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Simple slopes analysis is commonly used to evaluate moderator or interaction effects 

in multiple linear regression models. In usual practice, the moderator is treated as a fixed 

value when the standard error of simple slopes is estimated. The usual method used for 

choosing the conditional value of moderator (i.e., at one sample SD below, one SD above, 

and at the mean) makes the moderator a random variable and therefore renders the standard 

error suspect. In this study I examined whether the standard error used in post hoc probing 

for interaction effect is a biased estimator of the population variance when moderator is a 

random variable. I conducted Monte Carlo simulations to evaluate the variance of the 

simple slope under a variety of conditions corresponding to a 5 (sample size, N) x 5 

(variance of focal predictor, x) x 5 (variance of moderator, z) x 4 (levels of r, the correlation 

between x and z) x 5(model fit, R2) x 4 (population slope for interaction, bxz) factorial 

design. I present circumstances under which usual practice yields an “almost” unbiased 

estimator and conditions when the estimator is more severely biased and less so.
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CHAPTER I 
 

INTRODUCTION 
 

Simple Slopes Analysis 

Researchers in psychology, education, and other social science disciplines have a 

long tradition of testing for moderator effects. Theories often hypothesize that the effect 

of a predictor (focal predictor) on an outcome will vary as a function of a third variable 

(moderator) (Baron & Kenny, 1986). To evaluate the interaction of two continuous 

variables, a common practice is to conduct a simple slopes analysis using multiple 

regression (Aiken & West, 1991). The purpose of the present study is to evaluate whether 

the commonly used estimator of the population variance of the simple slope is biased, 

and if so, whether this bias yields estimates that are too small or too large.  

A common approach to examining significant interaction effects, or moderator 

effects, between two continuous variables is to employ simple slopes analysis. For 

simplicity, assume that an outcome Y, is predicted by two continuous variables x and z. 

The sample regression model can be expressed as:  

 

,0 x z xzY = b +b x+b z+b xz+e                                           (1) 
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where b0, bx, bz, and bxz are the usual ordinary least squares (OLS) estimates of the 

regression parameters; x and z are in deviation (centered) form and the interaction form is 

constructed from the centered x and z. To evaluate whether there is an interaction effect, 

the practice in psychology is to examine the conditional relationships. The conditional 

relationship is often discussed as the relationship of variable x (focal predictor) to 

variable Y (outcome) “holding constant”, or “controlling for,” some variable z 

(moderator). Alternatively, a conditional relationship can be described as the relationship 

of variable x to variable Y as a function of values of moderator z (Aiken & West, 1991). 

One conditional relationship in the example regression model is the effect of x on Y for a 

particular value of z. Examination of conditional effects is often done by creating “simple 

slopes” which are just the estimated conditional effect of x on Y when z is set to a 

conditional value CVZ . Specifically, the “simple slope” of the regression of Y on x 

conditional on z = CVZ is:  

 

s x xz .CVb b b Z                                                     (2)  

 

The simple slope bs is obtained using the OLS estimates of the regression parameters bx 

and bxz obtained from the regression of Y on x, z, and xz and then specifying CVZ , at a 

specific value for z. A convention has arisen to choose three conditional values of z. 

Cohen and Cohen (1983, p. 323) have suggested using a “low” z score (one sample SD 
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below the mean), an “average” z score (at the sample mean), and a “high” z score (one 

sample SD above the mean). These three values are herein denoted as ZL, ZM, and ZH, 

respectively. The regression lines obtained using these conditional values of z yield three 

representative members of the simple slope family of lines.  

For example, in Aiken and West’s book (Aiken & West, 1991, p.13), they gave 

the numerical example, Y= 2.54+ 1.14x + 3.58z + 2.58xz. Here b0 = 2.54, bx=1.14, bz= 

3.58, bxz= 2.58, and bs= 1.14 + 2.58 CVZ . To obtain the simple slopes, Aiken & West 

chose CVZ so that: ZL = -2.20 (one standard deviation below the mean), ZM = 0 (at the 

mean), ZH = 2.20 (one standard deviation above the mean). By substituting these values 

of CVZ (i.e., -2.20, 0, and 2.20) into equation (2), three simple slopes were generated: bH = 

6.82, bM = 1.14, and bL = -4.54. For instance, using bs from above, bH = 1.14 + 2.58(2.20) 

= 6.82.  

Common practice is to examine whether a simple slope is statistically significant 

by testing the hypothesis that a simple slope differs from zero. This test is simply the 

t-test in which the simple slope (e.g., bs) is divided by its standard error with (n-k-1) 

degrees of freedom (where n is the number of cases and k is the number of predictors). To 

understand the problem associated with using this test of the simple slope, it is important 

to appreciate the assumptions underlying the derivation of the standard error of the 

simple slope. To do this consider the variance of bs, V(bs). This variance has been shown 



 

4 

in many places (e.g., Aiken & West, 1991, p.16; Friedrich, 1982, p. 810; and Jaccard & 

Turrisi, 2003, p.26), to be:
  

  2( ) ( ) 2 ( , ) ( ) 2 ( , ) ( ) ( ). (3)s x CV x xz xz CV x CV x xz CV xzV b V b Z Cov b b V b Z V b Z Cov b b Z V b       

V(bs) is obtained by using algebra of expectations by assuming CVZ is a fixed value.
 
