instruments when paired with a researcher’s 

theoretical knowledge.
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CHAPTER III 

DIMENSIONALITY 

The next step in our psychometric network assessment framework is to identify 

dimensions. Dimension identification in assessment is a critical part of validating an 

instrument. Traditional psychometric approaches apply factor analytic techniques such as 

exploratory factor analysis (EFA) to assess the dimensionality of an instrument (Flora & 

Flake, 2017). Factor analytic methods typically correspond to common cause models 

where items are regressed on the factors (Borsboom et al., 2003). From the common 

cause perspective, dimensions represent evidence of an underlying cause of a set of 

variables. 

From the network perspective, dimensions emerge from densely causally 

connected sets of nodes and represent a coherent sub-network (i.e., smaller network) 

within the overall network (Christensen, Golino, & Silvia, under review). For network 

models, community detection algorithms are the commonly applied to identify 

dimensions (Fortunato, 2010). These algorithms typically identify the number of 

communities (or dimensions) in the network by maximizing a function called modularity, 

which quantifies the extent to which a set of nodes has a higher number of connections 

within its group than what is expected at random (Newman, 2006; Newman & Girvan, 

2004).
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Although the hypothesized data generating mechanisms behind these perspectives 

differ, they are based on the same data structure (van Bork et al., 2019). Indeed, a 

researcher can fit a factor model to a data structure generated from a network model with 

good model fit (van der Maas et al., 2006). Similarly, a network model with a community 

detection algorithm can be fit to a data structure generated from a factor model and 

identify factors (Fried, 2020; Golino & Epskamp, 2017). This underlying equivalence 

follows from the fact that any covariance matrix can be represented as a latent variable or 

network model (van Bork et al., 2019). Therefore, factors of a latent variable model and 

communities of a network model are statistically equivalent (Golino & Epskamp, 2017) 

and the difference is purely the hypothesized data generating mechanism (Fried, 2020). 

Recent Simulation Studies 

The most extensive work on dimensionality in the psychometric network 

literature has been with a technique called Exploratory Graph Analysis (EGA; Golino & 

Epskamp, 2017; Golino et al., in press). The EGA algorithm works by first estimating a 

Gaussian Graphical Model (Lauritzen, 1996) using the graphical least absolute shrinkage 

and selection operator (GLASSO; Friedman, Hastie, & Tibshirani, 2008). Edges in the 

GGM represent (regularized) partial correlations between nodes after conditioning on all 

other nodes in the network. After network estimation, EGA applies the Walktrap 

community detection algorithm (Pons & Latapy, 2006), which uses random walks to 

determine the number and content of communities in the network (discussed in more 

detail in the Method section of this chapter). Several simulation studies have shown that 

EGA has comparable or better accuracy when identifying the number of population 
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dimensions than the most accurate factor analytic techniques (e.g., parallel analysis; 

Golino & Demetriou, 2017; Golino & Epskamp, 2017; Golino et al., in press). 

Despite the effectiveness of EGA, there has been only one investigation, to my 

knowledge, into the effect of different network estimation methods and no investigations 

into the effect of different community detection algorithms. To date, the GLASSO has 

been the standard network estimation method applied across psychological network 

studies (Epskamp & Fried, 2018). Notably, there are other network estimation methods, 

each of which will estimate a different network structure, which ultimately affects the 

dimensionality estimate. One simulation study compared the dimension identification 

accuracy of the GLASSO and triangulated maximally filtered graph (TMFG; Massara, Di 

Matteo, & Aste, 2017) network estimation methods using the Walktrap community 

detection algorithm (Golino et al., in press). This study found that the GLASSO network 

estimation method had better accuracy and less bias than the TMFG but both performed 

comparable to the best factor analytic techniques. 

More recently, non-regularized network estimation methods have been put 

forward in the literature (Williams, Rhemtulla, Wysocki, & Rast, 2019). These methods 

have been shown to have better performance when estimating the population network 

structure of dense (highly connected) networks, which are common in psychology 

(Williams & Rast, 2019). Despite their better performance when estimating the 

population network structure, there has yet to be an investigation in whether they perform 

better for estimating dimensions in networks. 
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Similarly, the Walktrap community algorithm has not been evaluated in the 

context of other community detection algorithms. Several other algorithms such as the 

Spinglass algorithm (Reichardt & Bornholdt, 2006) have been used in the psychometric 

network literature (e.g., De Beurs et al., 2019). Despite their application, there has yet to 

be an investigation that compares these algorithms in a psychological network context. In 

general, most community detection algorithms were developed and validated on networks 

containing a large number of nodes (e.g., > 1,000; Lancichinetti & Fortunato, 2009; 

Yang, Algesheimer, & Tessone, 2016). Moreover, these algorithms are often designed to 

work well for one type of problem or data structure (Gates, Henry, Steinley, & Fair, 

2016). Because most psychological networks consist of fewer than 100 nodes, there is a 

need to verify which of these algorithms work best and under conditions commonly 

found in the psychological literature. 

A recent simulation study systematically examined several freely available 

community detection algorithms in the context of brain networks (Gates et al., 2016). 

Brains networks are perhaps the closest comparison to psychological networks in that 

they are typically represented by correlational (rather than count) data and generally have 

fewer than 1,000 nodes. In this study, they generated network models using a structural 

equation modeling method and manipulated several conditions, including number of 

nodes and communities, size of edge weights (i.e., correlations), and correlations between 

communities. Of the six algorithms they examined, the Walktrap and Louvain (Blondel, 

Guillaume, Lambiotte, & Lefebvre, 2008) algorithms performed the best across 
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conditions. Importantly, their study investigated conditions where there were a small 

number of nodes (i.e., 25 and 75).  

Present Research 

The goal of this simulation study was twofold: compare the effects of (1) network 

estimation methods and (2) community detection algorithms on the accuracy of 

dimension identification in psychological network models. For the network estimation 

methods, I used the standard network estimation method in the psychometric network 

literature, the GLASSO, and compared its accuracy to two non-regularized partial 

correlation methods that are based on neighborhood selection (Williams et al., 2019). 

These two approaches solely differ in their criterion for model selection: Bayesian 

information criterion (BIC) and Akaike information criterion (AIC). For the community 

detection algorithms, I examined several freely available algorithms that were used in 

Gates et al.’s (2016) simulation study and included a few others that were available in the 

R package igraph (Csárdi & Nepusz, 2006). 

My simulation study differs from previous studies that have compared these 

network estimation methods and community detection algorithms in a few ways. First, 

the data in this study were generated from a factor model rather than being generated 

from an empirical dataset or network model (Gates et al., 2016; Williams et al., 2019). As 

already discussed, factors and communities of factor and network models (respectively) 

are statistically equivalent and only differ in their substantive interpretations. Therefore, 

generating data from a factor model is advantageous because it allows me to vary 
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conditions which are familiar to many researchers in psychology (e.g., factor loadings, 

number of variables per factor, correlations between factors). 

Second, this study specifically analyzes the accuracy of dimension identification 

rather than whether the true network structure is identified (i.e., correct number of edges; 

Williams et al., 2019). It’s plausible that the true network structure may contain many 

edges that are not relevant for detecting dimensions, which may reduce the efficacy of 

contemporary community detection algorithms that are based on sparser network 

structures. Therefore, network estimation methods may differ in their utility (e.g., correct 

estimation of the true network structure vs. correct estimation of dimensions). Finally, the 

present simulation generates data that aligns with conditions more commonly found in 

psychological networks: specifically, multivariate data with a relatively low number of 

dimensions (e.g., 1, 2, and 4) and variables per dimension (e.g., 4, 8, and 12). With these 

conditions, the number of nodes in the network range from 4 to 48, which is considerably 

smaller than networks observed in brain data (Gates et al., 2016). 

Method 

Data Generation 

The data generation approach followed the same approach applied in Chapter II’s 

Method. 

Psychometric Network Models 

Similarly, the same GLASSO network estimation method used in Chapter II’s 

Method was used in this study. The GLASSO was applied using the network estimation 

criteria found in the Exploratory Graph Analysis approach (Golino et al., in press). First, 
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the minimum 𝜆 value is set to .01, which is slightly higher than the default of .001. This 

is selected to reduce the possibility of false positive edges in the network. Second, the 𝛾 

value is set to .50, which is the default; however, it is iteratively decreased by .25, until 

reaching zero, based on whether any one node in the network is disconnected. If 𝛾 

reaches zero, then the network is used regardless of whether any nodes are disconnected. 

Finally, a node that forms its own community is not included in as a part of the number of 

dimensions identified (Golino et al., in press). This removes variables that are not 

identified to be a part of any dimension in the network. 

Non-regularized partial correlation networks. In addition, two non-regularized 

partial correlation estimation methods were used. Both methods were based on a 

regression strategy called neighborhood selection, which uses node-wise multiple 

regression on each node in the network (Williams et al., 2019). Multiple regression 

coefficients have direct correspondence to the inverse covariance coefficients in that the 

negative regression coefficient (−𝛽𝑖𝑗) divided by the predictor variable’s variance (𝜎𝑗
2) is 

equal to the inverse covariance between the regressed variable and the predictor variable 

given all other variables (𝜃𝑖𝑗). 

The multiple regression coefficients for each regressed variable are placed across 

the row of each target variable with the regressed variable’s variance in its respective 

element’s position (𝜃𝑖𝑖
2; i.e., variance of each variable is on the diagonal). A common 

method for computing partial correlations is to take the square root of the product of the 

corresponding regression coefficients in the matrix and replacing their signs (i.e., 𝜌𝑖𝑗 =
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𝑠𝑖𝑔𝑛(𝛽𝑖𝑗)√𝛽𝑖𝑗 , 𝑖 ≠ 𝑗). Notably, this leads to an asymmetric covariance matrix where 

coefficients do not correspond to their respective transpose element (i.e.,  𝜃𝑖𝑗
2 ≠ 𝜃𝑗𝑖

2). 

There are two approaches for determining whether an edge should be non-zero: 

the “and-rule” where both 𝛽𝑖𝑗 and 𝛽𝑗𝑖 must be non-zero and the “or-rule” where only one 

coefficient must be non-zero. Both approaches use a forward search strategy for 

determining non-zero coefficients, which removes predictor variables from each multiple 

regression that minimize some criterion until the minimum value of the criterion is 

achieved for the set of predictor variables. The coefficients that are not removed in the 

process of minimizing the criterion are retained in the network as non-zero edges, while 

the removed variables are set to zero. 

This criterion is based on traditional model selection criteria AIC and BIC. The 

main difference between these criteria is that the BIC tends to penalize more complex 

models more severely than the AIC. In short, the AIC is better in conditions when a false 

negative is considered to be worse than a false positive, while BIC is better in conditions 

when a false positive is considered to be worse than a false negative. 

