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 Item parameter drift is a severe threat to testing programs that need to ensure fair 

and comparable scores between different forms of the same test. This study examines the 

effect of drift on simulated and empirical data sets using the following five IRT linking 

methods: Stocking-Lord, Haebara, least absolute values, concurrent calibration, and fixed 

parameter calibration. Four factors were varied: the proportion of drifted items, the 

magnitude of drifted items, examinee ability distributions, and sample size. The least 

absolute values method was best at recovering linking constant B, difficulty estimates, 

and equated true and observed scores. Concurrent calibration and fixed parameter 

calibration most accurately recovered linking constant A and discrimination estimates. 

All linking methods provided similar classification accuracy and consistency rates. 

However, the profound impact of drift has the potential to affect equated scores even at 

lower magnitudes of drift because of its impact on the linking constants and item 

parameter estimates that precede equating. Practitioners should remove drifted items 

when possible and investigate the reason for drift to prevent future reoccurrences. 

Recommendations for identifying reasons for drift and accumulating evidence for 

validation when confronted with drift are discussed.     
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CHAPTER I 

INTRODUCTION 

 Assessments used for high stakes decisions, such as admission to higher education 

or qualification for certification, must meet the highest standards of psychometric quality. 

The Standards for Educational and Psychological Testing (American Educational 

Research Association et al., 2014; referred to hereafter as the Standards) consider validity 

to be the most important aspect of developing and evaluating tests. As defined by 

Messick (1989), validity is an “integrated evaluative judgment of the degree to which 

empirical evidence and theoretical rationales support the adequacy and appropriateness of 

inferences and actions based on test scores or other modes of assessment” (p. 13). In 

other words, validity is an argument for the use of test scores for a specific purpose that 

can be strengthened by support from research and theory.  

Alternatively, the strength of a validity argument can also be compromised by 

sources of construct-irrelevant variance, or variance due to extraneous factors that distort 

the meaning of test scores (Standards). Sources of construct-irrelevant variance take 

many different forms and can occur during any stage of test construction. For example, 

administering the same test on paper-and-pencil compared to a computer-based test may 

lead to differential scores for equally abled examinees due to type of test modality as 

opposed to examinee ability. Alternatively, for exams requiring scoring by human raters, 

one rater might assign lower scores than another. These types of construct-irrelevant 
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variance must be identified and removed to allow for “the comparable and valid 

interpretation of test scores for all examinees” (Standards, p. 63).  

The comparability and valid interpretation of test scores is essential for all testing 

programs because new forms of the same test are routinely developed and administered 

to increase test security. In the context of item response theory (IRT), in order for scores 

on different forms to be appropriately compared, the scores must be placed on the same 

scale. In this dissertation, linking is used to describe the process of placing scores, as well 

as person and item parameter estimates, onto the same scale. There are a variety of 

linking methods available to psychometricians, although the use of linking is predicated 

upon several factors. This includes the data collection design (e.g., single group, random 

group, common-item non-equivalent group) as well as the IRT assumptions that need to 

be upheld in order to successfully implement linking.  

Overview of Item Response Theory 

  Unidimensional Item Response Theory. Binet and Simon (1905) first laid the 

foundation for unidimensional IRT, which was further extended in the 1920’s (e.g., 

Thurstone, 1927). Due to the lack of computers and computationally intensive 

procedures, IRT only started to gain traction when reintroduced by Lord (1980). For 

dichotomously scored items (i.e., items that are scored either correct or incorrect), IRT 

uses a mathematical model to express the probability that an examinee answers an item 

correctly based upon examinee ability and item parameters (i.e., difficulty, 

discrimination, and pseudo-guessing).  
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Assumptions. The main advantage of IRT is that of parameter invariance, 

whereby parameter values remain equal across groups of examinees and measurement 

conditions (Rupp & Zumbo, 2006). That is, a person with a specific ability, or theta (𝜃), 

remains unchanged over different items or tests (i.e., test independent) and item estimates 

remain invariant over different groups of examinees (i.e., group independent). So, 

examinee ability can be estimated independently from items, and item parameters can be 

estimated independently from the ability of examinees (Hambleton & Jones, 1993). 

When these conditions are met, the IRT property of parameter invariance has been 

satisfied (Jones, 1960).  

 Unidimensional IRT requires that a set of items or test measures only one ability. 

If an item taps into more than one ability, then a multidimensional IRT model is required. 

For example, a math item that contains a long verbal passage may also be measuring 

reading ability, which represents a second dimension. When the assumption of 

unidimensionality is violated, item and person estimates are subjected to bias and may 

jeopardize the validity of conclusions about an examinee’s ability (e.g., Reise et al., 

2007).  

 Similarly related to unidimensionality, local independence assumes that responses 

to an item are independent from other items given ability. That is, an examinee’s 

response is based upon their level of ability, not on how the examinee responds to another 

item (De Ayala, 2013). Given a group of items with the same content, or testlet, an 

examinee might respond to an item based upon their previous response to a similar item. 

Failure to uphold the assumption of local independence has negative implications for 
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construct validity and leads to overestimates of reliability (e.g., Sireci et al., 1991; 

Thissen et al., 1989). 

Even though IRT requires strong assumptions that must be upheld (e.g., 

unidimensionality, local independence, parameter invariance), more valid test score 

interpretations can be made by more carefully considering content specifications (Linn, 

1990). Due to its versatility, unidimensional IRT is widely used today by testing 

companies for test development, item banking, computer adaptive testing, and equating 

purposes.  

Data Collection Design. Scores can be adequately compared only when the 

assumptions of IRT are maintained and the appropriate data collection design is 

implemented. Several data collection designs are available for implementation. The most 

frequently used data collection design is the common-item non-equivalent groups 

(CINEG) design (Kolen & Brennan, 2014) because it is most practical for examinees. 

Under the CINEG design, two test forms are administered to samples from two different 

populations that differ in their 𝜃 distribution. Unlike other approaches (e.g., single group 

or random group) that require examinees to take two forms of the same test, the CINEG 

design uses a set of common items shared between forms, also known as anchor items, to 

separate differences in group ability from differences in form difficulty (Kolen & 

Brennan, 2014). Although the CINEG is most feasible for examinees, scores from the 

two forms cannot be directly compared until the scale indeterminacy issue is resolved 

through linking.  
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Scale Indeterminacy. In unidimensional IRT, the θ-scale is not fixed to a specific 

origin or unit of measurement. IRT software programs handle this scale indeterminacy 

issue by setting the θ-distribution to a standard normal distribution with a mean of 0 and 

standard deviation of 1. However, estimating item parameters for test forms with two 

nonequivalent groups in separate calibration runs (i.e., one for each form) will produce 

item parameter estimates that are on separate scales. While the two θ-scales differ in their 

origin and unit of measurement, they are linearly related. A linear transformation can be 

used to place all item parameter estimates onto the same scale through linking.  

Linking Methods. A bevy of linking methods are available with the CINEG 

design, yet all methods can be classified under one of three types: concurrent calibration 

(CC), fixed parameter calibration (FPC), and separate calibration (SC). For CC, item 

parameters for multiple test forms are estimated simultaneously with one calibration run. 

Item parameter estimates are already on the same scale, so no additional linear 

transformation is required. Although CC benefits from its efficiency, response data from 

two operational test forms must be available during calibration, which is not often the 

case because only one form is usually administered at one time.  

Under FPC, base form items have been calibrated and unique items from the new 

form are estimated by fixing the new form common item estimates to those of the base 

form. Similar to CC, FPC does not require a linear transformation because item 

parameter estimates are already on the same scale. This design is commonly used in 

practice, when items are field-tested prior to being used as scored items. 
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With SC, two test form parameter estimates are independently calibrated and then 

linked together via linear transformation. Unlike CC and FPC, SC requires a linear 

transformation to place the item estimates from one form onto the scale of the other form. 

Although SC requires an extra step, SC can be used to examine item parameter drift 

among the common items because it produces two sets of item parameter estimates. 

Item Parameter Drift 

Although the CINEG design is widely used by testing companies, it requires that 

the IRT property of parameter invariance hold for each of the common items. If the 

assumption of parameter invariance is violated, items may begin to function differently 

between subgroups of examinees. When equally abled examinees from different 

subgroups (e.g., male or female) have different response probabilities to an item, this is 

referred to as differential item functioning (DIF). Classified by the Standards as a threat 

to fairness and internal structure of the test, DIF studies are carried out to identify items 

that may be operating differently between subgroups of examinees. Unless there is 

sufficient justification for why the item is behaving differently, items showing DIF are 

removed from the scored item set because they represent a source of construct irrelevant 

variance that jeopardizes the comparability of scores. 

When common items function differently over separate testing occasions 

(Goldstein, 1983) this is referred to as item parameter drift (IPD). IPD is not directly 

mentioned in the Standards, although it is alluded to: “It is important to check that the 

anchor items function similarly in the forms being equated. Anchor items are often 

dropped from the anchor if their relative difficulty is substantially different in the forms 
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being equated” (Standards, p. 98). IPD is often considered a special type of DIF (e.g., 

Babcock & Albano, 2012; Gaertner & Briggs, 2009), operating as a threat to the fairness 

and validity of examinees and their test scores.    

There are a number of reasons that could lead to IPD including: item 

overexposure, changes in test curriculum or classroom instruction, cheating, a security 

breach, test-taking strategies, advances in technology, and current news. For example, 

test-takers that become exposed to common items will have prior knowledge that benefits 

them, while unfairly penalizing other test-takers without prior knowledge. Because the 

exposure of an item does not reflect the actual latent ability of a test taker, but instead, an 

extraneous factor outside of the construct being measured, it is considered a source of 

construct-irrelevant variance. As a result, the test would be considered unfair, and a 

detriment to validity, because the test unfairly advantages examinees with prior 

knowledge and disadvantages examinees without prior knowledge. Another possibility is 

that the drift may occur because the initial calibration was poor or contained a different 

population of test-takers (e.g., first-time new graduates versus retest-takers). Items may 

drift easier or harder, although most of the reasons presented suggest that items would 

become easier over time because examinees would benefit by receiving information 

(fairly or unfairly) that would better prepare them for an item.  

Messick (1989) referred to two types of construct-irrelevant variance: construct-

irrelevant difficulty and construct-irrelevant easiness. Construct-irrelevant difficulty 

refers to “aspects of the task that are extraneous to the focal construct make the test 

irrelevantly more difficult for some individuals or groups” (p. 34). An example is 
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provided where unnecessary reading comprehension requirements are required for 

subject-matter knowledge. Construct-irrelevant easiness refers to “when extraneous clues 

in item or test formats permit some individuals to respond correctly in ways irrelevant to 

the construct being assessed” (p. 34). Messick uses an example where students pick up on 

clues when the answer to an item is based upon the longest response stem.  

While Messick did not specifically refer to IPD within the context of these types 

of construct-irrelevant variance, his conceptualization can be extended to IPD. In fact, the 

example of students picking up clues based upon the length of the response options is an 

example of test-savviness or a test-taking strategy. Each of the examples of IPD (e.g., 

changes in instruction, security breach, cheating) represent a type of construct-

irrelevance. That is, construct-irrelevant easiness and difficulty are contaminating 

influences on test scores that systematically increase or decrease test scores for an 

examinee or group (Haladyna & Downing, 2004).  

For testing programs where scale stability is a fundamental concern, IPD presents 

a threat to the stability of the scale because of changes in item parameter estimates 

(Huggins-Manley, 2017). If the item parameter estimates change over time, forms that 

are IRT pre-assembled from an item bank are likely to be easier or harder than the actual 

difficulty level intended. The estimation of ability estimates will also be affected, as 

groups that perform better on the common items due to IPD are likely to have their ability 

overestimated, while groups that do not benefit from IPD may have their ability 

underestimated. Thus, IPD may compromise the comparability of scores between forms, 

undermine validity, and result in negative consequences for some examinees.  
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Purpose 

 Equating is a commonly used statistical process to ensure the comparability of 

scores by maintaining scale stability over time. Equating is mainly used to correct for 

minor adjustments in form difficulty, but the presence of IPD may lead to greater 

differences in form difficulty and produce worse equating outcomes than practitioners are 

aware of. The inaccuracy of the equating outcomes may be compounded further by the 

type of linking method used to adjust for group ability differences. Thus, IPD has the 

potential to effect both the item parameter estimates and the linking constants used to 

place forms on the same scale.  

 A considerable amount of research has been conducted on the performance of 

different unidimensional IRT linking methods (e.g., Baker & Al-Karni, 1991; Hanson & 

Beguin, 2002; Kang & Petersen, 2011; Kim & Kolen, 2007; Lee & Ban, 2010; Uysal & 

Kilmen, 2016), but few studies have examined the performance of unidimensional IRT 

linking methods in the presence of drift. Further research is needed to evaluate the 

robustness of IRT linking methods with IPD.  

 Studies have typically found that equating outcomes improve when common 

items that drift are removed from the linking and equating process (e.g., Hu et al., 2008; 

Li, 2012; Vukmirovic et al., 2003). However, the removal of common items often leads 

to construct underrepresentation, which may produce less accurate equating outcomes 

(e.g., Keller & Keller, 2015; Klein & Jarjoura, 1985; Yang, 2000). IPD detection methods 

can also report false negatives (e.g., DeMars, 2004b; Donoghue & Isham, 1998), so not 

all items that exhibit drift may be detected. Furthermore, removing drifted items can be 
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an iterative, time consuming approach (Gaertner & Briggs, 2009) that could require 

subject matter experts to determine whether a common item can be removed prior to 

linking and equating. Hence, it is important to evaluate the impact of IPD when items are 

not detected or cannot be removed from the common item set.  

 Drift presents an insidious threat to practitioners who regularly assemble test 

forms and conduct equating with unidimensional IRT. IPD results in inaccurate equating 

outcomes that undermine the use and interpretation of test scores and weaken validity 

evidence. Moreover, IPD may unfairly result in negative consequences for examinees 

seeking access to greater opportunities in higher education or career advancement. The 

purpose of this study is to examine the extent to which IPD affects equating outcomes 

and determine which IRT linking methods are most robust to different conditions of drift. 

Current Study and Research Questions 

 The current study compares the performance of five unidimensional IRT linking 

methods within the context of IPD: (1) Stocking-Lord, (2) Haebara, (3) concurrent 

calibration, (4) fixed parameter calibration, and (5) least absolute values. Because drifted 

items may go undetected, the study aims to determine the impact of drift when common 

items are not removed prior to linking and equating. Results from the study will 

contribute to a limited body of research and provide guidelines to help psychometricians 

confronted with IPD when equating. Implications for validity and recommendations for 

validation procedures will be identified to provide practitioners best practices for 

supporting their validity arguments. 
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In order to explore as many settings and conditions as possible, the present study 

will explore drift and linking methods through simulated and empirical datasets. Factors 

that are expected to impact findings include the proportion of drifted items in the 

common item set, the magnitude of the drifted items, differences in group ability, and 

sample size. As drift has consequences on both linking and equating outcomes, an 

inspection of the linking constants, item parameter estimates, equating outcomes, and 

classification rates will be evaluated. Thus, the research questions are as follows: 

1. What is the impact of IPD on linking constants A and B?  

2. What is the impact of IPD on the recovery of linked item parameter estimates? 

3. How consequential is the effect of IPD on true and observed equated scores? 

4. To what extent does IPD affect classification accuracy rates? 

5. To what extent does IPD affect classification consistency rates? 
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CHAPTER II 

LITERATURE REVIEW 

This chapter is broken up into six sections. The first section briefly describes IRT 

true and observed score equating. The second section discusses the common-item non-

equivalent groups (CINEG) data collection design. The third section examines seven 

unidimensional IRT linking methods. The fourth section reviews research conducted on 

the performance of IRT linking methods. The fifth defines IPD, the reasons for drift, and 

the implications it has on validity and validation. The last section reviews research 

conducted on the performance of IRT linking methods in the presence of IPD.  

IRT Equating   

Although the focus of this dissertation is linking, equating is discussed here 

because both IRT true and observed score equating results will be used as evaluation 

criteria to examine the performance of the linking methods being investigated. The 

equating procedures presented below are not being compared or contrasted but presented 

as brief introductions as to how equated scores are obtained.  

True Score Equating. Equating is a statistical process that adjusts for variations 

in difficulty among forms (Kolen & Brennan, 2014). To adjust for difficulty, IRT true 

score equating can be used to find the number-correct true score on Form X that 

corresponds to the number-correct true score on Form Y. The number-correct true score 

is computed by summing all of the item characteristic curves at a given 𝜃. Test 
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characteristic curves are used to find the true score associated with 𝜃 on Form X that 

corresponds to the true score associated with 𝜃 on Form Y.  

As 𝜃 approaches -∞ the probability of correctly answering item j approaches 𝑐𝑗 

instead of 0. As 𝜃 approaches ∞ the probability of correctly answering item j approaches 

1, but never reaches 1. Thus, true scores can only be obtained between the sum of 𝑐𝑗 and 

one point below the total score. However, true scores represent parameters that are 

unknown, so observed scores are used in practice. Unlike true scores, observed scores can 

fall between 0 and the highest possible score. To find scores that exist between 0 and the 

sum of 𝑐𝑗, linear interpolation is used (Kolen, 1981). First, a score of 0 on Form X is set 

equal to 0 on Form Y. Second, the sum of 𝑐𝑗 on Form X is set equal to the sum of 𝑐𝑗 on 

Form Y. Then, linear interpolation is used to find equivalent scores between these two 

points.   

 Observed Score Equating. IRT observed score equating consists of three steps. 

First, a conditional observed score distribution is estimated using the Lord and 

Wingersky (1984) recursion formula: 

𝑓𝑟(𝑥|𝜃𝑖) =  𝑓𝑟−1(𝑥|𝜃𝑖)(1 − 𝑝𝑖𝑟),                                                  𝑥 = 0 (2.1) 

                             = 𝑓𝑟−1(𝑥|𝜃𝑖)(1 − 𝑝𝑖𝑟) +  𝑓𝑟−1(𝑥 − 1|𝜃𝑖)𝑝𝑖𝑟,            0 < 𝑥 < 𝑟     

                                     = 𝑓𝑟−1(𝑥 − 1|𝜃𝑖)𝑝𝑖𝑟,                                                        𝑥 = 𝑟                     

where 𝑓𝑟(𝑥|𝜃𝑖) is the distribution of number-correct scores over r items for examinees of 

ability 𝜃𝑖. The probability of earning a 0 on the first item is defined as 𝑓1(𝑥 = 0|𝜃𝑖) =
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(1 − 𝑝𝑖1) whereas the probability of earning a 1 on the first item is defined as 

𝑓1(𝑥 = 1|𝜃𝑖) = 𝑝𝑖1. 

  The second step is to obtain the marginal observed score distribution by 

integrating the conditional distribution over all points of 𝜃: 

𝑓(𝑥) = ∫ 𝜓(𝜃)𝑓(𝑥|𝜃)
𝜃

𝑑𝜃, (2.2) 

 where ψ(θ) represents the synthetic population from the distributions of X and Y; and d 

is a scaling constant set to 1 or 1.7. In order to perform equating, a single (synthetic) 

population must be obtained by combining the two populations, X and Y, under the 

CINEG design. 

The last step is to apply the traditional equipercentile method:  

𝑒𝑌(𝑥) = 𝐹𝑌
−1(𝐹𝑋(𝑥)), (2.3) 

where 𝑒𝑌(𝑥) is the Form Y equivalent of score 𝑥 on Form X; 𝐹𝑋 and 𝐹𝑌 are the 

cumulative distribution functions for each scale; and 𝐹𝑌
−1is the inverse function of 𝐹𝑌.  

Common-Item Nonequivalent Groups (CINEG) Design.  

Also referred to as the non-equivalent groups anchor test (NEAT) design, the 

CINEG design is most widely used in practice. Implemented when only one form per test 

date can be administered because of security concerns, test forms share a set of common 

items (anchors) that are used to differentiate group ability from differences in form 

difficulty (Kolen & Brennan, 2014). Common items that are internal contribute to the 

total test score, whereas external common items do not count towards the total test score 

and are mainly used for equating purposes.  
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While the CINEG design is the most practical design to use for most testing 

programs, certain conditions need to be met in order to ensure accurate linking. Common 

items should be proportionally representative of the entire test form from a content and 

statistical perspective (Kolen & Brennan, 2014), otherwise the common item set will 

suffer from construct underrepresentation (Messick, 1989). Without the proper proportion 

of content, linking results may be inaccurate (e.g., Keller & Keller, 2015; Sukin & Keller, 

2008) and differences in group ability may not be adequately captured. Additionally, the 

same set of common items should not be reused for every new test form created. The 

more frequently a common item is used, the greater the likelihood of that item being 

exposed to the population of examinees, which may lead to IPD.  

Unidimensional IRT Linking Methods 

 Under the CINEG design, groups are not considered equivalent and the item 

parameter estimates for each form need to be placed on the same scale. Although groups 

differ in their θ distributions, software programs constrain each θ distribution to a mean 

of 0 and standard deviation of 1. A linear transformation can be made to the item 

parameter estimates so that the IRT model produces the same fitted probabilities of 

correct responses (Hanson & Beguin, 2002). The two θ-scales are linearly related as 

follows: 

𝜃𝑌𝑖
= 𝐴𝜃𝑋𝑖

+ 𝐵, (2.4)

where A and B are the slope and intercept of the linear equation, respectively, and 𝜃𝑋𝑖
  

and 𝜃𝑌𝑖
 are the ability values of examinee I on the scale of Form X and Form Y, 
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respectively. Under the three parameter-logistic (3PL) model, the item parameters are 

related as follows: 

𝑎𝑌𝑗
=

𝑎𝑋𝑗

𝐴
, (2.5) 

𝑏𝑌𝑗
= 𝐴𝑏𝑋𝑗

+ 𝐵, (2.6) 

and 

𝑐𝑌𝑗
= 𝑐𝑋𝑗

, (2.7) 

such that 𝑎𝑋𝑗
, 𝑏𝑋𝑗

, and 𝑐𝑋𝑗
 are the item discrimination, item difficulty, and pseudo-

guessing parameters, respectively, for item j on Form X; and 𝑎𝑌𝑗
, 𝑏𝑌𝑗

, and 𝑐𝑌𝑗
 are the 

same parameters for item j on Form Y. As can be seen below, plugging in the scale 

transformation equations directly into the 3PL model will produce the same probability of 

a correct response: 

𝑃 (𝜃𝑌𝑖
, 𝑎𝑌𝑗

, 𝑏𝑌𝑗
, 𝑐𝑌𝑗

) =  𝑐𝑌𝑗
+ (1 −  𝑐𝑌𝑗

)
exp [𝐷𝑎𝑌𝑗

(𝜃𝑌𝑖
− 𝑏𝑌𝑗

)]

1 + exp [𝐷𝑎𝑌𝑗
(𝜃𝑌𝑖

− 𝑏𝑌𝑗
)]

(2.8) 

= 𝑐𝑋𝑗
+ (1 −  𝑐𝑋𝑗

)
exp {𝐷

𝑎𝑋𝑗

𝐴 [(𝐴𝜃𝑋𝑖
+ 𝐵) −   (𝐴𝑏𝑋𝑗

+ 𝐵)]}

1 + exp {𝐷
𝑎𝑋𝑗

𝐴 [(𝐴𝜃𝑋𝑖
+ 𝐵) −   (𝐴𝑏𝑋𝑗

+ 𝐵)]}
 

=  𝑐𝑋𝑗
+ (1 −  𝑐𝑋𝑗

)
exp [𝐷𝑎𝑋𝑗

(𝜃𝑋𝑖
− 𝑏𝑋𝑗

)]

1 + exp [𝐷𝑎𝑋𝑗
(𝜃𝑋𝑖

− 𝑏𝑋𝑗
)]

 

= 𝑃 (𝜃𝑋𝑖
, 𝑎𝑋𝑗

, 𝑏𝑋𝑗
, 𝑐𝑋𝑗

), 
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where 𝑃 (𝜃𝑌𝑖
, 𝑎𝑌𝑗

, 𝑏𝑌𝑗
, 𝑐𝑌𝑗

) and 𝑃 (𝜃𝑋𝑖
, 𝑎𝑋𝑗

, 𝑏𝑋𝑗
, 𝑐𝑋𝑗

) are the probabilities that examinee i 

correctly answers item j on scales Y and X. Several different linking methods can be used 

to obtain linking constants A and B.  

Mean-Sigma. Proposed by Marco (1977), the mean-sigma (MS) method uses the 

mean and standard deviation of item difficulty estimates from each test form to derive the 

linking constants: 

𝐴 =
𝜎(𝑎𝑌)

𝜎(𝑎𝑋)
, (2.9) 

and 

𝐵 =  𝜇(𝑏𝑌) − 𝐴𝜇(𝑏𝑋), (2.10) 

where 𝜎(𝑎𝑌) and 𝜎(𝑎𝑋) are standard deviations of a-parameter estimates of the common 

items for Forms Y and X, respectively; and  𝜇(𝑏𝑌) and 𝜇(𝑏𝑋) are the means of b-

parameter estimates of the common items for Forms Y and X. 

 Mean-Mean. Similar to the mean-sigma method, the mean-mean (MM) method 

(Loyd & Hoover, 1980) uses the means of the item difficulty and item discrimination 

estimates from each test form to compute the linking constants. The B constant can be 

calculated using the same equation from the mean-sigma method; however, the A 

constant is computed as follows: 

𝐴 =
𝜇(𝑎𝑋)

𝜇(𝑎𝑌)
, (2.11) 

such that the mean of the discrimination estimates for Form X are divided by the mean of 

the discrimination estimates for Form Y.  
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Haebara. One limitation of the MM and MS methods is that they do not consider 

all of the item parameter estimates simultaneously in the transformation (Kolen & 

Brennan, 2014). To resolve this issue, Haebara (1980) and Stocking and Lord (1983) 

developed linking methods using characteristic curves.  

The Haebara method takes the difference between each item characteristic curve 

(ICC) on the base scale and transformed scale, squares the difference, and then sums all 

the differences over the common items (j:V), as such: 

𝐻𝑑𝑖𝑓𝑓(𝜃𝑖) = ∑ [𝑝𝑖𝑗(𝜃𝑌𝑖 ; 𝑎̂𝑌𝑗, 𝑏̂𝑌𝑗, 𝑐̂𝑌𝑗) − 𝑝𝑖𝑗 (𝜃𝑌𝑖 ;  
𝑎̂𝑋𝑗

𝐴
, 𝐴𝑏̂𝑋𝑗 + 𝐵, 𝑐̂𝑋𝑗)]

𝑗:𝑉

2

, (2.12) 

where pij(θYi ; 𝑎̂Yj, 𝑏̂Yj, 𝑐̂Yj) represents the item characteristic function on the scale of Form 

Y, and pij(θYi ;
𝑎̂𝑋𝑗

𝐴
, A𝑏̂Xj + B, 𝑐̂Xj) represents the item characteristic function on the scale of 

Form X transformed to the scale of Form Y. Hdiff is then summed over all examinees, 

retrieving values of A and B that minimize the following criterion: 

𝐻𝑐𝑟𝑖𝑡 =  ∑ 𝐻𝑑𝑖𝑓𝑓(𝜃𝑖)

𝑖

 (2.13) 

Stocking-Lord. The Stocking and Lord (1983) method uses a similar equation to 

Haebara, except that they sum the differences of ICCs before squaring: 

𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖) = [∑ 𝑝𝑖𝑗

𝑗:𝑉

(𝜃𝑌𝑖; 𝑎̂𝑌𝑗 , 𝑏̂𝑌𝑗 , 𝑐̂𝑌𝑗) − ∑ 𝑝𝑖𝑗

𝑗:𝑉

(𝜃𝑌𝑖;  
𝑎̂𝑋𝑗

𝐴
, 𝐴𝑏̂𝑋𝑗 + 𝐵, 𝑐̂𝑋𝑗)]

2

. (2.14) 

The difference here is that the sums of all the differences of common items are taken 

prior to squaring. That is, the Stocking-Lord (SL) method examines the squared 

difference between the test characteristic curves for a given θi whereas Haebara examines 
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the squared difference between the ICCs for a given θi. Sldiff is then summed over all 

examinees, retrieving values of A and B that minimize the following criterion: 

𝑆𝐿𝑐𝑟𝑖𝑡 =  ∑ 𝑆𝐿𝑑𝑖𝑓𝑓(𝜃𝑖).

𝑖

 (2.15) 

 Least Absolute Values. He et al. (2015) proposed a robust scale transformation 

method called Least Absolute Values (LAV). The LAV combines ordinary least squares 

regression and the Haebara method to obtain linking constants. Ordinary least squares 

regression can be influenced due to outliers, so a weight function is used to reduce the 

impact of the outliers:  

∑ 𝑤𝑖

𝑖

∗  𝑟𝑖
2, (2.16) 

where wi is a weight for the ith observation, and 𝑟𝑖
2 is the squared residual (i.e., difference 

between observed and predicted values) of the ith observation. Using equations 2.4 – 2.8, 

the difference in probability of getting a correct answer based on the base scale and 

transformed scale is: 

𝑑𝑖𝑗 = 𝑝𝑖𝑗(𝜃𝑌𝑖; 𝑎̂𝑌𝑗 , 𝑏̂𝑌𝑗 , 𝑐̂𝑌𝑗) − 𝑝𝑖𝑗(𝜃𝑋𝑖; 𝑎̂𝑋𝑗, 𝑏̂𝑋𝑗, 𝑐̂𝑋𝑗) (2.17) 

                   = 𝑝𝑖𝑗(𝜃𝑌𝑖; 𝑎̂𝑌𝑗, 𝑏̂𝑌𝑗, 𝑐̂𝑌𝑗) − 𝑝𝑖𝑗(𝜃𝑌𝑖;  
𝑎̂𝑋𝑗

𝐴
, 𝐴𝑏̂𝑋𝑗 + 𝐵, 𝑐̂𝑋𝑗) 

A loss function L evaluates the resultant losses, dij, as such: 

𝐿(𝑑𝑖𝑗) =  ∑ ∑ 𝑤𝑖𝑗𝑑𝑖𝑗
2

𝑗𝑖

, (2.18) 

where wij is the weight assigned to the probability difference for item j and examinee i. 

The weight, wij, can also be defined as wij = 1/| dij |, which simplifies to:  
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𝐿𝐿𝐴𝑉(𝑑𝑖𝑗) =  ∑ ∑|𝑑𝑖𝑗|

𝑗𝑖

. (2.19) 

Thus, the LAV minimizes the absolute difference between two ICCs. Large values of dij 

correspond to smaller weights for the squared difference.  

Concurrent Calibration. Concurrent calibration (CC) estimates person and item 

parameters from two or more forms simultaneously in one computer run. Although 

separate calibration procedures require linking methods (e.g., Haebara, SL, and LAV) to 

place the estimates from two forms on the same scale, CC does not require any additional 

scale transformation procedure. Instead of fixing the 𝜃 distribution to a standard normal 

distribution, CC estimates the distributions simultaneously with the item parameters. 

Thus, the estimated distributions and item parameter estimates obtained from CC are 

already on the same scale. 

Fixed Parameter Calibration. Fixed parameter calibration (FPC) takes the item 

parameter estimates from a set of previously calibrated common items (or item bank) and 

uses these values for the same set of common items on a new form when calibrating the 

new form field-test items. No scale transformation is required for FPC because the 

distribution of 𝜃 for the new group is estimated using their responses to the common 

items and the item parameter estimates from the base form. The resulting distribution of 

𝜃 for the new group will be on the scale of the base form, as well as the unique items 

from the new form. 
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Comparison of Unidimensional IRT Linking Methods 

 Seven methods were presented in the previous section, and although each method 

has benefits, the moment methods (i.e., MM and MS) have produced less stable results 

than the Haebara and SL characteristic curve methods (e.g., Baker & Al-Karni, 1991; 

Hanson & Beguin, 2002; Kim & Lee, 2004; Li et al., 2012; Ogasawara, 2001; Uysal & 

Kilmen, 2016). For this reason, the moment methods will not be considered further. 

Unless otherwise specified, the studies listed below all implemented the CINEG under 

unidimensional IRT.  

 Investigating the scale stability of the math and verbal sections from the SAT, 

Petersen et al. (1983) examined the true score equating results using linear (i.e., Tucker 

and Levine), equipercentile, and IRT equating methods. Three IRT linking methods (i.e., 

CC, FPC, SL) were used with the 3PL model. Using the LOGIST computer program, 

linking methods were evaluated according to the weighted mean squared difference 

between observed and estimated scale scores. For reasonably parallel tests, the linear 

methods performed similarly to the IRT methods. However, when tests were not 

reasonably parallel, the IRT methods were more robust than the linear methods. Among 

the IRT methods for the verbal section, FPC performed the best, followed closely by CC. 

For the math section, CC was superior to both FPC and SL. Overall, CC was considered 

to be the most stable. 

 Using data calibrated from two math forms of the ACT to obtain generating item 

parameters for a simulation study, Hanson and Béguin (2002) analyzed the performance 

of MM, MS, SL, Haebara, and CC linking methods under the 3PL model. The following 
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factors were included: the estimation program (MULTILOG versus BILOG-MG), sample 

size (3,000 versus 1,000), number of common items (20 versus 10), and equivalent 

groups sampled from N(0, 1) versus nonequivalent groups with a base group sampled 

from N(0, 1) and a new group sampled from N(1, 1). IRT true score equating criterion 

and ICC criterion were used as evaluation criteria. CC performed better than all methods 

for both evaluation criteria, with the exception of MULTILOG N(1, 1), for which the SL 

method performed better than the other linking methods under the IRT true score 

equating criterion.    

 Similar to Hanson and Béguin (2002), Kang and Petersen (2011) ran a simulation 

study based on item parameters obtained from two math forms to compare CC, FPC, and 

SL linking methods. The study varied the sample size (500 versus 2,000), number of 

common items (10, 20, or 40), and ability distributions with a base group sampled from 

N(0, 1) and new groups sampled from N(0, 1), N(0.25, 1.1), and N(0.5, 1.2). 

Additionally, SL and CC were carried out using BILOG-MG, while FPC was calibrated 

with BILOG-MG and PARSCALE. Using the 3PL model, results were examined using 

the ICC and TCC evaluation criteria. Most notably, FPC performed significantly worse 

with BILOG-MG, especially with fewer common items and nonequivalent ability 

distributions. Otherwise, the SL, CC and FPC with PARSCALE performed comparably.     

 In assessing academic growth over time with grade-level math data, Jodoin et al. 

(2003) compared the performance of the MS, FPC, and CC methods. An external anchor 

CINEG matrix design comprised of 12 field-test blocks was implemented, with 

PARSCALE used for 2PL, 3PL, and graded-response model (GRM) calibration. 
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Although truth could not be ascertained from the use of real data, the FCP and CC 

methods performed similar to each other in terms of the MLE and EAP ability estimates 

and classification consistency.  

 Kim and Kolen (2007) conducted a simulation study to analyze factors that could 

potentially affect the linking process under the 3PL model. Three ability distributions 

were considered for both the old and new groups (i.e., normal, positively skewed, and 

negatively skewed) resulting in a total of nine distribution combinations. Haebara, SL, 

and CC methods were evaluated according to the ICC criterion. All three methods used 

BILOG-MG for calibration, while POLYST was used for Haebara and SL linking. CC 

outperformed the Haebara and SL methods in linking accuracy.  

 Lee and Ban (2010) compared CC, SL, Haebara, and proficiency transformation 

linking methods. The linkage plan from this study assumed that Form A was 

administered at two time points. Form B2 was spiraled with Form A2, so A2 and B2 were 

considered randomly equivalent, without possessing any common items. Parameter 

estimates from B2 were placed onto the scale of A1 using A2 as an anchor form. Using a 

simulation study, two ACT English forms were calibrated using a 3PL model to obtain 

the generating item parameters. Manipulated factors included the sample size (500 or 

3,000), total items (75 or 25), and ability distributions where the base group was sampled 

from N(0, 1) and new groups were sampled from N(0, 1), N(0.5, 1), and N(1, 1). 

Expected observed score distribution (ESD) and TCC criteria were used as evaluation 

criteria. BILOG-MG was used for calibration, and ST was used to carry out linking for 
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SL and Haebara. Contrary to findings from previous studies (e.g., Petersen et al., 1983; 

Hanson & Beguin, 2002), Haebara and SL generally performed better than CC.  

 Studying the accuracy and consistency of IRT true score equating results for a 

sequence of test forms, Li et al. (2012) used simulated data to compare the performance 

of the chained equipercentile equating method and IRT true score equating method based 

on MM, MS, SL, Haebara, and CC linking methods. PARSCALE was used for 

calibration with the 2PL model and results were evaluated based upon mean squared 

errors (MSE), bias, and variance. Overall, the SL, Haebara, and CC methods performed 

better than the moment methods, and were comparable to each other.  

 A simulation study was conducted by Kim and Cohen (1998) to compare the 

performance of SL to CC. Using the 2PL model, 500 examinee responses to 50 items 

were simulated. The number of common items varied (5, 10, 25, and 50) as did the ability 

distributions, with the base group sampled from a θ distribution of N(0, 1) and the new 

group sampled from a θ distribution of N(0, 1) and N(1, 1). Evaluation criteria included 

the root mean squared difference (RMSD) and mean Euclidean distance (MED). SL had 

smaller RMSD and MED values than CC for most conditions. However, the type of 

software used may have confounded the results (Hanson & Béguin, 2002), as BILOG 

was used for SL and MULTILOG was used for CC.  

 Following their previous study, Kim and Cohen (2002) compared the SL and CC 

methods using the GRM for a polytomously scored 30-item test. Three different sample 

size combinations were considered for the two forms: 300 base group examinees/300 

target group examinees, 1,000/1,000, and 1,000/300. The ability of the base group was 
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sampled from a θ distribution of N(1, 1) to match the difficulty of the test, while the 

target groups were sampled from N(0, 1) and N(1, 1). Common item sets consisted of 5, 

10, and 30 items. MULTILOG was used for calibration for both SL and CC and 

EQUATE was used for the SL scale transformation. Mean distance measure (MDM) and 

RMSD were the criteria used for evaluation. Results indicated that CC was slightly, but 

consistently, better than SL for recovery of item and ability parameters.  

 Keller and Keller (2011) investigated the long-term sustainability of five IRT 

linking methods (i.e., MM, MS, SL, Haebara, and FPC) over six administrations of a test 

using the 3PL model. Three different ability distribution shifts were manipulated: none, a 

mean shift with increments of 0.15 units starting from N(0, 1) and ending at N(0.75, 1), 

and a skew-shift where the mean increases as in the mean shift condition, and the 

skewness increased by -0.15 between each administration. PARSCALE was used for 

calibration and STUIRT was used for all separate calibration methods (all except FPC). 

Evaluation criteria included root mean square error (RMSE), bias of θ estimates, and 

classification accuracy. Results indicated SL and Haebara performed similarly with FPC 

and better than the moment methods. SL and Haebara performed best when there was a 

mean shift in the data, while FPC was better at handling a skew shift in the data. It was 

concluded that FPC was the best method to deal with complex changes in examinee 

performance.   

 A simulation study was conducted by Li et al. (1997) to compare the performance 

of FPC and SL methods under the 3PL model. Three different ability distributions were 

varied according to a standard normal distribution, a positively-skewed chi-squared 
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distribution with a skewness of 1, and a negatively-skewed chi-squared distribution with 

a skewness of -1. BILOG was used for calibration and EQUBANK was used for SL 

linking. Results indicated that FPC produced slightly more stable parameter estimates 

despite having slightly higher levels of bias.  

 There are several takeaways from the studies presented. First, CC has typically 

produced the most stable item parameter estimates and accurate equating results among 

all methods presented (e.g., Hanson & Beguin, 2002; Kim & Cohen, 2002; Kim & Kolen, 

2007; Petersen et al., 1983). If CC did not perform the best, it performed comparably to 

SL, Haebara, and FPC methods (e.g., Jodoin et al., 2003; Kang & Petersen, 2011; Li et 

al., 2012). Only in two instances did CC perform worse than SL (i.e., Kim & Cohen, 

1998; Lee & Ban, 2010). However, Lee and Ban (2010) linked two forms together with 

nonequivalent groups (A1 and B2) through group A2, which was considered equivalent to 

B2. Because there were no common items between A2 and B1, this type of linkage plan 

differed from other CINEG designs, which may have led CC to perform worse than SL. 

The results from Kim and Cohen (1998) may have been confounded due to differences in 

software. Second, FPC performed comparably to CC in most of the studies in which the 

two methods were used (e.g., Jodoin et al., 2003; Kang & Petersen, 2011; Keller & 

Keller, 2011). However, FPC has not been studied nearly as extensively as CC. Third, the 

SL method is the most widely used separate calibration linking method, although the 

performance between SL and Haebara has been comparable (e.g., Hanson & Beguin, 

2002; Keller & Keller, 2011; Kim & Kolen, 2007; Lee & Ban, 2010; Li et al., 2012). 

More research is needed on the Haebara method. 
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While the results presented here seem to favor CC, these same linking methods 

might operate differently within the context of IPD. The final sections will discuss IPD as 

a threat to measurement as well as validity, and review studies that have examined the 

performance of linking methods in the presence of IPD.  

Item Parameter Drift 

One of the greatest attributes of IRT is the property of parameter invariance; item 

parameters remain the same over different groups of examinees and separate testing 

occasions. When this assumption is violated, and item parameter estimates deviate over 

subsequent testing administrations (Goldstein, 1983), item parameter drift (IPD) occurs. 

IPD is considered a type of DIF (e.g., Babcock & Albano, 2012; Gaertner & Briggs, 

2009), but instead of items functioning differently between subgroups (e.g., male versus 

female), items differ over testing administrations.  

IPD can have detrimental effects on linking both directly and indirectly (Han et 

al., 2012). First, item parameter estimates will be directly impacted. Consequently, 

procedures that rely on these estimates will also be subjected to IPD. For example, when 

pre-assembling forms with IRT, statistical specifications should be nearly identical so as 

to not advantage or disadvantage examinees taking a specific form. Although pre-

assembling forms requires that the scored items already be calibrated and fixed to a bank 

scale, any items that exhibit drift will deviate from the fixed estimate and change the 

difficulty (easier or harder) of the form without the test developer being aware. Second, 

the linking constants will be indirectly affected by IPD through the drifted item parameter 
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estimates (Han et al., 2012). As a result, the linked item parameter estimates will be 

negatively influenced.  

When using the 2PL or 3PL model, three types of IPD can be investigated: a-drift, 

b-drift, and ab-drift (e.g., DeMars, 2004b; Donoghue & Isham, 1998; Wells et al., 2002). 

Changes to the discrimination parameter over time are referred to as a-drift, changes to 

the difficulty parameter over time are known as b-drift, and changes to both the 

discrimination and difficulty values over time are referred to as ab-drift. Donoghue and 

Isham (1998) found that detection rates for a-drift were significantly lower than detection 

rates for b-drift and ab-drift. Of the 13 detection methods investigated, only one method 

(Lord’s χ2) had an a-drift detection rate above 50%, which led the authors to conclude 

that all methods were insensitive to a-drift. Drift in difficulty parameters (b-drift) tends to 

be the most common IPD as the detection of a-drift can be challenging. 

Reasons for IPD. Any number of causes could result in IPD and the 

identification of a particular reason could be very difficult in practice. Yet, researchers 

have proposed and investigated different sources of IPD. First, changes in curriculum 

could result in items becoming easier or harder (e.g., Bock et al., 1988; DeMars, 2004a; 

Goldstein, 1983; Sykes & Fitzpatrick, 1992). Using data from the College Board Physics 

Achievement Test, Bock et al. (1988) found that basic mechanics items became easier 

over a 10-year span, whereas other specialized topics became harder over time. These 

findings were supplemented by a curriculum survey indicating that basic topics were 

more regularly stressed. DeMars (2004a) investigated IPD by comparing items from 

information literacy and global issues over the course of four years. DeMars (2004a) 
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found that items from information literacy showed more drift due to the swift rate at 

which content was likely to change in information literacy, but drift could not always be 

explained by content alone.  Sykes and Fitzpatrick (1992) examined the effect of item 

position, item type, item content and elapsed time between test administrations on 

possible changes in item difficulty on a professional licensure exam. Results revealed no 

significant relationship between item position or item type, but a significant difference 

for elapsed time and content categories. Sykes and Fitzpatrick (1992) hypothesized that 

the drift due to the content was attributed to the change in curriculum. In examining 

reasons for educational attainment over time, Goldstein (1983) suggested that mental 

arithmetic could be phased out of curriculum due to advances in technology. If an item is 

presented on an exam that requires mental arithmetic without use of a calculator, 

examinees may not be as well versed in solving the problem as examinees who were 

taught mental arithmetic before the regular use of calculators. Thus, the item would 

become harder. On the other hand, the same item could become easier for subsequent test 

takers if mental arithmetic is required but the use of a calculator is also permitted.  

Depending on the location of the item in the test form, a context effect may occur. 

Kingston and Dorans (1984) investigated the effect of item location on item-types by 

spiraling 12 sub-forms of the GRE General Test. Analytical items, which require an 

extensive set of directions, were susceptible to significant practice effects such that the 

performance of these items depends on how many items of that type precede it. 

Therefore, these items could be more difficult if fewer items of the same type are 

presented, whereas these items could become easier if more items are presented.  
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One reason that could result in items drifting easier or harder is if the initial 

calibration is unstable or response behavior is not properly modelled (Glas, 2000). This 

may be due to small sample sizes, changes in population characteristics between 

administrations (e.g., first-time testers versus retesters), or due to seasonality effects 

(Wyse & Babcock, 2016), any of which could cause items to drift in different directions.  

Motivation level is another potential reason why an item could drift easier. Glas 

(2000) suggests that differences in performance can occur between pretest and on-line 

stages. If examinees are aware that certain items (i.e., field-test, experimental, external) 

do not count towards their score, they have little incentive to give maximum effort and 

their motivation may wane. Thus, the item estimate might appear more difficult after 

pretest but easier once on-line. Alternatively, items at the end of a long test might seem 

harder due to examinee fatigue or due to lack of time causing examinees to guess.  

Common items regularly used on different forms are at risk for overexposure as 

test-takers may begin to recognize items when taking the exam multiple times (Jurich et 

al., 2012). Items could also be exposed when test-takers discuss information about the 

test to one another or post information on “braindump” websites (Smith, 2004). Although 

items may be thought of as being exposed only after a test has been administered, test 

security is needed throughout all stages of test development. Security breaches can occur 

when test materials are hacked online, if booklets are not secured during meetings (e.g., 

item review, standard setting), or when materials are not properly disposed.  

Messick (1989) referred to test savviness as a form of construct-irrelevant 

easiness whereby students can identify clues in items that lead them to choosing the 
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correct answer. These items may be easier to test-takers that are more adept at test taking. 

Additionally, test preparation courses offer examinees the opportunity to take advantage 

of test-taking strategies to make more efficient use of their time and methods to handle 

certain types of problems.  

Finally, current news and the corresponding media attention given to certain 

topics may cause certain items to drift. O’Neill et al. (2013) remarked that answering a 

question about HIV in 1986 represents an esoteric immunology topic, but in 1992 it 

represents a current events topic due to the outbreak of cases between this time period. 

The attention given to the topic, and the information available, will be more substantial in 

1992 compared to 1986. A list of potential reasons for IPD can be found in Table 1.   

 

Table 1 

 

Potential Reasons and Directionality of IPD 

 

Reason Easier Harder Citation 

Changes in curriculum Yes Yes Bock et al. (1988); DeMars 

(2004a); Goldstein (1983); 

Sykes & Fitzpatrick (1992) 

Technological advances Yes Yes Goldstein (1983) 

Item location Yes Yes Kingston & Dorans (1984) 

Unstable or poor initial 

calibration/ improper modeling 

Yes Yes Glas (2000); Wyse & Babcock 

(2016) 

Motivation Yes  Glas (2000) 

Item overexposure Yes  Smith (2004) 

Cheating Yes  Jurich et al. (2012) 

Security breach Yes  Jurich et al. (2012) 

Test-taking strategies/test 

savviness 

Yes  Messick (1989) 

Current news Yes  O’Neill et al. (2013) 
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IPD Implications for Validity and Validation. Regardless of the reason or 

direction for IPD, the presence of drift is a threat to measurement contexts that require a 

stable scale, such as licensure and certification. All the aforementioned reasons are 

sources of construct-irrelevant variance that may jeopardize the assumption of parameter 

invariance, thereby threatening the generalizability of test scores across examinee 

populations and measurement conditions (Rupp & Zumbo, 2006). IPD also has major 

implications for the fairness and validity of test scores, as well as the process of 

validation.  

IPD as a Threat to Validity. Although too prescient for the time, the first notions 

of a theoretical definition of validity emerged from Cronbach and Meehl (1955). They 

conceptualized the validity triumvirate recognized today—criterion-related validity, 

content validity, and construct validity. More importantly, they postulated a nomological 

network to help confirm or disconfirm the interpretation of test scores through a system 

of laws and relationships that define a theory. As Box (1976) stated, “all models are 

wrong” (p. 792), including measurement models such as classical test theory (CTT) and 

IRT. Although we accept these theories (i.e., CTT and IRT) as approximations of 

someone’s true ability, we recognize that some tolerable amount of error is associated 

with using them. How much error is considered consequential though? Moreover, when 

IPD is present, how much more error is added when our models and theories break down 

as a result of the assumptions that define them (e.g., parameter invariance)?  

Dorans and Feigenbaum (1994) suggested a raw score difference of 0.5 or greater 

as a “difference that matters” when rounding is also considered. This would translate to a 
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difference of one raw score point, which could lead to different interpretations. For 

example, a difference of one fewer point could result in a student being labeled as 

“Below Proficient” instead of “Proficient.” Another instance is a prospective lawyer or 

doctor who “Fails” their certification exam by one point. While these labels are the 

results of interpretations from test scores, Messick (1989) also emphasized the 

importance of subsequent actions based upon interpretations from test scores. In the 

context of the student, he/she may have to attend a remedial class instead of continuing 

along the same trajectory of his/her classmates. For the prospective candidate, failing the 

exam means having to restudy, investing more financial resources in exam preparation 

materials, or possibly considering a career change. 

 These hypothetical scenarios may become realities when considering the 

influence of drift. The two examples above illustrate the consequences that could ensue if 

items drift harder, whether due to a lack of coverage in curriculum, item location, or an 

initial calibration suggesting an item is easier than it really is. Alternatively, examinees 

may also benefit from items drifting easier, which could be a result of item overexposure, 

cheating, or security breaches. Studies examining IPD on equating results (e.g., Hu et al., 

2008; Jurich et al., 2012; Li, 2012; Vukmirovic et al., 2003) have found drift to affect 

equated scores by one point or more.  

 If IPD goes undetected, examinees will receive a score that is different from the 

one they should be correctly awarded if the drift were detected (Rupp & Zumbo, 2003a). 

Estimated equated scores that differ by even one point are a detriment to the 

interpretation and use of test scores. Stated by Messick (1989), validity is a matter of 
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degree—so as scores drift more, the weaker the argument becomes for claiming the test 

scores are suitable measures for the specified purpose of the test. 

