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The present study investigates the influence of multidimensionality on linking and 

equating in a unidimensional IRT. Two hypothetical multidimensional scenarios are explored 

under a nonequivalent group common-item equating design. The first scenario examines test 

forms designed to measure multiple constructs, while the second scenario examines a test aimed 

to measure a primary latent trait but contaminated with a nuisance factor. Classification measures 

and equating equity properties are used to compare the baseline multidimensional IRT and 

unidimensional IRT under these scenarios. The findings suggest that multidimensionality is not 

the primary factor influencing the behavior of linking constants A and B. However, interacting 

factors such as mean shift, covariance structure, and linking method do have an impact. Test 

structure alignment is crucial for achieving quality equating results, as equating bias constitutes a 

substantial proportion of the total error. Classification indices demonstrate that unidimensional 

IRT generally outperforms the baseline MIRT, with semi-equivalent test structures showing 

higher performance. Equating equity properties indicate that test structure alignment and choice 

of linking methods significantly influence equating quality and predictability. The study 

highlights the importance of considering factors in achieving accurate and precise equating 

results. Further, Approximate Multidimensional IRT True Score (AMT) equating is proposed as 

a possible solution to assess the impact of multidimensionality to address the limitations of 

conventional equating methods in capturing dimension-specific changes in scores between test 

forms.  
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CHAPTER I: INTRODUCTION 

BACKGROUND 

In educational and psychological testing, the purpose of an assessment is to provide valid 

empirical evidence (e.g., a test score) of an examinee’s latent ability with respect to one single 

construct of interest, mostly theoretically defined (Ozer, 2001). However, empirical response 

data collected from the real world are inherently multidimensional (i.e., multidimensionality) 

because multiple aspects of cognitive or psychological response processes of examinees to given 

items may differ substantially (Ansley & Forsyth, 1985). 

Multidimensionality can be observed in two hypothetical testing situations. One plausible 

case of multidimensionality is often observed in a situation where a test, even with one construct 

of interest, inevitably measures multiple latent traits. For example, many professional 

certification or licensure exams consist of multi-faceted content domains of integrated 

knowledge, and its applications to real-life problems in the profession. However, the primary 

purpose of the assessment is to assess candidates’ competency as one underlying construct of 

interest. As a result, the response data may be multidimensional because examinees may have 

differing true abilities on each sub-domain area (Luecht, 1996). Another case can be found when 

a test may unintentionally introduce one or more secondary or nuisance dimensions. To 

illustrate, suppose a reading test is built to assess a student’s reading ability. However, 

unintended dimensions are often introduced in reading comprehension tests due to passage 

features and item features (Drasgow & Lissak, 1983; Lawrence & McHale, 1988; Drasgow & 

Lissak, 1983). Consequently, multidimensionality is likely to occur in the response data, for the 

sensitivity to the nuisance dimensions differs significantly between subgroups (e.g., 

Sawatdirakpong, 1993).   
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 In psychometric practice, such cases of the multidimensionality bring up challenges. 

That is, although a test measures multiple traits, because of practical constraints, it is demanded 

to report a unidimensional score such that it meaningfully represents the summary of an 

examinee’s latent abilities. Another challenge is to provide an unbiased score, free of the 

influence of unintended factors when a test unintentionally introduces nuisance dimensions in 

addition to its primary dimension of interest. Such challenges emerge clearly when 

multidimensional response data is analyzed with a unidimensional item response theory (UIRT) 

model because its strong assumption that performance on the response data depends on only one 

latent trait is rarely met in practice (e.g., Humphreys, 1986; Ozer, 2001). These challenges are 

recognized as the validity-verse-unidimensionality dilemma (Ip, 2010). That is, in practical 

testing situations, “there exists a dilemma between the psychometric desire for assessing a single 

construct versus the need for a test to function meaningfully as a valid instrument” (Strachan et 

al., 2022, p.348).   

IRT APPROACHES 

In the IRT framework, three different approaches may be recognized to address the two 

challenges: (1) multidimensional IRT (MIRT; Reckase & McKinley, 1983) models, (2) a locally 

dependent unidimensional IRT model (Ip, 2010), and (3) unidimensional IRT (UIRT; Lord, 

1980; Rasch, 1980) models.  

First, item response theory (IRT) can be defined as a collection of statistical models that 

represent the probability that an examinee obtains a particular score on a given item, based on 

the examinee latent ability (often denoted by θ) and item parameters (e.g., difficulty, 

discrimination, and pseudo-guessing). When an IRT model is correctly specified with one or 

more latent variables (i.e., dimensionality assumption; Lord, 1980), the probability of an item 
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endorsement is independent of that of another item (i.e., conditional independence assumption, 

Lord, 1980). The conditional independence assumption follows automatically from the 

dimensionality assumptions (Lord, 1982, p.19).   

In MIRT, multiple latent variables are modeled such that an examinee’s proficiencies are 

estimated for multiple constructs of interest. MIRT appears as a promising solution for the first 

multidimensionality case (MC-I) in which a test measures multiple dominant dimensions. 

However, due to its complexity, and the uncertainty about the definition of a dimension, 

multidimensional IRT (MIRT) has not yet been widely accepted as an operational psychometric 

model (Luecht & Miller, 1992). 

The locally dependent unidimensional IRT model was recently proposed by Ip (2010) 

and can be applied to the second case of the multidimensionality (MC-II; Ip & Chen, 2012) as a 

feasible solution.  That is, when a test consists of one primary dimension as the construct of 

interest and one or more secondary dimensions that are not of substantive interest, a targeted 

dimension can be obtained by projecting the secondary dimensions onto it (i.e., projective IRT). 

In other words, the targeted dimension is purified by getting rid of the influence of the nuisance 

factors. The projective IRT (PIRT) model have been gaining attention in the literature for its 

utilities (e.g., Ip & Chen, 2012; Ip et al., 2019; Kim, 2022; Strachan et al., 2020), yet it has not 

been commonly used in practice. 

Although their applications are limited in practice, MIRT and PIRT are theoretically and 

empirically recognized as solutions for MC-I and MC-II, respectively. In the current study, 

MIRT is used as a base model and PIRT as a competing model.    

As explicit in its name, UIRT requires one latent variable, leading to the 

unidimensionality assumption often recognized as being ideal or too strict in practice (e.g., 
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Humphreys, 1986; Ozer, 2001; Yen, 1993). However, the unidimensionality assumption has 

been relaxed in terms of statistical and substantive perspectives (e.g., Ip, 2010). More 

specifically, a test with a dominant factor and one or more minor factors is considered as 

essentially unidimensional (Stout, 1987). In the same spirit, for the unidimensionality 

assumption, a dominant component or factor is required to be met to a satisfactory extent by a set 

of test data (Hambleton, 1989; Reckase, 1979). To illustrate unidimensionality in 

multidimensional data, Reckase (1990) showed two cases where a UIRT model fits well to a set 

of test items that measure more than one dimension. That is, when all items in a test measure the 

same set of skills in the same way, and when item difficulty and dimensionality are confounded. 

In addition to its relaxation in the statistical unidimensionality assumption, from the substantive 

view, the unidimensionality assumption requires that items in a test measure the same composite 

of abilities, rather than a single ability (Reckase et al., 1988). In other word, when a UIRT model 

is fitted to multidimensional data, the unidimensional latent ability represents a linear composite 

of the multiple dimensions present in a test (Wang, 1987; Zhang & Stout, 1999). Therefore, the 

unidimensionality assumption can be restated as follows: “all the items in a test are measuring 

the same skill or same composite of multiple skills” (Ackerman, 1995, p. 256).  

For the robustness of UIRT to multidimensionality, two important findings summarized 

by Gibbons, Immekus, and Bock (2007) seem to be encouraging. If the data consists of a 

predominant general factor and major dimensions that are relatively small, the presence of 

multidimensionality has little effect on item parameter estimates and the associated ability 

estimates (i.e., essential dimensionality; Stout et al., 1996). In contrast, when response data are 

multidimensional with multiple dominant factors, UIRT results in parameter and ability 

estimates that are drawn towards the strongest factor, and the ability estimates become a 
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weighted composite of the measures from each individual dimension (Goldstein & Wood, 1989). 

However, when dimensions are uncorrelated, parameter and ability estimates are distorted by the 

existing degree of multidimensionality (Folk & Green, 1989, Strachan et al., 2022).      

Even with extensive studies providing the important information about the impact of 

multidimensionality (e.g., Ackerman, 1989; Ansley, 1984; Ansley & Forsyth, 1985; De Ayala, 

1994; Doody, 1985; Drasgow & Parsons, 1983; Folk & Green, 1989; Harrison, 1986; Ip, 2010; 

Luecht & Miller, 1992; Oshima & Miller, 1990; Reckase, 1979, 1987, 1990; Strachan et al., 

2022; Way, Ansley, & Forsyth, 1986), their findings are inconclusive (Hsu & Yu, 1989).   

EVALUATION 

The multidimensionality issue can be concerned particularly in two areas of assessment: 

classification and score comparability. Scores on psychological and educational tests are widely 

used when making selections, diagnostic, qualification, and admission decisions. These tests are 

used to quantify examinees’ relative standings on certain constructs of interest to classify them 

into performance categories (i.e., criterion-referenced tests). Thus, a primary focus of 

measurement precision of a IRT scale should be the degree of correctly and consistently 

classifying examinees into performance categories such as pass/fail (Rikli & Jones, 2013).  

When a UIRT model is used to calibrate multidimensional data, problems can arise in 

estimating an examinee’s level of ability (Walker & Beretvas, 2013). The resulting 

unidimensional estimate of ability is a linear combination of their ability estimates that would be 

obtained if a compensatory MIRT model had been used (Ackerman, 1994). Furthermore, if 

difficulty and dimensionality are confounded in the data, the composite of ability remains 

inconsistent throughout the estimated unidimensional ability scale (Reckase et al., 1986).  

Therefore, when the composite latent measure is used instead of multiple measures, a 
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classification decision on candidates’ qualification may not be accurate. That is to say that when 

decisions are made in consideration of multiple latent abilities, the composite ability may lack 

ability-specific information because of its compensatory nature.  

Several classification methods have been developed in UIRT framework (e.g., Lee, 2010; 

Lathrop & Cheng, 2014; Rudner, 2001). For example, Lathrop and Cheng (2017) claimed that 

their nonparametric approach outperformed Lee’s approach when the ability distribution 

digresses from the normality assumption, but the multidimensionality issue was not fully 

addressed in the previous studies. Recently, Park et al. (2022) proposed the multidimensional 

classification procedures, and their findings assure the robustness of UIRT classification 

procedures on the simple multidimensional latent structure, but further investigation with 

different latent distributions and latent structures is suggested.  

To be properly used for high-stakes decisions, test scores must be comparable across 

alternate forms. However, even with the best effort of psychometricians to make them parallel in 

terms of content and statistical specifications, alternate forms differ in difficulty in practice. 

Thus, it is necessary to adjust for the minor difference in difficulty (i.e., equating; Kolen & 

Brennon, 2004), and the quality of the equating should be evaluated to enhance the 

appropriateness of score interpretation (American Educational Research Association et al., 

2014).  Therefore, when equating is performed on two forms under a satisfactory condition of 

assumptions, each individual in the test population is anticipated to have the same expected score 

and measurement accuracy on both tests (i.e., equating equity; e.g., Morris, 1982; Tong & Kolen, 

2005; Yen, 1983). However, test equity may not hold because a UIRT equating function is 

unable to account for dimension-specific changes in difficulty across test forms (Bolt, 1999). In 

this context, fitting UIRT models to multidimensional data has drawn researchers’ attention to 
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assess the effect of multidimensionality on UIRT equating (e.g., Béguin, & Hanson, 2001; 

Béguin et al., 2000; Bolt, 1999; Luecht & Miller, 1992; Stocking & Eignor, 1986). Several 

studies indicate that the influence of multidimensionality on the quality of UIRT true score 

equating (TSE) seems to be of little practical importance (e.g., Bolt, 1999; Goldstein & Wood, 

1989; Luecht & Miller, 1992) when the multidimensional latent structures of two forms are 

parallel or two forms have the same reference composite of latent traits. However, these studies 

mainly focus on the multidimensional content structures with homogeneous populations 

(Champlain, 1996). In addition, the multidimensional structure, with one primary dimension as 

the construct of interest and one or more nuisance dimensions (MC-II), has not attracted much 

attention from researchers, even with its practical significance. For example, when a test consists 

of items that require additional abilities for more difficult items, item parameter and ability 

estimates of UIRT could produce misleading and biased results regarding the targeted construct 

of interest, resulting in misclassification of high-stakes decisions (Ip et al., 2019). Furthermore, a 

few attempts have been made to assess the effect of the interaction between multidimensional 

test structure and heterogeneous populations (e.g., Béguin et al., 2000; Champlain, 1996; Dorans 

& Kingston, 1985; Stocking & Eignor, 1986). Their findings, in general, suggest that the 

increase in difference in abilities and multidimensionality adversely affects the accuracy of 

parameter estimates and results of UIRT equating procedures.  

However, each study was narrowly focused because of different study conditions, 

purposes, and evaluation methods (e.g., Champlain, 1996; Harris & Crouse, 1993). To be 

specific, real data analyses provide empirical evidence (e.g., Camilli, Wang, & Fesq, 1995; 

Dorans & Kingston, 1985; Yen, 1984), but were limited in explanatory power. In simulation 

studies, it appears that the multidimensionality affects UIRT true score equating (Bolt, 1999) less 
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than UIRT observed score equating (OSE; Béguin et al., 2000). In the case of pre-equating, mean 

shift of ability distribution, the degree of multidimensionality, and combinations of both 

adversely affect recovery of parameters (Stocking & Eignor, 1986). These studies are 

inconclusive when it comes to revealing the dynamics of multidimensional test structures and 

different populations. Assessing the interplay of different dimensional structures and 

heterogeneous populations is complex and needs to be addressed more comprehensively 

(Skaggs, 1990). 

RESEARCH PURPOSE AND QUESTIONS 

The purpose of this dissertation is to evaluate the impact of multidimensionality to UIRT 

linking and equating when an UIRT model is applied to multidimensional response data. Two 

simulation experiments are designed for two testing scenarios of multidimensionality; that is, (1) 

a test measuring more than one trait (MC-I) and (2) a test measuring one primary trait with one 

or more nuisance dimensions (MC-II). In the two scenarios, the reference composite of two 

forms may appear to be similar or different contingent upon the interaction of test items with 

groups. Thus, factors to consider include different latent structures, form differences, and group 

differences. With these factors in mind, this study aims to address the following five questions: 

1. To what extent does multidimensionality affect classification accuracy? 

2. To what extent does multidimensionality affect classification consistency? 

3. To what extent does multidimensionality affect first-order equity? 

4. To what extent does multidimensionality affect second-order equity? 

5. To what extent does multidimensionality affect the combined measure of the first- 

and second-order equities?  
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To be more specific, response data will be generated from a 2D MIRT model and a UIRT 

(MC-I and MC-II) and PIRT (MC-II) will be fitted to the data to seek the answers for the five 

questions. Note that for MIRT equating, only OSE is considered due to due to the limitation of 

TSE in MIRT; that is, the one-to-many relationship between an expected score and its 

corresponding combinations of latent abilities in the test characteristic surface makes it 

impossible to find the unique combination in the multidimensional latent space. 

In the first simulation study for MC-I, three linking procedures are compared: (1) 

separate calibration (SC) with Haebara (HB) method, (2) concurrent calibration (CC), and (3) 

fixed parameter calibration (FPC); and two UIRT equating procedures are compared: (1) TSE 

and (2) OSE. The base model will be two dimensional MIRT (2DMIRT) with three linking 

methods: (1) SC with the extended version of HB method (Oshima et al., 2000), (2) MIRT CC 

and (3) MIRT FPC. But due to the limitation of TSE in MIRT, only MIRT OSE is considered. In 

contrast, in the second simulation study for MC-II, UIRT linking and equating procedures are the 

same as the first case, but 2DMIRT is a generating model and PIRT model is used as a 

competing model for UIRT.  For evaluation, marginal indices of classification and equating 

properties are compared. 
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CHAPTER II: LITERATURE REVIEW 

This chapter consists of two sections: the first section is for the fundamentals of item 

response theory and the second section is for the literature review on the research topic.  

1 FUNDAMENTALS OF ITEM RESPONSE THEORY 

OVERVIEW  

Item response theory (IRT) models are widely used in scoring examinees’ performance 

on a given test. A typical process of scoring follows obtaining item parameter estimates. It is one 

of the foremost benefits of the IRT models that an examinee’s score is put on the same scale of 

item difficulty such that for test takers it is possible to understand their performance on difficulty 

levels. The IRT scale is arbitrarily defined with its origin and unit. For example, for the scale 

identification purpose, the common procedure of IRT calibration software packages is setting the 

distribution of the ability to be a standard normal distribution with mean zero and standard 

deviation with one, resulting in a scale with its origin zero and unit one (Note that Rasch models 

use the model-embedded scale, logit).   

When two forms constructed based on even the same test specification are administered 

to different groups of examinees, there rise two technical issues. First, there is no medium to 

address the arbitrariness of two IRT scales; that is, putting two scales on one common scale. 

Second, because of the first issue, it is not possible to make the adjustment for the differences in 

form difficulty. The statistical procedure to handle the former issue is known as “Scale Linking”, 

and the other statistical procedure to solve the latter issue is known as “Score Equating”. Often 

common or shared items appearing in both forms are used as a medium or anchor to disentangle 

ability difference and test form difference. The traditional wisdom recommends that common 

item sets be sufficient in number and representative of the whole test form in terms of content 
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and statistical specifications. In the linking and equating context, this data collection design is 

called the “Common Item Non-equivalent Group (CINEG)” design (Kolen & Brennan, 2014) or 

the “Non-Equivalent groups with Anchor Test (NEAT)” design. 

In general, IRT models are categorized into unidimensional IRT (UIRT) and 

multidimensional IRT (MIRT) by the number of latent dimensions; and, into one, two, and three-

parameter IRT models by different parameterization. For instance, 3PL2DMIRT indicates the 

IRT model that has three item parameters (i.e., item difficulty, item discrimination, and pseudo-

guessing) and two latent dimensions. MIRT can be further subdivided into “Simple Structure”, 

“Approximately Simple Structure”, and “Complex Structure” by latent dimensional structure; 

and into “Compensatory” and “Non-Compensatory” by the interaction of latent dimensions in 

producing the probability of item endorsement. For an approximately simple structure MIRT 

model, clusters of items load primarily onto one pre-specified dimension or factor with trivial 

cross-loadings. For a compensatory MIRT model, latent variables compensate each other for the 

probability of getting a given item correct. Based on the number of item categories, IRT models 

are divided into dichotomous models with two categories and polytomous models with more 

than two categories. As noticed, UIRT models are special cases of MIRT models and 

dichotomous models are also constrained cases of polytomous IRT models. Lastly, it is worth 

noting that the item response functions of the item characteristic curve (ICC) are divided into 

two: normal ogive and logistic function. Often 1.7 is added to the logistic function as the 

multiplier to match the shapes of the two ICCs. 

Dimensionality is a widely used term to describe the characteristics of the latent space in 

the IRT framework. It is also closely related to defining a metric. In UIRT, the latent dimension 

is only one and its scale is defined by origin and unit, while in MIRT, two more technical 
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considerations are required to identify the multidimensional scale; that is, the correlation 

between dimensions and the rotation of the coordinate system in the multidimensional latent 

space. In modeling item response data, the assumption of dimensionality is essential. If the 

assumption is significantly violated for a fitted IRT model, the estimates of item parameters and 

latent abilities are biased, resulting in inaccurate linking, and equating results. As a result, the 

test scores might become invalid for their defensible interpretation and use. 

PROPERTIES AND LIMITATIONS  

Item response theory (IRT) is a popular modeling method for item response data in 

psychological and educational settings. Compared to the classical test theory (CTT) whose scale 

(e.g., the origin is zero and unit is one item) is sample-dependent, IRT provides three distinct 

properties. First, item difficulty and ability are on the common scale where individual items and 

persons are relatively located to one another. In addition, such item and ability properties do not 

depend on specific samples of items and examinee groups, which is called “invariance property”. 

In other words, the psychometric properties of items are invariant across different examinee 

groups and the latent ability is invariant across different test forms. The invariance property 

allows practitioners to improve the quality of assessment in parallel form development, quality 

control of test forms, and score comparison. Finally, understanding the dimensionality of the 

latent ability becomes more feasible. A unidimensional latent ability can be decomposed into 

multiple latent abilities when multiple factors are involved in the test. Such information is vital 

for practitioners to ensure that a test form targets the intended dimension(s). 

With its convenient psychometric properties, however, IRT cannot completely be free 

from its limitations. Depending on the parameterization of IRT models, the estimation process is 

complex and time-consuming. Moreover, a large sample is required, which is often not feasible 
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in practical testing situations. Score comparison across forms and administrations can be 

challenging because the IRT scale is arbitrarily defined, called “scale indeterminacy”. The 

common practice to resolve this issue is to treat the ability as a random variable and set its 

distribution into the standard normal distribution regardless of the examinees’ true ability 

distribution.  

Such limitations become more evident in MIRT. Beyond the large sample size 

requirement, and complex linking and equating procedures for score comparison in MIRT, 

identifying the latent ability structure in the multidimensional space seems daunting. As such, in 

practice, UIRT is a common operational IRT model for calibration, linking, scoring, and 

equating despite the widely accepted notion that item response data are multidimensional.   

CALIBRATION  

In the educational measurement context, calibration is defined as estimating item 

parameters. The most widely used estimation procedure is the maximum likelihood estimation 

(MLE), a searching algorithm to find a set of parameter estimates that maximizes the log-

likelihood of the joint probability function. Figure1 visualizes the item parameter estimates via 

MLE.  
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Figure 1. Visualization of MLE for UIRT with Item Difficulty and Discrimination 

 

 

 

Note: The blue line indicates the gradient on the ML Estimates 

 

To make the maximum likelihood estimation work, two assumptions for the likelihood 

function must be satisfied: monotonicity and local independence. The former assumption posits 

that the probability of a correct response increases as the latent ability level increases. The latter 

one postulates that responses to given items are mutually independent conditional on a given 

ability level. In addition, due to the unknown latent ability, typical calibration packages (e.g., 

FlexMIRT) treat the latent ability as a random variable that presumably follows a standard 

normal distribution, and then integrate the latent ability out from the likelihood function, 

resulting in the marginal likelihood function for item parameter estimation. The marginal 

likelihood function could be written as follows: 
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𝐿(𝜟) = 𝑃(𝑼 |𝜟) = ∏ 𝑃(𝒖𝒋 |𝜟)

𝑁

𝑗=1

                                                         (2.1.1) 

 

                             = ∏ ∫ 𝑃(𝒖𝒋|𝜟, 𝜃𝑗)ℎ(𝜃𝑗)𝑑𝜃𝑗

∞

−∞

𝑁

𝑗=1

          

 

      = ∏ ∫ ∏ 𝑃(𝒖𝒋𝒊|𝜹𝒊, 𝜃𝑗)ℎ(𝜃𝑗)𝑑𝜃𝑗  ,

𝑛

𝑖=1

∞

−∞

𝑁

𝑗=1

                                     

 

where 𝑗 is the number of examinees, N; 𝑖 is the number of items, 𝑛; 𝒖𝒋 is a response 

vector with length n for examinee j; 𝜹𝒊 is the item parameter vector with size 𝑣 (the number of 

item parameters in the model); 𝜟 is an item parameter matrix with n by 𝑣 dimension; 𝑼 is a 

response matrix with 𝑁 by n dimension, In the equation, 𝑃(𝒖𝒋|𝜟, 𝜃𝒋) is re-expressed as  

∏ 𝑃(𝒖𝒊𝒋|𝜹𝒋, 𝜃𝑖) 𝒏
𝒊=𝟏 , a likelihood function under local independence assumption; and ℎ(𝜃𝑖) is the 

probability density function of ability. Also, notice that according to the Bayes' theorem, 

𝑃(𝒖𝒋|𝜟, 𝜃𝒋)ℎ(𝜃𝑗) is the proportionality of the posterior ability distribution denoted 

by 𝑃(𝜃𝒋|𝒖𝒋, 𝜟), given response data and item parameters. In other words, the goal of the 

marginal maximum likelihood estimation (MMLE) is to obtain the item parameter estimates that 

maximize the marginal likelihood function after the latent ability is integrated out from the 

posterior ability distribution. The posterior ability distribution is approximated by weighting 

empirical information from response data (i.e., likelihood) with ℎ(𝜃𝑗), a prior distribution from a 

subjective information on the true ability distribution.  

To obtain the posterior distribution, however, the item parameters must be known in 

advance, which are not before calibration. To solve this problem, the MMLE is implemented 

with the expectation–maximization (EM) algorithm (Bock & Aitkin, 1981; Mislevy, 1986). The 
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EM algorithm is an iterative procedure for finding maximum likelihood estimates of probability 

models in the presence of unobserved random variables, i.e., latent variable in IRT (Baker & 

Kim, 2004, p. 169). In the E step, conditional on the observed data and the provisional parameter 

estimates, the posterior expectations of 𝛩 are computed, which consist of the expected number of 

attempts (𝑓
𝑖𝑞

) and correct responses (𝑟𝑖𝑞) to each item as such: 

𝑓
𝑖𝑞

=  ∑ [
𝐿(𝑋𝑞)𝐴(𝑋𝑞)

∑ 𝐿(𝑋𝑞)𝐴(𝑋𝑞)𝑄
𝑞=1

]

𝑁

𝑗=1

                                                                   (2.1.2) 

and 

𝑟𝑖𝑞 =  ∑ [
𝑢𝑖𝑗𝐿(𝑋𝑞)𝐴(𝑋𝑞)

∑ 𝐿(𝑋𝑞)𝐴(𝑋𝑞)𝑞
𝑘=1

]

𝑁

𝑗=1

,                                                                  (2.1.3) 

where 𝑗 is the number of examinees, 𝑁; 𝑖 is the index of items 𝑛; 𝑢𝑖𝑗 is the response of an 

examinee 𝑗 for the item 𝑖; 𝑞 is the quadrature point for a particular ability level; 𝐿(𝑋𝑞) = 

∏ 𝑃𝑖(𝑋𝑞)
𝑢𝑖𝑗

𝑄𝑖(𝑋𝑞)
1−𝑢𝑖𝑗

 𝑛
𝑖=1  is a likelihood with a given discrete ability value, 𝑞; 𝐴(𝑋𝑞) is the 

quadrature weight (i.e., density) for the corresponding value 𝑞 in the prior distribution (Baker & 

Kim, 2004, p. 167).  

In the M step, with those quantities, the maximum likelihood estimation algorithm finds 

the item parameter estimates that maximize the posterior expectation. Because finding the 

optimal parameters is not analytically tractable, numerical approaches (e.g., Newton-Raphson 

method) are employed. Note that the 𝐴(𝑋𝑞) can be either fixed to a chosen prior distribution or 

adjusted by the response data by normalizing the quantity of 𝑓
𝑖𝑞

  as such: 

𝐴(𝑟+1) =
1

𝑁
∑ [

𝐿(𝑋𝑞)𝐴(𝑋𝑞)
(𝑟)

∑ 𝐿(𝑋𝑞)𝐴(𝑋𝑞)
(𝑟)𝑄

𝑞=1

]

𝑁

𝑗=1

,                                                  (2.1.4) 
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where 𝑟 is the notation for the iteration of the EM cycle; and 𝑁 is the sample size. The 

adjusted quadrature weights from the response data are called “empirical histogram” which can 

be computed with an option in calibration software packages. At the end of each M step, the 

updated quadrature weights are rescaled, along with the current item parameter estimates for 

scale identification. Then, updated quadrature weights and item parameter estimates are fed into 

the E step to move to the next iteration. Finally, the iteration stops when a set conversion 

criterion is met (for details see Baker & Kim, 2004; Kim, 2017). This MMLE-EM procedure is 

employed in different calibration procedures which are discussed next.   

In the context of defining a metric, the MMLE is referred to as person (or norm) 

centering because the scale is established from the person ability distribution. In contrast, the 

most popular calibration package for the Rasch model, Winsteps (Linacre, 2022) estimates both 

item parameters and latent ability simultaneously, by setting the sum of item difficulty parameter 

estimates to be zero unless otherwise specified. This procedure is called item (or criterion) 

centering. In short, items and persons are put on the same scale regardless of either of which 

metric identification methods is used to define the scale.  

There are three calibration procedures based on the information used: separate, 

concurrent, and fixed item parameter calibrations. As the name suggests, in the separate 

calibration (SC), with only its own response data, each test form is independently calibrated. Due 

to the scale indeterminacy, however, SC requires linking to put the two scales from each form on 

a common scale. In general, the scale of the old form is considered as a base, reference, or 

common scale on which the new scale will be put.  

Unlike SC as a single group calibration, the current calibration (CC) is the multiple-group 

calibration that estimates multiple forms simultaneously by utilizing all the response data 
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together. In other words, the base scale is identified with the common item information from 

both groups. In CC, the equations 2.1.2; 2.1.3; and 2.1. 4 can be re-expressed as follows (Bock & 

Zimowski, 1997; Kim, 2017): 

𝑛𝑔𝑞
(𝑟+1)

=  ∑ 𝑓(𝑋𝑔𝑞|𝒖𝒈𝒋, 𝜟(𝒓), 𝜋𝑔
(𝑟)

)

𝑁𝑔

𝑗=1

= ∑
𝑓(𝒖𝒈𝒋|𝑋𝑔𝑞′ , 𝜟(𝑟))𝜋𝑔

(𝑟)

∑ 𝑓(𝒖𝒈𝒋|𝑋𝑔𝑞′, 𝜟(𝑟))𝜋𝑔
(𝑟)𝑄

𝑞′

𝑁𝑔

𝑗=1 

                            (2.1.5) 

 

𝑟𝑔𝑞
(𝑟+1)

=  ∑ 𝑢𝑔𝑗𝑖𝑓(𝑋𝑔𝑞|𝒖𝒈𝒊, 𝜟(𝑟), 𝜋𝑔
(𝑟)

)

𝑁𝑔

𝑗=1

= ∑ 𝑢𝑔𝑗𝑖

𝑓(𝒖𝒈𝒋|𝑋𝑔𝑞′ , 𝜟(𝑟))𝜋𝑔𝑞
(𝑟)

∑ 𝑓(𝒖𝒈𝒋|𝑋𝑔𝑞′, 𝜟(𝑟))𝜋𝑔𝑞′
(𝑟)𝑄

𝑞′

𝑁𝑔

𝑗=1 

              (2.1.6) 

and  

𝜋𝑔𝑞
(𝑟+1)

=  
𝑛𝑔𝑞

(𝑟)

𝑁𝑔
=

1

𝑁𝑔
∑

𝑓(𝒖𝒈𝒋|𝑋𝑔𝑞′ , 𝜟(𝑟))𝜋𝑔𝑞
(𝑟)

∑ 𝑓(𝒖𝒈𝒋|𝑋𝑔𝑞′, 𝜟(𝑟))𝜋𝑔𝑞′
(𝑟)𝑄

𝑞′

𝑁𝑔

𝑗=1 

  ,                                                             (2.1.7) 

 

where 𝑁𝑔 is the number of examinees in group 𝑔; 𝑢𝑔𝑗𝑖 is the item response of examinee 𝑗 

in group 𝑔 to item 𝑖; 𝒖𝒈𝒋 is the item response vector of examinee 𝑗 in group 𝑔 to all n  items; 𝛥(𝑟) 

is the vector of the provisional item parameter estimates obtained at iteration 𝑟−1 of the EM 

algorithm; Q is the number of quadrature points; 𝑋𝑔𝑞 is the 𝑞𝑡ℎ quadrature point for group 𝑔; and 

𝜋𝑔𝑞
(𝑟)

 is the quadrature weight for group 𝑔 corresponding to 𝑋𝑔𝑞 estimated at iteration 𝑟−1 of the 

EM algorithm.  

The notations show that the MMLE-EM procedure can be applied to multiple group 

response data (note: two groups are considered as an exemplary case here) with shared common 

items. In the E step, the two quantities (𝑛𝑔𝑞 𝑎𝑛𝑑 𝑟𝑔𝑞) can be computed, by treating the portion of 

the test items not presented to each group as missing or as not administered. Because of the local 
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independence assumption, each item can be estimated independently; unique items use only the 

response data of the specific group, but the common items take advantage of all response data 

from both groups. In the EM cycle, the reference group ability distribution is fixed to the 

standard normal distribution, while that of the focal group is freely estimated. The common items 

continue to adjust the scale of the focal group on the reference group until the iteration 

completes, and the empirical quadrature weights ( 𝜋𝑔𝑞) are computed and updated in the similar 

fashion aforementioned. The resulting scale of the new form can be comparable to that of the 

base form and the underlying ability distribution of the focal group can be estimated relative to 

that of the reference group. In essence, the scale of CC is established with the information from 

both groups.  

With more information used, CC may provide more accurate common item parameter 

estimates than SC and FPC do when the sample size is small with an appropriate model fit; and 

is more efficient than SC because multiple forms are calibrated in one computer run and no 

additional linking is required. Attributable to the unavailability of all response data and more 

importantly, inconsistent item parameter estimates after each calibration, however, CC may not 

be a practical choice as a routine calibration procedure in operation with a few exceptions such 

as item bank recalibration.  

The fixed item parameter calibration (FPC) uses the common item parameter estimates 

from the previously calibrated form of which examinees are assumed to be representative of the 

true population because the base scale is strictly identified with only information from the 

reference group who took the base form. In the estimation process, the parameter estimates of 

common items of the base form are fixed in the new form and only unique items are estimated 

with existing common parameters and the response data of the new form. To make the procedure 
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clearer in comparison with CC, the three quantities (Kim, 2006; Kim, 2017; and Kim & Kolen, 

2016) can be re-expressed as follows:  

In the first iteration,  

𝑛𝑞
(0)

=  ∑ 𝑓(𝑋𝑞|𝒖𝒄𝒊, 𝜟𝑐𝑖, 𝜋0  )

𝑁

𝑗=1

= ∑
𝑓(𝒖𝒄𝒊|𝑋𝑞, 𝜟𝑐𝑖)𝜋𝑞

(0)

∑ 𝑓(𝒖𝒄𝒊|𝑋𝑞′, 𝜟𝑐𝑖)𝜋𝑞′
(0)𝑄

𝑞′

𝑁

𝑗=1 

                            (2.1.8) 

 

𝑟𝑞
(0)

=  ∑ 𝑢𝑗𝑐𝑖𝑓(𝑋𝑞|𝒖𝒄𝒊, 𝜟𝒄𝒊, 𝜋0  )

𝑁𝑔

𝑗=1

= ∑ 𝑢𝑗𝑐𝑖

𝑓(𝑢𝑐𝑖|𝑋𝑞 , 𝜟𝒄𝒊)𝜋𝑞
(0)

∑ 𝑓(𝑢𝑐𝑖|𝑋𝑞′, 𝜟𝒄𝒊)𝜋𝑞′
(0)𝑄

𝑞′

𝑁

𝑗=1 

              (2.1.9) 

and  

𝜋𝑞
(1)

=  
𝑛𝑞

(0)

𝑁
=

1

𝑁
∑

𝑓(𝒖𝒄𝒊|𝑋𝑞 , 𝜟𝒄𝒊)𝜋𝑔
(0)

∑ 𝑓(𝒖𝒄𝒊|𝑋𝑞′, 𝜟𝒄𝒊)𝜋𝑔
(0)𝑄

𝑞′

𝑁

𝑗=1 

 ,                                                      (2.1.10) 

Note that at the first E step, with 𝜋(0) from the standard normal distribution as a prior 

choice, only the common item parameters 𝜟𝒄𝒊 and observed data 𝒖𝒄𝒊 for the common items are 

used to compute the posterior probabilities of the quadrature points. This is the necessary 

preparation to put the new scale onto the base scale over the subsequent iterations.   

In the first M step, the unique item parameters 𝜟𝒖𝒊
(𝟏)

 are estimated. From the second EM 

iteration, the fixed common items and all response data of the new form are used to obtain the 

final unique item parameters. The equations can be re-expressed as follows:  

                    𝑛𝑞
(𝑟+1)

=  ∑ 𝑓(𝑋𝑞|𝒖𝒄𝒊, 𝜟𝒄𝒊, 𝜟𝒖𝒊
(𝒓)

, 𝜋(𝑟)  )

𝑁

𝑗=1

 

= ∑
𝑓(𝒖𝒋|𝑋𝑞 , 𝜟𝒄𝒊, 𝜟𝒖𝒊

(𝒓)
)𝜋𝑞

(𝑟)

∑ 𝑓(𝒖𝒋|𝑋𝑞′, 𝜟𝒄𝒊, 𝜟𝒖𝒊
(𝒓)

)𝜋𝑞′
(𝑟)𝑄

𝑞′

𝑁

𝑗=1 

                                                          (2.1.11. 𝑎) 

     𝑟𝑞
(𝑟+1)

=  ∑ 𝒖𝑗𝑖𝑓(𝑋𝑞|𝒖𝑗 , 𝜟𝑐𝑖, 𝜟𝑢𝑖
(𝑟)

, 𝜋(𝑟)  )
𝑁𝑔

𝑗=1
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= ∑ 𝒖𝑗𝑖

𝑓(𝒖𝒋|𝑋𝑞, 𝜟𝑐𝑖, 𝜟𝒖𝒊
(𝒓)

)𝜋𝑞
(𝑟)

∑ 𝑓(𝒖𝒋|𝑋𝑞′, 𝜟𝑐𝑖, 𝜟𝒖𝒊
(𝒓)

)𝜋𝑞′
(0)𝑄

𝑞′

𝑁

𝑗=1 

                                                       (2.1.11. 𝑏) 

and  

               𝜋𝑞
(𝑟+1)

=  
𝑛𝑞

(0)

𝑁
       

=
1

𝑁
∑

𝑓(𝒖𝒋|𝑋𝑞 , 𝜟𝒄𝒊, 𝜟𝒖𝒊
(𝒓)

)𝜋𝑞
(𝑟)

∑ 𝑓(𝒖𝑗|𝑋𝑞′, 𝜟𝑐𝑖, 𝜟𝒖𝒊
(𝒓)

)𝜋𝑞′
(𝑟)𝑄

𝑞′

𝑁

𝑗=1 

,                                                         (2.1.11. 𝑐) 

where 𝜟𝒖𝒊
(𝒓)

 denotes the unique item parameters in iteration 𝑟. 𝜟𝒄𝒊 without the superscript 

𝑟 indicates that the common item parameters are fixed (or not updated) in the EM iteration. Kim 

(2006) compared five FPC methods and out of the five methods, the Multiple Prior Weights 

Updating and Multiple EM Cycles method is presented above and used in the current study 

because of its better performance.   

FPC neither requires multiple computer-runs for calibration nor additional linking. In 

addition, FPC can be useful for validating the invariance property of item parameters and 

developing an item pool.  

Because of the common scale established via the calibration process, CC and FPC are 

considered as an alternative to traditional IRT linking procedures. In contrast, for SC, linking is 

imperative. Four linking procedures are discussed in detail in the following section.   

IRT LINKING  

Due to the scale indeterminacy, the common procedure to identify the UIRT metric with 

its origin and unit is setting the examinee distribution to be a standard normal distribution with 

mean zero and standard deviation one regardless of the true population distribution. Therefore, 

when two forms are calibrated independently, the resulting two scales are not the same. Thus, the 

population differences must be adjusted. The statistical procedure to adjust population 
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differences is called linking. Linking is possible on account of the linear relationship of item 

parameters and the preservation of probability for item endorsement after linear transformation.  

To illustrate, the linear relationship of difficulty parameters of common items on scale Y 

and X can be written as follows (Cook & Eignor, 1991):  

𝑏𝑌𝑗
− 𝜇(𝑏𝑌)

𝜎𝑏𝑌

=
𝑏𝑋𝑗

− 𝜇(𝑏𝑋)

𝜎𝑏𝑋

,                                                       (2.1.12) 

or equivalently,  

𝑏𝑌𝑗
= 𝐴𝑏𝑋𝑗

+ 𝐵,                                                                            (2.1.13) 

Under 3PL UIRT, the probability of item endorsement is shown as follows: 

𝑃 (𝜃𝑌𝑖
, 𝑎𝑌𝑗

, 𝑏𝑌𝑗
, 𝑐𝑌𝑗

) =  𝑐𝑌𝑗
+ (1 −  𝑐𝑌𝑗

)
𝑒𝑥𝑝 [𝐷𝑎𝑌𝑗

(𝜃𝑌𝑖
− 𝑏𝑌𝑗

)]

1 + 𝑒𝑥𝑝 [𝐷𝑎𝑌𝑗
(𝜃𝑌𝑖

− 𝑏𝑌𝑗
)]

                                      (2.1.14) 

= 𝑐𝑋𝑗
+ (1 −  𝑐𝑋𝑗

)
𝑒𝑥𝑝 {𝐷

𝑎𝑋𝑗

𝐴 [(𝐴𝜃𝑋𝑖
+ 𝐵) −   (𝐴𝑏𝑋𝑗

+ 𝐵)]}

1 + 𝑒𝑥𝑝 {𝐷
𝑎𝑋𝑗

𝐴 [(𝐴𝜃𝑋𝑖
+ 𝐵) −   (𝐴𝑏𝑋𝑗

+ 𝐵)]}
                

=  𝑐𝑋𝑗
+ (1 −  𝑐𝑋𝑗

)
𝑒𝑥𝑝 [𝐷𝑎𝑋𝑗

(𝜃𝑋𝑖
− 𝑏𝑋𝑗

)]

1 + 𝑒𝑥𝑝 [𝐷𝑎𝑋𝑗
(𝜃𝑋𝑖

− 𝑏𝑋𝑗
)]

        

= 𝑃 (𝜃𝑋𝑖
, 𝑎𝑋𝑗

, 𝑏𝑋𝑗
, 𝑐𝑋𝑗

),                                                                                                      

where  𝜃𝑌𝑖
= 𝐴𝜃𝑋𝑖

+ 𝐵; 𝑎𝑌𝑗
=

𝑎𝑋𝑗

𝐴
; 𝑏𝑌𝑗

= 𝐴𝑏𝑋𝑗
+ 𝐵; 𝑐𝑌𝑗

= 𝑐𝑋𝑗
, 𝑎𝑛𝑑 𝐷 ≈ 1.7. Notice that 

the guessing parameter is independent of the scale transformation. The probability of examinee 

𝑖 getting the item 𝑗 correctly on the scale Y, denoted as 𝑃 (𝜃𝑌𝑖
, 𝑎𝑌𝑗

, 𝑏𝑌𝑗
, 𝑐𝑌𝑗

) equals to that on the 

scale X, expressed as 𝑃 (𝜃𝑋𝑖
, 𝑎𝑋𝑗

, 𝑏𝑋𝑗
, 𝑐𝑋𝑗

). 

Based on the information used to find a set of the optimal linking constants, A 

(multiplicative constant) and B (additive constant) that minimize the difference of two sets of 
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common item parameters, there, in general, are two linking procedures: moment methods and 

characteristic curve methods. 

The moment methods are mean/sigma and mean/mean methods. The mean/sigma (MS) 

method uses the mean and standard deviation of difficulty parameter estimates of common items 

from both test forms. A is the ratio of the standard deviation of the common item parameter 

estimates in the old form (Y) to that in the new form (X). B is the mean difference between the 

common item parameter estimates from the old and new forms. 

𝐴 =
𝜎(𝑎𝑌)

𝜎(𝑎𝑋)
,                       (2.1.15) 

and  

𝐵 =  𝜇(𝑏𝑌) − 𝐴 ∗ 𝜇(𝑏𝑋), (2.1.16) 

 

The mean/mean (MM) method estimates the linking coefficients using item 

discrimination and difficulty parameters. Thus, A is the ratio of the mean of the common item 

discrimination parameter estimates in the old form to that in the new form, and B is computed in 

the same manner as does MS. 