 

In practice, V(bs) is estimated by: 

 

2 2 2( ) ( ) 2 ( , ) ( ) ( ),s x CV x xz CV xzv b s b Z s b b Z s b                                 (4)	

 

where s2(bx) and s2(bxz) are the sample variances of bx and bxz, respectively; s(bx,bxz) is the 

sample covariance of bx and bxz. The estimated standard error of the simple slope is the 

square root of this quantity. 

For Aiken and West’s numerical example, s(bx) = 2.35, s(bxz) = 0.40, and    

s(bx,bxz) = 0.08. Substituting ZH = 2.20 into equation (4) yields V(bH) = (2.35)2 + 

2(2.20)(0.08) + (2.20)2(0.40)2 = 3.98. The statistical test for simple slope bH is: t = 

bH/s(bH) = (6.82)/ (3.98).5 = 3.45. Similar substitutions of the other two conditional values 

of z (i.e., ZM, and ZH ) give the corresponding estimated variances of bM and bH which are 

summarized by Aiken & West (1991, p. 17) in their Table 2.3. 
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Statement of the Problem 

In estimating the variance of simple slopes, the conditional value of z (i.e., the 

moderator) is assumed, as shown above, to be a constant. That is, the moderator is 

assumed to be a fixed value, not a random variable. Cohen et al. (2003, p.274) recognized 

this when they stated "in comparing the simple regression of Y on x at a value of z across 

different samples, the value of z must be held constant (fixed) across samples." As an 

example of a constant conditional value, consider a study in which the Body Mass Index 

(BMI) is used as a moderator. In computing the simple slopes, it would be reasonable to 

fix BMI equal to some CDC (Centers for Disease Control and Prevention) defined 

cut-point, such as 18.5 (underweight) or 30 (obese). In this case, these choices would be 

constant (i.e., fixed) across all studies. Suppose instead that we did not have a preexisting 

cut-point for “underweight” or “obese”, but defined these as 1 sample SD below the 

mean (underweight) and 1 sample SD above the mean (obese). In this situation the 

conditional values associated with “underweight” and “obese” will vary across samples 

because both the sample means and sample variances likely differ from sample to sample. 

Thus, the conditional value would be a random variable. Consequently, the equation (3) 

would yield an incorrect estimator of the variance given the conditional value is a random 

variable.   
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Choosing a random variable to serve as the conditional value is usual practice. 

Referring back to the example taken from Aiken and West’s book, the simple slopes were 

computed by choosing conditional values of the moderator at its sample mean, at one 

sample standard deviation below its sample mean and at one sample standard deviation 

above its sample mean. Thus, the conditional values change across samples so these are, 

by definition, random variables and are not fixed. This is true of most studies using 

simple slopes methodology because researchers usually do not have meaningful 

cut-points for the conditional values of moderator that could be used across studies. A 

main argument underlying this study is that, by adopting the convention of basing the 

conditional values on the sample mean and variance, the chosen conditional values of 

moderator are random variables and are not fixed as the underlying derivations assume. 

It is crucial to understand that when CVZ is a random variable, equation (3) does not yield 

the correct variance because this equation does not properly account for the variance and 

covariance of the product of random variables. For example, in equation (3) the term

 xz CVV b Z is given as  2( )CV xzZ V b by the authors cited above when they present the 

variance of the simple slope. When CVZ is a constant these two terms are equivalent. They 

are not, however, equivalent when CVZ is a random variable. Goodman (1960) first 

provided a general derivation of the exact variance of the products of two random 
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variables x and y. Bohrnstedt and Goldberger (1969, p.1439, equation (5)) re-expressed it 

as:  

 

        
    

2 2 22 2

2 2

( ) ( ) ( ) ( ) ( ) 2 ( )

2 ( ) 2 ( ) ( ) ( , ) ( , ),

V xy E x V y E y V x E x y E x E x y

E y E x y E x E y C x y C x y

        

          (5) 

 

where x and y are jointly distributed random variables;  E x ,  E y  are the expected 

values of x, y respectively;  C x,y  is the covariance of x and y; 

  ( )x= x - E ,  y = y -x E y  ;  2 2( ) ( ) ( ) .V x = E x ,  V y = E y 
 

From equation (5) we can generate the correct variance for the term  xz CVV b Z when CVZ

is properly treated as a random variable:  
 
 

              
            
        ,

2 22 2
xz xz xz xz

2 2

xz x

CV CV CV CV

CV CV CV

CV CV

z xz

CV
2

xz xz xz

V b = E b V + E V b + E b +

2E b E b + 2E

Z Z Z Z

Z Z Z

Z Z

E b +

2E b E C b , - C Zb ,

 

             (6)
 

 

where   )(xz xz x CV CV Vz Cb = b - E b ,  Z= - EZ Z   

Bohrnstedt and Goldberger (1969) extended this result in numerous ways. A detailed 

derivation for the variance of simple slope is provided in Appendix C.  