 Impact on Validation. As part of their conception of construct validity, Cronbach 

and Meehl (1955) suggested a statement of the proposed interpretation, consideration of 

alternative interpretations, and the need for extended analysis in validation. Messick 

(1989) reiterated these same points, which have become widely accepted, as necessary 

components for a validity argument.  

 Messick’s work largely influenced the Standards, which is considered as one of, 

if not the, premier resource for guidance on testing. Although the Standards discusses 

DIF (p. 16, 51, 82) as a threat to the internal structure of a test, there is no specific 

reference to IPD (although a number of standards allude to potential reasons for drift). 

This may be partially attributed to the fact that IPD is considered a special type of DIF 

(e.g., Babcock & Albano, 2012; Gaertner & Briggs, 2009). Instead, the Standards allude 

to IPD through equating, stating: “It is important to check that the anchor items function 

similarly in the forms being equated. Anchor items are often dropped from the anchor if 

their relative difficulty is substantially different in the forms being equated” (Standards, 

p. 98). However, IPD has the potential to not only impact the internal structure of a test, 

but all five sources of validity evidence: 1) evidence based on test content; 2) evidence 

based on response processes; 3) evidence based on internal structure; 4) evidence based 

on relations to other variables; and 5) consequences of testing. 

 Drift has the potential to affect test content, which speaks to the relationship 

between the test content and the construct being measured. Content-related validity 
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evidence should “address issues such as the fidelity of test content to performance in the 

domain in question and the degree to which test content representatively samples a 

domain, such as a course curriculum or job.” (Standards, p. 218). The Standards discuss 

a number of considerations for test design and development that contribute to providing 

support for content-related validity evidence. Commentary of Standard 4.8 states that: 

“When sample size permits, empirical analyses are needed to check the psychometric 

properties of test items and also to check whether test items function similarly for 

different groups” (p. 88). Psychometric properties can be reviewed by subject matter 

experts as in Standard 4.8, or by the test developer in Standard 4.10. Subject matter 

experts may be able to identify items that are obsolete (e.g., replaced by new findings or 

laws) or speak to subject areas that have been added or retired. Test developers are likely 

to evaluate items exhibiting IPD or DIF during scoring (applicable for evidence of 

internal structure). However, when using IRT, the item bank can be used to assemble 

domain and test-level difficulty to a specified value. If the bank scale was originally 

calibrated using items that drifted, then the forms assembled may be easier or harder than 

they statistically exhibit. This would result in some examinees receiving an easier form 

than other examinees, despite being assembled to the same statistical specifications. Test 

developers should ensure that the item bank is calibrated with the right population and an 

adequate number of examinees (Wyse & Babcock, 2016). 

 Response processes refer to the cognitive processes (e.g., test-taking strategies, 

response times, eye movements) that examinees engage in while taking the test (Standard 

1.12). These processes may change as a result of drift. For example, if examinees have 
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knowledge of items as a result of cheating or being exposed to the item, their response 

time will be very quick. Context and practice effects may also occur (Kingston & Dorans, 

1984). Some item formats require more extensive directions than others, which might 

inhibit examinees that are unfamiliar with their format. However, examinees that retake 

the test will not be caught off guard by the complexity of the item and can spend more 

time on other areas. In these examples, the cognitive processes being used by examinees 

do not tap into the intended processes required to demonstrate competence or mastery; 

rather, they reflect having access or exposure to items that other test takers do not get to 

benefit from.   

 The internal structure of the test refers to whether the obtained scores function as 

intended. In the context of IRT, it is expected that items will perform similarly across 

different groups of examinees and conditions. As previously mentioned, the Standards 

recommend removing common items from the anchor set if their difficulty fluctuates 

over different test forms (Standard 5.15).  

 When scores from one test correlate with scores from another test measuring the 

same construct (e.g., SAT and ACT), there is some convergent evidence for relations to 

other variables (Standard 4.13). The Standards also apply relations to other variables in 

the context of subgroups. That is, test-criterion relationships may differ from one 

subgroup to another, or the difference may be attributed to different meanings for the 

groups. These differences result from construct-irrelevant variance such as DIF and IPD. 

A test form that has been compromised as a result of cheating or a security breach will 
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yield scores much higher than expected. These scores may be more homogeneous than 

expected and result in a lower correlation with another form or test. 

 Finally, evidence should be provided for the consequences of testing. The 

consequences of test use “follow directly from the interpretation of test scores for uses 

intended by the test developer” (Standards, p. 19). Consequences may be intended or 

unintended, and in the case of drift, are likely unintended due to its potential to go 

unnoticed. If drift is undetected, examinees will receive a score with more error that 

misrepresents their ability. As a result, some unqualified test-takers will pass or advance, 

and some qualified test-takers will fail. Unqualified test-takers that benefit from drift may 

go on to hold career positions (e.g., doctors, lawyers) that they are ill-equipped to handle, 

which could put patients or clients at risk for harm. Those test-takers that are 

disadvantaged by drift will have to devote more time and financial resources to retaking 

the exam. Test developers should investigate sources of construct-irrelevant variance that 

could be contributing to examinees’ scores (Standard 1.25).   

While the Standards discusses the need for composing a validity argument, it 

does not elucidate how to construct one. Kane (2006, 2013) operationalized a method for 

practitioners by introducing an argument-based approach to validation that includes an 

interpretive use argument (IUA) and a validity argument. The IUA provides a framework 

for the claims being made about test scores through a network of inferences and 

assumptions as seen in Figure 1.  
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Figure 1. Kane’s Argument Based Approach to Validation. 

 

 

The IUA requires at least four inferences with the number of inferences 

depending upon the extent of the claims being made. Each inference can be thought of as 

a bridge interconnected with the other inferences. If any inference lacks the evidence to 

support the claim being made, then the bridge collapses. Progression to the subsequent 

bridge cannot be made until the claims being made for that inference are supported.  

The first bridge is the scoring/evaluation inference, which assumes that the 

scoring rule (e.g., answer key, rubric) is appropriate, accurate, and consistent for the 

purposes of assigning an observed score based on an observed performance. The second 

is generalization, which assumes that the examinee’s performance on this occasion would 

generalize to a universe of other occasions, settings, raters, etc. The third is extrapolation, 

which implies that the performance on the test is indicative of the knowledge, skills, or 

attributes required for a given job or context. The fourth inference is utilization, which 

suggests that scores can be used to make value-based decisions (e.g., admission decision, 

pass/fail for licensure). A high-stakes examination based upon research and theory is 

likely to have more inferences than just a classroom-based assessment. Once the claims, 

assumptions, and inferences have been laid out in the IUA, they are critically evaluated 

by a validity argument. 
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 Using Toulmin’s (1958) model of inference (Figure 2), the scoring inference takes 

us from a sample of observations (i.e., grounds or data) to our claim about the observed 

scores (Kane, 2006, 2013). The inference is supported by our warrant, which states that 

the appropriate answer key/rubric, testing conditions, and statistical analyses (e.g., item 

calibration, linking, and equating) are applied accurately, consistently, and are free from 

any bias. The warrant is based on a number of assumptions that must be empirically or 

theoretically validated through the backing. Unless there are alternative hypotheses (i.e., 

rebuttals) that disconfirm our evidence, we can claim that our scoring inference has been 

supported. Examining the rebuttals in Figure 2, there is evidence of IPD that could be 

attributed to item overexposure, cheating, or changes in curriculum. Although several 

items were removed, there are other anchor items that cannot be removed due to a lack of 

content balance. Therefore, our linking and equating results might be negatively 

influenced and our claim of observed test scores accurately reflecting examinee 

performance is not supported. As a result, we are unable to provide enough support for 

the scoring inference, which means that we cannot claim that our observed test scores are 

suitable to be used to make decisions about examinees. It also means that we cannot 

move to any of the next inferences until this is resolved (displayed by the red “X” marks 

on the arrows). 

 Although it would not make sense to continue with our IUA after failing to 

support the scoring inference due to drift, we will evaluate each of the inferences for this 

hypothetical scenario. Additional reasons for drift will be explored as ways that drift can 

affect the IUA.  Continuing with generalization, observed scores should be 
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representations of expected scores over parallel versions of tasks, occasions, and raters 

(Kane, 2006, 2013). In this inference, IPD presents a threat to the task or item over 

separate testing occasions. For example, an item could be identified by an examinee over 

repeated administrations and may find the item easier than when it was first presented. 

Alternatively, the item does not have to be seen by an examinee twice. Instead, an 

examinee might have knowledge of this item from other test-takers due to cheating or 

breaches in security. In either instance, the claim that an examinee would receive the 

same expected score across testing occasions is unsupported. Other examples that could 

invalidate the generalization inference include presenting an item in different locations of 

forms (which could change the performance of an item based on context clues from 

surrounding items), or linking a newly administered form to a bank scale that contains 

unstable initial calibrations.  

Moving to the extrapolation inference, which states that the knowledge, skills, and 

abilities assessed by the exam for a construct are indicative of the performance relevant to 

a specified setting. IPD may unduly influence the construct being measured across 

different examinees. An examinee that takes the test with prior knowledge of the items 

will receive a score that inflates their true ability, compared to an examinee that takes the 

test with no prior knowledge of the items. The former test-taker’s score is a measure of 

ability plus familiarity with the exam, whereas the latter examinee’s score is a measure of 

only their ability. Thus, the two observed scores represent different constructs with 

different meanings and cannot be considered fair to the examinees or in support of the 

extrapolation inference, compromising the validity argument. 
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Figure 2. Toulmin’s Model of Inference Applied to Kane’s Scoring Inference. 

  

 

Finally, the utilization inference suggests that the scores obtained are useful for 

making decisions about the competence for a given practice, role, or setting. This 

inference includes backing that requires longitudinal follow-up (e.g., positive and 

negative consequences resulting from a decision). If a prospective doctor taking a 
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certification exam were to pass due to IPD whereby the items shift easier (e.g., due to 

cheating or item overexposure), he/she would then be allowed to practice medicine. This 

doctor may treat a patient effectively but could also do more than minimal harm on a 

patient (e.g., by providing an inaccurate diagnosis or prescribing the wrong treatment) 

because his/her true ability does not meet the requirements for minimal competence. 

Instead, his/her exam score is reflective of his/her ability plus familiarity with the test. 

Therefore, long-term follow-up may suggest that the exam is admitting candidates that 

are not actually qualified for practice. This may result in resetting the passing standard 

higher and consequently lowering the pass rate. 

 While the examples presented above speak mainly to IPD affecting scores 

through linking and equating, IPD may also operate more insidiously on scores through 

initial calibrations of item estimates. A bank scale may contain poorly estimated initial 

values due to calibration with inappropriate sample sizes, unrepresentative populations, 

seasonality effects, or timing of the calibration (Wyse & Babcock, 2016). As a result, pre-

assembled test forms may be easier or harder than thought because the item estimates are 

not accurate reflections of the difficulty of the item. Therefore, regardless of the linking 

method used, and the appearance of the results, the obtained equated outcomes may still 

be inaccurate. 

Technically speaking, if the claim(s) from one inference are not supported, then 

the subsequent inferences will also be invalidated. Thus, one cannot move to the next 

inference until the issues from the current inference are resolved. However, these 

examples illustrate how the IUA and validity argument are undermined according to each 
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inference when IPD goes untreated or undetected and requires the proper validation 

procedures. This includes appropriate detection measures, proper handling of drifted 

items, implementing robust linking methods, adherence to test security policies, 

consistent quality assurance, and following guidelines from empirical research. While an 

abundance of research is available on DIF (e.g., Haladyna & Downing, 2004), more 

studies are needed to examine which linking and equating methods handle drift the best.     

Comparison of Unidimensional IRT Linking Methods under IPD  

 The majority of this section discusses research studies comparing linking methods 

under the context of drift, but an important question must first be asked. Are IRT linking 

and equating methods robust to IPD? The first part of this section will critique several 

studies that suggest IRT is robust to drift. The remainder of the section will examine the 

studies that have investigated one or more linking methods under the influence of drift. 

IRT Robustness to IPD? Several studies have found a minimal effect of IPD on 

linking and suggest that Rasch (1960) and IRT models are robust to IPD (e.g., Rupp & 

Zumbo, 2003a; 2003b; Stone & Lane, 1991; Wells et al., 2002; Witt et al., 2003). 

However, this assertion is only partially warranted.  

 Wells et al. (2002) examined the effect of IPD on θ estimates under the 2PL 

model using the SL method. Three types of drift were analyzed: 1) the discrimination 

parameter (a-drift) was shifted by +0.5, 2) the difficulty parameter (b-drift) was shifted 

by +0.4, and 3) both parameters (ab-drift) were shifted by +0.5 for the discrimination 

parameter and +0.4 for the difficulty parameter. Four levels for the percentage of drifted 

items (5%, 10%, 15%, and 20%) in 40-item and 80-item tests with sample sizes of 300 
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and 1,000 examinees were simulated. Two testing occasions were simulated, both of 

which randomly sampled θ from a N(0, 1) distribution. BILOG 3 was used for calibration 

and EQUATE was used to carry out the SL method. RMSE, RMSD, and the mean 

absolute percentile difference (MAPD) were used to evaluate the recovery of θ estimates. 

IPD was found to have minimal impact on theta estimates and the authors concluded that 

IRT remained robust to parameter invariance. However, the authors note that the drifted 

items were not used in estimating the linking transformation, which may explain why the 

authors did not find any substantial impact of IPD. As noted by Han et al. (2012), IPD 

has both an effect on the item estimates as well as the linking constants. Another possible 

reason for the lack of significant findings is because studies have indicated that a-drift is 

harder to detect and has minimal impact on ability estimates (e.g., Donoghue & Isham, 

1998).  

 Using the Wells et al. (2002) article to supplement their argument of IRT being 

robust to IPD, Rupp and Zumbo (2003a, 2003b) provided a theoretical and practical 

perspective on drift. Although they suggested that IRT models do yield relatively stable 

examinee scores in the presence of IPD, large amounts of drift can exacerbate outcomes.    

Witt et al. (2003) examined the effects of drifting item difficulty on ability 

estimates and classification rates for a 100-item test administered to 187 examinees and a 

200-item test administered to 260 examinees. Using the Rasch model, the authors 

manipulated the ability distribution to be negatively skewed, item difficulties were drifted 

by negative and positive values of 0.10, 0.25, and 0.50 logits, and the percentage of items 

drifted were 5%, 10%, and 25%. Winsteps was used to calibrate parameter estimates. 
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Misclassification rates were found to be no higher than what would be expected by 

measurement error and negligible differences existed between estimated θ and true θ. The 

authors concluded that the robustness of the Rasch model is evident even at the most 

extreme levels of drift and a large number of items (i.e., 25%) is needed to exhibit drift 

before θ estimates begin to deviate from their true value. Although misclassification rates 

were relatively low, an inspection of the mean ability and difficulty distributions suggest 

that classification rates should be low. The mean of the θ values for the 100-item and 

200-item tests were 2.05 and 1.45, respectively, while the mean of the difficulty were -

0.03 and 0.00. Given the disparity between θ and item difficulty, drift would probably 

need to be much larger than 0.50 logits to have a significant impact on classification 

rates. 

 Tracking the academic growth of preschoolers’ math achievement between Fall 

and Spring instruction, Stone and Lane (1991) examined the stability of item parameter 

estimates from the Head Start Measures Battery. The assessment includes 19 free-

response items, the first six of which are common to all students. Performance on these 

items determines whether the student receives six additional items for less-able children 

(Level I) or seven additional items for more-able children (Level II); thus, students do not 

receive all items in one administration. An unconstrained 2PL model was compared to a 

constrained 2PL model where discrimination and difficulty parameters were equal across 

time points. MULTILOG was used for parameter estimation, while G2 was used to 

statistically compare the restricted (Model II) and unrestricted (Model II) models for best 

fit. A third hybrid model (Model III) was used when items from the unrestricted model 
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indicated drift over time—these items were allowed to vary while the remaining (stable) 

items were constrained. When comparing the item parameter estimates between seasons 

with Model III, only eight of the 38 estimated difficulty and discrimination parameters 

were found to drift. The authors concluded that the parameter estimates were moderately 

stable between testing occasions. However, two of the six items (33%) were common 

items flagged for drift in difficulty. With this proportion of drift and magnitudes of drift 

approaching 1.0, performing linking could produce inaccurate item parameter estimates 

and may not be as stable as reported.  

In summary, these studies illustrate that IRT is a robust model, but they do not 

accurately capture the full impact of IPD. Although Stone and Lane (1991) found 

moderate stability of parameter estimates, one-third of the common items were affected 

by drift and would most likely impact linking outcomes. Both the Wells et al. (2002) and 

Witt et al. (2003) studies only simulated b-drift up to 0.5, but this amount of drift is not 

considered substantial unless test lengths, anchor set lengths, or sample sizes are small 

(e.g., Draba, 1977; Kopp & Jones, 2020; Risk, 2016; Wright & Douglas, 1976). While 

Rupp and Zumbo (2003a, 2003b) reiterate the findings of IRT robustness from Wells et 

al. (2002), they also acknowledge that IPD can have an extensive impact on ability 

estimates when drift is substantially large. Moreover, studies have found that it is not the 

proportion of drifted items that impact the accuracy of ability estimates and classification 

rates, but the magnitude of drifted items that is more detrimental to outcomes (e.g., Kopp 

& Jones, 2020; Li, 2012; Risk, 2016). Thus, only a few drifted items can have a profound 

impact if the extent of the drift is large enough.  
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 Linking Method Studies Under IPD. Unless otherwise stated, the studies 

presented here investigate the performance of linking methods within the context of IPD 

under a unidimensional IRT framework using the CINEG design. Several studies 

investigating the impact of DIF were included (e.g., Huggins, 2014; Kabasakal & 

Kelecioglu, 2015; Yurtçu & Guzeller, 2018) because these studies also examined the 

effect on linking and equating. 

 Using an externally scored CINEG design, Hu et al. (2008) investigated the issue 

of whether to remove or ignore outliers (i.e., drifted items) for ten variations of four IRT-

based linking methods: CC, FPC, SL, and MS. Forms Y1, Y2, and Y3 were administered 

in Year 1, while forms X1, X2, and X3 were administered in Year 2. Forms were linked 

and equated by their respective numbers (e.g., X1 equated to Y1). Within each pair of 

numbered forms, 10 common items were shared, and 72 unique items were presented (36 

per form). Each form was comprised of multiple-choice (MC), short answer (SA), and 

open-ended response (OR) items. The item responses to base forms (Y) were randomly 

sampled from a N(0, 1) distribution, while the new forms (X) were randomly sampled 

from N(0, 1) and N(1, 1) distributions. Six combinations of number/score points (i.e., 0, 

3, 9) and types of outliers (based on item type and content area) were examined. The six 

combinations included: 1) no outliers; 2) three MC items with three score points from one 

content area; 3) three MC items randomly chosen from one of five content areas; 4) three 

MC items with extreme b-parameter estimates (from -1.40 to -3.67); 5) five MC items 

and one OR item with nine score points from one content area; and 6) five MC items and 

one OR item with nine score points randomly chosen from one of five content areas. An 
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outlier was defined as any common item that exceeded two score points from the 

intersection point (two perpendicular straight lines drawn from each item’s x-axis and y-

axis position) of two plotted b-parameters from nonequivalent groups. However, only 

outliers located on the left side of the straight line (i.e., only items drifting easier) were 

investigated. Each form (e.g., Y1) had 2,000 responses whose item parameters were 

estimated with PARSCALE under the 2PL, 3PL and GR models. Evaluation criteria 

included the MSE for b-parameters and MSE for number-correct true scores. 

There are four takeaway points from Hu et al. (2008). First, all methods 

performed equally well (and better) without outliers and with equivalent groups. Second, 

the SL and MS performed better than CC and FPC without outliers under non-equivalent 

groups. Third, CC and FPC performed better than SL and MS when groups were 

equivalent, with 3 and 9 score point outliers included. Finally, no systematic pattern 

could be determined when groups were non-equivalent, with 3 and 9 score point outliers 

included or excluded. The authors suggested removing outliers as opposed to keeping 

them in the common item set and recommended the SL and MS methods for linking. 

However, if the groups to be linked are homogeneous, the use of CC and FPC is also 

acceptable. One interesting question is how much more the estimated equated scores 

would have been affected for each of the linking methods (and if the same pattern of 

results would hold) if an internal anchor was used, as Jurich et al. (2012) found the 

accuracy of equated scores was better under an external anchor design.  

Examining the impact of cheating on the recovery of equated scores obtained with 

IRT true score equating and linking constants, Jurich et al. (2012) compared the 
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performance of the MM, MS, SL, Haebara, and FPC methods in a simulation study with 

100 items and 3,000 responses per form. Factors that were considered included the 

proportion of cheating examinees (5%, 10%, 25%), the proportion of compromised items 

(25% and 100%), anchor item methods (external versus internal), and new form ability 

distributions of N(0,1), N(-0.5,1), N(0,1.25), and N(-0.5, 1.25). BILOG-MG was used for 

calibration under the 3PL model and results were evaluated in terms of bias and RMSE of 

the linking constants and equated scores. Results indicated that linking methods had little 

impact on the linking constants and equated scores.  

Similar to Hu et al. (2008), a dissertation by Chen (2013) investigated whether 

drifted items should be included or excluded from linking in a simulation study 

comparing the CC, FPC, and SL methods. Item parameter estimates from a 60 multiple-

choice item (30 unique and 30 common) real math assessment administered in 

consecutive years contained were treated as generating item parameters. Using a 

modified 3PL model where the pseudo-guessing parameter was fixed to 0.2 for all items, 

Chen manipulated the percentage of drifted items (10% or 25%), type and magnitude of 

drift (a shifted by ± 0.4, b shifted by ± 0.2 or ± 0.4), and group ability distributions. For 

the first year, θ was randomly sampled from a N(0, 1) distribution. Three different 

normal distributions were used in the second year: N(0, 1), N(0.2, 1), and N(-0.2, 1) 

distributions. PARSCALE 4 was used for calibration and the accuracy of θ estimates was 

assessed by examining bias, RMSE, and classification rates.  

Chen (2013) made several conclusions which can be briefly summarized. Drifted 

items had little impact on the performance of FPC and SL methods, but CC only 
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performed as well as the FPC and SL when drifting items were removed from linking. 

Interestingly, when drifting items were removed from linking, CC estimated θ more 

accurately as drift increased or if the drift was positive (item became harder). 

Furthermore, CC did a better job when the two groups are of equal ability or when the 

mean ability of the year two group was higher than that of the year one group.   

 While Chen’s (2013) study provides some insight into a limited field of research, 

there are a couple limitations that should be addressed. First, the conditions of the study 

did not allow for an evaluation of IPD at high magnitudes of drift. Similar to previous 

studies (e.g., Donoghue & Isham, 1998; Wells et al., 2002; Witt et al., 2003) Chen used 

b-drift values no greater than 0.4. As mentioned earlier, magnitude of drift has been 

found to be more important than the proportion of items exhibiting drift, and studies have 

manipulated drift up to 1.0 units (e.g., DeMars, 2004b; Kopp & Jones, 2020; Risk, 2016), 

with guidelines suggesting drift of 0.5 units or less to be acceptable or commonly used in 

practice (e.g., Draba, 1977; Han & Guo, 2011; O’Neill et al., 2013; Wright & Douglas, 

1976). Second, the finding that CC performed better as drift increased seems unlikely 

because greater drift typically leads to worse linking outcomes (e.g., Kopp & Jones, 

2020; Risk, 2016); however it is not implausible because item parameters were only 

shifted by 0.2 and 0.4 to introduce drift. Furthermore, the findings that FPC and SL 

performed similarly with and without drifted items contradicts a large body of research 

suggesting that outliers/drifted items should be mitigated, unweighted, or removed from 

the common item set prior to linking and equating (Bejar & Wingersky, 1981; DeMars, 

2004b; Donoghue & Isham, 1998; He & Cui, 2020; He et al., 2015; Huynh, & Meyer, 
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2010; Li, 2012; Stocking & Lord, 1983; Wollack et al., 2006; Veerkamp & Glas, 2000; 

Vukmirovic et al., 2003). 

 Keller and Keller (2015) investigated the performance of the SL, FPC, and CC 

methods when test form content changes from year to year. Test form composition, 

anchor test composition, and examinee ability distributions were considered. A total of 

four forms were administered with two test form composition scenarios: 1) where all 

content was represented and the anchor was a miniature version of the entire test, and 2) 

where the content on various forms changed across administrations. Each form shared 

three out of five content areas with other forms, so anchor test composition was based 

upon the content areas shared between each of the four forms. Examinee ability had three 

different levels. In the first, ability didn’t change from year to year (null condition). In the 

second, there was a multidimensional mean shift in the ability distribution whereby 

examinee ability improved by 0.10 and an additional shift of 0.05 was implemented for 

specific domains that would hypothetically receive more instruction time due to the extra 

content allotted to a given form (mean shift condition). Finally, there was a skewed 

condition where not all examinees exhibited the same amount of growth across 

administrations whereby skewness changed by -0.25 between each administration to 

reflect a situation where lesser-abled examinees became more able over time. 

PARSCALE was used to fit the 3PL model for FPC and STUIRT used to carry out the 

SL scale transformation, while BILOG-MG was used for CC. RMSE and bias were 

evaluated for the accuracy of parameter estimation as well as classification consistency. 

Results indicated that CC and FPC typically performed better than SL. When groups 
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were equivalent or there was a skewed shift, FPC was more robust to changes in content 

representation. However, CC performed better in the mean shift condition. In terms of 

classification, CC had the most accurate rates in all conditions, while SL and FPC 

performed comparably. Overall, it was determined that CC produced more stable results 

than the SL method. 

Wollack et al. (2005) examined the effect of naturally occurring drift on a German 

placement test over a seven-year period. Ten different linking designs varying in method 

(i.e., FPC, CC, SL), direct or indirect linking, and with or without drift testing were 

considered. MULTILOG was used for calibration under a modified 3PL model with the 

pseudo-guessing parameter constrained to 0.2 and EQUATE was used for the SL method. 

RMSD was evaluated for ability estimates and equated scores with IRT true score 

equating The authors concluded that choice of linking method and IPD model could have 

a large effect on ability estimates and passing rates, although they could not distinguish 

which linking method was robust to IPD. Closer inspection revealed that items did not 

drift to the extent that would allow for them to detect differences in outcomes.  

 In a follow-up to their investigation of naturally occurring drift (Wollack et al., 

2005), Wollack et al. (2006) examined the impact of compounding IPD in both a 

simulated and real data set. Using a 3PL model, the authors crossed the magnitude of IPD 

(drift of 0.25 and 0.40 units) with the ability distribution shifting by 0 or 0.15 every year 

for 5 years. The performance of the SL and FPC methods were compared using 

MULTILOG 7.0 for calibration. RMSE and bias were examined for the recovery of 

ability and item parameters. The authors found that the linking method was unaffected by 
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the magnitude of IPD but affected by increased ability. FPC was more influenced by 

changes in ability than SL. Due to the uncertainty of how much items may drift and 

whether the ability distributions may change over time, the authors recommended using 

the SL method with IPD testing. An application of the simulation findings to an empirical 

example produced consistent findings, albeit less pronounced.  

 Using data from a large-scale math state assessment administered to grades 3, 6, 

and 7, Arce Ferrer & Bulut (2017) compared the performance of SL and CC methods on 

IPD detection rates and magnitude of linking constants and equated cut scores. 

MULTILOG was used to calibrate responses under the 3PL model, while STUIRT and 

POLYEQUATE were implemented to carry out the SL transformation and IRT true score 

equating, respectively. When anchor sets were stable (i.e., no IPD detection method was 

used and anchor items were assumed to be stable), the SL and CC approaches lead to 

similar linking constants. However, the equated cut scores had more precision when 

using the SL method.  

 Investigating the effect of DIF on the stability of parameter estimation, Kabasakal 

and Kelecioglu (2015) compared traditional item response models (IRMs) (e.g., Rasch, 

3PL model) to multilevel item response models (MIRMs). MIRMs combine hierarchical 

linear models with item response models, allowing for the examination of the effects of 

covariates (e.g., sex, race). The following factors were considered: sample size (500 or 

2,000 per form), total items (20 or 40), and magnitude of DIF (0.6 and 1.0). Under the 

1PL model, parameter estimates for CC were calibrated using BILOG-MG and 

PARSCALE was used for SL. IRTEQ was used for the SL scale transformation. Bias and 
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RMSE were calculated to examine the stability of item and ability parameter estimates. 

The MIRMs produced less error in smaller sample sizes and shorter test lengths than SL 

and CC, but because it’s insensitive to increases in sample size and test length, it was 

concluded that MIRMs are best useful for small sample equating. Between CC and SL, 

CC was less affected by the presence of DIF items and errors decreased more as sample 

size and test length increased.  

 A simulation study was conducted by Sukin and Keller (2008) to examine the 

effect of retaining or removing a single drifted common item on classification rates. The 

performance of MM, MS, SL, and Haebara methods were compared under the 3PL 

model. The common item was drifted by 0.5 or 0.8 units. Ability estimates for the base 

form were randomly sampled from a N(0, 1) distribution, while the new forms were 

randomly sampled from N(0, 1) and N(0.2, 1) distributions. PARSCALE was used for 

calibration and STUIRT for linking. Classification rates were not affected whether the 

aberrant item was retained or removed and no differences between linking methods were 

observed.  

 Evaluating the effect of DIF on equating error, Yurtçu and Guzeller (2018) 

compared the performance of the MM, MS, SL, and Haebara methods. A total of 1,000 

responses per form were simulated from a N(0, 1) distribution. Among 55 items, 15 were 

common items with either five or ten items exhibiting DIF. PARSCALE was used for 

calibration under the 3PL model and IRTEQ for linking and equating. Evaluation of 

RMSD values indicated that the characteristic curve methods (SL and Haebara) 
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performed better than the moment methods (MM and MS), with SL performing slightly 

better than Haebara.  

 The LAV and Area-Weighted (AW) methods were proposed by He et al. (2015) 

as new robust scale transformation methods to be used with the IRT CINEG. Similar to 

the LAV, the AW assigns a weight using a Huber function, instead of using the absolute 

difference between two ICCs of the equated test forms (equation 2.19). Compared to the 

SL method, outcomes were evaluated in terms of bias and RMSE for the recovery of item 

parameters, while the weighted absolute bias and weighted RMSE were used to evaluate 

equated scores obtained with the IRT true score equating method. One dichotomous item 

was drifted in both a and b parameters. A random number from a uniform distribution 

U(0.1, 0.5) was used to drift a, while b varied under four mild to moderate conditions: 

U(0.1, 0.5), U(-0.5, 0.1), U(0.5, 1.0), and U(-1.0, -0.5). Base form responses from 1,000 

examinees were randomly sampled from a N(0, 1) distribution, while three new form 

responses were randomly sampled from N(0, 1), N(0.25, 1.1), and N(0.5, 1.2) 

distributions. BILOG-MG3 was used for calibration under the 3PL model. Results 

indicated that the AW and LAV were slightly less accurate than SL without outliers but 

were more accurate under the presence of outliers. The AW and LAV methods produced 

similar amounts of bias but the LAV had less RMSE than the AW method.  

 In a follow-up to their 2015 study, He & Cui (2020) examined the performance of 

the LAV, AW, SL with outlier elimination (if absolute difference of a or b parameters > 

0.5), and SL with Raju’s differential functioning of items and tests (DFIT). The following 

factors were considered: total items (45 or 120), common items (15 or 40), drifted items 
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(0, 1, or 3), drift magnitude (a randomly varied between from a uniform distribution of 

0.1 and 0.5, b varied from a uniform distribution of -0.5 and -0.1, or -1.0 and -0.5), and 

ability distributions. 3,000 responses to the base form were randomly sampled from a 

N(0, 1) distribution and 3,000 new form responses were randomly sampled from N(0.25, 

1.1) and N(0.5, 1.2) distributions. BILOG-MG3 was used for calibration under the 3PL 

model. RMSE and bias was used to evaluate the recovery of parameters and the weighted 

absolute bias and weighted RMSE was used to evaluate equated scores obtained with IRT 

true score equating. Although the LAV occasionally produced larger bias values than the 

elimination and DFIT methods, it yielded lower RMSE values under almost all 

conditions. The LAV also performed better than the AW and was concluded to be the 

best linking method overall.  

 Based on a statewide assessment test administered to seventh graders in 

subsequent years, Han et al. (2012) examined the effect of different multidirectional drift 

patterns on linking and equating outcomes. The performance of the MM, MS, and SL 

methods were compared based on classification errors, and the RMSE of the linking 

constants, linked item parameter estimates, and proficiency estimates. An external linking 

design was used on ten test forms administered each year. Among the ten forms, there 

was a total of 40 unique items and 20-30 external linking items. For the first year, 50,000 

examinees were drawn from a N(0, 1) distribution. For the second year, 50,000 

examinees were drawn from a N(0.1, 1) distribution. Four patterns of multidirectional 

drift were used that varied in IPD direction (unidirectional, bidirectional), to or from the 

mean item difficulty, and changes in standard deviation. The magnitude of drift varied by 
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0, ±0.25, and ±0.50. PARSCALE was used for calibration and IRTEQ was used for 

linking and equating. Han et al. (2012) found that multidirectional drift doesn’t 

necessarily cancel or “wash-out” itself out. The MM method was found to be consistently 

robust against multidirectional drift, regardless of the IPD pattern.  

 The following studies have not examined the performance of different linking 

methods under IPD. However, they are reported here because they speak to the impact of 

drift on linking and equating outcomes, as well as the various factors (e.g., ability 

distributions, proportion of drifted items, magnitude of drift) that influence linking and 

equating outcomes.  

 In investigating the longitudinal scale stability of small sample licensure 

programs, Kopp and Jones (2020) examined the performance of FPC within the context 

of IPD. Sample sizes were manipulated to consist of 10, 25, and 50 examinees with an 

ability shift (∆𝜃) of -0.1, 0, and 0.1 each year over the course of seven years. Of the 200 

items on the test, 80 (40%) items were randomly chosen to serve as common items. The 

proportion of drifted common items included 0%, 10%, and 20% of items, while the 

magnitude of the drift shifted items by ±0.2, ±0.5, or ±1.0. Under the Rasch model, 

parameters were estimated using WINSTEPS. Classification accuracy and ability 

precision were evaluated according to bias and RMSE. Positively biased ability estimates 

were found when items became easier, whereas ability estimates were negatively biased 

when items drifted harder. RMSE was inflated at the smallest sample size (N = 10) or 

when the magnitude of drift was at 0.5 or higher. Classification accuracy was also 
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problematic at 0.5 drift or higher. Therefore, findings indicated that the magnitude of drift 

was more influential than the proportion of drifted items.  

 Examining whether to remove or keep polytomous items exhibiting drift, Li 

(2012) evaluated the impact on linking and true score equating results. Among a 60-item 

mixed format test, there were two sets of 20 items or four sets of 40 common items, with 

each set consisting of one, two, or four polytomous items. Drift was simulated according 

to weighted root mean squared differences (WRMSD) of 0.10, 0.15, and 0.20. The ability 

distribution of the group taking the base form was a N(0,1) distribution, while the ability 

distribution of the groups taking the new form were N(0,1), N(0.25, 1), and N(0.5, 1). 

The 2PL and GPC models were used to estimate parameters using PARSCALE. Linking 

constants were evaluated for each of the conditions by inspecting RMSE values and 

equating results were examined using weighted root mean squared errors (WRMSE). 

Results showed that as IPD increased, linking and equating errors also increased. It was 

also found that longer anchor lengths and fewer drifted items were associated with better 

linking and equating results. The one factor that did not have an effect on results was the 

difference of ability distributions. It was concluded that items exhibiting drift should be 

removed as a notable improvement in results was evident.    

Using the Rasch model, Risk (2016) evaluated the impact of IPD on computer-

adaptive testing (CAT). The following factors were manipulated: total bank items (300, 

500, and 1,000), items drifted in the bank (50, 75, and 100), and the drift magnitude (0.5, 

0.75, and 1.0). Drift was also simulated to be multidirectional, with 75% of the items 

becoming easier and 25% becoming harder. 𝜃 estimates for 500 examinees were sampled 
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from an ability distribution coming from a high-stakes certification exam with N(0.93, 

0.73). Bias, RMSE, and absolute average difference (AAD) were used to measure 𝜃 

estimates. Classification accuracy was evaluated by misclassification rates, as well as the 

number of false positives and false negatives. It was found that the magnitude of drift has 

a greater impact on the precision of scores than the number of items with IPD in the item 

bank. No systematic pattern appeared for total misclassifications, but more false-positives 

occurred at higher magnitudes of drift (1.0 logits), whereas more false-negatives occurred 

at lower magnitudes of drift (0.5 logits).  

 Under the FPC method, Vukmirovic et al. (2003) investigated whether to retain or 

remove outliers for linking and equating under the presence of IPD. Dichotomous and 

polytomous items were drifted to account for 10%, 20%, and 30% of the total points on 

the test, drift was unidirectional or bidirectional (50% easier and 50% harder), and ability 

distributions consisted of the means of distributions to 0, 0.25, and 0.50. Data was fitted 

to the 2PL, 3PL, and GR models using PARSCALE for calibration. The RMSD was used 

to evaluate the differences between TCCs and 𝜃 estimates. Findings suggested that 

outliers had a significant impact on FPC, especially with unidirectional drift, and should 

be removed prior to linking and equating.   

 Examining the effects of DIF on anchor items in subpopulations of examinees, 

Huggins (2014) used the MM, MS, SL, and Haebara methods to evaluate the differences. 

A total of 50 dichotomously scored items with 10 anchor items were simulated. DIF was 

manipulated across populations and forms with three levels of DIF magnitude (0.30, 0.60, 

and 0.90), three levels of proportion of DIF items (20%, 40%, and 60%), directionality of 
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DIF (unidirectional or bidirectional), mean differences in subpopulation ability levels 

(none or mean differences), and differential anchor form DIF (DIF in both anchors or 

DIF in one anchor form). The 3PL model was used and calibration was carried out with 

BILOG-MG. R was used for the simulation and analyses. Results were evaluated in terms 

of RMSD, root expected mean square difference (REMSD), root expected squared 

difference (RESD), and root squared difference (RSD) on true equated scores. Findings 

indicated that the MM, SL, and Haebara methods were more robust to DIF while the MS 

method was negatively influenced by the DIF introduced into the b-parameters. 

Furthermore, when DIF varied across forms, score equity between subpopulations was 

compromised.  

 Evaluating the consequences of IPD on linking and equating, Han (2008) carried 

out three simulation studies. In examining the effect of unidirectional drift (Study 1), 

generating item parameters from a K-12 statewide math assessment were used to simulate 

two dichotomously scored 40-item test forms with 10 common items. There were five 

levels of the percentage of drifted items (10%, 20%, 30%, 40%, and 50%) and the 

magnitude of drift was simulated from 0.05 to 1.00 in increments of 0.05. 5,000 

responses per test form were randomly drawn from a N(0, 1) distribution. The MS 

method was used for scale transformation with the item estimates calibrated by 

PARSCALE under the 3PL model. Classification rates were examined, as were the 

RMSE and bias between estimated and true linking constants and item parameter 

estimates. Increasing the magnitude and proportion of drifted items resulted in heavily 
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affected linking constants and parameter estimates. Furthermore, misclassification rates 

climbed as drift increased.  

Although the use of the MS method may have exacerbated results, Study 2 by 

Han (2008) compared the performance of the MM, MS, and SL methods with 

bidirectional drift. The MM method yielded the most unbiased estimation for a-

parameters, while the SL method produced the most unbiased estimation of b-parameters. 

Finally, in Study 3, the MS and SL methods were considered when c-parameters were 

manipulated under four different calibration strategies. Findings indicated that SL 

outperformed MS with internal anchors, whereas the performance between the two 

methods was relatively similar when using external anchors.  

 Stahl & Muckle (2007) examined multidirectional drift using the displacement 

statistic in Winsteps for the Rasch model. The following factors were manipulated: total 

items (30, 100, and 200), the percentage of drifted items (10%, 20%, and 50%), and the 

type of drift (symmetrical with all items drifting one direction and asymmetrical with 

70% of items drifting easier and 30% drifting harder). They found that artificial positive 

displacement (i.e., artificial drift) was more pronounced when drift was unidirectional. 

When drift was manipulated so that 70% of items became easier and 30% became harder, 

the effects of artificial positive displacement were ameliorated to a lesser extent. When 

drift was symmetrical (50% easier and 50% harder), there were no problems with 

displacement. 

 Babcock & Albano (2012) also used the Rasch model to investigate 

multidirectional drift on longitudinal scale stability in a high-volume certification testing 
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program. The proportion of drifted items, direction of the drift, and amount of latent trait 

change (∆𝜃) were manipulated. Five levels of proportion of newly calibrated items were 

chosen for drifting (.00, .05, .10, .15, and .20) every year for five years, while the 

direction of drift could be easier, harder, or a combination of both every year for five 

years. The ∆𝜃 included a 1%, 5%, or 10% change over 20 years depending upon job 

analysis (JA) updates (every 6 years for full JA and every 3 years for interim JA). 𝜃 was 

randomly sampled from a distribution with a mean of 1.75 and a variance of 0.51, a 

common distribution in credentialing programs. WINSTEPS was used for calibration 

under the FPC method. RMSE and bias were evaluated between true and estimated item 

and person parameters, as well as the pass rate and classification accuracy. Findings 

indicated that a Rasch scale can maintain stability for about 15 years under little item 

drift and small to moderate changes in ability. However, large amounts of drift or 

substantial changes in ability greatly reduced the longevity of the scale.  

  While results from studies looking at linking methods without drift were very 

conclusive (e.g., FPC and in particular, CC, performed the best), findings from studies 

examining linking methods with drift were rather ambiguous. However, several 

conclusions can be drawn.  

First, there is no single linking method that has performed the best. CC only 

performed the best in several studies (i.e., Kabasakal & Kelecioglu, 2015; Keller & 

Keller, 2015) and when groups were equivalent (i.e., Hu et al., 2008); however, linking is 

unnecessary when groups are equivalent. Several studies found SL to perform the best 

(i.e., Arce-Ferrer & Bulut, 2017; Chen, 2013; Wollack et al., 2006; Yurtçu & Guzeller, 
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2018) and Hu et al. (2008) found SL was best with nonequivalent groups. FPC has 

received support from Chen (2013), who found FPC and SL to be comparable, and 

similar to CC when used with equivalent groups (Hu et al., 2008). Furthermore, a couple 

studies have found no difference between linking methods (e.g., Jurich et al., 2012; Sukin 

& Keller, 2008).  

Second, the Haebara method remains understudied, as most researchers have 

opted to use the SL method. Results from studies not examining drift have found the 

Haebara method to be comparable to SL (e.g., Hanson & Beguin, 2002; Keller & Keller, 

2011; Kim & Kolen, 2007; Lee & Ban, 2010; Li et al., 2012). When considering drift, 

Yurtçu and Guzeller (2018) found Haebara and SL to perform better than the moment 

methods, with a slight edge to SL. On the other hand, both Jurich et al. (2012) and Sukin 

and Keller (2008) found no difference between Haebara and SL.  

Third, the LAV method appears to be a promising new robust scale 

transformation method (i.e., He & Cui, 2020; He et al., 2015). However, to date, only the 

two studies have investigated the LAV’s performance in comparison to the SL method. 

More research is needed to evaluate the LAV’s performance under different conditions 

and against other linking methods.  

Fourth, the magnitude of drift has more of a profound impact on linking and 

equating results than the proportion of drifted items (e.g., Kopp & Jones, 2020; Li, 2012; 

Risk, 2016). Studies that have not reported an effect of drift on linking and equating (e.g., 

Wells et al., 2002; Witt et al., 2003) only simulated a small amount of drift (e.g., a 

magnitude of drift less than <0.5), which is not considered substantial unless test lengths, 
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anchor set lengths, or sample sizes are small (e.g., Draba, 1977; Kopp & Jones, 2020; 

Risk, 2016; Wright & Douglas, 1976).    

 Fifth, it is unclear how much of an affect different ability distributions, in 

conjunction with IPD, have on linking and equating results. Ability differences have been 

found to differentially affect linking methods (e.g., Chen, 2013; Hu et al., 2008). 

Although Babcock and Albano (2012) found ability differences to have a significant 

effect on longitudinal scale stability, findings have generally indicated ability to have no 

effect on linking and equating (e.g., He et al., 2015; Li, 2012; Witt et al., 2003).    

 Finally, few studies elaborate on the effect of IPD in relation to its impact on 

validity and validation (e.g., Kabasakal & Kelecioglu, 2015; Risk, 2016). The Standards 

are referenced by several studies (e.g., Arce-Ferrer & Bulut, 2017; Babcock & Albano, 

2012; Huggins, 2014) pertaining to proper procedures for linking and equating, the 

handling drifted items, maintaining scale stability, or fairness. He and Cui (2020) discuss 

the importance of maintaining content representativeness when linking and equating, 

which the LAV method seeks to preserve. Guidelines from the International Test 

Commission are referred to by Arce-Ferrer and Bulut (2017) in the context of handling 

drifted items and by Huggins (2014), who discusses IPD’s impact on fairness. Han 

(2008) and Han et al. (2012) elucidate the influence of drift as a threat to construct 

validity, fairness, and the need for IPD analyses as part of validity evidence for test 

validation. Aside from these studies, validity is not considered to the extent that it should 

be.  
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 Taken altogether, further research is needed to determine which linking method(s) 

perform best under different conditions of drift and the extent to which IPD affects 

parameter estimates, linking constants, equated scores, and classification rates. More 

attention should focus on the Haebara and LAV methods, as both appear to be 

comparable to the SL method. While the magnitude of drift has been reported to have 

more of an effect on equating than the proportion of drifted items, the role of ability 

remains equivocal. Furthermore, the impact of IPD on validity and validation warrants 

more detailed analysis, as do the consequences that may ensue when improperly 

monitored or handled.  
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CHAPTER III 

METHODS 

This chapter is broken up into two sections. The first section details the 

procedures, conditions, and evaluation criteria used for the simulation study. The second 

section provides an overview of the procedures and evaluation criteria used for data from 

a real certification examination. 

Overview 

 A simulation study was conducted to examine the effect of IPD on five linking 

methods (i.e., SL, Haebara, CC, FPC, and LAV) used to link two forms administered in 

separate years. The items on the forms, and examinee responses to the items, imitated 

those found from a large-scale certification exam. The simulation included variations of 

the following conditions: (1) the proportion of drifted items, (2) the magnitude of the 

drifted items, (3) examinee ability differences, and (4) sample size. The study evaluated 

each linking method’s performance based upon recovery of linking constants, recovery of 

item parameters, equating accuracy, and classification rates.       

Simulation Design 

 Data Generation. Two dichotomously scored 100-item test forms were created 

for the simulation study. Although this number of items is longer than a typical 

educational achievement test of approximately 60 items (e.g., Baker & Al-Karni, 1991; 

Hanson & Beguin, 2002; Kang & Petersen, 2011), licensure and certification programs 
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require a larger number of items to ensure that a candidate displays minimal competence 

over a range of skills and abilities specified in the job analysis (e.g., Kane, 1982). A total 

of 20 common items (20%) were shared between forms and generated to be statistically 

similar in difficulty to their respective forms. This number of common items is consistent 

with research suggesting anchor sets between 20-40% are efficient and practical (e.g., 

Budescu, 1985; Kolen & Brennan, 2014). Item parameters were generated using the catR 

package (Magis & Raîche, 2012) in R (R Core Team, 2017) with the 3PL model: 

𝑃(𝑌𝑗 = 1|𝜃) =  𝑐𝑗 + (1 −  𝑐𝑗)
exp[𝐷𝑎𝑗(𝜃 − 𝑏𝑗)]

1 + exp[𝐷𝑎𝑗(𝜃 − 𝑏𝑗)]
 (2.23) 

where the probability of a correct response to an item, 𝑌𝑗 = 1, is based upon examinee 

ability (𝜃), aj is the item discrimination parameter, bj is the item difficulty parameter, cj is 

the item pseudo-guessing parameter, D is a scaling constant set to 1.0 for this study, and 

exp is an exponential constant with a value of 2.718. These values constitute the 

generating item parameters upon which parameter estimates are compared to.  

 Item discrimination was randomly sampled from a normal distribution with a 

mean of 1 and standard deviation of 0.3, bounded between 0.5 and 1.5. Item difficulty 

was randomly sampled from the standard normal distribution, bounded between -3.0 and 

3.0. The pseudo-guessing parameter was randomly sampled from a uniform distribution 

between 0.05 and 0.35.   

 Response data was generated in R by computing the probability of correctly 

answering an item given a certain 𝜃. The probability of correctly answering each item 

was then compared to a random number from a uniform distribution bounded between 0 
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and 1. If the probability of a correct response was greater than the uniform number, then 

the response was scored as correct.  

 Linking Methods. The SL, Haebara, CC, FPC, and LAV methods were used in 

this study. The flexMIRT software (Cai, 2017) was used to calibrate item parameters 

with SC, CC, and FPC. The R package equateIRT (Battauz, 2015) was used to perform 

linking for the SL and Haebara methods. R code was provided by He et al. (2015) to 

implement the LAV method. No linear transformation was required for the CC and FPC 

methods as the item estimates were already on the same scale after calibration. The 

equateIRT package provided equated scores for IRT true score and observed score 

equating for all linking methods. 

 Conditions. The following conditions have been identified by research as 

important factors within the context of IPD. Varying levels of each of the conditions 

helped to identify which linking methods performed most robustly to drift.  

 Proportion of Drifted Items. The proportion of items exhibiting drift within high-

stakes certification exams is likely to vary based upon a number of factors like how often 

the items have been used on other forms (i.e., risk of overexposure). The longer the test 

blueprint has gone without a new job analysis could also contribute to items changing 

over time, particularly when recent news or findings draws attention to more obscure 

topics (e.g., O’Neill et al., 2013). Items that may have once been harder could become 

easier as a result of improved candidate training (e.g., Kopp & Jones, 2020).  

 A testing program that maintains tight security protocols and continuously 

updates its testing cycle and forms administered may have few items that drift, whereas a 
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program that is subjected to a security breach may result in a substantial number of 

drifted items. Thus, the proportion of drifted items was set to 0%, 25%, and 50% of the 

anchor items. Although these proportions might seem extreme, they have been observed 

in a couple of studies (e.g., Jurich et al., 2012; Stahl & Muckle, 2007). In their study 

examining the effects of compromised items and cheaters, Jurich et al. (2012) simulated 

the proportion of compromised anchor items to be 100%, representing a scenario where 

items were exposed after first administration. Furthermore, the purpose was to examine 

how robust each linking method is to drift, even in extreme circumstances.    