 

𝐴 =
𝜇(𝑎𝑌)

𝜇(𝑎𝑋)
,                           (2.1.17) 

 

The characteristic curve methods utilize all common item parameters together to find the 

optimal linking coefficients with which each of the item characteristic curves (ICC) or a test 

characteristic curve (TCC) on the new scale is transformed and matched with the counterpart on 

the old scale. The goal of the Haebara (HB) method is to find the A and B that minimize the 
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criterion function, the cumulative squared difference values of each pair of the ICCs of common 

items (V) over all examinees (N) between the old scale and the new transformed scale, as such: 

𝐻𝑐𝑟𝑖𝑡 = ∑ ∑ [𝑝𝑖𝑗(𝜃𝑌𝑖; �̂�𝑌𝑗 , �̂�𝑌𝑗 , �̂�𝑌𝑗) − 𝑝𝑖𝑗 (𝜃𝑌𝑖;  
�̂�𝑋𝑗

𝐴
, 𝐴�̂�𝑋𝑗 + 𝐵, �̂�𝑋𝑗)]

𝑉

𝑗

𝑁

𝑖

2

, (2.1.18) 

 

The Stocking and Lord (SL) method finds the linking constants that minimize the 

cumulative squared difference of two TCCs (or the sum of ICCs) over all examinees between the 

old scale and the new transformed scale, as such:  

        𝑆𝐿𝑐𝑟𝑖𝑡 = ∑ [∑ 𝑝𝑖𝑗

𝑉

𝑗

(𝜃𝑌𝑖 ; �̂�𝑌𝑗, �̂�𝑌𝑗, �̂�𝑌𝑗) − ∑ 𝑝𝑖𝑗

𝑉

𝑗

(𝜃𝑌𝑖;  
�̂�𝑋𝑗

𝐴
, 𝐴�̂�𝑋𝑗 + 𝐵, �̂�𝑋𝑗)]

𝑁

𝑖

2

,           (2.1.19)  

Its underlying concept is that the true scores from the two forms would be 

indistinguishable for examinees. 

It is worth noting that in 1PL UIRT and Rasch model, A is 1 across all four linking 

methods on account of the assumption that the scale unit is unchanged; and that in the 

characteristic curve methods, there is no difference between 2PL UIRT and 3PL UIRT in the 

linking constant A and B because the lower asymptotes are not involved in the scale 

transformation. 

Unlike the moment methods that use moments of item parameter distributions, which are 

outcomes of relatively simple computations, the characteristic curve methods are 

computationally more demanding to implement, attributable to the numerical integration of the 

latent variable and the iterative searching algorithm for the optimal linking constants in the 

multivariate space. In addition, the criterion function is non-linear in respect to the constants A 

and B (Kim & Lee, 2004). In the current study, the characteristics curve methods are used for 
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their outperformance over the moment methods (Baker and Al-Karni 1991; Hanson and Béguin 

2002; Kim and Cohen 1992; Lee and Ban 2010). 

In an ideal case when the two sets of common item parameters are equivalent, there is no 

adjustment required for the origin and unit of the two scales of the common item sets. Thus, B 

becomes zero and A gets one. However, if there is a discrepancy between two sets of common 

items, then, the discrepancy explains the population difference between the two examinee 

groups. The role of the linking constants is to adjust the scale of the new form to the old scale in 

terms of the origin and unit. Under the random group linking design with an assumption that two 

groups are equivalent to one another, the discrepancy is expected to be, if any, inconsequential 

due to sampling error and parameter estimation error. Under the CINEG design, however, the 

disparity is assumed to be non-trivial due to the true population difference beyond such errors, 

which must be addressed in a proper manner. 

IRT EQUATING   

After the set of item parameters of the new form is put on the common/base scale, the 

differences of form difficulty can be adjusted for interchangeable scores.  For the valid score 

comparison, test forms should meet rigorous requirements (Dorans & Holland, 2000; Kolen & 

Brennan, 2014). That is, tests to be equated should measure the same constructs (equal-construct 

requirement); the equating transformation of scores should be symmetric (symmetry 

requirement); and it should be a matter of indifference to the examinees regardless of which form 

of the test is administered (equity requirement). The last requirement is generally known as 

Lord’s equity property that is possible only in the case that two alternate forms are essentially 

identical. In practice, however, neither such an ideal form construction is feasible nor is equating, 

even so, necessary for identical forms. As an evaluation criterion in the current study, a less 
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restrictive version of the equity property (Morris 1982, as cited in Kolen & Brennan 2014) is 

used, which will be further discussed in detail later. Under a satisfactory condition of the 

requirements, two forms can be equated with two IRT equating procedures.  

Before discussing the procedures in detail, however, it is first necessary to clarify the 

term “score” in IRT. To be specific, related to the examinee’s ability, three values can be 

obtained: IRT true scores (i.e., a sum of ICCs or the expected value of the observed score 

regressed on ability level), observed number-correct scores, and latent ability estimates. In the 

equating context, both IRT true scores and observed number-correct scores are treated as 

observed scores which depend on the length of the test, while the latent ability estimates 

represent the true ability of examinees, which are invariant across forms. (Thus, for the score 

comparison with the latent ability estimates, no equating is required.) 

The observed score equating (OSE) follows the conventional equipercentile method to 

find score equivalents after obtaining the observed summed-score distribution. The LW recursion 

formula (Lord & Wingersky, 1984) can be used to compute the conditional summed-score 

distribution as follows: 

  When r = 1 

               𝑓1(𝑥 = 0|𝜃𝑖) = (1 − 𝑝𝑖1), 

                          𝑓1(𝑥 = 1|𝜃𝑖) =  𝑝𝑖1, 

  When r > 1, recursive process is invoked,  

𝑓𝑟(𝑥|𝜃𝑖) =  𝑓𝑟−1(𝑥|𝜃𝑖)(1 − 𝑝𝑖𝑟),                                             𝑥 = 0             (2.1.20) 

                               = 𝑓𝑟−1(𝑥|𝜃𝑖)(1 − 𝑝𝑖𝑟) +  𝑓𝑟−1(𝑥 − 1|𝜃𝑖)𝑝𝑖𝑟,       0 < 𝑥 < 𝑟      

                                       = 𝑓𝑟−1(𝑥 − 1|𝜃𝑖)𝑝𝑖𝑟,                                                   𝑥 = 𝑟                      
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where 𝑟 is the number of items; 𝑥 is the number-correct score; and 𝑓𝑟(𝑥|𝜃𝑖) is the 

distribution of number-correct scores over the first 𝑟 items for examinees of anility 𝜃𝑖.  

Figure 2. Visualization of the Conditional Summed-score Distribution Computed with LW 

Recursion Formula on 3PL UIRT 

 

 

In Figure 2, the conditional probability of the raw scores is low in the middle of the score 

range where the mean of item difficulty is matched with that of the population ability and gets 

larger as the scores approach to the minimum and maximum scores. In this case, the conditional 

probabilities scatter around the low score because of pseudo-guessing.  

Then, the marginal distribution is computed with the numerical integration of the 

conditional distribution across all latent ability space.  

𝑓(𝑥) = ∑ 𝑓(𝑥|𝜃𝑖)𝜓(𝜃𝑖)

𝑖

, (2.1.21) 

where 𝜓(𝜃𝑖) is the discrete distribution of anility 𝜃 on a finite number of equally spaced 

points. With the marginal distribution 𝑓(𝑥), the cumulative distribution 𝐹(𝑥) is obtained. The 

final step is to apply the traditional equipercentile method to the cumulative distribution:  
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𝑒𝑌(𝑥) = 𝐹𝑌
−1(𝐹𝑋(𝑥)), (2.1.22) 

where 𝑒𝑌(𝑥) is the Form Y equivalent of score 𝑥 on Form X; 𝐹𝑋 and 𝐹𝑌 are the 

cumulative distribution functions for each scale; and 𝐹𝑌
−1is the inverse function of 𝐹𝑌.  

Like OSE, the true score equating (TSE) is designed to map scores on a new form to 

those on the base form. Instead of using percentile ranks in OSE as an anchor for one-to-one 

score mapping, however, TSE finds score equivalents by anchoring the corresponding latent 

ability estimates. 

DATA COLLECTION DESIGNS 

With the assumption of a single population for equating, a statistical procedure to adjust 

the difference in difficulty of two alternate forms, individual groups taking each form should 

have no difference in distributional properties of examinee ability or proficiency which 

determines the metric of the IRT scale. To control for the differences in abilities of examinee 

groups, data collection methods must be implemented. Typical means used are common items, 

common examinees, a common ability distribution, or some combination of them. For example, 

the random groups design obtains the equivalence between examinee groups by assigning 

alternate forms randomly to examinees. In contrast, the single group design accomplishes it by 

administering both alternate forms to the same examinee group. The common-item 

nonequivalent groups (CINEG) data collection design utilizes common items as a medium to 

decompose the group difference and form difference. The group difference is adjusted through 

scale linking methods and then the form difference is adjusted through score equating 

procedures. Thus, the common (or anchor) items should be representative of the total test form in 

content and psychometric properties. IRT calibrated item pool design is similar to the CINEG 

design in constructing common item sets but more flexible in equating than the CINEG design 
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because anchor items are in common with the item pool, rather than being in common with a 

previous form. In the next section, the requirements of common items are explained more in 

detail.  

The choice of data collection design can be based on the consideration of test 

development process, test administration, test security, sample size requirements, and statistical 

assumptions.  In the IRT equating, the CINEG data collection design and IRT calibrated item 

pools require the most complex test development process due to the construction of common 

item sections and the strongest statistical assumptions for development of item pools. However, 

both approaches are easy to implement and provides greater test security because only one form 

needs to be administrated on a particular test data to conduct equating. However, the common 

item sections are not completely immune from the item security because of the repeated 

administrations.  

The current study focuses on the CINEG data collection design which becomes more 

popular due to its flexibility in administration and benefits of IRT calibrated item pools. For 

more details of the equating data collection designs, refer to Kolen and Brennan (2014) and 

Petersen, Kolen, and Hoover (1989). 

2. MULTIDIMENSIONAL ITEM RESPONSE THEORY 

Even with the unidimensionality assumption, in the UIRT framework, response data 

never become unidimensional. To reflect a more realistic case, in the current study, response data 

are simulated via multidimensional IRT(MIRT) models, and as a frame of reference, MIRT OSE 

is utilized. Introducing MIRT is of importance, but its portions are discussed here, only relevant 

to the current study.  
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When two or more latent abilities are required in the item response process, the UIRT can 

be extended to the MIRT which provides a more accurate representation of persons and items in 

the multidimensional latent space. The functional form of item characteristic surface function of 

the 3PL MIRT is expressed as follows: 

𝑃(𝑈𝑖𝑗 = 1|𝜽𝒋, 𝒂𝑖 , 𝑑𝑖) =  𝑐𝑖 + (1 − 𝑐𝑖)
𝑒

𝒂𝒊𝜽𝒋
′+𝑑𝑖

1+𝑒
𝒂𝒊𝜽𝒋

′+𝑑𝑖
                                      (2.2.1) 

or equivalently,  

𝑃(𝑈𝑖𝑗 = 1|𝜽𝑗 , 𝒂𝒊, 𝑏𝑖) =  𝑐𝑖 + (1 − 𝑐𝑖)
𝑒

𝒂𝒊(𝜽𝑗−𝑏𝑖)′

1+𝑒
𝒂𝒊(𝜽𝑗−𝑏𝑖)′ ,                                   (2.2.2) 

where  𝜽𝒋 denotes the latent trait vector for examinee 𝑗; 𝒂𝒊 is the item discrimination 

vector for item 𝑖; 𝑐𝑖  is the pseudo guessing parameter for item 𝑖; 𝑑𝑖 is the intercept for item 𝑖; 

𝒂𝒊𝜽𝒋
′ + 𝑑𝑖 can be re-expressed as 𝑎𝑖1𝜃𝑗1 + 𝑎𝑖2𝜃𝑗2 + ⋯ + 𝑎𝑖𝑚𝜃𝑗𝑚 + 𝑑𝑖  or ∑ 𝒂𝒊𝒍𝜽𝒋𝒍 +𝒎

𝒍=𝟏  𝑑𝒊 (m is 

the number of latent variables).  

The multidimensional difficulty of the UIRT equivalent can be obtained by the equation 

below:  

𝐵𝑖 =
(−𝑑𝑖)

√∑ 𝑎𝑖𝑘
2𝑚

𝑘=1

=
(−𝑑𝑖)

𝐴𝑖
,                                                                        (2.2.3)  

and the multidimensional discrimination for item 𝑖 is the norm of a multidimensional 

discrimination vector, 

 𝐴𝑖 = √∑ 𝑎𝑖𝑘
2𝑚

𝑘=1 ,                                                                                  (2.2.4) 
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Note that when m =1, 𝐴𝑖 becomes 𝑎𝑖 and 𝐵𝑖 becomes 𝑏𝑖 by 
−𝑑𝑗

𝑎𝑖
 . As in UIRT, 

discrimination parameters are indicative of the discriminating power of a given item to 

examinees in the latent dimension, but in contrast, discrimination parameters in MIRT provide 

the information of the discriminating power to the multiple dimensions. Put differently, a 

discrimination parameter represents the magnitude of measurement of a given item to a specific 

dimension, relative to that of the other dimension(s). The MIRT pseudo-guessing parameter is 

directly comparable to that of UIRT. 

Figure 3. Item Characteristic Surfaces of Two Items Measuring Two Latent Traits.

 

(a) Discrimination (1.5, 0.5), Difficulty (1, 0) 

for two latent dimensions  

(b) Discrimination (0.5, 1.5), Difficulty (0, 1) 

for two latent dimensions 

 

Note that two items in Figure 3 have the same A (i.e., 1.58) and B (i.e., 0.95) even though 

each has different discrimination values to the latent dimensions. In other words, in Figure 2.2.1, 

the distance from the origin of the plane to the base of two items vectors is the location of the 

item difficulty, 0.95 and the magnitude of the discrimination of two item vectors is the length of 



32 

 

the vector, 1.58. It is necessary to find the direction of the measurement, which can be expressed 

an angle of the item vector to a specific dimension as such:         

𝛼𝑖𝑘 = 𝑎𝑟𝑐𝑐𝑜𝑠 [
𝑎𝑖𝑘

√∑ 𝑎𝑖𝑘
2𝐾

𝑘=1

],                                                                 (2.2.5)    

where  𝛼𝑖𝑘 denotes the angle of item i to dimension k.  For instance, the first item vector 

has the angle (i.e., 32 degree) to the first dimension, which is the same angle of the second item 

vector to the second dimension, as shown in Figure 2.2.2 below. In addition, the probability of 

item endorsement of both items for an examinee with the latent ability (1, 1) is the same 0.70. It 

is worth noting that the two items measure the two latent traits with the same difficulty level, 

magnitude of discrimination, and probability of item endorsement, but the first item measures 

dominantly the first latent trait, while the second item primarily does the second latent trait, 

which is visually illustrated in Figure 4. 

Figure 4. Item Characteristic Surfaces of Two Items Measuring Two Latent Traits. 

 

Note that the angles to the first-dimension axes are 𝛼1 = 32° for the itme 1, 𝛼2 =
58° for the item 2, and 𝜃𝛼 = 45° for the refrence composite, the blue dotted line, which is the 

linear combination of the two items.   
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Unidimensional Approximation  

Wang (1987) conjectured the relationship between the multidimensional latent space and 

its unidimensional projection which is a fitted UIRT to multinational response data. She defined 

the approximate unidimensional scale as the “reference composite”, which represents a linear 

composite of the dimensions present in the test, or the mean of the directional cosines for a given 

item cluster (Luecht & Miller, 1992). That is, a linear composite indicates the direction of the 

first eigenvector of the matrix 𝑨𝑻𝑨, where 𝑨 is the matrix of item discrimination parameters. The 

line of the reference composite shown in Figure 5 passed the origin with the slope 1 because the 

two elements of the first eigen vector is same, 0.71.   

Akerman (1992) proposed a validity sector, the narrow angle between the primary latent 

dimension and the reference composite of the item set that measure the purported trait. In the 

case where the purported trait is the first latent dimension, and the second dimension is 

considered as a nuisance factor, items out of the validity sector are invalid. He also suggested the 

construct validity index (CVI) which is obtained by 𝑐𝑜𝑠2(𝛼𝑖 − 𝜃𝛼) which ranges from 0 (i.e., 

completely invalid) to 1 (i.e., totally valid). The CVI of both items is .95, indicating that the two 

items are valid, measuring the same combinations of skills as the reference composite. However, 

the two items should be interpreted differently. One caveat of the reference composite is that the 

reference composite of the test with enough invalid items can be pulled out of the validity 

sector’s reference composite (Ackerman, 1992, p. 74), as shown in Figure 2.2.3. With the given 

two items as an example, the second item may be incorrectly considered as a valid item when the 

construct of interest is the first dimension. 
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Figure 5. Visualization of Reference Composites and Validity Sector 

 

Similar in the concept, but different in the mathematical formulation, Zhang (1996), 

Zhang and Stout (1999a and 1999b) derived the unidimensional linear composite referred to as 

“the direction of best measurement”, (see Reckase, 2009 for the concise explication) and Zhang 

and Wang (1998) derived corresponding item parameter estimates, expressed as such:       

𝜃𝛼 = 𝜶𝒕𝜽                                                                                                   (2.2.6) 

 

𝑃𝑖  (𝑌 =  1|𝜃𝛼  ) =  𝑐𝑖 + (1 − 𝑐𝑖)
1

1 +  𝑒𝑥𝑝[ ― 𝒂𝒊
⋆ 𝜽𝜶 ― 𝑑𝑖

∗ ]     
                           (2.2.7) 

 

𝑎𝑖
⋆ =  (1 +  𝜎𝑖

∗2
)

−1/2
𝒂𝒊

𝑻∑𝛼                                                                 (2.2.8) 

 

𝑑𝑖
∗  =  (1 +  𝜎𝑖

∗2
)

−1/2
𝑑𝑖                                                                        (2.2.9) 

and 

 

𝜎𝑖
∗ =  𝒂𝒊

𝑻  ∑𝑎― (𝒂𝒊
𝑻  ∑𝑎)

2
,                                                                 (2.2.10) 

 

where 𝜶 is a vector of weights with constraint 𝜶𝑻∑𝜶 = 1; ∑  is a correlation matrix; 𝜃𝛼 

represent the composite latent dimension;  𝑎𝑖
⋆, and 𝑑𝑖

∗  denote  the discrimination and intercept of 
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the composite latent dimension;   𝑃𝑖 (𝑌 =  1|𝜃𝛼  ) is the probability of item endorsement. 

Strachan et.al. (2022) investigated the validity of the linear composite conjecture. Their 

simulation study demonstrated that the fitted UIRT model sufficiently approximates the linear 

composite direction in a multidimensional space.    

In the given example above, 𝑨 = [
1.5 0.5
0.5 1.5

], and the eigenvector of the first eigne value 

of eigen decomposition of 𝑨𝑻𝑨 is 𝜐𝜆𝑖
= (0.71

0.71
). The first weight 𝛼1 becomes 0.71 obtained by 

𝜐1

‖𝜐𝜆𝑖‖
 and 𝛼2 is obtained by √1 − 𝛼1

2 . For the sake of simplicity, set the correlation zero, and 

with 𝜃 =  (1
1
),   𝛼 = (0.71

0.71
) and 𝑐 = 0.2, the resulting properties of the two items in the 

composite latent space are identical. That is,  𝛼⋆ =1.2, 𝑑⋆ =  −1.2, and 𝑝(𝑥 = 1|𝜽]) = 0.69 for 

both items and the composite latent ability 𝜃𝛼 is 1.4. Furthermore, holding all properties for the 

items equal, another examinee with 𝜃 =  (0.5
1.5

) gets 𝜃𝛼 = 1.4, and 0.68 probability, which is same 

as the examinee with 𝜃 =  (1
1
). In this simplified case, two points can be noticed; two items that 

measure two latent traits with different compositions of item property can become identical in 

the composite dimension, which is considered unidimensional; in contrast, two examinees with 

different combinations of proficiency levels on latent traits can become identical at the 

composite dimension. A graphical representation for the two item vectors and latent abilities are 

visualized in Figure 6 below. 
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Figure 6. Unidimensional Approximation (aka, Reference Composite) 

 

(a) Both latent ability vectors: (0.5, 1.5) and (1, 

1) are projected onto the reference 

composite of the value 1.4    

(b) The probability of an item endorsement for 

𝜽𝜶 = 𝟏. 𝟒, 𝜶⋆ = 𝟏. 𝟐, , 𝒅⋆ =
 −𝟏. 𝟐, 𝒂𝒏𝒅 𝒄 = 𝟎. 𝟐 

 

Previous studies (e.g., Ackerman, 1992; Luecht & Miller, 1992; Wang, 1987; and Zhang 

& Wang, 1998) illuminated the relationship between the UIRT and the MIIRT in terms of latent 

dimensions and item parameters and provided evidence about the validity and robustness of 

UIRT fitted to the multidimensional response data.  

In the operational setting, for licensing and certification organizations, it is one of the 

major concerns to corroborate the validity of test scores which should be a valid representation 

of examinees’ true ability on the target latent dimension. Thus, the current study takes the 

practical concerns further and deeper in investigating the impact of differential dimensional 

structures on results of linking and equating. The following is a brief introduction of the linking 

and equating of MIRT.  
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MIRT LINKING  

In addition to the translation of the origin and dilation of the unit in UIRT, the scale 

linking in MIRT requires the consideration of one more indeterminacy, rotation of scale. The 

pictorial comparison of linking scales between UIRT and MIRT was illustrated in Figure 7. 

Figure 7. UIRT and MIRT Linking Components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note: O is the location of origin, and U is the length of unit, and 𝑋 → 𝑌 denotes metric 

transformation from scale X to scale Y. (Modified from Min, 2007, p. 43). Note that for the scale 

identification in MIRT, a multivariate standard normal distribution is used with a mean vector 

with zero and a diagonal matrix with 1 for the variance/covariance matrix (i.e., 

𝜽 ~ 𝑀𝑉𝑁(𝟎, 𝑰)).1   

 
1 𝑴𝑽𝑵(𝟎, 𝑰) is often a preferred choice for the reference group, even though real traits are likely to be 

correlated at some degree, because it consists of an orthogonal rotation, a translation transformation, and a 

single dilation or contraction (Li & Lissitz, 2000).    

𝑼𝑿 

 

𝑶𝑿 Scale X  

Translation: 

𝑶𝑿→𝒀 

 

Dilation: 

𝑼𝑿→𝒀 

 

Scale Y  𝑶𝒀 

 𝑼𝒀 

 

(a) UIRT Scale Linking  
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Rotat

ion:𝑹𝑿→𝒀 

Tran
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Dilat

ion:𝑼𝑿→𝒀 

(b) (2D) MIRT Scale Linking   
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As an extension of the 3PLUIRT linking, MIRT linking procedures obtain the linking 

coefficients in a matrix and a vector form as follows:  

𝜽𝒀𝒊 = 𝑻−𝟏𝜽𝑿𝒊 + 𝜷                                                                                             (2.2.11) 

𝒂𝒀𝒊
𝒕 = 𝒂𝑿𝒊

𝒕 𝑻                                                                                            (2.2.12) 

𝑑𝑌𝑖 = 𝑑𝑋𝑖 −  𝒂𝒀𝒊
𝒕 𝜷                                                                                             (2.2.13) 

and 

𝑐𝑌𝑖 = 𝑐𝑋𝑖                                                                                                             (2.2.14) 

where  𝜽 is a vector of multidimensional ability estimates, 𝑻 is a transformation matrix to 

account for rotational indeterminacy (i.e., off-diagonal elements for correlation between 

dimensions) and dilation indeterminacy (i.e., diagonal elements for the unit of measurement for 

each dimension), 𝜷 represents the translation vector for the translation indeterminacy,  𝒂,  𝑑, and 

𝑐 are the slope parameter vector, intercept parameter and pseudo-guessing parameter, 

respectively, for the base (i.e., Y) form and the new (i.e., X) form. 

Of a few MIRT linking procedures to estimate 𝑻 and 𝜷 (Thompson et al., 1997; Hirsch, 

1989; Davey et al, 1996; Li & Lissitz, 2000; Min, 2003; and Yon, 2006), in the current study, for 

the methodological consistency, test characteristic curve method is chosen from the two methods 

proposed by Oshima et al. (2000).  Two characteristic curve methods are direct extensions of the 

UIRT linking methods: Stocking and Lord (1983) and Haebara (1980) methods. In both 

procedures, rescaled parameters are obtained by minimizing the cumulative squared difference 

between TCCs over items and ICCs for each item for examinees of a particular ability. For 

instance, for the 2D MIRT, the SL method can be expressed as: 

∑ ∑ 𝑤𝑞1𝑞2[𝑇𝑋(𝜃𝑞1, 𝜃𝑞2) − 𝑇𝑌
⋆(𝜃𝑞1, 𝜃𝑞2)]

2
                                          (2.2.15)

𝑄2

𝑞2=2

𝑄1

𝑞1=1
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 and HB method can also be shown as:   

∑ ∑ ∑ 𝑤𝑞1𝑞2[𝐼𝐶𝐶𝑋(𝜃𝑞1, 𝜃𝑞2) − 𝐼𝐶𝐶𝑌
⋆(𝜃𝑞1, 𝜃𝑞2)]

2
                        (2.2.16) 

𝑄2

𝑞2=2

𝑄1

𝑞1=1

𝑉

𝑗=1

 

where 𝑄1 and 𝑄2 are the number of quadrature points for the first and second 

dimensions, respectively;  𝑤𝑞1𝑞2 is the weights for corresponding quadrature points. 

𝑇𝑋(𝜃𝑞1, 𝜃𝑞2) denotes the test characteristic surface (TCS) for Form Y, and 𝑇𝑌
⋆(𝜃𝑞1, 𝜃𝑞2) indicates 

the transformed TCS of Form X; and 𝐼𝐶𝐶𝑋(𝜃𝑞1, 𝜃𝑞2) is the ICC for Form Y and 𝐼𝐶𝐶𝑌
⋆(𝜃𝑞1, 𝜃𝑞2) 

is the  transformed ICC for Form X.  

With a rotation matrix, 𝜜 and a translation vector, 𝜷, obtained, the equality of the 

probability for item endorsement can be expressed as follows: 

𝒂𝒊
𝑻∗

𝜽𝒋
∗ + 𝑑𝑖

∗ = (𝒂𝒊
𝑻𝜜−𝟏)(𝜜𝜽𝒋 + 𝜷) + (𝑑𝑖 − 𝒂𝒊

𝑻𝜜−𝟏𝜷) = 𝒂𝒊
𝑻𝜽𝒋 + 𝑑𝑖                      (2.2.17) 

where * indicates metric transformation onto the base scale.  

MIRT EQUATING  

After the scale linking performed to put the new scale to the base scale for score 

comparability by adjusting its rotation, unit, and origin, various equating methods can be 

employed to find the equivalents of scores in the base scale. Unlike the case in UIRT, however, 

TSE is not a feasible option for the full MIRT due to the one-to-many relation between an 

expected score and its corresponding combinations of latent abilities in TCS, which makes it 

impossible to find the unique combination in the multidimensional latent space shown in Figure 

8 below. 
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Figure 8. Ture Score Equating in IRT 

 

(a) MIRT TCS  (b) TSE in UIRT  

 

In contrast, MIRT OSE does not suffer the one-to-many relationship between an 

observed score and its combinations of latent variables. Instead, as the direct extension of UIRT 

OSE, MIRT OSE obtains the marginal distribution 𝑓(𝑥) of observed scores by summing out the 

latent variables from the conditional summed-score distribution 𝑓(𝑥|𝜽𝒊). 

𝑓(𝑥) = ∑ 𝑓(𝑥|𝜽𝒊)𝜓(𝜽𝒊)𝑖 , (2.2.18) 

One convenient choice for the multivariate ability density 𝜓(𝜽𝒊) can be MVN (0, I), 

where 0 is a mean vector with zeros and I is an identity matrix with ones (i.e., variance) in 

diagonal entries and zeros (i.e., covariance/correlation between latent variables) in the off-
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diagonal entries. That is, all latent variables have the same origin and unit of measurement with 

the orthogonal angle between axes in the multidimensional coordinate system.     

3. REVIEW OF RELEVANT LITERATURE 

CALIBRATION 

The concurrent and fixed item parameter calibration methods are often chosen as the 

convenient alternative for linking, and the effectiveness of those methods are evaluated in 

comparison with the separate calibration method.  

Kim and Cohen (1998) examined the performance of two linking procedures: SC using 

BILOG-MG (Mislevy & Bock, 1990) and SL linking performed by EQUATE (Baker, 1993), and 

CC using BILOG-MG with MMAPE (marginal maximum a posteriori estimation) and 

MULTILOG (Thissen, 1991) with MMLE. Their study was conducted on simulated response 

data generated with 2PL UIRT, with factors: different lengths of common items (5, 10, 30, and 

50 items) in the test of 50 items, group difference, and sample size (500 examinees). Based on 

the evaluation criteria, root mean square difference (RMSE) and the mean Euclidean distance 

(MED), the authors found that with a large number of common items (more than 5 in a test of 50 

items), three linking methods performed similarly, while with a small number of common items, 

SC performed better.   

In contrast, based on the equating results, Petersen et al. (1983) concluded that CC did 

not perform better, leaving the further investigation; they expected that CC would produce more 

stable equating results because it does not make assumptions about the relationship between the 

item parameter scales in the case of SC (i.e., indifference of probability of item endorsement 

between the base scale and the transformed scale onto the base scale).   
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Hanson and B�́�guin (2002) used MULTILOG and BILOG-MG (Zimowski et al., 1996) 

for both CC and SC methods to remove the confounding effect of difference between computer 

programs found in the study by Kim and Cohen (1998). In their simulation study, five factors 

were incorporated: group difference, calibration method, estimation program, sample size, and 

length of common items. Based on the evaluation criteria: MSE based on the true score and MSE 

based on the weighted and unweighted ICC, the authors found that CC provided more accurate 

results than SC with SL except that when groups were non-equivalent and the number of 

common items were small, but as expected, with a larger sample size and common items, and 

equivalent group ability, both programs performed similarly and produced smaller MSE.  

Kim and Cohen (2002) used simulated graded response data to examine the performance 

of SC with SL linking and CC. The conditions of the study included sample size (300 for both 

base/target group, 1000/1000, and 1000/300), group ability (N (1, 1) for base group and N (0, 1), 

N (1, 1) for target group), and length of the common item set (5, 10, and 30 items) for a 30-item 

test. With all program default options, MULTILOG was used to estimate item parameters, and 

both sets of item parameters from SL liking and CC were put on the metric of generating item 

parameters. With evaluation criteria: root mean square difference (RMSD), and mean distance 

measure (MDM) for item parameter recovery and RMSD for ability recovery, they concluded 

that CC outperformed SC with linking in all conditions even at a small degree.  

Supporting the findings of Kim and Cohen (2002), the study by Kim and Kolen (2007) 

found that CC outperformed SL and HB linking methods in different ability distributions, and 

that CC seems to be less sensitive to scale shrinkage or expansion in non-equivalent group 

combinations. In contrast, Lee and Ban (2010) found that SC procedures outperformed CC. This 

is inconsistent with the results from some previous studies (Hanson & Béguin, 2002; Kim & 
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Kolen, 2006). The authors conjectured that the lack of common items and examinees between 

forms might be a source of potential bias for CC.       

Keller and Keller (2011) investigated the accuracy of examinee classification and the 

long-term sustainability of IRT scaling methods between linear transformation methods, and 

FPC across six administrations of a test. Under the 3PL UIRT model, 5000 examinees were 

simulated on the conditions of the changes of ability distributions: baseline case N (0, 1), mean-

shift case with the mean increased by 0.15 between each administration from the baseline case, 

and skew-shift case with the skewness increased by -0.15, resulting the medians become 0, 0.2, 

0.46, 0.64, 0.93, and 1.08. PARSCALE (Muraki, 1992) was used with Posterior option, which 

allows the prior distributions to be updated after both the E and M stages of the EM cycles. With 

the evaluation criteria: RMSE, bias of the latent ability estimates and classification accuracy with 

threshold 2% proposed by Keller, Wells, and Keller (2010), the authors found that the 

characteristic curve methods produced the most accurate results in the case of the mean shift 

case, whereas FPC performed best in the skew shift case. The difference of classification 

accuracy was less than the threshold 2 % which can be essentially ignored for all methods.   

Kang and Petersen (2012) conducted a comparison study of three item calibration 

methods: SC with SL linear scale transformation, CC, and FPC.  The methods were compared 

using summations based on actual testing program data. The response data were simulated for a 

test of 50 items with common items (10, 20 and 40) under the 3PLUIRT model. The group 

ability distributions were fixed for the base group to N (0, 1) and manipulated such that the target 

group had N(0, 1), N(0.25, 1.12), or N(0.5, 1.22) with the sample size of 500 and 2,000. BILOG-

MG was used for SC, and BILOG-MG without the prior update and PARSCALE with the prior 

update were used for FPC. The accuracy or performance of the four UIRT linking procedures 
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were evaluated on the recovery of the underlying ability distributions, ICC criterion by Hanson 

and Beguin (2002), and TCC criterion. The authors concluded that three calibration methods 

produced similarly accurate results, while FPC without the prior update performed poorly.  

A concise summary can be found in Kolen and Brennan (2014) that when the data fit the 

UIRT models and assumptions are met, CC performs better than SC with linking because it uses 

all available information from the data. However, SC is more robust to violations of the IRT 

assumptions than CC due to the nature of the data collection design. When SC is implemented 

properly, FPC can be an efficient alternative to SC. Sample size, length of a common item set, 

and group equivalency are common factors to be considered in choosing a calibration procedure.  

ANCHOR/COMMON ITEMS 

Along with the increasing popularity of the CINEG design in linking and equating, the 

property of a common-item set has become of great interest to test developers and researchers. 

Under the CINEG equating design, a set of common items in both forms is used to adjust for 

group difference or to minimize equating error resulting from differences between two forms in 

group ability (Cook & Petersen, 1987). The anchor item set has been assumed to be a parallel 

miniature or “mini” version of the operational forms being equated with respect to both content 

and statistical characteristics (e.g., Angoff, 1968; Kolen & Brennan, 2014). Klein and Jarjoura 

(1985) investigated the effect on linear equating procedures by manipulating the content of 

common items and concluded that the failure of the content representativeness may lead to 

substantial equating error. 

The content representativeness of an anchor item set is justifiable from a content validity 

standpoint. To put it differently, the inconsistent content composition with the operational forms 

indicates measuring different constructs. Consequently, the validity of score interpretation may 
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be questionable. Such a content requirement becomes eminently important in criterion-

referenced assessments, of which purpose is to classify examinees on an established criterion. 

The statistical assumption of anchor items is not as straightforward as for the content 

requirement. The conventional wisdom (e.g., Kolen & Brennan, 2014; and Livingston, 2014) 

states that the statistical property of the anchor items should reflect the full range of the 

operational forms to be equated such that the distribution of item difficulty of the anchor items is 

equivalent to that of the overall test. In test construction, such a statistical constraint can be 

alternatively relaxed with the “miditest” consisting of moderate difficulty items proposed by 

Sinharay and Holland (2006a, 2006b, and 2007). Benefits of such flexibility of the miditest in 

test construction were reassured by Cho, Wall, Lee, and Harris (2010), Fitzpatrick and Skorupski 

(2016), Liu, Sinharay, Holland, Curley, and Feigenbaum (2011a), Liu, Sinharay, Holland, 

Feigenbaum, and Curley (2011b), Yi (2009), and Sinharay (2018). 

Unlike the two anchor item choices that are based on the information of item difficulty 

distribution of the overall test, the test response function (TRF) was used as an additional option 

for the anchor test to evaluate the multidimensional linking procedures (Yao, 2011). Constructed 

with a matched TRF to that of the whole form, an anchor test retains the information of the full 

test characteristics including discrimination, difficulty, and pseudo-guessing. In her simulation 

study on item parameter recovery, the extended version of the unidimensional SL linking method 

outperformed the multidimensional version of Mean/Sigma and Mean/Mean methods. 

The statistical representativeness also includes correlation, reliability, and length of an 

anchor item set. Budescu (1985) argued that the anchor-test correlation is the most critical 

determinant of the efficiency of the equating process and that the correlation functionally 

depends on two factors: the reliability of the total test and the relative length of an anchor set. 
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The higher correlation between the anchor item set and the form being equated produces better 

equating results (Angoff, 1971; Budescu, 1985; Petersen, Kolen, & Hoover, 1989; Sinharay & 

Holland, 2006a). 

Equal reliability is one of five fundamental requirements to test equating (Angoff, 1971; 

Budescu, 1985; Dorans & Holland, 2000; Kolen & Brennan, 2014; Lord, 1980). Moses and Kim 

(2007) evaluated the impact of unequal reliability on test equating methods and found that 

unequal reliability inflates equating function variability. With fewer items, however, the anchor 

item set is more likely to have lower observed reliability than the overall test. 

The length of an anchor item set is also non-trivial to ensure successful equating due to 

the significance of the influence of the number of anchor items on linking stability. Even with no 

absolute agreement on the length of the anchor item set due to the characteristics of the set of 

anchor items, the purpose of testing, and the nature of the test specification, a rule of thumb 

found in the literature (e.g., Angoff, 1971; and Kolen & Brennan, 2004) is that the number of 

common items should be at least 30 items or 20 % of a full-length test containing forty or more. 

In the current study, the parallel miniature (or “mini” version) of the operational forms is 

selected as the anchor choice for the CINEG equating design. The mini-version anchor set is 

viewed as the best representative of the content and statistical pretties of the whole form and its 

wide acceptance in practice.   

DIMENSIONALITY 

DEFINITION 

From a substantive standpoint, test dimensionality can be understood as a minimum 

number of latent factors that adequately account for the underlying examinees’ performance. In 

this context, a dimension of interest can be interpreted as a construct which is a theoretical 
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representation of the underlying trait, concept, attribute, process, and/or structure that a test is 

designed to measure (Messick, 1989; AERA, APA, & NCME, 2014). In an operational setting, 

the construct is further interpreted as a realized manifestation of such conceptual entities, which 

are identified, measured, and quantified into a score as the object of inference for its 

interpretation and use (Kane, 2006). 

From a statistical perspective, test dimensionality can be defined as the number of latent 

factors that account for the correlations among item responses in a test form to achieve local 

independence and monotonicity. The local independence assumption implies that item responses 

are unrelated conditional on the latent variable(s). That is, off-diagonal entries in the item 

variance-covariance matrix become close to zero. Outlining two forms to be strong and weak 

forms in local independence, McDonald (1981) stated that the weak form, commonly used, only 

requires the partial correlations of the test items zero when the latent traits are partialled out yet 

ignoring moments beyond the second order. To put it in the context of inference, locally 

dependent items (e.g., items in an item bundle) are redundant because they provide similar 

information; thus, they do not contribute to making an accurate inference about an examinee’s 

ability (Wainer, 1995).  

UIRT assumes that one latent ability is required for a test taker to get items correct in a 

test form. Such a strict assumption is relaxed both in the substantive and the statistical 

dimensionality. More specifically, Reckase et al. (1988) argued that the unidimensionality 

assumption requires that items in a test measure the same composite of abilities, rather than a 

single ability. Stout (1987) coined the term, “essential unidimensionality”; that is, with a major 

factor and one or more minor factors, a test is essentially unidimensional. In a similar vein, 

Hambleton (1989), and Reckase (1979) provided a reassurance that for the assumption of 
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unidimensionality, a dominant component or factor is required to be met to a satisfactory extent 

by a set of test data. These studies collectively lead to a conclusion that the test can be claimed to 

be unidimensional in terms of both substantive and statistical dimensionality, provided that the 

same compound traits are identified as a dominant factor in a test. Even if the unidimensionality 

assumption requires satisfactory properties from both substantive and mathematical 

unidimensionality, nevertheless, this does not prove the logical connection or agreement between 

such entities (McDonald, 1981) without confirmatory validity evidence (AERA, APA, & 

NCME, 2014). 

In an operational test setting, many factors may cause multidimensionality, such as 

content specification, item type, and administration condition. In addition, two or more cognitive 

traits due to different backgrounds and experiences may influence an examinee’s responses to an 

item. For example, language skills may be required to get a math item correct. A test with mixed-

format items such as multiple-choice and constructed-response items can lead to two distinct 

dimensions (e.g., Manhard, 1996; Sykes et al., 2002). Due to many factors involved, items rarely 

measure a single trait (Reckase, 2009). 

Such multiple factors can be either international or unintentional. The adverse influence 

created by unintentional factors on local independence needs to be identified and controlled to 

avoid overestimates of information and underestimates of the standard error of the ability 

estimates (Sireci et al., 1991; Wainer, 1995; Wainer & Wang, 2000; Yen, 1993). For example, 

Hoskens and Boeck (1997) provided a conceptual framework of modeling item associations 

beyond those explained by a target latent variable, while Glas and Suarwz Falcon (2003) 

proposed statistical tests for the 3PL UIRT model. Chen and Thissen (1997) detailed two models 

that can induce local dependence: surface local dependence (SLD) and underlying local 



49 

 

dependence (ULD). The ULD model implies that an unmodeled underlying latent variable 

causes the local dependent set of items. Unlike the ULD model, the SLD model does not assume 

the latent variable as an underlying cause, but item similarity either in content or location. 

Further, Camilli, Wang, and Fesq (1995) argued that statistical dimensionality is 

necessary, but not sufficient without defining functional dimensionality to provide a complete 

conceptualization of dimensionality; functional dimensionality depends on the testing situation 

and the use of test scores; in contrast, statistical dimensionality is a requirement for item local 

independence. Their theoretical grounds lie in Hattie (1985) and Messick (1989).  Hattie defined 

dimensionality as a joint property of the item set and a particular sample of examinees from its 

underlying population. Messick stated that from a content viewpoint, conceptualizing content 

validity should be in the judgment of experts about domain relevance and representativeness, but 

not in the test. 

Lastly, Henning (1992) argued that psychometric unidimensionality should be 

distinguished from psychological unidimensionality. Even with the commonality of measuring 

some primary dimension or trait, psychometric dimensionality and psychological dimensionality 

need not agree. For instance, in the test where a kind of psychological unidimensionality is 

present, certain fluctuations in the distribution of item difficulty or ability patterns can lead to 

psychometric multidimensionality or vice versa. 

It is concluded that in the item response theory, test dimensionality means the 

psychometric dimensionality which is mainly determined by the characteristics of content, item, 

and population; and that its unidimensional assumption can be relaxed in the statistical and 

substantive perspective, provided that it offers a meaningful interpretation of factor structure and 

meets the statistical assumptions (e.g., local independence and monotonicity). 
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ASSESSMENT 

The common purpose of dimensionality analysis is to identify the simple structure for 

meaningful interpretation. Ackerman et al. (2003) suggested that substantive judgment in 

consideration of test specification, content analysis, and psychological analysis should guide 

dimensionality assessment. In the context of dimensionality assessment, the conventional item 

factor methods are exploratory in nature, utilizing tetrachoric or polychoric correlations, because 

Pearson product-moment correlations are not applicable in the categorical item factor analysis 

(see Mislevy, 1986 for details). However, this approach is not perfect without limitations: 

nonlinear relationship of item performance and the underlying latent ability (Hattie, 1984); lack 

of mathematical requirement (e.g., positive definite) of the correlation matrix, which leads to 

Heywood cases; and no standard rule for deciding the number of interpretable factors (Mislevy, 

1986). 

Procedures may be divided into parametric and non-parametric. Parametric methods 

require a functional form that is specified for the dependence of items on the dimensions. Mplus 

(Muthen & Muthen, 1998-2017), TestsFACT (Bock et al., 1999), NOHARM (Fraser & 

McDonld, 2003), and Parallel analysis (Horn, 1965) leverage exploratory item factor analysis on 

an inter-item correlation matrix to extract meaningful factors. In contrast, non-parametric 

methods aim to identify dimensionally homogeneous clusters of items. For example, DETECT 

(Stout et al., 1999; Stout et al. 2001) is designed to achieve approximate simple structure by 

maximizing the difference between within-cluster and between-cluster conditional covariances 

on examinees’ scores. Two computer programs, CCPROX and HCA developed by Roussos 

(1992) employ the hierarchical cluster technique to create distinct item clusters on the proximity 

matrix. (see Svetina & Levy, 2014 for details). 
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Hattie (1985) conducted an extensive methodology review on assessing the 

unidimensionality of tests and items. The methodology of quantifying the extent of 

unidimensionality with indices was grouped into five different approaches based on the answer 

patterns, reliability, principal components, factor analysis, and latent trait models. A concise 

summary of the underlying assumptions and criticisms of each approach is as follows: 

• The answer pattern approach is based on the idea that a perfectly unidimensional test is a 

function of the amount by which a set of item responses deviates from the ideal scale 

pattern (Guttman, 1944), but the ideal or perfect scale is not realistic, and no method 

exists that enables to distinguish a test of just one trait from a test composed of an equally 

weighted composite of abilities.  

• The reliability approach is based on Cronbach’s claim (Cronbach, 1951) that alpha 

estimates the proportion of the test variance due to all common factors among the items 

provided that the inter-item correlation matrix becomes of unit rank. Novick and Lewis 

(1967) showed that there is no systematic relationship between the rank of a set of 

variables and alpha (or internal consistency measure) which is not a monotonic function 

of unidimensionality. 

• The principal component approach is based on the notion that the maximum variance, 

expressed as the percentage of the total variance, is explained by the first component (i.e., 

factor) of eigen decomposition of a tetrachoric correlation matrix. The maximum 

variance to be considered unidimensional is arbitrary; 20% (Reckase, 1979) or 40% 

(Carmines & Zeller, 1979). In addition, there is no proven rule for choosing the number 

of components. For instance, Kaiser rule (1970) is one of many. 