For this study, I examined both the AIC and BIC approaches to edge selection 

because they were shown to have considerable differences in estimating the population 

network structure in previous simulations (Williams et al., 2019). The “and-rule” and “or-

rule” had negligible effects on the estimation of population network structures, so I only 

investigated the “and-rule” in this study (Williams et al., 2019). Both non-regularized 

partial correlation network models were estimated using the GGMnonreg package 

(Williams, 2019) in R. 
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Modularity 

A key definition for understanding many community detection algorithms is the 

concept of modularity (Newman, 2006). Modularity can be expressed as (Fan, Li, Zhang, 

Wu, & Di, 2007): 

 

𝑄 =
1

2𝑤
∑ (𝑤𝑖𝑗 −

𝑤𝑖𝑤𝑗

2𝑤
) 𝛿(𝑐𝑖, 𝑐𝑗)𝑖𝑗 , 

where 𝑤𝑖𝑗is the edge strength for a given node pair, 𝑤𝑖 and 𝑤𝑗 are the node strength for 

node 𝑖 and node 𝑗 (respectively), 𝑤 is the sum of all the edge weights in the network, 𝑐𝑖 

and 𝑐𝑗 represents the community that node 𝑖 and node 𝑗 belong to, and 𝛿 is 1 if the nodes 

belong to the same community (i.e., 𝑐𝑖 = 𝑐𝑗) and 0 if otherwise. Essentially, modularity 

reflects the extent to which communities have more connections within the community 

and fewer connections with other communities. 

Community Detection Algorithms 

This study focused on eight different community detection algorithms that are 

freely available via the R package igraph. These include the Walktrap (Pons & Latapy, 

2006), Infomap (Rosvall & Bergstrom, 2008), Fast-greedy (Clauset, Newman, & Moore, 

2004), Louvain (Blondel et al., 2008), Leading Eigenvalue (Newman, 2006), Label 

Propagation (Raghavan, Albert, & Kumara, 2007), Spinglass (Reichardt & Bornholdt, 

2006), and Edge Betweenness (Girvan & Newman, 2002) community detection 

algorithms. 
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All community detection algorithms were implemented with their default 

arguments in order to evaluate their baseline performance without researcher direction 

(similar to Gates et al., 2016). Moreover, all network matrices were input with absolute 

values to avoid bias of some methods performing better than others because of their 

ability to handle negative associations. Below, I briefly describe each algorithm (more 

detailed information can be found within their respective citations). 

Walktrap. The Walktrap algorithm (Pons & Latapy, 2006) has been the most 

commonly applied algorithm in the psychometric network literature (Golino & 

Demetriou, 2017; Golino & Epskamp, 2017; Golino et al., in press). The Walktrap 

algorithm begins by computing a transition matrix where each element represents the 

probability (based on node strength) of one node traversing to another given a length of 

time. Using Ward’s agglomerative clustering approach (Ward, 1963), each node starts as 

its own cluster and merges with adjacent clusters (based on squared distances between 

each cluster) in a way that minimizes the sum of squared distances between other 

clusters. Modularity is then used to determine the optimal partition of clusters (i.e., 

communities). 

Infomap. Similar to the Walktrap algorithm, the Infomap algorithm (Rosvall & 

Bergstrom, 2008) uses random walks. Different from the Walktrap algorithm, Infomap is 

derived from information theory with idea of “compressing” the conditional information 

of a random walk on the network into Huffman codes (a binary naming system; Rosvall 

& Bergstrom, 2008). The major difference between these two algorithms is that Infomap 

captures the conditional flow of information across the network in a way that maximizes 
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the information (e.g., bits) of the random walk process. The partition function that 

optimizes this minimization is given by the entropy of movement between communities 

and the entropy of movement within communities. The space of possible partitions is 

explored using a deterministic greedy search algorithm, which is refined using a 

simulated annealing approach.  

Fast-greedy. The Fast-greedy algorithm (Clauset, Newman, & Moore, 2004) uses 

modularity to identify optimal partitions in the network. Like the Walktrap algorithm, the 

Fast-greedy algorithm begins with each node considered as its own community and 

follows a hierarchical clustering algorithm. The algorithm then proceeds by iteratively 

combining neighboring communities in a greedy way: Each node is moved into a 

community that maximizes the modularity function. These aggregate communities are 

then merged until the modularity function can no longer be increased. 

Louvain. The Louvain algorithm (also referred to as Multi-level; Blondel et al., 

2008) is very similar to the Fast-greedy algorithm in that it uses modularity to optimize 

its partitions. It differs in that its motivation is to identify hierarchical structures in large 

networks, specifically it iteratively exchanges nodes between communities and evaluates 

the change in modularity. The algorithm then further creates smaller networks by creating 

latent nodes representing a collection of nodes and identifies edge weights with other 

observed and latent nodes (Gates et al. 2016). In its use in this study, the algorithm was 

not used to identify hierarchical community structures in the network. Therefore, it’s 

expected that this algorithm will closely align with the Fast-greedy algorithm. It’s also 
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important to note that the algorithm implemented in igraph is deterministic; however, 

other variants are not (Gates et al., 2016; Rubinov & Sporns, 2010). 

Leading eigenvalue. The Leading Eigenvalue algorithm (Newman, 2006) is 

based on spectral properties of the network using eigenvector of the first eigenvalue to 

determine optimal community structures. Like Fast-greedy and Louvain algorithms, the 

Leading Eigenvalue algorithm uses modularity to optimize these structures. The 

algorithm begins by computing the first eigenvector of the modularity matrix and the 

network is split into two communities that improves the modularity. This process 

iteratively unfolds until there is no longer improvement in modularity. 

Label propagation. The Label Propagation algorithm (Raghavan et al., 2007) 

begins by assigning each node a unique label. Each node then adopts the same label that 

the majority of its neighbors have, with ties being broken randomly. This continues 

iteratively until each node has the same label as the majority of its neighbors. The general 

notion of the algorithm is that a consensus will develop among the nodes in the network. 

Notably, this algorithm is not deterministic in that it produces different results with each 

run. In this study, only one run was implemented for each sample in order to evaluate its 

accuracy in its current form. Other strategies such as repeated sampling could be used to 

arrive at a relatively stable organization of communities (e.g., median; De Beurs et al., 

2019; Lancichinetti & Fortunato, 2012). 

Spinglass. The Spinglass algorithm comes from statistical physics and is based on 

notion that “the problem of community detection can be mapped onto finding the ground 

state of an infinite ranged Potts spin glass” (Reichardt & Bornholdt, 2006, p. 1540). In 
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essence, edges should connect nodes that are in the same spin state (i.e., community), 

while nodes in different states should be disconnected, which results in a “lower energy 

state” or ground state of the system. Similar to the Label Propagation algorithm, this 

algorithm is not deterministic and only one run was implemented in this study. 

Edge betweenness. The Edge Betweenness algorithm (Girvan & Newman, 2002) 

was one of the first algorithms used to identify communities in networks. This algorithm 

finds edges that are frequently “between” other nodes in the network known as edge 

betweenness (based on the betweenness centrality; Freeman, 1977). Edge betweenness is 

calculated for the entire network and the edge with the highest betweenness value is 

removed. All edges that are affected by this removal have their edge betweenness value 

recalculated. This process repeats iteratively until no edges remain. 

Unidimensionality Adjustment 

A well-known limitation of community detection algorithms is that they tend to 

favor multidimensional structures (Golino et al., in press). This is a consequence of what 

most algorithms were designed to do: identify modular components in large networks 

(i.e., > 1000 nodes). Because this issue lies in many of the community detection 

algorithms, all psychometric network models were adapted to the unidimensional 

approach found in Golino et al. (in press). 

Their approach works in the following way: generate a random multivariate 

normal dataset with a certain number of variables (e.g., four) with high factor loadings 

(e.g., .70) on a single factor and add these variables to the original dataset before 

computation of the (partial) correlation matrix. Then, compute the network and apply the 
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community detection algorithm. If the algorithm identifies one or two dimensions, then 

the original data is unidimensional. If more than two dimensions are identified, then the 

generated variables are removed, and the network and community detection algorithms 

are reapplied. The conceptual reasoning behind this is that the generated variables 

represent a cohesive single factor that is independent of the original data. Therefore, it is 

known that if there are two factors, then one will be the generated data and the other will 

be the original data. Based on recommendations by Golino and colleagues (in press), the 

number of variables generated in the simulated data was set equal to the variables per 

factor in the data generation conditions. 

Parallel Analysis 

As a comparison, two parallel analysis (PA) methods—principal axis factoring 

(PAF) and principal component analysis (PCA)—were used. These two methods were 

chosen because they have been extensively evaluated in the literature (e.g., Garrido, 

Abad, & Ponsoda, 2013) and have shown comparable performance with EGA in a 

previous simulation study (Golino et al., in press). In short, PA generates a larger number 

of random datatsets, with an equivalent number of cases as the original dataset, by 

resampling (with replacement) from the original dataset (Horn, 1965). The number of 

factors (PAF) or components (PCA) whose eigenvalues in the original dataset are greater 

than the mean of the resampled datasets is suggested as the dimensional solution. The 

number of dimensions were estimated using the minimum residual estimator.
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Design 

Similar to the Design of Chapter II, the population models were simulated from a 

multidimensional multivariate normal distribution with factor loadings for each item 

generated with ±.10 deviance drawn from a uniform distribution. Cross-loadings were 

also generated following a random normal distribution with a mean of zero and a 

standard deviation of .10. The same correlations between factors (.00, .30, .50, and .70) 

and sample sizes (250, 500, 1000, 5000) that were used in the Chapter II simulation were 

used in this study. 

Different for this study, one, two, and four factors were simulated to provide 

unidimensional and multidimensional structures that are commonly found in the 

psychological literature (Henson & Roberts, 2006). There were four, eight, and twelve 

variables per factor, which represented conditions common in scale development and 

validation. Finally, factor loadings were manipulated to be small (.40), moderate (.55), 

and large (.70). 

The simulation design of the current study allowed for a mixed factorial design: 4 

× 4 × 3 × 3 × 3 × 2 (factor correlations × sample size × number of factors × number of 

variables × factor loadings × number of responses) for a total of 864 simulated condition 

combinations. 

Statistical Analyses 

To evaluate the performance of the network and parallel analysis approaches, 

overall accuracy and bias were measured using the percentage of correct number of 

factors (PC), mean bias error (MBE; the average deviation away from the correct number 
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of factors) and mean absolute error (MAE; the average absolute deviation away from the 

correct number of factors). These are defined below: 

 

𝑃𝐶 =
∑ 𝐶

𝑁
, 𝑓𝑜𝑟 𝐶 =  {

1 𝑖𝑓 𝜃 = 𝜃

0 𝑖𝑓 𝜃 ≠ 𝜃
}, 

𝑀𝐵𝐸 =
∑(𝜃̂−𝜃)

𝑁
, 

𝑀𝐴𝐸 =
∑ |𝜃̂−𝜃|

𝑁
, 

where 𝜃 is the estimated number of factors, 𝜃 is the population number of factors, and 𝑁 

is the number of sample data matrices simulated. 

A second approach was used to quantify the accuracy of the item placement of the 

community detection algorithms, specifically, whether the items were being identified in 

the correct dimension. The number of dimensions, for example, could be estimated 

correctly; however, some dimensions may have items that belong to a different 

dimension than the population dimension. 

One common approach from the network science literature is to use normalized 

mutual information (NMI; Danon, Díaz-Guilera, Duch, & Arenas, 2005). NMI defines a 

confusion matrix, 𝑁, where the rows correspond to the population dimensions and the 

columns correspond to the estimated dimensions. The element, 𝐶𝑖𝑗, refers to the number 

of items that are found in population dimension 𝑖 that are in the estimated dimension 𝑗. 