 Magnitude of Drifted Items. Research has found magnitude of drift to have more 

impact on linking outcomes than the proportion of drifted items (e.g., Kopp & Jones, 

2020; Li, 2012; Risk, 2016). Only b-drift was considered for this study because most 

certification programs only consider the difficulty parameter and because a-drift is 

difficult to detect (e.g., Donoghue & Isham, 1998). This study only focused on 

unidirectional drift where the items become easier over time because most reasons (e.g., 

cheating, item overexposure) suggest there are more potential scenarios for this type of 

drift. Furthermore, studies have found multidirectional drift to have little effect on linking 

outcomes and less influential than unidirectional drift (e.g., Babcock & Albano, 2012; 

Stahl & Muckle, 2007).  

 The magnitude of drifted items included a change of -0.25, -0.50, and -1.00 in the 

difficulty parameters. These reflected similar magnitudes that have been used in other 

studies (e.g., Kabasakal & Kelecioglu, 2015; Kopp & Jones, 2020; Risk, 2016; Sukin & 

Keller, 2008). Studies that have not found an effect of drift on linking outcomes have 
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only simulated b-drift up to 0.5 (e.g., Wells et al., 2002; Witt et al., 2003), but this 

magnitude is not considered substantial in practice (e.g., Draba, 1977; Kopp & Jones, 

2020; Risk, 2016; Wright & Douglas, 1976).   

 Ability Distributions. One of the more contentious factors is the role of different 

ability distributions, combined with drift, on the effect of linking outcomes. Some studies 

have reported no effect on outcomes (e.g., He et al., 2015; Li, 2012; Witt et al., 2003), 

whereas others have found an effect on scale stability and linking methods (e.g., Babcock 

& Albano, 2012; Chen, 2013; Hu et al., 2008).  

Negatively skewed ability distributions are commonly observed in practice (e.g., 

Kim & Lee, 2017), particularly in licensure and certification (e.g., Witt et al., 2003). This 

study considered five different ability distributions. Simulated examinees to the base 

form were randomly sampled from the standard normal distribution N(0, 1). The new 

form had normal distributions of N(0, 1), N(0.5, 1), and N(1, 1). A negatively skewed (S) 

distribution with a mean of 0.5 and standard deviation of 1, S(0.5, 1), was used for the 

fourth ability distribution. A negatively skewed distribution S(1, 1) was used for the final 

ability distribution. For both skewed distributions, a skewness of -0.75 was implemented 

(e.g., Kim, 2019; Pearson & Please, 1975). The R package sn (Azzalini, 2020) was used 

to generate the skewed distributions. 

 Sample Sizes. Sample size was an important consideration because it affects the 

stability of item calibration (e.g., Linacre, 1994; Lord & Wingersky, 1984). Although 

larger sample sizes are better for improving stability, the minimum sample size 

requirements for the 3PL model has varied. Some researchers have recommended using 
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1,500 examinees per form (e.g., Harris & Crouse, 1993; Kolen & Brennan, 2014) while 

others have suggested 1,000 examinees per form (e.g., Hulin et al., 1982; Swaminathan & 

Gifford, 1983).  

 The most frequently observed studies investigating linking with the 3PL model 

have used 1,000 examinees (e.g., Hanson & Beguin, 2002; He et al., 2015; Wollack et al., 

2006; Yurtçu & Guzeller, 2018) and several others have used 3,000 examinees (e.g., 

Hanson & Beguin, 2002; He & Cui, 2020; Jurich et al., 2012; Lee & Ban, 2010). For this 

study, sample sizes of 1,000 and 3,000 were used as conditions.   

 Thus, this study had a total of 70 different conditions: 60 conditions for the 25% 

and 50% drifted item conditions (5 different ability distributions x 2 sample sizes x 2 

levels of proportion of drifted items x 3 levels of magnitude of drift) and 10 conditions 

for the 0% drifted item conditions1. For each condition, a total of 100 replications were 

performed. Table 2 summarizes the conditions used in this study.  

 

Table 2  

 

Simulation Study Conditions 

Condition Levels 

Proportion of Drifted Items 0%, 25%, 50% 

 

Magnitude of Drifted Item Difficulties  -0.25, -0.50, -1.00 

 

Ability Distributions N(0, 1), N(0.5, 1), N(1, 1), S(0.5, 1),  

S(1, 1) 

 

Sample Sizes 1,000 and 3,000 

 
1 Drift of 0% precludes the possibility of the magnitude of drifted items. The 10 levels reflect the 5 levels of 

ability * 2 sample sizes. 
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 Evaluation Criteria.  The first research question ascertained the effect of IPD on 

linking constants A and B. Although linking constants are not provided by the CC and 

FPC methods, the mean and standard deviation of the estimated theta distribution for the 

new form should be similar to A and B, respectively. Estimated linking constants were 

compared to the true linking constants. The “true” linking constant values were based 

upon the mean and standard deviation of each of the five ability distributions. For 

example, randomly sampling examinees from the standard normal distribution had true 

linking constants of A=1 and B=0. Likewise, a negatively skewed distribution with a 

mean of 0.5 and standard deviation of 1 had true linking constants of A=1 and B=0.5.  

The recovery of the linking constants were assessed by three criteria: bias, standard error 

(SE), and root mean squared error (RMSE). Each of the criteria are defined as follows:  

𝐵𝑖𝑎𝑠 =  
1

𝑅
∑ 𝑙𝑟 − 𝑙

𝑅

𝑟=1

, (2.24) 

𝑆𝐸 = √
1

𝑅
∑(𝑙𝑟 −  𝑙 ̅

𝑅

𝑟=1

)2, (2.25) 

𝑅𝑀𝑆𝐸 = √𝐵𝑖𝑎𝑠2 + 𝑆𝐸2, (2.26) 

whereby R is the number of replications (i.e., 100); 𝑙𝑟 is an estimate of linking constant A 

or B for a given replication r; l is the true linking constant (A or B); and 𝑙 ̅takes the 

average standard deviation from all replications of the linking constant.  

The second research question examined how well each of the item parameters are 

successfully recovered. The estimated item parameters for the new form were compared 
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to the generating item parameters for the new form. Bias, SE, and RMSE were evaluated 

for the discrimination, difficulty, and pseudo-guessing parameters using formulas similar 

to the first research question: 

𝐵𝑖𝑎𝑠𝑗 =  
1

𝑅
∑ 𝑣𝑗𝑟 − 𝑣𝑗

𝑅

𝑟=1

, (2.27) 

𝑆𝐸𝑗 = √
1

𝑅
∑(𝑣̂𝑗𝑟 −  𝑣̅𝑗

𝑅

𝑟=1

)2, (2.28) 

𝑅𝑀𝑆𝐸𝑗 = √𝐵𝑖𝑎𝑠𝑗
2 + 𝑆𝐸𝑗

2, (2.29) 

whereby R is the number of replications (i.e., 100); 𝑣𝑗𝑟 is an estimate of item j for a given 

replication r (v refers to the item difficulty, discrimination, or pseudo-guessing parameter 

estimates); 𝑣𝑗  is the same parameter for the same item; and 𝑣̅𝑗  takes the average standard 

deviation from all replications of the same item. For bias, the absolute values were 

averaged to prevent the cancellation of positive and negative values across items.  

 The third research question examined the extent to which IPD influenced true and 

observed equated scores. Equated scores obtained with IRT true and observed score 

equating was compared to the criterion equating relationship. The criterion equating 

relationship was defined as the equated scores obtained from the generating item 

parameters for the baseline condition. There were two criterion equating relationships – 

one for equated observed scores and one for equated true scores. For observed score 

equating, synthetic weights were set to 0.5 to reflect the equal examinee sample sizes of 
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the base and new forms. Similar to the first two research questions, bias, SE, and RMSE 

served as the evaluation criteria for both true and observed scores. 

𝐵𝑖𝑎𝑠(𝑥) =  
1

𝑅
∑ 𝑒̂𝑌

(𝑟)(𝑥) − 𝑒𝑌(𝑥)

𝑅

𝑟=1

, (2.30) 
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𝑅𝑀𝑆𝐸(𝑥) = √𝐵𝑖𝑎𝑠(𝑥)2 + 𝑆𝐸(𝑥)2, (2.32) 

whereby R is the number of replications (i.e., 100); x is a particular score point; 𝑒̂𝑌
(𝑟)

(𝑥) is 

the estimated old form equivalent of score x obtained from the rth replication; 𝑒𝑌(𝑥) is the 

old form equivalent of x obtained using the generating item parameters; and 𝑒̅̂𝑌
(𝑟)

(𝑥)= 

1

𝑅
∑ 𝑒̂𝑌

(𝑟)
(𝑥)𝑅

𝑟=1 . For bias, the absolute values were averaged to prevent the cancellation of 

positive and negative values across items. 

 The fourth research question examined the extent of IPD on classification 

accuracy rates. Classification accuracy was defined as the extent to which actual 

classifications using observed cut scores agreed with “true” classifications based on 

known true cut scores (Lee, 2010; Lee et al., 2002). If an examinee passes based on 

his/her true score, the examinee should also pass based upon his/her observed score. 

Although true scores cannot be observed, a set of quadrature points are used in its place 

(e.g., 49 quadrature points spanning from -6 to 6). For each quadrature point, it can be 

determined whether an examinee passes or fails – this reflects the “true” status. If the cut 

score is on the number correct score metric, the quadrature points (𝜃𝑠) can be converted 
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to number correct scores using the test characteristic curve. For each 𝜃, it can be 

determined whether the number correct score is a pass or a fail. This procedure, which 

uses a distribution of 𝜃, is referred to as the D method (Lee, 2010). The observed 

classification is obtained using the Lord and Wingersky (1984) recursion formula 

specified in equation 2.1. Then, the probability of passing or failing was computed based 

on the true status of the quadrature point. For a specific 𝜃, the probability of failing is the 

sum of the conditional probabilities up to the cut score, whereas the probability of 

passing is the sum of the conditional probabilities from the cut score to the highest 

attainable score. Equation 2.2 is applied to integrate the conditional probabilities over all 

quadrature points.  

The performance of each linking method’s classification accuracy was compared 

to the true classification criterion, which is computed as the proportion of examinees that 

have been classified as pass-pass or fail-fail for both the true and observed 𝜃 status’. The 

D method was used to get the true classification criterion. There were five true 

classification criteria, one for each distribution condition. Code was manually written in 

R to compute classification accuracy for each linking method and results were evaluated 

using bias, SE, and RMSE. 

Licensure and certification programs often have cut scores where the pass rate for 

first-time test takers is typically between 70 and 90% (e.g., Accreditation Council for 

Graduate Medical Education, 2018; Breitbach et al., 2013; Okrainec et al., 2011; Shea et 

al., 1991). Therefore, the cut score was set at the raw score equivalent associated with 𝜃 = 

-0.49 (57 out of 100) to align with a typical pass rate of 75% for a certification exam.  
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The last research question analyzed the impact of IPD on the consistency of 

classification rates. Classification consistency is the degree to which classifications agree 

over two independent administrations of a test (Lee, 2010; Lee et al., 2002). Most 

methods are developed to estimate consistency based upon a single form, but Lee’s IRT 

method (2010; Lee et al., 2002) was used here. Similar to classification accuracy, the 

Lord and Wingersky (1984) recursion formula (equation 2.1) was used to come up with 

the conditional observed score distribution for each given 𝜃. For a given 𝜃, a 

classification is consistent when the two observed score statuses are either pass-pass or 

fail-fail. Assuming the two testing occasions are independent, the probability of passing 

from the first testing occasion is expected to be the same as the probability of passing for 

the second testing occasion. Thus, the probability of pass-pass is the probability of 

passing squared (this is also done for fail-fail). Therefore, the consistent classification 

rate is the squared probability of passing plus the squared probability of failing. As 

explained above, the D method was used, which assumes a distribution of 𝜃 to integrate 

the individual passing rates over all quadrature points using equation 2.2.  

The performance of each linking method’s classification consistency was 

compared to the true classification consistency criterion, which was obtained using the 

generating item parameters. Code was manually written in R to compute classification 

accuracy for each linking method and results were evaluated using bias, SE, and RMSE. 

To examine items that may exhibit drift with the 3PL model, the DIF function in 

the R package mirt (Chalmers, 2012) was used. The likelihood ratio test was used to 

compare the likelihood values between two models in nested conditions: the baseline 



 

77 

model and a less constrained model (i.e., backward procedure). For the baseline model, 

all item parameters are constrained to be equal. In the less constrained model, one 

common item is freely estimated while all other items are constrained. If the likelihood 

value differs between the two models, then the item shows DIF. This is repeated for all 

common items.  

Empirical Data Analysis 

Data from two forms of a high-stakes certification program were analyzed. Each 

form had four different field-test blocks of 10 items with the same set of 110 scored items 

for a total of 120 items per form. There was a total of 66 internal common items (60%) 

and 44 unique items (40%) per form. All items were dichotomously scored multiple-

choice items. Some items that were previously administered as field-test items on the 

base form were administered as scored items on the new form. Both forms were built to 

the same content specifications and approximate item difficulty parameters under the 

Rasch model. However, the current study utilized the 3PL model, so the items were re-

estimated using flexMIRT (Cai, 2017) to include the difficulty, discrimination, and 

pseudo-guessing parameters.  

 A total of 1,990 candidates were administered the base form, while 1,979 

candidates were administered the new form. A cut score of 83 out of 110 scored items 

was established for the base form, based on ratings from subject matter experts during a 

standard setting meeting. Rasch pre-equating was used to find the 𝜃 cut score on the new 

form that was equivalent to the 𝜃 cut score on the base form. Using the 3PL model, a raw 

cut score of 85 out of 110 scored items was set for the new form. The R package 
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equateIRT (Battauz, 2015) was used to link the SL and HB methods, while R code from 

He et al. (2015) was used for the LAV method. The PIE software (Hanson & Zeng, 1995) 

was used for IRT observed score and true score equating. PIE obtained scores below the 

sum of the pseudo-guessing parameters through linear interpolation. This was done to 

compare the results of observed and true scores. To examine items that may exhibit drift 

with the 3PL model, the DIF function in the R package mirt (Chalmers, 2012) was used.  

Evaluation Criteria.  For each research question, observed estimates for linking 

constants, item parameters, equated scores, classification accuracy, and classification 

consistency were computed for all linking methods. However, unlike the simulation, 

where observed estimates can be compared to true 𝜃 values and item parameters, the 

empirical data analysis does not have known 𝜃 values or item parameters. Therefore, it 

could not be determined which of the linking methods performed the best. Instead, the 

observed estimates were compared across linking methods to evaluate the similarity of 

their performance. The observed estimates were also used to validate the results from the 

simulation. In line with the simulation, the D method (Lee, 2012) was used to examine 

classification accuracy and consistency, but no statements could be made as to which 

linking method performed the best, only how similarly the methods performed between 

each other. 
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  CHAPTER IV 

RESULTS 

 This chapter is organized into three sections. The first section presents results of 

the simulation study. The second section presents results from the empirical data analysis. 

The third section relates the findings to implications for validation, based upon the 

frameworks of the Standards five sources of evidence, and Kane’s argument-based 

approach to validation.  

Simulation Study 

 The base form and the new form were both built to the same statistical 

specifications summarized in Table 3. Both forms were constructed to have a mean IRT 

difficulty of 0 and a standard deviation of 1, a mean discrimination of 1 and standard 

deviation of 0.30, and a pseudo-guessing parameter between 0.05 and 0.35. The common 

items were generated to have the same statistical specifications as each form. A list of all 

generating item parameters can be found in Appendix A. 

 Drift Detection. Prior to evaluating the impact of IPD on each research question, 

it was important to determine whether any common items, particularly those selected to 

drift, exhibited IPD. Tables 4 and 5 illustrate the percentage of common items that were 

accurately detected for drift under the 1,000 and 3,000 sample-size conditions, 

respectively.  
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Table 3 

Descriptive Statistics for Generating Item Parameters 

 Base Form New Form 

 Mean Standard 

Deviation 

Mean Standard 

Deviation 

Common Items     

     Discrimination 1.012 0.281 1.012 0.281 

     Difficulty 0.019 0.891 0.019 0.891 

     Pseudo-guessing 0.233 0.098 0.233 0.098 

Unique Items     

     Discrimination 0.987 0.248 0.965 0.261 

     Difficulty 0.019 0.995 0.020 1.075 

     Pseudo-guessing 0.195 0.078 0.201 0.087 

All Items     

     Discrimination 0.992 0.254 0.975 0.264 

     Difficulty 0.019 0.970 0.019 1.036 

     Pseudo-guessing 0.202 0.083 0.208 0.090 

 

Results are reported using the likelihood ratio in the dif function of the mirt package 

(Chalmers, 2012; Kim & Yoon, 2011). In order not to inflate Type I error, the p-value for 

the likelihood-ratio tests was set to 0.0025 (.05/ 20 common items) for all conditions 

using the Bonferroni correction. This p-value was chosen because the 20 items are 

dependent upon each other, but the replications are independent from one another since 

they contain different examinee responses (e.g., Bland & Altman, 1995; Cabin & 

Mitchell, 2000). The no drifted item condition represents the Type I error rate because no 

common items were manipulated to drift. Thus, any detection is considered a false 

positive. The remaining rows represent the power of detecting drift. For the 25% drifted 

item conditions, the correct detection of the first five drifted common items was taken for 

all 100 replications and averaged for the reported percentage. For the 50% drifted item 
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conditions, the correct detection of the first ten drifted common items was taken for all 

100 replications and averaged for the reported percentage.  

Drift detection rates were higher for the 3,000 sample-size conditions, but both 

sample sizes followed the same general patterns. When no items were manipulated to 

drift, the Type I error rate was near the nominal alpha of .05 for all ability distributions, 

which is consistent with other drift detection studies (e.g., DeMars, 2004b; Donoghue & 

Isham, 1998). Detection rates were higher for the 25% drifted item conditions compared 

to the 50% drifted item conditions, but within each proportion of drifted item conditions 

(25%, 50%), the detection rates increased as the magnitude of drift increased. For the 

1,000-sample size and the highest magnitude of drift (-1.00), detection rates ranged from 

74% to 91% under the 25% drifted item condition. However, rates were much lower for 

the 50% drifted item condition, ranging from 26% to 49%. This lack of power might have 

been due to not having enough examinees to detect the difference with the 3PL model. 

When sample size increased to 3,000, these percentages increased for the highest 

magnitude of drift – near 100% for all ability distributions of the 25% drifted item 

conditions and from 69% to 90% for the 50% drifted item conditions. Interestingly, the 

correct detection rates decreased as the ability distributions (normal and skewed) moved 

further away from a mean of 0. This decrease could be attributed to linking results being 

affected greater by increases in the proportion and magnitude of drifted items, which 

results in fewer correctly detected items.  
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Table 4 

Drift Detection Results – 1,000 Examinees 

Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

None None 6% 4% 4% 5% 4% 

25% 

-0.25 3% 4% 3% 3% 2% 

-0.50 31% 27% 19% 24% 15% 

-1.00 91% 86% 75% 82% 74% 

50% 

-0.25 1% 1% 1% 1% 0% 

-0.50 10% 7% 5% 7% 4% 

-1.00 49% 38% 27% 33% 26% 

 

Table 5 

Drift Detection Results – 3,000 Examinees 

Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

None None 5% 5% 5% 7% 7% 

25% 

-0.25 22% 16% 12% 18% 10% 

-0.50 82% 76% 62% 72% 62% 

-1.00 100% 100% 99% 100% 98% 

50% 

-0.25 7% 5% 4% 5% 4% 

-0.50 44% 38% 28% 35% 24% 

-1.00 90% 83% 72% 80% 69% 
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Linking Constants. The first research question examined the impact of IPD on 

linking constants A and B. Bias, SE, and RMSE were calculated to determine the 

performance of each linking method. 

Linking Constant A. For all linking methods and conditions, the expected value 

of A should approximate 1 because the standard deviations for each of the focal group 

populations was set to 1 and the slope was not manipulated to drift. The estimates for 

linking constant A with 1,000 and 3,000 sample sizes are summarized in Tables 6 and 7, 

respectively. Values of bias, SE, and RMSE can be found in Appendix B. Figures 3 – 5 

illustrate the bias, SE, and RMSE values for the 1,000 sample-size condition. Figures 6 – 

8 illustrate the bias, SE, and RMSE values for the 3,000 sample-size condition.  

It should be noted that the linking constants reported here represent values that 

have slightly different meanings but are considered “linking constants” strictly for the 

purposes of comparison. The linking constants for the separate calibration methods were 

derived only from the common items. However, the “linking constants” for CC and FPC 

were the estimated mean and standard deviation from the new group ability distribution, 

which considers all items from the exam, not just the common items. Therefore, the 

comparison between the linking methods is not completely impartial. 

For the 1,000 sample-size conditions, the separate calibration methods tended to 

underestimate A (i.e., values were less than 1.00), whereas CC and FPC tended to 

overestimate A (i.e., values were greater than 1.00). When no drift was present, the 

separate calibration methods (i.e., SL, HB, and LAV) typically recovered A better than 

CC and FPC. That is, the separate calibration methods produced smaller amounts of 
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RMSE than CC and all ability distributions except N(1,1) for FPC. This is because CC 

and FPC had larger values of bias than the other linking methods. RMSE increased as the 

mean of the normal and skewed ability distributions moved further away from 0. 

When 25% of the common items were drifted, RMSE increased for the separate 

calibration methods as the mean of the ability distributions moved further away from 0 

for both normal and skewed distributions. No systematic pattern was evident for CC and 

FPC as the ability distributions moved further away from 0. As the magnitude of the 

difficulty of drifted items became easier (items were drifted by -1.00 difficulty), the 

separate calibration methods produced greater values of RMSE and bias, whereas FPC 

and CC produced smaller values of RMSE and bias. FPC tended to recover A the best in 

terms of RMSE and bias, particularly when the ability distributions deviated from N(0,1).  

When 50% of the common items were drifted, estimates of A were less accurate 

for the separate calibration methods as the ability distributions increased. No systematic 

patterns were evident for CC or FPC. As drift magnitude increased (i.e., became easier), 

both FPC and CC recovered A more accurately, whereas the separate calibration methods 

recovered A less accurately. FPC produced the smallest RMSE and bias for nearly all 

conditions, including the most extreme drift condition (50% items drifted, -1.0 

magnitude). The LAV method produced the highest RMSE values, possibly because drift 

was only manipulated in the difficulty parameter. As a result, the LAV may have 

attempted to minimize the effect of drift in difficulty and linking constant B at the 

expense of linking constant A. Furthermore, the LAV method had consistently higher 

values of SE than any other linking method for nearly all conditions of drift.  
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 Table 6   

Estimated Linking Constant A – 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 1.002 0.966 0.930 0.989 0.975 

SL 

25% 

-0.25 0.988 0.952 0.916 0.985 0.960 

-0.50 0.970 0.938 0.903 0.964 0.951 

-1.00 0.939 0.897 0.862 0.931 0.912 

50% 

-0.25 0.976 0.948 0.905 0.971 0.961 

-0.50 0.961 0.923 0.873 0.956 0.927 

-1.00 0.898 0.856 0.808 0.895 0.864 

HB 

None None 1.006 0.973 0.939 0.996 0.985 

25% 

-0.25 0.984 0.951 0.923 0.985 0.965 

-0.50 0.953 0.926 0.897 0.953 0.942 

-1.00 0.885 0.854 0.824 0.882 0.870 

50% 

-0.25 0.968 0.943 0.906 0.966 0.960 

-0.50 0.932 0.901 0.859 0.933 0.907 

-1.00 0.813 0.780 0.742 0.819 0.794 

LAV 

None None 1.006 0.976 0.944 0.994 0.987 

25% 

-0.25 0.987 0.954 0.929 0.987 0.967 

-0.50 0.965 0.939 0.910 0.964 0.949 

-1.00 0.968 0.922 0.889 0.939 0.919 

50% 

-0.25 0.968 0.948 0.915 0.963 0.964 

-0.50 0.925 0.897 0.858 0.925 0.902 

-1.00 0.772 0.748 0.739 0.773 0.760 

CC 

None None 1.128 1.106 1.097 1.096 1.110 

25% 

-0.25 1.114 1.094 1.099 1.095 1.102 

-0.50 1.094 1.087 1.092 1.081 1.103 

-1.00 1.061 1.060 1.080 1.059 1.089 

50% 

-0.25 1.100 1.094 1.090 1.084 1.108 

-0.50 1.085 1.083 1.085 1.078 1.093 

-1.00 1.032 1.056 1.084 1.052 1.088 

FPC 

None None 1.077 1.054 1.044 1.047 1.052 

25% 

-0.25 1.062 1.042 1.042 1.045 1.042 

-0.50 1.042 1.034 1.033 1.026 1.040 

-1.00 1.014 1.006 1.016 1.002 1.019 

50% 

-0.25 1.046 1.040 1.033 1.032 1.047 

-0.50 1.033 1.026 1.020 1.023 1.027 

-1.00 0.981 0.988 0.999 0.979 1.001 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Figure 3. Bias Values for Linking Constant A – 1,000 Examinees. 
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Figure 4. SE Values for Linking Constant A – 1,000 Examinees. 
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Figure 5. RMSE Values for Linking Constant A – 1,000 Examinees. 
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When the sample size increased to 3,000, lower values of bias, SE, and RMSE 

were observed for all methods and most of the conditions. When no drift was present, 

RMSE increased for the separate calibration methods as ability increased for the normal 

distributions but remained the same under the skewed distributions. For CC and FPC, 

RMSE decreased as the mean of the normal ability distributions increased. As the mean 

of the skewed distributions increased, RMSE increased for CC, but remained stagnant for 

FPC.  The separate calibration methods recovered A better than CC and FPC for N(0,1) 

and the skewed distributions, but CC and FPC recovered A better for N(1,1).  

For the 25% drifted item conditions, RMSE increased for the separate calibration 

methods but remained unchanged for FPC and CC as the mean for the normal ability 

distributions moved further away from 0. This could be attributed to increases in both 

bias and SE. Values of RMSE hardly changed under the skewed distributions. As drift 

magnitude increased, RMSE increased for the separate calibration methods, but no 

pattern was evident for CC and FPC. FPC recovered A best at moderate magnitudes of 

drift (-0.25 and -0.50) and CC recovered A the best when the drift magnitude was -1.00.   

When drift was manipulated for 50% of the common items, the separate 

calibration methods were less accurate in recovering A as ability increased. No pattern 

was evident for CC and FPC as the ability distributions changed. As drift magnitude 

increased, the accuracy of the separate calibration methods and FPC decreased, while CC 

remained unchanged. CC produced the smallest values of RMSE, followed by FPC and 

SL. HB and LAV were most impacted by the highest magnitudes of drift. Similar to the 

1,000 sample-size, the LAV exhibited the largest SE for nearly all conditions of drift. 
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Table 7   

Estimated Linking Constant A – 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.997 0.974 0.941 0.998 0.997 

SL 

25% 

-0.25 0.989 0.964 0.926 0.989 0.988 

-0.50 0.974 0.950 0.918 0.981 0.980 

-1.00 0.939 0.909 0.872 0.952 0.950 

50% 

-0.25 0.984 0.956 0.921 0.987 0.986 

-0.50 0.961 0.932 0.893 0.968 0.970 

-1.00 0.903 0.872 0.831 0.924 0.912 

HB 

None None 1.000 0.981 0.951 1.002 1.004 

25% 

-0.25 0.985 0.963 0.930 0.985 0.988 

-0.50 0.956 0.935 0.909 0.965 0.967 

-1.00 0.885 0.860 0.833 0.899 0.903 

50% 

-0.25 0.975 0.950 0.922 0.980 0.982 

-0.50 0.932 0.908 0.876 0.941 0.945 

-1.00 0.819 0.795 0.761 0.843 0.837 

LAV 

None None 1.000 0.980 0.956 0.996 0.999 

25% 

-0.25 0.990 0.967 0.935 0.982 0.984 

-0.50 0.980 0.960 0.927 0.973 0.976 

-1.00 0.977 0.948 0.915 0.958 0.967 

50% 

-0.25 0.971 0.948 0.924 0.975 0.978 

-0.50 0.906 0.885 0.859 0.908 0.914 

-1.00 0.755 0.752 0.729 0.783 0.780 

CC 

None None 1.052 1.040 1.033 1.036 1.049 

25% 

-0.25 1.042 1.032 1.026 1.027 1.045 

-0.50 1.024 1.020 1.024 1.019 1.043 

-1.00 0.983 0.985 1.003 0.996 1.031 

50% 

-0.25 1.036 1.026 1.026 1.026 1.047 

-0.50 1.011 1.011 1.018 1.010 1.042 

-1.00 0.954 0.980 1.006 0.988 1.026 

FPC 

None None 1.024 1.012 1.001 1.005 1.008 

25% 

-0.25 1.014 1.003 0.993 0.993 1.001 

-0.50 0.998 0.992 0.987 0.984 0.997 

-1.00 0.964 0.958 0.962 0.957 0.978 

50% 

-0.25 1.008 0.996 0.990 0.991 1.002 

-0.50 0.984 0.979 0.976 0.971 0.992 

-1.00 0.932 0.941 0.944 0.936 0.955 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Figure 6. Bias Values for Linking Constant A – 3,000 Examinees. 
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Figure 7. SE Values for Linking Constant A – 3,000 Examinees. 
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Figure 8. RMSE Values for Linking Constant A – 3,000 Examinees. 
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Linking Constant B. The expected value of B is dependent upon the ability 

distribution the examinees originated from. For N(0,1), the expected value of B should be 

0 while the expected value should be 0.5 when the population ability is N(0.5,1). 

Estimates for linking constant B are found in Tables 8 and 9 for the 1,000 and 3,000 

sample-size conditions, respectively. Bias, SE and RMSE for the 1,000 sample-size 

condition are illustrated in Figures 9 – 11. Bias, SE, and RMSE for the 3,000 sample-size 

condition are illustrated in Figures 12 – 14. Actual values for bias, SE, and RMSE can be 

found in Appendix B.  

For the 1,000 sample-size conditions, all linking methods tended to overestimate 

B for most of the conditions (this was also true for the 3,000 sample-size condition). 

Since drift was introduced to make items easier on the new forms, the overestimation of 

linking constant B implies that the items were easier for the new form examinees, which 

was expected. When no drift was present, all linking methods had similar values of 

RMSE.  For all linking methods, RMSE tended to increase as the ability distributions 

moved further away from a mean of 0. Similarly, the more drift is introduced, the more 

RMSE increased. However, the combined effect of increasing drift (proportion and 

magnitude) and increasing ability led to smaller RMSE. This might occur because there 

are fewer examinees that will benefit from drift when the ability distribution is already 

high (i.e., most examinees are already likely to answer an item correctly). Jurich et al. 

(2012) noted that this ceiling effect arises when higher ability examinees cannot benefit 

from the effects of drift. This pattern was also evident when the sample size increased to 

3,000. 
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When 25% of common items were drifted, there was no systematic pattern of 

RMSE on the recovery of B for the separate calibration methods and for FPC. However, 

bias systematically decreased for the separate calibration methods as group differences 

increased. RMSE and bias increased for CC as ability distributions deviated greater from 

a mean of 0. As the magnitude of drift increased, RMSE and bias also increased for all 

the linking methods under almost all conditions. The LAV tended to recover B better than 

the other linking methods. Values of RMSE and bias were much larger for CC and FPC 

than the separate calibration methods. Hu et al. (2008) found that group equivalence was 

the most important factor for CC and FPC in the recovery of difficulty parameters and 

equated true scores. CC and FPC produced RMSE values similar to SL and HB under 

N(0,1), but produced RMSE greater than SL and HB when groups were not equivalent.  

When 50% of common items were drifted, the recovery of B improved for all 

linking methods except for CC as the ability distributions moved further away from 0. As 

drift magnitude increased, the recovery of B became less accurate for all linking methods. 

The LAV performed better than the other linking methods for almost all conditions 

despite having slightly higher SE values. Since drift occurred exclusively in the difficulty 

parameter, the LAV may have recovered B the best because its weight function was able 

to minimize the effect of the drifted items by assigning them smaller weights in the 

linking process.   
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Table 8   

Estimated Linking Constant B – 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.006 0.468 0.911 0.482 0.926 

SL 

25% 

-0.25 0.067 0.523 0.955 0.534 0.986 

-0.50 0.125 0.578 1.002 0.597 1.031 

-1.00 0.229 0.669 1.072 0.680 1.100 

50% 

-0.25 0.126 0.572 1.001 0.586 1.031 

-0.50 0.234 0.673 1.091 0.692 1.125 

-1.00 0.442 0.848 1.231 0.873 1.262 

HB 

None None 0.005 0.466 0.912 0.479 0.925 

25% 

-0.25 0.064 0.517 0.949 0.526 0.976 

-0.50 0.117 0.560 0.981 0.579 1.006 

-1.00 0.196 0.614 0.997 0.621 1.024 

50% 

-0.25 0.121 0.563 0.991 0.577 1.017 

-0.50 0.222 0.649 1.058 0.665 1.089 

-1.00 0.395 0.766 1.122 0.792 1.148 

LAV 

None None 0.007 0.465 0.916 0.481 0.925 

25% 

-0.25 0.051 0.507 0.946 0.520 0.971 

-0.50 0.066 0.518 0.947 0.537 0.971 

-1.00 0.055 0.509 0.929 0.517 0.946 

50% 

-0.25 0.120 0.561 0.995 0.573 1.021 

-0.50 0.197 0.625 1.045 0.641 1.065 

-1.00 0.313 0.667 1.025 0.667 1.028 

CC 

None None -0.038 0.504 1.047 0.533 1.065 

25% 

-0.25 0.023 0.562 1.099 0.587 1.127 

-0.50 0.085 0.625 1.158 0.658 1.188 

-1.00 0.200 0.746 1.276 0.769 1.303 

50% 

-0.25 0.088 0.617 1.152 0.644 1.183 

-0.50 0.204 0.735 1.272 0.765 1.301 

-1.00 0.450 0.977 1.517 1.015 1.535 

FPC 

None None -0.018 0.496 1.010 0.513 1.014 

25% 

-0.25 0.044 0.553 1.056 0.566 1.073 

-0.50 0.103 0.609 1.106 0.628 1.123 

-1.00 0.206 0.703 1.186 0.711 1.201 

50% 

-0.25 0.108 0.605 1.107 0.622 1.127 

-0.50 0.220 0.712 1.206 0.730 1.226 

-1.00 0.430 0.897 1.374 0.916 1.383 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Figure 9. Bias Values for Linking Constant B – 1,000 Examinees. 
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Figure 10. SE Values for Linking Constant B – 1,000 Examinees. 
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Figure 11. RMSE Values for Linking Constant B – 1,000 Examinees. 

  



 

100 

Under the 3,000 sample-size conditions, most of the values of B were also 

overestimated for all linking methods and conditions. CC and FPC had smaller RMSE 

values with 3,000 examinees than 1,000 examinees. SL and HB had smaller RMSE 

values when drift was null or small (25% drifted items), but larger RMSE values with the 

highest proportion and magnitude of drifted items. In most conditions, the LAV was 

more accurate in recovering B with a larger sample size. 

When no drift was present, the RMSE for B increased as the ability distributions 

moved further away from N(0,1). Although all linking methods recovered B well, FPC 

performed the best, followed by CC.  

Among the 25% and 50% of common items drifted, the separate calibration 

methods and FPC recovered B better for most conditions as drift and ability increased. 

The addition of drift does not greatly impact the probability of correctly responding to an 

item when that probability is already very high, thus, less error is produced. On the other 

hand, the RMSE for CC slightly increased as the ability distributions increased from 

N(0,1) due to an increase in bias. The LAV method had smaller RMSE values than the 

other linking methods for nearly all conditions despite having larger SE values.  
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Table 9  

Estimated Linking Constant B – 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.005 0.481 0.941 0.504 0.988 

SL 

25% 

-0.25 0.061 0.539 0.993 0.563 1.039 

-0.50 0.120 0.585 1.041 0.613 1.083 

-1.00 0.223 0.676 1.105 0.707 1.154 

50% 

-0.25 0.115 0.585 1.039 0.617 1.091 

-0.50 0.234 0.683 1.126 0.724 1.178 

-1.00 0.434 0.861 1.265 0.901 1.332 

HB 

None None 0.003 0.479 0.944 0.501 0.987 

25% 

-0.25 0.057 0.533 0.988 0.555 1.029 

-0.50 0.111 0.568 1.020 0.593 1.055 

-1.00 0.192 0.619 1.031 0.646 1.070 

50% 

-0.25 0.111 0.577 1.032 0.606 1.078 

-0.50 0.222 0.660 1.096 0.696 1.140 

-1.00 0.388 0.780 1.153 0.812 1.212 

LAV 

None None 0.004 0.480 0.946 0.503 0.985 

25% 

-0.25 0.035 0.516 0.978 0.536 1.012 

-0.50 0.037 0.509 0.974 0.532 1.005 

-1.00 0.030 0.504 0.960 0.528 0.986 

50% 

-0.25 0.108 0.567 1.029 0.594 1.068 

-0.50 0.177 0.606 1.042 0.622 1.067 

-1.00 0.309 0.668 1.027 0.644 1.039 

CC 

None None -0.013 0.499 1.011 0.523 1.042 

25% 

-0.25 0.045 0.562 1.072 0.586 1.100 

-0.50 0.108 0.614 1.133 0.643 1.156 

-1.00 0.224 0.733 1.246 0.765 1.269 

50% 

-0.25 0.105 0.613 1.127 0.644 1.159 

-0.50 0.234 0.730 1.245 0.766 1.271 

-1.00 0.472 0.976 1.485 1.009 1.517 

FPC 

None None -0.004 0.495 0.990 0.510 1.009 

25% 

-0.25 0.053 0.555 1.047 0.570 1.062 

-0.50 0.114 0.602 1.096 0.619 1.107 

-1.00 0.216 0.695 1.171 0.711 1.181 

50% 

-0.25 0.112 0.605 1.098 0.627 1.118 

-0.50 0.234 0.709 1.197 0.734 1.211 

-1.00 0.437 0.898 1.357 0.913 1.378 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Figure 12. Bias Values for Linking Constant B – 3,000 Examinees. 
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Figure 13. SE Values for Linking Constant B – 3,000 Examinees. 
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Figure 14. RMSE Values for Linking Constant B – 3,000 Examinees. 
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 Linked Item Parameter Estimates. The second research question examined the 

impact of IPD on the recovery of the linked item parameter estimates: discrimination (a), 

difficulty (b), and pseudo-guessing (c). 

Linked Item Parameter Estimate a. Bias, SE, and RMSE values were calculated 

by comparing the linked item parameter estimates for the new form unique items to the 

generating item parameters. Bias, SE, and RMSE is illustrated in Figures 15 – 17 for the 

1,000 sample-size and in Figures 18 – 20 for the 3,000 sample-size. Values of bias, SE, 

and RMSE for the 80 unique items can be found in Appendix C. Bias, SE, and RMSE 

was also evaluated for all 100 items and can be found in Appendix D.  

Under the 1,000 sample-size conditions, when no drift was present, the RMSE for 

a increased for the separate calibration methods under the normal distributions as the 

mean deviated further away from 0. However, RMSE slightly decreased for the separate 

calibration methods under the skewed distributions as the mean deviated further away 

from 0. The RMSE for CC and FPC decreased for both normal and skewed ability 

distributions as the mean ability increased, which was consistent with the RMSE values 

from linking constant A. CC and FPC recovered a best for all ability distributions.  

 For the 25% and 50% drift conditions, RMSE tended to increase for the separate 

calibration methods as the mean of the ability distributions increased. For CC and FPC, 

RMSE typically decreased as the mean of the ability distributions increased. As the 

magnitude of drift increased, RMSE tended to increase for the separate calibration 

methods, but remained relatively unchanged for CC and FPC. CC and FPC produced the 

lowest levels of RMSE among all of the linking methods. The LAV was influenced the 
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greatest under the most extreme conditions of drift (50% drifted items, -1.0 magnitude). 

These findings are not surprising since the LAV yielded the greatest RMSE values for 

linking constant A at the most extreme conditions of drift, which has direct influence on 

item estimate a (equation 2.5).  

 

 

Figure 15. Bias Values for Item Estimate a – 1,000 Examinees. 
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Figure 16. SE Values for Item Estimate a – 1,000 Examinees. 
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Figure 17. RMSE Values for Item Estimate a – 1,000 Examinees. 

  



 

109 

 Compared to the 1,000 sample-size conditions, all linking methods provided 

smaller values of bias, SE, and RMSE than the 3,000 sample-size conditions. SE 

decreased the most, which is to be expected, since larger sample sizes yield smaller 

standard errors. When no drift was present, the RMSE for the separate calibration 

methods increased as the mean ability increased for the normal distributions; however, 

RMSE remained unchanged for the separate calibration methods as the mean ability 

increased for the skewed ability distributions. The RMSE for CC and FPC slightly 

decreased as the mean ability increased for both normal and skewed distributions. CC and 

FPC produced smaller RMSE values for the normal ability distributions, but all linking 

methods had similar RMSE values for the skewed distributions.  

 For the 25% drift conditions, the RMSE for a increased for the separate 

calibration methods as the mean of the normal ability distributions increased, but 

remained unchanged for the skewed ability distributions. CC and FPC yielded slightly 

smaller values of RMSE as the mean ability increased for normal distributions. As the 

magnitude of drift increased, all linking methods produced greater values of RMSE. 

Overall, CC produced the smallest values of RMSE, followed closely by FPC. The LAV 

produced the smallest values of RMSE among the separate calibration methods. 

 For the 50% drift conditions, RMSE typically increased for the separate 

calibration methods as the mean ability increased for both normal and skewed 

distributions. However, RMSE decreased for CC and FPC as the mean ability increased 

for both normal and skewed distributions. As drift magnitude increased, all linking 

methods produced larger values of RMSE. CC produced the smallest values of RMSE, 
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followed by FPC. SL yielded the smallest RMSE values among the separate calibration 

methods. On the other hand, the LAV method produced the largest RMSE, which is 

directly attributable to the large RMSE values the LAV exhibited for linking constant A.  

  

 

Figure 18. Bias Values for Item Estimate a – 3,000 Examinees. 
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Figure 19. SE Values for Item Estimate a – 3,000 Examinees. 
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Figure 20. RMSE Values for Item Estimate a – 3,000 Examinees. 
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 Linked Item Parameter Estimate b. Figures 21 – 23 illustrate the bias, SE, and 

RMSE values for item difficulty under the 1,000 sample-size conditions. Figures 24 – 26 

illustrate the bias, SE, and RMSE values for item difficulty under the 3,000 sample-size 

conditions. Specific values for each of these three outcomes can be found in Appendix C. 

These outcomes were also evaluated for all items, common and unique, as found in 

Appendix D.  

 Overall, the findings here mimic those found for linking constant B. That is, the 

LAV most accurately recovered item estimate b for the conditions that it most accurately 

recovered linking constant B. This is because both linking constants effect the recovery of 

item estimate b. Linking constant A is multiplied to the linked estimate and then linking 

constant B is added to the linked estimate (as in equation 2.6), so better recovered linking 

constants will result in better recovered item parameter estimates.  Although the LAV did 

not recover A as well as the other methods, LAV RMSE values for linking constant B 

were substantially smaller, often two to three times smaller for all ability distributions 

except N(0,1), than all other linking methods. The FPC also recovered item estimate b 

well, particularly at N(1,1). This may have been due to the direct effect that linking 

constant A has on the linked difficulty parameter (equation 2.6). 

Under both sample sizes, when no drift was present, RMSE for b increased as the 

mean ability of the normal and skewed distributions increased. The performance of each 

linking method was fairly similar for most conditions, although CC and FPC returned 

smaller values of RMSE for N(0.5, 1) and N(1,1).  
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 When 25% of the common items were drifted, RMSE for all linking methods 

typically increased as the mean ability increased for normal and skewed distributions. As 

drift magnitude increased, RMSE increased for all linking methods except for the LAV, 

which remained unchanged. The LAV recovered b the best for most conditions of drift, 

particularly -1.00 magnitude, followed by FPC and CC.  

 For the 50% drift conditions, RMSE typically increased for all linking methods as 

the normal and skewed distributions deviated further away from a mean of 0. As the 

magnitude of drift increased, RMSE increased for all linking methods. Between the 

linking methods, LAV and FPC performed the best, but under certain conditions. The 

LAV produced the smallest RMSE, which can be attributed to bias, for N(0,1) and when 

the magnitude of drift was the greatest (-1.00). However, at this level of drift, estimates 

of b are rather inaccurate. FPC had the smallest RMSE due to smaller bias values for 

N(0.5,1) and N(1,1) for the magnitudes of drift at -0.25 and -0.50. CC also performed 

similarly to FPC for the magnitudes of drift at -0.25 and -0.50.  
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Figure 21. Bias Values for Item Estimate b – 1,000 Examinees. 
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Figure 22. SE Values for Item Estimate b – 1,000 Examinees. 
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Figure 23. RMSE Values for Item Estimate b – 1,000 Examinees. 
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Figure 24. Bias Values for Item Estimate b – 3,000 Examinees. 
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Figure 25. SE Values for Item Estimate b – 3,000 Examinees. 
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Figure 26. RMSE Values for Item Estimate b – 3,000 Examinees. 
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Linked Item Parameter Estimate c. Figures 27 – 29 illustrate the bias, SE, and 

RMSE values for the pseudo-guessing parameter under 1,000 examinees. Figures 30 – 32 

illustrate the bias, SE, and RMSE values for the pseudo-guessing parameter under 3,000 

examinees. Specific values for each of these three outcomes can be found in Appendix C. 

These outcomes were also evaluated for all items, common and unique, as found in 

Appendix D.  

Among the 1,000 sample-size conditions, recovery of the pseudo-guessing 

parameter was nearly identical for the separate calibration methods for all drift 

conditions. RMSE was nearly identical for the CC and FPC methods. RMSE increased as 

the mean ability of the population increased. CC and FPC produced slightly smaller 

values of RMSE for all non N(0,1) conditions, although this difference was negligible. 

RMSE remained relatively stable as the magnitude of drift increased, although a small 

decline could be observed. 

 Among the 3,000 sample-size conditions, RMSE and bias slightly improved 

relative to the 1,000 sample-size, despite a small increase in SE (although this difference 

was negligible). RMSE values were practically identical for the separate calibration 

methods for all drift conditions. RMSE values were approximately the same between CC 

and FPC. As the mean ability of examinees increased, RMSE increased for all linking 

methods. As drift magnitude increased, RMSE remained stable for all linking methods.  
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Figure 27. Bias Values for Item Estimate c – 1,000 Examinees. 
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Figure 28. SE Values for Item Estimate c – 1,000 Examinees. 
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Figure 29. RMSE Values for Item Estimate c – 1,000 Examinees. 
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Figure 30. Bias Values for Item Estimate c – 3,000 Examinees. 
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Figure 31. SE Values for Item Estimate c – 3,000 Examinees. 
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Figure 32. RMSE Values for Item Estimate c – 3,000 Examinees. 
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 Equated Scores. The third research question examined how consequential the 

effect of IPD was on equated scores using IRT true and observed score equating. For the 

purposes of evaluation, the difference that matters (DTM; Dorans & Feigenbaum, 1994) 

threshold was used to determine how well equated scores were recovered from a practical 

standpoint. DTM is defined by an absolute value of 0.50, the point at which a score 

would be considered for rounding up to the next integer.  

 Equated Scores with IRT True Score Equating. Bias, SE, and RMSE were 

calculated by comparing the estimated scores using IRT true score equating to the 

criterion equating relationship. The criterion equating relationship used the equated 

scores obtained from the generating item parameters for the baseline condition. Equated 

scores below the lower asymptote were ignored so the smallest score available (i.e., 25) 

for all linking methods, conditions, and sample sizes was chosen. Figures 33 – 35 

illustrate the average bias, SE, and RMSE values for equated scores under IRT true score 

equating for 1,000 examinees. Figures 36 – 40 plot the conditional RMSE values for each 

score point across the scale for 1,000 examinees. Figures 41 – 43 illustrate the bias, SE, 

and RMSE values for equated scores under IRT true score equating for 3,000 examinees. 

Figures 44 – 48 plot the conditional RMSE values for each score point across the scale 

for 3,000 examinees. Specific values for each of these three outcomes can be found in 

Appendix E. 

 Overall, equated scores (true and observed) were most heavily influenced by drift 

out of all the outcomes. This may occur due to the trickle-down effect that drift has on the 

linking and equating process. The RMSE from the linking constants combines with the 
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RMSE from the item parameter estimates to produce inflated RMSE values in the 

equated scores. In most conditions, findings for bias and RMSE exceeded the DTM 

threshold, which is a major issue considering one raw score point can be the difference 

between passing and failing. These findings are described in more detail below. 

 For the 1,000 sample-size condition, RMSE for the equated scores was lowest 

when no drift was present. As the mean ability of examinees increased, RMSE increased 

for all linking methods. However, RMSE exceeded the DTM criterion under all ability 

distributions. Inspection of the bias values revealed that the separate calibration methods 

produced bias lower than the DTM for all abilities except N(1,1). CC exceeded the DTM 

threshold for all ability distributions except N(0,1). FPC did not exceed the DTM 

threshold for any ability distribution. Overall, the separate calibration methods produced 

the least bias for the skewed distributions and N(0,1), whereas FPC had the least amount 

of bias for N(1,1). Although these results were unexpected, Jurich et al. (2012) reported 

RMSE values for equated true scores near 5 score points for linking between equivalent 

groups – N(0,1) – without any cheating for the SL, HB, and FPC methods. Hu et al. 

(2008) reported MSE values for equated true scores that exceeded one score point for SL, 

CC, and FPC for linking nonequivalent groups of N(0,1) and N(1,1).  

 When 25% of common items were drifted, the RMSE from all linking methods 

exceeded the DTM threshold for each ability distribution and drift magnitude. Looking at 

values of bias, the SL, HB, and CC methods exceeded the DTM for nearly all conditions. 

The LAV method produced bias near the DTM for most of the ability distributions. FPC 

produced values of bias at or below DTM for -0.25 magnitude but above DTM for -0.50 
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and -1.00 magnitudes. No systematic pattern of RMSE nor bias could be discerned for the 

linking methods as ability increased. For the skewed distributions, RMSE and bias 

decreased from S(0.5,1) to S(1,1) for all linking methods and conditions with the 

exception of the LAV for the -1.00 magnitude condition. This decrease might be 

attributed to the skewed distributions having more examinees with higher probabilities of 

answering items correctly. As drift magnitude increased, bias and RMSE increased for all 

linking methods with the exception of the LAV for N(0,1), N(0.5,1), and S(0.5,1). 

Overall, the LAV method performed exceptionally well, producing the least amount of 

RMSE and bias for most conditions. FPC performed better than the LAV for a few 

conditions – N(0.5,1) and N(1,1) with -0.25 drift magnitude, and N(1,1) with -0.50 drift 

magnitude. SE values for all linking methods were around the 0.50 threshold. 

 When 50% of common items were drifted, values of RMSE were well above the 

DTM threshold for all linking methods. Values of bias were near one or higher for all 

linking methods and conditions. SE was near 0.5 for all linking methods and conditions. 