52 

 

• The factor analysis approach is based on the normality assumption of latent variables, 

which is strong, and nonlinearity with binary data, which may cause a spurious factor. In 

a second-order factor structure with one high order factor and several specific factors, 

variance in specific factors, each of which is unidimensional, may not be clear; that is, the 

item intercorrelation matrix will be of unit rank, but items are not measuring the same 

thing (Lumsden, 1957). In addition, conceptualizing the second-order factor is an 

independent task.  

• The latent variable approach is based on the notion that responses to items can be 

accounted for by latent traits, the characteristics of the examinees, which are monotone 

nondecreasing functions (Rosenbaum, 1984). The fundamental assumption is local 

independence, which should not be taken as unidimensionality. Unidimensionality is 

strictly defined as the existence of one latent trait underlying the set of items. Model fit 

tests (e.g., Chi-squared test) are the typical measures of unidimensionality. It is supported 

by studies (e.g., Von den Wollenberg, 1982a, 1982b) that the Rasch model is robust to 

the violation of unidimensionality. 

He concluded that an index must be viewed as a critical part of the evidence to determine 

the degree to which a test is unidimensional, but that even with an index, judgment must be used 

when interpreting it. It is also worth noting that in his previous study (Hattie, 1984), he 

contended that a unidimensional test is not necessarily reliable, internally consistent, or 

homogeneous, but may rather be factorially complex in terms of the linear common-factor 

model. 

Almost two decades later, Tate (2003) conducted a comprehensive study on 

dimensionality based on simulated data and real data. The real data was collected from the 
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reading test with 8 reading passages and 62 items, administered on two testing days. The results 

of various dimensionality analysis methods confirmed the two-factor solution with testing day 

effect, different from the author’s initial assumption of being essentially unidimensional or 

multidimensional with passage dependencies.  Simulated data were generated on UIRT and 

MIRT models factoring in presence of guessing, extreme values of slope and difficulty 

parameters, local item dependency, and different factor structures.  

The results showed that all methods performed well for the unidimensional and 

multidimensional cases without guessing. In general, extreme difficulty and discrimination 

parameters became problematic in parametric methods. For the simulated test with weak 

multidimensionality, none of the methods was able to detect a single locally dependent item pair. 

When factor complexity increased away from the simple structure, the performance of 

dimensionality recovery was poor across most methods.  

The author concluded that the parametric methods (e.g., the factor analysis or MIRT) 

would correctly recover the underlying true structure when the assumed model is correct; when 

the model parameters are not extreme; and when multidimensionality is considerable. In case of 

the violation of such strong requirements for the parametric methods, nonparametric methods 

(e.g., HCA/CCPROX, DIMTEST, and DETECT) should be considered. 

More recently, Svetina and Levy (2013) provided a framework for the dimensionality 

assessment. The authors analyzed the 1996 NEAT Science Assessment data, which has 3 content 

areas and 16 total items, consisting of 8 multiple-choice and 8 constructed-response items. The 

data were analyzed with four major approaches: confirmatory and exploratory with parametric 

and nonparametric methods, respectively. The results showed that conclusive evidence was not 

found to support the theoretical three-dimensional model based on three content areas. They 
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concluded that the assessment procedure should be decided in consideration of data in terms of 

missingness, scoring method, presence of a lower asymptote, and distributional assumption. 

Dorans and Lawrence (1999) suggested that the unit of dimensionality analysis should be 

defined based on the purpose of the analysis. The authors proposed the relative dimensionality 

principle, which states with stress on the unit of analysis: 

…[T]he dimensions extracted from data depend on the number of each 

type of measure entered into the analysis, the metric of the analysis, 

the methods used for analysis, and the unit of analysis (p, 7). 

The authors stated that the main purpose of the item-level (micro) analysis is to assess 

unidimensionality assumption (e.g., DIF), while that of the test score-level (macro) analysis is to 

assess what different tests measure and how they relate to each other (e.g., equating). They 

analyzed SAT verbal data at the two different levels as the unit of analysis: item-level and test 

score-level with the scores of item parcels (Dorans & Lawrence, 1987), small collections of non-

overlapping items thought to measure the same underlying dimension or dimensions. Item 

parceling is a way of linearization to circumvent nonlinearity and item difficulty differences (see 

McDonald & Ahlawat, 1974). The results showed that the dimensions from the two different 

levels did not agree with each other in terms of the number, structure, and interpretation of 

factors. The item-level analysis found that a speed factor was consistently identified in the two- 

and the three-factor solutions across the content domains, while the test score-level analysis 

found the three-factor solution and the four-factor solution with a general second-order factor 

based on combinations of content domains. 

Lastly, it is worth mentioning that due to the interaction between a sample of items and a 

sample of examinees, the dimensionality of a data matrix is the lesser of the number of 
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dimensions between that the items are sensitive to and that examinees vary on (Reckase, 2009). 

To put it differently, as the outcome of the interactions between examinees and items, item 

response data will become multidimensional when test items are designed to measure multiple 

abilities or when examinees’ mastery level varies on multiple skills.  Even with items measuring 

multiple skills, however, a test produces unidimensional response data if examinees’ proficiency 

varies in only one of their skills. Reversely, response data will be unidimensional on the 

condition that items measure only one of the skills on which examinees vary.  

In short, dimensionality cannot be completely invariant either across populations or test 

forms, but rather it is determined by the characteristics of a test and a sample of the population 

taking the test, and the degree of the interaction between the two under a given set of testing 

conditions. 

STRUCTURE OF MULTIDIMENSIONALITY 

Adams, Wilson, and Wang (1997) recognized MIRT models into two categories based on 

the number of constructs that an item measures: between-item MIRT models and within-item 

MIRT models. In between-item models, subsets of items are mutually exclusive and measure 

different latent variables. That is, a test of the between-item models consists of multiple 

subscales that measure distinct latent dimensions, and items of each subset are loaded on a 

specific latent dimension. This type of test structure is also known as “simple structure.” In a 

more realistic setting, the simple structure can be recognized as an approximately simple 

structure.  

In contrast, within-item models are known as “complex structures” because each item is 

designed to measure multiple latent dimensions. Within-item models are appropriate for 

modeling interactions between multiple latent abilities and task requirements.  
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From a substantive ground, the simple structure can be recognized as a confirmatory 

approach because of the prior knowledge of item loading structure, while the complex structure 

is more related to the exploratory approach because it does not impose any restriction on the item 

loading structure. The bifactor model (Gibbons & Hedeker, 1992) can be viewed as an instance 

of a combined structure. That is, the model is a complex structure because the probability of 

correct responses can be modeled as a function of a combination of general and specific 

dimensions for a given item. In addition, the bifactor model can also be considered a 

confirmatory approach because its item loading structure should be prespecified. When multiple 

specific factors are correlated, a second-order factor can logically be introduced to account for 

the correlation.  

This second-order factor structure model can be recognized as a restricted bifactor model 

when a multivariate normal distribution is assumed for the latent factors (Rijmen, 2009). See Li 

et al. (2006) and Rijmen (2009) for further details on the equivalent relationship between high-

order model, bifactor model, and testlet model (Bradlow, Wainer, & Wang, 1999). 

UNIDIMENSIONAL APPROXIMATION 

For the unidimensional approximation of multidimensional latent structures, three 

statistical approaches are recognized: direction of best measurement (Zhang & Stout, 1999a and 

1999b), reference composite (Wang, 1985), and projective IRT (IP, 2010; Ip & Chen, 

2012).  Zhang and Stout proved that the unidimensional latent composite indicates the direction 

that the test measures best, which is essentially unidimensional with a major factor and one or 

more minor factors (Stout, 1987). Wang showed that when a unidimensional IRT model is fitted 

to multidimensional response data, unidimensional item parameters are unidimensional 



57 

 

projections of test items with respect to the test composite. That is, the unidimensional latent 

ability is a weighted linear combination of multiple abilities. 

Brossman (2010) and Reckase (2009) summarized the first two methods succinctly. It 

can be agreeably posited by the two researchers that those methods are similar in the concept of 

the linear composite of abilities in the multidimensional latent space but are mathematically 

different. That is, the reference composite is the orientation of the unidimensional line in the 

multidimensional latent space given by the first eigenvector with the largest eigenvalues from the 

eigen decomposition of 𝑨′𝑨 where 𝑨 is the item slope matrix. In contrast, the direction of best 

measurement is the direction corresponding to the average of multidimensional information 

function evaluated in all directions.  (see Reckase, 2009; Zhang & Stout, 1999a and 1999b for 

details) 

Unlike the previous methods, the projective IRT method (PIRT) reduces the 

multidimensional latent space onto a specific target dimension or a “purified” dimension 

presumed to be the dimension of interest. Thus, PIRT aims to remove the contamination caused 

by the multiple minor nuisance dimensions (see Ip et al.,2019 for details; and Kim & Cho, 2020 

for application). 

Brossman and Lee (2013) conducted, with real data sets under equivalent group equating 

design, a comparison study of 5 different equating procedures with equipercentile equating as a 

benchmark: UIRT OSE and TSE, full MIRT OSE, and unidimensional approximation of MIRT 

OSE and TSE. Their findings suggested that psychometric frameworks (i.e., choice of UIRT or 

MIRT) is an influential factor on equating results. That is, UIRT TSE and OSE are close to each 

other, while MIRT OSE and two UIRT approximation procedures have a similar equating pattern 

and result.   
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Recently, MIRT has gained much attention from researchers and practitioners for its 

various operational applications in calibration, scoring, and computer adaptive testing. 

Nevertheless, the applications of MIRT are very limited in the field of linking and equating due 

to the indeterminacy of MIRT scale, as explicated in the previous section. Consequently, it is no 

surprise that UIRT linking and equating procedures are a de facto standard in operation. In the 

following section, selected studies on the impact of multidimensionality on UIRT linking and 

equating are reviewed. 

4. RELEVANT STUDIES 

Roussos and Stout (1996) provided the conceptual ground for multidimensionality-based 

differential item functioning (DIF). They argued that DIF manifests itself through differences in 

the marginalized IRF, written as follows:  

𝑃𝐺(𝜃) = ∫ 𝑃(𝜃, 𝜂)𝑓𝐺(𝜂|𝜃)𝑑𝜂                                                             (2.3.1) 

where 𝐺 is the group indicator; and the probability of getting an item correct as a function 

of 𝜃 is obtained by averaging the response function 𝑃(𝜃, 𝜂) over the distribution of 𝜂 for each 

fixed value of 𝜃. For reference and focal groups, the item endorsement probability 𝑃(𝜃) cannot 

be equal when the conditional probability 𝑓(𝜂|𝜃) are not equal. The conditional probability 

𝑓(𝜂|𝜃) can be different for groups of examinees when the item is sensitive to both the primary 

construct 𝜃  and some secondary construct 𝜂 ; when the conditional distribution 𝑝(𝜂|𝜃)  is 

different to two subgroups; and when the interaction of the two exists (Shealy & Stout, 1993, as 

cited in Roussos & Stout, 1996).  

The expected difference in the means of 𝜂 conditional on 𝜃 for the two groups can be 

expressed as such: 
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𝐸𝑅(𝜂|𝜃) − 𝐸𝐹(𝜂|𝜃) = (𝜇𝜂𝑅
− 𝜇𝜂𝐹

) + 𝜃 (𝜌𝑅

𝜎𝜂𝑅

𝜎𝜃𝑅

− 𝜌𝐹

𝜎𝜂𝐹

𝜎𝜃𝐹

) +  (𝜇𝑅𝜌𝑅

𝜎𝜂𝑅

𝜎𝜃𝑅

− 𝜇𝐹𝜌𝐹

𝜎𝜂𝐹

𝜎𝜃𝐹

) , (2.3.2) 

And equation 2.3.2 can be simplified when both groups have the same standard 

deviations (𝜎𝜃𝑅
= 𝜎𝜃𝐹

 and 𝜎𝜂𝑅
= 𝜎𝜂𝐹

) and correlation (𝜌𝑅 = 𝜌𝐹) and where 𝜎𝜂 = 𝜎𝜃, as such:  

𝐸𝑅(𝜂|𝜃) − 𝐸𝐹(𝜂|𝜃) = (𝜇𝜂𝑅
− 𝜇𝜂𝐹

) + 𝜌(𝜇𝜃𝑅
− 𝜇𝜃𝐹

),                                          (2.3.3) 

where 𝐸  is the expectation operator, and  𝜌 denotes correlation between 𝜂 and 𝜃 . The 

expected difference in the means of 𝜂 conditional on 𝜃 for the two groups can occur when 𝜇𝜂𝑅
≠

𝜇𝜂𝐹
, but less likely to occur when both 𝜇𝜂𝑅

− 𝜇𝜂𝐹
 and 𝜇𝜃𝑅

− 𝜇𝜃𝐹
 have the same sign even though 

𝜇𝜂𝑅
≠ 𝜇𝜂𝐹

. Even in the case where  𝜇𝜂𝑅
≈  𝜇𝜂𝐹

, DIF can occur when 𝜌 ≠ 0 and  𝜇𝜃𝑅
≠ 𝜇𝜃𝐹

. In 

the equation 2.3.3, three factors should be considered: the difference of the secondary constructs, 

the difference of the construct of interest between groups, and the correlation between the two 

constructs between the groups.  

They laid out the theoretical foundation of DIF in the context of multidimensionality, 

which, by the author of this study, can be viewed as an instance of manifested differential 

dimensionality. The more details are found in the study by Ackerman (1992).   

Spence (1996) examined the effect of multidimensionality on unidimensional equating 

under equivalent and non-equivalent groups. The generating model was 2PL 2D compensatory 

and non-compensatory MIRT with alpha angles from 0 to 64 as a violation of the 

unidimensionality. Responses of 1,000 simulees generated from a bivariate standard normal 

distribution were analyzed. The scale indeterminacy issue of the two forms was handled through 

CC, and SC with Mean/Sigma method, and SL method. Evaluation criteria were based on the 

comparison between unidimensional item parameters approximated with Wang’s equations 
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(1985) and those obtained by UIRT calibration, i.e., the comparison between the linear 

combinations of the true multidimensional abilities and the unidimensional estimates of the 

parameters. The results showed that with randomly equivalent groups, there was little difference 

attributable to the unidimensional equating procedures. In contrast, the large mean differences 

were displayed in the concurrent calibration of nonequivalent groups. 

Bolt (1999) investigated the impacts of multidimensionality on the equity of the first two 

moments of the conditional equated score distributions for two forms: first-order equity and 

second-order equity. The study was based on both simulated data and the Law School 

Admissions Test (LSAT) with traditional equating methods (i.e., linear and equipercentile 

equating) and the IRT TSE. The dimensionality of the LSAT data was checked with an 

exploratory two-dimensional NOHARM analysis to verify a two-dimensional MIRT model. On 

the real data, linking was not involved under the assumption that two groups are equivalent. For 

the simulation study, the generating model was 2PL 2D MIRT model with different correlations 

between constructs. The results showed that for the high correlations (e.g., 0.7, or larger), the 

IRT TSE method performed slightly better than conventional linear and equipercentile equating. 

In his study, the first and second-order equity criteria proposed by Thomasson (1993) are 

worthy of being recognized. First, the conditional bias ( 𝑖. 𝑒. , 𝑑1(𝜽)) of the equating is the 

difference between the conditional means of scores X and the conditional means of equated 

scores 𝑥(𝑌), expressed as: 

𝑑1(𝜽) = 𝐸𝑋[𝑋|𝜽] − 𝐸𝑌[𝑥(𝑌)|𝜽],                                                      (2.3.4) 

where 𝐸 is the expectation operator and 𝜃 is an ability vector. 𝑑1(𝜃) is an indicator of 

how well the equating function has matched expected scores for examinees having an ability. 

Often, it is necessary to compute single-valued marginal measures that provide a condensed 
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summary of information across the range of abilities given some density, although such measures 

lose detailed information about particular ability ranges of interest. By integrating 𝑑1(𝜃) over, a 

weighted average difference of the first conditional moments (𝑤𝑎𝑑1) is obtained, and to 

eliminate the cancellation of bias, a weighted average absolute difference of the first conditional 

moments (𝑤𝑎𝑎𝑑1). Both equations for the case of 2D MIRT can be expressed as:  

𝑤𝑎𝑑1 = ∫ ∫ 𝑑1(𝜽)𝑓(𝜽)𝑑𝜃
𝜃2𝜃1

,                                                              (2.3.5) 

and 

𝑤𝑎𝑎𝑑1 = ∫ ∫ |𝑑1(𝜽)|𝑓(𝜽)𝑑𝜃
𝜃2𝜃1

,                                                         (2.3.6) 

where ∫ is the integral and 𝑓(𝜽)  is the bivariate density function of 𝜽 . The 

𝑑1(𝜽) and  𝑤𝑎𝑑1 are indicators of the first conditional moments at the examinee and the test 

level, respectively. The 𝑤𝑎𝑎𝑑1  indicates the expected magnitude of the conditional bias of 

equating at the test level. 

The second-order equity, equal conditional variance, is not meaningful unless the first-

order equity holds. For the discrepancies of the first and second moment together between the 

conditional score distributions of the two tests being equated, Thomasson (1993) computed the 

total conditional variance (𝑡𝑐𝑣(𝜽)), which was expressed in a different notation in Bolt (1999) as 

such: 

𝑡𝑐𝑣(𝜽) = 𝐸𝑌[𝑥(𝑌) −  𝐸𝑋(𝑋)|𝜽]2 

=  𝑑1
2(𝜽) +  𝑉𝑎𝑟𝑌 [𝑥(𝑌)|𝜽].                                          (2.3.7) 
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Total conditional variance indicates the precision with which the equating transformation 

predicts an examinee’s expected score on test X given the score on test Y. To incorporate 

𝑉𝑎𝑟𝑥(𝑋|𝜽), the author constructed an index 𝑑1,2(𝜽)  as a combined first – and second – order 

equity criterion as such: 

𝑑1,2(𝜽) = 𝐸𝑌[𝑥(𝑌) −  𝐸𝑋(𝑋)|𝜽]2 −    𝐸𝑋[𝑋 −  𝐸𝑋(𝑋)|𝜽]2                                    

               = 𝑡𝑐𝑣(𝜽)  −  𝑉𝑎𝑟𝑋(𝑋|𝜽).                                                                 (2.3.8) 

This index represents the accuracy of the equating transformation in terms of how well Y 

predicts expected score on X as compared to an actual administration of X. In other words, 

consistent with the definition of equity given earlier, the equating function is evaluated by 

comparing tests X and Y with respect to their relative capacities to predict expected performance 

on test X. As a result, this index perhaps serves as a better extension from conditional bias to one 

of conditional variance. Thomasson called the combined measures (e.g., 𝑡𝑐𝑣) a “global” index, 

while calling the single measures (i.e., 𝑑1(𝜽), 𝑤𝑎𝑑1, 𝑎𝑛𝑑 𝑤𝑎𝑎𝑑1) a “local” index of equating 

performance. 

Béguin, Hanson, and Glas (2000) compared the effect of multidimensionality on 

unidimensional IRT equating based on SC and CC. In the simulation design, the item parameter 

estimates of the 2PL 2D MIRT model from the real data were used to simulate data, and 

conditions were constructed varying in mean proficiency level of new forms and covariance of 

both forms. Parameter estimates were obtained using BILOG-MG and MCMC with the Gibbs-

sampler. For SC, the SL linking method was utilized to resolve the scale issue. IRT OSE was 

used for both unidimensional and multidimensional models. They found that in non-equivalent 

group conditions with an increase in the covariance and variance of the second proficiency 
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dimension, the error for unidimensional equating methods was substantial compared to that of 

multidimensional equating.  

Béguin and Hanson (2001) conducted a simulation experiment as a derivative of their 

previous study (Béguin and Hanson, 2000) to examine the effects of multiplicative or non-

compensatory multidimensionality on unidimensional IRT equating based on SC and CC. They 

found that the result was consistent with the previous study. 

Béguin (2002) investigated the robustness of equating to violations of the 

representativeness of the set of common items. Various conditions were manipulated, on the 

length of the subset, the correlation between the constructs, and the difference between the 

proficiency of the populations. They concluded that in general the unidimensional equating 

procedure was found to be robust to violation of the assumption of representativeness of the 

common item set. However, cases with large not-represented common items and a low 

correlation (less than .7) between the dimensions showed a clear increase in the error of the 

estimated score distribution. 

The simulation study by Lin and Dorans (2010) was summarized well in Lin, Dorans, and 

Weeks (2016); that is, when the two tests are nonparallel in content structure but the groups are 

equivalent, both the anchor type and the extent of multidimensionality did not show evident 

impact on the equating results from most of the traditional linear equating (e.g., the Levine and 

the Tucker method) and chained equipercentile methods, with an exception that IRT true-score 

method was sensitive to both anchor types and multidimensionality. 

As an extension of the previous study to the nonequivalent groups with anchor test design 

(NEAT), Lin, Dorans, and Weeks (2016) investigated the impact of content representativeness 

and length of anchor test on linking when the two tests are multidimensional and nonparallel in 
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content structure. With the 1PL 2D MIRT model as a generating model, the ability level of 

subgroups, the correlation between two content areas, the length of anchor test, and the 

proportional mix of content specifications were factored into the simulation design. The results 

showed that under the single group equating as criteria, in all cases, the Levine method performs 

better than the Tucker or chained methods, except for the 10-item anchor because the Levine 

method tends to be the least sensitive to the length and representativeness of the anchor item set. 

Also, the results suggested that equating the tests with different content structures should be 

avoided due to additional bias introduced by an inadequate anchor test. 

One distinct stream of study on the multidimensionality to test score equating is about the 

multidimensionality caused by different item formats in a test, which typically consists of 

multiple-choice (MC) items and constructed-response (CR) or free-response (FR) items. Kim, 

Lee, and Kolen (2020) proposed a theoretical and conceptual framework for true-score equating 

using a simple-structure MIRT model. Under the multidimensional IRT framework, unlike the 

observed score equating, the true score equating is limited because of the one-to-many relation 

between a composite score and many corresponding combinations of multiple latent values on 

the test characteristic surface. The authors addressed the limitation well by taking advantage of 

the unique property of the simple structure and then introducing weights to compute composite 

scores.  Even with the satisfactory results of their study, however, the proposed method is not 

completely free from limitations such as a limited number of factors, factor structure, and long 

process time for its operational use. 

From the literature review, the performance of linking and equating under unidimensional 

item response models can be affected by the multidimensionality of the latent structure, the 

content and statistical representativeness of the common-item set, and the choice of the common-
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item set between the mini and midi test. In addition, the theoretical foundation of differential 

dimensionality (Sawatdirakpong, 1993) can be borrowed from the conceptualization of DIF in 

the context of multidimensionality. Furthermore, the interpretation of the results was not clear 

with the term, multidimensionality. 

However, the impact of multidimensionality in the UIRT linking and equating under 

CINEG design has not been fully examined. In other words, Spencer (1996) created two forms 

with different levels of multidimensionality by carefully designing multidimensional items that 

measures the second dimension at different levels but fixed the abilities of the two examinee 

groups to the standard bivariate normal distribution. Bolt (1999) factored in the 

multidimensionality caused by the correlation of the latent variables and corresponding sets of 

discrimination parameters under the equivalent group design. That is, two forms have the same 

multidimensional item structures at the different degrees of multidimensionality. In contrast, 

Beguin and Glas (2000) examined the impact of multidimensionality under the condition of 

different latent distributions without considering the influence of the different item compositions 

in the multidimensional latent space. 

As stated by Reckase (2009), and Roussos and Stout (1996), however, the dimensionality 

of the test form is determined by the interaction of items and examinee groups who took the 

form. It is necessary to take both players into consideration. Thus, the goal of the current study is 

to investigate the impact of multidimensionality caused by items and examinee groups by 

designing two simulation experiments, which lays out in the following chapter. 
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CHAPTER III: METHODS 

This chapter describes the design of a simulation experiment to investigate factors of 

interest to address the research questions in the first chapter. The benefit of a simulation 

experiment is that with known truth about the examinee ability and item properties, study 

conditions can be manipulated and evaluated, which is less likely to be feasible with real data. 

The simulation experiment consists of three sections: data generation and calibration, linking and 

equating procedures, and evaluation criteria. 

SIMULATION DESIGN 

DATA GENERATION AND CALIBRATION 

Response data for two forms X (new form) and Y (base form) will be simulated on 

combinations of factors: mean, variance, and covariance/correlation of latent abilities, and test 

dimensional structures under the compensatory 2-dimensional extension of the two-parameter 

logistic model (Reckase, 1997) with a guessing parameter (i.e., 3PL 2D MIRT) which is given 

by 

𝑃(𝑋𝑖𝑗 = 1|𝜽𝑗 , 𝒂𝒊, 𝑑𝑖, 𝑔𝑖) = 𝑔𝑖 + (1 − 𝑔𝑖) ∗ (
𝑒𝑥𝑝[𝐷(𝒂𝒊

𝑻𝜽𝒋+𝑑𝑖)]

1+𝑒𝑥𝑝[ 𝐷(𝒂𝒊
𝑻𝜽𝒋+𝑑𝑖)]

),                              (3.1) 

where 𝜽𝒋 is a 1 × 2  vector of person latent traits; that is,  

𝜽𝒋 = (𝜃𝑗1, 𝜃𝑗2) ~ 𝑀𝑉𝑁(𝝁, 𝜮 ),  

where 

𝜮 =   (
𝜎1

2 σ12

𝜎12 𝜎2
2 ), 
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is the variance and covariance matrix with 𝜎𝑚
2  (𝑚 = 1, 2) denoting the variance of 

dimension m and 𝜎12 denoting the covariance between dimensions 1 and 2. The parameter 𝑎𝑖 is a 

1 × 2  vector of item discrimination parameters for the 𝑖th item; 𝑑𝑖 is the intercept for the 𝑖th 

item; and D is the scaling constant that is set to 1.7 for this study. To solve the rotational 

indeterminacy of MIRT models, m*(m-1)/2 constraints can be imposed on the item 

discrimination parameters for an m-dimensional model (McDonald, 1997). For example, in 

flexMIRT (Cai, 2017), the loading of the second discrimination parameter of the first item is 

fixed to zero for the 3PL-2D MIRT model.  

The test lengths of both Forms X and Y are set to 50 with 40 unique and 10 common 

items (i.e., 20% of the test form). Group differences in means, variances, and covariance of the 

latent variables are considered in the simulation study to investigate the sensitivity of populations 

to different dimensions. The covariance/correlation between the two latent variables is also 

studied to vary the degree of multidimensionality in populations; that is, when 𝜌 is close to 0, the 

multidimensionality emerges to the population clearly, whereas when 𝜌 is close to 1, the 

unidimensionality emerges to the population (e.g., Bolt, 1999). For the reference and target 

groups, abilities for 2,000 examinees are generated from a bivariate normal distribution with 

parameters (i.e., BN (mean vector (𝜇𝜃, 𝜇𝜂)  covariance matrix (𝜎𝜃
2, 𝑐𝑜𝑣𝜃,𝜂 , 𝜎𝜂

2)) provided in Table 

1. Three representative group differences by mean and/or covariance shift are visualized in 

Figure 9. The ability distributions for the two groups are simulated based on the modified version 

of the study of Beguin and Glas (2000) in which responses were generated based on the 

information obtained from empirical data.   

Table 1. Overview of the Latent Ability Distributions 

Group 𝝁 𝜮 Sample size 
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Reference  (0, 0) (
𝟏  

𝟎. 𝟑 𝟏
) 

2,000 

Target  

(0, 0), (0.1), 

(1, 0), (1, 1) 

(
𝟏  

𝟎. 𝟑 𝟏
), (

𝟏  
𝟎. 𝟕 𝟏

), 

(
𝟏  

𝟎. 𝟑𝟐 𝟏. 𝟏𝟒
), 

(
𝟏  

𝟎. 𝟗 𝟏. 𝟔𝟓
) 

 

Figure 9. Visual Illustration of Latent Ability (θ and η) Distributions with Mean-shift, and 

Var/Covariance-shift. Reference Group in Red and Target Group in Blue. 

 

   

Ref and Foc: 

BN ((0,0), (1, 0.3,1)*) 

Foc: 

BN ((0,0) (1, 0.7,1)) 

Foc: 

BN ((0,1) (1, 0.7,1.49)) 

For MC-I, all 50 items in the base form measure both traits, and the angle of the reference 

composite (RC) to the first dimension is 45 degrees as shown in Figure 10. (1). In contrast, the 

RC for the first new form has the same angle as the base form but the first item cluster (item 1-

25) measures dominantly the first trait 𝜃, whereas the second item cluster (item 26-50) measures 

mainly the second trait 𝜂, with the angle of 30 degrees between the two clusters as shown in 

 
* For the sake of brevity, the covariance matrix is symmetric and presents three entries: the first and third entries 

represent the variances of the first and second ability distributions, respectively, while the second entry represents 

the covariance. The remaining notation follows the same pattern. 
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Figure 10. (2). The RC for the second new form has an angle of 51 degrees to the first 

dimension, which is shifted from the RC of the base form by 6 degrees to the second dimension, 

but the angle between the clusters remains the same, 30 degrees as shown in Figure 10. (3).  

To be more specific, for the base form, both slope parameters are sampled from a 

uniform distribution between 0.57 and 1.14 (denoted as 𝑈𝑛𝑖𝑓(0.57, 1.14)) such that the alpha 

of the items are all 45 degrees. For the first new form with the same RC as the base form, the 

first slope parameters of the first 25 items and the second slope parameters for the last 25 

sampled from a 𝑈𝑛𝑖𝑓 (0.57, 1.14). To create two item clusters (𝑐1 and 𝑐2) symmetric against the 

RC, the second slope parameters (𝑎2) of 𝑐1  and the first slope parameters (𝑎1) of 𝑐2 are 

obtained from ( 𝑎1 of 𝑐1) ∗ 1.73 and (𝑎2 of 𝑐2) ∗ 1.73. That is, the resulting angles for 𝑐1and 𝑐2 

are 30 and 60 degrees, respectively, from the first dimension. For the second new form with the 

different RC from the base form, 𝑎1 of 𝑐1 are sampled from a 𝑈𝑛𝑖𝑓(0.285, 0.57) and 𝑎2 of 𝑐1 

and 𝑎1 of 𝑐2  are obtained from (𝑎1 of 𝑐1) ∗ 2.75. Finally, 𝑎1 of 𝑐2  are obtained from (𝑎1 of 

𝑐2) ∗ 0.84. The resulting angles for 𝑐1and 𝑐2 are 40 and 70 degrees, respectively, from the first 

dimension. The intercept parameters are generated from uniform distribution between -1.5 and 

1.5 for the base form Y, while for the new form X, the intercept values are generated between -

.95 and 1.5 to create form difference in difficulty (e.g., Bolt, 1999). For all form. the guessing 

parameters are generated from a beta distribution with shape parameters 5 and 17 (i.e., the 

default values of BILOG-MG). The item parameter generation scheme is summarized in Table 2.   

The intention of this design is to investigate following three conditions of 

multidimensionality. The first condition as a criterion demonstrates that two forms are parallel 

both multidimensionally and unidimensionally. In contrast, the second condition is designed to 

demonstrate the case when two forms are parallel unidimensionally but not multidimensionally. 



70 

 

To be specific, the base form and the new form have the same direction of RC, but the new form 

of this case has two item clusters, each of which measures dominantly the first and second traits, 

respectively. The last condition demonstrates the case when the base form and the new form are 

neither parallel multidimensionally nor unidimensionally.   

Table 2. Overview of Item Parameter Generation Scheme for MC-I 

Form Item parameters   

 Item 

cluster 
𝒂𝟏 𝒂𝟐 𝒅 𝒈 RC_angle 

Angle_btw 

Clusters 

Base 
1-50: 0.57:1.14 0.57:1.14 𝑼𝒏𝒊𝒇  

(−𝟏. 𝟓, 𝟏. 𝟓) 
𝑩𝒆𝒕𝒂 

(𝟓, 𝟏𝟕) 
 

45 0 

Same_ 

RC 

1-25 0.57:1.14 0.98:1.95 
𝑼𝒏𝒊𝒇  
(−𝟎. 𝟗𝟓, 𝟏. 𝟓) 

 

45 30 
26-50 0.98:1.95 0.57:1.14 

Diff_RC 
1-25: 0.26:0.57 0.78:1.57 

51 30 
26-50: 0.78:1.57 0.66:1.31 

       

Figure 10. Schematic Illustration of Two Test Structures in Two-Dimensional Latent Space 

(θ and η) of MC-I 

   

(1) Base form (2) Same reference 

composite 

(3) Different reference 

composite 

 

For MC-II, all 50 items in the base form measure the first trait as the construct of interest 

with the angle between an item and the axis of the first dimension (i.e., alpha denoted as 𝛼 ) 

within 20 degrees, which is referred to as the validity sector in the literature (Ackerman, 1992) , 

as shown in Figure 11.(1). However, the new form has the first 25 items that measure exclusively 

the first dimension, but the other 25 items that additionally measure the second dimension in an 

increasing pattern of the angle from alpha 0 to 60 degrees such that the RC (29.4 degree) is out 
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of the validity sector, as shown in Figure 11.(2). The new form is more difficult than the base 

form to accommodate the condition from the previous studies (e.g., Bolt, 1999).  

The first 25 item slope parameters of the base form are generated from a uniform 

distribution ranging from 0.94 to 1.0, and the corresponding second slope parameters are 

generated with 𝑎1 ∗
√𝟏−𝒄𝒐𝒔(𝒙)𝟐

𝒄𝒐𝒔(𝒙)
 (Ruecht & Miller, 1984), where 𝑥 is cosign values ranging from 

0.94 to 1 such that the alphas of the first set of items are within the validity sector (i.e., 20 

degrees from the first axis). The second set of 25 items measure the primary dimension only, 

resulting in an alpha value of 0. For the new form, the slope parameters are generated in the same 

manner except for the cosign values ranging from 0.5 to 1 such that the alpha angles spread from 

0 to 60 degrees, resulting in the RC of the new form to be located out of the validity sector. The 

intercept parameters are generated from uniform distribution between -1.5 and 1.5 for the base 

form Y, while for the new form X , the intercept values are generated between -.95 and 1.5 to 

create form difference in difficulty (Bolt, 1999). The lower asymptotes are generated in the same 

manner as in MC-I. 

For MC-II, the underlying assumption is that the first dimension is the construct of 

interest, and the second dimension is viewed as a nuisance dimension, and that all items are 

crafted to measure primarily the first dimension, even with some items measuring the secondary 

dimension only at the trivial level. The validity sector proposed by Ackerman (1992) is set to the 

angle at 20 degrees from the axes of the first dimension of the base form. The purpose of the 

different test structure is to examine the impact of possible multidimensionality by varying the 

cosine angles of items away from the validity sector. The item parameter generation schedule is 

summarized in Table 3.  
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With given group and item information, the probability of item endorsement for each 

person is computed with equation 3.1 and converted to dichotomous responses by comparing it 

with randomly generated values between 0 and 1. If the probability of getting the item correct is 

equal or greater than the random value, then its response gets one otherwise zero. The response 

data generation is implemented in R (R Core Team, 2022).   

Table 3. Overview of Item Parameter Generation Scheme for MC-II 

Form Item parameters   

 
Item 

cluster 
𝒂𝟏 𝒂𝟐 alpha (𝜶) 𝒅 𝒈 

RC_ 

angle 

Validity 

sector 

Base 
1-25 0.5-1.5 0-0.46 0-20 𝑼𝒏𝒊𝒇  

(-1.5, 1.5) 

Beta  

(5, 17) 

6.95 

20 

26-50 1 0 0 

New 

form 

1-25 0.5-1.5 0-2.37 0-60 𝑼𝒏𝒊𝒇  

(-1.5, 0.95) 

𝑼𝒏𝒊𝒇  

(-1.5, 1.5) 

29.4 
26-50 1 0 0 
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Figure 11. Schematic Illustration of Two Test Structures in Two-Dimensional Latent Space 

(θ and η) of MC-II 

 

  

(1) Base form with items within the validity 

sector 

 

(2) New form with some items out of the 

validity sector 

It is important to note that the true model is PIRT in MC-II. The primary interest of MC-

II is to evaluate the robustness of UIRT against PIRT when the primary dimension is 

contaminated with a nuisance factor. Specifically, a unidimensional test score is likely to 

overestimate the primary ability when a secondary ability is more required for difficult items 

(i.e., nonproportional abilities requirement; Ip et al., 2019). That is, unlike MC-I where the true 

model is the generating model, 3PL-2D MIRT, the generating model is used as an instrument in 

MC-II to introduce the influence of a nuisance factor to the estimation of the primary factor in 

UIRT. Test form structures were visualized in the vector plot Figure 11. Figure 12 visually 

illustrates the case that the UIRT scale stretches in the high ability when an item heavily loaded 

on the secondary dimension, the case of the new form.  
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Figure 12. Visualization of the Scale Stretch on RC 

 

Note: A dot represents an observed sum score. (Modified from Ip et al., 2019, p. 150). 

 

LINKING AND EQUATING PROCEDURES 

To establish a common scale, CC, FPC, and SC with SL linking procedure are performed 

to investigate different approaches to scale establishment. For CC, the common scale is 

determined with the response information from both forms, whereas for FPC and SC, the 

common scale is the same as the scale of the base form. For MC-I, the extended version of the 

univariate SL linking procedure (Oshima et al., 2000) is used to resolve the scale indeterminacy 

in the two-dimensional latent space. Plink R package (Weeks, 2022) is used for IRT scale linking 

for UIRT and MIRT. 

flexMIRT (Cai, 2017) is used to calibrate response data. As a base model, 3PL 2D MIRT 

is fitted to the response data. For MC-II, as the items in the second set are designed to measure 

only the first trait, the loadings of the items are fixed to the first dimension. In addition, the prior 

distribution for slope parameters is set to a lognormal distribution with a mean of 0 and a 

variance of 0.5, and a beta distribution with shape parameters 5 and 7 is used for the prior of the 
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lower asymptote. The same response data are also fitted using the unidimensional three-

parameter logistic (3PL) IRT model with the same prior configurations. For both unidimensional 

and multidimensional IRT models, calibration is performed first to estimate item parameters and 

then with the estimated parameters, scoring is conducted with Score = SSC option in the 

<Options> section to obtain the marginal probability distribution of the number correct scores 

for OSE.  EmpHist = Yes option in the <Groups> section is used to handle the distribution of 

latent variables that are away from a standard normal distribution (Kim, 2019). 

To adjust population difference, a total of 10 items are carefully selected as an anchor set 

such that the statistical property of the anchor set is close to that of the whole test by minimizing 

the absolute difference between the TCS of the anchor set and the TCS of the whole test (Yao, 

2011), presented in Figure 13. 10 items are 20 percent of the 50-item test, which is practically 

sufficient (e.g., Angoff, 1971; Kolen & Brennan, 2004).  

Figure 13. An illustrative Example of the Comparison between the Scaled TCS (in red) of 

the Base Form Y and the Scaled TCS (in blue) of the Common Item Set. 
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Note: The mean of absolute difference is 0.034. T1 and T2 indicate the first and second 

traits, respectively.   

UIRT TSE and OSE, and MIRT OSE are performed with Plink R package (Weeks, 2022) 

(Note: weights for MIRT OSE is separately computed by the author). For OSE, the weighting 

scheme for the synthetic population is 0 for reference group and 1 for the target group to create a 

direct comparison of how the new group performed on the new form to how the test takers in the 

new group would have performed had they taken the base form (Brennan & Kolen, 1987; Kolen 

& Brennan, 2014). The quadrature values and weights of the marginal probability distribution of 

the number correct scores to be used for OSE are extracted from the flexMIRT output files.  

For MC-I, only IRT OSE equating is performed due to the infeasibility of TSE in MIRT, 

the one-to-many relationship between one true score and many combinations of latent values. 

For MC-II, both IRT TSE and OSE are performed. For IRT TSE, the projective IRT (PIRT) or 

locally dependent unidimensional IRT model (Ip, 2010; Ip & Chen, 2012) is used to obtain the 

equivalent projected UIRT item parameters, put on the base scale with HB linking procedure 

after separate calibration.  To be specific, PIRT is to obtain transformed item parameters of the 

primary dimension by projecting items in the two-dimensional latent space onto the primary 

unidimensional space. Because of the projection, the item response model is locally dependent. 

The item response function of the locally dependent unidimensional IRT model is given by  

𝑃 (𝑋𝑖𝑗  =  1|𝜃𝑗 , 𝑎𝑖
∗ , 𝑑𝑖

∗, 𝑔𝑖
∗ ) =  𝑔𝑖

∗ + (1 − 𝑔𝑖
∗) ∗

𝑒𝑥𝑝(𝑎𝑖
∗𝜃𝑗  +  𝑑𝑖

∗)

1 + 𝑒𝑥𝑝(𝑎𝑖
∗𝜃𝑗  + 𝑑𝑖

∗) 
,                           (3.2) 

where 𝑎𝑖
∗ and 𝑑𝑖

∗ are the projected item parameters of the PIRT and can be computed as 

follows:  

 𝑎𝑖
∗ =  𝜆𝑙𝑜𝑔𝑖𝑡(𝑖)( 𝑎𝑖1  +

𝑎𝑖2𝜌𝜎2

𝜎1
)  ,    
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𝑑𝑖
∗  = 𝜆𝑙𝑜𝑔𝑖𝑡(𝑖) ∗ 𝑑𝑖,    

𝑔𝑖
∗ = 𝑔𝑖 

where 𝜎1 and 𝜎2 are the standard deviations of 𝜃1 and 𝜃2, respectively, 𝜌 represents the 

population correlation between 𝜃1 and 𝜃2, and 𝑎𝑖1 and 𝑎𝑖2 are discrimination parameters for the 

ith item. The scalars 𝜆𝑙𝑜𝑔𝑖𝑡(𝑖) and 𝑘 are expressed as 𝜆𝑙𝑜𝑔𝑖𝑡(𝑖)  =
1

√1+𝑘2𝑎𝑖2
2 (1−𝜌2)𝜎2

2
 , and 𝑘 =

16√3

15𝜋
 =  .588.  Note that 𝑔𝑖

∗ is same as 𝑔𝑖. Finally, the obtained item parameters are used for 

evaluation of multidimensionality against the baseline with respect to classification and equating 

equity. It is worth noting that the generating model 2D MIRT is used as a baseline condition for 

evaluation since item parameters obtained with the PIRT procedure are not locally independent 

(see Stucky, 2011 for more details). That is, the independence of item parameters is required for 

LW formula (Lord & Wingersky, 1984). 

EVALUATION CRITERIA 

Classification Consistency and Accuracy 

Classification accuracy and consistency are pivotal validity evidence of psychometric 

quality for high-stakes assessments, such as admission, certification, and licensure. Classification 

consistency (CC) is defined as the degree to which examinees are classified into the same 

categories over replications of the same measurement procedure, whereas classification accuracy 

(CA) refers to the extent to which actual classifications using observed cut scores agree with true 

classifications based on known true scores (Lee, 2010, p. 1). CC and CA can conceptually be 

viewed as reliability and validity of classification, respectively (Lee, Hanson, & Brennan, 2000). 

Methods for establishing the accuracy and consistency of classification decisions are well-

established. Following is a brief introduction of five methods from Diao and Sireci (2018). 
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Rudner’s (2001, 2005) method computes CA and CC based on the IRT scale assuming that 𝜃 

follows a normal distribution. Relaxing the normality assumption for 𝜃 and discretizing the 𝜃 

scale with equal distances, Guo’s (2006) method computes CA and CC based on the likelihood 

with given all examinees’ 𝜃 points. Lee’s (2010) approach computes CA and CC with a given 

cut score on the observed-raw score scale based on the summed-score distribution conditioned 

on 𝜃. Both the Rudner approach and the Lee approach were developed under IRT, but the main 

difference of the two is the scale used to place the cut score on. Hambleton and Han’s method (in 

Bourque, et al., 2004) is based on simulated examinees’ responses on the given IRT item 

parameters (see Deng, 2011 for details). Lathrop and Cheng method (Lathrop & Cheng, 2014) is 

a non-parametric version of Rudder’s method and Lee’s method, without imposing the normality 

assumption on the 𝜃 scale.  