Based on this overview of the derivation of the variance of the simple slopes, we 

can infer that the estimators in equation (3), and by extension in equation (4), are not 
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unbiased estimators of the population variance of the simple slope, Because equations 

(3) and (4) do not take account of all sources of variation shown in equation (12, 

Appendix C), under the common conditions when the covariance is positive, it is likely 

that is underestimated. Consequently, the test of the null hypothesis that a simple slope 

equals zero will be rejected more often than it should be (i.e., the test is too liberal).  

Despite equations (3) and (4) being technically inappropriate when z is a random 

variable, psychologists routinely use equation (4) to estimate the variance of bs when 

testing the null hypothesis that a simple slope equals zero. This practice leads to the 

question, “Is the bias associated with equation (4) small?” In other words, does the 

inappropriate use of equation (4) result in variances that are essentially unbiased or are 

they much smaller than would be obtained had the appropriate estimator been applied?  

Current Study 

In this study, my interest centers on the estimation of the variance of the simple 

slope in standard regression models. I am aware of no prior work that has investigated the 

bias in the variance of simple slope. First goal for this study is to investigate whether the 

variance used in psychological research is an unbiased estimator, as claimed by 

proponents of the methodology (e.g., Aiken & West, 1991). Based on statistical theory I 

surmise that the estimator should be biased, and this bias is likely on the liberal side (i.e., 

too small). I further investigate under what circumstances equation (4) yields an 

2 .
sb

2

sb
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“almost” unbiased estimator and when the estimator is severely biased. Given the 

complicated nature of the variance of the products of random variables (Bohrnstedt & 

Goldberger, 1969; Goodman, 1960), it is quite difficult to make accurate predictions as to 

all the conditions under which the estimator will perform well. Consequently, I 

investigate a range of conditions of using the factors indicated by equation (6) that are 

known to affect the variance of the product. These factors are described below. 
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CHAPTER II 
 

METHOD 
 

Simulation Studies: General Framework 

Bohrnstedt and Goldberger’s (1969) derivation of the variance of the product of 

random variables indicated that the variance of x, z and the population slope for 

interaction term in the regression equation should contribute to the estimation of the 

population variance of simple slopes. Therefore, those three factors are manipulated in 

this study. The correlation between x and z is also manipulated to examine the effects of 

collinearity on the variance. When simulating regression models, the data often fit the 

models quite well (i.e., very large R2), thus I also manipulated the levels of R2. Finally, 

the sample size is also manipulated in this study, because any bias may be reduced as 

sample size increases (Aiken & West, 1991, p. 22). Consequently, I conduct a 5 (Sample 

size) * 5 (variance of x) * 5 (variance of z) * 4 (levels of r the correlation between x and 

z) * 5 (R2) * 4 (population slope for interaction, bxz) factorial experiment. Within each of 

the 5*5*5*4*5*4 experimental conditions, 10,000 simulations are conducted. 

All population and estimated values are calculated through a computer program 

which is written (in FORTRAN) specifically for this study. This program calls several 
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International Mathematics and Statistics Library (IMSL) subroutines. Pseudorandom 

numbers are generated from a multivariate normal distribution by using IMSL subroutine 

RNMVN.  

Manipulated Factors 

Sample Size. There are five levels of sample size: 100, 400, 1000, 2000, and 10,000 

“cases” within each simulation. 

Variance of x and z. There are five levels of population variances of x and z: 1, 52, 

102, 162, and 282. I chose these levels, because levels such as 102, 162, and 282 correspond 

to the variance of some commonly used measures in Psychology. For example, one 

popular IQ test, the Stanford-Binet test has a standard deviation of 16. 

Levels of r the correlation between x and z. There are four levels of the population 

correlation between x and z which are used in computing the population covariance of 

these variables: .00, .20, .40, .70. 

Model Fit (R2). Model fit is restricted to five strata such that the mean R2 in a strata 

is in the region: (.20, .30], (.30, .40], (.40, .50], (.50, .60], (.95, .99]. 