There was no systematic pattern of RMSE nor bias for the separate calibration methods 

as ability increased under the normal distributions. RMSE and bias did decrease for the 

separate calibration methods as ability increased under the skewed distributions. For CC 

and FPC, RMSE and bias decreased as ability increased for both normal and skewed 

distributions. Lower RMSE and bias might be produced at higher ability distributions 

because examinees are already receiving high scores, with or without drift. As drift 

magnitude increased, RMSE and bias increased for all linking methods and all 

conditions. Under -0.25 drift magnitude, all linking methods performed fairly similarly in 
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terms of RMSE and bias. LAV had the lowest RMSE and bias for most conditions under 

-0.50 drift magnitude except for N(1,1), which FPC performed the best. For -1.00 

magnitude, LAV had the smallest amount of RMSE and bias among all distributions. CC 

appeared to be most influenced by drift.  

 

 

Figure 33. Bias Values for True Scores – 1,000 Examinees. 
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Figure 34. SE Values for True Scores – 1,000 Examinees. 
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Figure 35. RMSE Values for True Scores – 1,000 Examinees. 
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Across all linking methods, RMSE decreased as the mean skewed ability 

increased from S(0.5, 1) to S(1, 1) for all drift conditions except the baseline (no drift). 

RMSE decreased as the normal ability distributions increased, but this pattern only 

occurred under the most extreme condition of drift. Under the other conditions of drift, 

RMSE decreased selectively by each linking method. These findings warranted further 

inspection, as it was expected that RMSE would increase as the mean ability increased 

for both normal and skewed ability distributions. 

 Conditional RMSE values were plotted for each linking method to identify which 

points along the scale produced the highest RMSE. RMSE values are provided for scores 

ranging between 25 and 100 because linear interpolation was not used to obtain scores 

below the sum of the pseudo-guessing parameters for the simulation. Figures 36 – 40 

illustrate the conditional RMSE for the 1,000 sample-size of the SL, HB, LAV, CC, and 

FPC methods, respectively. 

 For the baseline conditions (top left panels) of each linking method, RMSE 

tended to be higher at the lower and higher ends of the scale. This is particularly true for 

the N(1,1) condition. This occurs because there are fewer examinees obtaining scores at 

these locations, which results in higher RMSE values. For the drift magnitudes of -0.25 

and -0.50 (for both 25% and 50% drifted items), RMSE was interspersed evenly in the 

middle of the scale (i.e., between 20 and 80) where most of the examinee scores are 

located. However, the RSME for CC (Figure 39) tended to increase between the scores of 

60 and 90, where more scores are expected to be compared to the lower and higher ends 

of the scale. This might explain why CC was most heavily influenced by drift.  
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For the drift magnitude of -1.0 (bottom row), the SL and HB methods produced 

the highest RMSE values from the bottom of the scale to approximately 60. The LAV 

method was less affected by drift for the 25% drifted item, -1.0 magnitude condition 

(Figure 38, bottom left) as RMSE was distributed uniformly until a score of 80, where 

RMSE peaked. For the 50% drifted item, -1.0 magnitude condition (Figure 38, bottom 

right), the LAV was profoundly influenced by drift (similar to the other linking methods), 

but RMSE peaked between 40 and 50, and also had a second peak around 90. This 

second peak was also noticeable with the HB method. CC had RMSE values that peaked 

between 60 and 90, while FPC had RMSE values that were highest between 40 and 80.  
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Figure 36. Conditional RMSE for SL True Scores – 1,000 Examinees. 
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Figure 37. Conditional RMSE for HB True Scores – 1,000 Examinees. 
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Figure 38. Conditional RMSE for LAV True Scores – 1,000 Examinees. 
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Figure 39. Conditional RMSE for CC True Scores – 1,000 Examinees. 
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Figure 40. Conditional RMSE for FPC True Scores – 1,000 Examinees. 
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Compared to the 1,000 sample-size conditions, RMSE was smaller under the 

3,000 sample-size conditions when no drift was present. This is reflected by the smaller 

values of bias and SE. Yet, RMSE values exceeded the DTM threshold for all linking 

methods under N(1,1) and S(0.5,1) – except for FPC N(1,1). No values of bias for any of 

the linking methods exceeded the 0.5 threshold. Both RMSE and bias increased for all 

linking methods as mean ability increased for the normal distributions. However, bias 

decreased for all linking methods as mean ability increased for the skewed distributions. 

The separate calibration methods yielded the smallest amount of bias for N(0,1) and 

S(1,1), whereas FPC yielded the smallest bias for the other ability distributions.  

 Under the 25% drifted item conditions, RMSE exceeded DTM for nearly all 

conditions and linking methods. With the exception of the LAV, bias exceeded DTM for 

the other linking methods for most conditions. Bias for the LAV only exceeded DTM for 

the N(1,1) condition. For all linking methods, there was no discernable pattern for bias as 

ability increased for the normal distributions, but bias did decrease for the skewed 

distributions. As the magnitude of drift increased, bias increased for all linking methods 

except for LAV. The bias for LAV decreased for N(0,1) and the skewed distributions. 

Overall, the LAV method performed the best despite having slightly elevated SE values. 

 For the 50% drifted item conditions, RMSE and bias was near or exceeded one 

for all linking methods. As the mean ability increased for the normal distributions, bias 

decreased for CC and FPC, although there was no systematic pattern of bias for the 

separate calibration methods. As mean ability increased for the skewed distributions, bias 

decreased for nearly all linking methods and conditions. When drift magnitude increased, 
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bias increased for all linking methods and conditions. The LAV performed the best 

among all linking methods even with elevated SE levels. CC produced the smallest SE 

values although appeared the most susceptible linking method to drift.  

 

 

Figure 41. Bias Values for True Scores – 3,000 Examinees. 
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Figure 42. SE Values for True Scores – 3,000 Examinees. 
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Figure 43. RMSE Values for True Scores – 3,000 Examinees. 
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Similar to the 1,000 sample-size conditions, RMSE decreased as the mean skewed 

ability increased from S(0.5, 1) to S(1, 1) for all linking methods and drift conditions 

including no drift. RMSE decreased as the normal ability distributions increased, but this 

pattern only consistently occurred for the most extreme condition of drift.  

 Conditional RMSE values were plotted for each linking method to identify which 

points along the scale produced the highest RMSE. RMSE values are provided for scores 

ranging between 25 and 100 because linear interpolation was not used to obtain scores 

below the sum of the pseudo-guessing parameters for the simulation. Figures 44 – 48 

illustrate the conditional RMSE for the 3,000 sample-size of the SL, HB, LAV, CC, and 

FPC methods, respectively. 

 For all conditions (top left panels) of each linking method, RMSE tended to be 

higher at the lower and higher ends of the scale. This is particularly true for the N(1,1) 

and S(0.5, 1) conditions. The S(0.5, 1) condition (blue line) is noticeably higher for the 

3,000 sample-size conditions compared to the 1,000 sample-size conditions for all linking 

methods. This helps to explain why RMSE was higher for S(0.5, 1) than for S(1, 1). The 

pattern of findings for the remaining drift conditions is similar to that found with the 

1,000 sample-size conditions; however, the RMSE for S(0.5, 1) is also elevated for each 

drift condition throughout most points of the scale.  
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Figure 44. Conditional RMSE for SL True Scores – 3,000 Examinees. 
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Figure 45. Conditional RMSE for HB True Scores – 3,000 Examinees. 
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Figure 46. Conditional RMSE for LAV True Scores – 3,000 Examinees. 
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Figure 47. Conditional RMSE for CC True Scores – 3,000 Examinees. 
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Figure 48. Conditional RMSE for FPC True Scores – 3,000 Examinees. 
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Equated Scores with IRT Observed Score Equating. Bias, SE, and RMSE were 

calculated by comparing the estimated scores using IRT observed score equating to the 

criterion equating relationship. The criterion equating relationship used the equated 

scores obtained from the generating item parameters for the baseline condition. Figures 

49 – 51 illustrate the average bias, SE, and RMSE values for equated scores under IRT 

observed score equating for 1,000 examinees. Figures 52 – 56 plot the conditional RMSE 

values for 1,000 examinees. Figures 57 – 59 illustrate average bias, SE, and RMSE 

values, while Figures 60 – 64 plot the conditional RMSE values for 3,000 examinees. 

Specific values for each of these three outcomes can be found in Appendix E.  

Overall, observed scores followed the same pattern witnessed with IRT true score 

equating. The LAV and FPC methods produced the lowest RMSE values for most 

conditions. Findings for all conditions are presented below. 

 For the 1,000 sample-size conditions, when no drift was present, RMSE exceeded 

the DTM for nearly all linking methods and conditions. Bias values mostly remained 

under 0.5 for all linking methods except for the N(1,1) distribution. SE values were larger 

than bias values for the separate calibration methods and FPC, and similar to bias values 

for CC. RMSE and bias increased as the mean ability increased under the normal 

distributions for all linking methods. As the mean ability increased under the skewed 

distributions, RMSE and bias increased for HB, LAV, and CC, but decreased for SL and 

FPC. The separate calibration methods returned the smallest amount of RMSE and bias 

for all ability distributions except for N(1,1), which belonged to FPC.  
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 When 25% of items drifted, RMSE exceeded the DTM for all linking methods 

and conditions (this was also true for 50% items drifted). There was no systematic pattern 

of RMSE or bias for any of the linking methods as ability increased for the normal 

distributions. All linking methods displayed a decrease in RMSE and bias as ability 

increased for the skewed distributions. As the magnitude of drift increased, RMSE and 

bias increased for all linking methods except for LAV. The LAV method showed 

decreases in RMSE and bias for the N(0,1), N(0.5,1), and S(0.5,1) as the magnitude of 

drift increased from -0.50 to -1.00. The LAV yielded the smallest amounts of RMSE and 

bias for nearly all conditions. FPC performed better than LAV under N(0.5,1) and N(1,1) 

when drift magnitude was -0.25, and under N(1,1) with a drift magnitude of -0.50. These 

findings are consistent with those found for equated true scores.   

 When 50% of items drifted, RMSE and bias tended to decrease as ability 

increased for the normal distributions. RMSE and bias decreased for all linking methods 

when ability increased for the skewed distributions. As drift magnitude increased, RMSE 

and bias increased for all linking methods. Under the -0.25-drift magnitude, all linking 

methods performed similarly. When drift magnitude increased to -0.50 and -1.00, the 

LAV produced values of RMSE bias smaller than other linking methods for most 

conditions. Performance of the LAV is consistent with those observed for equated true 

scores. 
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Figure 49. Bias Values for Observed Scores – 1,000 Examinees. 
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Figure 50. SE Values for Observed Scores – 1,000 Examinees. 
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Figure 51. RMSE Values for Observed Scores – 1,000 Examinees. 
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Similar to equated true scores, RMSE from observed scores decreased as the 

mean skewed ability increased from S(0.5, 1) to S(1, 1) for all drift conditions except the 

baseline (no drift). RMSE decreased as the normal ability distributions increased, but this 

pattern only occurred under the most extreme condition of drift. Under the other 

conditions of drift, RMSE decreased selectively by each linking method.  

Conditional RMSE values were plotted for each linking method to identify which 

points along the scale produced the highest RMSE. Figures 52 – 56 illustrate the 

conditional RMSE for equated observed scores under the 1,000 sample-size for the SL, 

HB, LAV, CC, and FPC methods, respectively. These figures are nearly identical to the 

conditional RMSE plots for equated true scores. RMSE tended to be higher at the lower 

and higher ends of the scale for the baseline conditions. RMSE was distributed rather 

evenly in the middle of the scale as drift increased. The 50% drifted -1.0 magnitude 

condition resulted in elevated RMSE values for all linking methods, although it was 

distributed in different parts of the scale. RMSE was greatest in the middle of the scale 

for SL, HB, and LAV. The LAV and HB methods also had small spikes of RMSE at the 

higher end of the scale. FPC and CC exhibited the largest RMSE values towards the 

higher end of the scale. 
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Figure 52. Conditional RMSE for SL Observed Scores – 1,000 Examinees. 
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Figure 53. Conditional RMSE for HB Observed Scores – 1,000 Examinees. 
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Figure 54. Conditional RMSE for LAV Observed Scores – 1,000 Examinees. 
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Figure 55. Conditional RMSE for CC Observed Scores – 1,000 Examinees. 
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Figure 56. Conditional RMSE for FPC Observed Scores – 1,000 Examinees. 
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Compared to the 1,000 sample-size conditions, RMSE and bias were smaller 

under lower magnitudes of drift (none or 25% drifted items), but higher under the highest 

magnitudes of drift (50% drifted items, -0.50 and -1.00 magnitude)  SE decreased for all 

linking methods and conditions. RMSE exceeded DTM for all linking methods under 

N(1,1) and S(0.5,1), with the exception of FPC, which had an RMSE of .487 for N(1,1). 

Interestingly, FPC exceeded the DTM for S(1,1), whereas the other linking methods were 

below the DTM. 

 When 25% of items drifted, RMSE exceeded the DTM threshold for most 

conditions and linking methods (also true for 50% of items drifted). RMSE and bias 

decreased as the mean ability of the skewed distributions increased for all linking 

methods. This was only true sometimes for the normal distributions. As drift magnitude 

increased, RMSE and bias also increased for all linking methods except for LAV 

conditions N(0,1) and the skewed distributions. All linking methods had similar values of 

RMSE and similar values of bias when drift magnitude was -0.25. When drift magnitude 

increased to -0.50 and -1.00, LAV yielded the smallest amounts of RMSE and bias.  

 When 50% of items drifted, RMSE and bias tended to decrease as candidate mean 

ability increased for both normal and skewed distributions. As drift magnitude increased, 

RMSE and bias also increased for all linking methods. At -0.25 drift magnitude, all 

linking methods performed similarly. At -0.50 and -1.00 magnitudes of drift, the LAV 

method produced the smallest amounts of RMSE and bias. CC was most influenced at the 

highest magnitudes of drift. 
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 Similar to IRT true score equating, the LAV method yielded the highest values of 

SE for IRT observed score equating under all conditions and sample sizes. This also 

affected the performance of the LAV when evaluating RMSE. For the 1,000-candidate 

condition, when the magnitude of drift was -1.00 under 25% and 50% items drifted, the 

LAV still recovered equated observed scores the best. Under the remaining drift 

conditions, all methods performed similarly. The FPC method produced slightly smaller 

RMSE values than the other linking methods, particularly under N(1,1). When the sample 

size increased to 3,000, LAV performed the best for conditions where the magnitude of 

drift was -0.50 and -1.00 and the percentage of items drifted was 25% and 50%. When no 

drift was present, or when drift magnitude was -0.25, all methods performed similarly. 
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Figure 57. Bias Values for Observed Scores – 3,000 Examinees. 
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Figure 58. SE Values for Observed Scores – 3,000 Examinees. 
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Figure 59. RMSE Values for Observed Scores – 3,000 Examinees. 
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Conditional RMSE values were plotted for each linking method to identify why 

RMSE may have decreased as the mean ability of the normal and skewed distributions 

increased. Figures 60 – 64 illustrate the conditional RMSE for the 3,000 sample-size of 

the SL, HB, LAV, CC, and FPC methods, respectively. The patterns from these figures 

are similar to the other conditional RMSE true and observed score plots. The RMSE 

values for the equated true and observed scores exceed the DTM threshold for the drift 

and non-drift conditions, which is similar to other studies (e.g., Hu et al., 2008; Jurich et 

al., 2012). However, using a weighted RMSE would provide better equating results 

because the RMSE’s at the lower and higher ends of the scale would not be emphasized 

less than the scores in the middle of the scale, where most of the scores are located. 
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Figure 60. Conditional RMSE for SL Observed Scores – 3,000 Examinees. 
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Figure 61. Conditional RMSE for HB Observed Scores – 3,000 Examinees. 
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Figure 62. Conditional RMSE for LAV Observed Scores – 3,000 Examinees. 
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Figure 63. Conditional RMSE for CC Observed Scores – 3,000 Examinees. 
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Figure 64. Conditional RMSE for FPC Observed Scores – 3,000 Examinees. 
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Classification Accuracy. The fourth research question examined the extent to 

which IPD affects classification accuracy rates. Bias, SE, and RMSE were calculated by 

comparing the classification accuracy rates using the phi coefficient from each linking 

method to the true classification criterion, which is defined as the proportion of 

examinees classified as pass-pass or fail-fail for both the true and observed 𝜃 status’. 

There was a total of five true classification criterion, one for each ability distribution. The 

five true classification criterion rates, along with the estimated classification accuracy 

rates can be seen in Tables 10 and 11, for the 1,000 and 3,000 sample-size conditions, 

respectively. Figures 65 – 67 illustrate the bias, SE, and RMSE values for classification 

accuracy with 1,000 examinees. Figures 68 – 70 illustrate the bias, SE, and RMSE values 

for classification accuracy with 3,000 examinees. Specific values for each of these three 

outcomes can be found in Appendix F.  

The success rate of classification accuracy and consistency is partially predicated 

upon how well the item parameters are recovered. All linking methods performed 

similarly in their estimation of classification accuracy and consistency. If examinees were 

concentrated at the lower points of the scale, then classification accuracy and consistency 

may have decreased further because examinees would move towards the cut score, where 

decision about pass and fail could fluctuate more.    

For both sample sizes, the same general conclusions can be drawn since the 

classification rates were very similar for all linking methods. Under all conditions of 

drift, classification rates were slightly underestimated. No discernable pattern for RMSE 

could be observed as the ability distributions increased. Only under the most extreme 
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conditions of drift, could some difference in RMSE be observed between the linking 

methods. For the 25% drifted common items and -1.00 magnitude, the LAV method 

performed slightly better in terms of RMSE than the other linking methods, which all 

performed similarly. The smaller RMSE was due to the smaller amounts of bias. This 

was also true for the 50% drifted common items and -1.00 magnitude of drift condition. 

These results can be attributed to LAV’s accurate recovery of the difficulty parameter for 

the same conditions.  The SE was similar for all linking methods under all conditions of 

drift. The one exception was in the 50% drifted common items and -1.00 magnitude of 

drift condition, where the LAV method had slightly higher SE values. However, the LAV 

performed the best in terms of RMSE despite larger SE due to small bias for the -1.00 

magnitude of drift under the 25% and 50% drifted item conditions.  
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Table 10  

Classification Accuracy Rates – 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

True Classification Criterion 0.872 0.897 0.934 0.899 0.934 

 None None 0.869 0.894 0.932 0.894 0.932 

SL 

25% 

-0.25 0.868 0.892 0.929 0.893 0.930 

-0.50 0.866 0.888 0.926 0.889 0.927 

-1.00 0.857 0.878 0.917 0.880 0.919 

50% 

-0.25 0.866 0.888 0.926 0.889 0.927 

-0.50 0.856 0.877 0.916 0.879 0.918 

-1.00 0.823 0.842 0.887 0.847 0.891 

HB 

None None 0.869 0.894 0.932 0.894 0.933 

25% 

-0.25 0.868 0.892 0.929 0.893 0.931 

-0.50 0.867 0.889 0.927 0.890 0.928 

-1.00 0.863 0.883 0.922 0.886 0.924 

50% 

-0.25 0.866 0.889 0.927 0.890 0.928 

-0.50 0.859 0.879 0.918 0.882 0.920 

-1.00 0.832 0.852 0.895 0.856 0.899 

LAV 

None None 0.869 0.894 0.932 0.894 0.932 

25% 

-0.25 0.869 0.892 0.930 0.893 0.931 

-0.50 0.869 0.893 0.930 0.893 0.931 

-1.00 0.870 0.894 0.931 0.895 0.932 

50% 

-0.25 0.866 0.889 0.927 0.890 0.928 

-0.50 0.862 0.882 0.920 0.884 0.922 

-1.00 0.847 0.869 0.911 0.875 0.914 

CC 

None None 0.865 0.892 0.932 0.893 0.932 

25% 

-0.25 0.865 0.891 0.930 0.892 0.931 

-0.50 0.864 0.889 0.928 0.889 0.929 

-1.00 0.858 0.881 0.922 0.881 0.922 

50% 

-0.25 0.864 0.889 0.929 0.890 0.929 

-0.50 0.858 0.881 0.923 0.882 0.923 

-1.00 0.828 0.849 0.899 0.849 0.899 

FPC 

None None 0.868 0.894 0.933 0.895 0.933 

25% 

-0.25 0.867 0.892 0.931 0.893 0.932 

-0.50 0.866 0.890 0.929 0.891 0.930 

-1.00 0.859 0.883 0.925 0.884 0.925 

50% 

-0.25 0.865 0.890 0.929 0.891 0.930 

-0.50 0.857 0.882 0.923 0.883 0.924 

-1.00 0.830 0.856 0.906 0.858 0.906 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Table 11   

Classification Accuracy Rates – 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

True Classification Criterion 0.872 0.897 0.934 0.899 0.934 

 None None 0.871 0.895 0.933 0.896 0.934 

SL 

25% 

-0.25 0.870 0.893 0.930 0.894 0.931 

-0.50 0.867 0.889 0.927 0.891 0.928 

-1.00 0.858 0.879 0.918 0.882 0.921 

50% 

-0.25 0.867 0.889 0.927 0.891 0.928 

-0.50 0.857 0.878 0.918 0.881 0.920 

-1.00 0.825 0.844 0.890 0.850 0.895 

HB 

None None 0.871 0.895 0.933 0.896 0.934 

25% 

-0.25 0.870 0.893 0.930 0.895 0.932 

-0.50 0.869 0.891 0.928 0.893 0.930 

-1.00 0.864 0.885 0.923 0.887 0.926 

50% 

-0.25 0.868 0.890 0.927 0.892 0.929 

-0.50 0.860 0.881 0.919 0.884 0.922 

-1.00 0.833 0.853 0.897 0.859 0.902 

LAV 

None None 0.871 0.895 0.933 0.896 0.934 

25% 

-0.25 0.871 0.894 0.931 0.896 0.933 

-0.50 0.872 0.895 0.932 0.896 0.933 

-1.00 0.872 0.896 0.933 0.897 0.934 

50% 

-0.25 0.868 0.891 0.928 0.893 0.930 

-0.50 0.866 0.887 0.924 0.891 0.927 

-1.00 0.849 0.871 0.913 0.885 0.920 

CC 

None None 0.869 0.895 0.933 0.896 0.934 

25% 

-0.25 0.868 0.893 0.931 0.894 0.932 

-0.50 0.866 0.890 0.928 0.891 0.929 

-1.00 0.858 0.878 0.919 0.880 0.920 

50% 

-0.25 0.866 0.890 0.928 0.891 0.929 

-0.50 0.857 0.879 0.920 0.881 0.921 

-1.00 0.821 0.839 0.889 0.841 0.890 

FPC 

None None 0.871 0.896 0.933 0.897 0.934 

25% 

-0.25 0.869 0.893 0.931 0.895 0.932 

-0.50 0.867 0.890 0.929 0.892 0.930 

-1.00 0.859 0.882 0.922 0.884 0.924 

50% 

-0.25 0.867 0.890 0.928 0.892 0.930 

-0.50 0.857 0.880 0.921 0.882 0.922 

-1.00 0.827 0.850 0.898 0.853 0.900 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Figure 65. Bias Values for Classification Accuracy – 1,000 Examinees. 
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Figure 66. SE Values for Classification Accuracy – 1,000 Examinees. 

  



 

179 

 

Figure 67. RMSE Values for Classification Accuracy – 1,000 Examinees. 
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Figure 68. Bias Values for Classification Accuracy – 3,000 Examinees. 
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Figure 69. SE Values for Classification Accuracy – 3,000 Examinees. 
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Figure 70. RMSE Values for Classification Accuracy – 3,000 Examinees. 
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Classification Consistency. The fifth research question examined the extent to 

which IPD affects classification consistency rates. Bias, SE, and RMSE were calculated 

by comparing the classification consistency rates using the phi coefficient from each 

linking method to the true classification criterion, which is defined as the proportion of 

examinees classified as pass-pass or fail-fail for two independent administrations of a 

test. There was a total of five true classification criterion, one for each ability distribution. 

The five true classification criterion rates, along with the estimated classification 

consistency rates can be seen in Tables 12 and 13, for the 1,000 and 3,000 sample-size 

conditions, respectively. Figures 71 – 73 illustrate the bias, SE, and RMSE values for 

classification consistency with 1,000 examinees. Figures 74 – 76 illustrate the bias, SE, 

and RMSE values for classification consistency with 3,000 examinees. Specific values 

for each of these three outcomes can be found in Appendix G.  

For both sample sizes, each linking method produced similar classification 

consistency rates for each of the drift conditions. In most instances, consistency rates 

were slightly underestimated. All linking methods performed similarly in terms of 

RMSE. However, some observations could be made when inspecting bias. No 

discernable pattern for bias could be observed as the ability distributions increased. Only 

under the most extreme condition of drift (50% drifted items, -1.00 drift magnitude), 

could some difference in bias be observed between the linking methods. For N(0,1), 

consistency was slightly overestimated by the separate calibration methods, and slightly 

underestimated by CC and FPC. However, SL and FPC produced the least amount of bias 

for N(0,1). For the remaining ability distributions, the LAV method produced the 
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smallest values of bias. The SE values were very similar for all of the linking methods at 

all levels of drift. The RMSE values followed a similar pattern that was present among 

the findings for bias. 
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Table 12  

Classification Consistency Rates – 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

True Classification Criterion 0.872 0.897 0.934 0.897 0.934 

 None None 0.868 0.892 0.930 0.893 0.932 

SL 

25% 

-0.25 0.868 0.890 0.927 0.891 0.928 

-0.50 0.868 0.888 0.924 0.889 0.925 

-1.00 0.870 0.886 0.919 0.886 0.920 

50% 

-0.25 0.868 0.887 0.924 0.888 0.925 

-0.50 0.869 0.884 0.918 0.884 0.919 

-1.00 0.876 0.882 0.910 0.880 0.910 

HB 

None None 0.867 0.892 0.930 0.893 0.932 

25% 

-0.25 0.868 0.890 0.927 0.891 0.929 

-0.50 0.871 0.890 0.925 0.890 0.927 

-1.00 0.877 0.892 0.925 0.893 0.926 

50% 

-0.25 0.869 0.888 0.924 0.889 0.926 

-0.50 0.872 0.887 0.920 0.887 0.921 

-1.00 0.887 0.892 0.918 0.891 0.919 

LAV 

None None 0.867 0.892 0.930 0.893 0.932 

25% 

-0.25 0.868 0.891 0.928 0.892 0.929 

-0.50 0.870 0.892 0.928 0.892 0.929 

-1.00 0.869 0.894 0.930 0.896 0.932 

50% 

-0.25 0.869 0.888 0.924 0.890 0.926 

-0.50 0.874 0.889 0.921 0.889 0.923 

-1.00 0.892 0.900 0.925 0.900 0.927 

CC 

None None 0.860 0.889 0.931 0.891 0.932 

25% 

-0.25 0.860 0.886 0.928 0.888 0.929 

-0.50 0.860 0.883 0.924 0.885 0.925 

-1.00 0.861 0.878 0.917 0.880 0.918 

50% 

-0.25 0.860 0.883 0.924 0.885 0.925 

-0.50 0.860 0.878 0.917 0.879 0.918 

-1.00 0.864 0.868 0.901 0.869 0.903 

FPC 

None None 0.865 0.892 0.932 0.894 0.934 

25% 

-0.25 0.865 0.889 0.929 0.891 0.931 

-0.50 0.865 0.887 0.926 0.889 0.927 

-1.00 0.866 0.884 0.921 0.886 0.923 

50% 

-0.25 0.865 0.887 0.926 0.888 0.928 

-0.50 0.865 0.882 0.920 0.884 0.921 

-1.00 0.870 0.877 0.910 0.878 0.911 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Table 13   

Classification Consistency Rates – 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

True Classification Criterion 0.872 0.897 0.934 0.897 0.934 

 None None 0.870 0.895 0.932 0.896 0.933 

SL 

25% 

-0.25 0.870 0.892 0.928 0.893 0.930 

-0.50 0.871 0.890 0.926 0.891 0.927 

-1.00 0.874 0.888 0.921 0.888 0.922 

50% 

-0.25 0.871 0.890 0.925 0.891 0.927 

-0.50 0.872 0.886 0.920 0.886 0.921 

-1.00 0.879 0.884 0.912 0.882 0.912 

HB 

None None 0.870 0.894 0.932 0.896 0.933 

25% 

-0.25 0.871 0.892 0.929 0.894 0.931 

-0.50 0.874 0.892 0.927 0.893 0.929 

-1.00 0.881 0.895 0.926 0.895 0.928 

50% 

-0.25 0.872 0.891 0.926 0.892 0.928 

-0.50 0.875 0.889 0.922 0.890 0.924 

-1.00 0.889 0.894 0.920 0.893 0.920 

LAV 

None None 0.870 0.894 0.931 0.896 0.933 

25% 

-0.25 0.871 0.893 0.930 0.895 0.932 

-0.50 0.872 0.895 0.931 0.897 0.933 

-1.00 0.872 0.896 0.932 0.899 0.935 

50% 

-0.25 0.872 0.891 0.926 0.893 0.928 

-0.50 0.879 0.894 0.926 0.896 0.929 

-1.00 0.897 0.903 0.929 0.905 0.932 

CC 

None None 0.867 0.893 0.932 0.895 0.934 

25% 

-0.25 0.867 0.890 0.928 0.892 0.930 

-0.50 0.868 0.888 0.925 0.890 0.926 

-1.00 0.870 0.884 0.917 0.885 0.919 

50% 

-0.25 0.867 0.887 0.925 0.889 0.927 

-0.50 0.868 0.882 0.918 0.884 0.920 

-1.00 0.874 0.874 0.902 0.876 0.904 

FPC 

None None 0.869 0.895 0.933 0.897 0.935 

25% 

-0.25 0.869 0.892 0.929 0.894 0.931 

-0.50 0.870 0.890 0.926 0.892 0.929 

-1.00 0.873 0.887 0.922 0.889 0.924 

50% 

-0.25 0.870 0.889 0.926 0.892 0.928 

-0.50 0.871 0.885 0.920 0.888 0.922 

-1.00 0.876 0.880 0.910 0.883 0.913 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Figure 71. Bias Values for Classification Consistency – 1,000 Examinees. 
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Figure 72. SE Values for Classification Consistency – 1,000 Examinees. 
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Figure 73. RMSE Values for Classification Consistency – 1,000 Examinees. 
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Figure 74. Bias Values for Classification Consistency – 3,000 Examinees. 
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Figure 75. SE Values for Classification Consistency – 3,000 Examinees. 
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Figure 76. RMSE Values for Classification Consistency – 3,000 Examinees. 
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 Linking Method Comparison. The simulation results presented in the preceding 

sections are summarized below. Tables 14 and 15 represent the linking methods that 

yielded the smallest value of RMSE for a particular condition. In some instances, 

multiple methods performed similarly, and differences could not be separated. These 

findings can be used by practitioners and researchers to determine which linking method 

might be the most useful when confronted with drift. Interpretation of these findings can 

be found in the discussion section. 
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Table 14 

Summary of Simulation Results – 1,000 Examinees 

 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0,1) N(0.5,1) N(1,1) S(0.5,1) S(1,1) 

 None None SC SC FPC SC SC 

Linking 

Constant 

A 

25% 

-0.25 SC SC/FPC FPC SC SC/FPC 

-0.50 SC/FPC FPC FPC FPC FPC 

-1.00 FPC FPC FPC FPC FPC 

50% 

-0.25 SC FPC FPC SC/FPC SC/FPC 

-0.50 SL/FPC FPC FPC FPC FPC 

-1.00 FPC/CC FPC FPC FPC FPC 

Linking 

Constant 

B 

None None SC/FPC FPC/CC FPC ALL FPC 

25% 

-0.25 CC SC SC/FPC SC SL/HB 

-0.50 LAV LAV SL/HB LAV SC 

-1.00 LAV LAV HB LAV HB 

50% 

-0.25 FPC/CC SC SC SC SC 

-0.50 LAV LAV LAV/HB LAV LAV/HB 

-1.00 LAV LAV LAV LAV LAV 

Item 

Estimate 

a 

None None ALL FPC/CC FPC/CC ALL FPC/CC 

25% 

-0.25 FPC/CC FPC/CC FPC/CC ALL FPC/CC 

-0.50 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

-1.00 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

50% 

-0.25 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

-0.50 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

-1.00 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

Item 

Estimate 

b 

None None ALL ALL FPC/CC ALL FPC/CC 

25% 

-0.25 ALL ALL FPC ALL FPC 

-0.50 LAV LAV/FPC FPC LAV/FPC FPC 

-1.00 LAV LAV LAV LAV LAV 

50% 

-0.25 ALL FPC/CC FPC FPC FPC 

-0.50 LAV FPC FPC LAV/FPC FPC 

-1.00 LAV LAV LAV LAV LAV 

Item 

Estimate 

c 

None None ALL ALL ALL ALL ALL 

25% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 ALL ALL ALL ALL ALL 

50% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 ALL ALL ALL ALL ALL 

SC = Separate Calibration (SL/HB/LAV); CC = Concurrent Calibration; FPC = Fixed Parameter 

Calibration; SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; ALL = All five linking 

methods 
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Table 14 continued 

Summary of Simulation Results – 1,000 Examinees 

 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0,1) N(0.5,1) N(1,1) S(0.5,1) S(1,1) 

 None None SC SC FPC SC SC 

True 

Scores 

25% 

-0.25 SC SC/FPC FPC SC SC/FPC 

-0.50 SC/FPC FPC FPC FPC FPC 

-1.00 FPC FPC FPC FPC FPC 

50% 

-0.25 SC FPC FPC SC/FPC SC/FPC 

-0.50 SL/FPC FPC FPC FPC FPC 

-1.00 FPC/CC FPC FPC FPC FPC 

Observed 

Scores 

None None SC/FPC FPC/CC FPC ALL FPC 

25% 

-0.25 CC SC SC/FPC SC SL/HB 

-0.50 LAV LAV SL/HB LAV SC 

-1.00 LAV LAV HB LAV HB 

50% 

-0.25 FPC/CC SC SC SC SC 

-0.50 LAV LAV LAV/HB LAV LAV/HB 

-1.00 LAV LAV LAV LAV LAV 

Accuracy None None ALL FPC/CC FPC/CC ALL FPC/CC 

25% 

-0.25 FPC/CC FPC/CC FPC/CC ALL FPC/CC 

-0.50 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

-1.00 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

50% 

-0.25 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

-0.50 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

-1.00 FPC/CC FPC/CC FPC/CC FPC/CC FPC/CC 

Consist-

ency 

None None ALL ALL FPC/CC ALL FPC/CC 

25% 

-0.25 ALL ALL FPC ALL FPC 

-0.50 LAV LAV/FPC FPC LAV/FPC FPC 

-1.00 LAV LAV LAV LAV LAV 

50% 

-0.25 ALL FPC/CC FPC FPC FPC 

-0.50 LAV FPC FPC LAV/FPC FPC 

-1.00 LAV LAV LAV LAV LAV 

SC = Separate Calibration (SL/HB/LAV); CC = Concurrent Calibration; FPC = Fixed Parameter 

Calibration; SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; ALL = All five linking 

methods 

 

 

 

  



 

196 

Table 15 

Summary of Simulation Results – 3,000 Examinees 

 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0,1) N(0.5,1) N(1,1) S(0.5,1) S(1,1) 

 None None SC SC/FPC FPC SC/FPC SC/FPC 

Linking 

Constant 

A 

25% 

-0.25 SC/FPC FPC FPC/CC FPC SC/FPC 

-0.50 FPC FPC/CC FPC/CC FPC/CC SL/FPC 

-1.00 CC CC CC CC FPC/CC 

50% 

-0.25 FPC FPC FPC/CC ALL FPC 

-0.50 FPC/CC FPC/CC FPC/CC FPC/CC FPC 

-1.00 CC CC CC CC CC 

Linking 

Constant 

B 

None None ALL ALL FPC/CC ALL SC/FPC 

25% 

-0.25 LAV/CC SC SC LAV SC 

-0.50 LAV LAV LAV/HB LAV LAV 

-1.00 LAV LAV LAV/HB LAV LAV 

50% 

-0.25 ALL LAV/HB SC LAV/HB LAV/HB 

-0.50 LAV LAV LAV LAV LAV 

-1.00 LAV LAV LAV LAV LAV 

Item 

Estimate 

a 

None None ALL FPC/CC FPC/CC ALL ALL 

25% 

-0.25 ALL FPC/CC FPC/CC ALL ALL 

-0.50 FPC/CC FPC/CC FPC/CC ALL ALL 

-1.00 CC CC CC CC CC 

50% 

-0.25 FPC/CC FPC/CC FPC/CC ALL ALL 

-0.50 FPC/CC CC CC CC CC 

-1.00 CC CC CC CC CC 

Item 

Estimate 

b 

None None ALL FPC/CC FPC/CC ALL FPC/CC 

25% 

-0.25 LAV FPC/CC FPC/CC LAV/FPC FPC/CC 

-0.50 LAV LAV LAV/FPC LAV LAV 

-1.00 LAV LAV LAV LAV LAV 

50% 

-0.25 ALL FPC/CC FPC/CC LAV/FPC FPC/CC 

-0.50 LAV LAV FPC LAV LAV/FPC 

-1.00 LAV LAV LAV LAV LAV 

Item 

Estimate 

c 

None None ALL ALL ALL ALL ALL 

25% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 ALL ALL ALL ALL ALL 

50% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 ALL ALL ALL ALL ALL 

SC = Separate Calibration (SL/HB/LAV); CC = Concurrent Calibration; FPC = Fixed Parameter 

Calibration; SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; ALL = All five linking 

methods 
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Table 15 continued 

Summary of Simulation Results – 3,000 Examinees 

 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0,1) N(0.5,1) N(1,1) S(0.5,1) S(1,1) 

 None None FPC FPC FPC FPC SL/HB 

True 

Scores 

25% 

-0.25 LAV FPC FPC LAV LAV 

-0.50 LAV LAV LAV LAV LAV 

-1.00 LAV LAV LAV LAV LAV 

50% 

-0.25 HB LAV/HB FPC LAV LAV/HB 

-0.50 LAV LAV LAV LAV LAV 

-1.00 HB LAV LAV LAV LAV 

Observed 

Scores 

None None FPC FPC FPC CC HB 

25% 

-0.25 LAV FPC FPC LAV LAV 

-0.50 LAV LAV FPC LAV LAV 

-1.00 LAV LAV LAV LAV LAV 

50% 

-0.25 HB/CC HB/LAV FPC LAV HB/LAV 

-0.50 LAV LAV LAV LAV LAV 

-1.00 SL/HB LAV LAV LAV LAV 

Accuracy None None ALL ALL ALL ALL ALL 

25% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 ALL ALL ALL ALL ALL 

50% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 LAV LAV LAV LAV LAV 

Consist-

ency 

None None ALL ALL ALL ALL ALL 

25% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 ALL ALL ALL ALL ALL 

50% 

-0.25 ALL ALL ALL ALL ALL 

-0.50 ALL ALL ALL ALL ALL 

-1.00 CC/FPC HB/LAV LAV HB/LAV LAV 

SC = Separate Calibration (SL/HB/LAV); CC = Concurrent Calibration; FPC = Fixed Parameter 

Calibration; SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; ALL = All five linking 

methods 
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Empirical Analysis 

Data from two forms of a high-stakes certification program were administered. 

For this analysis, the new form was linked to the base form, and results from each linking 

method are presented. Descriptive statistics for both forms are provided in Table 16. The 

base form and the new form were both built to similar statistical specifications as 

summarized in Table 17. A list of all item parameters can be found in Appendix H. 

 

Table 16 

 

Descriptive Statistics for Test Forms 

 Base Form New Form 

 Mean (standard deviation) Mean (standard deviation) 

Total Items 110 110 

Common Items 66 66 

Number of Examinees 1,990 1,979 

Test Score 88.02 (8.80) 89.55 (9.11) 

 

Drift Detection. In order to connect the findings from the simulation study with 

that of the empirical data, it was important to determine whether any common items 

exhibited IPD. Alpha was set to 0.0007 (.05/66 common items) with the Bonferroni 

correction in order not to inflate the Type I error rate. Out of 110 scored items on the test 

forms, there were a total of 66 common items shared between forms. Among the 66 

common items, eight (12%) were flagged for drift using the backward likelihood ratio 

test in the mirt package. Five of the eight drifted items appeared to become easier over 

time, which should be expected considering that most of the reasons for drift result in 

items becoming easier. The average difference between the base form and new form  
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Table 17 

Item Estimates for Test Forms 

 Base Form New Form 

 Mean Standard 

Deviation 

Mean Standard 

Deviation 

Common Items     

     Discrimination 0.797 0.293 0.797 0.293 

     Difficulty -1.908 1.656 -1.908 1.656 

     Pseudo-guessing 0.310 0.041 0.310 0.041 

Unique Items     

     Discrimination 0.649 0.274 0.750 0.217 

     Difficulty -1.582 2.598 -2.012 2.161 

     Pseudo-guessing 0.299 0.056 0.300 0.030 

All Items     

     Discrimination 0.738 0.293 0.778 0.265 

     Difficulty -1.778 2.079 -1.950 1.865 

     Pseudo-guessing 0.306 0.048 0.306 0.037 

 

difficulty (using SL estimates) for the drifted items was -0.08, which is based upon the 

cancellation of positive and negative drifting values. At this proportion and magnitude of 

drift, results from the empirical analysis are most comparable to the baseline and lowest 

drift conditions (i.e., 25% drifted items, -0.25 magnitude) in the simulation. Yet, it 

remains difficult to generalize the findings from the simulation to the empirical analysis 

due to differences in several factors (e.g., number of common items, direction of drift).  

Table 18 provides difficulty statistics using the SL method (for comparison 

purposes only) for each of the common items detected for drift. 
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Table 18 

Drift Detection for Real Data 

Common 

Item 

Base Form 

Difficulty 

New Form 

Difficulty 

Difference 

9 0.482 -0.157 -0.640 

23 1.400 0.934 -0.465 

30 -0.137 -0.717 -0.581 

38 -0.591 -0.971 -0.380 

40 -1.910 -1.670 0.240 

50 -0.267 0.234 0.501 

55 -1.027 -1.579 -0.551 

56 0.318 0.949 0.631 

 

Linking Constants.  The first research question examined linking constants A 

and B for each of the linking methods. The HB, CC, and FPC methods produced values 

of A under 1.00, while the SL and LAV methods produced values of A over 1.00. 

However, the difference between all of the linking methods was minimal – FPC had the 

smallest value of A at 0.974 and SL had the highest value at 1.011. These findings were 

anticipated because the groups linked were expected to be of equivalent ability, therefore 

linking constant A would be close to 1.00 and B would be close to 0. As can be seen in 

Table 19, each linking method returns values close to what was expected.  

Linked Item Parameter Estimates. The second research question examined the 

linked item parameter estimates for all 110 items on the new form. Figure 77 plots the 

new form linked item parameter difficulty values for the 66 common items. Table 20 

displays the mean and standard deviation of the linked item parameter estimates for each 

linking method. As can be seen in Figure 77 and Table 20, each linking method produced 

similar estimates for each item parameter. Mean discrimination values ranged from a low  
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Table 19 

Empirical Analysis of Linking Constants 

 A B 

SL 1.011 -0.081 

HB 0.986 -0.123 

LAV 1.009 -0.113 

CC 0.986 0.030 

FPC 0.974 -0.008 

 

of 0.776 by SL to 0.797 by HB. LAV had the smallest average difficulty value of -1.999 

and CC had the largest average difficulty value of -1.898. The pseudo-guessing 

parameters were nearly identical between the linking methods.  

 

 

Figure 77. Linked Item Difficulty Values by Method. 
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Table 20 

Empirical Analysis of Linked Item Parameter Estimates 

 Discrimination Difficulty Pseudo-Guessing 

 Mean Standard 

Deviation 

Mean Standard 

Deviation 

Mean Standard 

Deviation 

SL 0.776 0.263 -1.972 1.916 0.303 0.037 

HB 0.797 0.270 -1.967 1.868 0.303 0.037 

LAV 0.778 0.264 -1.999 1.911 0.303 0.037 

CC 0.788 0.273 -1.898 1.908 0.308 0.048 

FPC 0.778 0.265 -1.950 1.865 0.306 0.037 

 

Equated Scores. The third research question examined the equated scores 

obtained with IRT true score and observed score equating. Results are summarized in two 

ways. First, the mean and standard deviation of the new form (Form X) equated scores 

for each linking method are provided in Table 21. Second, difference plots that take the 

difference between the base form (Form Y) score equivalent and the new form (Form X) 

equated score are provided for IRT true score and observed equating in Figures 78 and 

79, respectively. The PIE software (Hanson & Zeng, 1995) was used for IRT true score 

and observed score equating, which provided scores below the sum of the pseudo-

guessing parameters for IRT true score equating via linear interpolation. Inspection of the 

mean equated scores (true and observed) for Form X indicated that all linking methods 

provided similar average scores and standard deviations. As can be seen in the difference 

plots, all linking methods followed the same trajectory of scores. However, a small spike 

in the IRT true score equating plot occurred at the sum of the pseudo-guessing parameters 

(approximately 33-34), where linear interpolation ended. The HB method exhibited the 
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largest differences between the base form (Form Y) score equivalent and the new form 

(Form X) score at the low end of the scale for both equated true and observed scores. At 

the higher end of the scale, for both equated true and observed scores, the HB and LAV 

methods exhibited the largest differences between the Form Y score equivalent and Form 

X. CC, FPC, and SL were nearly identical throughout most of the scale. 

 

Table 21 

 

Empirical Equating Results – Form X converted to Form Y Scale 

 True Score Observed Score 

 Mean Standard 

Deviation 

Mean Standard 

Deviation 

SL 54.16 31.26 53.94 31.31 

HB 54.15 31.13 54.03 31.04 

LAV 53.98 31.15 53.71 31.23 

CC 54.08 31.36 53.89 31.42 

FPC 54.12 31.34 53.96 31.36 
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Figure 78. Empirical Analysis of IRT True Score Equating. 
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Figure 79. Empirical Analysis of IRT Observed Score Equating. 
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Classification. The fourth and fifth research questions examined the classification 

accuracy and consistency rates using the phi coefficient. As can be seen from Table 22, 

each linking method had similar accuracy and similar consistency rates. Classification 

consistency rates were lower than classification accuracy, which is similar to other 

studies examining classification rates with IRT (e.g., Lee, 2010; Lee et al., 2002; Wyse & 

Hao, 2012).  

 

Table 22 

 

Marginal Classification Accuracy and Consistency Rates 

 Accuracy Consistency 

SL 0.899 0.859 

HB 0.896 0.864 

LAV 0.894 0.862 

CC 0.909 0.856 

FPC 0.904 0.859 

 

 Figures 80 and 81 plot the conditional classification accuracy and consistency 

rates, respectively. These plots display the probability of an examinee being classified as 

pass-pass or fail-fail based upon their expected sum score. The expected summed score 

was calculated by using the Lord and Wingersky recursion formula (1984) As can be 

seen, the conditional probability based on phi decreases as scores approach the cut score 

of 85. This occurs because error in ability estimation around the cut score may push an 

examinees’ score past the cut in one instance but pull it below the cut in another instance. 

 

 

  



 

207 

 

Figure 80. Conditional Classification Accuracy Rates. 

 

 

Figure 81. Conditional Classification Consistency Rates. 
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Validation Implications 

The standard protocol for dealing with items that exhibit drift is to remove them 

from the anchor item set or to unscore them. While this helps to improve linking and 

equating outcomes, the results from this study and previous studies indicate that drift can 

go undetected, or false positives can occur (e.g., DeMars, 2004b; Donoghue & Isham, 

1998). In order to ensure the accurate interpretation of test scores and their use, additional 

procedures are needed to help support the validity argument. Researchers have identified 

a number of reasons that could be responsible for causing items to drift over time. Yet, 

there are few resources for practitioners to consult when confronted with drift. The 

recommendations provided in Figure 82 are intended to help practitioners identify, 

address, and prevent drift from occurring.  

 

 

 

Figure 82. Recommendations for Addressing Drift. 
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Figure 82 provides a framework for how practitioners may identify the reason for 

drift occurring, as well as the procedures that can be used to address drift and prevent it 

from reoccurring. The first column on the left specifies whether the drift is positive 

(becoming harder) or negative (becoming easier). Since drift will not be identified until a 

formal detection check has occurred, this serves as a natural starting point. Based upon 

the direction of drift, the second column lists the potential reasons for drift. The list of 

reasons is based upon commonly identified sources of drift in research and practice, 

although more may exist. Citations for each of the reasons can be found in Table 1. All 

the reasons listed for drift becoming harder are also reasons for why drift could become 

easier. Six additional reasons are listed, all of which are exclusive to drift becoming 

easier. The final column lists the procedures that can be used to verify which source of 

drift may have occurred. Unless there is reason to retain drifted items (e.g., content 

imbalance of anchor item set; subject matter experts advise against), the drifted items 

should be removed from the anchor item set. The procedures used to address each reason 

for drift will be expounded upon further here.  

 Curriculum changes may result in items becoming easier or harder. It is important 

to review with the client whether certain subject areas have received more attention 

(leading to items becoming easier) or less attention (items become harder). The reason for 

the shift in attention may be driven by changes in policy (Goldstein, 1983) or emphasis 

by teachers or textbooks (Bock et al., 1988). Where possible, it would be beneficial to 

administer a survey to gauge examinees’ perceptions on how much their study materials 
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(e.g., classroom or textbook) covered material presented on an exam. Subject matter 

experts may also be consulted regarding the relevance of certain topical areas.  

 Advances in technology has also shifted the focus of what examinees have been 

expected to know and what is provided to them on the exam. Goldstein (1983) documents 

how providing calculators on exams has phased out the need for mental arithmetic. If the 

use of calculators or other accessories (e.g., highlighters, instructions, change in test time) 

has been added or removed while an item is active, it is important to evaluate the item for 

drift. If drift is found, the item should be unanchored and recalibrated to the item bank. 

Although these accessories do not change the item itself, any change to the actual item 

(e.g., wording, font, response options) should be treated as a different item altogether. A 

review of the test specifications should be enough to determine whether these changes 

have been made.  

 Changes in item location have the potential to cause items to drift. Although 

Sykes and Fitzpatrick (1992) found item location did not influence drift, Kingston and 

Dorans (1984) found that certain types of items (i.e., items with extensive instructions) 

could interact with practice effects to result in drift. That is, if all items on a test have the 

same set of instructions, changing the location of the item might not induce drift (unless 

randomly presented, test developers should still fix the location as much as possible to 

avoid enemy items). However, if different items have different sets of instructions, some 

of which are more convoluted, there is the potential for drift to occur when some 

examinees are familiar with the item type and others are not.  
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If the initial item estimation is not conducted according to recommended 

conditions, then results from the calibration may be more susceptible to error (Glas, 

2000). For example, a minimum sample size of 1,000 has been recommended for use 

with the 3PL model (Hanson & Beguin, 2002). It is also important to consider seasonality 

effects (Wyse & Babcock, 2016), or changes in the populations (e.g., first-time test takers 

versus retest-takers) – where differing ability distributions can produce different item 

difficulty values. Depending upon the type of program, Wyse and Babcock (2016) found 

that certain programs (i.e., moderate sample size with or without seasonality effects) 

could conduct IRT calibration as early as eight months into the test development cycle, 

whereas others (i.e., small sample size with or without seasonality effects) would be 

better served waiting until the full exam cycle was complete. Even though testing 

companies have strict procedures for calibration, these practices may have been stretched 

during COVID-19, when testing centers were forced to close, leaving small sample sizes 

to be analyzed. Although drift is primarily considered to affect the new form being 

linked, it can operate rather insidiously if the item estimate is drifted for the bank scale. 