The current study adopts Lee’s (2010) method to compute CA and CC because it is 

developed under the IRT framework and uses the number correct score as a cut score, which is 

commonly used in practice. In Lee’s method, CC is computed with the conditional summed-

score distribution obtained using the Lord and Wingersky (1984) recursion formula and the 

prespecified cut scores. The conditional category probability can be computed by summing the 

conditional summed-score probabilities for all summed scores (𝑥) that belong to category ℎ; that 

is, 

𝑃𝜃(ℎ) =  ∑ 𝑃𝑟(𝑋 = 𝑥|𝜃) .
𝑥ℎ−1
𝑥=𝑥(ℎ−1)

                                                             (3.3) 

where ℎ = 1, 2, ..., K. The conditional classification consistency index, 𝜙𝜃, is defined as 

the probability that an examinee having θ is classified into the same category on independent 

administrations of two parallel forms of a test (Lee et al., 2002). With the assumption of the 

independence of two testing administrations, the probability of passing/failing from the first 
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testing occasion is expected to be the same as the probability of passing/failing for the second 

testing occasion. Thus, 𝜙𝜃 can be computed based on a single form as follows:  

ϕθ = ∑ [∑ Pr(X = 𝑥|𝜃)xh−1
x=x(h−1)

]
2

K
h=1 = ∑ [𝑃𝜃(ℎ)]2K

h=1 .                                 (3.4) 

The conditional classification consistency index quantifies classification consistency for 

different levels of θ. In case of two categories (i.e., pass or fail) that is widely used in licensure 

and certification assessments, the conditional consistent classification index sums the squared 

probability of passing and the squared probability of failing at a given 𝜃 point. The possible 

maximum value of the conditional consistent classification probability is one, which typically 

occurs at the extreme 𝜃 points. The possible minimum value of the conditional consistent 

classification probability is usually located near cut scores because classification decisions are 

most uncertain near cut scores. As a single scalar value, the marginal classification consistency 

index,𝜙, can be obtained by integrating the conditional classification consistency index over all 

quadrature points with corresponding weights, as follows:    

𝜙 = ∫ 𝜙𝜃𝑔(𝜃) 𝑑𝜃
∞

−∞
 ≈ ∑ 𝜙𝜃𝑔(𝜃)𝜃 .                                                            (3.5) 

where 𝜃 is a discretized quadrature points (which plays as a proxy for unobserved true 

scores) that span across certain range (e.g., -3 to 3 with 49 points); and 𝑔(𝜃) is the density of 𝜃. 

Dependent on the choice of the 𝜃 for integration for computing marginal results in equation 3.5, 

Lee method has D method with quadrature points (aka distribution approach) and P method with 

individual examinee’s 𝜃 values (aka individual approach). D method is the choice of the 

evaluation criterion in this study with the main interest in group-level statistics (Lee, 2010). The 

conditional and marginal classification consistency indices are evaluated against the true 

classification consistency indices obtained using the generating item parameters.  
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With the conditional probabilities (observed classification), 𝑝𝜃(ℎ), known, the 

conditional classification accuracy index, 𝛾𝜃,  can be obtained by  

𝛾𝜃  =  𝑝𝜃(𝜂) = ∑ 𝑃𝑟(𝑋 = 𝑥|𝜃)
𝜏𝜂−1

𝑥=𝜏(𝜂−1)
, 𝑓𝑜𝑟 𝜃 ∈  𝜂.                                  (3.6)                        

where 𝜂 (=  1, 2, . . . , 𝐾) is the true categorical status of an examinee. The true category 𝜂 

can be determined by comparing the expected summed score for θ (computed from the test 

characteristic function; TCC) with the true cut scores on the summed score metric, 

𝜏1, 𝜏2, … , 𝜏𝐾−1. When the true cut score in TCC is assumed to be the same as the observed cut 

score, the marginal classification accuracy index, γ, is given by  

𝛾 = ∫ 𝛾𝜃𝑔(𝜃) 𝑑𝜃
∞

−∞
 ≈ ∑ 𝛾𝜃𝑔(𝜃)𝜃 .                                                            (3.7)  

 

Classification indices for MIRT 

Consistent with the D method in UIRT, its extended version is used for the true model, 

3PL 2D MIRT in MC-I. The computation is identical to that of UIRT except for the latent trait 

(𝜃) become a latent trait vector with two elements (𝜽 = (𝜃1, 𝜃2)).  Given the conditional 

distribution of summed-score (x) and the cut scores, the conditional probability of scoring in 

each performance category can be computed by summing up the conditional probabilities of all 

total summed-score x values that belong to category h, as follows: 

𝑃𝜽(ℎ) =  ∑ 𝑃𝑟(𝑋 = 𝑥|𝜽) .
𝑥ℎ−1
𝑥=𝑥(ℎ−1)

                                                                 (3.8)   

Then, the conditional classification consistency index  𝜙𝜃  is defined by  

  𝜙𝜽 = ∑ [∑ 𝑃𝑟(𝑋 = 𝑥|𝜽)𝑥ℎ−1
𝑥=𝑥(ℎ−1)

]
2

𝐾
ℎ=1 = ∑ [𝑝𝜽(ℎ)]2𝐾

ℎ=1 ,                         (3.9) 

and the marginal classification consistency index 𝜙 is given by 

               𝜙 = ∫  
∞

−∞
∫ 𝜙𝜽𝑔(𝜽)𝑑𝜃1𝑑𝜃2

∞

−∞
 ≈ ∑  𝜃1

∑ 𝜙𝜽𝑔(𝜽)𝜃2
.                                 (3.10) 
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With a true cut score on the summed-score metric, the conditional classification accuracy 

index 𝛾(𝜽) is given by 

𝛾(𝜽) =  𝑃𝜽(𝜂),                                                                                             (3.11) 

and the marginal classification accuracy index, 𝛾, is expressed as  

𝜙 = ∫  
∞

−∞
∫ 𝛾(𝜽)𝑔(𝜽)𝑑𝜃1𝑑𝜃2

∞

−∞
 ≈ ∑  𝜽1

∑ 𝛾(𝜽)𝑔(𝜽).𝜽2
                     (3.12)  

For MC-II in which items are designed primarily to measure the first dimension, which is 

the construct of interest, contaminated with a nuisance dimension, PIRT is used to obtain 

transformed item parameters of the primary dimension by projecting items in the two-

dimensional latent space onto the primary unidimensional space. With the obtained PRIT item 

parameters, the Lee’s D method is applied to compute baseline classification indices.  To 

compute the baseline criterion, the marginalized conditional summed-score distribution is 

applied after integrating out the nuisance dimension.   

This study employs summed-scores to establish cut-scores because the summed-score 

metric is consistent across UIRT and MIRT. In testing organizations for high-stakes 

examinations such as licensure and certification, a cut score is typically established by criterion-

reference methods between 70 and 90% of pass rate for the first-time takers (e.g., Lineberry et 

al., 2020). The current study uses 80% of the test’s maximum raw score. This corresponds to a 

total score of 40 in a 50-item test.  

The performance of each linking method’s marginal classification indices is compared to 

the corresponding true classification criteria, which are obtained using the generating item 

parameters for MC-I and MC-II. Results are evaluated using bias, standard error (SE), and root 

mean squared error (RMSE) as follows: 



82 

 

𝐵𝑖𝑎𝑠 =  
1

𝑅
∑ 𝑐�̂�𝑟 − 𝐶𝐼

𝑅

𝑟=1

, (3.13) 

𝑆𝐸 = √
1

𝑅
∑(𝐶�̂�𝑟 −  𝐶�̂�̅̅ ̅

𝑅

𝑟=1

)2, (3.14) 

𝑅𝑀𝑆𝐸 = √𝐵𝑖𝑎𝑠2 + 𝑆𝐸2, (3.14) 

whereby R is the number of replications (i.e., 100); 𝐶�̂�𝑟 is an estimate of the marginal 

classification index (consistency and accuracy) at a given replication r; 𝐶𝐼 is the true marginal 

classification index; and 𝐶�̂�̅̅̅ takes the average standard deviation from all replications of the 

marginal classification index.  

EQUATING ACCURACY and EQUITY 

The goal of equating is to establish the most accurate equating relationship so that the 

scores of examinees can be interchangeable across forms. This goal is achieved by minimizing 

systematic error (Bias) and random error (e.g., RMSE, or SEE). Systematic error may occur from 

the violation of assumptions of the same test structure and group equivalence in ability. For 

instance, assumptions are violated when test structures of two parallel forms are away from 

agreement in dimensionality (i.e., MC-I and MC-II; e.g., Bolt, 1999; Ip et al., 2019); when latent 

distributions of two populations are different in the multidimensional latent space (i.e., anchor 

item parameter drift; Roussos & Stout, 1996) or when such cases are compounded. Random error 

may result from sampling examinees randomly as opposed to using the entire population. Thus, 

the random error is expected to decrease as sample size increases, while the systematic error may 

remain regardless of the sample size.  

All equating procedures are vulnerable to these errors (Kolen & Brennan, 2004).  The 

impact of multidimensionality is evaluated under the following three IRT equating procedures: 
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(1) unidimensional IRT true score equating, (2) unidimensional IRT observed score equating, 

and (3) multidimensional IRT observed score equating. The new form to be equated to the base 

form is assumed to cause errors to the equating results due to the different dimensional structure 

of the new form in MC-I and MC-II and its interaction with the ability distributions. In the 

context of the multidimensionality, to compare the accuracy and precision of the equating 

relationship between the equated scores obtained from the three equating methods and those 

obtained from the generating item parameters for the baseline condition, three criteria are used: 

bias, SE, and RMSE as follows: 

𝐵𝑖𝑎𝑠(𝑥) =  𝑅−1 ∑ �̂�𝑌
(𝑟)(𝑥) − 𝑒𝑌(𝑥)

𝑅

𝑟=1

, (3.15) 

𝑆𝐸(𝑥) = √𝑅−1 ∑[�̂�𝑌
(𝑟)

(𝑥) − �̅̂�𝑌
(𝑟)

(𝑥

𝑅

𝑟=1

)]2, (3.16) 

𝑅𝑀𝑆𝐸(𝑥) = √𝐵𝑖𝑎𝑠(𝑥)2 + 𝑆𝐸(𝑥)2,           (3.17) 

whereby R is the number of replications (𝑖. 𝑒.,  100).; 𝑥 is a particular score point; 

�̂�𝑌
(𝑟)

(𝑥) is the estimated base form equivalent of score 𝑥 obtained from the 𝑟𝑡ℎ replication; 𝑒𝑌(𝑥) 

is the base form equivalent of score 𝑥 obtained using the generating item parameters for MC-I 

and transformed item parameters with PIRT for MC-II; and �̅̂�𝑌
(𝑟)

(𝑥) is the mean estimated base 

form equivalent of score 𝑥 over R replications (𝑖. 𝑒.,  𝑅−1 ∑ �̂�𝑌
(𝑟)

(𝑥)𝑅
𝑟=1 ).  

The bias of a particular score 𝑥 is a measure of accuracy - how close, on average, the 

estimated base form equivalent of score 𝑥 is to the base form equivalent of score 𝑥 from the 

generating item parameters, viewed as a true score equivalent. The standard error measures the 

precision of the equating results. The root mean squared error considers both systematic (i.e., 



84 

 

bias) and random error (i.e., SE) together due to the possible trade-off between the bias and SE. 

These criteria can be useful for practitioners to choose an optimal equating procedure for the 

purpose of assessment. 

The equity property of equating proposed by Lord (1980) holds only if for examinees 

with a given true score, the distribution of the equated scores on the new form is identical to the 

distribution of the score on the old form. Lord’s equity property will not hold unless the two 

forms are identical in which case equating is unnecessary (Kolen & Brennan, 2004). However, 

building identical parallel forms is not feasible. For this reason, two practical properties were 

suggested to evaluate the quality of equating: the first-order equity property (FOE; Divgi, 1981; 

Morris, 1982; Yen, 1983), and the second-order equity property (SOE; Tong & Kolen, 2005).  

FOE implies that the expected conditional means are equal for the alternate forms after equating. 

With FOE being satisfied, SOE can be meaningfully assessed, which holds if the conditional 

standard error of measurement (CSEM) is equal for the alternate forms after equating.         

The first and second order equity properties are evaluated with the methods by Tong and 

Kolen (2005). With the conditional observed score probability 𝑓(𝑋 = 𝑗|𝜃𝑖), the expected equated 

score, 𝑒�̂�𝑦(𝑥), at a given 𝜃𝑖 can be obtained as  

𝐸(𝑒�̂�𝑦(𝑥)|𝜃𝑖) =  ∑ 𝑒�̂�𝑦(𝑥𝑗)𝑓(𝑋 = 𝑗|𝜃𝑖)

𝑛

𝑗=0

.                                           (3.18) 

Similarly, the standard error of measurement (SEM) conditional on 𝜃𝑖 can be calculated:  

𝑆𝐸𝑀|𝜃𝑖 = √𝑣𝑎𝑟[(𝑥)|𝜃𝑖] = √∑ [𝑒�̂�𝑦(𝑥𝑗) − 𝐸(𝑒�̂�𝑦(𝑥)|𝜃𝑖)]
2

𝑓(𝑋 = 𝑗|𝜃𝑖)𝑛
𝑗=0  .      (3.19)  

After the expected equated scores and conditional SEMs of the new form were obtained 

using equations 3.18 and 3.19, the equity properties could be evaluated. Index 𝐷1 is computed to 

empirically assess the adequacy of preserving the first-order equity property, which is 
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𝐷1 =
√∑ 𝑞𝑖{𝐸[𝑌|𝜃𝑖]−𝐸[𝑒�̂�𝑦(𝑥)|𝜃𝑖  ]}

2
 𝑖

𝑆𝐷𝑦
,                                                          (3.20)  

where 𝐸[𝑌|𝜃𝑖] is the base form conditional mean for a given proficiency 𝜃𝑖, 

𝐸[𝑒�̂�𝑦(𝑥)|𝜃𝑖  ] is the conditional mean of an equated score for a given proficiency 𝜃𝑖 , 𝑞𝑖 is the 

quadrature weight at 𝜃𝑖 , and 𝑆𝐷𝑌 is the standard deviation of Form Y (base form). The 

quadrature points 𝜃𝑖 and the corresponding quadrature weight 𝑞𝑖  can either come from the 

examinees taking the old form or those taking the new form, depending on the definition of the 

synthetic population. In this study, because the synthetic group was conceptualized as the 

examinees taking the new form, the quadrature points which had been transformed in the scale 

transformation step and the corresponding quadrature weights for the examinees taking the new 

form were used. The smaller the 𝐷1 value is, the better the first-order equity is preserved. The 

denominator 𝑆𝐷𝑌 in the equation is used to standardize the index so that 𝐷1 indices from 

different tests can be compared.  

Second-order equity was evaluated using the index 𝐷2, which is calculated as follows: 

𝐷2 =
√∑ 𝑞𝑖{𝑆𝐸𝑀𝑌|𝜃𝑖−𝑆𝐸𝑀𝑒�̂�𝑦(𝑥)|𝜃𝑖}

2
 𝑖

𝑆𝐷𝑦
 ,                                                        (3.21)  

where 𝑆𝐸𝑀𝑌|𝜃𝑖 is the conditional SEM for the base form for examinees with proficiency 

𝜃𝑖 , and 𝑆𝐸𝑀𝑒�̂�𝑦(𝑥)|𝜃𝑖 is the conditional SEM for the equated new form for examinees with 

proficiency 𝜃𝑖. Similar to the 𝐷1 index, the quadrature points 𝜃𝑖 and weights 𝑞𝑖 from the 

examinees taking the new form were used in this study. A large 𝐷2 value suggests that the 

second-order equity property is not sufficiently preserved. The denominator 𝑆𝐷𝑌 in the equation 

is used to standardize the index so that 𝐷2 indices from different tests can be compared.  
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The final equity evaluation criterion is the index 𝑑1,2(𝜃), which is used in Bolt (1999) to 

evaluate the first- and second-order equities together in equation 2.3.8 in Chapter 2. This index 

provides more comprehensive evaluation on equating transformation, considering both equity 

properties together, in terms of the prediction of the expected score on the old form with the 

score of the new form in comparison to the actual score of the old form. All evaluation criteria 

are computed by the R code written by the author.  

In summary, this simulation experiment is to evaluate the robustness of UIRT under the 

CINEG equating design in terms of classification indices and equity property indices. Two major 

cases are considered with different latent structure. In the first case (MC-I), the test forms are 

built to measure two latent dimensions of which the latent structures vary between forms. In the 

other case (MC-II), the test forms have one primary dimension and one secondary dimension. 

Thus. items are assumed to measure only the primary latent dimension as the construct of 

interest.    
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CHAPTER IV: RESULTS 

This chapter is structured into two sections that are dedicated to the presentation of 

findings from the MC-I and MC-II simulation experiments, respectively. To assess the influence 

of multidimensionality, four linking methods were employed: separate calibration utilizing the 

SL and HB methods (SC-HB and SC-SL), as well as two calibration approaches employing the 

CC and FPC methods. To compute classification indices, the item parameters of 3PL 2D MIRT 

were employed as the baseline, and classification indices were computed for the new forms to 

facilitate comparison. The computation of these indices involved utilizing Lee's D method (2010) 

for UIRT and its extended version for MIRT. 

In the context of equating procedures, the MIRT OSE served as the baseline for 

establishing mean absolute equating bias (MAB) and root mean square error (RMSE). This 

involved utilizing the generating item parameters. Additionally, to obtain the marginal 

distribution of the observed scores for the baseline, weights were derived from a bivariate normal 

distribution characterized by a mean vector of (0, 0) and a covariance matrix of (1, 0.3, 1). For 

comparison, UIRT OSE and TSE were employed. For SC-HB and SC-SL, weights were derived 

from a normal distribution, with the linking constant B as a mean and A as standard deviation, 

obtained with plink R package (Weeks, 2022). For CC and FPC, the mean and variance freely 

estimated by flexMIRT were used for weight to obtain the marginal distribution. As described in 

Chapter 3, OSE utilizes a weighting scheme wherein the synthetic population is assigned a 

weight of zero for the reference group and a weight of one for the focal group. 

In evaluating the quality of an equating method, equating equity property indices (D1 for 

first order equity and D2 for second order equity) were computed using equated scores. The 

establishment of the baseline for these equity property indices involved employing an extended 
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version of Tong and Kolen's (2005) methodology to MIRT. A combined index referred to as 

"D12" was used to indicate weighted average absolute difference of the first and second 

conditional moments, following equation 2.3.8 in Chapter 2. To facilitate meaningful 

comparisons, the index was computed in absolute value, thereby avoiding cancellation effects. 

The purpose of this index is to assess the accuracy of the equating transformation by evaluating 

how well scores on one form can predict equated scores on another form, relative to an actual 

administration of X Base Form (Bolt, 1999). As a reference point, the baseline was established 

using MIRT  OSE with the generating parameters. Furthermore, a bivariate standard normal 

distribution was utilized to derive a marginal index. It is important to note that the evaluation 

encompassed the complete set of outcomes, without dividing them according to the equating 

method. This approach was adopted since both equating methods employed in the study, under 

the given conditions, did not indicate any significant differentiation. 

MC-I : COMPLEX STRUCTURE MEASURING TWO CONSTRUCTS OF INTEREST 

MC-I aims to demonstrate the calibration of forms designed to measure multiple 

constructs of interest using UIRT. The X Base and Y Base share an equivalent test structure 

featuring a linear reference composite (RC) at a 45-degree angle, intended to measure the two 

constructs equally. Conversely, the Y Same RC consists of two distinct sets of items with 

different loadings on each dimension, although their linear composite remains consistent with 

that of X Base. In contrast, the Y Different RC incorporates two split item sets with varying 

loadings on each dimension, accompanied by a linear composite that differs from that of X Base.  

The common items were carefully chosen to minimize the discrepancy with the test 

characteristic surfaces of the whole X Base Form. A comprehensive overview of the process 

involved in generating the test forms is presented in Table 4. Varying mean and covariance 
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matrices were considered to assess the interaction between test structures and latent distributions 

(see Table 1 in Chapter 2). The characteristics of the common items and unique items of the base 

and new forms are summarized in Table 4. 

Table 4. Descriptive Statistics for Generating Item Parameters of MC-I 

 

Common Items 

for all forms 

Unique Items 

X Base Y Base Y Same RC Y Diff RC 

 Mean Sd Mean Sd Mean Sd Mean Sd Mean Sd 

Slope 1 0.82 0.18 0.86 0.17 0.86 0.17 1.18 0.42 0.81 0.41 

Slope 2 0.82 0.18 0.86 0.17 0.86 0.17 1.18 0.49 1.09 0.24 

Intercept 0.32 0.58 0.33 0.68 0.31 0.73 0.43 0.77 0.39 0.69 

Guessing 0.16 0.03 0.14 0.03 0.14 0.04 0.15 0.04 0.15 0.04 

Item 

Angle 45 0 45 0 45 0 45 15 55 15.19 

MDISC 1.17 0.25 1.21 0.24 1.21 0.24 1.73 0.34 1.41 0.33 

MID -0.31 0.51 -0.29 0.59 -0.25 0.65 -0.27 0.48 -0.28 0.56 

RC Angle 45 NA 45 NA 45 NA 45 NA 51.68 NA 

Notes: Item angle denotes the measurement direction of an item; MDISC represents item 

discrimination in the multidimensional latent space, similar to UIRT; MID indicates item 

difficulty, also analogous to UIRT; RC Angle (Reference Composite Angle) signifies the 

measurement direction of the test form. 

 

Linking Constants. Figure 14 visually depicts the mean values of A and B, categorized by test 

structure, mean shift and covariance structure of the focal group, and linking method.  

Based on the observation, the linking constant A displays consistent patterns in its 

estimates across different test structures and mean shifts. However, the constant A exhibits 

variation depending on the covariance structure and linking method used. Specifically, as the 

covariance increases, the estimates of the constant A also increase. The linking method CC yields 

the highest estimated values, followed by FPC, while both SC linking methods produce 

equivalently lower estimates. For instance, within the base mean vector (0,0) and under the 

covariance structure (1, 0.3, 1), the mean estimates obtained are 1.28 using the CC method, 1.16 

using the FPC method, 1.00 via the SC-HB method, and 0.99 through the SC-SL method. 
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Conversely, when considering a different covariance structure (1, 0.9, 1.65), the CC method 

yields an estimate of 1.53, the FPC method produces an estimate of 1.42, while both the SC-HB 

and SC-SL methods yield an estimate of 1.20.  

One potential hypothesis to account for the disparities in A and B estimates by the linking 

methods is related to the information derived from response data and the methodologies 

employed within each linking method. To be specific, the CC method estimates linking constants 

by utilizing response data from both groups, while the FPC method utilizes response data solely 

from the new group. On the other hand, the SC-HB and SC-SL methods only employ response 

data from the common items within the new group. Moreover, both SC methods utilize 

characteristic curves, whereas CC and FPC rely on calibration approaches.  

The linking constants reported in this study, despite having slightly different 

interpretations, are referred to as "linking constants" for comparison purposes. The linking 

constants obtained from SC linking methods were based solely on common items. However, for 

CC and FPC, the "linking constants" were estimated using the mean and standard deviation 

derived from the focal group ability distribution, which included all items from the exam, not 

just the common items. As a result, the comparison between the linking methods is not entirely 

unbiased.  

To investigate the factors affecting the variability of linking constants, a multivariate 

multiple linear regression analysis was conducted to account for potential correlations between 

variables A and B, summarized in Table 5. Also, this regression analysis was selected due to its 

ability to provide the magnitudes of factors for the purpose of comparison. The observed 

variability can be separated into two components: "Within" and "Between" variation. "Within" 

variation refers to the variation within a test structure, attributable to factors such as mean shift, 
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covariance structure, and linking method. On the other hand, "Between" variation pertains to the 

variation observed between different test structures. 

Figure 14. Mean Linking Constants by Test Structure, Mean, Sigma, and Linking Methods 
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The linking constants A and B were treated as dependent variables, while predictors 

included the test structure, mean shift, covariance structure, and linking method. The reference 

point was set at a mean of (0, 0), covariance structure of (1, 0.3, 1), the base test structure (Y 

Base Form that is equivalent to X Base Form), and CC linking method. The results indicate that, 

for linking constant A and B, Y Diff RC with a different test structure did not exhibit statistical 

significance. For Y Same RC with a same reference composite but with a different test structure, 

despite the presence of statistical significance, the magnitudes of the effects for the linking 

constant A and B are relatively weak compared to the impact of covariance structure on the 

linking constant A and the influence of mean shift on constant B. In other words, after 

accounting for other factors, the variation in linking constant A and B was not influenced by the 

different test structures (i.e., no significant indication between-variability by test structure). 

Regarding A, as the mean shift moves further away from the base mean vector, it leads to 

a greater reduction in estimates on a smaller scale. Additionally, the covariance structure exhibits 

an increasing pattern of coefficients as it deviates from the base covariance structure. On the 

other hand, the covariance structure does not reach statistical significance for constant B. Putting 

differently, the variation of the linking constant A and B estimates  appears within covariance 

structure and mean shift. 

In summary, the results from both observation and regression analyses consistently 

indicate that mean shift, covariance structure, and linking methods significantly influence linking 

constants A and B. In other words, the impact of test structures on the estimation of linking 

constants A and B is found to be limited, as the primary aim of scale linking is to account for 

population differences.  
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Table 5. Regression Results of Linking Constants 

 Linking Constant A  Linking Constant B 

 Estimate  (SE) Estimate  (SE) 

(Intercept) 1.314 (0.005)*** 0.087 (0.011)*** 

Test Structure (Y Same RC) -0.025 (0.003)*** 0.061 (0.008)*** 

Test Structure (Y Diff RC) NA 0.044 (0.008)*** 

Focal Mean (0, 1) -0.016 (0.004)*** 0.594 (0.009)*** 

Focal Mean (1, 0) -0.016 (0.004)*** 0.596 (0.009)*** 

Focal Mean (1, 1) -0.068 (0.004)*** 1.154 (0.009)*** 

Focal Sigma (1, 0.32, 1.14) 0.027 (0.004)*** NA 

Focal Sigma (1, 0.7, 1) 0.114 (0.004)*** NA 

Focal Sigma (1,0.9,1.65) 0.234 (0.004)*** NA 

Linking Method (FPC) -0.108 (0.004)*** -0.054 (0.009)*** 

Linking Method (SC-HB) -0.332 (0.004)*** -0.135 (0.009)*** 

Linking Method (SC-SL) -0.333 (0.004)*** -0.136 (0.009)*** 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

NA: Not presented as it is not statistically significant. 

 

Equating. For each equating method, the results of 192 simulation conditions (3 test 

structures x 4 different means x 4 different covariance structures x 4 linking methods) are 

summarized below. The equating outcomes, as measured by MAB and RMSE, were computed 

for evaluation purposes. Furthermore, the practical implications of equating results were 

examined using the Difference That Matters (DTM) threshold (Dorans & Feigenbaum, 1994). 

DTM is defined as the absolute value of 0.5, representing the point at which a score would 

warrant rounding up to the next integer on the observed score scale. 

UIRT True Score Equating  

Based on the observation depicted in Figure 15, the variation in test structures results in 

differences in equating performance measured by MAB and RMSE, and also the DTM threshold 

is visualized in red as a reference. The disparity between MAB and RMSE values is minimal, 

suggesting that the majority of the total error is attributable to bias.  
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Regarding the case when the test structures of two test forms are equivalent both 

unidimensionality and multidimensionally (i.e., Y Base), it was found that the two SC linking 

methods consistently exhibit superior performance across different mean shifts and covariance 

structures, while the CC method performed the poorest, with the FPC method falling between 

CC and the SC methods in terms of performance. The variation in performance becomes more 

noticeable as the mean shift (1, 1) deviates from the X Base (0, 0). For practical consideration, 

the CC method consistently surpasses the DTM threshold across all conditions. On the other 

hand, the FPC method partially surpasses the DTM method when the mean vector is set to (0,1) 

or (1, 0) and entirely surpasses it when the mean vector is (1, 1). Additionally, both SC linking 

methods fall within the threshold established by the DTM method.  

As to the case when the test structures of two test forms are equivalent both 

unidimensionality and multidimensionally (i.e., Y Same RC), contrasting the findings of Y Base, 

the CC linking method exhibited the best performance, followed by the FPC and two SC linking 

methods, regardless of mean shift and covariance structure. Unlike Y Base, the variation in 

performance attributed to covariance structures becomes more pronounced even when utilizing 

the base mean shift. Overall, as the covariance increases between two latent variables, MAB 

increases, except for CC and FPC in the mean vector (1, 1), showing the opposite pattern. 

Regarding DTM, in contrast to the result observed in the Y Base case, two SC linking methods 

consistently surpass the DTM threshold across all conditions. However, the CC linking method 

falls below the DTM threshold when the mean vectors are set to (0, 1) and (1, 0), and the 

covariance is less than 0.9. Similarly, the FPC method also falls below the DTM threshold when 

the mean vectors are (0, 1) and (1, 0), and the covariance is equal to or less than 0.32.  
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In the case of the test structures of the two test forms were not equivalent either 

unidimensionality or multidimensionally (i.e., Y Diff RC), the results were most complex. To be 

specific, it was found that in general, all linking methods yielded the highest performance with 

the mean shifts (0,0) and (0, 1). In contrast, two SC linking methods outperformed CC and FPC 

with the mean shift (0, 1). Conversely, when the mean vector shifted in both abilities (1,1), CC 

and FPC outperformed SC-HB and SC-SL with the highest covariance (0.9). It is worth noting 

that as the covariance structures exhibited higher covariance values, the overall performance 

improved with the mean vector (0, 1), while when the mean vector was shifted to the second 

dimension (i.e., (0, 1)), an opposite performance pattern was observed. Y Diff RC shows mixed 

results regarding DTM. Specifically, when there is an unbalanced shift in mean vectors, such as 

(0.1) and (1,0), none of the linking methods fall below the DTM threshold. However, under the 

base mean vector of (0,0), all linking methods except for two SC linking methods with a 

covariance of 0.9 fall within DTM. Furthermore, when considering the mean vector of (1,1) and 

a covariance of 0.9, both the CC and FPC linking methods fall under the DTM threshold. 

Table 6 summarizes the result of the regression analysis on MAB and RMSE. Test 

structure, mean shift, and linking method were considered as predictors and the covariance 

structure was dropped due to its low contribution to the model and clear interpretation of the 

interaction effects. The model fits the data well and approximately 94 % of the variability in the 

dependent variables (i.e., MAB and RMSE) can be explained the independent variables included 

in the  model.  The baseline model with Y Base with CC produces 0.57 MAB and 0.62 RSME. In 

other words, on average, the predicted values from the model using Y Base and CC are off by 

0.57 equated score units in terms of absolute bias. Additionally, the model's predictions deviate 
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from the actual observed values by an average of 0.62 equated score units, as indicated by the 

RMSE value. 

In comparison to the baseline model in Table 6, three noteworthy observations can be 

made. Firstly, in the case of Y Same RC with a mean shift of (1, 0), the CC method demonstrated 

the best performance (MAB:-0.42 and RMSE:-0.41). Secondly, when considering Y Diff RC 

with a mean shift of (0, 1), the CC method produced the poorest performance (MAB:0.89 and 

RMSE:0.86 ). It is important to note that the MAB is slightly larger in comparison to the RMSE 

due to the fact that these represents the predicted values generated by the model. Third, there are 

cases of interaction between factors that improve the equality quality: two-way interactions 

between Y Same RC and mean vectors (0,1) and (1,0), and three-way interactions among Y Diff 

RC, mean vector (0, 1), and two SC linking methods. 
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Figure 15. MAB and RMSE by Test Structure, Mean, Sigma, and Linking Methods 
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Table 6. Regression Results of UIRT TSE 

 MAB RMSE 
 Estimate (SE) Estimate (SE) 

(Intercept) 0.574 (0.044) *** 0.623 (0.043) *** 

Y Same RC 0.125 (0.062) * 0.125 (0.061) * 

Y Diff RC -0.236 (0.062) *** -0.227 (0.061) *** 

Mean(1, 1) 0.203 (0.062) ** 0.205 (0.061) ** 

FPC -0.167 (0.062) ** -0.152 (0.061) * 

SC-HB -0.274 (0.062) *** -0.259 (0.061) *** 

SC-SL -0.273 (0.062) *** -0.262 (0.061) *** 

(Y Same RC)*(0, 1) -0.384 (0.088) *** -0.376 (0.086) *** 

(Y Diff RC)*(0, 1) 0.891 (0.088) *** 0.862 (0.086) *** 

(Y Same RC)*(1, 0) -0.420 (0.088) *** -0.405 (0.086) *** 

(Y Diff RC)*(1, 0) 0.711 (0.088) *** 0.695 (0.086) *** 

(Y Same RC)*(1, 1) -0.194 (0.088) * -0.182 (0.086) * 

(Y Same RC)*(FPC) 0.354 (0.088) *** 0.336 (0.086) *** 

(Y Same RC)*(SC-HB) 0.795 (0.088) *** 0.773 (0.086) *** 

(Y Diff RC)*( SC-HB) 0.368 (0.088) *** 0.360 (0.086) *** 

(Y Same RC)*(SC-SL) 0.793 (0.088) *** 0.777 (0.086) *** 

(Y Diff RC)*( SC-SL) 0.370 (0.088) *** 0.363 (0.086) *** 

(Y Diff RC)*(0, 1)*(SC-HB) -0.383 (0.125) ** -0.368 (0.122) ** 

(Y Diff RC)*(1, 0)*(SC-HB) 0.262 (0.125) * 0.249 (0.122) * 

(Y Diff RC)*(0, 1)*(SC-SL) -0.402 (0.125) ** -0.382 (0.122) ** 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

Adjusted R-squared:  0.94 both for MAB and RMSE  

  

UIRT Observed Score Equating 

The results obtained from the OSE approach closely resemble those from the TSE 

approach. Thus, in order to gain further insights into the visual interpretation of Figure 16, it is 

advised to consult the visual examination of Figure 15 in the TSE.  

Summarized in Table 6, the results of the regression analysis in OSE were also 

comparable to those in TSE. However, the coefficient of the intercept (MAB: 0.557 and RMSE: 
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0.607) was slightly smaller than that of TSE (MAB: 0.574 and RMSE: 0.623). In contrast, the 

standard errors (MAB: 0.052 and RMSE: 0.051) in OSE were slightly larger than those in TSE 

(MAB: 0.044 and RMSE: 0.043). Finally, TSE exhibited a slightly better model fit (Adjusted R-

squared: 0.94) compared to OSE (Adjusted R-squared: 0.92). This indicates that TSE estimates 

coefficients with slightly higher accuracy than OSE.  

Compared with TSE, OSE produce consistent  results, but with higher coefficients and 

standard errors. For instance, when comparing Y Same RC to the base condition, the best-

performing case with a mean vector of (1, 0) exhibits average reductions of -4.99 in MAB (with 

a standard error of 0.103) and -0.482 in RMSE (with a standard error of 0.101). On the other 

hand, the worst-performing case of Y Diff RC with a mean vector of (0, 1) shows average 

increases of 0.972 in MAB (with a standard error of 0.103) and 0.902 in RMSE (with a standard 

error of 0.101).  
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Figure 16. MAB and RMSE by Test Structure, Mean, Sigma, and Linking Methods 
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Table 7.  Regression Results for UIRT OSE 

 MAB RMSE 

 Estimate  

(SE) 

Estimate  

(SE) 

(Intercept) 
0.557 

(0.052) *** 

0.607 

(0.051) *** 

Y Same RC 
0.155 

(0.073) * 

0.152 

(0.071) * 

Y Diff RC 
-0.222 

(0.073) ** 

-0.214 

(0.071) ** 

Mean(1, 1) 
0.287 

(0.073) *** 

0.288 

(0.071) *** 

FPC 
-0.189 

(0.073) * 

-0.178 

(0.071) * 

SC-HB 
-0.262 

(0.073) *** 

-0.250 

(0.071) *** 

SC-SL 
-0.270 

(0.073) *** 

-0.260 

(0.071) *** 

(Y Same RC)*(0, 1) 
-0.437 

(0.103) *** 

-0.424 

(0.101) *** 

(Y Diff RC)*(0, 1) 
0.927 

(0.103) *** 

0.902 

(0.101) *** 

(Y Same RC)*(1, 0) 
-0.499 

(0.103) *** 

-0.482 

(0.101) *** 

(Y Diff RC)*(1, 0) 
0.683 

(0.103) *** 

0.665 

(0.101) *** 

(Y Same RC)*(1, 1) 
-0.269 

(0.103) * 

-0.252 

(0.101) * 

(Y Same RC)*(FPC) 
0.407 

(0.103) *** 

0.390 

(0.101) *** 

(Y Same RC)*(SC-HB) 
0.801 

(0.103) *** 

0.783 

(0.101) *** 

(Y Diff RC)*( SC-HB) 
0.355 

(0.103) *** 

0.345 

(0.101) *** 

(Y Same RC)*(SC-SL) 
0.833 

(0.103) *** 

0.814 

(0.101) *** 

(Y Diff RC)*( SC-SL) 
0.394 

(0.103) *** 

0.386 

(0.101) *** 

(Y Diff RC)*(0, 1)*(SC-HB) 
-0.400 

(0.146) ** 

-0.384 

(0.143) ** 

(Y Diff RC)*(1, 0)*(SC-HB) 
0.307 

(0.146) * 

0.296 

(0.143) * 

(Y Diff RC)*(0, 1)*(SC-SL) 
-0.446 

(0.146) ** 

-0.426 

(0.143) ** 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

Adjusted  R-squared : 0.92 for both MAB and RMSE 
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In short, the results of the present study indicate that the quality of equating is primarily 

influenced by the alignment of test structures between test forms. Additionally, it is important to 

ensure equivalence of populations among groups and carefully select appropriate linking 

methods. These factors should be considered when conducting equating. 

Evaluation 

In order to assess the influence of multidimensionality on UIRT linking and equating, 

classification indices were employed to compare the linking results, while equity indices were 

used to evaluate the equating outcomes. These comparisons were conducted with consideration 

for factors such as test structure, mean shift, and covariance structure. Due to the absence of any 

significant differences in the results pertaining to equating equity properties and their 

interpretation across different equating methods, the findings from the combined data are 

presented herein to highlight the main conclusions.  

Classification  

The results of the classification consistency (CC) and classification accuracy (CA) 

analyses are presented visually in Figures 17, considering the intended factors aforementioned. 

The findings indicate that, overall, the classification indices for the new forms, assessed using 

the UIRT approach, are higher than the baseline with the generating MIRT. Furthermore, 

regardless of the conditions, the CA indices consistently outperform the CC indices. In essence, 

CA represents the correlation between true and observed scores, whereas CC represents the 

correlation between observed scores. Naturally, CC will be attenuated due to the presence of 

measurement error in the observed scores. 

 Based on the findings depicted in Figure 17, overall, the pattern of classification 

indices demonstrates similarity between test structures, but Y Same RC exhibits the highest 
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classification indices (i.e., 0.95 in CC and 0.96 in CA) across all conditions. The CC linking 

method demonstrates higher performance in both classification indices (i.e., 0.95 in CC and 0.95 

in CA), compared to other linking methods, with the exception of FPC in the case of Y Diff RC 

and mean vectors ((0, 1), and (1, 0)). Following CC, the FPC method and two SC methods come 

next, while the two SC linking methods demonstrates the lowest performance. 

Regarding mean shift, it is observed that, unlike other mean vectors, when the mean 

vector (1, 1) deviates from the base in both latent variables, the variation in performance is the 

smallest. Additionally, as the covariance between latent variables increases, the indices of CC 

and CA increase across all conditions. This suggests that when multidimensional test structures 

callops into a unidimensional latent space, the classification indices increase.   

A summary of the regression analysis in Table 8 with only significant coefficients at a 

significant level at 0.05 examined the main effects of test structure, mean shift, and linking 

methods, excluding the influence of covariance structure due to its minimum contribution and 

clear interpretation. The model was able to explain approximately 80% of the variability in the 

classification indices. The findings indicate that, in comparison to the baseline with a mean of (0, 

0), a covariance structure of (1, 0.3, 1), and CC as the linking method, the most influential 

factors in classification indices were Y Same RC, the CC linking method, and a mean shift of (1, 

1). After controlling for other factors, Y Same RC exhibited, on average, higher values by 0.009 

in CC and 0.005 in CA compared to Y Base, which had values of 0.939 in CC and 0.956 in CA. 

Among factors, the mean shift (1, 1) demonstrates the highest coefficients, specifically 0.016 in 

CC and 0.012 in CA. Moreover, a clear trend of increasing coefficients (i.e., from 0.001 to 0.004 

and 0.008) is observed as the covariance within the covariance structure increases from 0.32, to 

0.7, and finally to 0.9. 
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Figure 17. CC and CA by Test Structure, Mean, Sigma, and Linking Methods 
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Table 8. Regression Results of CC and CA  

 CC CA 

 Estimate  (SE) Estimate  (SE) 

(Intercept) 0.939 (0.000)*** 0.956 (0.001)*** 

Test Structure (Y Same RC) 0.009 (0.000)*** 0.005 (0.000)*** 

Test Structure (Y Diff RC 0.002 (0.000*** 0.002 (0.000)*** 

Focal Mean (0, 1) 0.003 (0.000)*** 0.001 (0.000)** 

Focal Mean (1, 0) 0.001 (0.000)* 0.001 (0.000)* 

Focal Mean (1, 1) 0.016 (0.000)*** 0.012 (0.000)*** 

Focal Sigma (1, 0.32, 1.14) 0.001 (0.000)* 0.003 (0.000)*** 

Focal Sigma (1, 0.7, 1) 0.004 (0.000)*** 0.006 (0.000)*** 

Focal Sigma (1,0.9,1.65) 0.008 (0.000)*** 0.006 (0.000)*** 

Linking Method (FPC) -0.005 (0.000)*** -0.006 (0.000)*** 

Linking Method (SC-HB) -0.005 (0.000)*** -0.006 (0.000)*** 

Linking Method (SC-SL) N/A -0.001 (0.000)* 
Note. Standard errors are shown in parentheses. 

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

NA: Not presented as it is not statistically significant. 

Adjusted R-squared:  0.80 both for MAB and RMSE  

 

Equity Properties  

The equating equity properties, the first-order equity (FOE) and second-order equity 

(SOE) indices (D1 and D2, respectively), are visually represented in Figure 18, revealing 

differences between the UIRT equating approach and the generating MIRT models (i.e., X Base 

and Y Base). The findings suggested that, in general, the FOE and SOE indices derived from 

UIRT equating were higher, indicating poorer bias and precision compared to the baseline MIRT 

case. Overall, the equivalent test structure demonstrated superior performance compared to the 

other two test structures. Across all conditions, two linking methods with separate calibration 

(i.e., SC-HB and SC-SL) demonstrated virtually identical performance.  

Regarding the equivalent test structure (i.e., Y Base), among the examined linking 

methods, CC displays the poorest performance, followed by FPC and two SC linking methods 
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perform best with the lowest equity indices (i.e., 0.05 in D1 and 0.01 in D2). Furthermore, as the 

covariance increases, the equality indices show improvement.  

In contrast, in the case of the semi-equivalent test structure (i.e., Y Same RC), the 

opposite pattern of performance was observed for the linking methods. Specifically, the CC 

linking method demonstrates superior performance across all targeted factors, achieving average 

values of 0.08 in D1 and 0.01 in D2. Moreover, with an increase in covariance, in general, the 

equality indices exhibit a decline in performance.  

The non-equivalent test structure (i.e., Y Diff RC) yielded mixed results due to the 

compounded interaction effects with other factors. Among different mean vectors, the base mean 

vector demonstrates the lowest FOE and SOE indices. Additionally, irrespective of the 

covariance structure within the base mean vector (0,0), FPC consistently exhibited superior 

performance compared to other linking methods. However, when the mean vector was (0, 1), two 

SC linking methods outperformed CC and FPC. Additionally, as the covariance increased, there 

was an improvement in the FOE and SOE indices. Conversely, when considering the mean 

vector of (1, 0), the performance order was reversed, and as the covariance increased, the indices 

demonstrated a decline in performance. Within the mean vector (1, 1), CC and FPC performed 

better with the highest covariance structure.  

Summarized in Table 9, a regression analysis was performed to examine the effects of 

test structure, mean shift, and linking method, with the covariance structure excluded due to its 

minimal contribution. The results of the regression analysis align with the observations made 

through visual examination in Figure 18.  

For Y Same RC, in comparison to the baseline, the two-way interaction with the mean 

vector (1, 0) showed an average decrease of -0.062 in D1 and -0.005 in D2. Similarly, the two-
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way interaction with the mean vector (0, 1) resulted in an average decrease of -0.056 in D1 and -

0.004 in D2. In contrast, when considering the interactions involving FPC, SC-HB, and SC-SL, it 

is observed that the quality of equating diminishes in terms of D1 and D2 (0.062, 0.135, and 

0.139 in D1; and 0.012, 0.027, and 0.027 in D2, respectively). 
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Figure 18. FOE and SOE by Test Structure, Mean, Sigma, and Linking Methods 
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For Y Diff RC , the two-way interactions involving mean vectors (0, 1), and (1, 0); and 

with two SC linking methods result in increased values for both D1 and D2. On average, D1 

increases by 0.134, 0.121, 0.053, and 0.057, while D2 increases by 0.013, 0.018, 0.007, and 

0.007, respectively. However, the three-way interaction with mean vector (0, 1), and SC-HB 

reduces D1 on average by -0.048 , whereas the three-way interaction with mean vector (1, 1) and 

SC-SL increases D2 on average by 0.006.     