Population Slope for Interaction (bxz). There are four levels for bxz: 1, 3, 5, 7. 
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Procedure 

One purpose of this study is to investigate whether the commonly used estimator  

for the variance of the simple slope shown in equation (4), i.e., ( ),sv b provides an 

unbiased estimate of the true population variance of the simple slope, 2 ,b  when z is a 

random variable. To investigate this question I conduct a series of Monte Carlo 

simulations that correspond to the research design above. Because I want to determine 

whether ( )sv b is an unbiased estimator I need to have a known unbiased estimator with 

which it can be compared. Fortunately it is well known that the sample variance is such 

an estimator. Thus, to determine whether ( )sv b is an unbiased estimator I compare it to the 

sample variance of the simple slopes, i.e.,  

Specifically, the 10,000 simulations within a given experimental condition yield 

10,000 estimates of the simple slope, bs. From these I compute the sample variance of the 

simple slopes, i.e.,  where is the average of the 

observed sample slopes (bsi). If equation (4) yields estimates that are unbiased (or nearly 

so), then the expected value (i.e., the average) of these estimates, 

should be approximately equal to and also to, , so that 

the ratio should be approximately 1. If, on the other hand, equation (4) 

2 ( ).ss b

 
10000 22

1

( ) / 9999,s si s
i

s b b b


  sb

10000

1

( ) ( ) /10000,s si
i

v b v b


  2

sb 2 ( )ss b

 2( ) / ( )s sv b s b
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yields estimates that are too small when CVZ is a random variable, the ratio 

should be less than 1. 

To replicate usual practice, CVZ is chosen to be equal to ±1 sample standard 

deviation of z. Note I will center the raw data of x and z in this simulation study. 

According to the equation (2), when CVZ is equal to 0, bs will be the value of bx which is 

assumed to be unbiased. Therefore, I am only concerned with evaluating CVZ at the high 

and low level (but I do report the results “at the mean” to show what happens with an 

unbiased estimator). I denote the simple slopes obtained with the high and low values of

CVZ as bH and bL, where H and L stand for high (i.e., +1SD) and low (i.e., -1SD), 

respectively. Thus, the high and low values of CVZ change from one simulation to another 

as the sample standard deviations of z change. Two other simple slopes are also 

computed by defining CVZ as ±1σ, where σ is the population standard deviation obtained 

from the specified population covariance matrix. Denote the simple slopes obtained with 

these values of CVZ as bHf and bLf, where f stands for fixed, H and L stand for high and low 

as before. In computing bHf and bLf, then, the high and low values of CVZ are constant 

across all 10,000 simulations. Thus, for each of the 10,000 simulations in a condition, 

four estimates of are computed using equation (4) corresponding to the four simple 

 2( ) / ( )s sv b s b

2

sb
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slopes bH, bL ,bHf and bLf ; these four sample variances are denoted as )( HV b , )( LV b ,

)( HfV b and )( LfV b . 

As noted above, the factorial design has 5 (Sample size) * 5 (variance of x) * 5 (variance 

of z) * 4 (levels of r the correlation between x and z) * 5 (R2) * 4 (population slope for 

interaction, bxz) = 10,000 conditions. For each condition I conduct 10,000 simulations. 

Each simulation is conducted with n = 100, 400, 1,000, 2,000, and 10,000 cases each 

with a pair of random numbers x and z generated from a bivariate normal distribution, 

with variances and covariance as defined according to the condition. Using an example 

similar to that used by Aiken and West (1991, p.13) the outcome variable, Y, is created by 

manipulating bxz as follows:  

 

Yi = 5 + 1xi + 5zi + 1xizi + ei. 

Yi = 5 + 1xi + 5zi + 3xizi + ei. 

Yi = 5 + 1xi + 5zi + 5xizi + ei. 

Yi = 5 + 1xi + 5zi + 7xizi + ei.  
 

Following Champoux and Peters (1987), the size of the dependent variable error 

term, ei, is systematically varied so that the levels of R2 can be manipulated as mentioned 

above. After computing the OLS estimates for x, z and the interaction, I compute the four 

simple slopes (bH, bL, bHf and bLf ), as well as (i.e., the mean variance using equation ( )sv b
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(4)) and (i.e., the unbiased variance) for those simple slopes as described above. To 

evaluate whether the simple slope estimator is unbiased I compute, for each experimental 

condition, the ratios , , and

. For completeness, I also compute their ratios when is CVZ at the mean.  

     Index of Underestimation. I report the index of underestimation as final result. 

To simplify the presentation of results, the value of this index is computed as the average 

of the ratio at high (i.e., +1SD) and low (i.e., -1SD) minus one.  

Using the logic from above, note that if equation (4) yields estimates that are 

unbiased (or nearly so), then should be approximately equal to so that the 

ratios and should each be approximately 1, while the 

corresponding indices of underestimation should be approximately 0. If, on the other 

hand, equation (4) yields estimates that are too small when CVZ is a random variable, the 

ratios and should each be less than 1, the indices of 

underestimation should be negative. When CVZ is fixed, statistical theory indicates that the 

ratios and should each be approximately 1 and the 

indices of underestimation should be approximately 0.