In this situation, the bank value is afflicted, and the subsequent pre-assembled forms will 

be easier or harder than intended. Because drift detection can produce false-positives or 

false-negatives (e.g., DeMars, 2004b; Donoghue & Isham, 1998), it is important to check 

the b-value against previous forms and bank scales to check for drift.  

Motivation is a reason why items could become easier over time. It should be 

checked if items that have been recently promoted from experimental to scored become 

easier over time (Glas, 2000). If examinees have a sense of which items are field-test and 
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which are scored, their engagement is likely to vary. Field-test items are likely to be 

treated less seriously than scored items, therefore the item might appear more difficult 

than it really is. Once that item becomes scored, examinees would have more incentive to 

take the item seriously, which may result in the item becoming easier. Practitioners 

should check the item before and after item promotion.  

Item overexposure occurs when the same item has been placed on too many forms 

leading the item to be recognized by test takers thereby losing its confidentiality (Jurich 

et al., 2012). It is important for test developers not to overuse items when new forms are 

assembled, despite desirable psychometric properties. Inspection of retest-takers and the 

number of forms the item is present on may provide an indication of whether drift may 

have occurred.  

Cheating, or a breach in security, can occur in a number of different ways (Jurich 

et al., 2012). It should first be determined whether there was widespread cheating, or if 

cheating was relegated to just a few examinees. Checking with the testing center and the 

client might provide insight into the source of the cheating (e.g., within the test center, 

social media). Widespread cheating might be detected based upon differences in 

difficulty values, as well as overall test scores. Combing through social media and brain 

dump sites (Smith, 2004) might help to reveal if exam information is being discussed 

online. If cheating is whittled down to several examinees, it is important to know if the 

examinees were seated next to each other, and whether their response options were 

similar. It is also vital to ensure that test materials are handled securely and confidentially 
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during all meetings (job analysis, standard setting), otherwise, sensitive information can 

be leaked without the knowledge of any test personnel.  

Although no test-takers should be penalized for being test-savvy, items should be 

reviewed to determine whether there are any obvious contextual clues that are causing the 

item to perform differently. Messick (1989) suggested that certain clues (e.g., length or 

response options) may unintentionally give away the correct answer to test-takers. Items 

can be screened for these problems during item writing, item review, and calibration as a 

field-test item. Test preparation courses may also give examinees test-taking tips that lead 

to drift (e.g., methods to attack items with “all of the above” response options).  

The last reason listed is the potential for current news and media to provide 

attention to certain topics. O’Neill et al. (2013) provide an example of how a question 

about HIV was an arcane immunology topic in 1986 but became a current event in 1992 

after an outbreak of cases. Thus, the extra attention provided to the topic would help to 

increase awareness of HIV and make the item easier over time. Subject areas such as law, 

medicine, or technology are more likely to change rapidly based upon new laws or 

discoveries that become available.  

Failure to address drift may lead to negative consequences regardless of the 

direction of drift. For instance, examinees that encounter items that drift harder are 

unfairly penalized and may fail as a result. In turn, the examinee will have to invest more 

time and financial resources when restudying. The examinee might decide not to restudy 

and consider other school or career resources. Alternatively, examinees will benefit from 

items that drift easier, giving them an unfair advantage, which may help them pass. 
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Although this seems positive for the examinee, whether it be student or employee, it has 

the potential to harm the examinee and the organization sponsoring them. For example, a 

student that gains admission to a university or advanced placement in a class may end up 

struggling and need remedial help. On the other hand, an employee such as a doctor or 

lawyer might be at greater risk for harming a patient, client, or organization since he or 

she does not meet the minimal competence criteria.     

 Addressing Drift Using Kane’s Argument-Based Approach. Chapter 2 

discussed how drift affects the validity argument for the use of test scores and their 

interpretation according to Kane’s (2006, 2013) argument-based approach. This section 

provides practitioners with an example of creating an IUA and validity argument when 

confronted with drift. The example illustrates how to construct an argument for the use of 

test scores on a hypothetical licensure exam using Kane’s framework. The statement of 

the intended interpretation for test scores on this hypothetical licensure exam is that an 

examinee’s score on the exam meets the performance standard required for professional 

practice. As a result, the examinee can practice as a licensed professional. This statement 

can be seen below in Figure 83.  

 

 

 

Figure 83. Intended Interpretation of Test Scores for a Licensure Exam. 
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This claim is then evaluated using Kane’s IUA and validity argument, whose 

framework is illustrated in Figure 84 and has been adapted from Chapelle et al. (2010). 

The first column lists the four inferences (from Figure 1) required to claim that test scores 

from the licensure exam are useful for making decisions about whether examinees 

display at least minimal competence for an entry-level position. The second column lists 

the warrant that explains the information required to validate each inference. The warrant 

is composed by assumptions (third column) and backing (fourth column) that lists the 

requirements to be met, and the empirical analysis conducted to verify the requirements, 

respectively. It is important to note that the assumptions and backing listed in this 

example only apply to what IPD has the possibility of influencing. For example, one 

assumption that is not listed below for the scoring inference is – that rubrics for scoring 

essays are appropriate for demonstrating varying levels of proficiency regarding the 

construct of interest. The backing would be that the rubric for scoring essays was 

reviewed by experts. The actual argument would be much longer than what is listed 

below and would also include alternative hypotheses or rebuttals that threaten the validity 

argument. Although this example might be considered overly simplistic or unrealistic, it 

is meant to serve as a template for how a practitioner might choose to deal with different 

types of drift.   
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Figure 84. Example of Addressing IPD using Kane’s Validity Argument. 

 

 

Starting with the scoring inference – which requires that testing conditions, 

procedures, and scoring are accurate – contains two assumptions that could be affected by 

drift. The first is that the statistical characteristics of items and forms are appropriate. The 

backing requires that both DIF and IPD analyses be performed. For this example, IPD 

detection revealed that several items had been affected, several of which were removed 

from the anchor set – which is standard operation procedure (Standards, p. 98). However, 

several items also had to be unscored because of evidence of item overexposure. Un-

scoring items due to overexposure would be a drastic measure to take, especially because 

examinees may have been better prepared for these items, or they correctly answered the 

items due to chance. But if the test specifications reveal that particular items are being 
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routinely used, then this may be the appropriate action, especially when considering the 

evidence from generalization. Before moving to generalization, the second assumption 

states that the appropriate linking and equating procedures are used. The backing for this 

assumption entails that a cut score had already been established for the new form based 

upon pre-equating with FPC. Had no drift been detected, no action would be required. 

However, the items that drifted require re-estimation for the item bank (Standards, p. 

103). Additionally, the un-scoring of items precipitated the need for the cut score to be 

re-estimated (assuming a withholding of scores). These procedures help to ensure that 

practitioners took the necessary measures to ensure that scores for all examinees are 

fairly treated. 

 The generalization inference suggests that the observed scores from the test are 

what we would expect if the examinee took the test at another occasion using a different 

form, different raters, or different items. The first assumption is that the tasks/items are 

appropriate for intended interpretations. To substantiate this assumption, the practitioner 

found that not only was the item used on many test forms, but that the location of the 

item changed between the most recent forms (Standards, p. 85-86). The prior form placed 

the items at the end of the exam, while the new form placed the same items at the 

beginning of the exam, which may have enabled a recall effect. The second assumption 

also required that the appropriate linking and equating procedures were used (Standards, 

p. 97-98). Given that the new form testing window was July, and the prior form was 

administered in May, an inspection of the test takers may have revealed that the 

populations had very different ability levels. The May population had a higher proportion 
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of first-time graduates, while the July population had more retest takers. These reasons 

combined help to substantiate why several items unanchored and unscored. 

 In the extrapolation inference, the knowledge being measured should be an 

accurate reflection of the performance required in practice instead of construct-irrelevant 

sources. These sources should be investigated by the test developer and minimized where 

possible (Standards, p. 90). Because drift was present, and performance differences were 

found between re-testers and first time graduates, it could be assumed that re-testers had 

prior knowledge of the items, indicating that their performance was not just a reflection 

of their ability, but of their familiarity with the exam. This provided the re-testers with an 

unfair advantage over first time graduates.  

 In the utilization inference, the score estimates should reflect the examinees’ 

ability level accurately to make an informed decision about whether minimal competence 

was met. The first assumption holds that the test scores are accurate, interpretable, and 

suitable for making decisions – this was substantiated by removing and un-scoring 

several items. The second assumption suggests the need for an evaluation of unintended 

consequences from the examinees (Standards, p. 30-31). This could facilitate the need for 

long-term follow up through surveys, interviews, or other measures. These measures 

would look to determine if the examinees who passed had any subsequent violations, 

code of misconduct, or other infractions as a result of their performance. A correlational 

study could determine whether there is a relation between test score and future 

misconduct. Within the context of licensure, which tests an examinees competence at the 
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time of the test, these longitudinal follow-ups are unlikely to occur, but they still 

represent a possibility.  

 In summary, this example may not depict a realistic scenario because drift is hard 

to detect, and even harder to determine the reason for. However, this is an illustration of 

procedures that can be used if drift is present. Furthermore, it provides an example of 

how the validity argument for test scores can be strengthened or hindered by drift. 

Addressing Drift Using the Standards. Although Kane’s approach to validation 

has been widely praised, particularly in language testing, the Standards remains the most 

renowned resource for guidance on testing. This section examines the criteria most 

relevant to handling drift when constructing a validity argument according to the 

Standards’ five sources of validity evidence. Using the same example and intended 

interpretation (Figure 83), the validity argument according to the Standards can be found 

in Figure 85.  
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Figure 85. Example of Addressing IPD using the Standards.  

 

 

As can be seen in Figure 85, each of the five sources of evidence occupy a 

column. Underneath each source of evidence are the requisite criteria that can be used to 

support the validity argument. Before unpacking each standard, it is important to note 

that this example only includes the standards that may be applicable to IPD. Additional 

claims must be made to defend the use of test scores for a specific purpose (e.g., the test 

content is representative of the domain of practice).  

 Four standards were listed under test content that have relevance to IPD. Standard 

4.2 speaks to the test specifications, particularly ensuring that forms are built to the same 

statistical specifications and that items are presented in the same order as other forms. 
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Placing items in different locations on different forms could create context effects, 

especially if there are multiple item types. Expert judges can be used to review items as 

part of sensitivity review boards (Standard 4.8). Of primary relevance to drift is whether 

certain language may have changed over time. Standard 4.10 places responsibility on test 

developers for assembling or developing forms that contain items without DIF and IPD. 

Standard 4.24 suggests that test developers need to consider whether the content of the 

examination reflects the current domain of practice or whether the curriculum is outdated.  

 As it pertains to response processes, Standard 1.12 discusses procedures that can 

be taken when there is suspicion of cheating. Although cheating can be difficult to prove, 

an analysis of eye movements could reveal whether an examinee is looking over at 

another exam booklet or computer screen. Quick response times might also indicate that 

an item was not actually read, but that an examinee suspected of cheating looked at 

someone else’s answers. Standard 6.6 expands upon 1.12 by justifying the use of 

technology to detect cheating through the use of similar erasure or answer patterns. 

Unusual item parameter shifts are a direct reference to drift and alludes to the fact that a 

drastic change in item difficulty could indicate that an item has been compromised. 

 Internal structure is the source of evidence for which IPD and DIF apply to the 

most. This is because detection of IPD and DIF occurs during scoring. Some of the 

particular standards that apply include Standard 5.6 – that the stability of the scale be 

maintained over time. Item banks should be recalibrated every time there is a new job 

analysis, but they may require more frequent updating. This would be true especially for 

medical or law fields, where certain items may behave differently due to new discoveries 
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or laws. Standard 5.15 speaks to drift within the context of linking and equating. The 

most commonly used data collection design is the CINEG, and the common items 

comprised in both forms should be statistically similar between each other, and as a 

microcosm of their own respective forms. Standard 5.19 is similar to Standard 4.2 in that 

it speaks specifically to context effects and the importance of item location, mindfulness 

of fatigue for longer tests, and consideration of adaptive tests (e.g., item overexposure 

rules, ensuring content balance). Standard 5.19 also speaks to ensuring that items 

promoted from the field-test stage exhibit the same properties as scored items.  

 A couple of standards can be placed under external relations. Standard 4.13 says 

that the test developer may consider correlational analyses to provide convergent 

evidence for constructs that are similar and discriminant evidence from dissimilar 

constructs. Standard 5.23 attests to the importance of ensuring that cut scores have clearly 

defined categories, possibly through empirical data relating test performance to a 

particular criterion. The standard also suggests that this information can be hard to obtain 

in credentialing, because these tests are not meant to be predictors of future performance. 

However, this information can be built into the standard setting process by ensuring that 

experts understand the difference between not competent, minimally competent, and 

competent. This understanding will help standard setting participants come up with a cut 

score that reflects minimal competence.  

 The last source of evidence concerns consequences arising from decisions made 

from test scores. Standard 1.25 touches upon investigating whether the score derived 

from the test reflects the construct of interest, or whether there is variance from another 
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source that is contributing to this score. One example would be if an exam contained only 

a few items that included a picture, re-testers may begin to get these items correct simply 

by memorizing them, as opposed to reflecting their knowledge of the exam. Standard 

11.16 speaks to the nature of credentialing exams, that an examinee should pass if he or 

she meets the performance standard set by the standard setting. It also implies that even 

though the cut score might change depending upon form, that the equating procedure 

used will ensure that the performance standard remains the same for all examinees. This 

cannot be accomplished if there are items that exhibit IPD or DIF.  

 Extending Drift to Different Testing Contexts. This study has focused on the 

impact of drift for fixed form tests with dichotomously scored items. However, many 

other modalities of testing (e.g., computer-adaptive, multistage, web-based) with 

polytomously scored items are becoming more prevalent. Little research has been 

conducted on drift in these testing applications, with even less attention on validity. This 

section discusses how drift might affect the validity argument under different testing 

circumstances using a couple different examples.  

 When constructing a validity argument, the first step is always to make a claim 

for the intended use and interpretation of test scores. Once this claim has been made, the 

evidence needed to support the claim can be laid out. Readers are encouraged to consult 

the Standards five sources of validity evidence, Kane’s argument-based approach (2006, 

2013), or another validation framework that can be used to organize the evidence 

required to support their claim.  
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 The use of passage-based or testlet-type items, a group of items with the same 

content, are most often observed in computer adaptive or multistage testing but may exist 

in other modalities. When presented in the context of IRT, practitioners should check that 

the assumption of local independence has not been violated. A violation of local 

independence could be attributed to an examinee having prior knowledge of a particular 

subject area; hence their responses would be reflective of their familiarity with the 

subject instead of their actual ability. One way to handle this issue is to use relevant 

subgroups in validity, reliability, and other studies when constructing the test (Standards, 

p. 64). Commentary from Standard 3.3 states that expert and sensitivity reviews can 

guard against construct-irrelevant context that may be more familiar to some than others 

(p. 64). Testlets, and other types of polytomously-scored items may also be used as 

anchor items for linking and equating purposes. It is important that these items be 

screened for drift, as inclusion of these items can have deleterious effects on linking and 

equating outcomes (Li, 2012).  

 Computer adaptive (CAT) or computer adaptive multistage testing (CA-MST) are 

two types of test modalities that have been increasingly used over the years. These tests 

are known for being more efficient in arriving at a test-taker’s ability, but they also have 

unique challenges to consider. CAT or CA-MST’s must ensure that examinees receive 

items from a different number of content areas, while also ensuring that the same items 

are not overexposed, which can lead to drift. This is reflected in Standard 4.3, which 

states that evidence should be documented for administration, scoring, and reporting rules 

in computer-adaptive and multistage-adaptive exams, including procedures for selecting 
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items or sets of items and controlling item exposure (Standards, p. 86). Procedures for 

selecting items are based upon the algorithms or item exposure controls used in the 

adaptive test. These algorithms and controls will work the best when there is a large item 

bank, or multiple item banks upon which to select items or item panels from (Luecht, 

2014). When the algorithms are used to score complex examinee responses, theoretical 

and empirical rationale should be provided for responses at each score level (Standard 

4.19, Standards, p. 91). For example, in a certification test, most of the items should be 

targeted at the performance standard so that a defensible decision (pass/fail) can be made 

about the examinee. However, in an educational placement test, where multiple cut 

scores are used to designate examinee performance, it is important for items to cover the 

entire range of the scale. Psychometrically defensible decisions need to be made for all 

examinees, ranging from “basic” to “advanced.” Similar to Standard 4.19, Standard 5.16 

also adds that the scores have comparable meaning over different sets of test items. 

Unlike fixed form tests, where items can be reviewed before or after administration, the 

same luxury does not apply to CATs because they are scored live. Instead, much of the 

effort to review items needs to be conducted to the item bank before it goes live (Luecht 

& Nungester, 1998). Therefore, additional evidence for the validity argument is required 

with CATs during the test design and development stage, with additional safeguards for 

automated algorithms and item exposure rates. 
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CHAPTER V 

DISCUSSION 

  

The current study examined the impact of IPD on five IRT linking methods. 

There were three major aims of this research: (1) to discuss implications of the impact of 

IPD in simulated and empirical datasets; (2) to identify which IRT linking method was 

most robust under different conditions of drift; and (3) to strengthen the validity 

argument made for the use of test scores by providing recommendations to practitioners 

confronted with IPD.  

Study Findings and Conclusions 

Several conclusions can be drawn from the results. First, the findings here are 

consistent with other studies, that have identified the magnitude of drifted items to have 

more of an effect on linking and equating outcomes than the proportion of drifted items 

(e.g., Kopp & Jones, 2020; Li, 2012; Risk, 2016). Studies examining the effect of drift 

using the Rasch model identified 0.50 logits as problematic (e.g., Draba, 1977; Kopp & 

Jones, 2020; Wright & Douglas; 1976). However, studies examining drift using the 3PL 

model have not specified a minimum threshold of drift magnitude that is problematic, 

though the recovery of parameter estimates and equated scores are negatively affected as 

drift increases (Hu et al., 2008; Jurich et al., 2012; Vukmirovic et al., 2003). Results from 

this study suggest that with an adequate sample size (3,000 per form), and a minimal 
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amount of drifted items (25% common items), 0.25 appears to be the threshold for which 

equated scores could begin to exceed the DTM threshold. This is due to the snowball 

effect that drift has on the linking constants, which affects the item parameter estimates, 

and then the equated scores. An increase in the magnitude of drift, or the proportion of 

drifted items (at the 0.50 magnitude), is subject to more severe consequences of one 

equated score point or more. However, the conditions of this simulation were 

unidirectional to represent a worst-case scenario. If confronted with multidirectional drift 

(as in the empirical analysis), the effects of drift on item parameter estimates may be 

washed out by the positive and negative values of drift. Furthermore, using a weighted 

RMSE may have provided more favorable equating results that would increase the 

threshold for which drift would exceed the DTM threshold. 

Second, several studies have suggested that ability distributions have little effect 

on linking and equating outcomes when drift is present (e.g., He et al., 2015; Li, 2012; 

Witt et al., 2003). However, findings from this study indicate that ability distributions do 

have an impact on outcomes, consistent with other studies (e.g., Hu et al., 2008; Jurich et 

al., 2012). In some instances, the increase in ability distributions led to more profound 

effects in RMSE (i.e., linking constant A, linked difficulty estimates), and in other 

instances, the increase in ability distributions (mainly skewed) led to attenuated effects 

(i.e., linking constant B, equated scores). When the effects of drift were alleviated, a 

ceiling effect may have occurred, whereby the influence of drift did not benefit the 

examinees that already exhibited higher abilities (Jurich et al. 2012). In particular, FPC 

often produced the smallest values of RMSE of any linking methods under the N(1,1) 
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distribution. This was the most interesting finding, as most studies have found FPC to 

perform worse under differing ability distributions (e.g., Hu et al., 2008; Kim, 2006; 

Wollack et al., 2006). However, Keller and Keller (2011) found FPC was better at 

handling skewed ability distributions and was most suitable for changes in ability. Li et 

al. (1997) found that FPC produced more stable parameter estimates than SL under 

normal, negatively-skewed, and positively-skewed ability distributions. 

Third, there was no single linking method that universally performed better than 

the others. But, the LAV method was the most consistent at returning the smallest RMSE 

values across linking constant B, item estimate b, and classification, especially for the 

highest magnitudes of drift (50% drifted items, -0.50 and -1.00 magnitudes of drift). On 

the other hand, the LAV method was most susceptible to linking constant A and item 

estimate a. Studies from the authors (i.e., He & Cui, 2020; He et al., 2015) found LAV to 

recover both linking constants and IRT equated true scores similar to or better than SL 

under the presence of one to three drifted items. This study was the first to compare the 

LAV to linking methods beyond SL, and with greater amounts of drifted items and 

magnitude. The LAV performed exceptionally well despite slightly elevated levels of SE, 

as values of RMSE and bias often remained unchanged. This may have been due to the 

weight function used to handle outliers. Items that exhibit drift are weighted less during 

the linking process thereby alleviating the impact of drift. Since drift was only 

manipulated in the difficulty parameter, the LAV may have accurately recovered the 

difficulty parameter at the expense of the discrimination parameter. More studies should 
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be conducted to evaluate its performance, and extend to usage with other models (e.g., 

Rasch, 2PL, GRM) and conditions.  

Fourth, studies comparing SL to HB with and without drift have reported no 

difference between the two (e.g., Hanson & Beguin, 2002; Jurich et al., 2012; Keller & 

Keller, 2011; Kim & Kolen, 2007; Lee & Ban, 2010; Li et al., 2012; Sukin & Keller, 

2008). These methods were not heavily reported on during this investigation because they 

were neither exceptionally good nor bad. In most conditions, the performance of the two 

methods was very similar, consistent with the aforementioned studies. Results from each 

research question are discussed in more detail in the following paragraphs. 

 Drift Detection. The focus of this study was not in examining drift detection 

methods, yet it was still important to determine whether the drift that was simulated was 

flagged and to what extent. Results from the likelihood ratio test indicated that when no 

drift was present, drift was detected no more than what would be expected based upon 

chance alone, which is consistent with several studies (e.g., DeMars, 2004b; Donoghue & 

Isham, 1998). The percentage of correct detections increased as the level of drift 

magnitude intensified, regardless of ability distribution, which was to be expected. The 

power to detect drift increased as sample size increased, which was also to be expected. 

However, drift detection slightly decreased as the ability of examinees increased. This is 

probably because examinees with high abilities were already expected to answer 

questions correct, regardless of whether or not the item drifted. But, most examinees 

(high and low ability) were able to answer these items correctly due to drift, which would 

lead to less discriminatory power and less detection power. 
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 Results from the empirical analysis revealed eight (12%) of the 66 common items 

to drift. Five of these common items (63%) drifted easier, which is to be expected given 

that most occurrences of drift result in items becoming easier. This level of drift was most 

similar to the no drift or small drift conditions (25% drifted item, -0.25 magnitude). Best 

practice would be to review these items with the client and determine whether these items 

can be unanchored from the common item set. Further investigation should attempt to 

reveal reasons for why these items may have drifted.  

Research Question 1: Linking Constants. Drift had a differential effect on the 

linking methods, such that the separate calibration methods underestimated linking 

constant A, while CC and FPC overestimated A. As drift increased in percentage of items 

and magnitude, greater values of bias and RMSE were observed. These findings for SL 

are consistent with Han (2008) and mostly consistent with Jurich et al. (2012), who found 

that SL underestimated linking constant A and was recovered less accurately (via bias and 

RMSE) as drift magnitude and the percentage of cheaters increased. Unlike this study, Li 

(2012) found that the RMSE of linking constant A did not change as the number of 

drifted items and magnitude of drift increased. Since a-drift was not manipulated, the 

findings from this study suggest that b-drift has the potential to affect linking constant A. 

This could occur due to a couple of reasons. One is that as the difficulty parameter 

changes due to drift, the variance increases and causes linking constant A to increase as 

well (Han, 2008). On the other hand, linking constant A could decrease because more 

examinees are answering items correctly, which diminishes the discriminatory power 

(discrimination estimate) of the anchor items on the new form (Jurich et al., 2012). 
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All linking methods tended to overestimate linking constant B, and values of bias 

and RMSE increased as drift magnitude increased, which is consistent with other studies 

examining unidirectional drift (Han, 2008; Jurich et al. 2012; Li, 2012). However, as both 

drift and ability increased, RMSE values decreased because there were fewer examinees 

that could benefit from the drift. That is, drift did not change the probability that 

examinees would get an item correct because they were already likely to answer the item 

correctly. 

Overall, FPC and CC most accurately recovered linking constant A, while the 

LAV method most accurately recovered linking constant B, particularly at higher 

magnitudes of drift. Studies examining the LAV method (i.e., He & Cui, 2020; He et al., 

2015) have found the LAV to perform similar to, or better than, the SL method in the 

presence of drift for both linking constants and IRT true score equating. By extension of 

this dissertation, the LAV method more accurately recovered linking constant B than the 

SL, HB, CC, and FPC methods. However, caution should be taken, as the linking 

constants derived from CC and FPC were based upon estimates from the new group 

ability distribution, which takes the performance on all items into account. The linking 

constants from the separate calibration methods were extracted only from the anchor 

items. Thus, the comparison was not identical between all linking methods.  

Research Question 2: Linked Item Parameter Estimates. As mentioned by 

Han (2008), item parameter estimates can be directly affected from drift, or indirectly 

affected through the linking constants. It is no surprise then, that the findings for the 

recovery of the item estimates are consistent with those found for the linking constants. 
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Bias and RMSE values for both discrimination and difficulty increased as the percentage 

of drifted common items and drift magnitude increased, which is consistent with several 

studies (e.g., Han, 2008; Kopp & Jones, 2020; Li, 2012; Risk, 2016). CC and FPC most 

accurately recovered a and LAV most accurately recovered b, although FPC appeared to 

be most robust at the highest ability distributions – N(1,1) and S(1,1). To date, no studies 

have compared the performance of the LAV to FPC or CC, let alone the recovery of item 

estimates. So, there is no basis for comparison. However, Keller and Keller (2015) found 

that ability was recovered more accurately by CC and FPC compared to SL. The authors 

concluded that CC produced more stable results than SL. Chen (2013) found that FPC 

and SL performed better than CC in the recovery of theta, but CC was comparable when 

drifted items were removed from linking.  

 The finding that FPC was most robust to differing ability distributions is 

unexpected considering that studies (e.g., Hu et al., 2008; Kim, 2006; Wollack et al., 

2006) have found FPC to be more sensitive to changes in ability distributions when 

recovering ability or item parameter estimates. Other studies have reported ability 

differences to have no effect on linking and equating (e.g., He et al., 2015; Li, 2012; Witt 

et al., 2003) although these studies did not observe ability differences greater than 0.60. 

However, Kim (2006) reported similar b-ARMSE values between the N(0, 1) and N(1, 1) 

distributions. Studies by Keller and Keller (2011) and Li et al. (1997) also provided 

support for the robustness of FPC under differing ability distributions. 

Research Question 3. Equated Scores. Although conclusions can be drawn 

about which linking method most accurately recovered equated scores, every linking 
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method exceeded or nearly exceeded the DTM threshold of 0.5 for RMSE with the 

exception of the baseline condition – no drift, N(0,1) for the 3,000 sample size. These 

values increased as the proportion of drifted items and drift magnitude increased, which 

is consistent with other studies (e.g., Hu et al., 2008; Jurich et al., 2012; Kopp & Jones, 

2020; Li, 2012; Risk, 2016). For practical purposes, these results would indicate that 

equated scores are subject to differences of one score point or more when ability 

distributions greatly differ and when drift is present. However, the recovery of equated 

scores would have improved if a weighted RMSE were used, which would increase the 

threshold for which drift affects equated scores. Nevertheless, values of bias were lowest 

for the LAV for nearly all equated scores except under N(1,1), where FPC typically 

yielded the smallest bias. These findings follow the same pattern as the results for the 

linking constants and item estimates.  

Few studies have examined the LAV since it is a relatively new linking method 

introduced by He et al. (2015). Their findings (i.e., He & Cui, 2020; He et al., 2015) have 

indicated that the LAV produced RMSE and bias values smaller than SL for the recovery 

of linking constants and IRT true score equating in the presence of drift. Hu et al. (2008) 

found that CC and FPC recovered IRT true scores better than SL in the presence of drift 

when groups were equivalent; no linking method stood out in the presence of drift when 

groups were non-equivalent. Jurich et al. (2012) found no difference in the recovery of 

IRT true scores in the presence of drift for SL, HB, or FPC. Arce-Ferrer and Bulut (2017) 

found that SL produced equated cut scores with more precision than CC. The disparity in 
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findings illustrates how drift has a profound effect on equated scores and must be 

appropriately detected and removed.   

Research Question 4. Classification Accuracy. Unlike equated scores, which 

were highly influenced by drift, all linking methods exhibited similar classification 

accuracy rates that were low in bias, SE, and RMSE. Only under the most extreme 

condition of drift (50% drifted items, -1.00 magnitude) did the LAV appear to retain a 

classification accuracy rate closer to the true classification rate. Sukin & Keller (2008) 

found no difference between the SL and HB methods for classification accuracy. Chen 

(2013) reported correct classification rates when drifted items were kept in the linking 

process for SL, CC, and FPC. 

The accuracy rate was very high for all linking methods probably because most 

examinees were well over the cut score as a result of a higher ability and lower difficulty 

of the items. Had a positively skewed, or mean ability distribution lower than average 

(below 0), been introduced, then the accuracy rate may have declined because we would 

expect more examinees to be at the cut score. It is important to note that although the 

recovery of accuracy rates was robust, it does not imply that drift does not have an effect 

on classification. It simply means that drift pushed a lower-abled examinee to pass or that 

drift pulled a higher-abled examinee to fall below the cut score and fail on subsequent 

administrations of the test form. 

Research Question 5. Classification Consistency. Similar to accuracy, 

classification consistency rates were recovered well for all linking methods. At the most 

extreme condition of drift, the LAV and HB methods yielded similar RMSE values that 
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were slightly better than the other linking methods. Keller & Keller (2015) found CC 

produced more accurate consistency rates than FPC and SL. Results from this study 

suggested that the performance of these three methods were comparable at both sample 

sizes and for all conditions. The one exception was at the highest magnitude of drift, 

where CC exhibited slightly higher RMSE values than either FPC or SL.  

 Empirical Analysis. Although the performance of each linking method could not 

be compared to true values, the linking methods yielded mostly similar linking constants, 

item parameter estimates, equated scores, and classification rates. As it pertains to drift 

detection, 12% of common items were flagged for drift using the Bonferonni correction. 

Without this adjustment, the percentage of items exhibiting drift would have tripled. 

Linking can be an iterative process that requires multiple runs when screening items. 

There is the possibility that some items can be erroneously flagged based upon chance 

alone. Thus, practitioners should be cautious when detecting drift, as drift can also go 

undetected or provide false positives (DeMars, 2004b; Donoghue & Isham, 1998).  

Implications for Validity and Validation 

  This study has provided practitioners with recommendations for best practices 

when confronted with drifted items. Drifted items should always be removed unless there 

is reason not to (e.g., due to content imbalance or subject matter expert request). 

Additional efforts to identify the reason for drift should be investigated, as the reason 

might help to prevent future reoccurrences (e.g., changes in curriculum may inform 

teachers how much time to devote to each subject) and strengthen the validity argument 
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being made. Steps to construct a strong validity argument have been provided in the 

context of the Standards’ five sources of evidence and Kane’s argument-based approach.  

Limitations and Directions for Future Research 

 This section discusses the limitations and directions for future studies. It should 

first be acknowledged that when linking outcomes become so undermined as to 

misconstrue results, choice of linking method is of little concern. While certain linking 

methods can alleviate some estimation error, such a distortion of results indicates larger 

problems with the test that may be traced back to the design and development of the 

exam. The best way to obtain accurate linking results and equated scores is by ensuring 

that all stages of test development are carried out thoroughly, securely, and with the 

utmost fidelity to the testing process.   

Second, the conditions chosen for this study reflect conditions that might occur in 

the context of licensure and certification. However, most certification tests do not 

implement the 3PL model; rather, small candidate volumes are observed which restricts 

testing programs to using classical item statistics or the Rasch model. Similarly, the use 

of FPC is often implemented by testing programs as an effective and efficient way to 

maintain the item bank and pre-assemble forms. This study sought to identify a drift 

threshold for when linking and equating outcomes may become compromised, as no 3PL 

studies had suggested a threshold. It was also important to explore the effectiveness of 

different linking methods by stretching them to more extreme levels of ability, drift, and 

estimation. It would be desirable to learn the limitations of new methods by 
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understanding their performance in the context of drift, which is a salient, yet 

understudied phenomenon.  

 Third, this study focused purely upon dichotomously scored fixed-form tests. 

Although these tests are regularly observed in practice, newer technology enhanced item 

types and testing modalities are becoming more prevalent. While future research should 

focus upon different item types and test formats, the purpose of this research was to 

provide some clarity as to which linking method is most robust to drift since previous 

studies have not consistently identified one linking method. 

 Fourth, the ability distributions selected for this study were chosen to reflect those 

that might be found in the context of licensure – higher or negatively skewed 

distributions. These examinees are often more abled, but they do not reflect ability 

distributions from educational contexts, which often fill the entire range of the scale or 

could potentially be positively skewed. By placing more examinees at the lower ends of 

the scale, there would have been more variability in the findings for classification 

accuracy and consistency. Most of the examinees from the simulation already possessed 

high abilities, and the candidates from the empirical analysis were presented with very 

easy items.  

 Fifth, data from the empirical analysis was originally calibrated using the Rasch 

model available in Winsteps. Unlike Winsteps, which centers the mean of the items to 0, 

flexMIRT was used to reestimate the data using a 3PL model. Although the 3PL model 

was fitted to the data, it would not have been advisable to use the 3PL model with this 

program because the sample size of roughly 2,000 candidates per form was accumulated 
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over the course of several years. In order to use the 3PL model for this client, this sample 

size would need to be obtained within a year or faster so that experimental items could be 

linked to the item bank and used to assemble future forms that are published every year 

or sooner. There were also several items that had difficulty values lower than -3 units, 

which would almost never be administered as scored items. 

 Sixth, linking constants for CC and FPC were extracted using the performance of 

examinees on all items of the new form. In reality, the linking constants are extracted 

using only the common items, which was done for the separate calibration methods. 

These linking constants are then used to transform the new form parameter estimates for 

all items onto the scale of the base form. However, applying the linking constants from 

CC and FPC to transform the new form would not make sense because the new form 

estimates are already on the same scale of the base form. That is because the linking 

constants are A=1 and B=0. While it was important to try and compare linking constants 

from CC and FPC to the separate calibration methods, the comparison between the 

linking methods was not one to one.  

 Finally, this study considered the impact of drift when items were not removed for 

exhibiting drift. This was examined intentionally because drift can go undetected or 

operate in ways unbeknownst to practitioners. However, the lack of purification is a 

limitation because items should be removed for drift. Thus, future studies should examine 

the impact of drift for these linking methods when items are removed from the anchor 

item set.   
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APPENDIX A 

GENERATING ITEM PARAMETERS 
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Base Form New Form 

Item a b c Item a b c 

1 0.913 0.721 0.340 1 0.913 0.721 0.340 

2 0.853 0.700 0.340 2 0.853 0.700 0.340 

3 1.203 -0.575 0.315 3 1.203 -0.575 0.315 

4 1.208 -0.154 0.059 4 1.208 -0.154 0.059 

5 1.091 -1.733 0.247 5 1.091 -1.733 0.247 

6 1.133 -1.722 0.347 6 1.133 -1.722 0.347 

7 0.931 1.077 0.246 7 0.931 1.077 0.246 

8 0.507 0.324 0.286 8 0.507 0.324 0.286 

9 1.492 -0.906 0.264 9 1.492 -0.906 0.264 

10 1.489 0.440 0.256 10 1.489 0.440 0.256 

11 0.917 -0.202 0.305 11 0.917 -0.202 0.305 

12 1.489 -0.013 0.060 12 1.489 -0.013 0.060 

13 0.963 1.365 0.055 13 0.963 1.365 0.055 

14 0.838 -0.592 0.227 14 0.838 -0.592 0.227 

15 1.111 -0.394 0.208 15 1.111 -0.394 0.208 

16 0.551 1.538 0.199 16 0.551 1.538 0.199 

17 0.767 -0.198 0.345 17 0.767 -0.198 0.345 

18 0.723 0.593 0.120 18 0.723 0.593 0.120 

19 1.118 -0.329 0.295 19 1.118 -0.329 0.295 

20 0.947 0.442 0.154 20 0.947 0.442 0.154 

21 1.269 -0.502 0.171 21 1.454 1.371 0.179 

22 0.985 0.132 0.203 22 1.077 -0.565 0.168 

23 0.596 -0.079 0.207 23 1.027 0.363 0.093 

24 0.501 0.887 0.348 24 0.964 0.633 0.134 

25 1.213 0.117 0.179 25 0.642 0.404 0.219 

26 0.953 0.319 0.349 26 1.184 -0.106 0.331 

27 1.065 -0.582 0.286 27 0.935 1.512 0.158 

28 1.245 0.715 0.205 28 0.945 -0.095 0.303 

29 1.498 -0.825 0.201 29 1.280 2.018 0.267 

30 0.969 -0.360 0.323 30 1.247 -0.063 0.275 

31 0.833 0.090 0.129 31 1.418 1.305 0.327 

32 1.428 0.096 0.102 32 0.857 2.287 0.051 

33 0.732 -0.202 0.170 33 1.195 -1.389 0.098 

34 0.653 0.740 0.212 34 1.417 -0.279 0.170 

35 0.841 0.123 0.123 35 0.667 -0.133 0.253 

36 1.494 -0.029 0.163 36 0.742 0.636 0.194 

37 0.750 -0.389 0.224 37 0.660 -0.284 0.210 

38 1.124 0.511 0.113 38 0.562 -2.656 0.145 

39 0.646 -0.914 0.290 39 1.024 -2.440 0.294 

40 0.648 2.310 0.242 40 1.196 1.320 0.138 
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Base Form New Form 

Item a b c Item a b c 

41 0.900 -0.438 0.271 41 1.360 -0.307 0.173 

42 1.409 0.764 0.182 42 1.313 -1.781 0.077 

43 0.859 0.262 0.224 43 0.699 -0.172 0.290 

44 1.253 0.773 0.127 44 1.495 1.215 0.158 

45 0.563 -0.814 0.189 45 0.800 1.895 0.062 

46 0.880 -0.438 0.101 46 1.032 -0.430 0.062 

47 0.767 -0.720 0.234 47 0.873 -0.257 0.336 

48 0.889 0.231 0.337 48 0.963 -1.763 0.162 

49 1.372 -1.158 0.193 49 1.056 0.460 0.292 

50 0.968 0.247 0.275 50 1.036 -0.640 0.323 

51 1.052 -0.091 0.056 51 0.992 0.455 0.182 

52 1.076 1.757 0.101 52 1.032 0.705 0.223 

53 0.816 -0.138 0.242 53 0.854 1.035 0.072 

54 0.571 -0.111 0.099 54 0.849 -0.609 0.099 

55 0.901 -0.690 0.156 55 0.502 0.505 0.272 

56 1.039 -0.222 0.106 56 0.885 -1.717 0.193 

57 1.305 0.183 0.319 57 0.846 -0.784 0.256 

58 0.923 0.417 0.121 58 1.491 -0.851 0.335 

59 0.909 1.065 0.345 59 0.591 -2.414 0.199 

60 1.485 0.970 0.056 60 1.041 0.036 0.191 

61 0.768 -0.102 0.082 61 0.552 0.206 0.218 

62 1.127 1.403 0.123 62 0.559 -0.361 0.246 

63 0.825 -1.777 0.267 63 1.037 0.758 0.134 

64 1.125 0.623 0.060 64 0.701 -0.727 0.344 

65 0.536 -0.522 0.215 65 0.999 -1.368 0.243 

66 0.844 1.322 0.255 66 0.872 0.433 0.225 

67 0.916 -0.363 0.140 67 0.816 -0.811 0.235 

68 1.302 1.319 0.167 68 0.503 1.444 0.328 

69 0.859 0.044 0.270 69 0.633 -0.431 0.167 

70 1.089 -1.879 0.339 70 1.054 0.656 0.136 

71 0.875 -0.447 0.278 71 1.170 0.322 0.077 

72 0.745 -1.739 0.225 72 0.852 -0.784 0.147 

73 1.207 0.179 0.189 73 1.000 1.576 0.277 

74 0.862 1.897 0.157 74 1.337 0.643 0.081 

75 1.404 -2.272 0.165 75 1.432 0.090 0.263 

76 1.133 0.980 0.112 76 0.671 0.277 0.340 

77 0.955 -1.399 0.092 77 0.965 0.679 0.110 

78 1.137 1.825 0.167 78 1.360 0.090 0.083 

79 0.988 1.381 0.130 79 0.859 -2.993 0.067 

80 1.137 -0.839 0.261 80 0.984 0.285 0.299 
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Base Form New Form 

Item a b c Item a b c 

81 0.877 -0.262 0.172 81 0.974 -0.367 0.224 

82 0.509 -0.069 0.130 82 0.734 0.185 0.191 

83 1.047 -0.379 0.170 83 0.867 0.582 0.160 

84 1.198 2.582 0.109 84 0.991 1.400 0.134 

85 0.705 0.130 0.299 85 0.876 -0.727 0.230 

86 0.666 -0.713 0.208 86 1.334 1.303 0.296 

87 0.869 0.638 0.169 87 0.856 0.336 0.079 

88 0.845 0.202 0.222 88 0.870 1.039 0.339 

89 1.126 -0.070 0.341 89 1.209 0.921 0.101 

90 1.040 -0.092 0.245 90 0.683 0.721 0.076 

91 1.310 0.449 0.150 91 0.988 -1.043 0.308 

92 1.496 -1.064 0.149 92 0.535 -0.090 0.207 

93 0.995 -1.162 0.333 93 1.350 0.624 0.247 

94 0.993 1.649 0.164 94 0.918 -0.954 0.119 

95 1.075 -2.062 0.219 95 0.860 -0.543 0.266 

96 0.899 0.013 0.203 96 0.629 0.581 0.197 

97 0.966 -1.088 0.092 97 0.998 0.768 0.340 

98 0.970 0.271 0.122 98 0.760 0.464 0.322 

99 1.079 1.008 0.265 99 0.840 -0.886 0.215 

100 1.042 -2.074 0.139 100 1.386 -1.100 0.073 

Note: The first 20 highlighted rows are common items 
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APPENDIX B 

BIAS, SE, RMSE VALUES FOR LINKING CONSTANTS 
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Bias for Linking Constant A - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.002 -0.034 -0.070 -0.011 -0.025 

SL 

25% 

-0.25 -0.012 -0.048 -0.084 -0.015 -0.040 

-0.50 -0.030 -0.062 -0.097 -0.036 -0.049 

-1.00 -0.061 -0.103 -0.138 -0.069 -0.088 

50% 

-0.25 -0.024 -0.052 -0.095 -0.029 -0.039 

-0.50 -0.039 -0.077 -0.127 -0.044 -0.073 

-1.00 -0.102 -0.144 -0.192 -0.105 -0.136 

HB 

None None 0.006 -0.027 -0.061 -0.004 -0.015 

25% 

-0.25 -0.016 -0.049 -0.077 -0.015 -0.035 

-0.50 -0.047 -0.074 -0.103 -0.047 -0.058 

-1.00 -0.115 -0.146 -0.176 -0.118 -0.130 

50% 

-0.25 -0.032 -0.057 -0.094 -0.034 -0.040 

-0.50 -0.068 -0.099 -0.141 -0.067 -0.093 

-1.00 -0.187 -0.220 -0.258 -0.181 -0.206 

LAV 

None None 0.006 -0.024 -0.056 -0.006 -0.013 

25% 

-0.25 -0.013 -0.046 -0.071 -0.013 -0.033 

-0.50 -0.035 -0.061 -0.090 -0.036 -0.051 

-1.00 -0.032 -0.078 -0.111 -0.061 -0.081 

50% 

-0.25 -0.032 -0.052 -0.085 -0.037 -0.036 

-0.50 -0.075 -0.103 -0.142 -0.075 -0.098 

-1.00 -0.228 -0.252 -0.261 -0.227 -0.240 

CC 

None None 0.128 0.106 0.097 0.096 0.110 

25% 

-0.25 0.114 0.094 0.099 0.095 0.102 

-0.50 0.094 0.087 0.092 0.081 0.103 

-1.00 0.061 0.060 0.080 0.059 0.089 

50% 

-0.25 0.100 0.094 0.090 0.084 0.108 

-0.50 0.085 0.083 0.085 0.078 0.093 

-1.00 0.032 0.056 0.084 0.052 0.088 

FPC 

None None 0.077 0.054 0.044 0.047 0.052 

25% 

-0.25 0.062 0.042 0.042 0.045 0.042 

-0.50 0.042 0.034 0.033 0.026 0.040 

-1.00 0.014 0.006 0.016 0.002 0.019 

50% 

-0.25 0.046 0.040 0.033 0.032 0.047 

-0.50 0.033 0.026 0.020 0.023 0.027 

-1.00 -0.019 -0.012 -0.001 -0.021 0.001 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

261 

SE for Linking Constant A - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.054 0.049 0.046 0.047 0.048 

SL 

25% 

-0.25 0.047 0.045 0.049 0.046 0.050 

-0.50 0.050 0.041 0.046 0.047 0.047 

-1.00 0.043 0.046 0.046 0.040 0.049 

50% 

-0.25 0.045 0.043 0.044 0.046 0.053 

-0.50 0.044 0.045 0.048 0.044 0.051 

-1.00 0.042 0.044 0.042 0.040 0.048 

HB 

None None 0.052 0.046 0.045 0.046 0.046 

25% 

-0.25 0.045 0.042 0.048 0.044 0.047 

-0.50 0.046 0.038 0.046 0.043 0.047 

-1.00 0.040 0.043 0.044 0.037 0.046 

50% 

-0.25 0.042 0.043 0.042 0.043 0.053 

-0.50 0.041 0.043 0.047 0.042 0.050 

-1.00 0.037 0.041 0.042 0.036 0.045 

LAV 

None None 0.055 0.052 0.048 0.052 0.052 

25% 

-0.25 0.051 0.049 0.056 0.050 0.050 

-0.50 0.053 0.052 0.054 0.053 0.052 

-1.00 0.053 0.056 0.060 0.052 0.055 

50% 

-0.25 0.046 0.048 0.049 0.045 0.056 

-0.50 0.050 0.053 0.054 0.048 0.059 

-1.00 0.056 0.055 0.056 0.048 0.049 

CC 

None None 0.049 0.041 0.040 0.038 0.039 

25% 

-0.25 0.044 0.040 0.038 0.038 0.039 

-0.50 0.043 0.038 0.037 0.039 0.041 

-1.00 0.041 0.039 0.036 0.034 0.038 

50% 

-0.25 0.039 0.037 0.039 0.039 0.040 

-0.50 0.040 0.038 0.036 0.036 0.043 

-1.00 0.037 0.038 0.034 0.033 0.040 

FPC 

None None 0.051 0.044 0.044 0.041 0.043 

25% 

-0.25 0.046 0.042 0.044 0.041 0.045 

-0.50 0.044 0.041 0.043 0.041 0.046 

-1.00 0.042 0.042 0.040 0.036 0.041 

50% 

-0.25 0.041 0.039 0.042 0.041 0.045 

-0.50 0.041 0.043 0.039 0.039 0.045 

-1.00 0.037 0.039 0.039 0.035 0.041 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

262 

RMSE for Linking Constant A - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.054 0.059 0.083 0.048 0.054 

SL 

25% 

-0.25 0.049 0.065 0.097 0.048 0.064 

-0.50 0.058 0.074 0.107 0.059 0.068 

-1.00 0.075 0.112 0.145 0.080 0.101 

50% 

-0.25 0.051 0.067 0.105 0.054 0.066 

-0.50 0.058 0.089 0.135 0.062 0.090 

-1.00 0.111 0.151 0.196 0.113 0.144 

HB 

None None 0.052 0.054 0.076 0.047 0.049 

25% 

-0.25 0.048 0.064 0.091 0.046 0.058 

-0.50 0.066 0.083 0.112 0.063 0.075 

-1.00 0.122 0.153 0.181 0.123 0.138 

50% 

-0.25 0.053 0.071 0.103 0.055 0.067 

-0.50 0.079 0.108 0.149 0.079 0.105 

-1.00 0.190 0.224 0.261 0.185 0.211 

LAV 

None None 0.056 0.058 0.074 0.053 0.054 

25% 

-0.25 0.052 0.067 0.091 0.051 0.060 

-0.50 0.063 0.080 0.105 0.064 0.073 

-1.00 0.062 0.096 0.126 0.081 0.098 

50% 

-0.25 0.056 0.071 0.098 0.058 0.067 

-0.50 0.090 0.116 0.152 0.090 0.114 

-1.00 0.234 0.258 0.267 0.232 0.245 

CC 

None None 0.137 0.114 0.105 0.103 0.117 

25% 

-0.25 0.122 0.102 0.106 0.102 0.109 

-0.50 0.103 0.095 0.099 0.090 0.111 

-1.00 0.074 0.071 0.088 0.068 0.097 

50% 

-0.25 0.107 0.100 0.098 0.093 0.115 

-0.50 0.094 0.092 0.093 0.086 0.103 

-1.00 0.048 0.068 0.091 0.061 0.096 

FPC 

None None 0.092 0.070 0.063 0.062 0.068 

25% 

-0.25 0.078 0.060 0.061 0.061 0.062 

-0.50 0.061 0.053 0.054 0.049 0.061 

-1.00 0.044 0.042 0.043 0.036 0.046 

50% 

-0.25 0.062 0.056 0.054 0.053 0.065 

-0.50 0.053 0.050 0.044 0.045 0.053 

-1.00 0.042 0.040 0.039 0.041 0.041 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

263 

Bias for Linking Constant B - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.006 -0.032 -0.089 -0.018 -0.074 