Table 9. Regression Results of FOE and SOE 

 FOE D1 SOE D2 

 Estimate  (SE) Estimate  (SE) 

(Intercept) 0.098 (0.007) *** 0.017 (0.001) *** 

Y Diff RC -0.039 (0.010) *** -0.006 (0.001) *** 

(1, 1) 0.032 (0.010) ** -0.002 (0.001) 

FPC -0.032 (0.010) ** -0.005 (0.001) *** 

SC-HB -0.059 (0.010) *** -0.010 (0.001) *** 

SC-SL -0.060 (0.010) *** -0.011 (0.001) *** 

(Y Diff RC) * (0, 1) 0.134 (0.014) *** 0.013 (0.002) *** 

(Y Same RC) * (0, 1) -0.056 (0.014) *** -0.004 (0.002) * 

(Y Diff RC) * (1, 0) 0.121 (0.014) *** 0.018 (0.002) *** 

(Y Same RC) * (1, 0) -0.062 (0.014) *** -0.005 (0.002) ** 

(Y Same RC) * (FPC) 0.062 (0.014) *** 0.012 (0.002) *** 

(Y Diff RC) * (SC-HB) 0.053 (0.014) *** 0.007 (0.002) *** 

(Y Same RC) * (SC-HB) 0.135 (0.014) *** 0.027 (0.002) *** 

(Y Diff RC) * (SC-SL) 0.057 (0.014) *** 0.007 (0.002) *** 

(Y Same RC) * (SC-SL) 0.139 (0.014) *** 0.027 (0.002) *** 

(1, 1)*(SC-HB) NA 0.007 (0.002) *** 

(1, 1)*(SC-SL) NA 0.007 (0.002) *** 

(Y Diff RC) * (0, 1) * (SC-HB) -0.048 (0.019) * NA 

(Y Same RC) * (0, 1) * (SC-SL) -0.052 (0.019) ** NA 

(Y Diff RC) * (1, 1) * (SC-HB) NA 0.006 (0.002) * 

(Y Same RC) * (1, 1) * (SC-SL) NA 0.006 (0.002) * 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

NA: Not presented as it is not statistically significant. 

Adjusted R-squared:  0.94 for D1 and 0.97 for D2 

 

Figure 19 visually depicted the combined index, D12. The overall pattern of D12 closely 

resembled that of the FOE D1 index, presumably due to the predominant contribution of  D1. 

Any slight discrepancies between the two can be attributed to variations in the computation 
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approach employed. Specifically, the weights for D1 and D2 were derived from the standard 

normal distribution, whereas for D12, the weights were determined using a bivariate normal 

distribution with a mean of (0, 0) and a sigma of (1, 0.3, 1). Notably, despite the numerous 

similarities, it is worth highlighting that in Y Diff RC, with mean vectors of (0, 1) and (1, 0), the 

performance gap attributed to the linking method was reduced. 
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Figure 19. D12 by Test Structure, Mean, Sigma, and Linking Methods 
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MC-II : ONE CONSTRUCT OF INTEREST WITH A NUISANCE FACTOR 

MC- II aims to exemplify the calibration of forms specifically designed for the 

assessment of a single construct of interest accompanied by a nuisance factor through the 

application of unidimensional item response model. The base form X (i.e., X Base), comprising 

50 items, primarily targets measurement of the first dimension, exhibiting a 20-degree inclination 

from the axis of the primary dimension. Within this paradigm, two forms were introduced, 

characterized by the employment of both an equivalent test structure (i.e., Y Base) and a 

modified test structure (i.e., Y 60) where the targeted measurement of items deviated by 60 

degrees from its axis, thereby highlighting the noticeable influence of the nuisance dimension. A 

detailed exposition of the test form generation process is presented in Table 10. To 

comprehensively evaluate the interplay between test structures and latent distributions, the same 

variations of latent distribution were applied as in MC-I. 

Table 10. Descriptive Statistics for Generating Item Parameters of MC-II 

 

Common Items 
 of X Base 

Unique Items 

X Base Y Base Y 60 

 Mean Sd Mean Sd Mean Sd Mean Sd 

Slope 1 0.97 0.18 0.96 0.19 0.98 0.21 0.99 0.22 
Slope 2 0.12 0.15 0.11 0.13 0.11 0.14 0.42 0.57 
Intercept -0.1 0.81 -0.19 0.82 -0.18 0.80 -0.31 0.71 
Pseudo-
guessing 0.14 0.03 0.15 0.04 0.15 0.04 0.14 0.04 
Item Angle 7.59 8.8 6.62 7.62 6.62 7.62 19.39 22.9 
MDISC 0.99 0.18 0.98 0.19 0.99 0.22 1.17 0.8 
MID 0.19 0.81 0.22 0.86 -0.16 0.88 0.27 0.70 

CV 0.99 0.01 0.98 0.01 0.98 0.01 0.83 0.20 
RC Angle 6.95 0 6.95 0.00 7.56 0.28 29.40 0.00 

Notes: Item angle denotes the measurement direction of an item; MDISC represents item 

discrimination in the multidimensional latent space, similar to UIRT; MID indicates item 

difficulty, also analogous to UIRT; RC Angle (Reference Composite Angle) signifies the 

measurement direction of the test form. 
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Linking. The results of the estimates for the linking constants A and B are presented in 

Figure 20, considering factors such as test structure, mean shift, covariance structure, and linking 

method. Similar to the analysis conducted for MC-I, regression analysis was performed to 

examine the impact of these intended factors on A and B, and the results are summarized in 

Table 11.  

Figure 20 was visually examined, revealing distinct sensitivities of the linking constants 

A and B. The linking constant A was found to be sensitive to variations in covariance structure, 

particularly when multidimensionality tends to collapse onto unidimensionality, leading to a 

marginal increase in the estimates of A due to the fact that A is responsible for adjusting the unit 

of a scale in IRT, representing the standard deviation of the population distribution. The linking 

constant A demonstrated the greatest sensitivity to different linking methods as shown in MC-I. 

To clarify, the CC linking method yields the highest value for A, followed by FPC which closely 

aligns with CC. On the other hand, the two SC linking methods consistently generate the lowest 

value, regardless of test structures, mean shifts, and covariance structures.  

On the other hand, across all conditions, the linking constant B consistently exhibits 

lower values for Y 60 than for Y Base. The linking constant B shows greater responsiveness to 

variations in mean shift, indicating its role in adjusting the center of a scale. When the mean 

vector deviates from the baseline in the primary dimension, the variation in B estimates increases 

by linking method. However, when the mean vector shifts in the nuisance dimension, the 

estimates of the linking constant B appear to be consistent. Regarding linking methods, when 

there is a positive shift in the primary latent ability such as mean vectors (1, 0) and (1, 1), B 

estimates demonstrate a decreasing trend from CC, FPC, to two SC linking methods for both Y 

Base and Y 60. However, when considering mean vectors of (0, 0) and (0, 1), B estimates remain 



114 

 

constant across linking methods in Y Base. In contrast, in Y 60, there exists an increasing pattern 

of B estimates observed from CC, FPC, to two SC linking methods. 

The regression analysis results, presented in Table 11, confirm the findings from visual 

inspections and provide statistical evidence. The test structure showed statistical significance for 

both A and B, with a larger effect on B (-0.22) than on A (0.01). Mean shift and covariance 

structure were found to be significant for A, with the highest effect (0.04) observed for the 

covariance structure, while (1, 0.9, 1.65) was the only significant factor for covariance structure. 

The results indicate that the choice of linking method had the strongest effect, with the highest 

effect observed for SC- BH (-0.27) followed by SC-SL (-0.26), and FPC (-0.10). In contrast, for 

B, covariance structure did not show statistical significance, while mean shift exhibited the most 

influential effect, with an increasing pattern of coefficients as the mean vector deviated from the 

baseline (i.e., (0, 1): 0.09; (1, 0): 0.77; and (1, 1): 0.86). Notably, the mean vector's deviation (1, 

0) from the primary dimension had a greater impact than its deviation (0, 1) from the nuisance 

dimension due to the fact that the test was designed to measure dominantly the primary 

dimension.  
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Figure 20. Linking Constants by Test Structure, Mean, Sigma, and Linking Methods 
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Table 11. Regression Results of Linking Constants 

 Linking Constant A  Linking Constant B 

 Estimate  (SE) Estimate  (SE) 

Intercept 1.184 (0.003) *** 0.025 (0.011) * 

Test Structure (Y 60) 0.005 (0.002) * -0.217 (0.006) *** 

Focal Mean (0, 1) -0.011 (0.003) *** 0.092 (0.009) *** 

Focal Mean (1, 0) -0.026 (0.003) *** 0.771 (0.009) *** 

Focal Mean (1, 1) -0.031 (0.003) *** 0.860 (0.009) *** 

Focal Sigma (1,0.9,1.65) 0.039 (0.003) *** NA 

Linking Method (FPC) -0.103 (0.003) *** -0.022 (0.009) * 

Linking Method (SC-HB) -0.267 (0.003) *** -0.041 (0.009) *** 

Linking Method (SC-S) -0.258 (0.003) *** -0.038 (0.009) *** 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

NA: Not presented as it is not statistically significant. 

 

Equating. For each equating method, the results of 128 simulation conditions (2 test 

structures * 4 different means * 4 different covariance structures * 4 linking methods) are 

summarized below. 

UIRT True Score Equating  

The visual comparison presented in Figure 21 offers an intuitive understanding of how 

intended factors influence equating results, specifically MAB and RMSE. In general, the major 

source of error in equating is primarily attributed to MAB due to the fact that RMSE has slightly 

higher than MAB. In the equivalent test structure (i.e., Y Base), the equating performance 

remains consistent across different covariance and mean structures. However, when the mean 

vectors are shifted, particularly in the primary dimension, the equating results deteriorate. 

Notably, the choice of linking method emerges as the most influential factor affecting the 

equality of equating results, with SC-HB and SC-SL performing similarly and yielding the best 

outcomes across various conditions. CC performs the poorest, and FPC follows in terms of 

equating quality. In relation to the DTM, only two SC linking methods fall below the DTM 
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threshold when mean vectors are set to (0, 0) and (0, 1). Additionally, these two SC linking 

methods are close to the DTM threshold when the mean vectors are (1, 0) and (1, 1).  

Figure 21. MAB and RMSE by Test Structure, Mean, Sigma, and Linking Methods 
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On the other hand, in the test structure influenced by the nuisance factor (i.e., Y 60), there 

is a significant variance in equating performance due to study factors. For instance, the equating 

quality is optimal when the mean vector matches the baseline (0, 0), while a mean vector shifts 

only on the nuisance dimension (0, 1) results in the poorest performance. When the mean vector 

is shifted solely in the primary dimension (1, 0), the performance improves. However, when the 

mean vector deviates in both dimensions (1, 1), the performance variation increases with varying 

covariance structures, and higher covariance values lead to improved performance. With the 

baseline mean vector (0, 0) and covariance structure (0, 0.7, 1), two SC linking methods fall 

below the DTM threshold.  

To examine the influence of test structure, mean shift, and linking method on equating, a 

regression analysis was carried out and the findings are summarized in Table 12. The results 

align with the observations from the visual inspection. A noticeable negative impact was 

observed for the mean vector (0, 1), with the largest magnitude effects recorded for both MAB 

(1.03) and RMSE (1.02). The interaction between Y 60 and the mean vector (1, 1) ranked second 

in terms of its effect on both MAB (0.35) and RMSE (0.34). Furthermore, it was found that 

choosing linking methods other than CC led to an improvement in equating quality. 

Table 12. Regression Results of UIRT TSE 

 MAB RMSE 

 Estimate  (SE) Estimate  (SE) 

(Intercept) 0.918 (0.049)*** 0.952 (0.048)*** 

Focal Mean (1, 0) 0.168 (0.070)* 0.165 (0.068)* 

Focal Mean (1, 1) 0.218 (0.070)** 0.216 (0.068)** 

Linking Method (FPC) -0.235 (0.070)** -0.225 (0.068)** 

Linking Method (SC-HB) -0.521 (0.070)*** -0.496 (0.068)*** 

Linking Method (SC-SL) -0.522 (0.070)*** -0.498 (0.068)*** 

(Y_60)*(0, 1) 1.034 (0.098)*** 1.021 (0.096)*** 

(Y_60)*(1, 1) 0.349 (0.098)*** 0.342 (0.096)*** 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 
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Adjusted R-squared:0.94 for both MAB and RMSE 

 

UIRT Observed Score Equating 

The results obtained from 128 different conditions of UIRT OSE demonstrate a similar 

pattern as observed in UIRT TSE. Figure 22 visually represents the results, with Table 13 

providing a summary of the regression analysis on MAB and RMSE. These analyses 

demonstrate consistent findings with those obtained from TSE, indicating comparable results. 

However, the coefficients of OSE in absolute value are larger than those of TSE. For instance, 

the SC-SL linking method that improved equating equality most reduced MAB and RMSE by, 

on average, -0.56 and -0.53, respectively in OSE, but by, on average, -0.52 and -0.50, 

respectively in TSE. Further interpretation of the results can be referred to that of TSE.    
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Figure 22. MAB and RMSE by Test Structure, Mean, Sigma, and Linking Methods 
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Table 13. Regression Results of UIRT OSE 

 MAB RMSE 

 Estimate  (SE) Estimate  (SE) 

(Intercept) 0.948 (0.054)*** 0.980 (0.053)*** 

Focal Mean (1, 0) 0.199 (0.076)* 0.199 (0.074)** 

Focal Mean (1, 1) 0.248 (0.076)** 0.248 (0.074)** 

Linking Method (FPC) -0.235 (0.076)** -0.226 (0.074)** 

Linking Method (SC-HB) -0.545 (0.076)*** -0.517 (0.074)*** 

Linking Method (SC-SL) -0.560 (0.076)*** -0.533 (0.074)*** 

(Y_60)*(0, 1) 1.095 (0.108)*** 1.080 (0.105)*** 

(Y_60)*(1, 1) 0.361 (0.108)*** 0.350 (0.105)*** 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

Adjusted R-squared:0.94 for both MAB and RMSE 

 

 

EVALUATION 

Classification  

Classification indices across different factors are depicted visually in Figure 23, with the 

corresponding regression analysis results summarized in Table 14.  

Consistent with the findings from MC-I and visual assessments in Figure 23, the CA 

indices for UIRT surpass those for the generating MIRT model, irrespective of the considered 

factors. However, the CC indices exhibit higher values only at the means of (0, 0) and (0, 1). 

Specifically, when there is a positive shift in ability within the primary dimension, CC indices 

align closely with the baseline when considering CC and FPC linking methods. Conversely, 

employing SC-HB and SC-SL results in lower CC indices than the baseline. It is further 

observed that the presence of a mean shift in the primary dimension leads to increased variation 

in CC indices influenced by the covariance structure. Notably, this variation is more pronounced 

in Y 60. More precisely, as covariance becomes higher, there is an improvement in CC indices, 

across all linking methods. 
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In Y Base, the CC indices are generally smaller than those for Y 60 when mean vectors 

are (0, 0) and (0, 1). When mean vectors are (1, 0) and (1, 1). the CC indices fall below the 

baseline when using two SC linking methods. On the other hand, Y 60 shows the similar trend of 

CC on the same condition but with a large variation by covariance structure. In the presence of 

the mean vector (1, 0), there is a contrasting trend in CA indices across the linking methods 

between Y Base and Y 60. Specifically, in Y Base, there is an increasing pattern of CA indices 

observed from CC, FPC, and two SC linking methods. However, in Y 60, a decreasing pattern of 

CA indices is observed. Generally, both CC and CA indices exhibit improvement with an 

increase in covariance between latent variables. However, an exception occurs when employing 

two linking methods with the mean vector (0, 1) in Y 60. In this case, the higher covariance 

value diminishes the classification indices.  

The outcomes of a regression analysis on CC and CA indicate that, on average, Y 60 

exhibits slightly higher classification indices (by 0.006 in CC, and 0.004 in CA) compared to Y 

Base. In CC, there are two-way interactions involving test structure and mean shift with (1, 0) 

and (1, 1). These interactions lead to average reductions of CC indices by -0.06 and -0.008, 

respectively. Meanwhile, CA demonstrates three-way interactions involving test structure, mean 

shift with (1, 0), and linking method. That is, Y 60, mean vector (1, 0), and FPC interaction 

results in an average CC index decrease of -0.01. On the other hand, the three-way interactions 

involving Y 60, mean vector (1, 0), and SC-HB lead to an average CA index decrease of -0.12, 

and SC-SL leads to an average CA index decrease of -0.13. 
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Figure 23. CC and CA by Test Structure, Mean, Sigma, and Linking Methods 
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Table 14. Regression Results of CC and CA 

 CC CA 

 Estimate  (SE) Estimate  (SE) 

Intercept 0.938 (0.001)*** 0.953 (0.001)*** 

Test Structure (Y 60) 0.006 (0.001)*** 0.004 (0.001)** 

Focal Mean (0, 1) -0.004 (0.001** N/A 

Focal Mean (1, 0) -0.010 (0.001)*** -0.009 (0.001)*** 

Focal Mean (1, 1) -0.009 (0.001)*** -0.007 (0.001)*** 
Linking Method (SC-HB) -0.004 (0.001)** N/A 

Linking Method (SC-SL) -0.004 (0.001)** N/A 

Y 60) *(1, 0) -0.006 (0.002)** N/A 

(Y 60) *(1, 1) -0.008 (0.002)*** N/A 

(Y 60) *(FPC) N/A 0.004 (0.002)* 

(1, 0)*(SC-HB) N/A 0.003 (0.002)* 

(1, 0)*(SC-SL) N/A 0.003 (0.002)* 

(Y 60) *(1, 0)*(FPC) N/A -0.010 (0.002)*** 

(Y 60) *(1, 0)*(SC-HB N/A -0.012 (0.002)*** 

(Y 60) *(1, 0)*(SC-SL N/A  -0.013 (0.002)*** 
Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

NA: Not presented as it is not statistically significant. 

Adjusted R-squared: 0.93 for CC and 0.90 for CA 

 

Equity Properties  

The comparison of equating equity indices for D1 and D2 is visually presented in Figure 

24 with respect to test structure, mean shift, covariance structure, and linking method. The 

impact of these factors on the indices is further analyzed through a regression analysis, as 

summarized in Table 15. 

Overall, the CC linking method consistently yields higher D1 values compared to the 

base model across all conditions. For Y Base, when the mean vectors (0, 0) and (0, 1) are 

present, the FPC and two other linking methods produce D1 indices that are either equal to or 

lower than the baseline. In contrast, when the mean vectors (1, 0) and (1, 1) are present, only two 

SC linking methods get close to the baseline. For D2 indices, URIT demonstrates similar or 

slightly higher values than the baseline. For Y 60, when considering the base mean vector (0, 0), 
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FPC with high covariances and two SC linking methods with low covariances exhibit values 

below the baseline. With the mean vector of (0, 1), all linking methods yields the least favorable 

outcome in both D1 and D2. When employing the mean vector (1, 0) and (1, 1), the impact of 

covariance structures becomes more noticeable. In particular, when the mean vector is fixed at 

(1, 0), an increase in covariance contributes to a discernible decrease in both D1 and D2 indices, 

especially for two SC linking methods. Conversely, when the mean vector is (1, 1), an increase 

in covariance brings about a noticeable improvement in both D1 and D2 indices for all linking 

methods. 

The results of the regression analysis, as outlined in Table 15, corroborate the findings 

derived from visual observations. Specifically, when Y 60 interacts with the mean shift of (0, 1), 

the equating bias increases on average by 0.218 after accounting for other factors. In contrast, the 

equating precision experiences an average increase by -0.006, suggesting an improvement in the 

precision of equating quality. However, it is important to note that the interpretation of D2 is 

only meaningful when D1 is meaningful. Additionally, the regression analysis did not reveal 

covariance effect, resulting in a lack of explanation for the variation observed in D1 when 

considering Y 60 with a mean shift of (1, 1).  

Figure 24 visually represented the global index, D12, which closely resembled the pattern 

observed in the FOE D1 index, mainly due to the predominant influence of D1. Any minor 

discrepancies between the two can be attributed to variations in the computational approach used 

as explained previously in MC-I. Importantly, despite the numerous similarities, it is noteworthy 

that in Y 60, with mean vectors of (0, 1) and (1, 1), the performance gap resulting from the 

choice of linking method was considerably diminished. In the case of Y Base, two SC linking 

methods demonstrated superior or at least comparable performance to the baseline in D12. 
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Figure 24. FOE D1 and SOE D2 by Test Structure, Mean, Sigma, and Linking Methods 
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Table 15. Regression Results of FOE and SOE 

 FOE D1 SOE D2 

 Estimate  (SE) Estimate  (SE) 

(Intercept) 0.097 (0.008) *** 0.014 (0.001) *** 

(1, 0) 0.033 (0.011) ** NA 

(1, 1) 0.037 (0.011) ** NA 

FPC -0.035 (0.011) ** -0.005 (0.001) *** 

SC-HB -0.056 (0.011) *** -0.006 (0.001) *** 

SC-SL -0.055 (0.011) *** -0.005 (0.001) *** 

(Y 60) *(0,1) 0.218 (0.016) *** -0.006 (0.001) *** 

(1, 1) *(SC-HB) 0.081 (0.016) *** -0.006 (0.001) *** 
(1, 1) *(SC-SL) NA 0.007 (0.002) *** 

(1, 1) *(SC-HB) NA 0.006 (0.002) ** 

(Y 60) *(0,1) * (SC-HB) NA -0.007 (0.003) ** 

(Y 60) *(0,1) *(SC-SL) NA -0.007 (0.003) * 

Note. Standard errors are shown in parentheses.  

Significance levels: *** p < 0.001, ** p < 0.01, * p < 0.05. 

NA: Not presented as it is not statistically significant. 

Adjusted R-squared: 0.95 for FOE and 0.95 for SOE 
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Figure 25. D12 by Test Structure, Mean, Sigma, and Linking Methods 
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CHAPTER V: DISSCUSION 

The current study investigated the influence of multidimensionality on unidimensional 

item response model linking and equating through two hypothetical multidimensional scenarios 

within a nonequivalent group common-item equating design. 

In the first scenario, the focus was on a test designed to measure multiple constructs of 

interest. Three new test forms were utilized to explore the effects of different test structures 

compared to a base form. One new form had an equivalent test structure to the base form, 

aligning both unidimensionally and multidimensionally. The second new form represented a case 

of a semi-equivalent test structure, sharing the same reference composite direction but differing 

in the multidimensional latent space. The final new form had a non-equivalent test structure, 

lacking equivalence both unidimensionally and multidimensionally. 

The second scenario involved a test intended to measure a primary construct of interest 

but contaminated with a nuisance factor. Two new forms were examined alongside the base 

form. The first form and the base form contained items and a reference composite located within 

a chosen validity sector (Ackerman, 1992), while the other form included contaminated items, 

heavily influenced by the nuisance factor, causing the reference composite to deviate away from 

the validity sector toward the nuisance dimension. 

Under these two hypothetical scenarios, the study utilized classification measures and 

equating equity properties to compare their marginal indices between the baseline MIRT and 

UIRT. The following section provides a summary of the study's findings. 
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The results concerning Research Questions (RQ) related to MC-I is summarized as follows: 

 

RQ 1 and 2: impact on classification consistency and accuracy 

It was found that for MC1, the classification indices of UIRT were higher compared to 

the baseline generated model across all conditions. Y Same RC outperformed Y Base and Y Diff 

RC in both classification indices. The classification indices increased as the covariance values 

increased. CC linking method demonstrated superior performance compared to other linking 

methods while controlling for other conditions. When the mean vector increased in both latent 

dimensions, the variation in performance reduced due to covariance structure and linking method 

was minimal. 

 RQ 3 and 4: impact on equating equity properties (first order: D1 and second order:D2) 

It was observed that the equity indices of the baseline model performed better than most 

UIRT cases across all conditions. D1 demonstrated greater variation and divergence from the 

baseline across different conditions, whereas D2 displayed a more consistent pattern and was in 

closer alignment with the baseline. However, when the test structure of the new form aligned 

with the base form (i.e., Y Base), with mean vectors not deviating significantly and using two 

linking methods (i.e., HB and SL) with separate calibration, the D2 indices of UIRT were closer 

to the baseline. When the test structure of the new form was aligned unidimensionally only (i.e., 

Y Same RC), the CC linking method performed best in both D1 and D2 across different mean 

shifts and covariance structures. For the non-equivalent test structure (i.e., Y Diff RC), mixed 

results were observed, with CC outperforming except for the mean vector (0, 1), where SC-BH 

and SC-SL methods performed best. The meaningfulness of SOE is contingent upon the quality 

of FOE, which is an important point to consider (Thomasson, 1993). 

RQ5: impact on the combined equating equity property (D12) 
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It was observed that the overall pattern of D12 closely resembled that of D1, despite 

having distinct interpretations. The D12 index served as an indicator of the predictability of 

expected performance on another test (Bolt, 1999). A smaller value of the index indicates that 

Form Y could predict equated scores on Form X with reduced bias and increased precision. The 

current study demonstrates that the predictability of equating performance was primarily 

influenced by the test structure. When the test structures of two test forms were equivalent both 

unidimensionally and multidimensionally, the predictability was most accurate and precise. 

However, in cases where the test structures differed in a multidimensional latent space but were 

equivalent in a composite unidimensional latent space, the accuracy of the predictability was 

diminished. Additionally, the choice of linking method significantly impacted the value of the 

D12 index. In situations where the test structures were not comparable in either a unidimensional 

or multidimensional sense, mixed results were observed. However, it was evident that a balanced 

mean vector shift yielded better results, and the choice of linking methods played a critical role. 

Specifically, in contrast to cases with the equivalent test structure where SC-HB and SC-SL 

demonstrated superior performance, the CC linking method outperformed the separate 

calibration linking methods in cases involving the semi-equivalent structure. 

The results concerning Research Questions (RQ) related to MC-II is summarized as 

follows: 

RQ 1 and 2: impact on classification consistency and accuracy 

It was observed that for MC2, the classification accuracy indices of UIRT were 

consistently higher than those of the baseline model across all conditions. However, it was noted 

that higher classification accuracy indices (than the baseline) were predominantly observed when 

the mean vector remained the same as the baseline or only varied in the nuisance dimension. 
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Conversely, when the mean shift occurred in the primary dimension, the classification 

consistency decreased below the baseline level, particularly when utilizing two SC linking 

methods. Additionally, when the dimensionality expanded into two dimensions as the covariance 

of the two latent variables decreases, the classification consistency indices decrease to their 

lowest values. In contrast, under the same conditions, CC and FPC produced higher or 

comparable classification consistency indices compared to the baseline model. 

RQ 3 and 4: impact on equating equity properties (first order: D1 and second order:D2) 

Unlike the case of MC-I where the equity indices of the baseline model demonstrated 

superior performance compared to most UIRT cases across all conditions, in MC-II, when the 

test structures of two test forms were equivalent, UIRT equating resulted in FOE indices that 

were either better or equivalent to those of the baseline, particularly when utilizing two SC 

equating methods. Additionally, even in a new test form heavily influenced by a nuisance factor 

but with the same mean vector as the baseline, UIRT equating produced FOE indices that were 

equivalent to the baseline. However, when the mean vector changed in the nuisance dimension in 

Y 60, the interaction effect caused the largest discrepancy in both FOE and SOE compared to the 

baseline. It is also worth noting that as the dimensionality collapsed into a single dimension as 

the covariance of the two latent variables increases, the FOE indices exhibited improvement. 

RQ5: impact on the combined equating equity property (D12) 

When examining the overall pattern of D12 and comparing it to D1, it was observed that 

they closely resembled each other, despite having different interpretations. When considering 

both D1 and D2 simultaneously, the two SC linking methods demonstrated superior 

predictability compared to the base MIRT model, in cases where the test structures were 

equivalent. However, when the primary dimension was impacted by the presence of a nuisance 
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factor, the UIRT equating method exhibited the poorest predictability of the equating results, 

regardless of the linking methods and covariance structures employed. 

Implications to Operational Setting 

In practical settings, MIRT equating procedure is not a preferable choice due to the limit 

in its practical utilities. Multidimensionality can be viewed from two perspectives: (expected) 

multidimensionality by design and idiosyncratic multidimensionality. The first 

multidimensionality is the case when multidimensionality is inevitably emerged on test forms by 

design, while the latter case is when multidimensionality appears due to an unintended nuisance 

factor(s). In the current study, two cases of multidimensionality are designed into MC-I for the 

first case and MC-II for the second case of multidimensionality. The followings are the 

implications of the current study. 

When designing tests to measure one construct of interest but inevitably involve multiple 

domains, such as medical licensure and certification examinations, or tests with integrated items 

to assess multiple subject areas, it is crucial to establish equivalent test structures between two 

forms for equating purposes in order to achieve optimal equating quality. However, when the test 

structures are unknown, it is recommended to employ different linking methods, as they may 

yield different equating results based on the dimensional structures of the forms. The findings 

suggest that separate calibration using SL and HB methods outperforms when the test structures 

of two forms are equivalent. However, in cases where the dimensional structures of forms are not 

comparable in the multidimensional latent space but are equivalent in the unidimensional latent 

space, the CC method emerges as the preferred choice. Additionally, it should be noted that 

controlling for equivalent abilities between populations is crucial when the dimensional 

structures of forms are not equivalent. 
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Regarding classification consistency and accuracy, the UIRT approach exhibits higher 

values compared to the multidimensional item response theory approach. Additionally, as a 

multidimensional structure collapses into a unidimensional latent space, the classification 

consistency and accuracy tend to increase. Across all conditions, the concurrent calibration 

method generally produces the best outcomes in terms of classification accuracy and 

consistency. However, it is important to note that classification results should be interpreted with 

caution. The Lee's D method (2010) chosen for classification indices is a single form procedure 

based its underlying assumption of parallelism between test forms. For example, in Figure 4.4, it 

is evident that the classification indices are highest for Y Same RC as a whole. However, it is 

important to recognize that the dimensional structure of Y Same RC is not equivalent to the base 

form, X Base. Therefore, it is crucial to ensure that the prerequisite of form parallelism is met 

before interpreting the indices accurately. If there are variations in classification indices between 

forms, it may indicate a change between those forms. 

When a test aims to measure a primary latent trait but is contaminated with a nuisance 

factor, it is essential to minimize the influence of the nuisance factor to obtain desirable equating 

results. The findings indicate that SL and HB methods are recommended regardless of the test 

structures. However, if the forms have test structures that are not comparable to each other, it 

becomes crucial to minimize the ability disparity of the nuisance dimension between populations 

and to increase the correlation between dimensions. 

Regarding classification consistency and accuracy, the findings suggest that minimizing 

the shift in the nuisance ability is of utmost importance. Overall, the concurrent calibration 

method is the preferred choice for achieving optimal classification consistency and accuracy. 
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Limitations and Directions for Future Research 

In this section, the limitations of the current study are discussed. It should first be 

acknowledged that the item parameters might not accurately represent real-world conditions. To 

be specific, operational items may not behave as being hypothesized in the simulation conditions, 

which were aimed to exemplify distinct test structures in linking and equating scenarios. For 

example, all items may not measure two latent traits evenly as shown in X Base Form in MC-I. 

Additionally, for MC-II, different angles can be applied other than 20 degree for the validity 

sector and 60 degree for the item spread as an influence of the nuisance factor. Importantly, 

incorporating real data analysis within this context could enhance the research design and 

provide additional support. 

Second, along with the first limitation, the base model employed a 2-dimensional MIRT 

model with a complex test structure. The complex MIRT model is commonly employed for 

exploratory purposes; however, in operational testing settings, a confirmatory MIRT model is 

defined in advance based on specific criteria. These criteria may include using different item 

formats, such as multiple-choice items and construct response items, for a simple structured 

MIRT model;  item bundles for a testlet model; or a test consisting of a general factor with 

multiple specific factors for a bifactor model. Furthermore, a complex MIRT model is not 

identifiable which prevents calibration of the simulated data to obtain empirical information for 

its comparison with UIRT. This limitation restricts the evaluation of equating equity indices in 

comparison with results from calibration of generated response data.  

Third, the present study employed a non-equivalent group anchor item design for 

equating purposes. This design utilizes a set of common items to account for the impact of 

population differences and variations in form difficulty. However, it is suggested that a random 
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group equating design may be more effective in investigating the influence of test structures, as it 

reduces the complexity of the study design by controlling for the impact of population 

differences. Furthermore, the utilization of a common item set could potentially distort the 

original dimensional structures being examined. One consideration is that applying the random 

group design in operational testing scenarios may pose a challenge due to the potential 

inconsistency in the test dimensionality over time under different internal and external testing 

conditions. 

Fourth, setting the cut score should rely on maximizing the information of parallel forms 

and ensuring same information to be shared across parallel forms. Regrettably, this pivotal aspect 

was overlooked in the present study, which concentrated on variations in test structures instead. 

It would be prudent to include this consideration when assessing classification indices. 

Fifth, unlike equating equity indices D1 and D2 (Tong & Kolen, 2005) which are  

standardized, the D12 index (Bolt, 1999; Thomasson, 1993) employed in the study is not a 

standardized measure, indicating its dependency on the specific test being examined. Thus, the 

interpretation of results primarily relies on relative comparisons, lacking an objective criterion 

for assessment. 

Sixth, in future research, it would be valuable to quantify multidimensionality. Within 

practical contexts, exploring the threshold of multidimensionality within the UIRT framework 

holds importance for assessing its impact. One potential method involves assessing the 

consistency of pass rates by adjusting the degree of reference composites between two forms. 

The last but not least, with regards to OSE in both MIRT and UIRT, when MIRT is 

compensatory and monotonically increasing on latent variables, the equating results between 

MIRT  and its UIRT equivalent model produce similar outcomes, as demonstrated later. 
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However, it is important to note that these equating procedures are unable to account for 

dimension-specific changes in item difficulty across test forms (Bolt, 1999). When 

multidimensional response data is calibrated using UIRT, the multidimensional scale is collapsed 

into a unidimensional scale, resulting in the loss of dimension-specific information. 

Although MIRT true score equating has not been proposed due to the one-to-many 

relationship between an integer score and infinite coordinates of latent variables that give the 

specific score on the test characteristic function, it is possible to approximate equated scores by 

averaging a finite number of the coordinates, which are carefully chosen. This introduces the 

possibility of future research on approximate MIRT true score equating, which is elucidated in 

the following section.  

Approximate MIRT TSE  

In ATM (Approximate Multidimensional Item Response Model True Score Equating), 

equated scores can be obtained by an approximation process with a small tolerance level, or 

precision. Its procedure is similar to that of the UIRT TSE, but involves several technical 

specifics. That is, the AMT equating procedure involves (first) specifying integer scores on a 

new form, (second) finding  coordinates corresponding to the score with an appropriate 

precision level (e.g., 0.1), (third) determining score equivalents through the TCS of the old form, 

and (last) finally obtaining the equated scores by averaging score equivalents through three 

weighting schemes.  

The first weighting method is no-weighting or equal weighting approach. The second 

option is integer-value weighting method, which uses the conditional summed score probability 

distribution obtained through the LW recursive formula (Lord & Wingersky, 1984). This method 

involves rounding the score equivalents on the old form to integers in order to determine the 
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conditional probabilities corresponding to score equivalents as weights. However, this rounding 

process can introduce significant rounding errors. To mitigate this issue, the real-value weighting 

scheme can be employed. This approach aims to minimize the impact of rounding errors by 

computing a conditional real-value summed score probability distribution using the generalized 

LW algorithm (Kim, 2013). It is worth noting that the real-value weighting scheme may require 

higher computational cost. 

A hypothetical example of the no-weighting AMT and the integer-weighting AMT is 

illustrated in Table 16. The real-value weighting AMT follows a similar computation approach to 

the integer-weighting AMT method. Figure 26 illustrates the discrete test characteristics surface 

of Form X with theta coordinates for each integer score, indicating the inconsistency of accuracy 

in approximation due to the different numbers of coordinates and coverage of latent trait space. 

The contour plot shown in Figure 27 depicts ten theta coordinates evenly spaced along the 

optimal line, representing a score of 5 on a 10-item test. By employing the equal number of 

equidistant theta coordinates on the optimal line for each score, the problem of inconsistency is 

expected to be effectively resolved. In Figure 28, the conditional observed score probabilities of 

the X Base form are visually represented. These probabilities serve as weights for corresponding 

score equivalents. 

Figure 29 illustrates the difference between the Y form scores and their equated scores in 

MC-I. The generating MIRT has items that maintain the test structures of the whole test without  

the anchor item set (to maintain the intended dimensional structures), which can be considered as 

a random group equating design. The linear composite UIRT obtained the item parameters from 

the MIRT item parameters using the formula (Zhang & Wang, 1988). The baseline, referred to as 
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X Base, acts as a reference point obtained from identity equating to assess the effectiveness of 

the AMP procedure in equating.  

When the test structures of forms are similar, equating results between MIRT OSE, UIRT 

OSE, and TSE closely align, visualized in Figure 31 for MC-I and Figure 32 for MC-II. 

However, the score differences observed in ATM differ from those of the three conventional 

equating methods due to ATM's ability to consider dimensions-specific score change between 

forms. Figure 29 visualizes the TCSs of X Base and Y Base, while Figure 30 displays the TCSs 

of X Base and Y Same RC, providing an illustration of the score difference depicted in Figure 

30. For example, the equated scores of Y Base exceed those of X Base, indicating that Y Base is 

generally more challenging than X Base except for two extreme score regions in Figure 29. The 

plot on the bottom right of Figure 31 shows the score difference clearly with symbols in red. In 

order to compare the weighting schemes, two different approaches are represented: no-weighting 

using * and integer-weighting using ** in Figure 31 and 32. 

In short, AMT provides richer interpretation of the equating result because it absorbs the 

information of the dimension-specific changes in (expected) scores on TCSs between forms, 

unlike the conventional IRT equating procedures (see Bolt, 1999) . To be specific, for successful 

AMT equating, two test forms to be equated are required to have not only monotonicity of a test 

characteristic function for TSE and a cumulative probability function for OSE but also a 

congruent dimensional structure between forms. Thus,  AMT could add a validity value to the 

current definition of equating, which has been viewed as a "statistical" procedure, but from the 

AMT perspective, equating could be used as a validity tool to assess and validate the degree of 

alignment in the test structures of two forms in the equating context.
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Table 16. An Illustrative example of AMT 
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∗ 𝑃𝑖  

Score 

on Y 

Theta 

Coordinates 

Equivalent 

Scores on X 

Equated 

Score Y on 

X 

Rounded 

Scores on X 

Corresponding  

Conditional 

Probabilities 

Summed 

Conditional 

Probabilities 

Normalized 

Weights 

Expected 

Equivalent 

Scores 

Equated 

Score Y on 

X 

30      

out of 

50 

(-1.5, 1.5) 29.3 

30.50 

29 0.003 0.003 0.08 2.35 

30.49 

(-1.0, 1.0) 29.6 30 0.008 
0.016 0.43 12.97 

(-0.5, 0.5) 30.0 30 0.008 

(0, 0) 30.8 31 0.005 

0.015 0.41 12.57 (0.5, -0.5) 30.7 31 0.005 

(1.0, -1.0) 31.4 31 0.005 

(1.5, -1.5) 31.6 32 0.003 0.003 0.08 2.59 
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 Figure 26. Test Characteristic Surface of X Base with Theta Coordinates in Red 
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Figure 27. Ten Equidistant Theta Coordinates Located on the Optimal Line that 

Represents a Score of 5 on a 10-item Test in a Contour Plot 
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Figure 28. Conditional Observed Score Probability of X Base 
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Figure 29. Test Characteristic Surface of X Base in Red and Y Base in Blue 
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Figure 30. Test Characteristic Surface of X Base in Red and Y Same RC in Blue 
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Figure 31. Comparison of Equating Score Difference in MC-I 

 

Equated scores were truncated at 8 which is larger than the sum of guessings in AMT equating. 
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Figure 32. Comparison of Equating Score Difference in MC-II 

 

Equated scores were truncated at 8 which is larger than the sum of guessings in AMT equating. 
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APPENDIX A: GENERATING ITEM PARAMETERS 

 

MC-I 

<X BASE> 

 

Item ID a1 a2 d g alpha MDISC MID RC_Angle 

1 0.6 0.6 -0.1 0.15 45 0.86 0.12 45 

2 1.01 1.01 -0.13 0.11 45 1.43 0.09 45 

3 0.57 0.57 0.22 0.18 45 0.81 -0.27 45 

4 0.95 0.95 1.24 0.15 45 1.35 -0.92 45 

5 0.83 0.83 1.17 0.15 45 1.17 -1 45 

6 1.06 1.06 0.01 0.12 45 1.5 0 45 

7 0.72 0.72 0.95 0.12 45 1.02 -0.94 45 

8 0.77 0.77 1.4 0.16 45 1.09 -1.29 45 

9 0.94 0.94 0.11 0.16 45 1.33 -0.09 45 

10 0.8 0.8 0.8 0.09 45 1.14 -0.7 45 

11 1.04 1.04 0.03 0.07 45 1.46 -0.02 45 

12 0.67 0.67 -0.15 0.17 45 0.95 0.16 45 

13 0.64 0.64 0.9 0.19 45 0.9 -1 45 

14 0.66 0.66 -0.45 0.16 45 0.94 0.48 45 

15 0.73 0.73 0.79 0.16 45 1.04 -0.76 45 

16 1.02 1.02 -0.65 0.16 45 1.45 0.45 45 

17 0.85 0.85 -0.35 0.2 45 1.2 0.29 45 

18 1.11 1.11 -0.6 0.15 45 1.56 0.38 45 

19 0.7 0.7 -0.36 0.17 45 0.99 0.37 45 

20 0.98 0.98 -0.81 0.16 45 1.38 0.58 45 

21 1.12 1.12 0.62 0.12 45 1.58 -0.39 45 

22 0.79 0.79 1.2 0.12 45 1.12 -1.07 45 

23 0.59 0.59 0.96 0.18 45 0.84 -1.14 45 

24 0.63 0.63 1 0.15 45 0.89 -1.13 45 

25 1.13 1.13 0.17 0.11 45 1.6 -0.1 45 

26 0.86 0.86 0.05 0.18 45 1.22 -0.04 45 

27 0.87 0.87 1.04 0.1 45 1.23 -0.84 45 

28 0.92 0.92 0.53 0.19 45 1.3 -0.41 45 

29 0.9 0.9 0.65 0.16 45 1.27 -0.52 45 

30 0.81 0.81 -0.08 0.16 45 1.15 0.07 45 

31 0.93 0.93 -0.29 0.13 45 1.32 0.22 45 

32 0.84 0.84 1.48 0.15 45 1.18 -1.25 45 

33 0.65 0.65 0.6 0.15 45 0.92 -0.65 45 

34 0.97 0.97 -0.43 0.11 45 1.37 0.31 45 
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35 0.99 0.99 -0.63 0.16 45 1.4 0.45 45 

36 1 1 0.22 0.09 45 1.41 -0.16 45 

37 1.08 1.08 1.31 0.13 45 1.53 -0.86 45 

38 0.78 0.78 0.52 0.12 45 1.1 -0.47 45 

39 1.05 1.05 1.44 0.13 45 1.48 -0.97 45 

40 1.09 1.09 0.84 0.19 45 1.55 -0.55 45 

41 0.88 0.88 -0.08 0.15 45 1.25 0.06 45 

42 0.71 0.71 0.11 0.18 45 1 -0.11 45 

43 1.07 1.07 -0.59 0.19 45 1.51 0.39 45 

44 0.74 0.74 -0.92 0.14 45 1.05 0.87 45 

45 0.58 0.58 0.8 0.08 45 0.82 -0.98 45 

46 0.62 0.62 -0.7 0.13 45 0.87 0.8 45 

47 0.69 0.69 0.14 0.17 45 0.97 -0.15 45 

48 1.14 1.14 0.62 0.13 45 1.61 -0.38 45 

49 0.76 0.76 1.48 0.17 45 1.07 -1.38 45 

50 0.91 0.91 0.26 0.19 45 1.28 -0.21 45 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, RC_Angle = test measurement direction, Common Items 

in bold 

 

<Y BASE> 

 

Item ID a1 a2 d g alpha MDISC MID RC_Angle 

1 0.88 0.88 -0.15 0.08 45 1.25 0.12 45 

2 0.67 0.67 -0.68 0.2 45 0.95 0.71 45 

3 0.57 0.57 0.22 0.18 45 0.81 -0.27 45 

4 0.95 0.95 1.24 0.15 45 1.35 -0.92 45 

5 0.64 0.64 0.41 0.15 45 0.9 -0.45 45 

6 0.71 0.71 -0.06 0.16 45 1 0.06 45 

7 1.06 1.06 0.05 0.19 45 1.5 -0.03 45 

8 0.85 0.85 -0.44 0.09 45 1.2 0.37 45 

9 0.79 0.79 -0.85 0.18 45 1.12 0.76 45 

10 0.76 0.76 0.39 0.16 45 1.07 -0.36 45 

11 0.66 0.66 1.37 0.11 45 0.94 -1.46 45 

12 1.07 1.07 0.18 0.06 45 1.51 -0.12 45 

13 0.8 0.8 0.1 0.17 45 1.14 -0.09 45 

14 0.72 0.72 0.43 0.13 45 1.02 -0.42 45 

15 0.93 0.93 0.25 0.14 45 1.32 -0.19 45 

16 0.87 0.87 -0.76 0.07 45 1.23 0.62 45 

17 0.85 0.85 -0.35 0.2 45 1.2 0.29 45 

18 0.58 0.58 0.35 0.19 45 0.82 -0.43 45 
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19 0.91 0.91 -0.01 0.15 45 1.28 0.01 45 