Using the information-theoretic measure of mutual information, this defines NMI as: 
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𝑁𝑀𝐼 =
−2 ∑ ∑ 𝑁𝑖𝑗log (𝑁𝑖𝑗𝑁/𝑁𝑖.𝑁.𝑗) 

𝐶𝐵
𝑗=1

𝐶𝐴
𝑖=1

∑ 𝑁𝑖.log (𝑁𝑖./𝑁)+
𝐶𝐴
𝑖=1

∑ 𝑁.𝑗log (𝑁.𝑗/𝑁)
𝐶𝐴
𝑖=1

, 

where 𝐶𝐴 is the number of population dimensions and 𝐶𝐵 is the number of estimated 

dimensions. Notably, when there is only one dimension (either population or estimated), 

then NMI is equivalent to PC (i.e., all items are in one dimension = 1 or at least one item 

is in a second dimension = 0). The NMI metric can be roughly interpreted as the 

proportion of items properly placed into the correct dimension, but with a slightly larger 

penalty for items not placed in the correct dimension. 

Results 

Accuracy and Bias 

The overall performance of the network and PA algorithms are presented in 

Figure 4. As shown in Figure 4, the number of responses did not have much effect on the 

accuracy of the GLASSO method but did have a considerable effect on the accuracy of 

the AIC, BIC, and PA methods. In fact, both parallel analysis algorithms dropped over 

10% overall accuracy from continuous responses to polytomous responses (Δ𝑃𝐶𝐴 = 

10.1% and Δ𝑃𝐴𝐹 = 20.2%). When collapsed across number of responses, the Louvain, 

Fast-greedy, and Walktrap algorithm of the GLASSO method had the best accuracy 

(88.6%, 87.8%, and 87.1%) followed by the PCA algorithm of PA method (86.7%; Table 

3). For the network methods, there was a general trend for the GLASSO method (79.9%) 

to perform better than the two non-regularized partial correlation methods (AIC = 63.3% 

and BIC = 58.6%), which held regardless of number of responses (i.e., continuous vs. 
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polytomous data; Figure 4). When looking between the number of responses, most 

methods appeared to have higher accuracy for continuous than polytomous data. 

As for the community detection algorithms, the Louvain, Fast-greedy, and 

Walktrap had the highest overall percent correct (Table 3) and were the least affected by 

number of responses when used with the GLASSO method (Figure 4). The near 

equivalent performance of the Louvain and Fast-greedy algorithms was expected as the 

Louvain algorithm is very similar to the Fast-greedy algorithm with a modification for 

hierarchical structures (i.e., communities are not merged but rather nodes are switched 

between communities). Notably, the Spinglass algorithm (70.7%) had a high overall 

accuracy but was unable to estimate a large proportion of the conditions when used with 

the BIC (continuous = 80.9%; polytomous = 83.9%) and GLASSO (continuous = 57.5%; 

polytomous = 34.1%) methods. This inability of the Spinglass algorithm to estimate 

dimensions in the networks was likely due to the sparsity of the networks estimated by 

the BIC and GLASSO methods, which tend to estimate sparser networks than the AIC 

method. Because of the Spinglass algorithm’s lack of estimation for the majority of the 

simulated conditions, I refrain from interpreting the results of the Spinglass algorithm for 

the BIC and GLASSO methods. 

Digging into the bias measures, the three lowest MAE was for the PA method and 

PCA algorithm (0.19) followed by the PA method and PAF algorithm (0.26) and 

GLASSO method and Louvain algorithm (0.32). The other top PC community detection 

algorithms (Fast-greedy, Louvain, and Walktrap) were generally on the lower end across 

network methods in the order of GLASSO (0.32, 0.32, and 0.40, respectively), AIC (0.34, 
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0.35, and 0.41, respectively), and BIC (0.97, 0.96, and 1.15, respectively). In general, the 

MAE was much lower for the PA and GLASSO methods than the AIC and BIC methods. 

When split between number of responses, the AIC, BIC, and PA methods generally had 

greater values, while the GLASSO method had lower values in the polytomous data 

relative to the continuous data. 

The MBE showed that the AIC method had many of the lowest (Walktrap = 0.11, 

Leading Eigenvalue = 0.12, and Fast-greedy = 0.18) and highest (Label Propagation = -

0.78, Infomap = -1.01, and Edge Betweenness = 1.15) values, which largely 

corresponded with the each algorithm’s PC (i.e., greater PC, lower MBE; Figure 4). The 

PA methods were among the lowest MBE values with a slight tendency to underfactor 

(PAF = -0.03 and PCA = -0.12). Of the top accuracy community detection algorithms, 

there was a general tendency to overfactor (Fast-greedyGLASSO = 0.20, LouvainGLASSO = 

0.20, and WalktrapGLASSO = 0.26). The MBE generally increased for the AIC and BIC 

methods in the polytomous data, while it generally decreased for the GLASSO and PA 

methods. 

In sum, the GLASSO method and Fast-greedy, Louvain, and Walktrap algorithms 

were among the most accurate and least biased across all conditions. For the continuous 

data, the PA algorithms were among the most accurate and least biased with the top 

GLASSO algorithms being comparable. For the polytomous data, the top GLASSO 

algorithms outperformed all other methods and algorithms with the PA method and PCA 

algorithm following closely behind.  
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One peculiar takeaway from Figure 4 is that the BIC method appeared to be less 

affected by which algorithm was being used, with its performance being relatively flat 

across the accuracy and bias measures. In contrast, the AIC and GLASSO methods’ were 

affected by which algorithm was being used, which could be essentially split into two 

groups: higher accuracy and lower bias (Fast-greedy, Louvain, and Walktrap) and lower 

accuracy and higher bias (Edge Betweenness, Infomap, Label Propagation). 

Item Placement 

 Although accuracy and bias measures are important for determining the overall 

performance of the algorithms, community detection algorithms for the network methods 

allow for “deterministic” placement of items in dimensions—that is, the algorithms place 

items in dimensions without the researcher’s direction. The meaning of deterministic is 

used loosely because some algorithms (Louvain, Label Propagation, Spinglass) are 

stochastic and therefore may perform better when item placements are aggregated and 

summarized (e.g., median) across applications (e.g., consensus clustering approaches; 

Lancichinetti & Fortunato, 2012). It’s important to remember that the NMI metric is 

equivalent to accuracy when the number of factors is equal to one. 

 Unidimensional structures. In general, most of the algorithms had good 

performance (NMI > .80) regardless of number of responses (Figure 5). The BIC method, 

however, tended to have the poorest performance and especially when the number of 

responses were polytomous. The AIC and GLASSO methods tended to have similar 

patterns of performance for each algorithm; however, the AIC method had lower values 

for the polytomous data relative to the continuous data, while the GLASSO method had 
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comparable or higher values for the polytomous data relative to the continuous data. 

Overall, the GLASSO had the best NMI with several algorithms with values above .98 

(in order from greatest to least): Infomap, Leading Eigenvalue, Louvain, Fast-greedy, 

Walktrap, and Label Propagation. 

 Multidimensional structures. Relative to the unidimensional structures, the NMI 

values were much lower across methods except for the BIC method. In contrast, the BIC 

method generally had better item placement with multidimensional structures 

(particularly for polytomous data). Consistent with the unidimensional results, most 

algorithms with the GLASSO method had higher NMI values than all other method and 

algorithm combinations regardless of the number of responses. Notably, the performance 

of the AIC method was much lower for multidimensional structures relative to 

unidimensional structures. Indeed, the BIC method outperformed the AIC on each 

respective algorithm. Finally, the number of responses had a strong general effect, 

lowering NMI values about .10 or more across nearly all methods and algorithms. 

 Summary. Broadly, the GLASSO method had the best item placement 

performance and demonstrated the highest values of NMI for each respective algorithm. 

As a general trend across algorithms, the three most accurate and least biased 

algorithms—Fast-greedy, Louvain, and Walktrap—were also the best performing on the 

NMI metric. Although this is not surprising, it was certainly not a given because 

algorithms could hypothetically provide imprecise estimates of the number of dimensions 

but have more accurate item placements. Overall, the item placement metric provides 
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greater evidence that the GLASSO method, in combination with the Fast-greedy, 

Louvain, and Walktrap algorithms, is the best performing network method. 

Best Algorithms 

 To provide more nuanced information with condition interactions, I evaluated the 

accuracy of the top three network algorithms (Louvain, Fast-greedy, and Walktrap) with 

the GLASSO method and parallel analysis algorithms (Figure 6). Notably, all three 

network algorithms appear roughly comparable and were largely unaffected by the 

number of responses (Figure 6). Because of this, I present the results collapsed across 

number of responses. 

When the percent correct was broken down by loadings and sample size (Figure 

6, left), there was a general trend of increased accuracy as loadings and sample size 

increased. The size of factor loadings appears to have a greater effect on accuracy than 

the sample size. The PA method and PCA algorithm had the best performance across 

sample sizes when the factor loadings were small (0.40). The network methods and 

algorithms, regardless of sample size, had the best performances when the factor loadings 

were moderate (.55) or large (.70), replicating previous simulation findings (Golino et al., 

in press). In general, the GLASSO and PA algorithms’ performance are comparable when 

factor loadings were moderate and large across sample sizes (1000 and 5000, 

respectively), while the GLASSO algorithms performed better when sample sizes very 

small and small (250 and 500, respectively). 

When the percent correct was broken down by number of factors and variables 

(Figure 6, right), there was a general trend of increased accuracy as the number of factors 
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decreased. As for the variables, there was a trend for accuracy to decrease as the number 

of variables increased for the AIC and BIC methods. Conversely, there was a trend for 

accuracy to increase as the number of variables increased for the GLASSO and PA 

methods. There was a particularly interesting pattern for the PA method when there were 

four variables and the number of factors increased, specifically the PCA algorithm had 

much greater accuracy than the PAF algorithm when there was only one factor, 

equivalent accuracy when there were two factors, and much lower accuracy when there 

were four factors (Figure 6). 

In general, the GLASSO method appears to be comparable to the PA method 

across all condition interactions. The network algorithms appeared to have their lowest 

accuracy relative to the PA method and PCA algorithm when there were low loadings. As 

for the network algorithms, the Walktrap algorithm appears to have decreased accuracy 

when there are few variables (4) and many factors (4). In all other interactions, the 

algorithms performed similarly. 

Discussion 

This study examined the performance of different network methods and several 

community detection algorithms to detect underlying latent dimensions. As a comparison, 

I used the state-of-the-art parallel analysis methods to evaluate whether network methods 

could be comparable to traditional factor analytic algorithms. In short, I found that some 

network algorithms could perform comparably to the PA algorithms and this was 

dependent on the network estimation being used, specifically the Louvain, Fast-greedy, 

and Walktrap algorithms all performed similarly to the PA algorithms when the GLASSO 
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network estimation method was used. Importantly, this study evaluated two non-

regularized network estimation methods and also tested community detection algorithms 

under traditional psychological conditions (e.g., factor models, ordinal data). 