2 ( )ss b

 2( ) / ( )H Hv b s b  2( ) / ( )L Lv b s b  2( ) / ( )Hf Hfv b s b

 2( ) / ( )Lf Lfv b s b

 2( ) / ( )s sv b s b

( )sv b 2 ( )ss b

 2( ) / ( )H Hv b s b  2( ) / ( )L Lv b s b

 2( ) / ( )H Hv b s b  2( ) / ( )L Lv b s b

 2( ) / ( )Hf Hfv b s b  2( ) / ( )Lf Lfv b s b
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CHAPTER III 
 

RESULTS 
 

Mean Comparisons 

Table 1 provides the results for each factor level when the moderator is fixed, at 

the mean, and random. Overall, in this table I present the index of underestimation 

averaged across other conditions (i.e., there are results for the main effects). If 

yields estimates that are too large, the index will be indicated by a positive value. If the 

estimates are too small, the index will be indicated by a negative value. If the estimate is 

close to the unbiased value then the tabled value will be near zero. For example, when 

n=100, the index is -.2346 for the random condition, indicating that, on average, the 

variance obtained using equation (4) is 23.46% below that obtained using the unbiased 

estimator, an indication that equation (4) yields estimates that are too liberal. On the other 

hand, when the conditional value is fixed, not random, for n=100, the index is -.0005 

indicating that the variance estimator is unbiased.  

As expected, when moderator is fixed and at the mean, the underestimation for 

each factor level is approximately 0. However, when the moderator is random, results are 

all negative over the levels of the factors. For each factor level condition, there is 

( )sv b
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approximately a 20% under estimation. The underestimation across different factor levels 

is plotted in figure 1. It is seen that for the fixed condition underestimation index is 

consistently around 0. As expected, this is also true for at the mean condition. These 

findings indicate that, across a wide variety of manipulated factor levels, when moderator 

is fixed or at the mean, equation (4) performs well. Whereas, by adopting the convention 

of using the moderator at one standard deviation above the mean and one standard 

deviation below the mean, equation (4) yields a liberal estimator of the variance. 

Trend Analysis 

An examination of Table 1 reveals that, with the exception of sample size and 

correlation, there appears to be a trend for the underestimation to consistently increase as 

the levels of the factors increase. To investigate this, trend analyses across the levels for 

each factor were conducted. As shown in Table 2, for the random simple slopes, trends 

were statistically significant for the factors: R2, the variance of x, the variance of z, and 

the slope of the interaction. For these factors the trends were such that the bias (i.e., the 

underestimation) became more pronounced as the value of the factor level increased. This 

was most pronounced for R2. The effect was less pronounced for the variance of x, the 

slope of the interaction, and the variance of z. For these factors, there were no statistically 

significant trends when the moderator was fixed or “at the mean”. 
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For the correlation coefficient a trend was observed when the moderator was a 

random variable, such that the bias became more extreme as collinearity was reduced. 

There were also statistically significant trends observed when the moderator was fixed 

and “at the mean”. While these latter two trends were statistically significant, there was 

no clear bias evident. For example, as shown in Table 1, when the moderator was fixed, 

the index of underestimation changed over the four levels of correlation is as follows: 

-0.0007, 0.0000, 0.0001, 0.0001. Thus, while there was an increasing trend there is not 

apparent evidence of bias.  

Finally, the sample size was studied because Aiken and West (1991, p. 22) 

suggested that any bias would be reduced with sample size. Interestingly, then, I did not 

observe a decrease in the bias when the moderator was a random variable as sample size 

increased from 100 cases to 10,000 cases. There was no statistically significant linear 

(F(1, 9995) = 0.10, p = .75) or nonlinear trends (F(3, 9995) = 0.21, p = .89). The index of 

underestimation averaged -0.24 across all sample sizes. On the other hand, there were 

statistically significant effects for both the fixed and “at the mean” simple slopes. While 

these effects were statistically significant, the “trends” were not apparent when looking at 

the index of underestimation across the levels of sample size. For the fixed moderator, over 

the five levels of sample size (from 100 to 10,000), the index of underestimation changed 

as follows: -0.0005, -0.0004, 0.0014, -0.0017, 0.0006. The values are all close to zero and 
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there is no systematic under or overestimation evident across the levels of sample size. 

Effect of Factors 

To examine the effect of factors on the underestimation index, I conducted a 

five-way ANOVA. Sample size was excluded from the analysis as it had no significant 

effect with the random moderator. Excluding this factor also permitted a full factorial 

analysis. Otherwise, in a six-way ANOVA, examining the highest order interaction 

would not be possible as there would only be 1 case per cell. ANOVA results are 

presented in Table 3. Note with 10,000 “cells” (i.e., conditions), all effects and 

interactions are statistically significant, so p-values are not reported, and effect sizes are 

given.  