20 0.9 0.9 1.46 0.1 45 1.27 -1.16 45 

21 1.12 1.12 0.62 0.12 45 1.58 -0.39 45 

22 1.13 1.13 -0.6 0.16 45 1.6 0.38 45 

23 0.59 0.59 0.96 0.18 45 0.84 -1.14 45 

24 0.74 0.74 0.06 0.1 45 1.05 -0.06 45 

25 1.02 1.02 1.35 0.13 45 1.45 -0.93 45 

26 0.86 0.86 0.05 0.18 45 1.22 -0.04 45 

27 0.73 0.73 0.47 0.15 45 1.04 -0.45 45 

28 1.08 1.08 0.56 0.19 45 1.53 -0.37 45 

29 0.97 0.97 1.1 0.11 45 1.37 -0.8 45 

30 0.62 0.62 0.69 0.15 45 0.87 -0.79 45 

31 1 1 1.35 0.14 45 1.41 -0.96 45 

32 0.98 0.98 1.11 0.17 45 1.38 -0.8 45 

33 0.65 0.65 0.6 0.15 45 0.92 -0.65 45 

34 1.11 1.11 -0.18 0.17 45 1.56 0.12 45 

35 0.99 0.99 -0.63 0.16 45 1.4 0.45 45 

36 0.59 0.59 -0.88 0.14 45 0.84 1.05 45 

37 1.05 1.05 0.22 0.1 45 1.48 -0.15 45 

38 0.78 0.78 0.52 0.12 45 1.1 -0.47 45 

39 1.14 1.14 1.26 0.14 45 1.61 -0.78 45 

40 0.92 0.92 0.91 0.2 45 1.3 -0.7 45 

41 0.88 0.88 -0.08 0.15 45 1.25 0.06 45 

42 0.83 0.83 -0.34 0.16 45 1.17 0.29 45 

43 0.57 0.57 -0.82 0.18 45 0.81 1.02 45 

44 1.09 1.09 1.41 0.18 45 1.55 -0.91 45 

45 0.77 0.77 0.1 0.18 45 1.09 -0.09 45 

46 0.7 0.7 0.72 0.19 45 0.99 -0.73 45 

47 0.6 0.6 1.47 0.09 45 0.86 -1.72 45 

48 0.95 0.95 -0.78 0.13 45 1.35 0.58 45 

49 1.04 1.04 1.21 0.15 45 1.46 -0.83 45 

50 0.78 0.78 0.15 0.14 45 1.1 -0.14 45 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, RC_Angle = test measurement direction, Common Items in bold 

 

<Y SAME RC> 

 

Item ID a1 a2 d g alpha MDISC MID RC_Angle 

1 0.57 0.99 0.84 0.17 60 1.14 -0.74 45 

2 0.59 1.03 1.44 0.18 60 1.19 -1.21 45 

3 0.57 0.57 0.22 0.18 45 0.81 -0.27 45 
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4 0.95 0.95 1.24 0.15 45 1.35 -0.92 45 

5 0.67 1.15 0.15 0.18 60 1.33 -0.12 45 

6 0.69 1.19 1.13 0.1 60 1.38 -0.82 45 

7 0.71 1.23 0.45 0.12 60 1.43 -0.31 45 

8 0.74 1.28 1.41 0.19 60 1.47 -0.95 45 

9 0.76 1.32 1.39 0.15 60 1.52 -0.91 45 

10 0.78 1.36 -0.25 0.19 60 1.57 0.16 45 

11 0.81 1.4 0.86 0.19 60 1.62 -0.53 45 

12 0.83 1.44 -0.78 0.18 60 1.66 0.47 45 

13 0.86 1.48 1.26 0.16 60 1.71 -0.73 45 

14 0.88 1.52 -0.62 0.16 60 1.76 0.35 45 

15 0.9 1.56 0.41 0.18 60 1.81 -0.23 45 

16 0.93 1.6 0.52 0.15 60 1.85 -0.28 45 

17 0.85 0.85 -0.35 0.2 45 1.2 0.29 45 

18 0.97 1.69 0.3 0.16 60 1.95 -0.15 45 

19 1 1.73 -0.05 0.11 60 2 0.03 45 

20 1.02 1.77 -0.94 0.18 60 2.04 0.46 45 

21 1.12 1.12 0.62 0.12 45 1.58 -0.39 45 

22 1.07 1.85 1.21 0.1 60 2.14 -0.57 45 

23 0.59 0.59 0.96 0.18 45 0.84 -1.14 45 

24 1.12 1.93 0.06 0.1 60 2.23 -0.03 45 

25 1.14 1.97 1.31 0.04 60 2.28 -0.57 45 

26 0.86 0.86 0.05 0.18 45 1.22 -0.04 45 

27 1.03 0.59 0.21 0.19 30 1.19 -0.18 45 

28 1.07 0.62 0.66 0.09 30 1.24 -0.54 45 

29 1.11 0.64 -0.55 0.1 30 1.28 0.43 45 

30 1.15 0.67 -0.72 0.08 30 1.33 0.54 45 

31 1.19 0.69 1.16 0.07 30 1.38 -0.84 45 

32 1.23 0.71 -0.36 0.19 30 1.43 0.25 45 

33 0.65 0.65 0.6 0.15 45 0.92 -0.65 45 

34 1.32 0.76 1.13 0.11 30 1.52 -0.74 45 

35 0.99 0.99 -0.63 0.16 45 1.4 0.45 45 

36 1.4 0.81 1.44 0.13 30 1.62 -0.89 45 

37 1.44 0.83 1.18 0.13 30 1.66 -0.71 45 

38 0.78 0.78 0.52 0.12 45 1.1 -0.47 45 

39 1.52 0.88 -0.4 0.14 30 1.76 0.23 45 

40 1.56 0.9 0.94 0.17 30 1.81 -0.52 45 

41 0.88 0.88 -0.08 0.15 45 1.25 0.06 45 

42 1.65 0.95 -0.84 0.17 30 1.9 0.44 45 

43 1.69 0.97 -0.46 0.19 30 1.95 0.24 45 

44 1.73 1 1.14 0.19 30 2 -0.57 45 
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45 1.77 1.02 0.65 0.18 30 2.04 -0.32 45 

46 1.81 1.05 1.18 0.13 30 2.09 -0.56 45 

47 1.85 1.07 1.04 0.07 30 2.14 -0.49 45 

48 1.89 1.09 -0.06 0.19 30 2.19 0.03 45 

49 1.93 1.12 -0.73 0.17 30 2.23 0.33 45 

50 1.97 1.14 0.46 0.16 30 2.28 -0.2 45 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, RC_Angle = test measurement direction, Common Items 

in bold 

 

<Y DIFF RC> 

 

Item 

ID 
a1 a2 d g alpha MDISC MID RC_Angle 

1 0.29 0.78 1.32 0.17 70 0.83 -1.59 51.68 

2 0.3 0.82 -0.39 0.1 70 0.87 0.44 51.68 

3 0.57 0.57 0.22 0.18 45 0.81 -0.27 45 

4 0.95 0.95 1.24 0.15 45 1.35 -0.92 45 

5 0.33 0.91 -0.13 0.09 70 0.97 0.14 51.68 

6 0.34 0.95 1.17 0.19 70 1.01 -1.16 51.68 

7 0.36 0.98 -0.52 0.19 70 1.04 0.5 51.68 

8 0.37 1.01 0.26 0.19 70 1.08 -0.24 51.68 

9 0.38 1.04 0.1 0.19 70 1.11 -0.09 51.68 

10 0.39 1.08 0.43 0.09 70 1.15 -0.38 51.68 

11 0.4 1.11 0.66 0.14 70 1.18 -0.56 51.68 

12 0.42 1.14 1.45 0.16 70 1.22 -1.19 51.68 

13 0.43 1.17 -0.38 0.1 70 1.25 0.3 51.68 

14 0.44 1.21 -0.36 0.18 70 1.28 0.28 51.68 

15 0.45 1.24 1 0.18 70 1.32 -0.76 51.68 

16 0.46 1.27 1.09 0.08 70 1.35 -0.8 51.68 

17 0.85 0.85 -0.35 0.2 45 1.2 0.29 45 

18 0.49 1.34 1.41 0.19 70 1.42 -0.99 51.68 

19 0.5 1.37 -0.59 0.07 70 1.46 0.4 51.68 

20 0.51 1.4 -0.6 0.13 70 1.49 0.4 51.68 

21 1.12 1.12 0.62 0.12 45 1.58 -0.39 45 

22 0.53 1.47 0.29 0.16 70 1.56 -0.19 51.68 

23 0.59 0.59 0.96 0.18 45 0.84 -1.14 45 

24 0.56 1.53 -0.1 0.14 70 1.63 0.06 51.68 

25 0.57 1.57 0.67 0.14 70 1.67 -0.4 51.68 

26 0.86 0.86 0.05 0.18 45 1.22 -0.04 45 

27 0.82 0.68 -0.09 0.1 40 1.06 0.08 51.68 
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28 0.85 0.71 -0.59 0.09 40 1.11 0.53 51.68 

29 0.88 0.74 0.66 0.2 40 1.15 -0.58 51.68 

30 0.91 0.77 -0.5 0.15 40 1.19 0.42 51.68 

31 0.95 0.79 1.39 0.14 40 1.24 -1.12 51.68 

32 0.98 0.82 1.25 0.11 40 1.28 -0.98 51.68 

33 0.65 0.65 0.6 0.15 45 0.92 -0.65 45 

34 1.04 0.88 0.82 0.17 40 1.36 -0.6 51.68 

35 0.99 0.99 -0.63 0.16 45 1.4 0.45 45 

36 1.11 0.93 0.96 0.2 40 1.45 -0.67 51.68 

37 1.14 0.96 -0.92 0.16 40 1.49 0.62 51.68 

38 0.78 0.78 0.52 0.12 45 1.1 -0.47 45 

39 1.21 1.01 1.48 0.11 40 1.58 -0.94 51.68 

40 1.24 1.04 -0.07 0.15 40 1.62 0.05 51.68 

41 0.88 0.88 -0.08 0.15 45 1.25 0.06 45 

42 1.31 1.1 0.99 0.15 40 1.7 -0.58 51.68 

43 1.34 1.12 0.78 0.12 40 1.75 -0.45 51.68 

44 1.37 1.15 0.22 0.19 40 1.79 -0.12 51.68 

45 1.4 1.18 0.26 0.17 40 1.83 -0.14 51.68 

46 1.44 1.2 -0.2 0.11 40 1.87 0.1 51.68 

47 1.47 1.23 0.75 0.15 40 1.92 -0.39 51.68 

48 1.5 1.26 1.07 0.17 40 1.96 -0.54 51.68 

49 1.53 1.29 0.12 0.15 40 2 -0.06 51.68 

50 1.57 1.31 0.31 0.2 40 2.04 -0.15 51.68 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, RC_Angle = test measurement direction, Common Items 

in bold 

 

MC-II 

<X BASE> 

 

Item  ID a1 a2 d g alpha MDISC MID CVI RC_Angle 

1 1.05 0.38 -0.03 0.15 19.95 1.12 0.02 0.95 6.95 

2 1.15 0.41 1 0.15 19.52 1.22 -0.82 0.95 6.95 

3 1.43 0.5 0.78 0.17 19.09 1.51 -0.51 0.96 6.95 

4 1.19 0.4 1.21 0.09 18.65 1.26 -0.96 0.96 6.95 

5 0.75 0.25 -0.66 0.17 18.19 0.79 0.84 0.96 6.95 

6 0.91 0.29 -0.16 0.18 17.73 0.96 0.17 0.97 6.95 

7 0.62 0.19 -0.68 0.12 17.25 0.65 1.05 0.97 6.95 

8 0.63 0.19 -0.51 0.07 16.76 0.66 0.77 0.97 6.95 

9 1.14 0.33 1.09 0.14 16.26 1.19 -0.92 0.98 6.95 

10 0.85 0.24 -1.17 0.13 15.74 0.88 1.33 0.98 6.95 
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11 0.92 0.25 -0.29 0.15 15.2 0.96 0.31 0.98 6.95 

12 1.44 0.38 -0.28 0.14 14.65 1.49 0.19 0.98 6.95 

13 0.88 0.22 -0.19 0.19 14.07 0.91 0.21 0.99 6.95 

14 0.73 0.17 -0.97 0.11 13.47 0.75 1.29 0.99 6.95 

15 1.19 0.27 -0.7 0.1 12.84 1.22 0.58 0.99 6.95 

16 0.51 0.11 0.48 0.16 12.18 0.52 -0.92 0.99 6.95 

17 1.19 0.24 0.95 0.06 11.48 1.21 -0.78 0.99 6.95 

18 1.29 0.24 -0.24 0.08 10.73 1.31 0.18 1 6.95 

19 1.01 0.18 -1.02 0.18 9.94 1.02 1 1 6.95 

20 0.81 0.13 -0.63 0.19 9.07 0.82 0.77 1 6.95 

21 1.24 0.18 0.91 0.12 8.11 1.25 -0.73 1 6.95 

22 0.8 0.1 -1.01 0.17 7.02 0.81 1.24 1 6.95 

23 1.27 0.13 0.87 0.13 5.73 1.28 -0.68 1 6.95 

24 0.61 0.04 0.07 0.2 4.05 0.61 -0.12 1 6.95 

25 1.3 0 -0.54 0.18 0 1.3 0.42 0.98 6.95 

26 1 0 -0.67 0.18 0 1 0.67 0.98 6.95 

27 1 0 0.91 0.12 0 1 -0.91 0.98 6.95 

28 1 0 -1.19 0.08 0 1 1.19 0.98 6.95 

29 1 0 1.01 0.14 0 1 -1.01 0.98 6.95 

30 1 0 -1.26 0.18 0 1 1.26 0.98 6.95 

31 1 0 0.65 0.19 0 1 -0.65 0.98 6.95 

32 1 0 1.09 0.17 0 1 -1.09 0.98 6.95 

33 1 0 1.44 0.17 0 1 -1.44 0.98 6.95 

34 1 0 -0.75 0.19 0 1 0.75 0.98 6.95 

35 1 0 -1.43 0.17 0 1 1.43 0.98 6.95 

36 1 0 -0.83 0.19 0 1 0.83 0.98 6.95 

37 1 0 -1.13 0.15 0 1 1.13 0.98 6.95 

38 1 0 -0.34 0.17 0 1 0.34 0.98 6.95 

39 1 0 -1.25 0.1 0 1 1.25 0.98 6.95 

40 1 0 -0.65 0.18 0 1 0.65 0.98 6.95 

41 1 0 0.2 0.08 0 1 -0.2 0.98 6.95 

42 1 0 -0.51 0.13 0 1 0.51 0.98 6.95 

43 1 0 1.33 0.14 0 1 -1.33 0.98 6.95 

44 1 0 -0.37 0.19 0 1 0.37 0.98 6.95 

45 1 0 1.36 0.2 0 1 -1.36 0.98 6.95 

46 1 0 -0.68 0.07 0 1 0.68 0.98 6.95 

47 1 0 0.56 0.16 0 1 -0.56 0.98 6.95 

48 1 0 -1.09 0.07 0 1 1.09 0.98 6.95 

49 1 0 0.93 0.16 0 1 -0.93 0.98 6.95 

50 1 0 0.79 0.09 0 1 -0.79 0.98 6.95 
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Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, CVI = validity index,  RC_Angle = test measurement 

direction, Common Items in bold 

 

<Y BASE> 

 

Item  ID a1 a2 d g alpha MDISC MID CVI RC_Angle 

1 0.82 0.3 0.2 0.13 19.95 0.87 -0.22 0.95 7.69 

2 1.15 0.41 1 0.15 19.52 1.22 -0.82 0.95 6.95 

3 1.39 0.48 -0.04 0.08 19.09 1.47 0.03 0.96 7.69 

4 1.33 0.45 1.41 0.12 18.65 1.4 -1 0.96 7.69 

5 0.75 0.25 -0.66 0.17 18.19 0.79 0.84 0.96 6.95 

6 1.2 0.38 -0.46 0.17 17.73 1.25 0.36 0.97 7.69 

7 0.62 0.19 -0.68 0.12 17.25 0.65 1.05 0.97 6.95 

8 1.48 0.45 -1.15 0.1 16.76 1.55 0.74 0.97 7.69 

9 1.1 0.32 -1.43 0.16 16.26 1.14 1.25 0.98 7.69 

10 0.61 0.17 -0.86 0.14 15.74 0.63 1.37 0.98 7.69 

11 0.92 0.25 -0.29 0.15 15.2 0.96 0.31 0.98 6.95 

12 0.68 0.18 0.33 0.05 14.65 0.7 -0.47 0.98 7.69 

13 1.15 0.29 -0.78 0.15 14.07 1.18 0.66 0.99 7.69 

14 0.59 0.14 -0.53 0.11 13.47 0.61 0.87 0.99 7.69 

15 1.46 0.33 -1.17 0.14 12.84 1.5 0.78 0.99 7.69 

16 0.77 0.17 -0.91 0.14 12.18 0.79 1.16 0.99 7.69 

17 1.43 0.29 0.54 0.11 11.48 1.46 -0.37 0.99 7.69 

18 1.48 0.28 0.32 0.1 10.73 1.51 -0.22 1 7.69 

19 1.16 0.2 0.57 0.15 9.94 1.17 -0.48 1 7.69 

20 0.75 0.12 1.4 0.13 9.07 0.76 -1.84 1 7.69 

21 0.95 0.14 0.92 0.12 8.11 0.96 -0.95 1 7.69 

22 0.75 0.09 1.31 0.08 7.02 0.76 -1.73 1 7.69 

23 1.27 0.13 0.87 0.13 5.73 1.28 -0.68 1 6.95 

24 0.62 0.04 1.11 0.14 4.05 0.62 -1.79 1 7.69 

25 0.97 0 0.71 0.09 0 0.97 -0.73 0.98 7.69 

26 1 0 -0.67 0.18 0 1 0.67 0.98 6.95 

27 1 0 -0.06 0.14 0 1 0.06 0.98 7.69 

28 1 0 0.05 0.2 0 1 -0.05 0.98 7.69 

29 1 0 1.01 0.14 0 1 -1.01 0.98 6.95 

30 1 0 0.41 0.2 0 1 -0.41 0.98 7.69 

31 1 0 -0.43 0.14 0 1 0.43 0.98 7.69 

32 1 0 -1.16 0.18 0 1 1.16 0.98 7.69 

33 1 0 -0.34 0.18 0 1 0.34 0.98 7.69 

34 1 0 -0.18 0.11 0 1 0.18 0.98 7.69 
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35 1 0 0.8 0.18 0 1 -0.8 0.98 7.69 

36 1 0 -0.27 0.17 0 1 0.27 0.98 7.69 

37 1 0 -1.13 0.15 0 1 1.13 0.98 6.95 

38 1 0 0.19 0.12 0 1 -0.19 0.98 7.69 

39 1 0 -1.43 0.19 0 1 1.43 0.98 7.69 

40 1 0 -0.65 0.18 0 1 0.65 0.98 6.95 

41 1 0 0.2 0.08 0 1 -0.2 0.98 6.95 

42 1 0 0.59 0.2 0 1 -0.59 0.98 7.69 

43 1 0 -0.72 0.16 0 1 0.72 0.98 7.69 

44 1 0 -1.09 0.19 0 1 1.09 0.98 7.69 

45 1 0 -1.37 0.15 0 1 1.37 0.98 7.69 

46 1 0 0.1 0.19 0 1 -0.1 0.98 7.69 

47 1 0 0.64 0.19 0 1 -0.64 0.98 7.69 

48 1 0 0.22 0.17 0 1 -0.22 0.98 7.69 

49 1 0 0.22 0.16 0 1 -0.22 0.98 7.69 

50 1 0 -0.1 0.19 0 1 0.1 0.98 7.69 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, CVI = validity index,  RC_Angle = test measurement 

direction, Common Items in bold 

 

<Y 60> 

 

Item  ID a1 a2 d g alpha MDISC MID CVI RC_Angle 

1 1.13 1.96 0.44 0.15 60 2.26 -0.2 0.37 29.4 

2 1.15 0.41 1 0.15 19.52 1.22 -0.82 0.95 6.95 

3 0.85 1.32 -1.34 0.06 57.2 1.57 0.85 0.41 29.4 

4 0.63 0.93 -1.17 0.16 55.77 1.13 1.04 0.44 29.4 

5 0.75 0.25 -0.66 0.17 18.19 0.79 0.84 0.96 6.95 

6 0.85 1.12 0.37 0.11 52.83 1.41 -0.26 0.49 29.4 

7 0.62 0.19 -0.68 0.12 17.25 0.65 1.05 0.97 6.95 

8 1.03 1.22 -0.51 0.2 49.77 1.6 0.32 0.54 29.4 

9 0.84 0.93 -1.05 0.18 48.19 1.25 0.84 0.57 29.4 

10 0.81 0.86 -0.58 0.09 46.57 1.18 0.49 0.6 29.4 

11 0.92 0.25 -0.29 0.15 15.2 0.96 0.31 0.98 6.95 

12 0.52 0.49 0.74 0.16 43.18 0.71 -1.04 0.66 29.4 

13 0.54 0.47 -1.31 0.15 41.41 0.72 1.83 0.68 29.4 

14 1.38 1.14 -1.23 0.04 39.57 1.79 0.69 0.71 29.4 

15 0.9 0.7 0.35 0.15 37.66 1.14 -0.31 0.74 29.4 

16 0.97 0.7 -0.75 0.15 35.66 1.19 0.63 0.77 29.4 

17 0.9 0.6 0.27 0.17 33.56 1.08 -0.25 0.8 29.4 

18 1.2 0.73 -0.93 0.17 31.33 1.41 0.66 0.83 29.4 
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19 0.9 0.5 -0.54 0.18 28.96 1.03 0.52 0.86 29.4 

20 1 0.5 -0.26 0.1 26.38 1.12 0.23 0.89 29.4 

21 0.54 0.23 0.8 0.11 23.56 0.59 -1.37 0.92 29.4 

22 0.8 0.3 -1.36 0.18 20.36 0.85 1.6 0.95 29.4 

23 1.27 0.13 0.87 0.13 5.73 1.28 -0.68 1 6.95 

24 1.44 0.3 -0.91 0.17 11.72 1.47 0.62 0.99 29.4 

25 1.46 0 -0.56 0.1 0 1.46 0.38 0.98 29.4 

26 1 0 -0.67 0.18 0 1 0.67 0.98 6.95 

27 1 0 0.62 0.13 0 1 -0.62 0.98 29.4 

28 1 0 0.16 0.11 0 1 -0.16 0.98 29.4 

29 1 0 1.01 0.14 0 1 -1.01 0.98 6.95 

30 1 0 -1.1 0.11 0 1 1.1 0.98 29.4 

31 1 0 0.47 0.09 0 1 -0.47 0.98 29.4 

32 1 0 0.24 0.07 0 1 -0.24 0.98 29.4 

33 1 0 0.78 0.19 0 1 -0.78 0.98 29.4 

34 1 0 -1.48 0.14 0 1 1.48 0.98 29.4 

35 1 0 -0.04 0.19 0 1 0.04 0.98 29.4 

36 1 0 -0.6 0.09 0 1 0.6 0.98 29.4 

37 1 0 -1.13 0.15 0 1 1.13 0.98 6.95 

38 1 0 0.37 0.18 0 1 -0.37 0.98 29.4 

39 1 0 -0.86 0.16 0 1 0.86 0.98 29.4 

40 1 0 -0.65 0.18 0 1 0.65 0.98 6.95 

41 1 0 0.2 0.08 0 1 -0.2 0.98 6.95 

42 1 0 -0.31 0.2 0 1 0.31 0.98 29.4 

43 1 0 -0.57 0.13 0 1 0.57 0.98 29.4 

44 1 0 -1.36 0.1 0 1 1.36 0.98 29.4 

45 1 0 0.7 0.11 0 1 -0.7 0.98 29.4 

46 1 0 0.46 0.19 0 1 -0.46 0.98 29.4 

47 1 0 -0.32 0.1 0 1 0.32 0.98 29.4 

48 1 0 -1.42 0.13 0 1 1.42 0.98 29.4 

49 1 0 -0.25 0.11 0 1 0.25 0.98 29.4 

50 1 0 -0.59 0.09 0 1 0.59 0.98 29.4 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, CVI = validity index,  RC_Angle = test measurement 

direction, Common Items in bold 
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APPENDIX B: EVALUATION OF EQUATING 

MAB AND RMSE OF TSE 

MC-I 

<Y BASE> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.6 0.65 1 

fc 0.41 0.47 0 

HB 0.3 0.37 0 

SL 0.29 0.35 0 

(1, 0.32, 1.14) 

cc 0.59 0.63 1 

fc 0.4 0.46 0 

HB 0.27 0.33 0 

SL 0.28 0.33 0 

(1, 0.7, 1) 

cc 0.58 0.62 1 

fc 0.41 0.47 0 

HB 0.3 0.36 0 

SL 0.3 0.36 0 

(1, 0.9, 1) 

cc 0.54 0.59 1 

fc 0.42 0.49 0 

HB 0.34 0.4 0 

SL 0.34 0.4 0 

(0, 1) 

(1, 0.3, 1) 

cc 0.67 0.72 1 

fc 0.46 0.53 0 

HB 0.29 0.35 0 

SL 0.27 0.34 0 

(1, 0.32, 1.14) 

cc 0.65 0.7 1 

fc 0.45 0.5 0 

HB 0.26 0.32 0 

SL 0.28 0.34 0 

(1, 0.7, 1) 

cc 0.61 0.66 1 

fc 0.45 0.51 0 

HB 0.28 0.34 0 

SL 0.29 0.36 0 

(1, 0.9, 1) 

cc 0.54 0.6 1 

fc 0.45 0.51 0 

HB 0.28 0.35 0 

SL 0.28 0.34 0 
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(1, 0) 

(1, 0.3, 1) 

cc 0.68 0.73 1 

fc 0.49 0.55 0 

HB 0.27 0.32 0 

SL 0.28 0.34 0 

(1, 0.32, 1.14) 

cc 0.67 0.72 1 

fc 0.45 0.51 0 

HB 0.28 0.34 0 

SL 0.25 0.32 0 

(1, 0.7, 1) 

cc 0.61 0.66 1 

fc 0.45 0.52 0 

HB 0.27 0.34 0 

SL 0.26 0.31 0 

(1, 0.9, 1) 

cc 0.52 0.57 1 

fc 0.41 0.47 0 

HB 0.3 0.37 0 

SL 0.27 0.34 0 

(1, 1) 

(1, 0.3, 1) 

cc 0.93 0.98 1 

fc 0.81 0.86 1 

HB 0.48 0.56 0 

SL 0.49 0.56 0 

(1, 0.32, 1.14) 

cc 0.89 0.94 1 

fc 0.78 0.83 1 

HB 0.44 0.51 0 

SL 0.46 0.54 0 

(1, 0.7, 1) 

cc 0.72 0.77 1 

fc 0.64 0.7 1 

HB 0.4 0.47 0 

SL 0.39 0.47 0 

(1, 0.9, 1) 

cc 0.56 0.62 1 

fc 0.51 0.59 1 

HB 0.29 0.35 0 

SL 0.32 0.39 0 

 

<Y SAME RC> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) (1, 0.3, 1) 

cc 0.65 0.7 1 

fc 0.82 0.87 1 

HB 1.14 1.19 1 
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SL 1.17 1.21 1 

(1, 0.32, 1.14) 

cc 0.63 0.69 1 

fc 0.81 0.86 1 

HB 1.16 1.2 1 

SL 1.16 1.21 1 

(1, 0.7, 1) 

cc 0.74 0.79 1 

fc 0.96 1.01 1 

HB 1.28 1.32 1 

SL 1.29 1.33 1 

(1, 0.9, 1) 

cc 0.78 0.82 1 

fc 0.95 0.99 1 

HB 1.3 1.34 1 

SL 1.26 1.31 1 

(0, 1) 

(1, 0.3, 1) 

cc 0.25 0.31 0 

fc 0.38 0.46 0 

HB 0.95 1.01 1 

SL 0.94 1 1 

(1, 0.32, 1.14) 

cc 0.25 0.31 0 

fc 0.43 0.5 0 

HB 0.96 1.01 1 

SL 1.02 1.08 1 

(1, 0.7, 1) 

cc 0.38 0.45 0 

fc 0.57 0.64 1 

HB 1.05 1.1 1 

SL 1.06 1.11 1 

(1, 0.9, 1) 

cc 0.54 0.6 1 

fc 0.72 0.78 1 

HB 1.15 1.2 1 

SL 1.12 1.17 1 

(1, 0) 

(1, 0.3, 1) 

cc 0.26 0.32 0 

fc 0.37 0.43 0 

HB 0.9 0.96 1 

SL 0.91 0.97 1 

(1, 0.32, 1.14) 

cc 0.25 0.31 0 

fc 0.37 0.43 0 

HB 0.9 0.95 1 

SL 0.93 0.99 1 

(1, 0.7, 1) cc 0.37 0.43 0 
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fc 0.58 0.65 1 

HB 1.06 1.11 1 

SL 1.08 1.13 1 

(1, 0.9, 1) 

cc 0.43 0.49 0 

fc 0.56 0.61 1 

HB 0.99 1.04 1 

SL 1.02 1.08 1 

(1, 1) 

(1, 0.3, 1) 

cc 0.83 0.9 1 

fc 0.82 0.9 1 

HB 1.19 1.25 1 

SL 1.22 1.28 1 

(1, 0.32, 1.14) 

cc 0.71 0.77 1 

fc 0.75 0.82 1 

HB 1.18 1.24 1 

SL 1.16 1.23 1 

(1, 0.7, 1) 

cc 0.65 0.71 1 

fc 0.74 0.8 1 

HB 1.3 1.36 1 

SL 1.28 1.35 1 

(1, 0.9, 1) 

cc 0.64 0.7 1 

fc 0.75 0.82 1 

HB 1.22 1.27 1 

SL 1.23 1.29 1 

 

<Y DIFF RC> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.38 0.44 0 

fc 0.29 0.35 0 

HB 0.39 0.45 0 

SL 0.41 0.47 0 

(1, 0.32, 1.14) 

cc 0.35 0.41 0 

fc 0.32 0.38 0 

HB 0.4 0.47 0 

SL 0.41 0.47 0 

(1, 0.7, 1) 

cc 0.34 0.4 0 

fc 0.29 0.35 0 

HB 0.42 0.48 0 

SL 0.42 0.48 0 
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(1, 0.9, 1) 

cc 0.28 0.34 0 

fc 0.32 0.38 0 

HB 0.52 0.58 1 

SL 0.51 0.57 1 

(0, 1) 

(1, 0.3, 1) 

cc 1.37 1.41 1 

fc 1.34 1.37 1 

HB 1.02 1.07 1 

SL 0.94 1 1 

(1, 0.32, 1.14) 

cc 1.29 1.32 1 

fc 1.21 1.24 1 

HB 0.85 0.9 1 

SL 0.89 0.95 1 

(1, 0.7, 1) 

cc 1.36 1.39 1 

fc 1.29 1.32 1 

HB 1.02 1.07 1 

SL 1.01 1.07 1 

(1, 0.9, 1) 

cc 1.06 1.1 1 

fc 0.99 1.03 1 

HB 0.78 0.84 1 

SL 0.77 0.84 1 

(1, 0) 

(1, 0.3, 1) 

cc 1.03 1.08 1 

fc 1.03 1.07 1 

HB 1.31 1.35 1 

SL 1.28 1.32 1 

(1, 0.32, 1.14) 

cc 1.1 1.14 1 

fc 1.13 1.17 1 

HB 1.39 1.42 1 

SL 1.38 1.42 1 

(1, 0.7, 1) 

cc 1.02 1.06 1 

fc 1.07 1.1 1 

HB 1.34 1.38 1 

SL 1.29 1.33 1 

(1, 0.9, 1) 

cc 1.24 1.27 1 

fc 1.28 1.31 1 

HB 1.5 1.54 1 

SL 1.51 1.55 1 

(1, 1) (1, 0.3, 1) 
cc 0.75 0.81 1 

fc 0.63 0.7 1 
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HB 0.64 0.71 1 

SL 0.62 0.7 1 

(1, 0.32, 1.14) 

cc 0.62 0.68 1 

fc 0.5 0.57 0 

HB 0.62 0.7 1 

SL 0.62 0.7 1 

(1, 0.7, 1) 

cc 0.56 0.63 1 

fc 0.49 0.56 0 

HB 0.53 0.61 1 

SL 0.57 0.66 1 

(1, 0.9, 1) 

cc 0.29 0.36 0 

fc 0.32 0.39 0 

HB 0.64 0.71 1 

SL 0.6 0.68 1 

 

MAB AND RMSE OF OSE  

<Y BASE> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.6 0.65 1 

fc 0.37 0.43 0 

HB 0.28 0.35 0 

SL 0.27 0.32 0 

(1, 0.32, 1.14) 

cc 0.58 0.63 1 

fc 0.37 0.43 0 

HB 0.29 0.35 0 

SL 0.29 0.35 0 

(1, 0.7, 1) 

cc 0.54 0.6 1 

fc 0.38 0.44 0 

HB 0.29 0.35 0 

SL 0.29 0.36 0 

(1, 0.9, 1) 

cc 0.51 0.56 1 

fc 0.36 0.41 0 

HB 0.32 0.38 0 

SL 0.3 0.36 0 

(0, 1) (1, 0.3, 1) 

cc 0.7 0.74 1 

fc 0.49 0.55 0 

HB 0.27 0.35 0 

SL 0.27 0.34 0 
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(1, 0.32, 1.14) 

cc 0.7 0.75 1 

fc 0.52 0.57 1 

HB 0.27 0.33 0 

SL 0.27 0.33 0 

(1, 0.7, 1) 

cc 0.6 0.66 1 

fc 0.46 0.51 0 

HB 0.27 0.33 0 

SL 0.27 0.34 0 

(1, 0.9, 1) 

cc 0.55 0.6 1 

fc 0.44 0.5 0 

HB 0.26 0.32 0 

SL 0.28 0.34 0 

(1, 0) 

(1, 0.3, 1) 

cc 0.72 0.76 1 

fc 0.54 0.59 1 

HB 0.28 0.35 0 

SL 0.29 0.36 0 

(1, 0.32, 1.14) 

cc 0.71 0.75 1 

fc 0.52 0.58 1 

HB 0.26 0.33 0 

SL 0.28 0.35 0 

(1, 0.7, 1) 

cc 0.65 0.7 1 

fc 0.48 0.54 0 

HB 0.26 0.32 0 

SL 0.24 0.3 0 

(1, 0.9, 1) 

cc 0.54 0.59 1 

fc 0.41 0.48 0 

HB 0.29 0.36 0 

SL 0.29 0.36 0 

(1, 1) 

(1, 0.3, 1) 

cc 0.98 1.03 1 

fc 0.89 0.95 1 

HB 0.48 0.56 0 

SL 0.45 0.53 0 

(1, 0.32, 1.14) 

cc 0.96 1.01 1 

fc 0.84 0.89 1 

HB 0.42 0.5 0 

SL 0.44 0.51 0 

(1, 0.7, 1) 
cc 0.83 0.88 1 

fc 0.67 0.74 1 
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HB 0.39 0.47 0 

SL 0.37 0.44 0 

(1, 0.9, 1) 

cc 0.6 0.66 1 

fc 0.53 0.6 1 

HB 0.33 0.41 0 

SL 0.3 0.38 0 

 

<Y SAME RC> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.66 0.72 1 

fc 0.85 0.9 1 

HB 1.17 1.22 1 

SL 1.21 1.26 1 

(1, 0.32, 1.14) 

cc 0.69 0.73 1 

fc 0.87 0.92 1 

HB 1.16 1.2 1 

SL 1.19 1.23 1 

(1, 0.7, 1) 

cc 0.73 0.78 1 

fc 0.99 1.03 1 

HB 1.34 1.38 1 

SL 1.36 1.4 1 

(1, 0.9, 1) 

cc 0.76 0.81 1 

fc 1 1.04 1 

HB 1.32 1.37 1 

SL 1.33 1.36 1 

(0, 1) 

(1, 0.3, 1) 

cc 0.26 0.31 0 

fc 0.39 0.46 0 

HB 0.93 0.99 1 

SL 0.91 0.96 1 

(1, 0.32, 1.14) 

cc 0.26 0.32 0 

fc 0.41 0.48 0 

HB 0.93 0.98 1 

SL 0.96 1.02 1 

(1, 0.7, 1) 

cc 0.38 0.45 0 

fc 0.6 0.66 1 

HB 1.07 1.12 1 

SL 1.08 1.12 1 

(1, 0.9, 1) cc 0.54 0.59 1 
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fc 0.75 0.8 1 

HB 1.17 1.22 1 

SL 1.17 1.22 1 

(1, 0) 

(1, 0.3, 1) 

cc 0.24 0.29 0 

fc 0.38 0.45 0 

HB 0.92 0.98 1 

SL 0.91 0.97 1 

(1, 0.32, 1.14) 

cc 0.24 0.3 0 

fc 0.35 0.42 0 

HB 0.92 0.99 1 

SL 0.92 0.97 1 

(1, 0.7, 1) 

cc 0.36 0.43 0 

fc 0.58 0.64 1 

HB 1.09 1.14 1 

SL 1.07 1.12 1 

(1, 0.9, 1) 

cc 0.41 0.47 0 

fc 0.6 0.66 1 

HB 1.04 1.09 1 

SL 1.06 1.1 1 

(1, 1) 

(1, 0.3, 1) 

cc 0.89 0.95 1 

fc 0.83 0.9 1 

HB 1.05 1.12 1 

SL 1.07 1.13 1 

(1, 0.32, 1.14) 

cc 0.78 0.84 1 

fc 0.78 0.84 1 

HB 1.03 1.09 1 

SL 1.07 1.14 1 

(1, 0.7, 1) 

cc 0.62 0.69 1 

fc 0.73 0.8 1 

HB 1.22 1.28 1 

SL 1.2 1.27 1 

(1, 0.9, 1) 

cc 0.63 0.7 1 

fc 0.76 0.82 1 

HB 1.19 1.25 1 

SL 1.21 1.26 1 

 

<Y DIFF RC> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 
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(0, 0) 

(1, 0.3, 1) 

cc 0.38 0.44 0 

fc 0.27 0.33 0 

HB 0.37 0.43 0 

SL 0.4 0.46 0 

(1, 0.32, 1.14) 

cc 0.36 0.41 0 

fc 0.28 0.33 0 

HB 0.42 0.48 0 

SL 0.44 0.5 0 

(1, 0.7, 1) 

cc 0.31 0.37 0 

fc 0.28 0.34 0 

HB 0.41 0.48 0 

SL 0.45 0.5 0 

(1, 0.9, 1) 

cc 0.29 0.35 0 

fc 0.34 0.39 0 

HB 0.51 0.57 1 

SL 0.54 0.61 1 

(0, 1) 

(1, 0.3, 1) 

cc 1.47 1.5 1 

fc 1.39 1.42 1 

HB 1.05 1.09 1 

SL 1 1.07 1 

(1, 0.32, 1.14) 

cc 1.42 1.45 1 

fc 1.25 1.28 1 

HB 0.9 0.95 1 

SL 0.92 0.98 1 

(1, 0.7, 1) 

cc 1.47 1.5 1 

fc 1.39 1.41 1 

HB 1 1.06 1 

SL 1.03 1.09 1 

(1, 0.9, 1) 

cc 1.02 1.06 1 

fc 1 1.05 1 

HB 0.77 0.83 1 

SL 0.76 0.81 1 

(1, 0) 

(1, 0.3, 1) 

cc 1.04 1.09 1 

fc 1.04 1.08 1 

HB 1.29 1.33 1 

SL 1.31 1.34 1 

(1, 0.32, 1.14) 
cc 1.11 1.15 1 

fc 1.13 1.17 1 
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HB 1.38 1.42 1 

SL 1.37 1.41 1 

(1, 0.7, 1) 

cc 1.03 1.07 1 

fc 1.09 1.13 1 

HB 1.35 1.39 1 

SL 1.36 1.4 1 

(1, 0.9, 1) 

cc 1.28 1.31 1 

fc 1.32 1.34 1 

HB 1.56 1.6 1 

SL 1.54 1.57 1 

(1, 1) 

(1, 0.3, 1) 

cc 0.8 0.86 1 

fc 0.72 0.8 1 

HB 0.56 0.65 1 

SL 0.56 0.64 1 

(1, 0.32, 1.14) 

cc 0.67 0.74 1 

fc 0.56 0.63 1 

HB 0.59 0.67 1 

SL 0.58 0.67 1 

(1, 0.7, 1) 

cc 0.62 0.68 1 

fc 0.54 0.62 1 

HB 0.5 0.59 1 

SL 0.51 0.59 1 

(1, 0.9, 1) 

cc 0.29 0.36 0 

fc 0.3 0.37 0 

HB 0.64 0.71 1 

SL 0.66 0.74 1 

 

MC-I 

 

MAB AND RMSE OF TSE  

<Y BASE> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.89 0.93 1 

fc 0.66 0.7 1 

HB 0.39 0.45 0 

SL 0.39 0.45 0 

(1, 0.32, 1.14) 
cc 0.91 0.94 1 

fc 0.67 0.72 1 
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HB 0.41 0.47 0 

SL 0.4 0.45 0 

(1, 0.7, 1) 

cc 0.93 0.97 1 

fc 0.67 0.72 1 

HB 0.4 0.47 0 

SL 0.4 0.46 0 

(1, 0.9, 1) 

cc 0.93 0.97 1 

fc 0.73 0.77 1 

HB 0.39 0.44 0 

SL 0.4 0.45 0 

(0, 1) 

(1, 0.3, 1) 

cc 0.91 0.94 1 

fc 0.7 0.74 1 

HB 0.38 0.44 0 

SL 0.42 0.47 0 

(1, 0.32, 1.14) 

cc 0.91 0.95 1 

fc 0.68 0.72 1 

HB 0.37 0.42 0 

SL 0.4 0.46 0 

(1, 0.7, 1) 

cc 0.91 0.94 1 

fc 0.71 0.75 1 

HB 0.36 0.42 0 

SL 0.42 0.48 0 

(1, 0.9, 1) 

cc 0.91 0.95 1 

fc 0.7 0.75 1 

HB 0.39 0.45 0 

SL 0.42 0.48 0 

(1, 0) 

(1, 0.3, 1) 

cc 1.1 1.13 1 

fc 0.89 0.93 1 

HB 0.48 0.53 0 

SL 0.52 0.58 1 

(1, 0.32, 1.14) 

cc 1.08 1.11 1 

fc 0.9 0.93 1 

HB 0.5 0.57 1 

SL 0.51 0.57 1 

(1, 0.7, 1) 

cc 1.07 1.11 1 

fc 0.89 0.93 1 

HB 0.5 0.55 1 

SL 0.49 0.56 0 
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(1, 0.9, 1) 

cc 1.09 1.12 1 

fc 0.89 0.93 1 

HB 0.46 0.52 0 

SL 0.49 0.54 0 

(1, 1) 

(1, 0.3, 1) 

cc 1.15 1.18 1 

fc 0.96 1 1 

HB 0.53 0.59 1 

SL 0.57 0.63 1 

(1, 0.32, 1.14) 

cc 1.15 1.19 1 

fc 0.93 0.97 1 

HB 0.55 0.61 1 

SL 0.54 0.59 1 

(1, 0.7, 1) 

cc 1.12 1.15 1 

fc 0.93 0.97 1 

HB 0.5 0.56 1 

SL 0.51 0.56 1 

(1, 0.9, 1) 

cc 1.12 1.15 1 

fc 0.94 0.98 1 

HB 0.53 0.59 1 

SL 0.53 0.59 1 

 

<Y 60> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.89 0.92 1 

fc 0.71 0.74 1 

HB 0.49 0.54 0 

SL 0.49 0.54 0 

(1, 0.32, 1.14) 

cc 0.9 0.94 1 

fc 0.72 0.75 1 

HB 0.48 0.55 0 

SL 0.49 0.55 0 

(1, 0.7, 1) 

cc 0.76 0.81 1 

fc 0.55 0.6 1 

HB 0.39 0.45 0 

SL 0.43 0.49 0 

(1, 0.9, 1) 

cc 0.73 0.77 1 

fc 0.55 0.6 1 

HB 0.48 0.53 0 



184 

 