SL 

25% 

-0.25 0.067 0.023 -0.045 0.034 -0.014 

-0.50 0.125 0.078 0.002 0.097 0.031 

-1.00 0.229 0.169 0.072 0.180 0.100 

50% 

-0.25 0.126 0.072 0.001 0.086 0.031 

-0.50 0.234 0.173 0.091 0.192 0.125 

-1.00 0.442 0.348 0.231 0.373 0.262 

HB 

None None 0.005 -0.034 -0.088 -0.021 -0.075 

25% 

-0.25 0.064 0.017 -0.051 0.026 -0.024 

-0.50 0.117 0.060 -0.019 0.079 0.006 

-1.00 0.196 0.114 -0.003 0.121 0.024 

50% 

-0.25 0.121 0.063 -0.009 0.077 0.017 

-0.50 0.222 0.149 0.058 0.165 0.089 

-1.00 0.395 0.266 0.122 0.292 0.148 

LAV 

None None 0.007 -0.035 -0.084 -0.019 -0.075 

25% 

-0.25 0.051 0.007 -0.054 0.020 -0.029 

-0.50 0.066 0.018 -0.053 0.037 -0.029 

-1.00 0.055 0.009 -0.071 0.017 -0.054 

50% 

-0.25 0.120 0.061 -0.005 0.073 0.021 

-0.50 0.197 0.125 0.045 0.141 0.065 

-1.00 0.313 0.167 0.025 0.167 0.028 

CC 

None None -0.038 0.004 0.047 0.033 0.065 

25% 

-0.25 0.023 0.062 0.099 0.087 0.127 

-0.50 0.085 0.125 0.158 0.158 0.188 

-1.00 0.200 0.246 0.276 0.269 0.303 

50% 

-0.25 0.088 0.117 0.152 0.144 0.183 

-0.50 0.204 0.235 0.272 0.265 0.301 

-1.00 0.450 0.477 0.517 0.515 0.535 

FPC 

None None -0.018 -0.004 0.010 0.013 0.014 

25% 

-0.25 0.044 0.053 0.056 0.066 0.073 

-0.50 0.103 0.109 0.106 0.128 0.123 

-1.00 0.206 0.203 0.186 0.211 0.201 

50% 

-0.25 0.108 0.105 0.107 0.122 0.127 

-0.50 0.220 0.212 0.206 0.230 0.226 

-1.00 0.430 0.397 0.374 0.416 0.383 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

264 

SE for Linking Constant B - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.048 0.052 0.049 0.049 0.057 

SL 

25% 

-0.25 0.053 0.050 0.055 0.057 0.052 

-0.50 0.050 0.049 0.055 0.051 0.054 

-1.00 0.053 0.047 0.058 0.052 0.057 

50% 

-0.25 0.047 0.053 0.057 0.052 0.055 

-0.50 0.050 0.053 0.056 0.056 0.062 

-1.00 0.048 0.054 0.051 0.051 0.059 

HB 

None None 0.048 0.052 0.050 0.050 0.059 

25% 

-0.25 0.050 0.049 0.055 0.056 0.054 

-0.50 0.050 0.049 0.057 0.053 0.056 

-1.00 0.052 0.047 0.058 0.052 0.057 

50% 

-0.25 0.048 0.051 0.058 0.053 0.060 

-0.50 0.050 0.054 0.057 0.059 0.064 

-1.00 0.050 0.054 0.059 0.047 0.065 

LAV 

None None 0.051 0.055 0.057 0.053 0.064 

25% 

-0.25 0.054 0.057 0.059 0.065 0.061 

-0.50 0.054 0.056 0.065 0.057 0.058 

-1.00 0.058 0.052 0.061 0.057 0.059 

50% 

-0.25 0.048 0.057 0.066 0.054 0.067 

-0.50 0.058 0.062 0.070 0.074 0.075 

-1.00 0.081 0.071 0.068 0.070 0.065 

CC 

None None 0.050 0.053 0.052 0.049 0.061 

25% 

-0.25 0.052 0.052 0.059 0.057 0.052 

-0.50 0.052 0.050 0.060 0.053 0.056 

-1.00 0.059 0.048 0.062 0.057 0.060 

50% 

-0.25 0.048 0.054 0.057 0.053 0.055 

-0.50 0.053 0.057 0.058 0.059 0.062 

-1.00 0.057 0.060 0.056 0.055 0.067 

FPC 

None None 0.049 0.053 0.055 0.050 0.062 

25% 

-0.25 0.053 0.052 0.058 0.057 0.054 

-0.50 0.050 0.050 0.062 0.052 0.055 

-1.00 0.055 0.049 0.063 0.057 0.062 

50% 

-0.25 0.048 0.053 0.059 0.052 0.058 

-0.50 0.052 0.057 0.059 0.059 0.065 

-1.00 0.055 0.059 0.059 0.055 0.065 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

265 

RMSE for Linking Constant B - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.049 0.061 0.101 0.052 0.093 

SL 

25% 

-0.25 0.085 0.055 0.071 0.066 0.054 

-0.50 0.134 0.092 0.055 0.110 0.062 

-1.00 0.236 0.176 0.092 0.187 0.116 

50% 

-0.25 0.135 0.089 0.057 0.101 0.063 

-0.50 0.240 0.181 0.106 0.200 0.139 

-1.00 0.445 0.352 0.237 0.376 0.269 

HB 

None None 0.049 0.062 0.101 0.055 0.095 

25% 

-0.25 0.081 0.052 0.075 0.062 0.059 

-0.50 0.127 0.078 0.060 0.095 0.056 

-1.00 0.202 0.123 0.058 0.132 0.062 

50% 

-0.25 0.130 0.081 0.059 0.093 0.062 

-0.50 0.228 0.159 0.081 0.175 0.109 

-1.00 0.399 0.271 0.135 0.295 0.162 

LAV 

None None 0.052 0.065 0.101 0.056 0.098 

25% 

-0.25 0.075 0.057 0.080 0.068 0.068 

-0.50 0.085 0.058 0.083 0.068 0.065 

-1.00 0.080 0.053 0.093 0.060 0.080 

50% 

-0.25 0.130 0.084 0.066 0.091 0.070 

-0.50 0.206 0.140 0.084 0.159 0.100 

-1.00 0.324 0.182 0.072 0.181 0.071 

CC 

None None 0.063 0.053 0.070 0.059 0.089 

25% 

-0.25 0.057 0.081 0.115 0.104 0.138 

-0.50 0.100 0.135 0.169 0.167 0.196 

-1.00 0.208 0.250 0.283 0.275 0.309 

50% 

-0.25 0.100 0.129 0.162 0.154 0.191 

-0.50 0.211 0.242 0.278 0.272 0.307 

-1.00 0.454 0.481 0.520 0.518 0.539 

FPC 

None None 0.053 0.053 0.055 0.051 0.063 

25% 

-0.25 0.068 0.075 0.081 0.087 0.091 

-0.50 0.115 0.120 0.123 0.138 0.135 

-1.00 0.213 0.208 0.197 0.219 0.210 

50% 

-0.25 0.118 0.118 0.123 0.133 0.139 

-0.50 0.226 0.220 0.214 0.237 0.235 

-1.00 0.434 0.401 0.379 0.420 0.389 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

266 

Bias for Linking Constant A - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None -0.003 -0.026 -0.059 -0.002 -0.003 

SL 

25% 

-0.25 -0.011 -0.036 -0.074 -0.011 -0.012 

-0.50 -0.026 -0.050 -0.082 -0.019 -0.020 

-1.00 -0.061 -0.091 -0.128 -0.048 -0.050 

50% 

-0.25 -0.016 -0.044 -0.079 -0.013 -0.014 

-0.50 -0.039 -0.068 -0.107 -0.032 -0.030 

-1.00 -0.097 -0.128 -0.169 -0.076 -0.088 

HB 

None None 0.000 -0.019 -0.049 0.002 0.004 

25% 

-0.25 -0.015 -0.037 -0.070 -0.015 -0.012 

-0.50 -0.044 -0.065 -0.091 -0.035 -0.033 

-1.00 -0.115 -0.140 -0.167 -0.101 -0.097 

50% 

-0.25 -0.025 -0.050 -0.078 -0.020 -0.018 

-0.50 -0.068 -0.092 -0.124 -0.059 -0.055 

-1.00 -0.181 -0.205 -0.239 -0.157 -0.163 

LAV 

None None 0.000 -0.020 -0.044 -0.004 -0.001 

25% 

-0.25 -0.010 -0.033 -0.065 -0.018 -0.016 

-0.50 -0.020 -0.040 -0.073 -0.027 -0.024 

-1.00 -0.023 -0.052 -0.085 -0.042 -0.033 

50% 

-0.25 -0.029 -0.052 -0.076 -0.025 -0.022 

-0.50 -0.094 -0.115 -0.141 -0.092 -0.086 

-1.00 -0.245 -0.248 -0.271 -0.217 -0.220 

CC 

None None 0.052 0.040 0.033 0.036 0.049 

25% 

-0.25 0.042 0.032 0.026 0.027 0.045 

-0.50 0.024 0.020 0.024 0.019 0.043 

-1.00 -0.017 -0.015 0.003 -0.004 0.031 

50% 

-0.25 0.036 0.026 0.026 0.026 0.047 

-0.50 0.011 0.011 0.018 0.010 0.042 

-1.00 -0.046 -0.020 0.006 -0.012 0.026 

FPC 

None None 0.024 0.012 0.001 0.005 0.008 

25% 

-0.25 0.014 0.003 -0.007 -0.007 0.001 

-0.50 -0.002 -0.008 -0.013 -0.016 -0.003 

-1.00 -0.036 -0.042 -0.038 -0.043 -0.022 

50% 

-0.25 0.008 -0.004 -0.010 -0.009 0.002 

-0.50 -0.016 -0.021 -0.024 -0.029 -0.008 

-1.00 -0.068 -0.059 -0.056 -0.064 -0.045 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

267 

SE for Linking Constant A - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.028 0.032 0.031 0.031 0.030 

SL 

25% 

-0.25 0.027 0.029 0.030 0.028 0.031 

-0.50 0.028 0.032 0.030 0.031 0.033 

-1.00 0.026 0.028 0.033 0.031 0.030 

50% 

-0.25 0.031 0.028 0.030 0.030 0.033 

-0.50 0.031 0.032 0.028 0.029 0.029 

-1.00 0.028 0.030 0.031 0.027 0.029 

HB 

None None 0.027 0.030 0.030 0.030 0.028 

25% 

-0.25 0.027 0.028 0.028 0.028 0.032 

-0.50 0.026 0.031 0.028 0.030 0.033 

-1.00 0.024 0.025 0.030 0.029 0.029 

50% 

-0.25 0.029 0.026 0.027 0.028 0.032 

-0.50 0.029 0.030 0.027 0.028 0.028 

-1.00 0.026 0.027 0.031 0.025 0.025 

LAV 

None None 0.028 0.031 0.032 0.030 0.031 

25% 

-0.25 0.034 0.033 0.032 0.030 0.034 

-0.50 0.033 0.037 0.033 0.040 0.040 

-1.00 0.033 0.032 0.039 0.040 0.038 

50% 

-0.25 0.036 0.029 0.028 0.036 0.037 

-0.50 0.038 0.036 0.032 0.034 0.033 

-1.00 0.036 0.050 0.039 0.035 0.034 

CC 

None None 0.025 0.027 0.026 0.028 0.025 

25% 

-0.25 0.026 0.025 0.022 0.025 0.027 

-0.50 0.025 0.028 0.024 0.028 0.028 

-1.00 0.024 0.024 0.024 0.028 0.026 

50% 

-0.25 0.027 0.024 0.025 0.027 0.027 

-0.50 0.028 0.026 0.024 0.026 0.023 

-1.00 0.026 0.027 0.026 0.024 0.024 

FPC 

None None 0.026 0.029 0.029 0.029 0.027 

25% 

-0.25 0.026 0.026 0.025 0.025 0.029 

-0.50 0.026 0.028 0.026 0.029 0.030 

-1.00 0.024 0.025 0.024 0.028 0.028 

50% 

-0.25 0.028 0.025 0.029 0.028 0.029 

-0.50 0.028 0.027 0.025 0.026 0.024 

-1.00 0.026 0.028 0.028 0.024 0.025 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

268 

RMSE for Linking Constant A - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.029 0.041 0.067 0.031 0.030 

SL 

25% 

-0.25 0.029 0.046 0.080 0.030 0.033 

-0.50 0.038 0.059 0.087 0.037 0.039 

-1.00 0.066 0.096 0.132 0.057 0.058 

50% 

-0.25 0.035 0.052 0.085 0.032 0.036 

-0.50 0.050 0.075 0.110 0.043 0.042 

-1.00 0.101 0.131 0.172 0.080 0.093 

HB 

None None 0.027 0.036 0.058 0.030 0.029 

25% 

-0.25 0.031 0.047 0.076 0.031 0.034 

-0.50 0.051 0.072 0.095 0.046 0.047 

-1.00 0.118 0.143 0.170 0.105 0.101 

50% 

-0.25 0.038 0.056 0.083 0.035 0.037 

-0.50 0.073 0.097 0.127 0.065 0.061 

-1.00 0.183 0.207 0.241 0.159 0.165 

LAV 

None None 0.028 0.037 0.055 0.031 0.031 

25% 

-0.25 0.036 0.047 0.073 0.035 0.038 

-0.50 0.039 0.055 0.080 0.048 0.047 

-1.00 0.040 0.061 0.094 0.058 0.050 

50% 

-0.25 0.047 0.060 0.081 0.044 0.043 

-0.50 0.102 0.121 0.145 0.098 0.092 

-1.00 0.248 0.253 0.274 0.219 0.223 

CC 

None None 0.058 0.049 0.042 0.046 0.055 

25% 

-0.25 0.049 0.040 0.034 0.036 0.052 

-0.50 0.035 0.034 0.034 0.034 0.052 

-1.00 0.030 0.029 0.024 0.028 0.041 

50% 

-0.25 0.045 0.035 0.036 0.037 0.055 

-0.50 0.030 0.029 0.030 0.028 0.048 

-1.00 0.053 0.033 0.027 0.026 0.035 

FPC 

None None 0.036 0.031 0.029 0.029 0.028 

25% 

-0.25 0.030 0.027 0.026 0.026 0.029 

-0.50 0.026 0.029 0.029 0.033 0.030 

-1.00 0.043 0.048 0.046 0.052 0.036 

50% 

-0.25 0.029 0.025 0.031 0.030 0.029 

-0.50 0.032 0.034 0.035 0.039 0.025 

-1.00 0.073 0.066 0.063 0.069 0.051 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Linking Constant B - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.005 -0.019 -0.059 0.004 -0.012 

SL 

25% 

-0.25 0.061 0.039 -0.007 0.063 0.039 

-0.50 0.120 0.085 0.041 0.113 0.083 

-1.00 0.223 0.176 0.105 0.207 0.154 

50% 

-0.25 0.115 0.085 0.039 0.117 0.091 

-0.50 0.234 0.183 0.126 0.224 0.178 

-1.00 0.434 0.361 0.265 0.401 0.332 

HB 

None None 0.003 -0.021 -0.056 0.001 -0.013 

25% 

-0.25 0.057 0.033 -0.012 0.055 0.029 

-0.50 0.111 0.068 0.020 0.093 0.055 

-1.00 0.192 0.119 0.031 0.146 0.070 

50% 

-0.25 0.111 0.077 0.032 0.106 0.078 

-0.50 0.222 0.160 0.096 0.196 0.140 

-1.00 0.388 0.280 0.153 0.312 0.212 

LAV 

None None 0.004 -0.020 -0.054 0.003 -0.015 

25% 

-0.25 0.035 0.016 -0.022 0.036 0.012 

-0.50 0.037 0.009 -0.026 0.032 0.005 

-1.00 0.030 0.004 -0.040 0.028 -0.014 

50% 

-0.25 0.108 0.067 0.029 0.094 0.068 

-0.50 0.177 0.106 0.042 0.122 0.067 

-1.00 0.309 0.168 0.027 0.144 0.039 

CC 

None None -0.013 -0.001 0.011 0.023 0.042 

25% 

-0.25 0.045 0.062 0.072 0.086 0.100 

-0.50 0.108 0.114 0.133 0.143 0.156 

-1.00 0.224 0.233 0.246 0.265 0.269 

50% 

-0.25 0.105 0.113 0.127 0.144 0.159 

-0.50 0.234 0.230 0.245 0.266 0.271 

-1.00 0.472 0.476 0.485 0.509 0.517 

FPC 

None None -0.004 -0.005 -0.010 0.010 0.009 

25% 

-0.25 0.053 0.055 0.047 0.070 0.062 

-0.50 0.114 0.102 0.096 0.119 0.107 

-1.00 0.216 0.195 0.171 0.211 0.181 

50% 

-0.25 0.112 0.105 0.098 0.127 0.118 

-0.50 0.234 0.209 0.197 0.234 0.211 

-1.00 0.437 0.398 0.357 0.413 0.378 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Linking Constant B - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.029 0.033 0.034 0.036 0.042 

SL 

25% 

-0.25 0.030 0.032 0.037 0.033 0.035 

-0.50 0.032 0.034 0.036 0.035 0.039 

-1.00 0.030 0.030 0.038 0.031 0.041 

50% 

-0.25 0.030 0.031 0.035 0.032 0.040 

-0.50 0.030 0.031 0.038 0.031 0.040 

-1.00 0.031 0.032 0.041 0.033 0.043 

HB 

None None 0.028 0.032 0.033 0.034 0.040 

25% 

-0.25 0.029 0.032 0.036 0.032 0.034 

-0.50 0.030 0.033 0.034 0.033 0.037 

-1.00 0.028 0.029 0.036 0.029 0.039 

50% 

-0.25 0.029 0.029 0.033 0.031 0.038 

-0.50 0.029 0.029 0.038 0.029 0.038 

-1.00 0.029 0.030 0.040 0.031 0.040 

LAV 

None None 0.031 0.032 0.036 0.036 0.042 

25% 

-0.25 0.033 0.037 0.040 0.035 0.041 

-0.50 0.035 0.036 0.038 0.036 0.041 

-1.00 0.030 0.031 0.040 0.031 0.039 

50% 

-0.25 0.035 0.032 0.044 0.036 0.046 

-0.50 0.044 0.041 0.048 0.040 0.051 

-1.00 0.050 0.050 0.044 0.041 0.044 

CC 

None None 0.029 0.034 0.035 0.034 0.038 

25% 

-0.25 0.029 0.032 0.037 0.032 0.034 

-0.50 0.032 0.035 0.035 0.033 0.037 

-1.00 0.031 0.032 0.037 0.031 0.041 

50% 

-0.25 0.029 0.030 0.035 0.031 0.037 

-0.50 0.031 0.032 0.038 0.030 0.037 

-1.00 0.033 0.036 0.040 0.035 0.042 

FPC 

None None 0.029 0.033 0.036 0.034 0.038 

25% 

-0.25 0.029 0.033 0.037 0.032 0.034 

-0.50 0.032 0.034 0.035 0.033 0.037 

-1.00 0.030 0.032 0.035 0.030 0.040 

50% 

-0.25 0.029 0.030 0.036 0.031 0.036 

-0.50 0.031 0.031 0.037 0.029 0.037 

-1.00 0.032 0.034 0.040 0.032 0.041 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Linking Constant B - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.030 0.038 0.068 0.036 0.043 

SL 

25% 

-0.25 0.068 0.051 0.038 0.071 0.052 

-0.50 0.124 0.091 0.054 0.118 0.091 

-1.00 0.225 0.178 0.111 0.210 0.159 

50% 

-0.25 0.119 0.091 0.052 0.121 0.100 

-0.50 0.236 0.186 0.132 0.226 0.183 

-1.00 0.435 0.362 0.268 0.403 0.335 

HB 

None None 0.028 0.038 0.065 0.034 0.042 

25% 

-0.25 0.063 0.046 0.038 0.064 0.045 

-0.50 0.115 0.075 0.039 0.099 0.067 

-1.00 0.194 0.123 0.047 0.149 0.080 

50% 

-0.25 0.114 0.082 0.045 0.110 0.087 

-0.50 0.224 0.162 0.103 0.198 0.145 

-1.00 0.389 0.281 0.158 0.314 0.216 

LAV 

None None 0.031 0.038 0.065 0.036 0.045 

25% 

-0.25 0.048 0.040 0.046 0.050 0.042 

-0.50 0.051 0.037 0.046 0.048 0.041 

-1.00 0.043 0.031 0.057 0.042 0.042 

50% 

-0.25 0.113 0.075 0.053 0.100 0.082 

-0.50 0.182 0.114 0.064 0.128 0.084 

-1.00 0.313 0.175 0.052 0.150 0.059 

CC 

None None 0.031 0.034 0.036 0.041 0.057 

25% 

-0.25 0.054 0.070 0.081 0.092 0.105 

-0.50 0.113 0.120 0.137 0.147 0.161 

-1.00 0.226 0.236 0.249 0.267 0.273 

50% 

-0.25 0.109 0.117 0.132 0.148 0.163 

-0.50 0.236 0.232 0.248 0.268 0.274 

-1.00 0.473 0.477 0.487 0.510 0.519 

FPC 

None None 0.029 0.034 0.037 0.035 0.039 

25% 

-0.25 0.061 0.064 0.060 0.077 0.071 

-0.50 0.118 0.107 0.102 0.124 0.113 

-1.00 0.218 0.197 0.175 0.213 0.185 

50% 

-0.25 0.116 0.110 0.105 0.131 0.123 

-0.50 0.236 0.212 0.200 0.236 0.214 

-1.00 0.438 0.399 0.359 0.415 0.380 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Discrimination of 80 Unique Items - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.078 0.082 0.097 0.071 0.067 

SL 

25% 

-0.25 0.082 0.087 0.115 0.072 0.072 

-0.50 0.092 0.097 0.126 0.078 0.081 

-1.00 0.104 0.134 0.170 0.095 0.109 

50% 

-0.25 0.084 0.090 0.117 0.075 0.074 

-0.50 0.091 0.114 0.159 0.082 0.096 

-1.00 0.141 0.187 0.251 0.125 0.164 

HB 

None None 0.077 0.078 0.089 0.069 0.063 

25% 

-0.25 0.083 0.088 0.108 0.072 0.070 

-0.50 0.101 0.107 0.132 0.082 0.088 

-1.00 0.150 0.186 0.221 0.138 0.153 

50% 

-0.25 0.087 0.094 0.116 0.077 0.074 

-0.50 0.111 0.136 0.177 0.094 0.113 

-1.00 0.240 0.297 0.360 0.211 0.259 

LAV 

None None 0.077 0.077 0.085 0.070 0.062 

25% 

-0.25 0.082 0.086 0.104 0.072 0.069 

-0.50 0.094 0.096 0.119 0.078 0.083 

-1.00 0.089 0.111 0.138 0.091 0.103 

50% 

-0.25 0.088 0.091 0.108 0.078 0.072 

-0.50 0.118 0.142 0.178 0.100 0.120 

-1.00 0.303 0.355 0.369 0.276 0.314 

CC 

None None 0.079 0.070 0.066 0.081 0.074 

25% 

-0.25 0.076 0.070 0.064 0.082 0.076 

-0.50 0.076 0.066 0.064 0.080 0.073 

-1.00 0.074 0.066 0.063 0.077 0.074 

50% 

-0.25 0.077 0.069 0.067 0.081 0.076 

-0.50 0.072 0.066 0.065 0.083 0.075 

-1.00 0.079 0.064 0.069 0.083 0.078 

FPC 

None None 0.073 0.063 0.054 0.070 0.059 

25% 

-0.25 0.074 0.063 0.052 0.072 0.060 

-0.50 0.078 0.064 0.055 0.073 0.061 

-1.00 0.084 0.070 0.053 0.078 0.065 

50% 

-0.25 0.075 0.064 0.053 0.072 0.059 

-0.50 0.076 0.065 0.055 0.075 0.062 

-1.00 0.093 0.074 0.061 0.087 0.069 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Discrimination of 80 Unique Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.136 0.136 0.143 0.129 0.128 

SL 

25% 

-0.25 0.138 0.137 0.146 0.128 0.135 

-0.50 0.142 0.141 0.148 0.130 0.134 

-1.00 0.146 0.152 0.155 0.132 0.141 

50% 

-0.25 0.140 0.140 0.145 0.128 0.135 

-0.50 0.140 0.146 0.157 0.132 0.139 

-1.00 0.150 0.156 0.169 0.140 0.149 

HB 

None None 0.135 0.135 0.141 0.128 0.126 

25% 

-0.25 0.138 0.136 0.144 0.128 0.133 

-0.50 0.144 0.142 0.149 0.130 0.135 

-1.00 0.155 0.160 0.163 0.138 0.147 

50% 

-0.25 0.140 0.141 0.145 0.128 0.135 

-0.50 0.143 0.149 0.159 0.135 0.142 

-1.00 0.165 0.172 0.186 0.152 0.164 

LAV 

None None 0.136 0.137 0.141 0.130 0.128 

25% 

-0.25 0.140 0.139 0.148 0.129 0.135 

-0.50 0.144 0.145 0.150 0.133 0.137 

-1.00 0.145 0.151 0.158 0.135 0.143 

50% 

-0.25 0.142 0.143 0.146 0.129 0.137 

-0.50 0.149 0.155 0.163 0.141 0.147 

-1.00 0.187 0.193 0.199 0.170 0.178 

CC 

None None 0.123 0.113 0.112 0.110 0.105 

25% 

-0.25 0.124 0.113 0.110 0.109 0.108 

-0.50 0.124 0.114 0.110 0.109 0.107 

-1.00 0.126 0.116 0.109 0.108 0.105 

50% 

-0.25 0.123 0.114 0.110 0.108 0.107 

-0.50 0.121 0.114 0.110 0.109 0.107 

-1.00 0.120 0.111 0.108 0.107 0.103 

FPC 

None None 0.128 0.120 0.119 0.117 0.112 

25% 

-0.25 0.129 0.119 0.117 0.116 0.116 

-0.50 0.130 0.120 0.118 0.116 0.115 

-1.00 0.132 0.123 0.118 0.115 0.115 

50% 

-0.25 0.129 0.121 0.117 0.114 0.115 

-0.50 0.127 0.121 0.119 0.116 0.115 

-1.00 0.126 0.119 0.119 0.115 0.114 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Discrimination of 80 Unique Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.164 0.167 0.182 0.154 0.149 

SL 

25% 

-0.25 0.167 0.170 0.194 0.153 0.159 

-0.50 0.177 0.180 0.204 0.158 0.162 

-1.00 0.187 0.212 0.237 0.169 0.185 

50% 

-0.25 0.171 0.175 0.196 0.154 0.159 

-0.50 0.174 0.194 0.231 0.162 0.175 

-1.00 0.214 0.252 0.308 0.195 0.228 

HB 

None None 0.162 0.163 0.176 0.152 0.145 

25% 

-0.25 0.168 0.170 0.189 0.153 0.156 

-0.50 0.183 0.186 0.208 0.161 0.167 

-1.00 0.225 0.254 0.280 0.201 0.218 

50% 

-0.25 0.173 0.178 0.195 0.155 0.160 

-0.50 0.190 0.211 0.246 0.172 0.188 

-1.00 0.299 0.348 0.409 0.266 0.311 

LAV 

None None 0.163 0.164 0.174 0.155 0.147 

25% 

-0.25 0.169 0.171 0.189 0.155 0.158 

-0.50 0.179 0.183 0.200 0.161 0.166 

-1.00 0.176 0.196 0.218 0.170 0.182 

50% 

-0.25 0.175 0.178 0.190 0.157 0.161 

-0.50 0.198 0.219 0.249 0.180 0.196 

-1.00 0.364 0.408 0.422 0.330 0.365 

CC 

None None 0.156 0.141 0.138 0.150 0.140 

25% 

-0.25 0.154 0.141 0.135 0.150 0.143 

-0.50 0.155 0.140 0.136 0.148 0.141 

-1.00 0.154 0.141 0.135 0.146 0.141 

50% 

-0.25 0.154 0.142 0.137 0.147 0.143 

-0.50 0.150 0.140 0.137 0.149 0.143 

-1.00 0.153 0.138 0.138 0.149 0.142 

FPC 

None None 0.156 0.142 0.137 0.147 0.136 

25% 

-0.25 0.156 0.141 0.134 0.148 0.139 

-0.50 0.160 0.143 0.137 0.147 0.139 

-1.00 0.162 0.148 0.136 0.149 0.140 

50% 

-0.25 0.157 0.143 0.135 0.145 0.139 

-0.50 0.155 0.144 0.137 0.148 0.140 

-1.00 0.165 0.148 0.140 0.154 0.142 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Difficulty of 80 Unique Items - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.168 0.190 0.210 0.182 0.197 

SL 

25% 

-0.25 0.203 0.225 0.253 0.210 0.233 

-0.50 0.242 0.268 0.300 0.259 0.278 

-1.00 0.335 0.359 0.387 0.347 0.361 

50% 

-0.25 0.239 0.263 0.294 0.250 0.263 

-0.50 0.338 0.365 0.398 0.349 0.377 

-1.00 0.545 0.564 0.591 0.550 0.568 

HB 

None None 0.168 0.187 0.207 0.180 0.193 

25% 

-0.25 0.200 0.221 0.245 0.206 0.225 

-0.50 0.234 0.257 0.287 0.248 0.264 

-1.00 0.301 0.329 0.355 0.312 0.328 

50% 

-0.25 0.234 0.257 0.285 0.245 0.253 

-0.50 0.324 0.349 0.380 0.331 0.357 

-1.00 0.488 0.506 0.537 0.494 0.509 

LAV 

None None 0.169 0.186 0.207 0.181 0.193 

25% 

-0.25 0.193 0.214 0.240 0.202 0.220 

-0.50 0.200 0.223 0.252 0.216 0.235 

-1.00 0.195 0.219 0.251 0.215 0.235 

50% 

-0.25 0.234 0.255 0.281 0.243 0.253 

-0.50 0.301 0.328 0.368 0.311 0.341 

-1.00 0.412 0.436 0.455 0.397 0.432 

CC 

None None 0.170 0.177 0.186 0.180 0.184 

25% 

-0.25 0.204 0.208 0.212 0.204 0.210 

-0.50 0.239 0.244 0.248 0.243 0.242 

-1.00 0.322 0.327 0.326 0.334 0.323 

50% 

-0.25 0.236 0.240 0.242 0.236 0.233 

-0.50 0.325 0.326 0.322 0.325 0.321 

-1.00 0.545 0.552 0.543 0.556 0.536 

FPC 

None None 0.169 0.174 0.182 0.173 0.178 

25% 

-0.25 0.204 0.206 0.207 0.198 0.203 

-0.50 0.238 0.237 0.238 0.233 0.231 

-1.00 0.316 0.303 0.293 0.302 0.287 

50% 

-0.25 0.235 0.236 0.238 0.230 0.224 

-0.50 0.325 0.318 0.306 0.309 0.303 

-1.00 0.515 0.493 0.467 0.483 0.456 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Difficulty of 80 Unique Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.186 0.183 0.192 0.183 0.189 

SL 

25% 

-0.25 0.186 0.178 0.193 0.180 0.193 

-0.50 0.181 0.177 0.192 0.177 0.192 

-1.00 0.175 0.175 0.184 0.169 0.185 

50% 

-0.25 0.182 0.183 0.190 0.179 0.191 

-0.50 0.177 0.176 0.189 0.176 0.188 

-1.00 0.168 0.166 0.174 0.165 0.172 

HB 

None None 0.187 0.184 0.194 0.185 0.191 

25% 

-0.25 0.185 0.177 0.194 0.180 0.194 

-0.50 0.178 0.175 0.191 0.175 0.191 

-1.00 0.166 0.167 0.177 0.161 0.177 

50% 

-0.25 0.180 0.182 0.190 0.177 0.191 

-0.50 0.172 0.172 0.187 0.173 0.184 

-1.00 0.154 0.153 0.164 0.151 0.162 

LAV 

None None 0.189 0.187 0.196 0.186 0.195 

25% 

-0.25 0.188 0.182 0.198 0.184 0.198 

-0.50 0.183 0.183 0.197 0.181 0.194 

-1.00 0.184 0.183 0.193 0.175 0.189 

50% 

-0.25 0.181 0.186 0.195 0.179 0.195 

-0.50 0.177 0.178 0.191 0.179 0.190 

-1.00 0.163 0.162 0.175 0.158 0.161 

CC 

None None 0.198 0.190 0.196 0.186 0.189 

25% 

-0.25 0.197 0.185 0.197 0.183 0.194 

-0.50 0.191 0.185 0.196 0.180 0.194 

-1.00 0.185 0.181 0.192 0.174 0.189 

50% 

-0.25 0.192 0.189 0.194 0.181 0.190 

-0.50 0.187 0.183 0.195 0.179 0.190 

-1.00 0.178 0.177 0.191 0.172 0.182 

FPC 

None None 0.190 0.182 0.189 0.180 0.182 

25% 

-0.25 0.190 0.177 0.189 0.177 0.187 

-0.50 0.183 0.177 0.189 0.173 0.186 

-1.00 0.178 0.174 0.184 0.166 0.180 

50% 

-0.25 0.184 0.181 0.187 0.174 0.183 

-0.50 0.180 0.175 0.186 0.172 0.182 

-1.00 0.170 0.168 0.181 0.163 0.172 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Difficulty of 80 Unique Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.264 0.279 0.302 0.270 0.288 

SL 

25% 

-0.25 0.291 0.304 0.339 0.293 0.322 

-0.50 0.323 0.341 0.375 0.331 0.357 

-1.00 0.396 0.415 0.446 0.401 0.422 

50% 

-0.25 0.320 0.340 0.372 0.325 0.345 

-0.50 0.397 0.420 0.457 0.407 0.438 

-1.00 0.578 0.595 0.624 0.580 0.599 

HB 

None None 0.264 0.278 0.301 0.269 0.285 

25% 

-0.25 0.289 0.301 0.333 0.289 0.316 

-0.50 0.315 0.331 0.364 0.321 0.344 

-1.00 0.364 0.384 0.411 0.368 0.387 

50% 

-0.25 0.314 0.335 0.365 0.319 0.337 

-0.50 0.383 0.405 0.440 0.391 0.419 

-1.00 0.524 0.542 0.572 0.527 0.544 

LAV 

None None 0.267 0.279 0.303 0.271 0.288 

25% 

-0.25 0.284 0.298 0.331 0.288 0.314 

-0.50 0.289 0.308 0.340 0.298 0.324 

-1.00 0.287 0.305 0.337 0.293 0.318 

50% 

-0.25 0.315 0.335 0.366 0.318 0.340 

-0.50 0.367 0.391 0.432 0.378 0.408 

-1.00 0.461 0.479 0.499 0.443 0.473 

CC 

None None 0.275 0.275 0.287 0.270 0.277 

25% 

-0.25 0.298 0.293 0.309 0.289 0.302 

-0.50 0.323 0.324 0.337 0.321 0.330 

-1.00 0.388 0.394 0.404 0.394 0.395 

50% 

-0.25 0.321 0.324 0.333 0.315 0.319 

-0.50 0.392 0.394 0.403 0.391 0.395 

-1.00 0.580 0.589 0.587 0.589 0.575 

FPC 

None None 0.267 0.265 0.276 0.260 0.267 

25% 

-0.25 0.292 0.285 0.296 0.278 0.289 

-0.50 0.318 0.313 0.322 0.306 0.313 

-1.00 0.380 0.367 0.366 0.360 0.356 

50% 

-0.25 0.316 0.315 0.321 0.304 0.305 

-0.50 0.388 0.380 0.381 0.372 0.372 

-1.00 0.550 0.530 0.512 0.518 0.497 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

279 

Bias for Pseudo-Guessing of 80 Unique Items - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.057 0.067 0.078 0.059 0.068 

SL 

25% 

-0.25 0.057 0.067 0.077 0.059 0.067 

-0.50 0.058 0.068 0.078 0.059 0.068 

-1.00 0.058 0.068 0.079 0.059 0.068 

50% 

-0.25 0.057 0.067 0.078 0.059 0.068 

-0.50 0.057 0.067 0.079 0.059 0.068 

-1.00 0.056 0.067 0.078 0.059 0.068 

HB 

None None 0.057 0.067 0.078 0.059 0.068 

25% 

-0.25 0.057 0.067 0.077 0.059 0.067 

-0.50 0.058 0.068 0.078 0.059 0.068 

-1.00 0.058 0.068 0.079 0.059 0.068 

50% 

-0.25 0.057 0.067 0.078 0.059 0.068 

-0.50 0.057 0.067 0.079 0.059 0.068 

-1.00 0.056 0.067 0.078 0.059 0.068 

LAV 

None None 0.057 0.067 0.078 0.059 0.068 

25% 

-0.25 0.057 0.067 0.077 0.059 0.067 

-0.50 0.058 0.068 0.078 0.059 0.068 

-1.00 0.058 0.068 0.079 0.059 0.068 

50% 

-0.25 0.057 0.067 0.078 0.059 0.068 

-0.50 0.057 0.067 0.079 0.059 0.068 

-1.00 0.056 0.067 0.078 0.059 0.068 

CC 

None None 0.058 0.065 0.071 0.058 0.064 

25% 

-0.25 0.058 0.064 0.070 0.058 0.063 

-0.50 0.058 0.064 0.070 0.057 0.063 

-1.00 0.057 0.064 0.070 0.057 0.062 

50% 

-0.25 0.057 0.064 0.070 0.057 0.063 

-0.50 0.056 0.063 0.070 0.057 0.063 

-1.00 0.054 0.061 0.068 0.055 0.062 

FPC 

None None 0.057 0.065 0.071 0.058 0.064 

25% 

-0.25 0.057 0.064 0.070 0.057 0.063 

-0.50 0.057 0.064 0.070 0.057 0.063 

-1.00 0.056 0.063 0.069 0.057 0.062 

50% 

-0.25 0.057 0.063 0.070 0.057 0.063 

-0.50 0.056 0.063 0.069 0.057 0.063 

-1.00 0.054 0.061 0.067 0.055 0.061 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

280 

SE for Pseudo-Guessing of 80 Unique Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.031 0.031 0.029 0.029 0.029 

SL 

25% 

-0.25 0.030 0.030 0.029 0.029 0.029 

-0.50 0.030 0.031 0.029 0.029 0.030 

-1.00 0.030 0.031 0.029 0.029 0.029 

50% 

-0.25 0.030 0.031 0.030 0.029 0.029 

-0.50 0.031 0.031 0.030 0.029 0.029 

-1.00 0.030 0.031 0.030 0.029 0.029 

HB 

None None 0.031 0.031 0.029 0.029 0.029 

25% 

-0.25 0.030 0.030 0.029 0.029 0.029 

-0.50 0.030 0.031 0.029 0.029 0.030 

-1.00 0.030 0.031 0.029 0.029 0.029 

50% 

-0.25 0.030 0.031 0.030 0.029 0.029 

-0.50 0.031 0.031 0.030 0.029 0.029 

-1.00 0.030 0.031 0.030 0.029 0.029 

LAV 

None None 0.031 0.031 0.029 0.029 0.029 

25% 

-0.25 0.030 0.030 0.029 0.029 0.029 

-0.50 0.030 0.031 0.029 0.029 0.030 

-1.00 0.030 0.031 0.029 0.029 0.029 

50% 

-0.25 0.030 0.031 0.030 0.029 0.029 

-0.50 0.031 0.031 0.030 0.029 0.029 

-1.00 0.030 0.031 0.030 0.029 0.029 

CC 

None None 0.032 0.029 0.025 0.028 0.026 

25% 

-0.25 0.031 0.028 0.025 0.028 0.026 

-0.50 0.030 0.029 0.025 0.027 0.026 

-1.00 0.030 0.028 0.024 0.027 0.025 

50% 

-0.25 0.031 0.029 0.025 0.027 0.025 

-0.50 0.030 0.028 0.024 0.027 0.025 

-1.00 0.027 0.026 0.023 0.025 0.024 

FPC 

None None 0.031 0.029 0.025 0.028 0.026 

25% 

-0.25 0.030 0.028 0.025 0.028 0.026 

-0.50 0.030 0.028 0.025 0.027 0.026 

-1.00 0.029 0.028 0.024 0.027 0.025 

50% 

-0.25 0.030 0.028 0.025 0.027 0.025 

-0.50 0.030 0.027 0.024 0.027 0.025 

-1.00 0.027 0.026 0.023 0.025 0.024 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

281 

RMSE for Pseudo-Guessing of 80 Unique Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.069 0.078 0.087 0.069 0.077 

SL 

25% 

-0.25 0.068 0.078 0.087 0.069 0.078 

-0.50 0.069 0.079 0.088 0.069 0.078 

-1.00 0.069 0.079 0.088 0.069 0.078 

50% 

-0.25 0.068 0.078 0.088 0.069 0.078 

-0.50 0.068 0.078 0.088 0.069 0.078 

-1.00 0.068 0.078 0.088 0.069 0.078 

HB 

None None 0.069 0.078 0.087 0.069 0.077 

25% 

-0.25 0.068 0.078 0.087 0.069 0.078 

-0.50 0.069 0.079 0.088 0.069 0.078 

-1.00 0.069 0.079 0.088 0.069 0.078 

50% 

-0.25 0.068 0.078 0.088 0.069 0.078 

-0.50 0.068 0.078 0.088 0.069 0.078 

-1.00 0.068 0.078 0.088 0.069 0.078 

LAV 

None None 0.069 0.078 0.087 0.069 0.077 

25% 

-0.25 0.068 0.078 0.087 0.069 0.078 

-0.50 0.069 0.079 0.088 0.069 0.078 

-1.00 0.069 0.079 0.088 0.069 0.078 

50% 

-0.25 0.068 0.078 0.088 0.069 0.078 

-0.50 0.068 0.078 0.088 0.069 0.078 

-1.00 0.068 0.078 0.088 0.069 0.078 

CC 

None None 0.070 0.075 0.079 0.067 0.072 

25% 

-0.25 0.069 0.074 0.078 0.067 0.071 

-0.50 0.069 0.074 0.078 0.066 0.071 

-1.00 0.068 0.072 0.076 0.065 0.070 

50% 

-0.25 0.069 0.073 0.078 0.066 0.071 

-0.50 0.067 0.072 0.077 0.066 0.071 

-1.00 0.064 0.069 0.074 0.064 0.069 

FPC 

None None 0.069 0.074 0.078 0.067 0.072 

25% 

-0.25 0.068 0.073 0.077 0.067 0.071 

-0.50 0.068 0.073 0.077 0.066 0.071 

-1.00 0.067 0.072 0.076 0.065 0.070 

50% 

-0.25 0.068 0.072 0.077 0.066 0.071 

-0.50 0.066 0.071 0.076 0.065 0.070 

-1.00 0.063 0.069 0.074 0.063 0.068 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

282 

Bias for Discrimination of 80 Unique Items - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.058 0.068 0.096 0.056 0.049 

SL 

25% 

-0.25 0.063 0.077 0.115 0.057 0.051 

-0.50 0.072 0.093 0.126 0.060 0.058 

-1.00 0.102 0.137 0.179 0.071 0.075 

50% 

-0.25 0.065 0.085 0.119 0.059 0.056 

-0.50 0.085 0.113 0.153 0.064 0.063 

-1.00 0.139 0.182 0.239 0.087 0.109 

HB 

None None 0.057 0.063 0.085 0.056 0.048 

25% 

-0.25 0.065 0.078 0.110 0.058 0.051 

-0.50 0.087 0.109 0.136 0.065 0.065 

-1.00 0.162 0.200 0.233 0.109 0.119 

50% 

-0.25 0.071 0.091 0.117 0.060 0.057 

-0.50 0.111 0.141 0.174 0.075 0.080 

-1.00 0.247 0.294 0.350 0.167 0.198 

LAV 

None None 0.057 0.064 0.080 0.056 0.049 

25% 

-0.25 0.063 0.075 0.104 0.058 0.053 

-0.50 0.068 0.084 0.116 0.063 0.060 

-1.00 0.070 0.093 0.127 0.068 0.063 

50% 

-0.25 0.074 0.094 0.115 0.062 0.059 

-0.50 0.140 0.170 0.198 0.098 0.109 

-1.00 0.353 0.370 0.409 0.249 0.282 

CC 

None None 0.048 0.043 0.039 0.064 0.054 

25% 

-0.25 0.048 0.043 0.040 0.064 0.053 

-0.50 0.053 0.048 0.041 0.065 0.056 

-1.00 0.071 0.061 0.047 0.065 0.055 

50% 

-0.25 0.050 0.047 0.039 0.066 0.055 

-0.50 0.059 0.051 0.041 0.065 0.056 

-1.00 0.085 0.061 0.045 0.070 0.058 

FPC 

None None 0.054 0.050 0.048 0.060 0.054 

25% 

-0.25 0.057 0.052 0.051 0.062 0.055 

-0.50 0.064 0.060 0.056 0.066 0.061 

-1.00 0.085 0.080 0.072 0.076 0.067 

50% 

-0.25 0.060 0.057 0.051 0.064 0.059 

-0.50 0.072 0.066 0.060 0.070 0.061 

-1.00 0.104 0.091 0.084 0.087 0.078 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

283 

SE for Discrimination of 80 Unique Items- 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.098 0.098 0.098 0.083 0.082 

SL 

25% 

-0.25 0.100 0.099 0.101 0.082 0.084 

-0.50 0.102 0.099 0.100 0.085 0.085 

-1.00 0.105 0.104 0.109 0.087 0.087 

50% 

-0.25 0.101 0.100 0.100 0.082 0.085 

-0.50 0.104 0.105 0.102 0.085 0.084 

-1.00 0.109 0.109 0.114 0.089 0.090 

HB 

None None 0.097 0.096 0.097 0.082 0.080 

25% 

-0.25 0.100 0.099 0.099 0.082 0.084 

-0.50 0.103 0.100 0.100 0.087 0.086 

-1.00 0.111 0.110 0.114 0.092 0.092 

50% 

-0.25 0.101 0.099 0.099 0.082 0.085 

-0.50 0.107 0.107 0.104 0.087 0.086 

-1.00 0.121 0.119 0.126 0.097 0.097 

LAV 

None None 0.098 0.097 0.097 0.083 0.082 

25% 

-0.25 0.102 0.100 0.100 0.084 0.086 

-0.50 0.103 0.100 0.101 0.090 0.088 

-1.00 0.102 0.101 0.107 0.090 0.088 

50% 

-0.25 0.104 0.102 0.099 0.086 0.087 

-0.50 0.114 0.114 0.108 0.093 0.092 

-1.00 0.139 0.145 0.141 0.110 0.112 

CC 

None None 0.093 0.086 0.081 0.077 0.073 

25% 

-0.25 0.095 0.087 0.081 0.076 0.074 

-0.50 0.095 0.085 0.080 0.078 0.074 

-1.00 0.096 0.088 0.082 0.078 0.074 

50% 

-0.25 0.094 0.086 0.080 0.075 0.074 

-0.50 0.095 0.087 0.079 0.076 0.072 

-1.00 0.095 0.084 0.079 0.076 0.072 

FPC 

None None 0.096 0.089 0.085 0.080 0.078 

25% 

-0.25 0.098 0.090 0.085 0.079 0.079 

-0.50 0.098 0.088 0.084 0.082 0.079 

-1.00 0.098 0.091 0.087 0.082 0.079 

50% 

-0.25 0.097 0.089 0.085 0.079 0.078 

-0.50 0.097 0.090 0.083 0.080 0.077 

-1.00 0.098 0.088 0.086 0.081 0.078 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

284 

RMSE for Discrimination of 80 Unique Items- 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.118 0.125 0.143 0.105 0.099 

SL 

25% 

-0.25 0.123 0.132 0.157 0.105 0.102 

-0.50 0.131 0.142 0.166 0.110 0.107 

-1.00 0.153 0.177 0.213 0.117 0.120 

50% 

-0.25 0.126 0.138 0.160 0.106 0.105 

-0.50 0.141 0.159 0.187 0.110 0.109 

-1.00 0.183 0.216 0.267 0.130 0.146 

HB 

None None 0.117 0.121 0.135 0.105 0.097 

25% 

-0.25 0.125 0.133 0.153 0.106 0.102 

-0.50 0.142 0.154 0.173 0.114 0.112 

-1.00 0.202 0.231 0.261 0.148 0.155 

50% 

-0.25 0.130 0.141 0.158 0.107 0.106 

-0.50 0.161 0.182 0.206 0.120 0.122 

-1.00 0.280 0.319 0.373 0.199 0.224 

LAV 

None None 0.117 0.122 0.133 0.106 0.099 

25% 

-0.25 0.125 0.132 0.150 0.107 0.105 

-0.50 0.130 0.137 0.159 0.115 0.111 

-1.00 0.130 0.144 0.171 0.118 0.113 

50% 

-0.25 0.135 0.145 0.157 0.111 0.109 

-0.50 0.187 0.209 0.229 0.142 0.148 

-1.00 0.382 0.399 0.434 0.277 0.306 

CC 

None None 0.109 0.100 0.094 0.107 0.098 

25% 

-0.25 0.111 0.100 0.093 0.107 0.099 

-0.50 0.114 0.101 0.094 0.109 0.100 

-1.00 0.125 0.112 0.098 0.109 0.099 

50% 

-0.25 0.110 0.101 0.093 0.108 0.100 

-0.50 0.117 0.104 0.093 0.108 0.099 

-1.00 0.134 0.109 0.095 0.111 0.100 

FPC 

None None 0.114 0.106 0.101 0.106 0.100 

25% 

-0.25 0.118 0.109 0.104 0.107 0.101 

-0.50 0.123 0.112 0.106 0.112 0.104 

-1.00 0.136 0.127 0.117 0.117 0.109 

50% 

-0.25 0.118 0.111 0.103 0.108 0.103 

-0.50 0.127 0.118 0.107 0.112 0.104 

-1.00 0.149 0.132 0.125 0.124 0.115 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

285 

Bias for Difficulty of 80 Unique Items - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.134 0.159 0.195 0.139 0.158 

SL 

25% 

-0.25 0.173 0.202 0.238 0.168 0.185 

-0.50 0.222 0.254 0.285 0.203 0.228 

-1.00 0.322 0.353 0.386 0.295 0.313 

50% 

-0.25 0.216 0.250 0.285 0.203 0.228 

-0.50 0.327 0.359 0.391 0.301 0.319 

-1.00 0.525 0.552 0.581 0.503 0.518 

HB 

None None 0.133 0.156 0.190 0.137 0.154 

25% 

-0.25 0.169 0.197 0.231 0.164 0.179 

-0.50 0.212 0.244 0.274 0.194 0.218 

-1.00 0.290 0.320 0.354 0.262 0.281 

50% 

-0.25 0.211 0.244 0.277 0.197 0.220 

-0.50 0.312 0.343 0.376 0.285 0.304 

-1.00 0.470 0.498 0.529 0.447 0.464 

LAV 

None None 0.134 0.156 0.188 0.139 0.156 

25% 

-0.25 0.153 0.183 0.219 0.155 0.171 

-0.50 0.153 0.187 0.222 0.155 0.180 

-1.00 0.153 0.185 0.226 0.157 0.174 

50% 

-0.25 0.209 0.236 0.273 0.190 0.216 

-0.50 0.268 0.301 0.341 0.235 0.269 

-1.00 0.405 0.422 0.447 0.327 0.369 

CC 

None None 0.132 0.143 0.162 0.135 0.147 

25% 

-0.25 0.169 0.180 0.191 0.163 0.168 

-0.50 0.214 0.228 0.233 0.196 0.208 

-1.00 0.316 0.338 0.345 0.297 0.300 

50% 

-0.25 0.211 0.225 0.231 0.196 0.205 

-0.50 0.323 0.336 0.336 0.291 0.292 

-1.00 0.541 0.566 0.569 0.531 0.525 

FPC 

None None 0.134 0.145 0.164 0.136 0.153 

25% 

-0.25 0.169 0.181 0.194 0.161 0.171 

-0.50 0.215 0.226 0.230 0.190 0.206 

-1.00 0.306 0.309 0.310 0.267 0.268 

50% 

-0.25 0.213 0.227 0.232 0.193 0.207 

-0.50 0.319 0.325 0.323 0.279 0.281 

-1.00 0.503 0.504 0.496 0.460 0.451 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