All main effects are large as expected (Table 3). Results are sorted from highest to 

lowest η2. The largest main effect is R2 (η2 = .999), smallest is the variance of z (η2 

= .758). Overall, underestimation ranges from 5% to 82%, with a mean of 24%. That is 

all factors I manipulated here are influential in estimating the population variance of 

simple slopes for the random conditions.  

While all interactions with R2 are statistically significant, R2 continues to have the 

largest effect on bias even within the interactions. Figure 2 shows the 2-way interactions 

with R2. The interaction effects appear very slight and the general pattern resembles the 

form of the R2 main effect. For example, for the interaction with the variance of x, the 
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bias is lowest when the variance of x equals one. The biases associated with other levels 

of x (x =52, 102, 162, and 282) are roughly all the same as indicated by lines that are 

mostly coincident. The same pattern also holds for the variance of z. Similarly the bias is 

lowest when the variance of z equals one. These patterns also hold for the three-way 

interaction between R2, the variance of x and bxz as seen in Figure 3. 

Figure 4 shows the two-way interactions between the variance of x and the slope 

bxz, as well as the variance of z and the slope bxz. Here again the picture resembles two 

main effects. The interaction effect is quite small and mainly appear to be evident in the 

slope of the line connecting the first two levels of the variance of x or z within each level 

of bxz. Put simply, these figures closely resemble those of the main effect for the variance 

of x and the variance of z. But now there are four additional almost parallel lines 

reflecting the levels of bxz. There does not appear to be a new story told by these analyses. 

The bias is less when the variance of x or the variance of z equals one. The bias is also 

less when the slope bxz is one. The other levels of the variance of x and z are quite similar 

when bxz > 1 as indicated by the coincident lines. 
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CHAPTER IV 
 

DISCUSSION 
 
 
Summary of Current Study 

This study evaluates the estimator of the variance of the simple slope used in 

simple slopes analysis. These simulations provide results that have long been ignored in 

the methodological literature. When moderator values are fixed, the usual practice using 

equation (4) will yield unbiased estimators. However, when the moderator is a random 

variable, but treated as a fixed value and using equation (4), the population variance of 

the simple slope is underestimated. Therefore, the test of the moderator effect will result 

in variances that are too small (liberal). I also showed how sample size, the variance of 

the predictor (x) and the moderator (z), the correlation between those two (r), model fit 

(R2), and the interaction slope (bxz) all affect the estimate of the population variance of 

simple slopes and have illustrated that the variance is severely underestimated when R2 

exceeds .90. In contrast to statements made in the literature (e.g., Aiken & West, 1991; 

Cohen, et.al, 2003), increasing sample size has no effect on the bias. 
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To summarize the findings, equation (4) is a biased estimator of the variance of 

the simple slope if the moderator is a random variable. In this situation, the bias becomes 

worse with better model fit (increasing R2), less collinearity (smaller r), larger variance of 

x and z, and does not improve with sample size. These are undesirable characteristics for 

a statistical estimator. 

Implications for the Applied Researcher and Future Directions 

Simple slopes analysis has likely had such popularity because it is easy to do. Our 

results indicate that when the variance of x and z and the slope bxz are equal to one, the 

bias is reduced. Consequently, it seems that a possible approach would be for researchers 

to use standardized solutions in evaluating their models. This is, of course, a tentative 

suggestion as I have not evaluated whether this transformation will reduce bias when it 

exists. Further research will evaluate this recommendation. It is also possible that a better 

estimator than equation (4) can be obtained by using bootstrap methods. I have tried 

some pilot analyses that are promising but this is also an area of future research. 

Simple slopes analysis, while simple to do, does not fully answer questions most 

researchers are posing. Few researchers start with a question about conditional values of 

the moderator that are one standard deviation above and below the mean. When there is 

an interaction between one predictor and one moderator, researchers would be more 

interested in knowing where the areas of significance lie. This is the type of question 
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answered by using the Johnson-Neyman (J-N) procedure used to evaluate the significant 

interaction between a continuous and a categorical variable. Recently some research has 

been presented for using this method with continuous variables (Bauer & Curran, 2005). 

The J-N technique also provides the test of specific simple slopes. Additionally, it 

provides two additional indices, regions of significance and confidence bands. Regions of 

significance provide a range of moderator over which the effect of focal predictor is 

significant. The computation of regions of significance depends on the selection of type I 

error rate. Confidence bands indicate the precision of the estimation of the effect of focal 

predictor over the entire range of moderator. However, it is noted that J-N technique also 

involves the selection of conditional values of the moderator. The estimation of the 

variance of simple slopes in J-N technique is same as that is shown in equation (4). It is 

likely therefore that the when the conditional values of moderator are selected at one SD 

below the mean and one SD above the mean, the variance of simple slopes at those two 

values would be underestimated. For example, Bauer and Curran (2005) tested the 

predictability of child antisocial behavior and hyperactive behavior on child math ability 