SL 0.48 0.54 0 

(0, 1) 

(1, 0.3, 1) 

cc 1.91 1.94 1 

fc 1.75 1.78 1 

HB 1.62 1.65 1 

SL 1.61 1.64 1 

(1, 0.32, 1.14) 

cc 1.87 1.89 1 

fc 1.73 1.75 1 

HB 1.6 1.63 1 

SL 1.61 1.64 1 

(1, 0.7, 1) 

cc 1.84 1.87 1 

fc 1.71 1.74 1 

HB 1.58 1.6 1 

SL 1.61 1.64 1 

(1, 0.9, 1) 

cc 1.77 1.79 1 

fc 1.6 1.62 1 

HB 1.5 1.53 1 

SL 1.52 1.55 1 

(1, 0) 

(1, 0.3, 1) 

cc 0.96 0.99 1 

fc 0.73 0.78 1 

HB 0.57 0.63 1 

SL 0.58 0.63 1 

(1, 0.32, 1.14) 

cc 0.96 0.99 1 

fc 0.73 0.78 1 

HB 0.59 0.64 1 

SL 0.59 0.65 1 

(1, 0.7, 1) 

cc 0.82 0.86 1 

fc 0.64 0.69 1 

HB 0.66 0.72 1 

SL 0.62 0.67 1 

(1, 0.9, 1) 

cc 0.86 0.9 1 

fc 0.68 0.73 1 

HB 0.75 0.8 1 

SL 0.75 0.8 1 

(1, 1) 
(1, 0.3, 1) 

cc 1.64 1.67 1 

fc 1.51 1.54 1 

HB 1.21 1.24 1 

SL 1.21 1.24 1 

(1, 0.32, 1.14) cc 1.57 1.59 1 
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fc 1.44 1.47 1 

HB 1.17 1.21 1 

SL 1.15 1.19 1 

(1, 0.7, 1) 

cc 1.31 1.34 1 

fc 1.2 1.24 1 

HB 0.92 0.97 1 

SL 0.98 1.04 1 

(1, 0.9, 1) 

cc 1.03 1.06 1 

fc 0.94 0.97 1 

HB 0.71 0.77 1 

SL 0.69 0.74 1 

 

MAB AND RMSE OF OSE  

<Y BASE> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.89 0.93 1 

fc 0.66 0.7 1 

HB 0.39 0.45 0 

SL 0.39 0.45 0 

(1, 0.32, 1.14) 

cc 0.91 0.94 1 

fc 0.67 0.72 1 

HB 0.41 0.47 0 

SL 0.4 0.45 0 

(1, 0.7, 1) 

cc 0.93 0.97 1 

fc 0.67 0.72 1 

HB 0.4 0.47 0 

SL 0.4 0.46 0 

(1, 0.9, 1) 

cc 0.93 0.97 1 

fc 0.73 0.77 1 

HB 0.39 0.44 0 

SL 0.4 0.45 0 

(0, 1) 

(1, 0.3, 1) 

cc 0.91 0.94 1 

fc 0.7 0.74 1 

HB 0.38 0.44 0 

SL 0.42 0.47 0 

(1, 0.32, 1.14) 

cc 0.91 0.95 1 

fc 0.68 0.72 1 

HB 0.37 0.42 0 



186 

 

SL 0.4 0.46 0 

(1, 0.7, 1) 

cc 0.91 0.94 1 

fc 0.71 0.75 1 

HB 0.36 0.42 0 

SL 0.42 0.48 0 

(1, 0.9, 1) 

cc 0.91 0.95 1 

fc 0.7 0.75 1 

HB 0.39 0.45 0 

SL 0.42 0.48 0 

(1, 0) 

(1, 0.3, 1) 

cc 1.1 1.13 1 

fc 0.89 0.93 1 

HB 0.48 0.53 0 

SL 0.52 0.58 1 

(1, 0.32, 1.14) 

cc 1.08 1.11 1 

fc 0.9 0.93 1 

HB 0.5 0.57 1 

SL 0.51 0.57 1 

(1, 0.7, 1) 

cc 1.07 1.11 1 

fc 0.89 0.93 1 

HB 0.5 0.55 1 

SL 0.49 0.56 0 

(1, 0.9, 1) 

cc 1.09 1.12 1 

fc 0.89 0.93 1 

HB 0.46 0.52 0 

SL 0.49 0.54 0 

(1, 1) 

(1, 0.3, 1) 

cc 1.15 1.18 1 

fc 0.96 1 1 

HB 0.53 0.59 1 

SL 0.57 0.63 1 

(1, 0.32, 1.14) 

cc 1.15 1.19 1 

fc 0.93 0.97 1 

HB 0.55 0.61 1 

SL 0.54 0.59 1 

(1, 0.7, 1) 

cc 1.12 1.15 1 

fc 0.93 0.97 1 

HB 0.5 0.56 1 

SL 0.51 0.56 1 

(1, 0.9, 1) 
cc 1.12 1.15 1 

fc 0.94 0.98 1 
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HB 0.53 0.59 1 

SL 0.53 0.59 1 

 

<Y 60> 

 

Focal_Mean Focal_Sigma Linking Method MAB RMSE DTM 

(0, 0) 

(1, 0.3, 1) 

cc 0.93 0.97 1 

fc 0.72 0.76 1 

HB 0.47 0.53 0 

SL 0.48 0.53 0 

(1, 0.32, 1.14) 

cc 0.94 0.98 1 

fc 0.73 0.77 1 

HB 0.47 0.53 0 

SL 0.48 0.54 0 

(1, 0.7, 1) 

cc 0.75 0.79 1 

fc 0.54 0.6 1 

HB 0.43 0.48 0 

SL 0.41 0.47 0 

(1, 0.9, 1) 

cc 0.76 0.81 1 

fc 0.53 0.58 1 

HB 0.46 0.52 0 

SL 0.45 0.51 0 

(0, 1) 

(1, 0.3, 1) 

cc 2 2.02 1 

fc 1.85 1.88 1 

HB 1.66 1.69 1 

SL 1.69 1.71 1 

(1, 0.32, 1.14) 

cc 2.01 2.03 1 

fc 1.84 1.87 1 

HB 1.68 1.7 1 

SL 1.67 1.69 1 

(1, 0.7, 1) 

cc 1.91 1.93 1 

fc 1.75 1.78 1 

HB 1.57 1.6 1 

SL 1.64 1.67 1 

(1, 0.9, 1) 

cc 1.82 1.85 1 

fc 1.68 1.71 1 

HB 1.49 1.52 1 

SL 1.51 1.55 1 

(1, 0) (1, 0.3, 1) cc 0.99 1.03 1 
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fc 0.76 0.81 1 

HB 0.55 0.61 1 

SL 0.59 0.65 1 

(1, 0.32, 1.14) 

cc 1 1.03 1 

fc 0.75 0.8 1 

HB 0.54 0.6 1 

SL 0.58 0.63 1 

(1, 0.7, 1) 

cc 0.85 0.9 1 

fc 0.63 0.67 1 

HB 0.56 0.62 1 

SL 0.59 0.65 1 

(1, 0.9, 1) 

cc 0.89 0.92 1 

fc 0.72 0.77 1 

HB 0.72 0.77 1 

SL 0.7 0.75 1 

(1, 1) 

(1, 0.3, 1) 

cc 1.72 1.75 1 

fc 1.55 1.58 1 

HB 1.23 1.26 1 

SL 1.25 1.29 1 

(1, 0.32, 1.14) 

cc 1.66 1.69 1 

fc 1.5 1.53 1 

HB 1.17 1.21 1 

SL 1.26 1.3 1 

(1, 0.7, 1) 

cc 1.35 1.38 1 

fc 1.21 1.24 1 

HB 0.98 1.02 1 

SL 0.9 0.95 1 

(1, 0.9, 1) 

cc 1.09 1.12 1 

fc 0.97 1 1 

HB 0.67 0.73 1 

SL 0.73 0.78 1 

 

RESULTS OF CLASSIFICATION AND EQUITY PROPERTIES 

 

MC-I 

<Y BASE> 

 

MU Sigma Linking A B CC CA FOE_D1 SOE_D2 D12 

(0, 0)  (1, 0.3, 1) cc 1.37 -0.04 0.94 0.96 0.12 0.02 14.6 
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fc 1.25 -0.05 0.94 0.96 0.09 0.02 9.04 

sc_HB 1.08 -0.03 0.94 0.95 0.05 0.01 5.26 

sc_SL 1.09 -0.03 0.94 0.95 0.05 0.01 4.93 

(1, 0.32, 1.14) 

cc 1.34 -0.05 0.94 0.96 0.12 0.02 14 

fc 1.21 -0.04 0.94 0.96 0.08 0.02 9.22 

sc_HB 1.06 -0.03 0.93 0.95 0.05 0.01 5 

sc_SL 1.06 -0.03 0.93 0.95 0.05 0.01 4.97 

(1, 0.7, 1) 

cc 1.47 -0.04 0.95 0.96 0.12 0.02 13.8 

fc 1.35 -0.05 0.95 0.96 0.09 0.02 9.34 

sc_HB 1.16 -0.03 0.94 0.96 0.05 0.01 5.23 

sc_SL 1.17 -0.03 0.94 0.96 0.06 0.01 5.32 

(1, 0.9, 1) 

cc 1.59 -0.04 0.95 0.97 0.11 0.02 12.7 

fc 1.49 -0.04 0.95 0.96 0.09 0.02 8.85 

sc_HB 1.28 -0.02 0.94 0.96 0.06 0.01 5.67 

sc_SL 1.28 -0.02 0.94 0.96 0.06 0.01 5.41 

(0, 1) 

(1, 0.3, 1) 

cc 1.35 0.67 0.94 0.96 0.13 0.02 14.9 

fc 1.23 0.59 0.94 0.96 0.09 0.01 9.28 

sc_HB 1.05 0.55 0.94 0.95 0.04 0.01 5.68 

sc_SL 1.05 0.56 0.94 0.95 0.04 0.01 5.49 

(1, 0.32, 1.14) 

cc 1.31 0.67 0.94 0.96 0.13 0.02 14.5 

fc 1.2 0.6 0.94 0.96 0.1 0.01 9.57 

sc_HB 1.02 0.55 0.93 0.95 0.04 0.01 5.62 

sc_SL 1.03 0.55 0.93 0.95 0.05 0.01 5.61 

(1, 0.7, 1) 

cc 1.45 0.65 0.95 0.96 0.12 0.02 13.5 

fc 1.34 0.6 0.95 0.96 0.09 0.01 9.18 

sc_HB 1.14 0.55 0.94 0.96 0.05 0.01 5.31 

sc_SL 1.15 0.56 0.94 0.96 0.05 0.01 5.35 

(1, 0.9, 1) 

cc 1.56 0.63 0.95 0.96 0.11 0.02 12 

fc 1.48 0.58 0.95 0.96 0.08 0.01 8.84 

sc_HB 1.26 0.56 0.94 0.96 0.05 0.01 4.79 

sc_SL 1.27 0.56 0.94 0.96 0.05 0.01 4.98 

(1, 0) 

(1, 0.3, 1) 

cc 1.35 0.67 0.94 0.96 0.13 0.02 14.8 

fc 1.24 0.6 0.94 0.96 0.1 0.01 9.93 

sc_HB 1.05 0.55 0.94 0.95 0.04 0.01 5.81 

sc_SL 1.06 0.56 0.94 0.95 0.05 0.01 5.75 

(1, 0.32, 1.14) 

cc 1.32 0.67 0.94 0.96 0.13 0.02 14.5 

fc 1.21 0.6 0.94 0.96 0.1 0.01 9.7 

sc_HB 1.03 0.56 0.93 0.95 0.05 0.01 5.36 
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sc_SL 1.03 0.55 0.93 0.95 0.04 0.01 5.51 

(1, 0.7, 1) 

cc 1.45 0.65 0.95 0.96 0.12 0.02 13.4 

fc 1.33 0.6 0.95 0.96 0.09 0.01 9.51 

sc_HB 1.14 0.56 0.94 0.96 0.05 0.01 5.17 

sc_SL 1.14 0.56 0.94 0.96 0.05 0.01 4.88 

(1, 0.9, 1) 

cc 1.57 0.63 0.95 0.97 0.11 0.02 11.9 

fc 1.48 0.6 0.95 0.96 0.08 0.01 8.65 

sc_HB 1.26 0.55 0.94 0.96 0.05 0.01 5.31 

sc_SL 1.27 0.57 0.95 0.96 0.05 0.01 5.14 

(1, 1) 

(1, 0.3, 1) 

cc 1.29 1.33 0.96 0.97 0.15 0.02 16.6 

fc 1.22 1.24 0.96 0.97 0.13 0.02 13.5 

sc_HB 0.97 1.08 0.95 0.96 0.06 0.01 9.84 

sc_SL 0.98 1.09 0.95 0.96 0.07 0.01 9.61 

(1, 0.32, 1.14) 

cc 1.27 1.34 0.95 0.97 0.16 0.02 16.2 

fc 1.19 1.24 0.96 0.97 0.14 0.02 13 

sc_HB 0.93 1.06 0.95 0.96 0.07 0.01 8.72 

sc_SL 0.95 1.08 0.95 0.96 0.07 0.01 9.31 

(1, 0.7, 1) 

cc 1.37 1.3 0.96 0.97 0.13 0.02 14.1 

fc 1.3 1.22 0.96 0.97 0.12 0.01 11.2 

sc_HB 1.07 1.09 0.95 0.96 0.06 0.01 7.97 

sc_SL 1.08 1.1 0.95 0.97 0.06 0.01 7.61 

(1, 0.9, 1) 

cc 1.47 1.24 0.96 0.97 0.1 0.02 11 

fc 1.43 1.2 0.96 0.97 0.09 0.01 9.4 

sc_HB 1.21 1.11 0.96 0.97 0.05 0.01 6.2 

sc_SL 1.21 1.11 0.96 0.97 0.05 0.01 6.17 

cc=Concurrent Calibration, fc=Fixed Parameter Calibration, sc_HB: separate calibration with 

Haebara, sc_SL=separate calibration with Stocking and Lord , A= linking constant A, B = 

linking constant B, CC=Classification Consistency, CA=Classification Accuracy, FOE D1= First 

Order Equity Marginal Index, SOE D2= Second Order Equity Marginal Index, D12= combined 

index  

 

 

<Y SAME RC> 

 

MU Sigma Linking A B CC CA FOE_D1 SOE_D2 D12 

(0, 0) 
(1, 0.3, 1) 

cc 1.58 0.05 0.95 0.97 0.09 0.02 9.8 

fc 1.46 0.04 0.95 0.96 0.05 0.01 13.5 

sc_HB 1.22 0.05 0.94 0.96 0.04 0.01 21.3 

sc_SL 1.25 0.05 0.94 0.96 0.04 0.01 21.1 

(1, 0.32, 1.14) cc 1.54 0.05 0.95 0.97 0.09 0.02 9.74 
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fc 1.42 0.04 0.95 0.96 0.06 0.01 13.4 

sc_HB 1.2 0.05 0.94 0.96 0.04 0.01 20.8 

sc_SL 1.22 0.05 0.94 0.96 0.04 0.01 20.7 

(1, 0.7, 1) 

cc 1.7 0.06 0.96 0.97 0.07 0.01 11.3 

fc 1.62 0.05 0.96 0.97 0.05 0.01 16.8 

sc_HB 1.34 0.06 0.95 0.96 0.04 0.01 25 

sc_SL 1.37 0.07 0.95 0.96 0.04 0.01 24.7 

(1, 0.9, 1) 

cc 1.81 0.06 0.96 0.97 0.06 0.01 12 

fc 1.74 0.04 0.96 0.97 0.04 0.01 16.9 

sc_HB 1.46 0.06 0.95 0.96 0.04 0.01 24.5 

sc_SL 1.49 0.07 0.95 0.97 0.04 0.01 24 

(0, 1) 

(1, 0.3, 1) 

cc 1.5 0.85 0.95 0.97 0.09 0.02 5.79 

fc 1.41 0.78 0.95 0.97 0.08 0.01 8.93 

sc_HB 1.08 0.63 0.95 0.96 0.08 0.02 20.5 

sc_SL 1.16 0.71 0.95 0.96 0.04 0.01 20.4 

(1, 0.32, 1.14) 

cc 1.47 0.86 0.95 0.97 0.1 0.02 5.65 

fc 1.38 0.79 0.95 0.97 0.08 0.01 9.49 

sc_HB 1.03 0.62 0.95 0.96 0.08 0.02 20 

sc_SL 1.13 0.71 0.95 0.96 0.05 0.01 21 

(1, 0.7, 1) 

cc 1.6 0.84 0.96 0.97 0.07 0.01 7.71 

fc 1.53 0.79 0.96 0.97 0.06 0.01 12.7 

sc_HB 1.18 0.65 0.95 0.96 0.08 0.02 22.6 

sc_SL 1.29 0.74 0.95 0.97 0.04 0.01 22.8 

(1, 0.9, 1) 

cc 1.72 0.8 0.96 0.97 0.05 0.01 9.86 

fc 1.67 0.77 0.96 0.97 0.05 0.01 14.6 

sc_HB 1.34 0.68 0.96 0.96 0.07 0.01 23.1 

sc_SL 1.45 0.75 0.96 0.97 0.04 0.01 22.9 

(1, 0) 

(1, 0.3, 1) 

cc 1.5 0.85 0.95 0.97 0.1 0.02 5.71 

fc 1.42 0.78 0.95 0.97 0.09 0.01 8.65 

sc_HB 1.02 0.58 0.95 0.96 0.11 0.03 20.1 

sc_SL 1.14 0.68 0.95 0.96 0.05 0.01 20.4 

(1, 0.32, 1.14) 

cc 1.47 0.85 0.95 0.97 0.1 0.02 5.69 

fc 1.39 0.79 0.95 0.97 0.09 0.01 8.43 

sc_HB 1.01 0.6 0.95 0.96 0.1 0.02 19.6 

sc_SL 1.12 0.69 0.95 0.96 0.05 0.01 20.7 

(1, 0.7, 1) 

cc 1.61 0.84 0.96 0.97 0.08 0.01 7.29 

fc 1.55 0.8 0.96 0.97 0.07 0.01 12.7 

sc_HB 1.15 0.63 0.95 0.96 0.1 0.02 23.5 
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sc_SL 1.28 0.73 0.95 0.96 0.04 0.01 23.1 

(1, 0.9, 1) 

cc 1.71 0.79 0.96 0.97 0.07 0.01 8.11 

fc 1.67 0.76 0.96 0.97 0.07 0.01 11.9 

sc_HB 1.21 0.58 0.96 0.97 0.13 0.03 21.6 

sc_SL 1.39 0.7 0.96 0.97 0.04 0.01 21.7 

(1, 1) 

(1, 0.3, 1) 

cc 1.4 1.58 0.97 0.97 0.1 0.01 20.7 

fc 1.37 1.54 0.97 0.97 0.1 0.01 22.3 

sc_HB 1.11 1.36 0.97 0.97 0.07 0.01 29.4 

sc_SL 1.12 1.38 0.97 0.97 0.06 0.01 29.8 

(1, 0.32, 1.14) 

cc 1.37 1.6 0.97 0.98 0.1 0.01 18.8 

fc 1.35 1.56 0.97 0.97 0.11 0.01 21 

sc_HB 1.09 1.37 0.97 0.97 0.07 0.01 27.9 

sc_SL 1.09 1.38 0.97 0.97 0.07 0.01 28.9 

(1, 0.7, 1) 

cc 1.48 1.54 0.97 0.97 0.06 0.01 18 

fc 1.46 1.53 0.97 0.97 0.07 0.01 21.2 

sc_HB 1.24 1.4 0.97 0.97 0.06 0.01 32.6 

sc_SL 1.26 1.43 0.97 0.97 0.05 0.01 31.9 

(1, 0.9, 1) 

cc 1.57 1.46 0.97 0.97 0.05 0.01 17 

fc 1.57 1.47 0.97 0.97 0.05 0.01 20.3 

sc_HB 1.37 1.38 0.97 0.97 0.06 0.01 29.3 

sc_SL 1.41 1.41 0.97 0.97 0.05 0.01 29.8 

cc=Concurrent Calibration, fc=Fixed Parameter Calibration, sc_HB: separate calibration with 

Haebara, sc_SL=separate calibration with Stocking and Lord , A= linking constant A, B = 

linking constant B, CC=Classification Consistency, CA=Classification Accuracy, FOE D1= First 

Order Equity Marginal Index, SOE D2= Second Order Equity Marginal Index, D12= combined 

index  

 

<Y DIFF RC> 

 

MU Sigma Linking A B CC CA FOE_D1 SOE_D2 D12 

(0, 0) 

(1, 0.3, 1) 

cc 1.4 0.02 0.94 0.96 0.09 0.02 11.3 

fc 1.27 0.01 0.94 0.96 0.06 0.01 6.59 

sc_HB 1.09 0.02 0.94 0.95 0.04 0.01 6.03 

sc_SL 1.11 0.02 0.94 0.95 0.04 0.01 6.29 

(1, 0.32, 1.14) 

cc 1.36 0.02 0.94 0.96 0.1 0.02 10.3 

fc 1.23 0.01 0.94 0.96 0.06 0.01 6.6 

sc_HB 1.06 0.02 0.94 0.95 0.04 0.01 6.33 

sc_SL 1.08 0.02 0.94 0.95 0.04 0.01 6.55 

(1, 0.7, 1) cc 1.51 0.03 0.95 0.96 0.09 0.02 8.69 
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fc 1.39 0.01 0.95 0.96 0.06 0.01 5.5 

sc_HB 1.18 0.03 0.94 0.96 0.04 0.01 6.49 

sc_SL 1.2 0.04 0.94 0.96 0.04 0.01 6.63 

(1, 0.9, 1) 

cc 1.65 0.03 0.95 0.97 0.08 0.02 6.48 

fc 1.56 0.02 0.95 0.97 0.06 0.01 5.26 

sc_HB 1.32 0.03 0.95 0.96 0.05 0.01 7.94 

sc_SL 1.34 0.04 0.95 0.96 0.05 0.01 8.22 

(0, 1) 

(1, 0.3, 1) 

cc 1.35 0.84 0.95 0.96 0.11 0.02 22.4 

fc 1.25 0.76 0.95 0.96 0.09 0.01 24.6 

sc_HB 0.97 0.62 0.94 0.95 0.07 0.02 24.8 

sc_SL 1.03 0.68 0.94 0.96 0.05 0.01 24.4 

(1, 0.32, 1.14) 

cc 1.32 0.85 0.95 0.96 0.11 0.02 21.5 

fc 1.22 0.77 0.95 0.96 0.09 0.01 23 

sc_HB 0.93 0.62 0.94 0.95 0.08 0.02 22.2 

sc_SL 0.99 0.68 0.94 0.96 0.05 0.01 23 

(1, 0.7, 1) 

cc 1.45 0.83 0.95 0.97 0.1 0.02 23.9 

fc 1.35 0.77 0.95 0.96 0.08 0.01 25.4 

sc_HB 1.04 0.63 0.95 0.96 0.08 0.02 24.6 

sc_SL 1.12 0.71 0.95 0.96 0.05 0.01 24.8 

(1, 0.9, 1) 

cc 1.59 0.8 0.96 0.97 0.08 0.01 19.5 

fc 1.52 0.76 0.96 0.97 0.06 0.01 20.9 

sc_HB 1.23 0.67 0.95 0.96 0.05 0.01 19.6 

sc_SL 1.29 0.7 0.95 0.96 0.04 0.01 19.5 

(1, 0) 

(1, 0.3, 1) 

cc 1.34 0.6 0.94 0.96 0.1 0.02 29.4 

fc 1.22 0.52 0.94 0.96 0.08 0.01 25.4 

sc_HB 0.96 0.43 0.94 0.95 0.08 0.02 24.5 

sc_SL 1.04 0.48 0.94 0.95 0.04 0.01 24.5 

(1, 0.32, 1.14) 

cc 1.31 0.6 0.94 0.96 0.1 0.02 29.8 

fc 1.19 0.53 0.94 0.96 0.08 0.01 26.8 

sc_HB 0.94 0.43 0.93 0.95 0.07 0.02 26.1 

sc_SL 1.01 0.48 0.93 0.95 0.04 0.01 25.7 

(1, 0.7, 1) 

cc 1.45 0.61 0.95 0.96 0.09 0.02 27.1 

fc 1.32 0.53 0.95 0.96 0.07 0.01 25 

sc_HB 1.06 0.45 0.94 0.95 0.07 0.01 25.2 

sc_SL 1.15 0.51 0.94 0.95 0.04 0.01 25.2 

(1, 0.9, 1) 

cc 1.59 0.58 0.95 0.97 0.09 0.02 29.3 

fc 1.5 0.53 0.95 0.96 0.07 0.01 27.7 

sc_HB 1.18 0.45 0.95 0.96 0.08 0.01 28.7 
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sc_SL 1.27 0.51 0.95 0.96 0.05 0.01 28.5 

(1, 1) 

(1, 0.3, 1) 

cc 1.31 1.4 0.96 0.97 0.13 0.02 13.1 

fc 1.24 1.29 0.96 0.97 0.12 0.01 10.9 

sc_HB 0.97 1.11 0.96 0.97 0.07 0.02 11.7 

sc_SL 0.99 1.14 0.96 0.97 0.06 0.01 11.8 

(1, 0.32, 1.14) 

cc 1.28 1.41 0.96 0.97 0.14 0.02 12.2 

fc 1.2 1.3 0.96 0.97 0.13 0.01 9.11 

sc_HB 0.94 1.11 0.96 0.97 0.07 0.02 10.8 

sc_SL 0.96 1.13 0.96 0.97 0.07 0.01 10.9 

(1, 0.7, 1) 

cc 1.39 1.38 0.96 0.97 0.1 0.01 9.89 

fc 1.32 1.3 0.96 0.97 0.1 0.01 9.1 

sc_HB 1.07 1.16 0.96 0.97 0.06 0.01 11.1 

sc_SL 1.1 1.18 0.96 0.97 0.05 0.01 11.6 

(1, 0.9, 1) 

cc 1.5 1.3 0.96 0.97 0.07 0.01 6.04 

fc 1.46 1.26 0.96 0.97 0.07 0.01 5.5 

sc_HB 1.24 1.16 0.96 0.97 0.05 0.01 10.3 

sc_SL 1.25 1.18 0.96 0.97 0.04 0.01 10.2 

cc=Concurrent Calibration, fc=Fixed Parameter Calibration, sc_HB: separate calibration with 

Haebara, sc_SL=separate calibration with Stocking and Lord , A= linking constant A, B = 

linking constant B, CC=Classification Consistency, CA=Classification Accuracy, FOE D1= First 

Order Equity Marginal Index, SOE D2= Second Order Equity Marginal Index, D12= combined 

index  

 

MC-II 

<Y BASE> 

 

MU Sigma Linking A B CC CA FOE_D1 SOE_D2 D12 

(0, 0) 

(1, 0.3, 1) 

cc 1.17 -0.01 0.93 0.93 0.93 0.95 0.9 

fc 1.07 0 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.93 0.01 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.93 0.01 0.93 0.93 0.94 0.95 0.9 

(1, 0.32, 1.14) 

cc 1.18 -0.01 0.93 0.93 0.93 0.95 0.9 

fc 1.07 0 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.93 0.01 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.93 0.02 0.93 0.93 0.94 0.95 0.9 

(1, 0.7, 1) 

cc 1.21 -0.02 0.93 0.93 0.93 0.95 0.9 

fc 1.1 0 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.96 0.01 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.96 0.02 0.93 0.93 0.94 0.95 0.9 

(1, 0.9, 1) cc 1.22 -0.01 0.93 0.93 0.93 0.95 0.9 
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fc 1.12 0 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.96 0.02 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.97 0.02 0.93 0.93 0.94 0.95 0.9 

(0, 1) 

(1, 0.3, 1) 

cc 1.16 0.1 0.93 0.93 0.93 0.95 0.9 

fc 1.06 0.1 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.9 0.1 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.92 0.11 0.93 0.93 0.94 0.95 0.9 

(1, 0.32, 1.14) 

cc 1.16 0.1 0.93 0.93 0.93 0.95 0.9 

fc 1.06 0.09 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.91 0.1 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.92 0.11 0.93 0.93 0.94 0.95 0.9 

(1, 0.7, 1) 

cc 1.19 0.1 0.93 0.93 0.93 0.95 0.9 

fc 1.09 0.1 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.93 0.1 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.95 0.11 0.93 0.93 0.94 0.95 0.9 

(1, 0.9, 1) 

cc 1.21 0.09 0.93 0.93 0.93 0.95 0.9 

fc 1.1 0.1 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.95 0.1 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.96 0.11 0.93 0.93 0.94 0.95 0.9 

(1, 0) 

(1, 0.3, 1) 

cc 1.17 0.84 0.93 0.93 0.93 0.95 0.9 

fc 1.07 0.79 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.89 0.72 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.9 0.72 0.93 0.93 0.94 0.95 0.9 

(1, 0.32, 1.14) 

cc 1.17 0.85 0.93 0.93 0.93 0.95 0.9 

fc 1.06 0.78 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.89 0.72 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.89 0.72 0.93 0.93 0.94 0.95 0.9 

(1, 0.7, 1) 

cc 1.2 0.85 0.93 0.93 0.93 0.95 0.9 

fc 1.1 0.79 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.91 0.72 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.92 0.72 0.93 0.93 0.94 0.95 0.9 

(1, 0.9, 1) 

cc 1.21 0.85 0.93 0.93 0.93 0.95 0.9 

fc 1.11 0.78 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.92 0.71 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.93 0.72 0.93 0.93 0.94 0.95 0.9 

(1, 1) (1, 0.3, 1) 

cc 1.17 0.95 0.93 0.93 0.93 0.95 0.9 

fc 1.07 0.88 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.88 0.79 0.93 0.93 0.94 0.95 0.9 
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sc_SL 0.88 0.79 0.93 0.93 0.94 0.95 0.9 

(1, 0.32, 1.14) 

cc 1.17 0.95 0.93 0.93 0.93 0.95 0.9 

fc 1.07 0.88 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.87 0.8 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.88 0.8 0.93 0.93 0.94 0.95 0.9 

(1, 0.7, 1) 

cc 1.2 0.96 0.93 0.93 0.93 0.95 0.9 

fc 1.1 0.87 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.9 0.8 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.91 0.8 0.93 0.93 0.94 0.95 0.9 

(1, 0.9, 1) 

cc 1.21 0.95 0.93 0.93 0.93 0.95 0.9 

fc 1.11 0.88 0.93 0.93 0.94 0.95 0.9 

sc_HB 0.92 0.8 0.93 0.93 0.94 0.95 0.9 

sc_SL 0.92 0.8 0.93 0.93 0.94 0.95 0.9 

cc=Concurrent Calibration, fc=Fixed Parameter Calibration, sc_HB: separate calibration with 

Haebara, sc_SL=separate calibration with Stocking and Lord , A= linking constant A, B = 

linking constant B, CC=Classification Consistency, CA=Classification Accuracy, FOE D1= First 

Order Equity Marginal Index, SOE D2= Second Order Equity Marginal Index, D12= combined 

index  

 

<Y 60> 

 

MU Sigma Linking A B CC CA FOE_D1 SOE_D2 D12 

(0, 0) 

(1, 0.3, 1) 

cc 1.17 -0.26 0.93 0.93 0.93 0.95 0.94 

fc 1.07 -0.23 0.93 0.93 0.94 0.95 0.94 

sc_HB 0.94 -0.19 0.93 0.93 0.94 0.95 0.94 

sc_SL 0.95 -0.20 0.93 0.93 0.94 0.95 0.94 

(1, 0.32, 1.14) 

cc 1.17 -0.25 0.93 0.93 0.93 0.95 0.94 

fc 1.07 -0.23 0.93 0.93 0.94 0.95 0.94 

sc_HB 0.94 -0.20 0.93 0.93 0.94 0.95 0.94 

sc_SL 0.94 -0.20 0.93 0.93 0.94 0.95 0.94 

(1, 0.7, 1) 

cc 1.21 -0.26 0.93 0.93 0.93 0.95 0.94 

fc 1.10 -0.23 0.93 0.93 0.94 0.95 0.94 

sc_HB 0.97 -0.19 0.93 0.93 0.94 0.95 0.94 

sc_SL 0.97 -0.19 0.93 0.93 0.94 0.95 0.94 

(1, 0.9, 1) 

cc 1.22 -0.26 0.93 0.93 0.93 0.95 0.94 

fc 1.11 -0.22 0.93 0.93 0.94 0.95 0.94 

sc_HB 0.97 -0.19 0.93 0.93 0.94 0.95 0.94 

sc_SL 0.98 -0.19 0.93 0.93 0.94 0.95 0.94 

(0, 1) (1, 0.3, 1) 

cc 1.19 -0.17 0.93 0.93 0.93 0.95 0.94 

fc 1.09 -0.14 0.93 0.93 0.94 0.95 0.94 

sc_HB 0.92 -0.11 0.93 0.93 0.94 0.95 0.93 

sc_SL 0.94 -0.12 0.93 0.93 0.94 0.95 0.93 
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(1, 0.32, 1.14) 

cc 1.19 -0.17 0.93 0.93 0.93 0.95 0.94 

fc 1.08 -0.14 0.93 0.93 0.94 0.95 0.94 

sc_HB 0.92 -0.11 0.93 0.93 0.94 0.95 0.93 

sc_SL 0.94 -0.12 0.93 0.93 0.94 0.95 0.93 

(1, 0.7, 1) 

cc 1.21 -0.16 0.93 0.93 0.93 0.95 0.94 

f

c 

1

.10 

-

0.14 

0

.93 

0

.93 

0

.94 

0

.95 

0

.94 

sc_HB 0.94 -0.11 0.93 0.93 0.94 0.95 0.93 

sc_SL 0.96 -0.11 0.93 0.93 0.94 0.95 0.93 

(1, 0.9, 1) 

cc 1.22 -0.16 0.93 0.93 0.93 0.95 0.94 

fc 1.11 -0.13 0.93 0.93 0.94 0.95 0.94 

sc_HB 0.93 -0.11 0.93 0.93 0.94 0.95 0.93 

sc_SL 0.95 -0.11 0.93 0.93 0.94 0.95 0.93 

(1, 0) 

(1, 0.3, 1) 

cc 1.15 0.61 0.93 0.93 0.93 0.95 0.93 

fc 1.05 0.56 0.93 0.93 0.94 0.95 0.92 

sc_HB 0.90 0.53 0.93 0.93 0.94 0.95 0.92 

sc_SL 0.91 0.54 0.93 0.93 0.94 0.95 0.92 

(1, 0.32, 1.14) 

cc 1.15 0.61 0.93 0.93 0.93 0.95 0.92 

fc 1.05 0.57 0.93 0.93 0.94 0.95 0.93 

sc_HB 0.90 0.53 0.93 0.93 0.94 0.95 0.92 

sc_SL 0.91 0.54 0.93 0.93 0.94 0.95 0.92 

(1, 0.7, 1) 

cc 1.20 0.62 0.93 0.93 0.93 0.95 0.93 

fc 1.08 0.57 0.93 0.93 0.94 0.95 0.93 

sc_HB 0.93 0.53 0.93 0.93 0.94 0.95 0.93 

sc_SL 0.94 0.54 0.93 0.93 0.94 0.95 0.93 

(1, 0.9, 1) 

cc 1.20 0.62 0.93 0.93 0.93 0.95 0.93 

fc 1.10 0.56 0.93 0.93 0.94 0.95 0.93 

sc_HB 0.92 0.53 0.93 0.93 0.94 0.95 0.93 

sc_SL 0.95 0.54 0.93 0.93 0.94 0.95 0.93 

(1, 1) 

(1, 0.3, 1) 

cc 1.15 0.71 0.93 0.93 0.93 0.95 0.92 

fc 1.06 0.65 0.93 0.93 0.94 0.95 0.92 

sc_HB 0.88 0.61 0.93 0.93 0.94 0.95 0.92 

sc_SL 0.89 0.61 0.93 0.93 0.94 0.95 0.92 

(1, 0.32, 1.14) 

cc 1.16 0.72 0.93 0.93 0.93 0.95 0.92 

fc 1.06 0.66 0.93 0.93 0.94 0.95 0.92 

sc_HB 0.88 0.60 0.93 0.93 0.94 0.95 0.92 

sc_SL 0.89 0.61 0.93 0.93 0.94 0.95 0.92 

(1, 0.7, 1) 

cc 1.19 0.72 0.93 0.93 0.93 0.95 0.93 

fc 1.09 0.67 0.93 0.93 0.94 0.95 0.93 

sc_HB 0.92 0.61 0.93 0.93 0.94 0.95 0.92 

sc_SL 0.92 0.62 0.93 0.93 0.94 0.95 0.92 

(1, 0.9, 1) 
cc 1.21 0.72 0.93 0.93 0.93 0.95 0.93 

fc 1.10 0.66 0.93 0.93 0.94 0.95 0.93 
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sc_HB 0.93 0.61 0.93 0.93 0.94 0.95 0.92 

sc_SL 0.93 0.62 0.93 0.93 0.94 0.95 0.92 

cc=Concurrent Calibration, fc=Fixed Parameter Calibration, sc_HB: separate calibration with 

Haebara, sc_SL=separate calibration with Stocking and Lord , A= linking constant A, B = 

linking constant B, CC=Classification Consistency, CA=Classification Accuracy, FOE D1= First 

Order Equity Marginal Index, SOE D2= Second Order Equity Marginal Index, D12= combined 

index  
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APPENDIX C: APPROXIMATE MIRT TSE 

 

ITEM PARAMETERS OF MC-I 

<X BASE>  REFERS TO <X BASE> DISPLAYED EARLIER. 

 

<Y BASE> 

 

Item ID a1 a2 d g alpha MDISC MID RC_Angle 

1 0.88 0.88 -0.15 0.08 45 1.25 0.12 45 

2 0.67 0.67 -0.68 0.2 45 0.95 0.71 45 

3 0.84 0.84 0.8 0.18 45 1.18 -0.68 45 

4 0.81 0.81 -0.35 0.1 45 1.15 0.3 45 

5 0.64 0.64 0.41 0.15 45 0.9 -0.45 45 

6 0.71 0.71 -0.06 0.16 45 1 0.06 45 

7 1.06 1.06 0.05 0.19 45 1.5 -0.03 45 

8 0.85 0.85 -0.44 0.09 45 1.2 0.37 45 

9 0.79 0.79 -0.85 0.18 45 1.12 0.76 45 

10 0.76 0.76 0.39 0.16 45 1.07 -0.36 45 

11 0.66 0.66 1.37 0.11 45 0.94 -1.46 45 

12 1.07 1.07 0.18 0.06 45 1.51 -0.12 45 

13 0.8 0.8 0.1 0.17 45 1.14 -0.09 45 

14 0.72 0.72 0.43 0.13 45 1.02 -0.42 45 

15 0.93 0.93 0.25 0.14 45 1.32 -0.19 45 

16 0.87 0.87 -0.76 0.07 45 1.23 0.62 45 

17 1.01 1.01 0.08 0.15 45 1.43 -0.05 45 

18 0.58 0.58 0.35 0.19 45 0.82 -0.43 45 

19 0.91 0.91 -0.01 0.15 45 1.28 0.01 45 

20 0.9 0.9 1.46 0.1 45 1.27 -1.16 45 

21 0.63 0.63 -0.17 0.11 45 0.89 0.19 45 

22 1.13 1.13 -0.6 0.16 45 1.6 0.38 45 

23 0.69 0.69 0.65 0.12 45 0.97 -0.67 45 

24 0.74 0.74 0.06 0.1 45 1.05 -0.06 45 

25 1.02 1.02 1.35 0.13 45 1.45 -0.93 45 

26 1.12 1.12 0.81 0.17 45 1.58 -0.51 45 

27 0.73 0.73 0.47 0.15 45 1.04 -0.45 45 

28 1.08 1.08 0.56 0.19 45 1.53 -0.37 45 

29 0.97 0.97 1.1 0.11 45 1.37 -0.8 45 

30 0.62 0.62 0.69 0.15 45 0.87 -0.79 45 

31 1 1 1.35 0.14 45 1.41 -0.96 45 

32 0.98 0.98 1.11 0.17 45 1.38 -0.8 45 
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33 0.65 0.65 -0.46 0.13 45 0.92 0.5 45 

34 1.11 1.11 -0.18 0.17 45 1.56 0.12 45 

35 0.94 0.94 0.08 0.12 45 1.33 -0.06 45 

36 0.59 0.59 -0.88 0.14 45 0.84 1.05 45 

37 1.05 1.05 0.22 0.1 45 1.48 -0.15 45 

38 0.99 0.99 0.7 0.18 45 1.4 -0.5 45 

39 1.14 1.14 1.26 0.14 45 1.61 -0.78 45 

40 0.92 0.92 0.91 0.2 45 1.3 -0.7 45 

41 0.86 0.86 -0.7 0.18 45 1.22 0.58 45 

42 0.83 0.83 -0.34 0.16 45 1.17 0.29 45 

43 0.57 0.57 -0.82 0.18 45 0.81 1.02 45 

44 1.09 1.09 1.41 0.18 45 1.55 -0.91 45 

45 0.77 0.77 0.1 0.18 45 1.09 -0.09 45 

46 0.7 0.7 0.72 0.19 45 0.99 -0.73 45 

47 0.6 0.6 1.47 0.09 45 0.86 -1.72 45 

48 0.95 0.95 -0.78 0.13 45 1.35 0.58 45 

49 1.04 1.04 1.21 0.15 45 1.46 -0.83 45 

50 0.78 0.78 0.15 0.14 45 1.1 -0.14 45 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, RC_Angle = test measurement direction  

<Y SAME RC> 

 

Item ID a1 a2 d g alpha MDISC MID RC_Angle 

1 0.57 0.99 0.84 0.17 60 1.14 -0.74 45 

2 0.59 1.03 1.44 0.18 60 1.19 -1.21 45 

3 0.62 1.07 -0.7 0.15 60 1.24 0.57 45 

4 0.64 1.11 1.09 0.2 60 1.28 -0.85 45 

5 0.67 1.15 0.15 0.18 60 1.33 -0.12 45 

6 0.69 1.19 1.13 0.1 60 1.38 -0.82 45 

7 0.71 1.23 0.45 0.12 60 1.43 -0.31 45 

8 0.74 1.28 1.41 0.19 60 1.47 -0.95 45 

9 0.76 1.32 1.39 0.15 60 1.52 -0.91 45 

10 0.78 1.36 -0.25 0.19 60 1.57 0.16 45 

11 0.81 1.4 0.86 0.19 60 1.62 -0.53 45 

12 0.83 1.44 -0.78 0.18 60 1.66 0.47 45 

13 0.86 1.48 1.26 0.16 60 1.71 -0.73 45 

14 0.88 1.52 -0.62 0.16 60 1.76 0.35 45 

15 0.9 1.56 0.41 0.18 60 1.81 -0.23 45 

16 0.93 1.6 0.52 0.15 60 1.85 -0.28 45 

17 0.95 1.65 -0.62 0.14 60 1.9 0.33 45 

18 0.97 1.69 0.3 0.16 60 1.95 -0.15 45 
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19 1 1.73 -0.05 0.11 60 2 0.03 45 

20 1.02 1.77 -0.94 0.18 60 2.04 0.46 45 

21 1.05 1.81 -0.83 0.15 60 2.09 0.4 45 

22 1.07 1.85 1.21 0.1 60 2.14 -0.57 45 

23 1.09 1.89 1.07 0.1 60 2.19 -0.49 45 

24 1.12 1.93 0.06 0.1 60 2.23 -0.03 45 

25 1.14 1.97 1.31 0.04 60 2.28 -0.57 45 

26 0.99 0.57 0.22 0.12 30 1.14 -0.19 45 

27 1.03 0.59 0.21 0.19 30 1.19 -0.18 45 

28 1.07 0.62 0.66 0.09 30 1.24 -0.54 45 

29 1.11 0.64 -0.55 0.1 30 1.28 0.43 45 

30 1.15 0.67 -0.72 0.08 30 1.33 0.54 45 

31 1.19 0.69 1.16 0.07 30 1.38 -0.84 45 

32 1.23 0.71 -0.36 0.19 30 1.43 0.25 45 

33 1.28 0.74 0.41 0.19 30 1.47 -0.28 45 

34 1.32 0.76 1.13 0.11 30 1.52 -0.74 45 

35 1.36 0.78 -0.09 0.15 30 1.57 0.06 45 

36 1.4 0.81 1.44 0.13 30 1.62 -0.89 45 

37 1.44 0.83 1.18 0.13 30 1.66 -0.71 45 

38 1.48 0.86 0.9 0.1 30 1.71 -0.52 45 

39 1.52 0.88 -0.4 0.14 30 1.76 0.23 45 

40 1.56 0.9 0.94 0.17 30 1.81 -0.52 45 

41 1.6 0.93 1.19 0.13 30 1.85 -0.64 45 

42 1.65 0.95 -0.84 0.17 30 1.9 0.44 45 

43 1.69 0.97 -0.46 0.19 30 1.95 0.24 45 

44 1.73 1 1.14 0.19 30 2 -0.57 45 

45 1.77 1.02 0.65 0.18 30 2.04 -0.32 45 

46 1.81 1.05 1.18 0.13 30 2.09 -0.56 45 

47 1.85 1.07 1.04 0.07 30 2.14 -0.49 45 

48 1.89 1.09 -0.06 0.19 30 2.19 0.03 45 

49 1.93 1.12 -0.73 0.17 30 2.23 0.33 45 

50 1.97 1.14 0.46 0.16 30 2.28 -0.2 45 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, RC_Angle = test measurement direction  