286 

SE for Difficulty of 80 Unique Items- 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.146 0.145 0.153 0.139 0.145 

SL 

25% 

-0.25 0.142 0.148 0.153 0.135 0.144 

-0.50 0.141 0.143 0.149 0.135 0.141 

-1.00 0.136 0.139 0.145 0.130 0.137 

50% 

-0.25 0.143 0.144 0.149 0.134 0.143 

-0.50 0.140 0.143 0.146 0.131 0.140 

-1.00 0.132 0.133 0.140 0.127 0.134 

HB 

None None 0.146 0.146 0.154 0.138 0.145 

25% 

-0.25 0.141 0.148 0.153 0.134 0.143 

-0.50 0.138 0.141 0.146 0.133 0.139 

-1.00 0.128 0.131 0.139 0.124 0.130 

50% 

-0.25 0.141 0.143 0.148 0.133 0.142 

-0.50 0.136 0.139 0.144 0.128 0.136 

-1.00 0.121 0.122 0.129 0.116 0.123 

LAV 

None None 0.147 0.146 0.156 0.138 0.146 

25% 

-0.25 0.143 0.151 0.156 0.136 0.145 

-0.50 0.144 0.147 0.152 0.136 0.143 

-1.00 0.143 0.145 0.155 0.134 0.141 

50% 

-0.25 0.143 0.144 0.151 0.135 0.145 

-0.50 0.138 0.141 0.145 0.128 0.136 

-1.00 0.121 0.133 0.134 0.116 0.123 

CC 

None None 0.151 0.146 0.150 0.137 0.140 

25% 

-0.25 0.146 0.148 0.150 0.133 0.139 

-0.50 0.144 0.143 0.146 0.133 0.137 

-1.00 0.137 0.137 0.143 0.128 0.134 

50% 

-0.25 0.146 0.143 0.146 0.132 0.139 

-0.50 0.142 0.142 0.144 0.129 0.135 

-1.00 0.132 0.133 0.140 0.124 0.131 

FPC 

None None 0.147 0.142 0.146 0.134 0.136 

25% 

-0.25 0.142 0.145 0.146 0.130 0.135 

-0.50 0.141 0.139 0.141 0.129 0.132 

-1.00 0.135 0.134 0.138 0.124 0.128 

50% 

-0.25 0.142 0.139 0.142 0.129 0.134 

-0.50 0.138 0.138 0.139 0.124 0.130 

-1.00 0.129 0.129 0.133 0.118 0.124 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

287 

RMSE for Difficulty of 80 Unique Items- 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.213 0.230 0.263 0.206 0.226 

SL 

25% 

-0.25 0.241 0.269 0.300 0.229 0.248 

-0.50 0.278 0.307 0.335 0.259 0.283 

-1.00 0.361 0.389 0.423 0.336 0.355 

50% 

-0.25 0.274 0.305 0.336 0.259 0.284 

-0.50 0.366 0.395 0.427 0.342 0.361 

-1.00 0.546 0.572 0.601 0.523 0.540 

HB 

None None 0.212 0.227 0.260 0.205 0.223 

25% 

-0.25 0.238 0.265 0.294 0.225 0.243 

-0.50 0.270 0.298 0.324 0.250 0.273 

-1.00 0.332 0.359 0.392 0.305 0.323 

50% 

-0.25 0.270 0.299 0.330 0.253 0.277 

-0.50 0.352 0.381 0.412 0.327 0.346 

-1.00 0.494 0.520 0.551 0.470 0.489 

LAV 

None None 0.213 0.228 0.260 0.206 0.224 

25% 

-0.25 0.227 0.255 0.286 0.218 0.238 

-0.50 0.227 0.255 0.284 0.219 0.243 

-1.00 0.227 0.252 0.290 0.220 0.238 

50% 

-0.25 0.270 0.294 0.328 0.248 0.275 

-0.50 0.317 0.347 0.383 0.284 0.315 

-1.00 0.434 0.451 0.475 0.361 0.400 

CC 

None None 0.212 0.215 0.231 0.202 0.213 

25% 

-0.25 0.239 0.250 0.259 0.221 0.230 

-0.50 0.273 0.285 0.290 0.251 0.262 

-1.00 0.355 0.375 0.386 0.338 0.342 

50% 

-0.25 0.272 0.284 0.290 0.250 0.261 

-0.50 0.363 0.375 0.378 0.332 0.336 

-1.00 0.561 0.585 0.590 0.550 0.546 

FPC 

None None 0.212 0.216 0.231 0.201 0.215 

25% 

-0.25 0.238 0.249 0.257 0.219 0.230 

-0.50 0.272 0.281 0.284 0.244 0.257 

-1.00 0.346 0.349 0.352 0.308 0.310 

50% 

-0.25 0.271 0.282 0.287 0.246 0.259 

-0.50 0.358 0.364 0.364 0.318 0.322 

-1.00 0.525 0.525 0.518 0.482 0.476 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Pseudo-Guessing of 80 Unique Items - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.046 0.056 0.069 0.042 0.051 

SL 

25% 

-0.25 0.046 0.056 0.068 0.043 0.052 

-0.50 0.045 0.055 0.068 0.042 0.051 

-1.00 0.045 0.056 0.069 0.043 0.050 

50% 

-0.25 0.045 0.056 0.068 0.043 0.051 

-0.50 0.045 0.056 0.068 0.043 0.051 

-1.00 0.045 0.056 0.068 0.043 0.052 

HB 

None None 0.046 0.056 0.069 0.042 0.051 

25% 

-0.25 0.046 0.056 0.068 0.043 0.052 

-0.50 0.045 0.055 0.068 0.042 0.051 

-1.00 0.045 0.056 0.069 0.043 0.050 

50% 

-0.25 0.045 0.056 0.068 0.043 0.051 

-0.50 0.045 0.056 0.068 0.043 0.051 

-1.00 0.045 0.056 0.068 0.043 0.052 

LAV 

None None 0.046 0.056 0.069 0.042 0.051 

25% 

-0.25 0.046 0.056 0.068 0.043 0.052 

-0.50 0.045 0.055 0.068 0.042 0.051 

-1.00 0.045 0.056 0.069 0.043 0.050 

50% 

-0.25 0.045 0.056 0.068 0.043 0.051 

-0.50 0.045 0.056 0.068 0.043 0.051 

-1.00 0.045 0.056 0.068 0.043 0.052 

CC 

None None 0.046 0.053 0.062 0.042 0.050 

25% 

-0.25 0.046 0.053 0.060 0.042 0.050 

-0.50 0.045 0.052 0.060 0.042 0.049 

-1.00 0.044 0.051 0.060 0.042 0.048 

50% 

-0.25 0.045 0.053 0.060 0.043 0.049 

-0.50 0.044 0.052 0.059 0.042 0.049 

-1.00 0.042 0.050 0.057 0.042 0.049 

FPC 

None None 0.046 0.053 0.061 0.042 0.050 

25% 

-0.25 0.045 0.053 0.060 0.042 0.050 

-0.50 0.045 0.052 0.060 0.042 0.049 

-1.00 0.044 0.051 0.060 0.042 0.048 

50% 

-0.25 0.044 0.052 0.060 0.043 0.049 

-0.50 0.044 0.052 0.059 0.042 0.049 

-1.00 0.042 0.050 0.057 0.042 0.049 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Pseudo-Guessing of 80 Unique Items- 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.033 0.034 0.035 0.031 0.031 

SL 

25% 

-0.25 0.033 0.035 0.035 0.030 0.032 

-0.50 0.033 0.034 0.035 0.031 0.031 

-1.00 0.033 0.034 0.035 0.031 0.031 

50% 

-0.25 0.033 0.034 0.035 0.030 0.031 

-0.50 0.033 0.035 0.035 0.030 0.032 

-1.00 0.033 0.034 0.036 0.030 0.032 

HB 

None None 0.033 0.034 0.035 0.031 0.031 

25% 

-0.25 0.033 0.035 0.035 0.030 0.032 

-0.50 0.033 0.034 0.035 0.031 0.031 

-1.00 0.033 0.034 0.035 0.031 0.031 

50% 

-0.25 0.033 0.034 0.035 0.030 0.031 

-0.50 0.033 0.035 0.035 0.030 0.032 

-1.00 0.033 0.034 0.036 0.030 0.032 

LAV 

None None 0.033 0.034 0.035 0.031 0.031 

25% 

-0.25 0.033 0.035 0.035 0.030 0.032 

-0.50 0.033 0.034 0.035 0.031 0.031 

-1.00 0.033 0.034 0.035 0.031 0.031 

50% 

-0.25 0.033 0.034 0.035 0.030 0.031 

-0.50 0.033 0.035 0.035 0.030 0.032 

-1.00 0.033 0.034 0.036 0.030 0.032 

CC 

None None 0.033 0.033 0.031 0.030 0.029 

25% 

-0.25 0.033 0.033 0.031 0.029 0.029 

-0.50 0.033 0.032 0.031 0.029 0.029 

-1.00 0.032 0.032 0.030 0.029 0.028 

50% 

-0.25 0.033 0.032 0.031 0.029 0.029 

-0.50 0.032 0.033 0.030 0.029 0.028 

-1.00 0.031 0.030 0.029 0.027 0.027 

FPC 

None None 0.033 0.033 0.031 0.030 0.029 

25% 

-0.25 0.033 0.033 0.031 0.029 0.029 

-0.50 0.033 0.032 0.031 0.029 0.029 

-1.00 0.032 0.032 0.030 0.029 0.028 

50% 

-0.25 0.033 0.032 0.031 0.029 0.029 

-0.50 0.032 0.032 0.030 0.029 0.029 

-1.00 0.031 0.030 0.029 0.027 0.027 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Pseudo-Guessing of 80 Unique Items- 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.061 0.071 0.083 0.056 0.064 

SL 

25% 

-0.25 0.061 0.072 0.082 0.056 0.065 

-0.50 0.061 0.071 0.082 0.056 0.064 

-1.00 0.061 0.072 0.083 0.057 0.063 

50% 

-0.25 0.060 0.071 0.082 0.056 0.064 

-0.50 0.061 0.072 0.082 0.056 0.064 

-1.00 0.060 0.071 0.082 0.056 0.065 

HB 

None None 0.061 0.071 0.083 0.056 0.064 

25% 

-0.25 0.061 0.072 0.082 0.056 0.065 

-0.50 0.061 0.071 0.082 0.056 0.064 

-1.00 0.061 0.072 0.083 0.057 0.063 

50% 

-0.25 0.060 0.071 0.082 0.056 0.064 

-0.50 0.061 0.072 0.082 0.056 0.064 

-1.00 0.060 0.071 0.082 0.056 0.065 

LAV 

None None 0.061 0.071 0.083 0.056 0.064 

25% 

-0.25 0.061 0.072 0.082 0.056 0.065 

-0.50 0.061 0.071 0.082 0.056 0.064 

-1.00 0.061 0.072 0.083 0.057 0.063 

50% 

-0.25 0.060 0.071 0.082 0.056 0.064 

-0.50 0.061 0.072 0.082 0.056 0.064 

-1.00 0.060 0.071 0.082 0.056 0.065 

CC 

None None 0.062 0.068 0.074 0.055 0.061 

25% 

-0.25 0.061 0.067 0.073 0.055 0.061 

-0.50 0.060 0.066 0.072 0.055 0.060 

-1.00 0.059 0.065 0.071 0.055 0.059 

50% 

-0.25 0.060 0.066 0.072 0.055 0.061 

-0.50 0.059 0.066 0.070 0.055 0.060 

-1.00 0.056 0.062 0.068 0.054 0.059 

FPC 

None None 0.061 0.067 0.074 0.055 0.061 

25% 

-0.25 0.061 0.067 0.072 0.055 0.061 

-0.50 0.060 0.066 0.071 0.055 0.060 

-1.00 0.059 0.065 0.071 0.055 0.059 

50% 

-0.25 0.060 0.066 0.072 0.055 0.061 

-0.50 0.059 0.065 0.070 0.055 0.060 

-1.00 0.056 0.062 0.068 0.054 0.059 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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APPENDIX D 

BIAS, SE, RMSE VALUES FOR ALL ITEM ESTIMATES 
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Bias for Discrimination of all 100 Items - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.078 0.081 0.097 0.069 0.065 

SL 

25% 

-0.25 0.081 0.086 0.113 0.070 0.069 

-0.50 0.088 0.095 0.123 0.074 0.077 

-1.00 0.100 0.130 0.167 0.089 0.107 

50% 

-0.25 0.081 0.089 0.117 0.072 0.071 

-0.50 0.088 0.110 0.154 0.078 0.092 

-1.00 0.138 0.182 0.242 0.122 0.161 

HB 

None None 0.077 0.077 0.089 0.067 0.062 

25% 

-0.25 0.082 0.086 0.106 0.070 0.067 

-0.50 0.096 0.104 0.128 0.078 0.084 

-1.00 0.148 0.182 0.218 0.133 0.152 

50% 

-0.25 0.084 0.093 0.116 0.073 0.072 

-0.50 0.108 0.131 0.172 0.091 0.110 

-1.00 0.238 0.290 0.347 0.210 0.254 

LAV 

None None 0.077 0.076 0.086 0.068 0.061 

25% 

-0.25 0.081 0.085 0.102 0.070 0.066 

-0.50 0.090 0.095 0.117 0.074 0.079 

-1.00 0.085 0.107 0.137 0.085 0.101 

50% 

-0.25 0.084 0.090 0.107 0.074 0.070 

-0.50 0.115 0.137 0.173 0.097 0.116 

-1.00 0.303 0.348 0.356 0.277 0.310 

CC 

None None 0.077 0.069 0.065 0.078 0.072 

25% 

-0.25 0.075 0.069 0.063 0.078 0.072 

-0.50 0.074 0.064 0.064 0.076 0.072 

-1.00 0.070 0.068 0.070 0.079 0.080 

50% 

-0.25 0.075 0.066 0.064 0.075 0.071 

-0.50 0.070 0.062 0.063 0.077 0.071 

-1.00 0.073 0.067 0.077 0.086 0.086 

FPC 

None None 0.075 0.067 0.060 0.072 0.064 

25% 

-0.25 0.075 0.067 0.058 0.074 0.064 

-0.50 0.078 0.068 0.060 0.075 0.065 

-1.00 0.083 0.072 0.059 0.079 0.068 

50% 

-0.25 0.076 0.067 0.058 0.074 0.063 

-0.50 0.077 0.068 0.060 0.076 0.066 

-1.00 0.091 0.076 0.065 0.086 0.072 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Discrimination of all 100 Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.136 0.137 0.142 0.129 0.128 

SL 

25% 

-0.25 0.138 0.137 0.145 0.128 0.134 

-0.50 0.141 0.141 0.148 0.130 0.133 

-1.00 0.145 0.151 0.155 0.132 0.141 

50% 

-0.25 0.139 0.140 0.145 0.128 0.134 

-0.50 0.140 0.145 0.155 0.131 0.139 

-1.00 0.150 0.156 0.168 0.139 0.149 

HB 

None None 0.135 0.135 0.140 0.127 0.126 

25% 

-0.25 0.138 0.136 0.144 0.127 0.132 

-0.50 0.142 0.142 0.149 0.130 0.135 

-1.00 0.154 0.159 0.163 0.139 0.147 

50% 

-0.25 0.139 0.141 0.144 0.128 0.135 

-0.50 0.144 0.148 0.158 0.134 0.141 

-1.00 0.164 0.172 0.185 0.152 0.164 

LAV 

None None 0.136 0.137 0.140 0.130 0.129 

25% 

-0.25 0.140 0.139 0.147 0.129 0.134 

-0.50 0.143 0.145 0.150 0.133 0.137 

-1.00 0.144 0.150 0.158 0.136 0.143 

50% 

-0.25 0.141 0.143 0.146 0.129 0.137 

-0.50 0.149 0.155 0.162 0.140 0.146 

-1.00 0.187 0.192 0.199 0.170 0.177 

CC 

None None 0.119 0.111 0.108 0.107 0.101 

25% 

-0.25 0.120 0.110 0.106 0.106 0.104 

-0.50 0.119 0.111 0.106 0.106 0.102 

-1.00 0.120 0.111 0.106 0.105 0.102 

50% 

-0.25 0.119 0.111 0.105 0.105 0.103 

-0.50 0.117 0.110 0.106 0.105 0.103 

-1.00 0.116 0.107 0.104 0.103 0.100 

FPC 

None None 0.128 0.121 0.121 0.119 0.116 

25% 

-0.25 0.129 0.121 0.119 0.119 0.118 

-0.50 0.130 0.122 0.120 0.119 0.118 

-1.00 0.131 0.124 0.120 0.118 0.118 

50% 

-0.25 0.129 0.122 0.120 0.117 0.118 

-0.50 0.127 0.123 0.121 0.119 0.118 

-1.00 0.127 0.121 0.121 0.118 0.117 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Discrimination of all 100 Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.164 0.166 0.180 0.152 0.149 

SL 

25% 

-0.25 0.166 0.169 0.193 0.152 0.157 

-0.50 0.174 0.179 0.202 0.156 0.161 

-1.00 0.184 0.209 0.237 0.167 0.184 

50% 

-0.25 0.168 0.174 0.196 0.153 0.158 

-0.50 0.174 0.192 0.227 0.160 0.174 

-1.00 0.212 0.248 0.302 0.192 0.226 

HB 

None None 0.162 0.163 0.175 0.150 0.145 

25% 

-0.25 0.167 0.169 0.188 0.151 0.154 

-0.50 0.180 0.185 0.206 0.159 0.165 

-1.00 0.222 0.250 0.279 0.199 0.218 

50% 

-0.25 0.170 0.177 0.194 0.153 0.159 

-0.50 0.189 0.208 0.241 0.170 0.186 

-1.00 0.297 0.343 0.400 0.265 0.308 

LAV 

None None 0.163 0.164 0.173 0.153 0.147 

25% 

-0.25 0.168 0.170 0.188 0.153 0.156 

-0.50 0.176 0.182 0.199 0.159 0.165 

-1.00 0.174 0.194 0.218 0.168 0.182 

50% 

-0.25 0.172 0.177 0.190 0.155 0.159 

-0.50 0.197 0.216 0.245 0.178 0.194 

-1.00 0.362 0.402 0.413 0.330 0.361 

CC 

None None 0.150 0.137 0.133 0.144 0.134 

25% 

-0.25 0.149 0.137 0.130 0.143 0.136 

-0.50 0.148 0.136 0.132 0.142 0.136 

-1.00 0.147 0.138 0.136 0.143 0.141 

50% 

-0.25 0.148 0.136 0.130 0.140 0.135 

-0.50 0.144 0.134 0.132 0.142 0.136 

-1.00 0.146 0.137 0.140 0.148 0.144 

FPC 

None None 0.156 0.145 0.140 0.149 0.140 

25% 

-0.25 0.156 0.144 0.138 0.149 0.143 

-0.50 0.159 0.145 0.140 0.149 0.142 

-1.00 0.161 0.150 0.140 0.150 0.143 

50% 

-0.25 0.157 0.146 0.139 0.147 0.142 

-0.50 0.155 0.146 0.140 0.150 0.143 

-1.00 0.163 0.150 0.143 0.154 0.144 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Difficulty of all 100 Items - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.160 0.179 0.199 0.174 0.186 

SL 

25% 

-0.25 0.199 0.217 0.245 0.203 0.226 

-0.50 0.240 0.265 0.293 0.255 0.273 

-1.00 0.347 0.369 0.396 0.353 0.370 

50% 

-0.25 0.233 0.253 0.280 0.241 0.254 

-0.50 0.329 0.353 0.385 0.337 0.362 

-1.00 0.536 0.551 0.576 0.537 0.554 

HB 

None None 0.160 0.178 0.197 0.173 0.184 

25% 

-0.25 0.196 0.214 0.239 0.199 0.219 

-0.50 0.231 0.255 0.281 0.245 0.260 

-1.00 0.311 0.337 0.362 0.318 0.336 

50% 

-0.25 0.229 0.248 0.273 0.236 0.246 

-0.50 0.315 0.338 0.368 0.320 0.345 

-1.00 0.477 0.493 0.521 0.481 0.495 

LAV 

None None 0.161 0.177 0.198 0.174 0.183 

25% 

-0.25 0.189 0.208 0.235 0.196 0.215 

-0.50 0.202 0.226 0.251 0.217 0.234 

-1.00 0.226 0.246 0.277 0.237 0.257 

50% 

-0.25 0.229 0.246 0.271 0.234 0.246 

-0.50 0.295 0.320 0.359 0.303 0.331 

-1.00 0.410 0.431 0.455 0.396 0.429 

CC 

None None 0.161 0.167 0.173 0.170 0.172 

25% 

-0.25 0.193 0.196 0.199 0.192 0.196 

-0.50 0.223 0.230 0.231 0.227 0.225 

-1.00 0.305 0.304 0.301 0.307 0.296 

50% 

-0.25 0.220 0.224 0.224 0.220 0.217 

-0.50 0.298 0.298 0.295 0.298 0.293 

-1.00 0.496 0.497 0.482 0.494 0.475 

FPC 

None None 0.160 0.165 0.170 0.163 0.168 

25% 

-0.25 0.188 0.190 0.191 0.183 0.187 

-0.50 0.215 0.215 0.216 0.211 0.210 

-1.00 0.278 0.268 0.259 0.267 0.255 

50% 

-0.25 0.213 0.214 0.215 0.209 0.204 

-0.50 0.285 0.279 0.270 0.272 0.268 

-1.00 0.437 0.419 0.399 0.411 0.390 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Difficulty of all 100 Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.184 0.182 0.189 0.182 0.188 

SL 

25% 

-0.25 0.184 0.177 0.193 0.179 0.191 

-0.50 0.180 0.178 0.193 0.177 0.190 

-1.00 0.176 0.177 0.188 0.170 0.187 

50% 

-0.25 0.181 0.183 0.189 0.178 0.190 

-0.50 0.177 0.177 0.192 0.176 0.188 

-1.00 0.170 0.172 0.185 0.168 0.179 

HB 

None None 0.185 0.183 0.191 0.183 0.189 

25% 

-0.25 0.183 0.176 0.194 0.179 0.192 

-0.50 0.176 0.176 0.192 0.175 0.189 

-1.00 0.167 0.169 0.181 0.162 0.179 

50% 

-0.25 0.179 0.182 0.190 0.176 0.190 

-0.50 0.172 0.173 0.189 0.173 0.185 

-1.00 0.155 0.159 0.173 0.154 0.168 

LAV 

None None 0.187 0.186 0.194 0.184 0.193 

25% 

-0.25 0.186 0.181 0.198 0.183 0.196 

-0.50 0.181 0.183 0.199 0.181 0.193 

-1.00 0.185 0.186 0.199 0.177 0.192 

50% 

-0.25 0.181 0.186 0.195 0.178 0.195 

-0.50 0.177 0.179 0.194 0.179 0.190 

-1.00 0.167 0.168 0.186 0.162 0.168 

CC 

None None 0.192 0.185 0.189 0.180 0.182 

25% 

-0.25 0.191 0.181 0.190 0.178 0.188 

-0.50 0.186 0.181 0.190 0.176 0.187 

-1.00 0.180 0.176 0.187 0.171 0.184 

50% 

-0.25 0.187 0.185 0.188 0.176 0.183 

-0.50 0.183 0.179 0.189 0.175 0.183 

-1.00 0.176 0.175 0.185 0.170 0.178 

FPC 

None None 0.187 0.181 0.186 0.179 0.180 

25% 

-0.25 0.187 0.176 0.186 0.177 0.184 

-0.50 0.181 0.177 0.186 0.174 0.183 

-1.00 0.177 0.174 0.182 0.168 0.179 

50% 

-0.25 0.182 0.180 0.184 0.174 0.181 

-0.50 0.179 0.175 0.184 0.173 0.180 

-1.00 0.171 0.170 0.179 0.165 0.172 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Difficulty of all 100 Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.257 0.272 0.294 0.263 0.280 

SL 

25% 

-0.25 0.286 0.298 0.332 0.288 0.316 

-0.50 0.319 0.339 0.372 0.328 0.352 

-1.00 0.406 0.424 0.455 0.408 0.430 

50% 

-0.25 0.313 0.332 0.360 0.317 0.337 

-0.50 0.388 0.409 0.447 0.397 0.426 

-1.00 0.570 0.586 0.615 0.570 0.590 

HB 

None None 0.257 0.271 0.293 0.263 0.278 

25% 

-0.25 0.284 0.295 0.327 0.284 0.310 

-0.50 0.310 0.329 0.361 0.318 0.341 

-1.00 0.373 0.393 0.420 0.374 0.396 

50% 

-0.25 0.308 0.327 0.355 0.312 0.330 

-0.50 0.374 0.395 0.431 0.381 0.408 

-1.00 0.514 0.531 0.562 0.516 0.535 

LAV 

None None 0.260 0.272 0.296 0.265 0.281 

25% 

-0.25 0.280 0.293 0.327 0.284 0.309 

-0.50 0.290 0.310 0.341 0.300 0.323 

-1.00 0.315 0.330 0.362 0.316 0.340 

50% 

-0.25 0.309 0.328 0.357 0.311 0.334 

-0.50 0.360 0.384 0.425 0.371 0.399 

-1.00 0.460 0.478 0.504 0.443 0.473 

CC 

None None 0.263 0.264 0.273 0.259 0.263 

25% 

-0.25 0.285 0.280 0.292 0.276 0.287 

-0.50 0.307 0.309 0.318 0.304 0.311 

-1.00 0.370 0.371 0.378 0.369 0.369 

50% 

-0.25 0.304 0.307 0.313 0.298 0.301 

-0.50 0.367 0.368 0.375 0.364 0.367 

-1.00 0.535 0.538 0.532 0.535 0.520 

FPC 

None None 0.259 0.258 0.266 0.253 0.259 

25% 

-0.25 0.279 0.273 0.282 0.267 0.277 

-0.50 0.299 0.296 0.303 0.290 0.295 

-1.00 0.349 0.339 0.338 0.333 0.330 

50% 

-0.25 0.298 0.297 0.302 0.288 0.289 

-0.50 0.356 0.349 0.350 0.343 0.343 

-1.00 0.485 0.469 0.455 0.460 0.443 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

298 

Bias for Pseudo-Guessing of all 100 Items - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.054 0.064 0.074 0.057 0.064 

SL 

25% 

-0.25 0.055 0.064 0.074 0.057 0.064 

-0.50 0.055 0.064 0.075 0.056 0.065 

-1.00 0.055 0.065 0.075 0.057 0.065 

50% 

-0.25 0.055 0.063 0.074 0.056 0.065 

-0.50 0.054 0.064 0.076 0.057 0.065 

-1.00 0.054 0.065 0.075 0.057 0.066 

HB 

None None 0.054 0.064 0.074 0.057 0.064 

25% 

-0.25 0.055 0.064 0.074 0.057 0.064 

-0.50 0.055 0.064 0.075 0.056 0.065 

-1.00 0.055 0.065 0.075 0.057 0.065 

50% 

-0.25 0.055 0.063 0.074 0.056 0.065 

-0.50 0.054 0.064 0.076 0.057 0.065 

-1.00 0.055 0.065 0.075 0.057 0.066 

LAV 

None None 0.054 0.064 0.074 0.057 0.064 

25% 

-0.25 0.055 0.064 0.074 0.057 0.064 

-0.50 0.055 0.064 0.075 0.056 0.065 

-1.00 0.055 0.065 0.075 0.057 0.065 

50% 

-0.25 0.055 0.063 0.074 0.056 0.065 

-0.50 0.054 0.064 0.076 0.057 0.065 

-1.00 0.054 0.065 0.075 0.057 0.066 

CC 

None None 0.053 0.059 0.064 0.054 0.058 

25% 

-0.25 0.053 0.059 0.064 0.054 0.058 

-0.50 0.053 0.059 0.064 0.053 0.058 

-1.00 0.053 0.058 0.063 0.053 0.057 

50% 

-0.25 0.053 0.058 0.064 0.053 0.058 

-0.50 0.052 0.058 0.064 0.053 0.058 

-1.00 0.051 0.056 0.061 0.051 0.056 

FPC 

None None 0.054 0.060 0.065 0.055 0.059 

25% 

-0.25 0.054 0.060 0.064 0.054 0.059 

-0.50 0.054 0.060 0.064 0.054 0.059 

-1.00 0.053 0.059 0.064 0.054 0.058 

50% 

-0.25 0.054 0.059 0.064 0.054 0.059 

-0.50 0.053 0.058 0.064 0.054 0.059 

-1.00 0.052 0.057 0.062 0.053 0.058 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

299 

SE for Pseudo-Guessing of all 100 Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.031 0.031 0.029 0.030 0.029 

SL 

25% 

-0.25 0.031 0.030 0.030 0.030 0.030 

-0.50 0.031 0.031 0.029 0.029 0.030 

-1.00 0.030 0.031 0.029 0.029 0.029 

50% 

-0.25 0.031 0.031 0.030 0.030 0.029 

-0.50 0.031 0.031 0.029 0.029 0.029 

-1.00 0.030 0.031 0.029 0.029 0.029 

HB 

None None 0.031 0.031 0.029 0.030 0.029 

25% 

-0.25 0.031 0.030 0.030 0.030 0.030 

-0.50 0.031 0.031 0.029 0.030 0.030 

-1.00 0.030 0.031 0.029 0.029 0.029 

50% 

-0.25 0.031 0.031 0.030 0.030 0.029 

-0.50 0.031 0.031 0.029 0.029 0.029 

-1.00 0.030 0.031 0.029 0.029 0.029 

LAV 

None None 0.031 0.031 0.029 0.030 0.029 

25% 

-0.25 0.031 0.030 0.030 0.030 0.030 

-0.50 0.031 0.031 0.029 0.029 0.030 

-1.00 0.030 0.031 0.029 0.029 0.029 

50% 

-0.25 0.031 0.031 0.030 0.030 0.029 

-0.50 0.031 0.031 0.029 0.029 0.029 

-1.00 0.030 0.031 0.029 0.029 0.029 

CC 

None None 0.033 0.031 0.027 0.029 0.028 

25% 

-0.25 0.032 0.030 0.027 0.029 0.028 

-0.50 0.031 0.030 0.027 0.029 0.028 

-1.00 0.031 0.029 0.026 0.028 0.027 

50% 

-0.25 0.032 0.030 0.027 0.029 0.027 

-0.50 0.031 0.029 0.026 0.028 0.027 

-1.00 0.029 0.028 0.026 0.027 0.026 

FPC 

None None 0.032 0.030 0.027 0.029 0.027 

25% 

-0.25 0.031 0.029 0.027 0.029 0.027 

-0.50 0.031 0.029 0.026 0.028 0.027 

-1.00 0.030 0.029 0.026 0.028 0.027 

50% 

-0.25 0.031 0.029 0.027 0.028 0.027 

-0.50 0.030 0.028 0.026 0.028 0.027 

-1.00 0.028 0.027 0.025 0.027 0.026 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

300 

RMSE for Pseudo-Guessing of all 100 Items - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.066 0.075 0.084 0.067 0.075 

SL 

25% 

-0.25 0.066 0.075 0.084 0.067 0.075 

-0.50 0.067 0.076 0.085 0.067 0.076 

-1.00 0.067 0.076 0.085 0.067 0.075 

50% 

-0.25 0.066 0.075 0.084 0.067 0.075 

-0.50 0.066 0.075 0.085 0.067 0.076 

-1.00 0.066 0.076 0.085 0.067 0.076 

HB 

None None 0.066 0.075 0.084 0.067 0.075 

25% 

-0.25 0.066 0.075 0.084 0.067 0.076 

-0.50 0.067 0.076 0.085 0.067 0.076 

-1.00 0.067 0.076 0.085 0.067 0.075 

50% 

-0.25 0.066 0.075 0.084 0.067 0.075 

-0.50 0.066 0.075 0.085 0.067 0.076 

-1.00 0.066 0.076 0.085 0.067 0.076 

LAV 

None None 0.066 0.075 0.084 0.067 0.075 

25% 

-0.25 0.066 0.075 0.084 0.067 0.075 

-0.50 0.067 0.076 0.085 0.067 0.076 

-1.00 0.067 0.076 0.085 0.067 0.075 

50% 

-0.25 0.066 0.075 0.084 0.067 0.075 

-0.50 0.066 0.075 0.085 0.067 0.076 

-1.00 0.066 0.076 0.085 0.067 0.076 

CC 

None None 0.067 0.071 0.074 0.064 0.068 

25% 

-0.25 0.066 0.070 0.073 0.064 0.068 

-0.50 0.066 0.070 0.073 0.063 0.068 

-1.00 0.065 0.069 0.072 0.063 0.067 

50% 

-0.25 0.066 0.070 0.073 0.063 0.067 

-0.50 0.064 0.069 0.073 0.063 0.067 

-1.00 0.062 0.067 0.070 0.062 0.066 

FPC 

None None 0.067 0.071 0.074 0.065 0.069 

25% 

-0.25 0.066 0.070 0.073 0.065 0.068 

-0.50 0.066 0.070 0.073 0.064 0.068 

-1.00 0.065 0.069 0.072 0.064 0.067 

50% 

-0.25 0.066 0.069 0.073 0.064 0.068 

-0.50 0.064 0.069 0.072 0.064 0.068 

-1.00 0.062 0.067 0.070 0.062 0.066 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

301 

Bias for Discrimination of all 100 Items - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.056 0.067 0.094 0.054 0.048 

SL 

25% 

-0.25 0.060 0.075 0.112 0.055 0.049 

-0.50 0.068 0.091 0.123 0.058 0.055 

-1.00 0.100 0.134 0.176 0.068 0.074 

50% 

-0.25 0.062 0.083 0.117 0.056 0.054 

-0.50 0.082 0.110 0.149 0.060 0.061 

-1.00 0.137 0.180 0.232 0.086 0.110 

HB 

None None 0.055 0.062 0.083 0.054 0.047 

25% 

-0.25 0.062 0.076 0.108 0.056 0.049 

-0.50 0.084 0.107 0.133 0.063 0.063 

-1.00 0.161 0.196 0.230 0.108 0.120 

50% 

-0.25 0.069 0.089 0.115 0.057 0.056 

-0.50 0.109 0.138 0.171 0.072 0.080 

-1.00 0.247 0.292 0.343 0.171 0.201 

LAV 

None None 0.055 0.062 0.079 0.054 0.047 

25% 

-0.25 0.060 0.073 0.102 0.056 0.050 

-0.50 0.064 0.082 0.113 0.060 0.057 

-1.00 0.067 0.090 0.123 0.065 0.062 

50% 

-0.25 0.072 0.092 0.113 0.059 0.058 

-0.50 0.139 0.168 0.195 0.097 0.110 

-1.00 0.354 0.369 0.402 0.255 0.287 

CC 

None None 0.045 0.041 0.038 0.059 0.050 

25% 

-0.25 0.046 0.040 0.038 0.059 0.050 

-0.50 0.049 0.045 0.042 0.061 0.056 

-1.00 0.064 0.060 0.056 0.069 0.065 

50% 

-0.25 0.047 0.042 0.037 0.060 0.051 

-0.50 0.053 0.048 0.044 0.062 0.057 

-1.00 0.078 0.069 0.063 0.080 0.076 

FPC 

None None 0.053 0.049 0.048 0.057 0.053 

25% 

-0.25 0.055 0.051 0.050 0.059 0.054 

-0.50 0.061 0.057 0.054 0.062 0.058 

-1.00 0.077 0.074 0.067 0.070 0.063 

50% 

-0.25 0.057 0.055 0.050 0.061 0.057 

-0.50 0.067 0.062 0.057 0.066 0.059 

-1.00 0.093 0.082 0.077 0.079 0.072 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

302 

SE for Discrimination of all 100 Items - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.098 0.099 0.098 0.082 0.082 

SL 

25% 

-0.25 0.100 0.099 0.101 0.083 0.084 

-0.50 0.102 0.098 0.101 0.085 0.084 

-1.00 0.104 0.105 0.109 0.087 0.087 

50% 

-0.25 0.100 0.100 0.100 0.082 0.084 

-0.50 0.103 0.104 0.102 0.085 0.084 

-1.00 0.108 0.109 0.114 0.088 0.091 

HB 

None None 0.098 0.097 0.097 0.082 0.081 

25% 

-0.25 0.100 0.099 0.099 0.083 0.084 

-0.50 0.103 0.100 0.101 0.086 0.086 

-1.00 0.110 0.110 0.114 0.092 0.092 

50% 

-0.25 0.100 0.100 0.099 0.083 0.084 

-0.50 0.106 0.106 0.104 0.087 0.087 

-1.00 0.120 0.119 0.126 0.097 0.098 

LAV 

None None 0.098 0.098 0.097 0.083 0.082 

25% 

-0.25 0.101 0.101 0.101 0.084 0.086 

-0.50 0.103 0.100 0.101 0.089 0.088 

-1.00 0.102 0.102 0.107 0.091 0.089 

50% 

-0.25 0.104 0.102 0.099 0.086 0.087 

-0.50 0.114 0.113 0.109 0.093 0.093 

-1.00 0.138 0.145 0.141 0.111 0.113 

CC 

None None 0.090 0.083 0.078 0.074 0.071 

25% 

-0.25 0.091 0.084 0.078 0.074 0.072 

-0.50 0.092 0.083 0.078 0.076 0.072 

-1.00 0.092 0.085 0.079 0.076 0.072 

50% 

-0.25 0.090 0.084 0.077 0.073 0.071 

-0.50 0.091 0.084 0.076 0.074 0.070 

-1.00 0.092 0.081 0.077 0.074 0.070 

FPC 

None None 0.096 0.091 0.087 0.083 0.082 

25% 

-0.25 0.098 0.091 0.087 0.083 0.082 

-0.50 0.098 0.090 0.087 0.085 0.082 

-1.00 0.098 0.092 0.089 0.085 0.083 

50% 

-0.25 0.097 0.091 0.087 0.082 0.082 

-0.50 0.097 0.092 0.086 0.084 0.081 

-1.00 0.098 0.090 0.089 0.084 0.082 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

303 

RMSE for Discrimination of all 100 Items - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.118 0.126 0.142 0.104 0.099 

SL 

25% 

-0.25 0.122 0.132 0.157 0.104 0.101 

-0.50 0.130 0.141 0.164 0.108 0.105 

-1.00 0.151 0.175 0.210 0.116 0.120 

50% 

-0.25 0.125 0.137 0.159 0.104 0.104 

-0.50 0.139 0.157 0.185 0.108 0.109 

-1.00 0.181 0.214 0.261 0.129 0.147 

HB 

None None 0.117 0.122 0.135 0.103 0.097 

25% 

-0.25 0.124 0.132 0.152 0.104 0.101 

-0.50 0.140 0.152 0.172 0.112 0.111 

-1.00 0.201 0.228 0.259 0.148 0.156 

50% 

-0.25 0.129 0.140 0.157 0.105 0.105 

-0.50 0.159 0.179 0.203 0.119 0.122 

-1.00 0.279 0.317 0.367 0.202 0.227 

LAV 

None None 0.117 0.122 0.132 0.104 0.098 

25% 

-0.25 0.124 0.131 0.149 0.106 0.103 

-0.50 0.128 0.136 0.157 0.113 0.110 

-1.00 0.128 0.142 0.169 0.116 0.113 

50% 

-0.25 0.133 0.144 0.156 0.109 0.108 

-0.50 0.186 0.207 0.226 0.141 0.149 

-1.00 0.383 0.398 0.428 0.282 0.310 

CC 

None None 0.104 0.096 0.090 0.101 0.093 

25% 

-0.25 0.106 0.097 0.090 0.102 0.094 

-0.50 0.108 0.098 0.092 0.105 0.098 

-1.00 0.118 0.109 0.102 0.109 0.105 

50% 

-0.25 0.105 0.097 0.089 0.102 0.095 

-0.50 0.110 0.100 0.092 0.104 0.098 

-1.00 0.127 0.112 0.106 0.116 0.111 

FPC 

None None 0.114 0.108 0.104 0.108 0.103 

25% 

-0.25 0.117 0.110 0.106 0.108 0.104 

-0.50 0.121 0.112 0.108 0.112 0.107 

-1.00 0.132 0.124 0.117 0.117 0.110 

50% 

-0.25 0.118 0.111 0.105 0.109 0.105 

-0.50 0.125 0.117 0.109 0.113 0.106 

-1.00 0.142 0.128 0.123 0.122 0.115 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

304 

Bias for Difficulty of all 100 Items - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.124 0.148 0.184 0.134 0.150 

SL 

25% 

-0.25 0.165 0.192 0.226 0.163 0.178 

-0.50 0.218 0.249 0.277 0.204 0.226 

-1.00 0.331 0.359 0.390 0.304 0.324 

50% 

-0.25 0.206 0.235 0.266 0.196 0.219 

-0.50 0.315 0.343 0.371 0.294 0.309 

-1.00 0.512 0.533 0.559 0.495 0.507 

HB 

None None 0.123 0.146 0.179 0.132 0.147 

25% 

-0.25 0.161 0.188 0.220 0.160 0.172 

-0.50 0.209 0.239 0.266 0.195 0.216 

-1.00 0.297 0.325 0.358 0.271 0.291 

50% 

-0.25 0.201 0.230 0.260 0.191 0.212 

-0.50 0.300 0.328 0.356 0.278 0.295 

-1.00 0.456 0.478 0.506 0.438 0.452 

LAV 

None None 0.124 0.146 0.178 0.133 0.148 

25% 

-0.25 0.147 0.175 0.210 0.152 0.165 

-0.50 0.158 0.189 0.220 0.162 0.183 

-1.00 0.184 0.210 0.248 0.184 0.201 

50% 

-0.25 0.199 0.223 0.256 0.185 0.209 

-0.50 0.262 0.291 0.326 0.236 0.264 

-1.00 0.395 0.411 0.435 0.334 0.368 

CC 

None None 0.119 0.129 0.146 0.124 0.134 

25% 

-0.25 0.153 0.162 0.172 0.149 0.152 

-0.50 0.195 0.207 0.209 0.179 0.187 

-1.00 0.294 0.308 0.309 0.269 0.267 

50% 

-0.25 0.189 0.201 0.205 0.179 0.186 

-0.50 0.289 0.298 0.296 0.261 0.260 

-1.00 0.488 0.500 0.494 0.466 0.455 

FPC 

None None 0.124 0.134 0.149 0.126 0.140 

25% 

-0.25 0.153 0.162 0.173 0.147 0.154 

-0.50 0.189 0.198 0.201 0.170 0.182 

-1.00 0.263 0.265 0.266 0.231 0.232 

50% 

-0.25 0.188 0.199 0.203 0.172 0.183 

-0.50 0.272 0.278 0.276 0.240 0.243 

-1.00 0.420 0.421 0.414 0.385 0.379 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 



 

305 

SE for Difficulty of all 100 Items - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.146 0.147 0.153 0.138 0.145 

SL 

25% 

-0.25 0.142 0.148 0.152 0.135 0.143 

-0.50 0.142 0.144 0.148 0.134 0.143 

-1.00 0.138 0.141 0.147 0.131 0.138 

50% 

-0.25 0.142 0.146 0.150 0.134 0.142 

-0.50 0.140 0.144 0.148 0.133 0.140 

-1.00 0.134 0.137 0.145 0.130 0.137 

HB 

None None 0.146 0.147 0.154 0.138 0.145 

25% 

-0.25 0.141 0.147 0.152 0.135 0.143 

-0.50 0.139 0.142 0.146 0.132 0.140 

-1.00 0.129 0.134 0.140 0.124 0.131 

50% 

-0.25 0.140 0.144 0.150 0.133 0.141 

-0.50 0.136 0.140 0.145 0.129 0.136 

-1.00 0.122 0.125 0.133 0.119 0.126 

LAV 

None None 0.146 0.148 0.155 0.138 0.146 

25% 

-0.25 0.144 0.150 0.155 0.136 0.145 

-0.50 0.145 0.148 0.152 0.136 0.144 

-1.00 0.145 0.148 0.157 0.135 0.142 

50% 

-0.25 0.143 0.146 0.153 0.135 0.144 

-0.50 0.139 0.143 0.147 0.130 0.137 

-1.00 0.123 0.138 0.140 0.120 0.127 

CC 

None None 0.147 0.144 0.146 0.136 0.138 

25% 

-0.25 0.144 0.146 0.147 0.132 0.138 

-0.50 0.143 0.142 0.144 0.132 0.135 

-1.00 0.137 0.137 0.141 0.129 0.134 

50% 

-0.25 0.143 0.142 0.145 0.131 0.136 

-0.50 0.140 0.141 0.142 0.129 0.134 

-1.00 0.133 0.134 0.140 0.127 0.132 

FPC 

None None 0.146 0.143 0.146 0.136 0.138 

25% 

-0.25 0.143 0.145 0.145 0.133 0.136 

-0.50 0.141 0.140 0.142 0.132 0.134 

-1.00 0.137 0.136 0.139 0.128 0.131 

50% 

-0.25 0.142 0.140 0.142 0.132 0.136 

-0.50 0.139 0.139 0.140 0.128 0.132 

-1.00 0.132 0.132 0.136 0.123 0.128 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

306 

RMSE for Difficulty of all 100 Items - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.205 0.224 0.254 0.202 0.220 

SL 

25% 

-0.25 0.233 0.260 0.289 0.225 0.244 

-0.50 0.275 0.302 0.328 0.259 0.282 

-1.00 0.369 0.395 0.427 0.346 0.365 

50% 

-0.25 0.265 0.293 0.323 0.252 0.276 

-0.50 0.354 0.381 0.410 0.336 0.353 

-1.00 0.534 0.555 0.583 0.517 0.531 

HB 

None None 0.205 0.222 0.251 0.200 0.217 

25% 

-0.25 0.230 0.256 0.284 0.222 0.239 

-0.50 0.267 0.293 0.317 0.250 0.272 

-1.00 0.339 0.364 0.395 0.314 0.333 

50% 

-0.25 0.261 0.288 0.316 0.247 0.270 

-0.50 0.340 0.367 0.396 0.321 0.339 

-1.00 0.480 0.503 0.532 0.463 0.479 

LAV 

None None 0.206 0.222 0.252 0.201 0.219 

25% 

-0.25 0.222 0.248 0.277 0.217 0.234 

-0.50 0.231 0.257 0.283 0.225 0.247 

-1.00 0.256 0.278 0.312 0.247 0.264 

50% 

-0.25 0.261 0.284 0.315 0.243 0.268 

-0.50 0.311 0.338 0.370 0.285 0.311 

-1.00 0.425 0.444 0.468 0.369 0.402 

CC 

None None 0.201 0.205 0.218 0.193 0.203 

25% 

-0.25 0.225 0.234 0.242 0.211 0.218 

-0.50 0.257 0.267 0.271 0.237 0.245 

-1.00 0.336 0.350 0.355 0.315 0.315 

50% 

-0.25 0.253 0.264 0.269 0.234 0.244 

-0.50 0.334 0.344 0.344 0.307 0.309 

-1.00 0.512 0.526 0.525 0.494 0.485 

FPC 

None None 0.205 0.208 0.221 0.196 0.208 

25% 

-0.25 0.226 0.235 0.241 0.211 0.219 

-0.50 0.253 0.260 0.263 0.231 0.241 

-1.00 0.312 0.315 0.317 0.282 0.284 

50% 

-0.25 0.253 0.261 0.265 0.232 0.242 

-0.50 0.322 0.327 0.327 0.290 0.293 

-1.00 0.455 0.456 0.450 0.421 0.416 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

307 

Bias for Pseudo-Guessing of all 100 Items - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.042 0.053 0.065 0.041 0.049 

SL 

25% 

-0.25 0.042 0.052 0.065 0.041 0.049 

-0.50 0.042 0.053 0.064 0.041 0.049 

-1.00 0.043 0.053 0.066 0.042 0.049 

50% 

-0.25 0.042 0.053 0.065 0.041 0.049 

-0.50 0.043 0.053 0.065 0.042 0.049 

-1.00 0.043 0.054 0.065 0.042 0.050 

HB 

None None 0.042 0.053 0.065 0.041 0.049 

25% 

-0.25 0.042 0.052 0.065 0.041 0.049 

-0.50 0.042 0.053 0.064 0.041 0.049 

-1.00 0.043 0.053 0.066 0.042 0.049 

50% 

-0.25 0.042 0.053 0.065 0.041 0.049 

-0.50 0.043 0.053 0.065 0.042 0.049 

-1.00 0.043 0.054 0.065 0.042 0.050 

LAV 

None None 0.042 0.053 0.065 0.041 0.049 

25% 

-0.25 0.042 0.052 0.065 0.041 0.049 

-0.50 0.042 0.053 0.064 0.041 0.049 

-1.00 0.043 0.053 0.066 0.042 0.049 

50% 

-0.25 0.042 0.053 0.065 0.041 0.049 

-0.50 0.043 0.053 0.065 0.042 0.049 

-1.00 0.043 0.054 0.065 0.042 0.050 

CC 

None None 0.041 0.048 0.054 0.038 0.045 

25% 

-0.25 0.041 0.047 0.053 0.039 0.045 

-0.50 0.040 0.046 0.053 0.038 0.044 

-1.00 0.040 0.046 0.053 0.039 0.044 

50% 

-0.25 0.040 0.047 0.053 0.039 0.044 

-0.50 0.040 0.046 0.052 0.039 0.043 

-1.00 0.039 0.045 0.051 0.039 0.044 

FPC 

None None 0.043 0.049 0.055 0.040 0.046 

25% 

-0.25 0.042 0.048 0.054 0.040 0.046 

-0.50 0.042 0.047 0.054 0.040 0.045 

-1.00 0.041 0.047 0.054 0.040 0.045 

50% 

-0.25 0.042 0.048 0.054 0.040 0.045 

-0.50 0.041 0.047 0.053 0.040 0.045 

-1.00 0.040 0.046 0.052 0.040 0.045 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Pseudo-Guessing of all 100 Items - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.034 0.035 0.035 0.031 0.032 