using a sample of N=956 children. In their example, the outcome (y) is math ability, focal 

predictor (x) is antisocial behavior, and moderator (z) is hyperactive behavior. They first 

conducted a fixed-effect regression model with a continuous (antisocial behavior) by 

continuous (hyperactive behavior) interaction. Four additional covariates (age, grade, sex, 
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and minority status) were entered. Regression analysis show that the interaction was 

statistically significant (p = 0.006). To further probe this significant interaction, simple 

slopes were computed at the mean of hyperactivity, one standard deviation above and one 

standard deviation below the mean. Only the simple slope of high hyperactivity was 

found to be statistically significant (p = .045). However, when the adopting the 

convention selecting the conditional value at one standard deviation above and below the 

mean, our results show that the variance of the simple slopes will be underestimated. 

Therefore, it would be easier for researchers to obtain a statistically significant result 

from the test of the simple slopes using equation 4 than using an unbiased estimator. In 

their example, given a sample size of 956, the average underestimation could be as large 

as 24% according to our simulation study. If I suppose a 24% underestimation happened, 

then using their simple slopes analysis, the simple slope of high hyperactivity is also 

found to be not statistically significant (t = 1.8, p = 0.072, df = 955)1. Further research is 

needed to investigate whether this approach to applying the J-N technique will be useful.  
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FOOTNOTES 
 
 

1.  I can estimate the slope by using rise over run from Bauer & Curran’s (2005) 

Figure 1. That is, at x = 0, y = 39.3 and at x = 5, y = 42.5, so the slope would be 3.2/5=.64. 

Thus, with b =.64 and t=2.007289, SE = .3188; 1.24SE2 = .126, then the new 

t=.64/.355=1.802 and p=.072. 
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APPENDIX A 
 

TABLES 
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Table 1. Average Index of Underestimation by Factor Level 

Factor Fixed At mean Random 

Sample Size 

100 -0.0005 -0.0004 -0.2346 

400 -0.0004 -0.0002 -0.2402 

1000 0.0014 0.0009 -0.2399 

2000 -0.0017 -0.0014 -0.2423 

10000 0.0006 0.0022 -0.2408 

R2 

(.20,.30] -0.0002 0.0004 -0.0447 

(.30,.40] 0.0000 0.0007 -0.0729 

(.40,.50] 0.0000 -0.0001 -0.1092 

(.50,.60] -0.0003 -0.0001 -0.1552 

(.95,.99] -0.0002 0.0000 -0.8159 

Variance of X 

1 -0.0003 0.0000 -0.1669 

52 0.0000 0.0001 -0.2473 

102 -0.0003 -0.0001 -0.2591 

162 0.0003 0.0008 -0.2614 

282 -0.0003 0.0002 -0.2632 

Variance of Z 

1 -0.0004 0.0003 -0.2116 

52 -0.0004 -0.0004 -0.2443 

102 0.0001 0.0002 -0.2465 

162 0.0000 0.0005 -0.2478 

282 0.0000 0.0005 -0.2476 

Interaction Slope 

1 -0.0002 0.0000 -0.1909 

3 0.0000 0.0004 -0.2440 

5 -0.0001 0.0002 -0.2584 

7 -0.0002 0.0002 -0.2650 

Correlation 

0.00 -0.0007 0.0004 -0.2602 

0.20 0.0000 0.0008 -0.2553 

0.40 0.0001 -0.0001 -0.2442 

0.70 0.0001 -0.0003 -0.1985 
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Table 2. Trend Analysis (F-values are reported)  

  

Factor Fixed At mean Random 

R2a 

linear 0.24 1.44 121265.55** 

deviation 0.27 1.24 3431.20** 

Variance of xa 

Linear 0.10 0.44 36.56** 

deviation 1.78 1.26 38.15** 

Variance of za 

linear 1.20 1.62 4.42* 

deviation 0.58 1.03 5.75** 

Interaction Slopeb 

linear 0.02 0.09 77.84** 

deviation 0.43 0.53 8.14** 

Correlationb 

linear 5.38* 4.89* 58.24** 

deviation 1.94 1.46 3.84* 

Sample Sizea 

linear 7.24** 40.19** 0.10 

deviation 29.11** 9.85** 0.21 

*p <.05.  **p<.01.  Note: adf denominator=9995, bdf denominator = 9996; 

linear represents linear trend, deviation is departure from linearity. 
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Table 3. ANOVA for the Random Conditions (Results ordered by η2) 