 

<Y DIFF RC> 

 

Item ID a1 a2 d g alpha MDISC MID RC_Angle 

1 0.29 0.78 1.32 0.17 70 0.83 -1.59 51.68 

2 0.3 0.82 -0.39 0.1 70 0.87 0.44 51.68 

3 0.31 0.85 -0.41 0.13 70 0.9 0.45 51.68 
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4 0.32 0.88 0.08 0.14 70 0.94 -0.08 51.68 

5 0.33 0.91 -0.13 0.09 70 0.97 0.14 51.68 

6 0.34 0.95 1.17 0.19 70 1.01 -1.16 51.68 

7 0.36 0.98 -0.52 0.19 70 1.04 0.5 51.68 

8 0.37 1.01 0.26 0.19 70 1.08 -0.24 51.68 

9 0.38 1.04 0.1 0.19 70 1.11 -0.09 51.68 

10 0.39 1.08 0.43 0.09 70 1.15 -0.38 51.68 

11 0.4 1.11 0.66 0.14 70 1.18 -0.56 51.68 

12 0.42 1.14 1.45 0.16 70 1.22 -1.19 51.68 

13 0.43 1.17 -0.38 0.1 70 1.25 0.3 51.68 

14 0.44 1.21 -0.36 0.18 70 1.28 0.28 51.68 

15 0.45 1.24 1 0.18 70 1.32 -0.76 51.68 

16 0.46 1.27 1.09 0.08 70 1.35 -0.8 51.68 

17 0.48 1.31 -0.67 0.15 70 1.39 0.48 51.68 

18 0.49 1.34 1.41 0.19 70 1.42 -0.99 51.68 

19 0.5 1.37 -0.59 0.07 70 1.46 0.4 51.68 

20 0.51 1.4 -0.6 0.13 70 1.49 0.4 51.68 

21 0.52 1.44 1.32 0.15 70 1.53 -0.86 51.68 

22 0.53 1.47 0.29 0.16 70 1.56 -0.19 51.68 

23 0.55 1.5 -0.57 0.12 70 1.6 0.36 51.68 

24 0.56 1.53 -0.1 0.14 70 1.63 0.06 51.68 

25 0.57 1.57 0.67 0.14 70 1.67 -0.4 51.68 

26 0.78 0.66 -0.19 0.19 40 1.02 0.18 51.68 

27 0.82 0.68 -0.09 0.1 40 1.06 0.08 51.68 

28 0.85 0.71 -0.59 0.09 40 1.11 0.53 51.68 

29 0.88 0.74 0.66 0.2 40 1.15 -0.58 51.68 

30 0.91 0.77 -0.5 0.15 40 1.19 0.42 51.68 

31 0.95 0.79 1.39 0.14 40 1.24 -1.12 51.68 

32 0.98 0.82 1.25 0.11 40 1.28 -0.98 51.68 

33 1.01 0.85 1.36 0.08 40 1.32 -1.03 51.68 

34 1.04 0.88 0.82 0.17 40 1.36 -0.6 51.68 

35 1.08 0.9 -0.04 0.16 40 1.41 0.03 51.68 

36 1.11 0.93 0.96 0.2 40 1.45 -0.67 51.68 

37 1.14 0.96 -0.92 0.16 40 1.49 0.62 51.68 

38 1.17 0.99 1.35 0.08 40 1.53 -0.88 51.68 

39 1.21 1.01 1.48 0.11 40 1.58 -0.94 51.68 

40 1.24 1.04 -0.07 0.15 40 1.62 0.05 51.68 

41 1.27 1.07 0.88 0.04 40 1.66 -0.53 51.68 

42 1.31 1.1 0.99 0.15 40 1.7 -0.58 51.68 

43 1.34 1.12 0.78 0.12 40 1.75 -0.45 51.68 

44 1.37 1.15 0.22 0.19 40 1.79 -0.12 51.68 
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45 1.4 1.18 0.26 0.17 40 1.83 -0.14 51.68 

46 1.44 1.2 -0.2 0.11 40 1.87 0.1 51.68 

47 1.47 1.23 0.75 0.15 40 1.92 -0.39 51.68 

48 1.5 1.26 1.07 0.17 40 1.96 -0.54 51.68 

49 1.53 1.29 0.12 0.15 40 2 -0.06 51.68 

50 1.57 1.31 0.31 0.2 40 2.04 -0.15 51.68 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, RC_Angle = test measurement direction  

 

<LINEAR COMPOSITE  IRT> 

 

  X Base Y Base Y Same RC Y Diff RC 

Item ID a b g a b g a b g a b g 

1 0.85 0.12 0.15 1.24 0.12 0.08 1.06 -0.76 0.17 0.77 -1.67 0.17 

2 0.43 0.09 0.11 0.95 0.72 0.2 1.09 -1.26 0.18 0.8 0.47 0.1 

3 0.81 -0.27 0.18 1.19 -0.67 0.18 1.14 0.59 0.15 0.83 0.48 0.13 

4 1.34 -0.92 0.15 1.15 0.31 0.1 1.17 -0.88 0.2 0.85 -0.09 0.14 

5 1.17 -1 0.15 0.91 -0.45 0.15 1.22 -0.12 0.18 0.88 0.14 0.09 

6 1.5 -0.01 0.12 1 0.06 0.16 1.25 -0.85 0.1 0.91 -1.22 0.19 

7 1.02 -0.93 0.12 1.5 -0.03 0.19 1.29 -0.33 0.12 0.94 0.52 0.19 

8 1.09 -1.29 0.16 1.2 0.37 0.09 1.33 -0.99 0.19 0.97 -0.25 0.19 

9 1.33 -0.08 0.16 1.12 0.76 0.18 1.37 -0.95 0.15 0.99 -0.1 0.19 

10 1.13 -0.71 0.09 1.07 -0.36 0.16 1.4 0.17 0.19 1.02 -0.39 0.09 

11 1.47 -0.02 0.07 0.93 -1.47 0.11 1.44 -0.55 0.19 1.05 -0.59 0.14 

12 0.95 0.16 0.17 1.51 -0.12 0.06 1.47 0.49 0.18 1.08 -1.26 0.16 

13 0.91 -0.99 0.19 1.13 -0.09 0.17 1.52 -0.76 0.16 1.1 0.32 0.1 

14 0.93 0.48 0.16 1.02 -0.42 0.13 1.55 0.37 0.16 1.13 0.29 0.18 

15 1.03 -0.77 0.16 1.32 -0.19 0.14 1.58 -0.24 0.18 1.16 -0.8 0.18 

16 1.44 0.45 0.16 1.23 0.62 0.07 1.62 -0.29 0.15 1.18 -0.85 0.08 

17 1.2 0.29 0.2 1.43 -0.06 0.15 1.65 0.34 0.14 1.22 0.51 0.15 

18 1.57 0.38 0.15 0.82 -0.43 0.19 1.68 -0.16 0.16 1.24 -1.04 0.19 

19 0.99 0.36 0.17 1.29 0.01 0.15 1.72 0.03 0.11 1.26 0.43 0.07 

20 1.39 0.58 0.16 1.27 -1.15 0.1 1.74 0.48 0.18 1.28 0.42 0.13 

21 1.58 -0.39 0.12 0.89 0.19 0.11 1.78 0.41 0.15 1.31 -0.91 0.15 

22 1.12 -1.07 0.12 1.6 0.38 0.16 1.81 -0.59 0.1 1.33 -0.2 0.16 

23 0.83 -1.15 0.18 0.98 -0.67 0.12 1.83 -0.51 0.1 1.36 0.38 0.12 

24 0.89 -1.12 0.15 1.05 -0.06 0.1 1.87 -0.03 0.1 1.38 0.06 0.14 

25 1.6 -0.11 0.11 1.44 -0.94 0.13 1.9 -0.6 0.04 1.4 -0.42 0.14 

26 1.22 -0.04 0.18 1.58 -0.51 0.17 1.06 -0.2 0.12 0.98 0.19 0.19 

27 1.23 -0.85 0.1 1.03 -0.46 0.15 1.09 -0.18 0.19 1.02 0.09 0.1 

28 1.3 -0.41 0.19 1.53 -0.37 0.19 1.14 -0.55 0.09 1.06 0.54 0.09 



204 

 

29 1.27 -0.51 0.16 1.37 -0.8 0.11 1.17 0.44 0.1 1.1 -0.59 0.2 

30 1.15 0.07 0.16 0.88 -0.79 0.15 1.22 0.56 0.08 1.14 0.43 0.15 

31 1.32 0.22 0.13 1.41 -0.95 0.14 1.25 -0.87 0.07 1.17 -1.15 0.14 

32 1.19 -1.25 0.15 1.39 -0.8 0.17 1.29 0.26 0.19 1.21 -1 0.11 

33 0.92 -0.65 0.15 0.92 0.5 0.13 1.33 -0.29 0.19 1.25 -1.05 0.08 

34 1.37 0.31 0.11 1.57 0.11 0.17 1.37 -0.77 0.11 1.29 -0.61 0.17 

35 1.4 0.45 0.16 1.33 -0.06 0.12 1.4 0.06 0.15 1.32 0.03 0.16 

36 1.41 -0.16 0.09 0.83 1.05 0.14 1.44 -0.92 0.13 1.36 -0.68 0.2 

37 1.53 -0.86 0.13 1.48 -0.15 0.1 1.47 -0.74 0.13 1.4 0.63 0.16 

38 1.1 -0.47 0.12 1.4 -0.5 0.18 1.52 -0.54 0.1 1.44 -0.9 0.08 

39 1.48 -0.97 0.13 1.61 -0.78 0.14 1.55 0.24 0.14 1.47 -0.96 0.11 

40 1.54 -0.54 0.19 1.3 -0.7 0.2 1.58 -0.54 0.17 1.51 0.04 0.15 

41 1.24 0.06 0.15 1.22 0.58 0.18 1.62 -0.67 0.13 1.54 -0.54 0.04 

42 1 -0.11 0.18 1.17 0.29 0.16 1.65 0.46 0.17 1.58 -0.59 0.15 

43 1.51 0.39 0.19 0.81 1.02 0.18 1.68 0.24 0.19 1.61 -0.46 0.12 

44 1.05 0.88 0.14 1.54 -0.91 0.18 1.72 -0.59 0.19 1.65 -0.13 0.19 

45 0.82 -0.98 0.08 1.09 -0.09 0.18 1.74 -0.33 0.18 1.68 -0.14 0.17 

46 0.88 0.8 0.13 0.99 -0.73 0.19 1.78 -0.58 0.13 1.71 0.11 0.11 

47 0.98 -0.14 0.17 0.85 -1.73 0.09 1.81 -0.5 0.07 1.75 -0.4 0.15 

48 1.61 -0.38 0.13 1.34 0.58 0.13 1.83 0.03 0.19 1.78 -0.56 0.17 

49 1.07 -1.38 0.17 1.47 -0.82 0.15 1.87 0.34 0.17 1.82 -0.06 0.15 

50 1.29 -0.2 0.19 1.1 -0.14 0.14 1.9 -0.21 0.16 1.85 -0.15 0.2 

 

ITEM PARAMETERS OF MC-II 

 

<X BASE>  REFERS TO <X BASE> DISPLAYED EARLIER. 

<Y BASE> 

 

Item ID 

a

1 

a

2 d g alpha MDISC MID CVI RC_Angle 

1 0.82 0.30 0.20 0.13 19.95 0.87 -0.22 0.95 7.69 

2 1.05 0.37 -1.43 0.14 19.52 1.12 1.28 0.95 7.69 

3 1.39 0.48 -0.04 0.08 19.09 1.47 0.03 0.96 7.69 

4 1.33 0.45 1.41 0.12 18.65 1.40 -1.00 0.96 7.69 

5 1.28 0.42 -0.19 0.12 18.19 1.35 0.14 0.96 7.69 

6 1.20 0.38 -0.46 0.17 17.73 1.25 0.36 0.97 7.69 

7 1.12 0.35 -0.37 0.19 17.25 1.18 0.32 0.97 7.69 

8 1.48 0.45 -1.15 0.10 16.76 1.55 0.74 0.97 7.69 

9 1.10 0.32 -1.43 0.16 16.26 1.14 1.25 0.98 7.69 

10 0.61 0.17 -0.86 0.14 15.74 0.63 1.37 0.98 7.69 

11 0.72 0.20 1.10 0.14 15.20 0.74 -1.48 0.98 7.69 

12 0.68 0.18 0.33 0.05 14.65 0.70 -0.47 0.98 7.69 
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13 1.15 0.29 -0.78 0.15 14.07 1.18 0.66 0.99 7.69 

14 0.59 0.14 -0.53 0.11 13.47 0.61 0.87 0.99 7.69 

15 1.46 0.33 -1.17 0.14 12.84 1.50 0.78 0.99 7.69 

16 0.77 0.17 -0.91 0.14 12.18 0.79 1.16 0.99 7.69 

17 1.43 0.29 0.54 0.11 11.48 1.46 -0.37 0.99 7.69 

18 1.48 0.28 0.32 0.10 10.73 1.51 -0.22 1.00 7.69 

19 1.16 0.20 0.57 0.15 9.94 1.17 -0.48 1.00 7.69 

20 0.75 0.12 1.40 0.13 9.07 0.76 -1.84 1.00 7.69 

21 0.95 0.14 0.92 0.12 8.11 0.96 -0.95 1.00 7.69 

22 0.75 0.09 1.31 0.08 7.02 0.76 -1.73 1.00 7.69 

23 1.43 0.14 0.16 0.11 5.73 1.44 -0.11 1.00 7.69 

24 0.62 0.04 1.11 0.14 4.05 0.62 -1.79 1.00 7.69 

25 0.97 0.00 0.71 0.09 0.00 0.97 -0.73 0.98 7.69 

26 1.00 0.00 0.85 0.12 0.00 1.00 -0.85 0.98 7.69 

27 1.00 0.00 -0.06 0.14 0.00 1.00 0.06 0.98 7.69 

28 1.00 0.00 0.05 0.20 0.00 1.00 -0.05 0.98 7.69 

29 1.00 0.00 0.00 0.19 0.00 1.00 0.00 0.98 7.69 

30 1.00 0.00 0.41 0.20 0.00 1.00 -0.41 0.98 7.69 

31 1.00 0.00 -0.43 0.14 0.00 1.00 0.43 0.98 7.69 

32 1.00 0.00 -1.16 0.18 0.00 1.00 1.16 0.98 7.69 

33 1.00 0.00 -0.34 0.18 0.00 1.00 0.34 0.98 7.69 

34 1.00 0.00 -0.18 0.11 0.00 1.00 0.18 0.98 7.69 

35 1.00 0.00 0.80 0.18 0.00 1.00 -0.80 0.98 7.69 

36 1.00 0.00 -0.27 0.17 0.00 1.00 0.27 0.98 7.69 

37 1.00 0.00 0.88 0.18 0.00 1.00 -0.88 0.98 7.69 

38 1.00 0.00 0.19 0.12 0.00 1.00 -0.19 0.98 7.69 

39 1.00 0.00 -1.43 0.19 0.00 1.00 1.43 0.98 7.69 

40 1.00 0.00 -0.15 0.17 0.00 1.00 0.15 0.98 7.69 

41 1.00 0.00 0.21 0.17 0.00 1.00 -0.21 0.98 7.69 

42 1.00 0.00 0.59 0.20 0.00 1.00 -0.59 0.98 7.69 

43 1.00 0.00 -0.72 0.16 0.00 1.00 0.72 0.98 7.69 

44 1.00 0.00 -1.09 0.19 0.00 1.00 1.09 0.98 7.69 

45 1.00 0.00 -1.37 0.15 0.00 1.00 1.37 0.98 7.69 

46 1.00 0.00 0.10 0.19 0.00 1.00 -0.10 0.98 7.69 

47 1.00 0.00 0.64 0.19 0.00 1.00 -0.64 0.98 7.69 

48 1.00 0.00 0.22 0.17 0.00 1.00 -0.22 0.98 7.69 

49 1.00 0.00 0.22 0.16 0.00 1.00 -0.22 0.98 7.69 

50 1.00 0.00 -0.10 0.19 0.00 1.00 0.10 0.98 7.69 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, RC_Angle = test measurement direction  

 

<Y 60> 
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Item ID a1 a2 d g alpha MDISC MID CVI RC_Angle 

1 1.13 1.96 0.44 0.15 60 2.26 -0.2 0.37 29.4 

2 1.32 2.16 0.35 0.14 58.61 2.53 -0.14 0.39 29.4 

3 0.85 1.32 -1.34 0.06 57.2 1.57 0.85 0.41 29.4 

4 0.63 0.93 -1.17 0.16 55.77 1.13 1.04 0.44 29.4 

5 0.58 0.81 -1.2 0.11 54.31 1 1.2 0.46 29.4 

6 0.85 1.12 0.37 0.11 52.83 1.41 -0.26 0.49 29.4 

7 1.5 1.87 0.71 0.2 51.32 2.39 -0.3 0.52 29.4 

8 1.03 1.22 -0.51 0.2 49.77 1.6 0.32 0.54 29.4 

9 0.84 0.93 -1.05 0.18 48.19 1.25 0.84 0.57 29.4 

10 0.81 0.86 -0.58 0.09 46.57 1.18 0.49 0.6 29.4 

11 0.88 0.88 -0.26 0.15 44.9 1.25 0.21 0.63 29.4 

12 0.52 0.49 0.74 0.16 43.18 0.71 -1.04 0.66 29.4 

13 0.54 0.47 -1.31 0.15 41.41 0.72 1.83 0.68 29.4 

14 1.38 1.14 -1.23 0.04 39.57 1.79 0.69 0.71 29.4 

15 0.9 0.7 0.35 0.15 37.66 1.14 -0.31 0.74 29.4 

16 0.97 0.7 -0.75 0.15 35.66 1.19 0.63 0.77 29.4 

17 0.9 0.6 0.27 0.17 33.56 1.08 -0.25 0.8 29.4 

18 1.2 0.73 -0.93 0.17 31.33 1.41 0.66 0.83 29.4 

19 0.9 0.5 -0.54 0.18 28.96 1.03 0.52 0.86 29.4 

20 1 0.5 -0.26 0.1 26.38 1.12 0.23 0.89 29.4 

21 0.54 0.23 0.8 0.11 23.56 0.59 -1.37 0.92 29.4 

22 0.8 0.3 -1.36 0.18 20.36 0.85 1.6 0.95 29.4 

23 1.46 0.44 -0.75 0.15 16.6 1.53 0.49 0.97 29.4 

24 1.44 0.3 -0.91 0.17 11.72 1.47 0.62 0.99 29.4 

25 1.46 0 -0.56 0.1 0 1.46 0.38 0.98 29.4 

26 1 0 0.37 0.19 0 1 -0.37 0.98 29.4 

27 1 0 0.62 0.13 0 1 -0.62 0.98 29.4 

28 1 0 0.16 0.11 0 1 -0.16 0.98 29.4 

29 1 0 0.16 0.17 0 1 -0.16 0.98 29.4 

30 1 0 -1.1 0.11 0 1 1.1 0.98 29.4 

31 1 0 0.47 0.09 0 1 -0.47 0.98 29.4 

32 1 0 0.24 0.07 0 1 -0.24 0.98 29.4 

33 1 0 0.78 0.19 0 1 -0.78 0.98 29.4 

34 1 0 -1.48 0.14 0 1 1.48 0.98 29.4 

35 1 0 -0.04 0.19 0 1 0.04 0.98 29.4 

36 1 0 -0.6 0.09 0 1 0.6 0.98 29.4 

37 1 0 0.32 0.15 0 1 -0.32 0.98 29.4 

38 1 0 0.37 0.18 0 1 -0.37 0.98 29.4 

39 1 0 -0.86 0.16 0 1 0.86 0.98 29.4 
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40 1 0 -0.88 0.16 0 1 0.88 0.98 29.4 

41 1 0 0.16 0.19 0 1 -0.16 0.98 29.4 

42 1 0 -0.31 0.2 0 1 0.31 0.98 29.4 

43 1 0 -0.57 0.13 0 1 0.57 0.98 29.4 

44 1 0 -1.36 0.1 0 1 1.36 0.98 29.4 

45 1 0 0.7 0.11 0 1 -0.7 0.98 29.4 

46 1 0 0.46 0.19 0 1 -0.46 0.98 29.4 

47 1 0 -0.32 0.1 0 1 0.32 0.98 29.4 

48 1 0 -1.42 0.13 0 1 1.42 0.98 29.4 

49 1 0 -0.25 0.11 0 1 0.25 0.98 29.4 

50 1 0 -0.59 0.09 0 1 0.59 0.98 29.4 

Alpha= item measurement direction, MDISC=item discrimination in MIRT, MID=item difficulty 

in MIRT, CVI = validity sector index, RC_Angle = test measurement direction  

 

<Parameters of Linear Composite  IRT> 

 

 X Base Y Base Y 60 

Item ID a 

b

b 

c

c 

a

a 

b

b 

c

c 

a

a 

b

b 

c

c 

1 1.06 -0.03 0.15 0.84 0.19 0.13 1.28 0.29 0.15 

2 1.15 0.97 0.15 1.07 -1.40 0.14 1.39 0.22 0.14 

3 1.41 0.74 0.17 1.38 -0.04 0.08 1.12 -1.08 0.06 

4 1.19 1.17 0.09 1.33 1.36 0.12 0.90 -1.05 0.16 

5 0.77 -0.65 0.17 1.29 -0.18 0.12 0.83 -1.11 0.11 

6 0.92 -0.16 0.18 1.21 -0.45 0.17 1.13 0.32 0.11 

7 0.63 -0.68 0.12 1.14 -0.37 0.19 1.66 0.53 0.20 

8 0.64 -0.51 0.07 1.48 -1.12 0.10 1.31 -0.45 0.20 

9 1.15 1.07 0.14 1.11 -1.41 0.16 1.10 -0.98 0.18 

10 0.86 -1.16 0.13 0.62 -0.86 0.14 1.06 -0.55 0.09 

11 0.93 -0.29 0.15 0.74 1.09 0.14 1.14 -0.25 0.15 

12 1.45 -0.27 0.14 0.70 0.33 0.05 0.68 0.73 0.16 

13 0.89 -0.19 0.19 1.17 -0.78 0.15 0.69 -1.30 0.15 

14 0.74 -0.97 0.11 0.61 -0.53 0.11 1.68 -1.17 0.04 

15 1.20 -0.69 0.10 1.48 -1.16 0.14 1.11 0.35 0.15 

16 0.52 0.48 0.16 0.78 -0.91 0.14 1.18 -0.74 0.15 

17 1.20 0.95 0.06 1.45 0.54 0.11 1.08 0.27 0.17 

18 1.31 -0.24 0.08 1.50 0.32 0.10 1.40 -0.93 0.17 

19 1.02 -1.02 0.18 1.17 0.57 0.15 1.03 -0.54 0.18 

20 0.82 -0.63 0.19 0.76 1.40 0.13 1.11 -0.26 0.10 

21 1.25 0.91 0.12 0.96 0.91 0.12 0.58 0.80 0.11 

22 0.81 -1.01 0.17 0.76 1.31 0.08 0.84 -1.35 0.18 

23 1.28 0.87 0.13 1.43 0.16 0.11 1.41 -0.71 0.15 
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24 0.61 0.07 0.20 0.62 1.11 0.14 1.28 -0.83 0.17 

25 1.27 -0.53 0.18 0.95 0.70 0.09 1.03 -0.46 0.10 

26 0.99 -0.67 0.18 0.98 0.84 0.12 0.78 0.33 0.19 

27 0.99 0.90 0.12 0.98 -0.06 0.14 0.78 0.56 0.13 

28 0.99 -1.18 0.08 0.98 0.05 0.20 0.78 0.14 0.11 

29 0.99 1.00 0.14 0.98 0.00 0.19 0.78 0.14 0.17 

30 0.99 -1.25 0.18 0.98 0.41 0.20 0.78 -0.99 0.11 

31 0.99 0.65 0.19 0.98 -0.43 0.14 0.78 0.42 0.09 

32 0.99 1.08 0.17 0.98 -1.15 0.18 0.78 0.22 0.07 

33 0.99 1.43 0.17 0.98 -0.34 0.18 0.78 0.70 0.19 

34 0.99 -0.74 0.19 0.98 -0.18 0.11 0.78 -1.33 0.14 

35 0.99 -1.42 0.17 0.98 0.80 0.18 0.78 -0.04 0.19 

36 0.99 -0.82 0.19 0.98 -0.27 0.17 0.78 -0.54 0.09 

37 0.99 -1.12 0.15 0.98 0.87 0.18 0.78 0.29 0.15 

38 0.99 -0.34 0.17 0.98 0.18 0.12 0.78 0.33 0.18 

39 0.99 -1.24 0.10 0.98 -1.42 0.19 0.78 -0.77 0.16 

40 0.99 -0.65 0.18 0.98 -0.15 0.17 0.78 -0.79 0.16 

41 0.99 0.20 0.08 0.98 0.21 0.17 0.78 0.14 0.19 

42 0.99 -0.51 0.13 0.98 0.58 0.20 0.78 -0.28 0.20 

43 0.99 1.32 0.14 0.98 -0.71 0.16 0.78 -0.51 0.13 

44 0.99 -0.37 0.19 0.98 -1.08 0.19 0.78 -1.22 0.10 

45 0.99 1.35 0.20 0.98 -1.36 0.15 0.78 0.63 0.11 

46 0.99 -0.68 0.07 0.98 0.10 0.19 0.78 0.41 0.19 

47 0.99 0.56 0.16 0.98 0.64 0.19 0.78 -0.29 0.10 

48 0.99 -1.08 0.07 0.98 0.22 0.17 0.78 -1.27 0.13 

49 0.99 0.92 0.16 0.98 0.21 0.16 0.78 -0.22 0.11 

50 0.99 0.78 0.09 0.98 -0.10 0.19 0.78 -0.53 0.09 
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APPENDIX D: EQUATING RESULTS 

EQUATING RESULTS of MC-I 

<MIRT OSE> 

 

X Base Identity Y Base Y Same RC Y Diff RC 

0 0 0 0 0 

1 1 1.11 0.67 1.96 

2 2 2.13 1.62 3.16 

3 3 3.14 2.56 4.32 

4 4 4.16 3.49 5.44 

5 5 5.18 4.34 6.52 

6 6 6.2 5.22 7.55 

7 7 7.22 6.12 8.58 

8 8 8.24 7.02 9.58 

9 9 9.26 7.93 10.56 

10 10 10.27 8.85 11.51 

11 11 11.29 9.77 12.43 

12 12 12.3 10.7 13.32 

13 13 13.31 11.63 14.18 

14 14 14.31 12.58 15.03 

15 15 15.31 13.54 15.87 

16 16 16.3 14.5 16.69 

17 17 17.29 15.48 17.51 

18 18 18.28 16.47 18.31 

19 19 19.27 17.45 19.12 

20 20 20.26 18.44 19.93 

21 21 21.24 19.42 20.75 

22 22 22.23 20.4 21.57 

23 23 23.22 21.39 22.4 

24 24 24.21 22.37 23.25 

25 25 25.2 23.35 24.1 

26 26 26.19 24.34 24.96 

27 27 27.18 25.34 25.84 

28 28 28.17 26.35 26.72 

29 29 29.17 27.37 27.62 

30 30 30.16 28.4 28.53 

31 31 31.16 29.46 29.45 

32 32 32.16 30.54 30.38 

33 33 33.16 31.64 31.32 

34 34 34.16 32.77 32.28 
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35 35 35.17 33.93 33.24 

36 36 36.18 35.11 34.21 

37 37 37.19 36.32 35.19 

38 38 38.2 37.54 36.18 

39 39 39.22 38.78 37.17 

40 40 40.23 40.02 38.17 

41 41 41.25 41.25 39.17 

42 42 42.27 42.45 40.17 

43 43 43.28 43.62 41.18 

44 44 44.29 44.75 42.2 

45 45 45.29 45.81 43.22 

46 46 46.28 46.82 44.25 

47 47 47.26 47.76 45.31 

48 48 48.22 48.63 46.39 

49 49 49.17 49.43 47.54 

50 50 50.1 50.24 48.94 

 

<AMT> 

 

  No Weight Integer Value Weight 

X 

Base 

Identit

y 

Y 

Base 

Y Same 

RC 

Y Diff 

RC 

Identit

y 

Y 

Base 

Y Same 

RC 

Y Diff 

RC 

8 8 8.26 9.06 8.58 8 8 9.07 8.53 

9 9 9.48 10.44 9.74 9 9.52 10.09 9.63 

10 10 10.64 11.56 10.78 10 11 11.6 10.27 

11 11.02 11.78 12.54 11.79 11.02 12 12.25 11.73 

12 11.99 12.87 13.45 12.73 11.99 13 13.22 12.39 

13 13.01 13.96 14.28 13.65 13.01 14 14.18 13.06 

14 14.03 14.97 15.09 14.52 14.03 15 14.81 13.73 

15 15 16 15.89 15.48 15 16 15.76 15.18 

16 16 17.04 16.67 16.37 16 17 16.42 15.87 

17 17 18.03 17.45 17.34 17 18 17.35 16.83 

18 18.03 19.03 18.26 18.21 18.03 19 18.31 17.5 

19 19.03 19.98 19.07 19.17 19.03 20 18.5 18.45 

20 19.98 20.98 19.84 20.2 19.98 21 19.45 19.2 

21 20.98 21.9 20.73 21.1 20.98 22 20.43 20.63 

22 22.01 22.91 21.59 22.36 22.01 23 21.41 21.48 

23 22.96 23.89 22.5 23.5 22.96 24 22.4 22.42 

24 24 24.84 23.45 24.53 24 25 22.9 23.89 

25 25.01 25.86 24.43 25.87 25.01 26 23.91 25.43 

26 25.97 26.84 25.46 27.29 25.97 27 25.23 26.78 
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27 27.01 27.83 26.66 28.34 27.01 28 26.28 28.06 

28 28.01 28.77 27.95 29.48 28.01 29 27.67 29.64 

29 29 29.83 29.5 30.43 29 30 30.03 30.88 

30 30.01 30.77 31.17 31.39 30.01 31 32.04 32.11 

31 31.01 31.77 32.52 32.33 31.01 32 33.51 32.95 

32 32.01 32.76 33.66 33.16 32.01 33 34.57 34.05 

33 32.99 33.8 34.69 34.02 32.99 34 35.57 35.3 

34 34.03 34.82 35.68 34.93 34.03 35 36.57 35.75 

35 34.99 35.82 36.62 35.83 34.99 36 37.55 37.13 

36 36.04 36.79 37.55 36.62 36.04 37 38.55 38.02 

37 37 37.84 38.39 37.49 37 38 39.51 38.55 

38 38.04 38.84 39.21 38.46 38.04 39 39.77 39.58 

39 39.03 39.79 40.05 39.37 39.03 40 40.75 40.67 

40 39.98 40.83 40.92 40.28 39.98 41 41.75 41.28 

41 41 41.84 41.7 41.1 41 42 42.3 41.86 

42 42 42.84 42.5 42.04 42 43 43.28 43.41 

43 42.99 43.81 43.28 42.9 42.99 44 43.82 44.01 

44 44.01 44.79 44.03 43.82 44.01 45 44.8 44.67 

45 44.99 45.76 44.81 44.71 44.99 46 45.31 45.61 

46 46 46.69 45.6 45.68 46 47 46.32 46.29 

47 47 47.58 46.41 46.68 47 47.63 46.82 47.25 

48 48 48.45 47.28 47.71 48 48.67 47.88 48.49 

49 49 49.27 48.3 48.81 49 49 48.64 49.37 

50 49.95 49.97 49.87 49.94 49.95 50 50 50 

Equated scores were truncated at the observed score  8 which is the largest integer score larger 

than the sum of guessings  

 

<OSE  OF LINEAR COMPOSITE IRT> 

 

X Base Identity Y Base Y Same RC Y Diff RC 

0 0 0 0 0 

1 1 1.1 0.72 0.87 

2 2 2.12 1.68 1.85 

3 3 3.13 2.63 2.84 

4 4 4.16 3.57 3.82 

5 5 5.18 4.51 4.8 

6 6 6.21 5.41 5.78 

7 7 7.24 6.32 6.75 

8 8 8.27 7.24 7.72 

9 9 9.3 8.17 8.69 

10 10 10.33 9.1 9.65 
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11 11 11.36 10.04 10.6 

12 12 12.38 10.99 11.54 

13 13 13.39 11.94 12.48 

14 14 14.4 12.91 13.42 

15 15 15.41 13.88 14.36 

16 16 16.41 14.86 15.3 

17 17 17.4 15.83 16.24 

18 18 18.4 16.8 17.18 

19 19 19.39 17.77 18.14 

20 20 20.39 18.74 19.1 

21 21 21.38 19.7 20.07 

22 22 22.38 20.66 21.05 

23 23 23.37 21.63 22.03 

24 24 24.37 22.59 23.02 

25 25 25.37 23.56 24.03 

26 26 26.37 24.54 25.03 

27 27 27.36 25.52 26.05 

28 28 28.36 26.52 27.08 

29 29 29.36 27.53 28.11 

30 30 30.35 28.56 29.15 

31 31 31.35 29.61 30.19 

32 32 32.34 30.69 31.24 

33 33 33.33 31.78 32.3 

34 34 34.33 32.9 33.37 

35 35 35.32 34.05 34.44 

36 36 36.32 35.22 35.52 

37 37 37.31 36.41 36.61 

38 38 38.32 37.63 37.7 

39 39 39.32 38.87 38.79 

40 40 40.32 40.11 39.88 

41 41 41.33 41.34 40.97 

42 42 42.34 42.56 42.05 

43 43 43.35 43.75 43.12 

44 44 44.35 44.9 44.17 

45 45 45.35 45.99 45.21 

46 46 46.34 47.02 46.24 

47 47 47.31 47.97 47.24 

48 48 48.26 48.84 48.21 

49 49 49.18 49.6 49.16 

50 50 50.09 50.25 50.08 
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<TSE  OF LINEAR COMPOSITE IRT> 

 

X Base Identity Y Base Y Same RC Y Diff RC 

0 0 0 0 0 

1 1 0.98 0.99 0.97 

2 2 1.97 1.98 1.94 

3 3 2.95 2.97 2.91 

4 4 3.93 3.96 3.87 

5 5 4.92 4.95 4.84 

6 6 5.9 5.94 5.81 

7 7 6.89 6.93 6.78 

8 8 8.08 7.56 7.78 

9 9 9.24 8.23 8.77 

10 10 10.34 9.04 9.72 

11 11 11.39 9.94 10.66 

12 12 12.42 10.88 11.59 

13 13 13.43 11.86 12.51 

14 14 14.43 12.85 13.43 

15 15 15.43 13.84 14.35 

16 16 16.42 14.83 15.28 

17 17 17.41 15.82 16.21 

18 18 18.4 16.8 17.15 

19 19 19.39 17.77 18.1 

20 20 20.38 18.73 19.06 

21 21 21.37 19.69 20.02 

22 22 22.37 20.65 21 

23 23 23.37 21.61 21.99 

24 24 24.36 22.57 22.99 

25 25 25.36 23.54 23.99 

26 26 26.36 24.52 25.01 

27 27 27.36 25.51 26.03 

28 28 28.35 26.51 27.06 

29 29 29.35 27.52 28.1 

30 30 30.34 28.56 29.14 

31 31 31.33 29.62 30.19 

32 32 32.33 30.7 31.25 

33 33 33.32 31.8 32.31 

34 34 34.31 32.94 33.39 

35 35 35.31 34.1 34.47 

36 36 36.31 35.29 35.56 

37 37 37.31 36.51 36.65 
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38 38 38.31 37.75 37.75 

39 39 39.32 39 38.84 

40 40 40.33 40.26 39.94 

41 41 41.34 41.5 41.03 

42 42 42.36 42.73 42.11 

43 43 43.37 43.91 43.18 

44 44 44.38 45.05 44.23 

45 45 45.38 46.12 45.27 

46 46 46.36 47.12 46.28 

47 47 47.33 48.03 47.27 

48 48 48.26 48.83 48.22 

49 49 49.15 49.52 49.14 

50 50 50 50 50 

 

EQUATING RESULTS of MC-II 

<MIRT OSE> 

 

Item ID X Base Identity Y Base Y 60 RC 

1 0 0 0 0 

2 1 1 0.85 1.14 

3 2 2 1.82 2.17 

4 3 3 2.79 3.2 

5 4 4 3.76 4.23 

6 5 5 4.72 5.27 

7 6 6 5.67 6.32 

8 7 7 6.62 7.38 

9 8 8 7.57 8.45 

10 9 9 8.5 9.52 

11 10 10 9.42 10.6 

12 11 11 10.34 11.69 

13 12 12 11.27 12.8 

14 13 13 12.2 13.92 

15 14 14 13.13 15.05 

16 15 15 14.07 16.19 

17 16 16 15.02 17.33 

18 17 17 15.97 18.49 

19 18 18 16.92 19.63 

20 19 19 17.89 20.78 

21 20 20 18.87 21.93 

22 21 21 19.86 23.08 

23 22 22 20.86 24.23 
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24 23 23 21.88 25.38 

25 24 24 22.92 26.52 

26 25 25 23.97 27.66 

27 26 26 25.05 28.8 

28 27 27 26.15 29.93 

29 28 28 27.26 31.06 

30 29 29 28.4 32.19 

31 30 30 29.54 33.31 

32 31 31 30.7 34.42 

33 32 32 31.87 35.51 

34 33 33 33.04 36.59 

35 34 34 34.19 37.65 

36 35 35 35.34 38.69 

37 36 36 36.47 39.69 

38 37 37 37.57 40.67 

39 38 38 38.65 41.6 

40 39 39 39.69 42.5 

41 40 40 40.71 43.36 

42 41 41 41.69 44.19 

43 42 42 42.65 44.97 

44 43 43 43.59 45.72 

45 44 44 44.5 46.42 

46 45 45 45.4 47.11 

47 46 46 46.29 47.77 

48 47 47 47.18 48.39 

49 48 48 48.08 49.03 

50 49 49 49 49.63 

51 50 50 49.97 50.27 

 

<AMT> 

 

No Weight Integer Value Weight 

X Base Identity  Y Base2 Y 60 RC2 Identity  Y Base Y 60 RC 

8 8 7.63 8.66 8 8 8.53 

9 9 8.44 10 9 8.52 9.67 

10 10 9.43 11.11 10 9.52 10.84 

11 11 10.48 11.97 11 10.52 11.41 

12 12 11.56 12.63 12 11.53 12.37 

13 13 12.65 13.2 13 12.53 12.74 

14 14 13.72 13.78 14 13.53 13.64 

15 15 14.77 14.57 15 14.53 14.14 
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16 16 15.8 15.71 16 15.53 14.86 

17 17 16.8 16.89 17 16.53 16.5 

18 18 17.77 18.14 18 17.53 17.62 

19 19 18.72 19.41 19 18.53 18.7 

20 20 19.65 20.74 20 19.53 20.4 

21 21 20.57 22.04 21 20.53 21.48 

22 22 21.47 23.38 22 21.09 22.55 

23 23 22.36 24.67 23 22.09 23.83 

24 24 23.24 26.01 24 23.08 25.48 

25 25 24.11 27.2 25 24.07 26.67 

26 26 24.98 28.54 26 25.06 28.3 

27 27 25.85 29.75 27 25.53 29.24 

28 28 26.73 31.02 28 26.53 31.1 

29 29 27.6 32.26 29 27.53 32.1 

30 30 28.49 33.4 30 28.53 33.62 

31 31 29.4 34.65 31 29.53 34.99 

32 32 30.3 35.77 32 30 35.95 

33 33 31.23 36.97 33 31 37 

34 34 32.17 38.05 34 32 38.68 

35 35 33.12 39.11 35 33 39.78 

36 36 34.09 40.05 36 34.52 40.11 

37 37 35.07 40.94 37 35.52 41.61 

38 38 36.06 41.76 38 36.09 42.79 

39 39 37.08 42.4 39 37.1 43.13 

40 40 38.11 42.65 40 38.11 43.37 

41 41 39.15 43.07 41 39.12 43.76 

42 42 40.23 43.58 42 40.13 44.23 

43 43 41.33 44.13 43 41.54 45.08 

44 44 42.45 44.81 44 42.55 45.66 

45 45 43.61 45.56 45 44.11 46.26 

46 46 44.8 46.33 46 45.15 46.88 

47 47 46.03 47.11 47 46.56 47.74 

48 48 47.3 47.94 48 47.6 48.27 

49 49 48.62 48.84 49 48.69 48.72 

Equated scores were truncated at the observed score  8 which is the largest integer score larger 

than the sum of guessings.  

 

<OSE  OF LINEAR COMPOSITE IRT> 

 

X Base Identity Y Base Y 60 

0 0 0 0 
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1 1 0.85 1.08 

2 2 1.82 2.1 

3 3 2.79 3.12 

4 4 3.75 4.15 

5 5 4.71 5.19 

6 6 5.67 6.23 

7 7 6.61 7.28 

8 8 7.56 8.34 

9 9 8.49 9.41 

10 10 9.41 10.5 

11 11 10.33 11.59 

12 12 11.26 12.69 

13 13 12.19 13.82 

14 14 13.12 14.96 

15 15 14.06 16.11 

16 16 15.01 17.27 

17 17 15.96 18.44 

18 18 16.93 19.61 

19 19 17.9 20.77 

20 20 18.88 21.94 

21 21 19.87 23.1 

22 22 20.87 24.26 

23 23 21.89 25.41 

24 24 22.92 26.56 

25 25 23.98 27.7 

26 26 25.05 28.84 

27 27 26.14 29.97 

28 28 27.25 31.1 

29 29 28.37 32.22 

30 30 29.51 33.32 

31 31 30.66 34.42 

32 32 31.82 35.5 

33 33 32.97 36.56 

34 34 34.12 37.6 

35 35 35.26 38.6 

36 36 36.38 39.58 

37 37 37.48 40.52 

38 38 38.56 41.43 

39 39 39.61 42.3 

40 40 40.63 43.13 

41 41 41.62 43.92 
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42 42 42.58 44.68 

43 43 43.52 45.41 

44 44 44.44 46.11 

45 45 45.35 46.8 

46 46 46.26 47.45 

47 47 47.16 48.13 

48 48 48.07 48.8 

49 49 48.99 49.44 

50 50 49.97 50.2 

 

<TSE  OF LINEAR COMPOSITE IRT> 

 

X Base Identity Y Base Y 60 

0 0 0 0 

1 1 1.02 0.97 

2 2 2.04 1.95 

3 3 3.05 2.92 

4 4 4.07 3.89 

5 5 5.09 4.87 

6 6 6.11 5.84 

7 7 7.13 6.82 

8 8 7.92 8 

9 9 8.71 9.14 

10 10 9.55 10.26 

11 11 10.42 11.38 

12 12 11.3 12.51 

13 13 12.21 13.65 

14 14 13.13 14.81 

15 15 14.07 15.98 

16 16 15.01 17.17 

17 17 15.96 18.35 

18 18 16.92 19.54 

19 19 17.88 20.72 

20 20 18.86 21.9 

21 21 19.84 23.08 

22 22 20.84 24.24 

23 23 21.86 25.41 

24 24 22.89 26.56 

25 25 23.94 27.71 

26 26 25.01 28.85 

27 27 26.11 29.99 
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28 28 27.23 31.12 

29 29 28.36 32.24 

30 30 29.52 33.35 

31 31 30.68 34.45 

32 32 31.85 35.54 

33 33 33.02 36.6 

34 34 34.18 37.64 

35 35 35.33 38.64 

36 36 36.46 39.61 

37 37 37.55 40.54 

38 38 38.62 41.43 

39 39 39.66 42.28 

40 40 40.66 43.08 

41 41 41.64 43.85 

42 42 42.58 44.57 

43 43 43.51 45.27 

44 44 44.41 45.93 

45 45 45.3 46.58 

46 46 46.18 47.21 

47 47 47.07 47.83 

48 48 47.96 48.47 

49 49 48.9 49.14 

50 50 50 50 

 

 

 
 