This study was the first to evaluate how different partial correlation network 

estimation methods performed when identifying dimensions in psychological factor 

models. Previous work had compared the GLASSO with a correlation-based method, the 

TMFG, with the GLASSO showing better performance in nearly all conditions (Golino et 

al., in press). Other work had evaluated the performance of the partial correlation 

methods used in this study to estimate population network models (Williams & Rast, 

2019; Williams et al., 2019). In these studies, the non-regularized partial correlation 

methods (i.e., AIC and BIC) outperformed the GLASSO on the measure of specificity 

(avoidance of false positives) in the population network structure. In the context of 

detecting dimensions, this difference in specificity seemed to benefit the GLASSO where 

it tended to have better performance for identifying dimensions than both the AIC and 

BIC methods. This is likely because the GLASSO was able to consider more edges (or 

information) in the network, which may have enabled it to better estimate the population 

factor structure.  

As for the community detection algorithms, there has been extensive evaluations 

of these algorithms across different literatures, but none were specific to psychological 

factor models. The closest comparison had been with brain network count and correlation 

structures (Gates et al., 2016). For both count and correlation matrices, the Walktrap 

algorithm outperformed the other algorithms tests on a measure of item placement. 
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Notably, the Louvain algorithm performed the best when Euclidean Distance was used as 

a similarity measure. In general, my results largely jibe with their study, showing that the 

Walktrap and Louvain algorithms were among the best performing algorithms. It’s 

important to note that the Louvain algorithm used in this study (from the igraph package 

in R) may have differed from the one used in their study (from the Brain Connectivity 

Toolbox in Matlab; Rubinov & Sporns, 2010). 

One critical finding was that while the Spinglass algorithm was among the best 

performing algorithms in this study (i.e., Walktrap, Louvain, and Fast-greedy) it was not 

always able to estimate the number of dimensions in the network. This inability to 

identify dimensions is likely due to some networks having had unconnected nodes. This 

was particularly noticeable for the BIC method, which produces the sparsest networks of 

the three network methods. Across the methods, the performance of the Spinglass 

algorithm should be tempered with respect to this finding. When anticipating what its 

actual performance might be, the AIC method with the Spinglass algorithm had most of 

the conditions estimated and placed the algorithm among the top methods. 

Finally, this study was the first to examine polytomous data with community 

detection algorithms. As with previous research examining dichotomous data, the 

differences between the continuous and polytomous data were nuanced but generally 

showed the same patterns (Golino et al., in press). Overall, the Louvain, Fast-greedy, and 

Walktrap algorithms were all comparable to the PA methods, particularly when the 

GLASSO network estimation method was used. 
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CHAPTER IV 

LOADINGS 

The evaluation of item quality is fundamental to scale development and 

validation. Item analyses provide insight into how items relate to one another as well as 

dimensions of the scale. Item analyses are often used to determine whether items should 

be removed from the scale because they are not performing as expected (DeVellis, 2017). 

In contemporary psychometrics, EFA is the most common method applied to obtain this 

information (Flora & Flake, 2017; Hubley, Zhu, Sasaki, & Gadermann, 2014). EFA 

presents this information as a factor loading for each item in each dimension, 

representing an item’s association with the dimension. 

In most situations, researchers apply EFA with an oblique rotation to allow 

factors to correlate with one another. The output of this analysis includes three factor 

loading matrices: pattern (unique association between item and factor, controlling for 

correlations between factors), structure (zero-order correlation between item and factor), 

and factor (loadings before rotation; Furr, 2017). The pattern matrix is typically used to 

evaluate items because it provides researchers with the clearest picture of how items 

“load” onto each individual dimension.  

The term “load” in factor analytic jargon is provided by items being regressed on 

the factors. This gives the substantive interpretation of how well an item represents or 

measures the latent factor. The main objective in evaluating items is to determine which
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items have the largest loadings on a single dimension and low loadings on other 

dimensions (DeVellis, 2017). Items with this order of loadings is often preferred because 

it suggests that these items represent a single psychological attribute and in turn a 

common cause. 

From the network perspective, items are evaluated using network measures called 

centrality. Centrality measures quantify the relative position of nodes based on their 

connections to other nodes in the network. To date, the substantive interpretation of 

centrality measures has been unclear and subject to debate (e.g., Bringmann et al., 2019). 

The most common interpretation has been that these measures quantify the relative 

influence or importance of a node in the network, which suggests increased causal 

efficacy. Based on this interpretation, many researchers have suggested that more central 

nodes represent important intervention targets (e.g., symptoms in a psychopathological 

disorders). 

Unfortunately, these interpretations have not held up empirically, with many 

studies reporting that there is little evidence for the relationship between a node’s 

centrality and its causal efficacy (Dablander & Hinne, 2019). For some researchers, this 

has led to the development of different network measures that have more straightforward 

interpretations (e.g., predictability or a node’s predicted variance from other nodes; 

Haslbeck & Waldrop, 2018). For others, this has led to a call to get “back to basics” and 

determine whether these measures are meaningful in a psychological context (Bringmann 

et al., 2019).
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Review of Hallquist, Wright, and Molenaar (2019) 

A recent series of simulation studies sought to determine the meaning of centrality 

measures in relation to factor loadings. In Hallquist et al.’s (2019) study, they compared 

the most frequently used centrality measures—betweenness, closeness, and node 

strength—with CFA factor loadings. In their first simulation study, they examined 

whether there was any correspondence between these centrality measures and factor 

loadings in unidimensional and multidimensional latent trait models. They setup 

conditions with 10 variables per factor for models of one, two, and three factors. Factor 

loadings varied between .4 and .95 and the factors were either orthogonal or moderately 

correlated (.40). Across the conditions, a sample size of 400 was generated. For the 

comparison, they fit CFA and GLASSO models to the data. 

Their results demonstrated that betweenness (relative number of times a node is 

used on the shortest path from one node to another) and closeness (distance a node is 

from the center of the network) centrality were highly correlated with the CFA factor 

loadings of the one factor model (r = .74 and r = .94, respectively) but had much lower 

correlations with these loadings when there was more than one factor (r’s between .31 

and .55). In contrast, node strength was significantly correlated with the CFA factor 

loadings across the models (r’s between .97 and .98). Because of the lack of 

correspondence of betweenness and closeness centrality with factor loadings, I discuss 

the rest of the simulations results with node strength only. 

In their second simulation study, they examined the effects of common versus 

specific sources of covariation—that is, the extent to which two indicators on different 
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factors were related through a shared separate factor (these will be referred to as the 

target indicators). These effects were examined in one of the target indicators and a 

comparator indicator (i.e., an indicator on the same factor as the respective target 

indicator). Similar to the first simulation, there were 10 items per factor and a sample size 

of 400. Different from the first simulation, there was only a condition with two factors 

and all but one item in their respective factors had a factor loading of .80. The two items 

that were associated had their correlation vary between r = 0 and r = .64. 

A general finding of this study was that the edge weight (i.e., partial correlation) 

between the target indicators had a nearly perfect relationship with the extent to which 

there was a specific association between them (r = .997). As for the node strength 

estimates, there was a moderate main effect of specific-to-shared variance balance and 

large main effect of indicator type (target and comparator). This suggests that there was a 

large increase in a node’s strength due to the shared separate factor. The comparator 

indicator’s node strength had a small main effect from the specific-to-shared variance 

balance, suggesting minimal impact from the shared separate factor. 

In their third and final simulation study, they examined the effects of multiple 

latent causes. This study was setup with a two-factor model with eight indicators per 

factor and the target indicator that loaded onto both factors (i.e., 17 indicators in total). 

The target indicator had factor loadings on both factors ranging between .20 and .80 in 

increments of .05. All other loadings were fixed at .80. Similar to their previous 

simulations, sample sizes of 400 were generated. Like their second simulation, they also 

examined a comparator indicator. The results of this study revealed that the target 
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indicator’s node strength was an equally weighted combination of Factor 1 and Factor 2 

loadings (both r’s = .94). The comparator indicator’s node strength was weakly 

associated with the variation of the target’s factor loadings on Factor 1 and Factor 2.  

In summary, their simulations demonstrated that the network measure node 

strength is (a) roughly redundant with CFA factor loadings and (b) affected by different 

causal sources. These takeaways are important for their own reasons. The first finding 

suggests that there is a strong connection between node strength and factor loadings, 

which means that node strength could be used as a potential psychometric tool for item 

selection in network models. The second finding suggests that the relationship between 

node strength and factor loadings should be tempered in a way that reflects the unique 

latent causes in the system. This latter takeaway jibes with the notion that the unique 

causal components must be identified before network measures can be meaningfully 

interpreted (Christensen et al., under review; Hallquist et al., 2019). 

Present Research 

The goal of this simulation study was to extend Hallquist and colleagues’ (2019) 

first simulation study by considering the lessons learned from their second and third 

simulation. For example, examining how node strength relates to population factor 

loadings when split by dimensions. This study offers two key additions to their 

simulations. First, node strength is split between dimensions in order to compensate for 

the effects of different latent causes that underlie its computation. For this computation, I 

formalize a standardization of node strength in each dimension that I hereafter refer to as 

network loadings. This term is used to denote the similarity between this formalization 
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and factor loadings but to also keep the specification that they are derived from the 

network counterpart. 

Second, this study compares the accuracy of network, EFA, and CFA loadings in 

the estimation of population factor loadings. This contrasts with Hallquist and colleagues’ 

simulation where node strength was correlated with CFA loadings. A direct comparison 

with the population factor loadings is a better benchmark for whether network models 

can accurately identify this information and allows for a better comparison of what 

networks loadings are more “like.” On the one hand, CFA loadings typically offer a 

simple structure where indicators only load on their factor. On the other hand, EFA 

loadings offer the full complexity of dominant and cross-loadings, which tends to be 

more useful in scale development contexts. Network models are likely to offer the in-

between because some indicators may not connect with indicators in other dimensions, 

leaving zeros in the matrix.  

Method 

Data Generation 

The data generation approach followed the same approach as in Chapter II’s 

Method. 

Psychometric Network Model 

Similarly, the same EGA with GLASSO network estimation and Walktrap 

community detection algorithm in Chapter III’s Method was used in this study.
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Network Loadings 

An important finding of Hallquist and colleagues’ (2019) simulations was that 

node strength represented a combination of dominant and cross-factor loadings. To 

circumvent this issue, a node’s strength can be split between the nodes in each dimension. 

This can be mathematically written as: 

 

𝑁𝑆𝑖 = ∑ 𝑤𝑖𝑗
𝑛
𝑗=1 , 

𝑁𝐿𝑖𝐶𝑘
=  ∑ 𝑁𝑆𝑖𝑗

𝐶
𝑗∈𝐶𝑘

, 

where 𝑤𝑖𝑗 is the weight (e.g., partial correlation) between node 𝑖 and 𝑗, 𝑁𝑆𝑖 is the sum of 

the node strength for node 𝑖 across all nodes, and 𝑁𝐿𝑖𝐶𝑘
 is the weight for node 𝑖, which is 

its sum of all the weights for nodes in dimension 𝐶𝑘. This measure can be standardized 

using the following formula: 

 

𝑧𝑁𝐿𝑖𝐶𝑘
=  

𝑁𝐿𝑖𝐶𝑘

√∑ 𝑁𝐿𝑗𝐶𝑘𝑗∈𝐶𝑘

, 

where the denominator is equal to the square root of the sum of all the weights for nodes 

in dimension 𝐶𝑘. These standardized network loadings are in the unit of association used 

in the network, which means the meaning of these network loadings will change based on 

the association unit used. Importantly, not all nodes are connected to nodes in other 

dimensions, which means that there will be zeros for some dimensions in the network 

loading matrix. The network loadings were computed using the net.loads function in 

the EGAnet package.