Effect and Source df    Sum of Squares 
  

F η2 

R2 4 505.481 1337535.421 0.999
X 4 8.009 21193.618 0.955
R2 * x * b 48 5.613 1237.790 0.937
B 3 5.051 17820.981 0.930
R2 *x 16 4.604 3045.854 0.924
R 3 3.536 12473.942 0.903
R2 * b 12 3.273 2887.110 0.896
x * b 12 2.825 2491.649 0.882
Z 4 1.183 3130.443 0.758
z * b 12 0.944 832.531 0.714
R2 * r 12 0.853 752.346 0.693
R2 * z * b 48 0.647 142.660 0.631
R2 * z 16 0.461 305.085 0.550
X * z * b 48 0.235 51.795 0.383
R2 * x * z * b 192 0.138 7.603 0.267
x * r 12 0.108 95.333 0.222
R2* x * z * b * r 576 0.090 1.659 0.193
x * z 16 0.070 46.065 0.156
R2 * x * b * r 144 0.056 4.097 0.129
b * r 9 0.051 59.726 0.118
R2 * x * r 48 0.050 11.024 0.117
R2 * b * r 36 0.048 14.211 0.113
R2 * z * b * r 144 0.041 3.018 0.098
R2 * x * z 64 0.040 6.665 0.096
R2 * x * z * r 192 0.027 1.503 0.067
x * z * b * r 144 0.027 1.964 0.066
R2 * z * r 48 0.025 5.526 0.062
x * b * r 36 0.022 6.555 0.056
x * z * r 48 0.022 4.875 0.055
z * b * r 36 0.013 3.795 0.033
z * r 12 0.008 6.958 0.020

Note: x denotes variance of x, z denotes variance of z, b denotes the population slope 
for interaction, r denotes correlation between x and z. 
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APPENDIX B 
 

FIGURES 
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Figure 1. Average Index of Underestimation by Factor Levels 
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Figure 2. Two-way interaction: R2*x, R2*z, R2*b, R2*r 
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Figure 3. Three-way interaction: R2*x*b 
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Figure 4: Two-way interaction: x*b, z*b 
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APPENDIX C 

DERIVATION OF THE VARIANCE OF SIMPLE SLOPES 

Bohrnstedt & Goldberger (1969) extended Goodman’s (1960) results in numerous 

ways. For example, they showed that if x and y are bivariate normally distributed, then 

the equation (5) reduces to: 

                    
      .

2 2 22 2

2

V xy = E x V y + E y V x + E x y +2E x E x y

+2E y E x y

   

       
(7) 

Using Goodman (1960, p.709, equation (2)), this equation can be further simplified to:  

             .2 2V xy = E x V y +E y V x + V x V y                            (8) 

We can substitute x, y with bxz and CVZ , then equation (8) can be rewritten to: 

             2 2
xz xzCV CV C xz xzV CVV b = E b V +E VZ Z Z b + b V Z V                (9) 

For the covariance of products of two random variables, Bohrnstedt & Goldberger (1969, 

p.1441, equation (12)) specifies this as: 

               ,C xy,v = E x C y,v + E y C x,v + E x y v                     (10) 

where x, y and v are independent random variables.  

We now turn to our case, plug in , CVZ = y and bx = v, therefore, the 

covariance of xz CVb Z and bx is: 

              .xz xz xz xzCV x CV x CV x CV xZ b Z b ZC b , = E b C , + E C b , + E bb Z b     (11) 

xzb = x
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Therefore, the derivation for the variance of simple slope, by assuming bx, bxz and CVZ

are independent, is: 

   
      

        

( ) ( ) 2

( )

2 .

s x xz xCV CV x

CV

C

z

2
x xz xz

2
xzV Cxz V x

Z Z b

Z

V b V b V b C b ,

=V b V E b V b +

E V b + Z Zb bE

  







 
                             (12)

 

Since bx, bxz and CVZ are independent,   0xCVC ,b =Z   0xz xC b ,b = . By adopting the 

convention, taking CVZ at one standard deviation above the mean, below the mean and at 

the mean, we can infer that when CV H zZ Z S Z   (one standard deviation above the 

mean), equation (12) can be written as: 

          

    

2
( ) ( )

2 (

( ) ( )

,)

2
s x xz xz xz

x

z z

z xz

S Z E S E Z

S Z

V b =V b V E b V b + V b

E bb

 

   

 

          (13)

 

where , ( ) (4 4) / (4 3)z zE S n S n   . 

If Z is centered, then 0 Z = equation (13) is: 

        
    

2 ( )( ) ( )

2 .

2
z z

z

s x xz xz xz

xxz

V b = V b V E b V b +S E V b

E b

S

S b

 

   
                     (14) 

For the same reason, we can get the variance equation when CV L zZ Z S Z   , 

          

    

2
( ) ( )

2 (

( ) ( )

.)

2
s x xz xz xz

x

z z

z xz

S Z E S E Z

S Z

V b =V b V E b V b + V b

E bb

 

   

 
          (15) 

When CV MZ Z Z  , 

  zE Z = 
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2( ) ( )

2 ( .

( )

)

2
s x xz xz x

x

z

xz

V b =V b V E b V b +Z E Z V b

E b Z b

 

   
                      (16) 