55 

EFA Loadings 

For the EFA model, I used the psych package’s (Revelle, 2018) fa function to 

estimate the factors in the data. Because the number of factors is known, I specified the 

population number of factors as the number of factors to compute in the EFA. The factor 

model was estimated using the maximum likelihood for continuous data and weighted 

least squares for polytomous data. For both types of data, I used the geomin oblique 

rotation from the GPArotation package (Bernaards & Jennrich, 2005), which has been 

shown to have low bias when the factor loadings display a simple structure (i.e., small 

cross-loadings; Sass & Schmitt, 2010) and have factor loadings closer to CFA (Schmitt & 

Sass, 2011). Note the cross-loadings in this study were smaller than the simulations 

performed in Chapter II and III, meaning that the loading structure was closer to a simple 

structure. 

CFA Loadings 

For the CFA model, I used the lavaan package’s (Rosseel, 2012) cfa function to 

estimate factor loadings. The CFA models were specified with the known population 

structure of the data—that is, the population dimensions with the items placed in their 

known dimensions. For the continuous data, I used the maximum likelihood estimator; 

for the polytomous data, I used the weighted least square mean and variance adjusted 

estimator.
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Design 

Similar to the population models in Chapter II and III, they were simulated from a 

multidimensional multivariate normal distribution where factor loadings for each item 

were generated with ±.10 deviance drawn from a uniform distribution. 

In contrast to previous designs, smaller cross-loadings were generated from a 

random normal distribution with a mean of zero and standard deviation of .05. Moreover, 

there was only one condition of very large factor loadings (.85). These adjustments in 

design were made to ensure that variables firmly loaded onto their designated factor and 

could easily be identified by the Walktrap algorithm. 

Two, three, and four factors were simulated to ensure that there were cross-

loadings. Four and eight variables per factor were generated to represent conditions 

commonly found in psychological research and validated scales. Similar to the first two 

simulations, correlations between factors were orthogonal (.00), small (.30), moderate 

(.50), and large (.70). Finally, large sample sizes of 1000 and 5000 were generated to 

ensure that adequate loading estimations could be obtained. 

The simulation design of the current study allowed for a mixed factorial design: 3 

× 2 × 4 × 2 (number of factors × variables per factor × correlations between factors × 

number of responses) for a total of 48 simulated condition combinations. 

Statistical Analyses 

To compare the performance of the network, EFA, and CFA loadings, I used 

Spearman’s rank-order correlation between each method’s loadings and the known 
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population loadings. Rank-order rather than Pearson’s correlation was chosen to have a 

larger penalty for having loadings that differ in their order from the population loadings. 

Results 

Across all conditions, the EFA loadings were the most accurate (𝑟̅ = .948) 

followed by the network loadings (𝑟̅ = .926) and CFA loadings (𝑟̅ = .831). Notably, the 

type of data did not appear to make a difference: EFA (𝑟̅𝑐𝑜𝑛𝑡 = .951 and 𝑟̅𝑝𝑜𝑙𝑦 = .944), 

network (𝑟̅𝑐𝑜𝑛𝑡 = .928 and 𝑟̅𝑝𝑜𝑙𝑦= .923), and CFA (𝑟̅𝑐𝑜𝑛𝑡 = .835 and 𝑟̅𝑝𝑜𝑙𝑦 = .827). When 

breaking the results down by conditions, a much more detailed pattern emerges (Figure 

7). 

In Figure 7, there were several notable trends to point out. As a general trend, all 

loading estimation methods were less accurate as the number of factors increased. This is 

particularly noticeable for the CFA loadings, which were likely affected by its simple 

structure (i.e., zeros for all non-dominant factor loadings). Another general trend is that 

the network loadings are right below or comparable to the accuracy of the EFA loadings. 

The network loadings tended to mostly resemble the EFA loadings when the correlations 

between factors was high (.70). In comparison to the EFA loadings, the network loadings 

appeared to have a relatively lower accuracy when the number of factors increased, 

which is likely due to the network loadings estimating more zeros in the loading matrix—

much like the CFA loadings. 

Interestingly, accuracy appeared to increase across loading types when there were 

a greater number of factors (Figure 7). This trend is likely due to the conditions tested 

rather than an actual trend of the methods applied. Factor loadings, for example, were 



58 

high for the dominant loadings relative to the cross-loadings, which increased the 

probability that a greater number of indicators would be in the correct rank-order pairs. 

Sample size did not appear to have much of an effect on the accuracy of the estimates 

across methods, with a slight increase in accuracy for larger sample sizes. 

Discussion 

This study sought to derive and evaluate a standardized node strength measure 

that separated specific contributions of a network’s dimension. My study builds on the 

results and recommendations from Hallquist et al.’s (2019) simulation studies. Factor 

models with population loadings, for example, were used as a comparison of EFA, 

network, and CFA loading accuracy rather than cross-comparing measures. My study 

also analyzed conditions where there were cross-loadings, which added some potential 

for noise. In large part, my results demonstrate that when node strength is divided 

between dimensions, they can be shown to accurately recover the population loadings of 

a factor model. 

This result has several implications for the use of network models in assessment. 

The main implication is that my simulation provides further evidence that node strength 

is statistically equivalent to factor loadings (Hallquist et al., 2019). Despite this 

equivalence, it’s important to consider their substantive interpretations. As mentioned 

before, factor loadings refer to how well an indicator measures an underlying common 

cause. From the network perspective, network loadings are not an indicator of a common 

cause but rather the coupling of components and the emergence of dimensions in a causal 
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system. In this sense, a node’s strength represents its contribution to the emergence of a 

coherent dimension (or network).  

Extending from this implication, network loadings can be used as an equivalent 

measure of factor loadings, providing many of the same measurement opportunities as 

other factor models (despite substantive differences). A network loading matrix, for 

example, can be derived and used for item selection in scale development and validation 

(DeVellis, 2017). This also opens the door to computing measurement invariance 

measures such as metric equivalence for network loadings. Finally, network loadings can 

be used to derive a weighted between-person score for each participant in the model—

that is, the network equivalent of factor scores can be derived. 

This last implication requires more detailed attention, specifically, how should a 

network score be computed and substantively interpreted? When considering a network 

of extraversion components, the network itself references the state of the system—that is, 

the extent to which the network is in an extraverted state, which is determined by the total 

activation of its components (Christensen et al., under review). From this perspective, 

extraversion represents a summary statistic of how components of the network are 

influenced by one another (Cramer, 2012). Therefore, a network score is more analogous 

to a formative latent variable (i.e., a weighted composite) than a reflective latent variable 

(i.e., a common covariance). This substantive explanation suggests that a network score 

should be computed as a weighted composite, which could be derived from the product 

of network loadings and each person’s corresponding item responses.  
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For these discussion points, it’s important to understand their limitations within 

the context of my results. First and foremost, the factor loadings were very high and 

sample sizes were large. In these conditions, the network loadings are more likely to be 

accurately estimated. In smaller samples and lower population loadings, fewer edges will 

be estimated in the network, which would lower the accuracy of the loadings estimation 

(similar to Chapter III’s dimensionality results), becoming more like CFA loadings rather 

than EFA loadings. Moreover, when comparing metric equivalence of samples with 

different sizes (e.g., n = 500 and n = 5,000), there is unlikely to be metric equivalence 

even when there should be because the smaller sample will estimate fewer edges than the 

larger sample. One potential solution would be to estimate the networks as if they had 

equivalent sample sizes (i.e., adjusting the GLASSO sample size parameter to be equal), 

which would allow for a similar number of edges to be estimated. 

Future work should evaluate more extensive conditions than the ones in this 

study, such as smaller sample sizes and different levels of factor loadings, including a 

condition where factor loadings are variable sizes to better reflect more realistic data 

conditions. Moreover, larger cross-loadings should be estimated and perhaps adjusted 

with the size of correlation between factors (e.g., increasing cross-loadings with size of 

factor correlations). There should also be a wider comparison of EFA factor loading 

rotations to examine whether, in certain conditions, network loadings may perform better 

than rotations that are considered less optimal in those conditions. Similarly, network 

loadings are largely dependent on the network estimation method (e.g., non-regularized 
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partial correlations networks; Williams et al., 2019), which may alter the results shown in 

this study. 
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CHAPTER V 

EMPIRICAL EXAMPLE 

The three simulations in this paper represent the statistical methods necessary to 

validate the structure of assessment instruments from the network perspective. These 

simulations provide evidence for the conceptual framework put forward by Christensen 

and colleagues (under review). In this framework, the first objective for the validation of 

any assessment instrument (extant or in development) is to reduce the redundancy of the 

instrument. After reducing redundancy, the dimensionality of the instrument can be 

assessed to determine whether the intended structure is identified. Finally, item analyses 

(e.g., network loadings) can be computed and used to determine the quality of the 

components in the network. If any items are removed, then dimensionality can be re-

assessed. 

In accordance with this framework, I provide an empirical example that executes 

these validation steps. The example is outlined as follows: first, I introduce the node 

redundancy strategies and guidelines used to decrease the number of components in an 

instrument. Dimensionality and loadings are straightforward enough that no additional 

introduction is necessary, beyond their Chapters (III and IV, respectively), to understand 

their application in the example. Second, I briefly review the personality inventory and 

demographics of the sample used in the example. Finally, I report and discuss the results 

of the example.
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Node Redundancy Strategies 

Once a researcher has their results from the redundancy analysis, they must then 

use theory about the attribute to guide the identification of redundant items in an 

assessment instrument. If deciding items should be reduced to a single component, then 

there are two quantitative strategies that can be used. The first option is to remove all but 

one item from the questionnaire. When taking this option, there are a few considerations 

researchers must make. Qualitatively, which item represents the most general case of the 

attribute? Often items are written with certain situations attached to them (e.g., “I often 

express my opinions in group meetings”; Lee & Ashton, 2018), which may not apply to 

all people taking the questionnaire. Therefore, more general items may be better because 

they do not represent a situation-specific component of an attribute (e.g., “I often express 

my opinions”). Quantitatively, which item has the most variance? This is a common 

criterion in traditional psychometrics because greater variation suggests that this item 

better discriminates between people on the specific attribute (DeVellis, 2017). There may 

also be cases where one item overlaps with two other items, but the other two items do 

not overlap themselves (i.e., a mediating item). In these instances, I recommend selecting 

the mediating item because it sufficiently captures the variance of the other two items to 

the extent that they are unrelated when controlling for all other items in the network. 

The more straightforward option is to combine items into a single variable. This 

can be done by taking each participant’s sum (or mean) score across redundant items or 

by estimating a latent variable score (e.g., Epskamp, Rhemtulla, & Borsboom, 2017). 

Using a latent variable approach is the recommended option because it retains all of the 



64 

information in the assessment instrument and maintains the notion of an underlying 

common cause of the component, offering a more reliable and valid assessment of certain 

components in the network. Importantly, these components can be reduced to single 

items with general phrasing when considering item selection or developing a shorter 

assessment instrument. For the example, I will use the latent variable approach to 

combine items whose redundancies are due to a theoretical common cause. 

Node Redundancy Guidelines 

The node redundancy analysis maps the redundancies of each significant pair of 

connections between nodes (i.e., items). This analysis begins with the item that has the 

most redundancy with other nodes (i.e., greatest number of significant redundancies) and 

continues until all redundancies are resolved using one of the strategies discussed above. 

Each node in this process is evaluated individually and hereafter will be referred to as the 

target node. Importantly, a target node is redundant with other nodes, each which may 

also have their own redundancies with other nodes. Some of these other nodes may be 

redundant with the target node, while others may not. The redundancy analysis first 

identifies nodes with the target node and then iteratively identify nodes that are redundant 

with those nodes until there are no longer nodes redundant with the identified nodes. This 

process forms a so-called “redundancy chain” (Figure 8). 

In the redundancy chain (Figure 8), the target node is labelled with “Trg” and 

depicted in red, while the other nodes are labelled with numeric identifiers. The 

connections between nodes represent significant redundancy between two nodes. When 

focusing on the target node, there are connections to Nodes 1, 2, 3, and 4. Notably, Node 
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5 is not connected to the target node but is connected to Node 4, suggesting that Node 4 

has additional redundancies beyond its redundancy with the target node. In this way, 

there is a “chain” of redundancies from the target node to Node 4 and Node 4 to Node 5. 

As a general guideline, there should be particular importance given to cliques or 

fully connected sets of nodes. In Figure 8, there are two 3-cliques (or triangles) with the 

target item (i.e., Trg – 1 – 2 and Trg – 1 – 3). In the network literature, these triangles 

contribute to a measure known as the clustering coefficient or the extent to which a 

node’s neighbors are connected to each other. Based on this definition, the clustering 

coefficient has recently been considered as a measure of redundancy in networks 

(Costantini et al., 2019; Dinic, Wertag, Tomaševic, & Sokolovska, in press). In this same 

sense, these triangles suggest that these items are likely to have particularly high overlap. 

Therefore, triangles in these redundancy chain plots can be used as a heuristic for 

selecting items.  

It’s important to note, however, the absence of a connection between nodes in the 

redundancy chain plot may not necessarily mean that two nodes are not redundant. The 

connections only represent nodes that were deemed statistically significant (keeping in 

mind the results of Chapter II). It’s plausible that two nodes could be very similar and yet 

only one of the two is connected to a third node (e.g., a mediating node). Therefore, the 

clique heuristic is not a steadfast rule but a general guideline. Theory about the 

underlying cause of the relations between nodes should be the leading heuristic for 

whether two nodes are redundant (regardless of statistical redundancy)—that is, are the 

redundant relationships between two or more nodes due to a common cause (combine to 
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form latent variable) or reciprocal causes and effects (do not combine to remain unique 

causal components)? In short, the redundancy analysis and clique heuristic provide 

statistical evidence of redundancy that researchers must weigh with theoretical evidence 

of cause. 

SAPA Inventory 

The Synthetic Aperture Personality Assessment (SAPA) inventory was developed 

by David Condon (2018) for the purpose of moving personality assessment towards a 

more iterative, transparent, and empirical process. The development of the SAPA 

inventory followed an empirical approach rather than a theoretical approach by 

administering “as many items as possible based on administration to as many participants 

as possible” (Condon, 2018, p. 3). Using the more than 3,000 items available in the 

International Personality Item Pool (IPIP; Goldberg, 1999; Goldberg et al., 2006), a little 

more than 600 unique items were selected to cover most of the widely used measures. 

From this item set, over 34,000 people completed portions of these items over time until 

all people responded to all items (from December 2013 to February 2017; Condon, 

2018).  

The SAPA inventory dataset that I will use for my example comes from the “spi” 

dataset in the psychTools package (Revelle, 2019) in R. This dataset includes a 135-item 

inventory (items were primarily selected from the International Personality Item Pool; 

ipip.ori.org). These 135 items form an empirically derived structure of 27 personality 

dimensions. A subset of these items (n = 70) form an empirically derived five factor 

structure that corresponds to the Five Factor Model (FFM; McCrae & Costa, 1987). The 

https://ipip.ori.org/


67 

instructions were to, “Respond to each item with how accurately the description describes 

you.” The response options ranged from 1 (“Very inaccurate”) to 6 (“Very accurate). 

This 70-item subset was completed by 4,000 participants over the SAPA project 

website (sapa-project.org). These participants were collected after the developmental 

dataset (from February 2017 to May 2017) and were the first 4000 complete cases (not 

the first 4000 participants; D. Condon, personal communication, January 29, 2020). The 

sample had a mean age of 26.90 (SD = 11.49, range = 11–90) and were well represented 

for both sex (59.5% female) and education (11.1% graduated high school, 31.8% 

currently in university, 22% graduated university, and 11.8% held a graduate or 

professional degree). Race and ethnicity demographics were not provided; however, the 

data was gathered via the SAPA project website allowing equal opportunity for people of 

all ages, genders, ethnicities, and socio-economic backgrounds as long as they had access 

to the internet. Moreover, the exploratory, replication, and confirmatory datasets that 

were previously collected demonstrated substantial diversity, especially relative to past 

large-scale personality projects (e.g., Eugene-Springfield Community Sample; Condon, 

2018; Goldberg & Saucier, 2016). 

One potential sampling bias for this sample was that these participants were 

included because they completed all 135 items, meaning that participants who did not 

complete all 135 items during the same time period were not included (regardless of 

whether they stopped or unintentionally skipped an item; D. Condon, personal 

communication, January 29, 2020). Despite this potential for representative bias, this 

file:///C:/Users/apchr/AppData/Roaming/Microsoft/Word/sapa-project.org
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sample likely represents a broader and more diverse population than most other self-

report research in the personality literature. 

There are several reasons for choosing this dataset, but I will elaborate on three 

specific reasons. First, as just mentioned, the dataset is a large, diverse sample that is 

open-source, making the analyses performed in this study free for experimentation and 

replication. Second, personality inventories are perhaps the most commonly used 

assessment instruments across psychological research and therefore represent the vast 

majority of the applications that these analyses target. Finally, the SAPA inventory is 

structured hierarchically: there are 27 empirically derived lower-order dimensions that 

can be further collapsed into the prototypical FFM (Condon, 2018). These lower-order 

dimensions contain substantial redundancy, making the dataset a good example for how 

the redundancy analysis can be applied and the number of unique components to expect 

(i.e., around 27). 

Results and Discussion 

Redundancy 

Based on the results from the redundancy simulation (Chapter II), either the 

weighted topological overlap or partial correlation approach would have been comparable 

in these data conditions: polytomous data, large sample size, and expectation that there 

was a large amount of redundancy in the SAPA inventory. I opted to use the weighted 

topological overlap approach with adaptive alpha because it is a network-derived 

measure and therefore represents the network psychometric approach. 
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Following the strategy of combining redundant items with latent variables and the 

clique heuristic, I reduced the 70-item inventory down to 26 personality components. 

Interestingly, these 26 components largely reflected the 27 empirically identified lower-

order factors found by Condon (2018). This suggests that the redundancy analysis was 

not only effective but mirrors the empirically defined structure found by other methods. 

Importantly, these components I identified were driven by statistical heuristics and 

theoretical knowledge about the plausible latent causes underlying these redundancies. 

The item composition and labels of these components can be found in Table 4. 

Dimensionality 

After the redundancy analysis, the components were analyzed using EGA. The 

default for EGA is to use the GLASSO network estimation method with the Walktrap 

community detection algorithm. Based on the dimensionality simulation (Chapter III), it 

appears that the Louvain algorithm may produce more optimal results. It’s important to 

note, however, that the Walktrap algorithm is among the most accurate and least biased 

algorithms, especially when used with polytomous data. In light of the results from the 

simulation, I used the GLASSO network estimation method and Louvain community 

detection algorithm to estimate the dimensions of the unique components of the SAPA 

inventory. 

As shown in Figure 9, EGA identified five factors whose item content are 

displayed in Table 4. When reviewing the item content of these dimensions, these factors 

directly correspond to the FFM: dimensions 1, 2, 3, 4 and 5 reflect conscientiousness, 

neuroticism, extraversion, openness to experience, and agreeableness, respectively. 
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Although these components were empirically comprised of FFM items, this finding is an 

empirical validation of the effectiveness of the redundancy and dimensionality analyses. 

Loadings 

The network loadings were computed using the standardized loadings described 

in Chapter IV. To verify the network loadings were in proper orientation with traditional 

factor loadings, I used Spearman’s correlation between the two. The Spearman’s 

correlation (r = 0.87) mirrored the simulation results and suggesting that the network 

loadings are largely redundant with the traditional factor loadings. 

When examining the network loadings matrix (Table 5), there were a few things 

worth noting. First, the network loadings were much smaller than the loadings of a 

traditional factor loading matrix. The largest loading is 0.409 for the original ideation 

component in the openness to experience dimension. By traditional factor analysis 

standards, this is a weak factor loading. This difference in the magnitude of the loadings 

is due to the association measure underlying the computation of the loading—that is, 

partial correlations vs. zero-order correlations. The network loadings thus represent 

partial correlation loadings, meaning that 0.409 is actually a very large loading. 

Second, the network loading matrix has particularly small cross-loadings, 

including some loadings that are zero. Many of the small cross-loadings are small not just 

by traditional factor analysis standards but also partial correlation standards. This is 

because of the network estimation where many pairwise correlations are shrunk to zero, 

leaving many nodes not connected to other nodes. Therefore, if a node (component) is not 

connected to any nodes in another dimension, there is no loading for that node in the 
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dimension. This shrinkage also affects the size of the cross-loadings by making most 

cross-dimension connections small, resulting in lower loadings. Much like standard factor 

analysis, it’s often useful to remove small loadings from the matrix to make the loading 

matrix more interpretable. 

Finally, when looking at Table 6, the loading matrix becomes much clear and the 

patterns of which components are most associated with each dimension is obvious (and 

much closer to a simple structure). The component of low self-esteem, for example, was 

negatively associated with the extraversion dimension. The concerned for others 

component was positively related to both neuroticism and extraversion. One peculiar 

cross-loading is the component set high standards for myself and others with openness to 

experience. From the loading matrix, it’s difficult to discern why this component would 

be related to openness to experience. The network, however, provides greater insight into 

this relation, specifically the set high standards for myself and others (Shsfmao) 

component is connected to the self-assessed intelligence (S-i) and introspective (Int) 

components (Figure 9). 

Summary 

This example strings together the three simulations presented in this dissertation, 

demonstrating their respective contributions to assessment validation. The SAPA 

inventory represented an optimal dataset for the example because it offered a large 

sample, substantial redundancy between items, and had an empirically derived 

hierarchical structure. This hierarchical structure offered an a priori expectation of the 

results, enabling an objective criterion for the effectiveness of the analyses. In short, the 
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redundancy analysis identified 26 unique components in the SAPA personality network, 

which largely corresponded to the 27 lower-order dimensions identified in previous 

empirical work (Condon, 2018). The dimensionality analysis identified 5 dimensions 

from the components that corresponded to the FFM. Finally, the network loadings were 

shown to be redundant with traditional factor analysis loadings when estimating five 

factors. Overall, these network-driven analyses for assessment form a theoretically 

(simulations) and empirically (SAPA inventory) supported approach for the validation of 

assessment instruments. 
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CHAPTER VI 

CONCLUSIONS 

 This dissertation sought to systematically and empirically investigate the 

conceptual framework for the validation of assessment instruments proposed by 

Christensen, Golino, and Silvia (under review). Three simulation studies were performed 

to evaluate components of detecting node redundancy, identifying dimensionality, and 

computing network loadings. An empirical example that demonstrated how these three 

analyses can be applied to real-world data. Taken together, these approaches were 

validated by the simulation and empirical results.  

For the node redundancy and network loadings, novel approaches were first 

conceptually developed and then evaluated in simulations. In the node redundancy 

simulation, the weighted topological overlap and partial correlation approaches for node 

redundancy worked best when paired with the adaptive alpha multiple comparison 

correction. One approach did not appear to be superior to the other; however, the partial 

correlation approach boasted slightly better performance on the sensitivity and specificity 

measures. This finding supports both perspectives of psychometric networks and latent 

variable models. The weighted topological overlap measure provides a redundancy 

approach that aligns with the network perspective, while the partial correlation approach 

aligns with the latent variable perspective
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The implications of the redundancy analysis should be far reaching for network 

analysts in psychology. Identifying unique components of psychological attributes is 

essential for understanding the processes that underlie them as well as valid measurement 

of the attribute itself (Hallquist et al., 2019). Assessment instruments in personality, for 

example, are often redundant, which may make for more reliable measures but may also 

decrease the validity of the measurement (McCrae & Mõttus, 2019). Reducing 

redundancy allows researchers to assess personality traits more broadly, often without 

losing reliability (McCrae, 2015), thereby maximizing both efficiency and information 

gathered from participants (McCrae & Mõttus, 2019). Therefore, reducing redundancy 

should not just have a role in psychometric network assessment but the development of 

assessment instruments as whole. 

The dimensionality simulation provided the most comprehensive psychometric 

evaluation of community detection algorithms for the estimate dimensions from factor 

structures to date. This simulation evaluated several open-source community detection 

algorithms in the igraph package in R, finding that some algorithms work better than 

others when paired with the current state-of-the-art network estimation algorithm, the 

GLASSO. These results shed light on current practices and offer avenues for the way 

forward. The most common approach for dimensionality from the network perspective 

has been EGA, which uses the GLASSO network estimation method and Walktrap 

community detection algorithm (Golino & Epskamp, 2017; Golino et al., in press). 

This simulation, for example, was the first to evaluate the EGA approach in 

polytomous data, and the results mirror previous simulation studies that examined 
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continuous and dichotomous data (Golino et al., in press). Notably, the dimensionality 

simulation differed from the previous by having a broader distribution of cross-loadings. 

The correspondence between the results suggests that EGA is not severely affected by 

larger cross-loadings. Moreover, polytomous data was evaluated for the first time, which 

also demonstrated that EGA was not affected by the number of response options. This 

stands in contrast to parallel analysis, which was designed for and works better with 

continuous data (Garrido et al., 2013; Horn, 1965). 

In regard to the community detection algorithms, there is good evidence that the 

Louvain and Fast-greedy algorithm are worthwhile considerations for adaption into the 

EGA approach. Because the two algorithms are relatively redundant and demonstrate 

similar performance, preference for the Louvain algorithm should be given because it 

also provides hierarchical or “multi-level” structuring of dimensions. Such hierarchical 

structuring would be important for determining different levels of taxonomies that exist 

in assessment instruments and particularly in personality questionnaires (Christensen et 

al., under review). Moreover, it also provides another method for the results of EGA to be 

compared to such that the best fitting or most theoretically consistent model can be 

chosen based on the results (e.g., Golino et al., under review). 

Finally, in the network loadings simulation, the adapted node strength measure 

was derived from previous simulation evidence showing that node strength is relatively 

redundant with CFA factor loadings (Hallquist et al., 2019). My adapted measure split 

node strength between dimensions identified by EGA and standardized each dimension’s 

values. This approach provided accurate recovery of the ordering of factor loadings in the 
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simulation (determined by Spearman’s correlation) and was comparable to factor analysis 

loadings in the empirical example. This suggests that network loadings are not only 

accurate, but they are relatively redundant to factor loadings. This result opens up several 

avenues for future work related to measurement invariance and network scores. 

A key point moving forward will be to establish norms for what constitutes a 

small, moderate, and large network loading. It seems fair to suggest that effect sizes for 

multiple regression may hold for network loadings; however, the f2 metric is likely to be 

more confusing for practical researchers than not (Cohen, 1992). Instead, using effect 

sizes that typically translate from these f2 might be more interpretable; specifically, effect 

sizes of .10, .30, and .50 corresponding to small, moderate, and large effect sizes, 

respectively. Although this issue requires further examination, I suspect that these 

guidelines are reasonable enough for researchers to find them useful (e.g., Table 6). 

In sum, this dissertation aimed to move towards an expanded role of psychometric 

network models in psychometric assessment. Based on the three simulation studies and 

empirical example, it appears that network models are not just a novel measurement 

perspective but rather an effective approach for the validation of assessment instruments. 

Some researchers may question the novelty these methods and ask what they provide 

over and above traditional psychometric approaches. These researchers have a valid 

point: the redundancy analysis could be performed using more traditional metrics, while 

factor analysis and loadings have long been established in traditional psychometrics. To 

this point, the additional information that these methods provide may appear to be 

minimal. 
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The methods in this dissertation, however, were not introduced to reinvent the 

wheel but rather to gather evidence for psychometric applications from the network 

perspective. It is, after all, the substantive interpretation of classical test theory that 

differentiates itself from modern test theory (Borsboom, Mellenbergh, & van Heerden, 

2004). It is therefore not a matter of statistical equivalency (van Bork et al., 2019) but a 

matter of validity: how and why do observed variables co-occur and emerge as 

psychological attributes? The novelty is therefore in the perspective that psychometric 

network models provide (e.g., reducing redundancy in assessment instruments; 

Christensen et al., under review). To date, these models have lacked the tools to validate 

assessment instruments from their perspective. This dissertation takes one step towards 

that goal. 
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APPENDIX A 

TABLES 

Table 1 

Skew Values for Polytomous Data. 

 Skew 

Boundaries -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 

1 -1.77 -1.62 -1.45 -1.16 -1.80 -0.34 0.05 0.41 0.68 

2 -1.34 -1.16 -0.94 -0.63 -0.60 0.16 0.51 0.78 1.00 

3 -1.00 -0.78 -0.51 -0.16 0.60 0.63 0.94 1.16 1.34 

4 -0.68 -0.41 -0.05 0.34 1.80 1.16 1.16 1.62 1.77 



 

91 

Table 2 

Sensitivity and Specificity. 

  Estimated 

  Redundant Not Redundant 

P
o

p
u
la

ti
o
n
 

Redundant 
True Positive 

(TP) 

False Negative 

(FN) 

Not Redundant 
False Positive 

(FP) 

True Negative 

(TN) 



 

 

Table 3 

Percent Correct for Each Independent Conditions. 

Note. Bolded values represent conditions where 80% or more of the replicated samples were estimated correctly. The 

algorithms are denoted with their percent correct across conditions in parentheses. PFA = principal factor analysis and 

PCA = principal component analysis.

  

  Sample Size # of Factors # of Variables Factor Correlations Factor Loadings Number of Responses  

Algorithm Method 250 500 1000 5000 1 2 4 4 8 12 0.00 0.30 0.50 0.70 0.40 0.55 0.70 Continuous Polytomous Overall 

Edge 

Betweenness 

(57.7%) 

AIC 36.4 46.9 54.1 55.7 83.7 47.1 15.9 57.7 49.7 37.7 53.7 51.4 47.2 40.3 38.4 52.5 53.7 55.5 40.9 48.2 

BIC 31.7 53.7 68.8 73.1 77.8 53.2 41.5 65.4 58 48.4 65.7 61.8 55.3 45.2 37.4 64.2 68.4 67.6 46.2 57 

GLASSO 62.2 66.3 69.3 74.4 98 64.4 40.7 64.6 69.5 70.9 80.5 74.3 65.4 53.1 52.9 70.9 78.7 72.3 64.6 68.3 

Fast-greedy 

(74.9%) 

AIC 52.2 73.7 84.4 87.9 89.7 61.5 72.6 79.9 79.2 64.2 80.9 78.7 73.6 64 60.4 81.4 81.4 83 65.7 74.3 

BIC 30.9 55.1 73.7 89.8 76.3 54 58.2 75.4 63.1 50 69.6 66.8 61.6 51.9 42.6 69.7 74.2 73.3 51.5 62.5 

GLASSO 79.7 86.8 89.8 93.7 98.7 80 84.4 85.3 89.2 89 94.7 92.2 87.3 77 68.3 93 99.3 89.1 86.7 87.8 

Infomap 

(58.1%) 

AIC 38.2 43.6 49.7 49.6 99.3 18.2 21.4 41.7 48.8 44.9 52 48.6 43 37.2 34.2 41.9 59.9 48.1 42.3 45.2 

BIC 34.1 53.5 68.7 71.8 81.7 47.5 44.2 60.4 60.6 51.1 66.6 62.8 55.3 44.1 36.7 62.8 71.1 66.9 47.4 57.3 

GLASSO 67.1 71.7 74.3 75.4 99.3 51.5 65.1 60.9 75.3 80.9 87.1 80.7 68.3 53.1 50.3 72.8 90.4 76.6 68.4 72.3 

Label 

Propagation 

(60.6%) 

AIC 42.7 51.2 58.4 61.1 95.9 44.5 21.9 58.6 54.4 47.1 60.9 57.4 51.6 43.1 40.6 55.3 64 59.3 47.2 53.2 

BIC 27.4 48.5 65.1 68.9 73.1 50.4 36 63.2 52.5 43.3 59.8 56.8 51.2 42.9 34.6 58.6 63.9 64.5 40.7 52.7 

GLASSO 70.1 76 78.2 78.9 98.4 69.8 58.5 71.8 76.7 79.7 89.6 83.5 73 58 54.9 76.6 93.4 79.6 72.7 76 

Leading 

Eigenvalue 

(69%) 

AIC 58.3 71.1 76.1 75.8 93.2 68.6 50.3 71.7 73.7 65.4 75.8 73.8 69.8 61.4 61.5 76.4 73 78 62.5 70.2 

BIC 31.6 52.7 67.8 78.1 77.4 57.3 39.8 69.8 57.9 46.6 63.8 61.3 56.8 48.9 41.7 64.4 66.2 67.8 47.5 57.7 

GLASSO 74.6 78.4 79.6 82.4 98.8 83.9 52.6 77.2 79.2 80.4 85 82.4 78.4 69.8 65.5 82.4 86.7 79.6 78.3 78.9 

Louvain 

(75.2%) 

AIC 51.1 72.8 84.3 90.1 89.2 62.2 72.4 80.9 79.7 62.8 80.5 78.4 73.9 64.4 61.4 81.3 80.5 83.1 65.5 74.3 

BIC 31 55 73.4 91 76 54.4 58.8 76.1 63.5 49.9 69.6 66.9 61.9 52.6 43.7 70 73.7 73.8 51.5 62.8 

GLASSO 80.2 87.2 90.4 95.3 98.7 81.4 85.3 85.9 90 89.9 94.8 92.7 88.4 78.5 70.2 93.4 99.4 89.9 87.4 88.6 

PFA 

(79.4%) 
PA 59.1 78.8 88 91.5 75.1 82 81 69.2 85.2 83.6 81.2 81.6 79.9 74.9 64 87.5 86.6 89.5 69.3 79.4 

PCA 

(86.7%) 
PA 70.1 87.9 92.3 96.4 98.4 87.1 74.5 78.8 90.5 90.7 94.5 93.1 88.2 71 81.1 88.3 90.6 91.7 81.6 86.7 

Spinglass 

(70.7%) 

AIC 46.5 66.7 77.2 83.2 80.9 56.5 69 80.6 71.6 54.7 73.3 71.6 67.9 60.7 59.2 75.1 70.7 77.7 59 68.4 

BIC 30.1 48.9 62 80.2 56.7 38.8 60.5 84.6 56.9 42.4 56.2 54 51.4 46.6 53.2 56.9 48.1 65.4 37.2 52.4 

GLASSO 74.8 82 84.8 86.9 91.8 73.7 76 84.7 80.5 78.1 84.7 83.7 80.9 74.3 59.3 85.3 89.5 88.7 75.8 80.8 

Walktrap 

(73.8%) 

AIC 54.5 71.3 80.3 85.8 92 66.1 61.4 73.2 76.6 68.5 80.3 77.6 72.1 60.9 58.1 80.4 80 82 63.6 72.7 

BIC 31.1 54.5 72.1 87.9 76.8 56.2 52.8 72.6 62.6 50.4 69.2 66.1 60.5 50.4 41.5 68.8 73.3 72.6 50.4 61.6 

GLASSO 80.4 85.9 88 93 98.6 83.7 78.3 82.2 88.8 90.4 94.8 91.7 86.3 75.6 67.1 91.9 99.3 88.3 86 87.1 

9
2
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Table 4 

Components Identified in the Node Redundancy Analysis. 

Note. The node labels in Figure 9 are in parentheses. * represents a component’s label 

that should be interpreted in the opposite direction (i.e., reverse coded). 

Dimension 
Component 

(Node Label) 
Item Content 

1 
Orderly 

(Ord) 
Keep things tidy. 

Often forget to put things 

back in their proper 

place. 

Leave a mess in my 

room. 
Like order.  

1 
Motivated 

(Mtv) 

Find it difficult to get 

down to work. 

Need a push to get 

started. 
Start tasks right away.   

1 
Perfectionist 

(Prf) 

Want every detail 

taken care of. 

Continue until 

everything is perfect. 
   

1 (Shsfmao) 
Set high standards for 

myself and others. 
    

1 (Nmd) Neglect my duties.     

1 (Wh.) Work hard.     

2 
Emotional 

Stability (Ems) 

Experience very few 

emotional highs and 

lows. 

Get overwhelmed by 

emotions. 

Experience my emotions 

intensely. 

Think that my moods 

don’t change more 

than most peoples do. 

 

2 
Worrier 

(Wrr) 
Worry about things. Fear for the worst. Am a worrier.   

2 
Irritable* 

(I(R) 
Rarely get irritated. Am not easily annoyed. Seldom get mad.   

2 Anxious (Anx) 
Would call myself a 

nervous person. 
Panic easily.    

2 
Low self-

esteem (L..) 

Feel a sense of 

worthlessness or 

hopelessness. 

Dislike myself.    

3 
People person 

(Ppp) 

Usually like to spend 

my free time with 

people. 

Like going out a lot. Avoid company. Want to be left alone. 

Don’t like 

crowded 

events. 

3 
Attention-

seeking (At-) 

Hate being the center 

of attention. 
Like to attract attention. 

Dislike being the center 

of attention. 

Make myself the center 

of attention. 
 

3 Laugher (Lgh) Laugh a lot. Laugh aloud.    

3 
Social-efficacy 

(Sc-) 

Am skilled in handling 

social situations. 

Find it difficult to 

approach others. 
   

3 (Eme) Express myself easily.     

4 
Original 

ideation (Ori) 
Am full of ideas. 

Am able to come up with 

new and different ideas. 
Am an original thinker. 

Love to think up new 

ways of doing things. 
 

4 
Introspective 

(Int) 

Love to reflect on 

things. 

Try to understand 

myself. 

Spend time reflecting on 

things. 
  

4 

Self-assessed 

intelligence 

(S-i) 

Think quickly. 
Am quick to understand 

things. 

Can handle a lot of 

information. 
  

4 
Fantasy 

(Fnt) 

Have a vivid 

imagination. 

Like to get lost in 

thought. 
   

5 
Concerned for 

others (Cfo) 

Am sensitive to the 

needs of others. 

Feel sympathy for those 

who are worse off than 

myself. 

Think of others first. 
Am concerned about 

others. 

Sympathize 

with others’ 

feelings. 

5 
Sees good in 

people (Sgip) 
Trust what people say. 

Believe that people are 

basically moral. 

Trust people to mainly 

tell the truth. 

Believe that others 

have good intentions. 

Feel that most 

people can’t be 

trusted. 

5 
Manipulative 

(Mnp) 

Use others for my own 

ends. 
Cheat to get ahead. Tell a lot of lies.   

5 
Rule-follower 

(Rl-) 

Rebel against 

authority. 
Try to follow the rules. 

Believe that laws should 

be strictly enforced. 
  

5 (Ahts) Am hard to satisfy.     

5 (Ebtoaanmp) 

Enjoy being thought of 

as a normal 

mainstream person. 
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Table 5 

Network Loadings Across the Five Dimensions Identified by EGA. 

Note. Grey boxes indicate the loadings of the dimension that correspond to each 

component’s respective dimension. Bold values indicate the largest loading for each 

component. Components labeled with reverse coding are denoted with (R). 

 1 

(Conscientiousness) 

2 

(Neuroticism) 

3 

(Extraversion) 

4 

(Openness to Experience) 

5 

(Agreeableness) 

Work hard. 0.34 -0.011 0.027 0.04 0.063 

Neglect my duties. -0.314 0.047 0.003 0.007 -0.115 

Perfectionist 0.241 0.045 0 0 0.052 

Orderly 0.222 -0.017 -0.004 -0.024 0.036 

Motivated 0.322 -0.05 0.028 0.06 0.003 

Set high standards for 

myself and others. 
0.205 0 0.003 0.144 -0.064 

Worrier 0.04 0.385 0 0 0.034 

Anxious 0.015 0.405 -0.048 -0.076 0.006 

Low self-esteem -0.091 0.174 -0.135 -0.015 -0.065 

Irritable (R) 0 -0.178 0 0.012 0.12 

Emotional stability 0.015 -0.32 -0.02 -0.049 -0.085 

People person 0 -0.019 0.326 -0.041 0.088 

Attention-seeking -0.007 0.019 0.284 0.003 -0.116 

Social-efficacy 0.038 -0.094 0.341 0.048 0.014 

Laugher 0.01 -0.017 0.183 0.012 0.096 

Express myself easily. 0.005 -0.045 0.24 0.07 0.051 

Original ideation 0.037 -0.032 0.074 0.409 -0.066 

Fantasy -0.044 0.03 0.02 0.302 -0.048 

Introspective 0.04 0.01 0.022 0.194 0.046 

Self-assessed intelligence 0.095 -0.053 0.033 0.17 0 

Concerned for others 0.03 0.119 0.119 0.029 0.248 

Manipulative -0.087 0.042 0.066 -0.001 -0.186 

Sees good in people 0 -0.076 0.088 0 0.223 

Am hard to satisfy. 0.083 0.069 -0.062 0 -0.146 

Enjoy being thought of as 

a normal mainstream 

person. 

0 0.001 0.012 -0.115 0.126 

Rule-follower 0.123 0.011 -0.042 -0.054 0.23 
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Table 6 

Simplified Network Loadings. 

Note. Grey boxes indicate the loadings of the dimension that correspond to each 

component’s respective dimension. Components labeled with reverse coding are denoted 

with (R). 

 1 

(Conscientiousness) 

2 

(Neuroticism) 

3 

(Extraversion) 

4 

(Openness to Experience) 

5 

(Agreeableness) 

Work hard. 0.34     

Neglect my duties. -0.314    -0.115 

Perfectionist 0.241     

Orderly 0.222     

Motivated 0.322     

Set high standards for 

myself and others. 
0.205   0.144  

Worrier  0.385    

Anxious  0.405    

Low self-esteem  0.174 -0.135   

Irritable (R)  -0.178   0.12 

Emotional stability  -0.32    

People person   0.326   

Attention-seeking   0.284  -0.116 

Social-efficacy   0.341   

Laugher   0.183   

Express myself easily.   0.24   

Original ideation    0.409  

Fantasy    0.302  

Introspective    0.194  

Self-assessed intelligence    0.17  

Concerned for others  0.119 0.119  0.248 

Manipulative     -0.186 

Sees good in people     0.223 

Am hard to satisfy.     -0.146 

Enjoy being thought of as a 

normal mainstream person. 
   -0.115 0.126 

Rule-follower 0.123    0.23 
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APPENDIX B 

FIGURES 

 

Figure 1 

False Discovery Rate 

False discovery rate broken down by number of responses, percentage of redundant 

nodes, and sample size.
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Figure 2 

False Negative Rate 

False negative rate broken down by number of responses, percentage of redundant nodes, 

and sample size.
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Figure 3 

Critical Success Index 

Critical success index broken down by number of responses, percentage of redundant 

nodes, and sample size.
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Figure 4 

Accuracy and Bias 

Accuracy and bias measures broken down by method, algorithm, and number of 

responses.
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Figure 5 

Normalized Mutual Information 

Normalized mutual information broken down by method, algorithm, and number of 

responses.
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Figure 6 

Best Dimensionality Methods’ Accuracy 

Percent correct broken down by loadings and sample size (left) as well as number of 

factors and variables (right).
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Figure 7 

Comparison of Factor and Network Loadings 

Comparison of factor and network loadings broken down by each condition. Network 

loadings are represented by the dashed line and square, CFA loadings are represented by 

the dotted line and circle, and EFA loadings are represented by the solid line and triangle. 

Continuous data are presented in red and polychoric data are presented in blue. Note that 

the y-axis begins at .70.



 

103 

 

Figure 8 

Redundancy Chain Plot 

An example of a redundancy chain plot. The red node indicates the target item and the 

white nodes with numbers correspond to the numbered options. A connection represents 

significant overlap determined by the redundancy analysis and the thickness of the 

connection represents the regularized partial correlation between the nodes in the 

network.
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Figure 9 

SAPA Inventory Dimensions 

Depiction of the dimensions identified using EGA. The color of the nodes represents the 

dimensions and the thickness of the lines represent the magnitude of the partial 

correlations (green = positive; red = negative). 