SL 

25% 

-0.25 0.033 0.035 0.036 0.031 0.032 

-0.50 0.034 0.035 0.035 0.031 0.032 

-1.00 0.034 0.035 0.036 0.031 0.031 

50% 

-0.25 0.033 0.035 0.036 0.031 0.032 

-0.50 0.033 0.036 0.035 0.031 0.032 

-1.00 0.033 0.035 0.035 0.031 0.032 

HB 

None None 0.034 0.035 0.035 0.031 0.032 

25% 

-0.25 0.033 0.035 0.036 0.031 0.032 

-0.50 0.034 0.035 0.035 0.031 0.032 

-1.00 0.034 0.035 0.036 0.031 0.031 

50% 

-0.25 0.033 0.035 0.036 0.031 0.032 

-0.50 0.033 0.036 0.035 0.031 0.032 

-1.00 0.033 0.035 0.035 0.031 0.032 

LAV 

None None 0.034 0.035 0.035 0.031 0.032 

25% 

-0.25 0.033 0.035 0.036 0.031 0.032 

-0.50 0.034 0.035 0.035 0.031 0.032 

-1.00 0.034 0.035 0.036 0.031 0.031 

50% 

-0.25 0.033 0.035 0.036 0.031 0.032 

-0.50 0.033 0.036 0.035 0.031 0.032 

-1.00 0.033 0.035 0.035 0.031 0.032 

CC 

None None 0.033 0.033 0.032 0.030 0.030 

25% 

-0.25 0.033 0.034 0.032 0.030 0.030 

-0.50 0.033 0.033 0.032 0.030 0.030 

-1.00 0.033 0.033 0.031 0.030 0.029 

50% 

-0.25 0.033 0.033 0.032 0.030 0.030 

-0.50 0.033 0.033 0.031 0.030 0.030 

-1.00 0.032 0.032 0.031 0.029 0.029 

FPC 

None None 0.034 0.033 0.032 0.031 0.031 

25% 

-0.25 0.033 0.034 0.032 0.030 0.031 

-0.50 0.033 0.033 0.032 0.031 0.030 

-1.00 0.033 0.033 0.031 0.030 0.030 

50% 

-0.25 0.033 0.033 0.032 0.030 0.030 

-0.50 0.033 0.033 0.031 0.030 0.030 

-1.00 0.032 0.032 0.031 0.029 0.029 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Pseudo-Guessing of all 100 Items - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.059 0.069 0.079 0.055 0.063 

SL 

25% 

-0.25 0.059 0.069 0.080 0.055 0.063 

-0.50 0.059 0.069 0.079 0.055 0.062 

-1.00 0.060 0.070 0.081 0.056 0.062 

50% 

-0.25 0.059 0.069 0.080 0.055 0.062 

-0.50 0.059 0.070 0.080 0.055 0.062 

-1.00 0.059 0.070 0.080 0.055 0.063 

HB 

None None 0.059 0.069 0.079 0.055 0.063 

25% 

-0.25 0.059 0.069 0.080 0.055 0.063 

-0.50 0.059 0.069 0.079 0.055 0.062 

-1.00 0.060 0.070 0.081 0.056 0.062 

50% 

-0.25 0.059 0.069 0.080 0.055 0.062 

-0.50 0.059 0.070 0.080 0.055 0.062 

-1.00 0.059 0.070 0.080 0.055 0.063 

LAV 

None None 0.059 0.069 0.079 0.055 0.063 

25% 

-0.25 0.059 0.069 0.080 0.055 0.063 

-0.50 0.059 0.069 0.079 0.055 0.062 

-1.00 0.060 0.070 0.081 0.056 0.062 

50% 

-0.25 0.059 0.069 0.080 0.055 0.062 

-0.50 0.059 0.070 0.080 0.055 0.062 

-1.00 0.059 0.070 0.080 0.055 0.063 

CC 

None None 0.058 0.063 0.068 0.053 0.058 

25% 

-0.25 0.058 0.063 0.067 0.053 0.058 

-0.50 0.057 0.062 0.067 0.053 0.057 

-1.00 0.056 0.061 0.066 0.053 0.057 

50% 

-0.25 0.057 0.062 0.067 0.053 0.057 

-0.50 0.056 0.062 0.066 0.053 0.057 

-1.00 0.055 0.060 0.064 0.052 0.057 

FPC 

None None 0.059 0.064 0.069 0.054 0.059 

25% 

-0.25 0.059 0.064 0.068 0.054 0.059 

-0.50 0.058 0.063 0.067 0.054 0.058 

-1.00 0.057 0.062 0.067 0.054 0.058 

50% 

-0.25 0.058 0.063 0.068 0.054 0.059 

-0.50 0.057 0.063 0.066 0.054 0.058 

-1.00 0.055 0.060 0.065 0.053 0.058 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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APPENDIX E 

BIAS, SE, RMSE VALUES FOR EQUATED SCORES 

  



 

311 

Bias for Equated True Scores - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.118 0.268 0.540 0.188 0.157 

SL 

25% 

-0.25 0.551 0.503 0.686 0.605 0.439 

-0.50 1.000 0.898 0.969 1.149 0.873 

-1.00 1.867 1.698 1.670 1.959 1.665 

50% 

-0.25 1.001 0.857 0.934 1.076 0.771 

-0.50 1.892 1.700 1.712 1.987 1.750 

-1.00 3.681 3.413 3.304 3.668 3.400 

HB 

None None 0.096 0.251 0.554 0.212 0.241 

25% 

-0.25 0.520 0.474 0.614 0.527 0.320 

-0.50 0.945 0.851 0.889 1.010 0.730 

-1.00 1.751 1.677 1.616 1.718 1.518 

50% 

-0.25 0.947 0.810 0.864 0.999 0.646 

-0.50 1.792 1.640 1.614 1.821 1.598 

-1.00 3.528 3.382 3.307 3.426 3.237 

LAV 

None None 0.096 0.255 0.550 0.198 0.252 

25% 

-0.25 0.395 0.396 0.580 0.456 0.259 

-0.50 0.474 0.482 0.628 0.538 0.388 

-1.00 0.246 0.467 0.677 0.457 0.472 

50% 

-0.25 0.946 0.767 0.821 0.973 0.652 

-0.50 1.572 1.476 1.522 1.610 1.449 

-1.00 3.270 3.111 2.726 2.973 2.895 

CC 

None None 0.448 0.514 0.721 0.511 0.563 

25% 

-0.25 0.538 0.535 0.652 0.581 0.514 

-0.50 0.978 0.861 0.819 1.175 0.887 

-1.00 1.960 1.879 1.645 2.199 1.890 

50% 

-0.25 0.986 0.842 0.812 1.103 0.762 

-0.50 1.996 1.834 1.588 2.109 1.839 

-1.00 4.136 3.979 3.624 4.240 3.851 

FPC 

None None 0.203 0.256 0.477 0.352 0.364 

25% 

-0.25 0.517 0.313 0.315 0.517 0.273 

-0.50 0.968 0.765 0.519 1.046 0.727 

-1.00 1.836 1.551 1.218 1.833 1.461 

50% 

-0.25 0.991 0.777 0.536 1.026 0.658 

-0.50 1.932 1.682 1.372 1.924 1.613 

-1.00 3.763 3.383 2.933 3.587 3.151 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Equated True Scores - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.549 0.529 0.533 0.552 0.569 

SL 

25% 

-0.25 0.541 0.491 0.549 0.507 0.546 

-0.50 0.528 0.506 0.593 0.584 0.559 

-1.00 0.553 0.580 0.594 0.513 0.625 

50% 

-0.25 0.509 0.571 0.572 0.534 0.564 

-0.50 0.512 0.568 0.620 0.556 0.603 

-1.00 0.537 0.556 0.621 0.541 0.614 

HB 

None None 0.540 0.519 0.550 0.564 0.568 

25% 

-0.25 0.532 0.483 0.560 0.512 0.541 

-0.50 0.532 0.513 0.609 0.567 0.577 

-1.00 0.569 0.611 0.612 0.533 0.616 

50% 

-0.25 0.489 0.569 0.572 0.513 0.584 

-0.50 0.512 0.577 0.637 0.559 0.594 

-1.00 0.546 0.583 0.699 0.549 0.671 

LAV 

None None 0.604 0.606 0.602 0.613 0.648 

25% 

-0.25 0.645 0.623 0.677 0.669 0.679 

-0.50 0.664 0.710 0.752 0.735 0.700 

-1.00 0.700 0.740 0.762 0.732 0.789 

50% 

-0.25 0.579 0.692 0.694 0.612 0.736 

-0.50 0.735 0.780 0.836 0.798 0.820 

-1.00 1.107 1.010 1.114 1.016 0.929 

CC 

None None 0.459 0.441 0.456 0.454 0.468 

25% 

-0.25 0.457 0.414 0.440 0.421 0.442 

-0.50 0.440 0.443 0.479 0.483 0.464 

-1.00 0.490 0.474 0.465 0.443 0.486 

50% 

-0.25 0.425 0.476 0.466 0.424 0.436 

-0.50 0.434 0.471 0.468 0.459 0.465 

-1.00 0.470 0.457 0.509 0.441 0.483 

FPC 

None None 0.477 0.463 0.492 0.471 0.480 

25% 

-0.25 0.473 0.432 0.461 0.445 0.474 

-0.50 0.452 0.471 0.516 0.501 0.486 

-1.00 0.496 0.498 0.501 0.459 0.516 

50% 

-0.25 0.444 0.497 0.496 0.448 0.469 

-0.50 0.457 0.499 0.493 0.489 0.500 

-1.00 0.484 0.471 0.536 0.462 0.518 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 

 



 

313 

RMSE for Equated True Scores - 1,000 Examinees  

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.577 0.619 0.825 0.600 0.600 

SL 

25% 

-0.25 0.797 0.736 0.922 0.795 0.727 

-0.50 1.181 1.079 1.189 1.308 1.078 

-1.00 1.991 1.855 1.829 2.052 1.841 

50% 

-0.25 1.158 1.086 1.148 1.217 1.001 

-0.50 1.995 1.853 1.885 2.084 1.897 

-1.00 3.758 3.506 3.414 3.729 3.501 

HB 

None None 0.560 0.603 0.852 0.614 0.622 

25% 

-0.25 0.778 0.707 0.877 0.741 0.647 

-0.50 1.153 1.036 1.126 1.191 0.971 

-1.00 1.905 1.836 1.774 1.859 1.698 

50% 

-0.25 1.108 1.047 1.089 1.145 0.918 

-0.50 1.919 1.804 1.798 1.945 1.760 

-1.00 3.633 3.483 3.444 3.522 3.379 

LAV 

None None 0.623 0.684 0.892 0.657 0.702 

25% 

-0.25 0.782 0.763 0.942 0.817 0.738 

-0.50 0.859 0.888 1.032 0.935 0.819 

-1.00 0.751 0.921 1.096 0.895 0.944 

50% 

-0.25 1.160 1.089 1.133 1.173 1.030 

-0.50 1.818 1.753 1.806 1.871 1.735 

-1.00 3.507 3.319 2.999 3.206 3.093 

CC 

None None 0.658 0.696 0.878 0.712 0.758 

25% 

-0.25 0.754 0.709 0.809 0.781 0.733 

-0.50 1.088 1.026 1.005 1.277 1.042 

-1.00 2.029 1.950 1.756 2.245 1.958 

50% 

-0.25 1.090 1.030 0.982 1.189 0.949 

-0.50 2.049 1.909 1.712 2.163 1.907 

-1.00 4.167 4.010 3.670 4.265 3.883 

FPC 

None None 0.526 0.547 0.723 0.609 0.631 

25% 

-0.25 0.709 0.565 0.573 0.701 0.577 

-0.50 1.080 0.916 0.782 1.161 0.878 

-1.00 1.913 1.644 1.341 1.893 1.554 

50% 

-0.25 1.094 0.943 0.781 1.121 0.815 

-0.50 1.994 1.766 1.480 1.987 1.692 

-1.00 3.802 3.422 2.990 3.620 3.197 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Equated Observed Scores - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.142 0.236 0.559 0.224 0.129 

SL 

25% 

-0.25 0.542 0.411 0.599 0.620 0.371 

-0.50 0.970 0.753 0.797 1.140 0.773 

-1.00 1.779 1.498 1.351 1.901 1.508 

50% 

-0.25 0.964 0.718 0.775 1.056 0.657 

-0.50 1.777 1.493 1.386 1.877 1.565 

-1.00 3.438 3.077 2.782 3.422 3.069 

HB 

None None 0.114 0.242 0.603 0.218 0.227 

25% 

-0.25 0.521 0.386 0.564 0.553 0.268 

-0.50 0.951 0.720 0.730 1.040 0.661 

-1.00 1.747 1.530 1.307 1.760 1.437 

50% 

-0.25 0.931 0.682 0.724 1.002 0.550 

-0.50 1.742 1.475 1.305 1.783 1.466 

-1.00 3.419 3.148 2.886 3.324 3.030 

LAV 

None None 0.116 0.255 0.611 0.219 0.243 

25% 

-0.25 0.407 0.325 0.554 0.486 0.218 

-0.50 0.499 0.389 0.563 0.597 0.339 

-1.00 0.246 0.369 0.626 0.519 0.393 

50% 

-0.25 0.931 0.641 0.707 0.985 0.551 

-0.50 1.555 1.332 1.227 1.610 1.342 

-1.00 3.201 2.911 2.350 2.943 2.747 

CC 

None None 0.414 0.513 0.737 0.395 0.464 

25% 

-0.25 0.417 0.458 0.604 0.507 0.379 

-0.50 0.836 0.695 0.675 1.069 0.747 

-1.00 1.778 1.648 1.357 2.024 1.667 

50% 

-0.25 0.835 0.669 0.673 0.994 0.618 

-0.50 1.757 1.575 1.300 1.900 1.608 

-1.00 3.767 3.543 3.134 3.830 3.414 

FPC 

None None 0.153 0.254 0.490 0.321 0.305 

25% 

-0.25 0.453 0.251 0.286 0.522 0.276 

-0.50 0.892 0.673 0.416 1.038 0.704 

-1.00 1.717 1.423 1.066 1.781 1.392 

50% 

-0.25 0.908 0.681 0.422 1.005 0.622 

-0.50 1.776 1.513 1.201 1.817 1.507 

-1.00 3.486 3.099 2.641 3.356 2.919 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Equated Observed Scores - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.500 0.499 0.509 0.525 0.544 

SL 

25% 

-0.25 0.505 0.456 0.516 0.479 0.511 

-0.50 0.484 0.480 0.571 0.554 0.518 

-1.00 0.519 0.529 0.552 0.475 0.579 

50% 

-0.25 0.477 0.532 0.536 0.495 0.533 

-0.50 0.481 0.529 0.583 0.523 0.563 

-1.00 0.482 0.511 0.571 0.483 0.559 

HB 

None None 0.490 0.493 0.528 0.534 0.544 

25% 

-0.25 0.498 0.454 0.530 0.486 0.511 

-0.50 0.491 0.485 0.586 0.535 0.536 

-1.00 0.531 0.563 0.566 0.491 0.576 

50% 

-0.25 0.460 0.532 0.540 0.473 0.556 

-0.50 0.481 0.538 0.596 0.522 0.556 

-1.00 0.491 0.531 0.646 0.490 0.601 

LAV 

None None 0.551 0.576 0.576 0.584 0.620 

25% 

-0.25 0.600 0.588 0.649 0.630 0.641 

-0.50 0.617 0.678 0.730 0.702 0.657 

-1.00 0.661 0.699 0.725 0.694 0.758 

50% 

-0.25 0.545 0.646 0.658 0.566 0.705 

-0.50 0.679 0.716 0.775 0.735 0.753 

-1.00 1.025 0.930 1.043 0.918 0.841 

CC 

None None 0.430 0.427 0.441 0.435 0.454 

25% 

-0.25 0.426 0.394 0.422 0.401 0.417 

-0.50 0.409 0.421 0.467 0.464 0.436 

-1.00 0.469 0.446 0.439 0.416 0.460 

50% 

-0.25 0.397 0.450 0.442 0.397 0.419 

-0.50 0.413 0.447 0.450 0.438 0.449 

-1.00 0.428 0.426 0.491 0.405 0.442 

FPC 

None None 0.444 0.443 0.474 0.456 0.467 

25% 

-0.25 0.442 0.406 0.442 0.426 0.450 

-0.50 0.426 0.447 0.497 0.479 0.461 

-1.00 0.471 0.470 0.473 0.426 0.488 

50% 

-0.25 0.421 0.471 0.465 0.416 0.452 

-0.50 0.432 0.476 0.475 0.461 0.478 

-1.00 0.440 0.437 0.511 0.420 0.475 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Equated Observed Scores - 1,000 Examinees  

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.536 0.571 0.813 0.590 0.566 

SL 

25% 

-0.25 0.760 0.647 0.826 0.787 0.661 

-0.50 1.120 0.950 1.031 1.278 0.970 

-1.00 1.883 1.642 1.524 1.975 1.665 

50% 

-0.25 1.100 0.955 0.991 1.175 0.899 

-0.50 1.863 1.640 1.580 1.960 1.701 

-1.00 3.493 3.155 2.899 3.465 3.152 

HB 

None None 0.516 0.570 0.862 0.588 0.593 

25% 

-0.25 0.748 0.627 0.810 0.741 0.597 

-0.50 1.125 0.917 0.982 1.194 0.887 

-1.00 1.877 1.672 1.481 1.875 1.593 

50% 

-0.25 1.070 0.925 0.950 1.122 0.835 

-0.50 1.849 1.626 1.508 1.883 1.611 

-1.00 3.502 3.230 3.013 3.401 3.144 

LAV 

None None 0.575 0.651 0.906 0.636 0.670 

25% 

-0.25 0.747 0.692 0.893 0.802 0.688 

-0.50 0.832 0.809 0.960 0.944 0.757 

-1.00 0.713 0.826 1.019 0.902 0.878 

50% 

-0.25 1.117 0.969 1.014 1.151 0.947 

-0.50 1.761 1.581 1.527 1.825 1.594 

-1.00 3.404 3.091 2.623 3.138 2.912 

CC 

None None 0.608 0.681 0.879 0.621 0.679 

25% 

-0.25 0.655 0.633 0.755 0.693 0.626 

-0.50 0.951 0.882 0.881 1.172 0.902 

-1.00 1.847 1.722 1.481 2.068 1.737 

50% 

-0.25 0.947 0.886 0.852 1.075 0.815 

-0.50 1.814 1.659 1.447 1.955 1.682 

-1.00 3.795 3.573 3.186 3.852 3.444 

FPC 

None None 0.478 0.524 0.711 0.574 0.584 

25% 

-0.25 0.642 0.509 0.537 0.687 0.549 

-0.50 0.997 0.826 0.707 1.143 0.843 

-1.00 1.787 1.509 1.189 1.833 1.478 

50% 

-0.25 1.008 0.849 0.688 1.089 0.773 

-0.50 1.834 1.598 1.317 1.877 1.584 

-1.00 3.518 3.133 2.698 3.384 2.960 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Equated True Scores - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.048 0.240 0.480 0.417 0.182 

SL 

25% 

-0.25 0.519 0.487 0.654 0.849 0.611 

-0.50 1.003 0.907 0.942 1.308 1.114 

-1.00 1.890 1.731 1.726 2.222 1.934 

50% 

-0.25 0.975 0.874 0.939 1.292 1.105 

-0.50 1.920 1.737 1.710 2.266 2.002 

-1.00 3.714 3.469 3.328 4.035 3.719 

HB 

None None 0.024 0.246 0.484 0.422 0.212 

25% 

-0.25 0.479 0.449 0.601 0.780 0.512 

-0.50 0.939 0.858 0.874 1.173 0.952 

-1.00 1.806 1.709 1.665 1.867 1.605 

50% 

-0.25 0.925 0.828 0.877 1.204 0.996 

-0.50 1.819 1.666 1.632 2.116 1.842 

-1.00 3.547 3.391 3.306 3.665 3.411 

LAV 

None None 0.036 0.243 0.491 0.413 0.192 

25% 

-0.25 0.261 0.318 0.532 0.590 0.357 

-0.50 0.223 0.308 0.525 0.473 0.325 

-1.00 0.207 0.380 0.575 0.413 0.285 

50% 

-0.25 0.900 0.762 0.839 1.098 0.930 

-0.50 1.523 1.434 1.436 1.509 1.451 

-1.00 3.523 3.130 2.950 2.924 2.926 

CC 

None None 0.227 0.305 0.448 0.430 0.350 

25% 

-0.25 0.505 0.466 0.497 0.802 0.605 

-0.50 1.026 0.960 0.860 1.322 1.188 

-1.00 2.059 2.061 1.943 2.481 2.254 

50% 

-0.25 1.014 0.924 0.855 1.278 1.135 

-0.50 2.085 1.985 1.829 2.383 2.179 

-1.00 4.282 4.255 4.025 4.650 4.382 

FPC 

None None 0.078 0.156 0.277 0.381 0.294 

25% 

-0.25 0.509 0.400 0.355 0.772 0.599 

-0.50 1.005 0.894 0.725 1.232 1.104 

-1.00 1.915 1.755 1.564 2.151 1.903 

50% 

-0.25 1.010 0.899 0.757 1.244 1.112 

-0.50 2.020 1.861 1.678 2.252 2.047 

-1.00 3.888 3.679 3.392 4.071 3.778 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Equated True Scores - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.318 0.387 0.364 0.335 0.373 

SL 

25% 

-0.25 0.325 0.348 0.370 0.369 0.359 

-0.50 0.362 0.347 0.358 0.360 0.415 

-1.00 0.353 0.370 0.404 0.346 0.370 

50% 

-0.25 0.357 0.356 0.364 0.338 0.395 

-0.50 0.349 0.360 0.356 0.332 0.391 

-1.00 0.346 0.393 0.420 0.353 0.409 

HB 

None None 0.313 0.369 0.359 0.322 0.358 

25% 

-0.25 0.325 0.337 0.354 0.367 0.365 

-0.50 0.345 0.344 0.356 0.358 0.423 

-1.00 0.345 0.370 0.406 0.363 0.409 

50% 

-0.25 0.350 0.343 0.353 0.335 0.390 

-0.50 0.342 0.355 0.369 0.335 0.398 

-1.00 0.358 0.411 0.457 0.372 0.416 

LAV 

None None 0.348 0.401 0.381 0.350 0.412 

25% 

-0.25 0.415 0.432 0.440 0.447 0.474 

-0.50 0.436 0.454 0.462 0.479 0.534 

-1.00 0.438 0.448 0.524 0.474 0.506 

50% 

-0.25 0.465 0.453 0.441 0.469 0.533 

-0.50 0.603 0.603 0.541 0.554 0.605 

-1.00 0.729 0.898 0.840 0.709 0.700 

CC 

None None 0.282 0.341 0.310 0.299 0.320 

25% 

-0.25 0.298 0.303 0.307 0.333 0.317 

-0.50 0.320 0.294 0.302 0.325 0.369 

-1.00 0.320 0.341 0.319 0.308 0.331 

50% 

-0.25 0.316 0.311 0.323 0.309 0.341 

-0.50 0.310 0.309 0.313 0.299 0.337 

-1.00 0.328 0.352 0.341 0.313 0.343 

FPC 

None None 0.286 0.351 0.328 0.306 0.337 

25% 

-0.25 0.302 0.313 0.322 0.341 0.340 

-0.50 0.326 0.301 0.313 0.340 0.388 

-1.00 0.324 0.354 0.330 0.324 0.348 

50% 

-0.25 0.317 0.318 0.341 0.320 0.355 

-0.50 0.313 0.317 0.326 0.307 0.350 

-1.00 0.331 0.349 0.374 0.319 0.358 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Equated True Scores - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.323 0.479 0.646 0.567 0.428 

SL 

25% 

-0.25 0.634 0.632 0.782 0.929 0.712 

-0.50 1.100 1.014 1.047 1.358 1.197 

-1.00 1.955 1.815 1.817 2.255 1.983 

50% 

-0.25 1.066 0.987 1.043 1.337 1.179 

-0.50 1.975 1.818 1.787 2.294 2.048 

-1.00 3.749 3.522 3.392 4.056 3.755 

HB 

None None 0.315 0.469 0.651 0.558 0.428 

25% 

-0.25 0.603 0.592 0.727 0.868 0.631 

-0.50 1.042 0.965 0.978 1.231 1.057 

-1.00 1.877 1.780 1.748 1.941 1.701 

50% 

-0.25 1.021 0.938 0.978 1.252 1.076 

-0.50 1.883 1.747 1.713 2.152 1.901 

-1.00 3.597 3.450 3.375 3.713 3.471 

LAV 

None None 0.350 0.494 0.674 0.575 0.466 

25% 

-0.25 0.504 0.559 0.729 0.765 0.600 

-0.50 0.500 0.569 0.742 0.726 0.651 

-1.00 0.497 0.620 0.843 0.687 0.596 

50% 

-0.25 1.053 0.926 0.987 1.200 1.080 

-0.50 1.680 1.594 1.575 1.678 1.629 

-1.00 3.628 3.279 3.100 3.042 3.038 

CC 

None None 0.369 0.469 0.566 0.549 0.496 

25% 

-0.25 0.611 0.588 0.607 0.876 0.692 

-0.50 1.089 1.033 0.944 1.363 1.248 

-1.00 2.098 2.103 1.991 2.502 2.280 

50% 

-0.25 1.076 1.012 0.950 1.316 1.190 

-0.50 2.115 2.021 1.880 2.404 2.208 

-1.00 4.300 4.274 4.047 4.663 4.397 

FPC 

None None 0.299 0.395 0.462 0.515 0.472 

25% 

-0.25 0.605 0.540 0.503 0.848 0.693 

-0.50 1.076 0.966 0.825 1.280 1.173 

-1.00 1.961 1.811 1.619 2.179 1.939 

50% 

-0.25 1.074 0.980 0.867 1.286 1.169 

-0.50 2.054 1.902 1.730 2.276 2.079 

-1.00 3.910 3.703 3.422 4.087 3.799 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Equated Observed Scores - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.044 0.261 0.545 0.486 0.203 

SL 

25% 

-0.25 0.477 0.423 0.620 0.905 0.605 

-0.50 0.932 0.758 0.810 1.319 1.071 

-1.00 1.764 1.494 1.409 2.162 1.824 

50% 

-0.25 0.898 0.730 0.822 1.296 1.047 

-0.50 1.757 1.479 1.402 2.166 1.853 

-1.00 3.413 3.066 2.772 3.758 3.392 

HB 

None None 0.018 0.286 0.580 0.473 0.199 

25% 

-0.25 0.448 0.391 0.593 0.855 0.519 

-0.50 0.906 0.719 0.748 1.240 0.962 

-1.00 1.762 1.534 1.357 1.962 1.616 

50% 

-0.25 0.869 0.692 0.778 1.237 0.961 

-0.50 1.721 1.453 1.333 2.101 1.768 

-1.00 3.381 3.105 2.853 3.601 3.248 

LAV 

None None 0.029 0.281 0.599 0.487 0.196 

25% 

-0.25 0.245 0.299 0.561 0.696 0.392 

-0.50 0.215 0.284 0.540 0.608 0.392 

-1.00 0.159 0.383 0.627 0.541 0.305 

50% 

-0.25 0.854 0.636 0.755 1.155 0.914 

-0.50 1.485 1.270 1.167 1.637 1.476 

-1.00 3.392 2.887 2.556 2.980 2.869 

CC 

None None 0.224 0.335 0.501 0.424 0.312 

25% 

-0.25 0.417 0.396 0.466 0.809 0.588 

-0.50 0.918 0.813 0.708 1.287 1.124 

-1.00 1.924 1.848 1.663 2.359 2.094 

50% 

-0.25 0.892 0.769 0.712 1.239 1.065 

-0.50 1.882 1.729 1.530 2.240 2.010 

-1.00 3.918 3.800 3.507 4.291 3.957 

FPC 

None None 0.069 0.177 0.324 0.454 0.348 

25% 

-0.25 0.455 0.332 0.313 0.849 0.660 

-0.50 0.931 0.788 0.600 1.272 1.132 

-1.00 1.807 1.606 1.388 2.135 1.869 

50% 

-0.25 0.924 0.784 0.622 1.272 1.126 

-0.50 1.859 1.664 1.463 2.189 1.969 

-1.00 3.593 3.347 3.045 3.852 3.543 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Equated Observed Scores - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.306 0.384 0.353 0.321 0.361 

SL 

25% 

-0.25 0.315 0.339 0.351 0.348 0.353 

-0.50 0.349 0.333 0.343 0.342 0.403 

-1.00 0.338 0.353 0.386 0.331 0.356 

50% 

-0.25 0.346 0.345 0.352 0.318 0.384 

-0.50 0.338 0.336 0.349 0.312 0.378 

-1.00 0.326 0.372 0.396 0.329 0.380 

HB 

None None 0.301 0.367 0.350 0.311 0.346 

25% 

-0.25 0.314 0.329 0.339 0.345 0.357 

-0.50 0.336 0.327 0.344 0.342 0.408 

-1.00 0.323 0.360 0.390 0.350 0.388 

50% 

-0.25 0.341 0.336 0.345 0.314 0.380 

-0.50 0.332 0.332 0.360 0.316 0.383 

-1.00 0.331 0.383 0.429 0.347 0.388 

LAV 

None None 0.335 0.399 0.372 0.335 0.395 

25% 

-0.25 0.391 0.415 0.419 0.420 0.452 

-0.50 0.410 0.434 0.444 0.454 0.511 

-1.00 0.408 0.440 0.505 0.458 0.494 

50% 

-0.25 0.441 0.431 0.421 0.438 0.513 

-0.50 0.562 0.558 0.510 0.508 0.569 

-1.00 0.670 0.831 0.784 0.651 0.639 

CC 

None None 0.276 0.345 0.304 0.294 0.309 

25% 

-0.25 0.285 0.297 0.304 0.324 0.317 

-0.50 0.309 0.284 0.296 0.311 0.361 

-1.00 0.304 0.338 0.310 0.297 0.313 

50% 

-0.25 0.307 0.306 0.319 0.291 0.332 

-0.50 0.305 0.299 0.296 0.283 0.324 

-1.00 0.309 0.332 0.336 0.299 0.325 

FPC 

None None 0.279 0.353 0.322 0.298 0.334 

25% 

-0.25 0.289 0.301 0.316 0.328 0.336 

-0.50 0.318 0.291 0.302 0.328 0.374 

-1.00 0.306 0.350 0.324 0.312 0.331 

50% 

-0.25 0.311 0.312 0.330 0.301 0.342 

-0.50 0.305 0.309 0.313 0.292 0.336 

-1.00 0.311 0.329 0.362 0.301 0.339 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Equated Observed Scores - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.310 0.486 0.690 0.616 0.428 

SL 

25% 

-0.25 0.591 0.574 0.740 0.973 0.704 

-0.50 1.023 0.881 0.917 1.364 1.150 

-1.00 1.821 1.584 1.517 2.190 1.866 

50% 

-0.25 0.985 0.861 0.928 1.335 1.121 

-0.50 1.807 1.566 1.496 2.191 1.897 

-1.00 3.439 3.113 2.850 3.775 3.421 

HB 

None None 0.302 0.490 0.722 0.593 0.409 

25% 

-0.25 0.569 0.540 0.709 0.927 0.632 

-0.50 1.000 0.840 0.856 1.289 1.055 

-1.00 1.821 1.604 1.462 2.022 1.697 

50% 

-0.25 0.960 0.821 0.883 1.278 1.039 

-0.50 1.779 1.533 1.433 2.129 1.819 

-1.00 3.421 3.152 2.920 3.638 3.298 

LAV 

None None 0.336 0.512 0.754 0.628 0.452 

25% 

-0.25 0.474 0.531 0.737 0.838 0.605 

-0.50 0.471 0.536 0.737 0.811 0.669 

-1.00 0.450 0.608 0.863 0.770 0.595 

50% 

-0.25 0.992 0.815 0.899 1.240 1.053 

-0.50 1.623 1.422 1.323 1.771 1.628 

-1.00 3.480 3.019 2.705 3.079 2.963 

CC 

None None 0.360 0.489 0.604 0.538 0.457 

25% 

-0.25 0.539 0.529 0.576 0.877 0.675 

-0.50 0.984 0.897 0.811 1.325 1.184 

-1.00 1.956 1.892 1.715 2.379 2.119 

50% 

-0.25 0.960 0.877 0.824 1.273 1.120 

-0.50 1.915 1.769 1.589 2.260 2.038 

-1.00 3.934 3.818 3.532 4.303 3.973 

FPC 

None None 0.288 0.405 0.487 0.571 0.508 

25% 

-0.25 0.552 0.483 0.467 0.915 0.744 

-0.50 0.999 0.862 0.716 1.315 1.194 

-1.00 1.844 1.660 1.444 2.159 1.900 

50% 

-0.25 0.989 0.872 0.751 1.308 1.178 

-0.50 1.892 1.705 1.514 2.210 1.999 

-1.00 3.610 3.367 3.074 3.865 3.562 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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APPENDIX F 

BIAS, SE, RMSE VALUES FOR CLASSIFICATION RATES 
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Bias for Classification Accuracy - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None -0.003 -0.003 -0.003 -0.005 -0.002 

SL 

25% 

-0.25 -0.004 -0.005 -0.006 -0.007 -0.005 

-0.50 -0.006 -0.009 -0.009 -0.010 -0.008 

-1.00 -0.015 -0.019 -0.017 -0.019 -0.015 

50% 

-0.25 -0.006 -0.009 -0.009 -0.010 -0.007 

-0.50 -0.016 -0.020 -0.019 -0.020 -0.017 

-1.00 -0.049 -0.054 -0.047 -0.052 -0.043 

HB 

None None -0.003 -0.003 -0.003 -0.005 -0.002 

25% 

-0.25 -0.004 -0.005 -0.005 -0.006 -0.004 

-0.50 -0.005 -0.008 -0.007 -0.009 -0.006 

-1.00 -0.009 -0.013 -0.012 -0.013 -0.011 

50% 

-0.25 -0.006 -0.008 -0.008 -0.009 -0.006 

-0.50 -0.013 -0.017 -0.016 -0.017 -0.014 

-1.00 -0.040 -0.045 -0.039 -0.044 -0.035 

LAV 

None None -0.003 -0.003 -0.003 -0.005 -0.002 

25% 

-0.25 -0.003 -0.005 -0.005 -0.006 -0.004 

-0.50 -0.003 -0.004 -0.005 -0.006 -0.004 

-1.00 -0.003 -0.003 -0.003 -0.004 -0.002 

50% 

-0.25 -0.006 -0.008 -0.008 -0.009 -0.006 

-0.50 -0.010 -0.015 -0.015 -0.015 -0.012 

-1.00 -0.025 -0.028 -0.023 -0.024 -0.021 

CC 

None None -0.007 -0.005 -0.003 -0.006 -0.002 

25% 

-0.25 -0.007 -0.006 -0.004 -0.007 -0.003 

-0.50 -0.008 -0.008 -0.006 -0.010 -0.006 

-1.00 -0.014 -0.016 -0.012 -0.018 -0.012 

50% 

-0.25 -0.008 -0.008 -0.006 -0.010 -0.005 

-0.50 -0.014 -0.016 -0.012 -0.018 -0.012 

-1.00 -0.045 -0.047 -0.035 -0.050 -0.036 

FPC 

None None -0.004 -0.003 -0.002 -0.005 -0.001 

25% 

-0.25 -0.005 -0.005 -0.003 -0.006 -0.002 

-0.50 -0.007 -0.007 -0.005 -0.008 -0.005 

-1.00 -0.014 -0.014 -0.010 -0.015 -0.009 

50% 

-0.25 -0.007 -0.007 -0.005 -0.009 -0.004 

-0.50 -0.015 -0.015 -0.011 -0.016 -0.011 

-1.00 -0.043 -0.041 -0.029 -0.041 -0.028 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Classification Accuracy - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.003 0.002 0.002 0.002 0.002 

SL 

25% 

-0.25 0.003 0.003 0.003 0.003 0.002 

-0.50 0.003 0.004 0.004 0.004 0.004 

-1.00 0.006 0.007 0.006 0.006 0.005 

50% 

-0.25 0.004 0.004 0.004 0.004 0.003 

-0.50 0.005 0.007 0.006 0.006 0.005 

-1.00 0.010 0.010 0.010 0.010 0.009 

HB 

None None 0.003 0.002 0.002 0.002 0.002 

25% 

-0.25 0.003 0.003 0.003 0.003 0.002 

-0.50 0.003 0.004 0.004 0.004 0.003 

-1.00 0.005 0.007 0.005 0.006 0.005 

50% 

-0.25 0.004 0.004 0.004 0.004 0.003 

-0.50 0.005 0.006 0.006 0.006 0.005 

-1.00 0.010 0.010 0.010 0.009 0.009 

LAV 

None None 0.003 0.002 0.002 0.002 0.002 

25% 

-0.25 0.003 0.003 0.003 0.003 0.003 

-0.50 0.003 0.003 0.003 0.003 0.003 

-1.00 0.003 0.003 0.002 0.003 0.002 

50% 

-0.25 0.004 0.004 0.004 0.004 0.003 

-0.50 0.007 0.007 0.008 0.007 0.006 

-1.00 0.016 0.015 0.012 0.014 0.010 

CC 

None None 0.002 0.001 0.001 0.001 0.001 

25% 

-0.25 0.002 0.002 0.002 0.002 0.001 

-0.50 0.002 0.003 0.002 0.003 0.002 

-1.00 0.004 0.005 0.004 0.005 0.004 

50% 

-0.25 0.002 0.003 0.002 0.003 0.002 

-0.50 0.004 0.005 0.004 0.004 0.003 

-1.00 0.009 0.008 0.007 0.008 0.007 

FPC 

None None 0.002 0.002 0.001 0.002 0.001 

25% 

-0.25 0.003 0.002 0.002 0.002 0.002 

-0.50 0.003 0.003 0.003 0.003 0.002 

-1.00 0.005 0.005 0.004 0.005 0.003 

50% 

-0.25 0.003 0.003 0.002 0.003 0.002 

-0.50 0.005 0.005 0.004 0.005 0.004 

-1.00 0.009 0.008 0.007 0.008 0.007 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Classification Accuracy - 1,000 Examinees  

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.004 0.004 0.003 0.005 0.003 

SL 

25% 

-0.25 0.005 0.006 0.007 0.007 0.005 

-0.50 0.007 0.010 0.010 0.011 0.008 

-1.00 0.016 0.021 0.018 0.020 0.016 

50% 

-0.25 0.007 0.010 0.009 0.011 0.008 

-0.50 0.017 0.021 0.019 0.021 0.017 

-1.00 0.050 0.055 0.048 0.053 0.044 

HB 

None None 0.004 0.004 0.003 0.005 0.002 

25% 

-0.25 0.005 0.006 0.006 0.007 0.004 

-0.50 0.006 0.009 0.008 0.010 0.007 

-1.00 0.011 0.015 0.013 0.015 0.012 

50% 

-0.25 0.007 0.009 0.009 0.010 0.007 

-0.50 0.014 0.019 0.017 0.018 0.015 

-1.00 0.041 0.046 0.040 0.045 0.036 

LAV 

None None 0.004 0.004 0.004 0.006 0.003 

25% 

-0.25 0.005 0.005 0.006 0.007 0.004 

-0.50 0.004 0.006 0.006 0.007 0.005 

-1.00 0.004 0.004 0.004 0.005 0.003 

50% 

-0.25 0.007 0.009 0.009 0.010 0.007 

-0.50 0.012 0.016 0.017 0.017 0.014 

-1.00 0.029 0.032 0.026 0.028 0.023 

CC 

None None 0.007 0.005 0.003 0.007 0.002 

25% 

-0.25 0.007 0.006 0.004 0.008 0.004 

-0.50 0.008 0.009 0.006 0.010 0.006 

-1.00 0.015 0.017 0.013 0.019 0.013 

50% 

-0.25 0.008 0.008 0.006 0.010 0.005 

-0.50 0.015 0.016 0.012 0.018 0.012 

-1.00 0.045 0.048 0.036 0.051 0.036 

FPC 

None None 0.005 0.003 0.002 0.005 0.002 

25% 

-0.25 0.006 0.005 0.004 0.006 0.003 

-0.50 0.007 0.008 0.006 0.009 0.005 

-1.00 0.014 0.015 0.010 0.015 0.010 

50% 

-0.25 0.007 0.008 0.006 0.009 0.005 

-0.50 0.015 0.016 0.012 0.017 0.011 

-1.00 0.044 0.042 0.030 0.042 0.029 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Classification Consistency - 1,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None -0.004 -0.005 -0.004 -0.004 -0.002 

SL 

25% 

-0.25 -0.005 -0.007 -0.007 -0.006 -0.006 

-0.50 -0.004 -0.009 -0.010 -0.008 -0.009 

-1.00 -0.002 -0.011 -0.015 -0.011 -0.014 

50% 

-0.25 -0.004 -0.010 -0.011 -0.009 -0.009 

-0.50 -0.003 -0.013 -0.016 -0.013 -0.015 

-1.00 0.004 -0.015 -0.025 -0.016 -0.024 

HB 

None None -0.005 -0.005 -0.004 -0.004 -0.002 

25% 

-0.25 -0.004 -0.007 -0.007 -0.006 -0.005 

-0.50 -0.001 -0.007 -0.009 -0.007 -0.008 

-1.00 0.005 -0.005 -0.010 -0.004 -0.008 

50% 

-0.25 -0.003 -0.009 -0.010 -0.008 -0.008 

-0.50 0.000 -0.010 -0.014 -0.010 -0.013 

-1.00 0.015 -0.005 -0.016 -0.006 -0.015 

LAV 

None None -0.005 -0.005 -0.004 -0.004 -0.002 

25% 

-0.25 -0.004 -0.006 -0.007 -0.005 -0.005 

-0.50 -0.002 -0.005 -0.006 -0.004 -0.005 

-1.00 -0.003 -0.003 -0.004 -0.001 -0.002 

50% 

-0.25 -0.003 -0.009 -0.010 -0.007 -0.008 

-0.50 0.001 -0.008 -0.013 -0.008 -0.011 

-1.00 0.020 0.003 -0.009 0.003 -0.007 

CC 

None None -0.012 -0.008 -0.003 -0.006 -0.002 

25% 

-0.25 -0.012 -0.011 -0.006 -0.009 -0.006 

-0.50 -0.012 -0.014 -0.010 -0.012 -0.009 

-1.00 -0.011 -0.018 -0.018 -0.017 -0.017 

50% 

-0.25 -0.012 -0.014 -0.010 -0.012 -0.009 

-0.50 -0.012 -0.019 -0.017 -0.018 -0.016 

-1.00 -0.008 -0.029 -0.033 -0.028 -0.031 

FPC 

None None -0.007 -0.005 -0.002 -0.003 0.000 

25% 

-0.25 -0.007 -0.008 -0.005 -0.006 -0.004 

-0.50 -0.007 -0.010 -0.008 -0.008 -0.007 

-1.00 -0.006 -0.013 -0.013 -0.011 -0.011 

50% 

-0.25 -0.007 -0.010 -0.008 -0.009 -0.007 

-0.50 -0.007 -0.015 -0.014 -0.013 -0.013 

-1.00 -0.002 -0.020 -0.024 -0.019 -0.023 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Classification Consistency - 1,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.005 0.004 0.003 0.004 0.003 

SL 

25% 

-0.25 0.005 0.004 0.003 0.004 0.003 

-0.50 0.005 0.004 0.004 0.004 0.003 

-1.00 0.005 0.004 0.004 0.004 0.004 

50% 

-0.25 0.005 0.004 0.004 0.004 0.004 

-0.50 0.005 0.004 0.003 0.004 0.004 

-1.00 0.005 0.005 0.004 0.004 0.004 

HB 

None None 0.005 0.004 0.003 0.004 0.003 

25% 

-0.25 0.005 0.003 0.004 0.004 0.003 

-0.50 0.005 0.003 0.004 0.004 0.004 

-1.00 0.005 0.004 0.004 0.004 0.004 

50% 

-0.25 0.004 0.004 0.004 0.004 0.004 

-0.50 0.005 0.004 0.004 0.004 0.004 

-1.00 0.004 0.004 0.004 0.004 0.004 

LAV 

None None 0.006 0.004 0.004 0.004 0.004 

25% 

-0.25 0.005 0.004 0.004 0.005 0.004 

-0.50 0.005 0.005 0.004 0.005 0.004 

-1.00 0.006 0.005 0.004 0.004 0.004 

50% 

-0.25 0.005 0.005 0.004 0.004 0.004 

-0.50 0.006 0.005 0.005 0.006 0.005 

-1.00 0.007 0.005 0.005 0.004 0.004 

CC 

None None 0.003 0.003 0.003 0.003 0.003 

25% 

-0.25 0.003 0.003 0.003 0.003 0.003 

-0.50 0.003 0.003 0.003 0.003 0.003 

-1.00 0.003 0.003 0.004 0.003 0.003 

50% 

-0.25 0.003 0.003 0.003 0.003 0.003 

-0.50 0.003 0.003 0.003 0.003 0.003 

-1.00 0.003 0.003 0.004 0.003 0.004 

FPC 

None None 0.004 0.003 0.003 0.003 0.003 

25% 

-0.25 0.004 0.003 0.003 0.004 0.003 

-0.50 0.004 0.003 0.004 0.004 0.003 

-1.00 0.004 0.004 0.004 0.003 0.004 

50% 

-0.25 0.004 0.004 0.004 0.004 0.003 

-0.50 0.004 0.004 0.003 0.004 0.004 

-1.00 0.004 0.004 0.004 0.003 0.004 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Classification Consistency - 1,000 Examinees  

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.007 0.006 0.005 0.005 0.004 

SL 

25% 

-0.25 0.007 0.008 0.008 0.007 0.007 

-0.50 0.006 0.010 0.011 0.009 0.010 

-1.00 0.005 0.012 0.015 0.012 0.014 

50% 

-0.25 0.006 0.010 0.011 0.010 0.010 

-0.50 0.006 0.014 0.017 0.014 0.016 

-1.00 0.007 0.016 0.025 0.017 0.024 

HB 

None None 0.007 0.006 0.005 0.006 0.004 

25% 

-0.25 0.006 0.008 0.008 0.007 0.006 

-0.50 0.005 0.008 0.010 0.008 0.008 

-1.00 0.007 0.006 0.010 0.006 0.009 

50% 

-0.25 0.005 0.009 0.010 0.009 0.009 

-0.50 0.005 0.011 0.014 0.011 0.013 

-1.00 0.015 0.006 0.016 0.007 0.016 

LAV 

None None 0.007 0.006 0.006 0.006 0.004 

25% 

-0.25 0.007 0.007 0.008 0.007 0.006 

-0.50 0.006 0.007 0.007 0.006 0.006 

-1.00 0.006 0.005 0.005 0.005 0.004 

50% 

-0.25 0.006 0.010 0.011 0.008 0.009 

-0.50 0.006 0.010 0.014 0.010 0.012 

-1.00 0.021 0.006 0.010 0.006 0.008 

CC 

None None 0.012 0.008 0.004 0.007 0.004 

25% 

-0.25 0.013 0.011 0.007 0.010 0.006 

-0.50 0.012 0.014 0.011 0.013 0.010 

-1.00 0.011 0.019 0.018 0.018 0.017 

50% 

-0.25 0.013 0.014 0.010 0.013 0.009 

-0.50 0.013 0.019 0.018 0.018 0.017 

-1.00 0.009 0.029 0.033 0.028 0.032 

FPC 

None None 0.008 0.006 0.004 0.005 0.003 

25% 

-0.25 0.008 0.008 0.006 0.007 0.005 

-0.50 0.008 0.011 0.009 0.009 0.007 

-1.00 0.007 0.014 0.013 0.012 0.012 

50% 

-0.25 0.008 0.011 0.009 0.009 0.007 

-0.50 0.008 0.015 0.015 0.014 0.013 

-1.00 0.004 0.021 0.025 0.019 0.023 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Classification Accuracy - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None -0.001 -0.001 -0.002 -0.003 -0.001 

SL 

25% 

-0.25 -0.002 -0.004 -0.004 -0.005 -0.003 

-0.50 -0.005 -0.008 -0.008 -0.008 -0.006 

-1.00 -0.014 -0.018 -0.017 -0.017 -0.013 

50% 

-0.25 -0.005 -0.008 -0.008 -0.008 -0.006 

-0.50 -0.015 -0.019 -0.017 -0.018 -0.014 

-1.00 -0.047 -0.053 -0.045 -0.050 -0.040 

HB 

None None -0.001 -0.001 -0.002 -0.003 -0.001 

25% 

-0.25 -0.002 -0.004 -0.004 -0.005 -0.003 

-0.50 -0.004 -0.006 -0.006 -0.006 -0.005 

-1.00 -0.008 -0.012 -0.012 -0.012 -0.009 

50% 

-0.25 -0.004 -0.007 -0.007 -0.007 -0.005 

-0.50 -0.013 -0.016 -0.015 -0.016 -0.012 

-1.00 -0.039 -0.044 -0.038 -0.041 -0.032 

LAV 

None None -0.001 -0.001 -0.002 -0.003 -0.001 

25% 

-0.25 -0.001 -0.003 -0.003 -0.004 -0.002 

-0.50 -0.001 -0.002 -0.003 -0.003 -0.001 

-1.00 0.000 -0.001 -0.001 -0.002 0.000 

50% 

-0.25 -0.004 -0.006 -0.007 -0.006 -0.005 

-0.50 -0.007 -0.010 -0.011 -0.008 -0.008 

-1.00 -0.023 -0.026 -0.022 -0.015 -0.014 

CC 

None None -0.003 -0.002 -0.002 -0.004 -0.001 

25% 

-0.25 -0.004 -0.004 -0.003 -0.005 -0.003 

-0.50 -0.006 -0.007 -0.006 -0.008 -0.005 

-1.00 -0.014 -0.019 -0.016 -0.020 -0.014 

50% 

-0.25 -0.006 -0.007 -0.006 -0.008 -0.005 

-0.50 -0.015 -0.018 -0.015 -0.018 -0.014 

-1.00 -0.051 -0.058 -0.045 -0.058 -0.044 

FPC 

None None -0.002 -0.001 -0.001 -0.003 0.000 

25% 

-0.25 -0.003 -0.004 -0.003 -0.004 -0.002 

-0.50 -0.005 -0.007 -0.006 -0.007 -0.005 

-1.00 -0.013 -0.015 -0.012 -0.015 -0.011 

50% 

-0.25 -0.005 -0.007 -0.006 -0.007 -0.005 

-0.50 -0.015 -0.017 -0.014 -0.017 -0.012 

-1.00 -0.045 -0.047 -0.036 -0.046 -0.035 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Classification Accuracy - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.001 0.001 0.001 0.001 0.001 

SL 

25% 

-0.25 0.002 0.002 0.002 0.002 0.002 

-0.50 0.002 0.003 0.002 0.002 0.002 

-1.00 0.004 0.004 0.003 0.004 0.003 

50% 

-0.25 0.002 0.003 0.002 0.002 0.002 

-0.50 0.004 0.004 0.003 0.003 0.003 

-1.00 0.006 0.007 0.006 0.006 0.006 

HB 

None None 0.001 0.001 0.001 0.001 0.001 

25% 

-0.25 0.002 0.002 0.002 0.002 0.001 

-0.50 0.002 0.003 0.002 0.002 0.002 

-1.00 0.003 0.004 0.003 0.003 0.003 

50% 

-0.25 0.002 0.002 0.002 0.002 0.002 

-0.50 0.004 0.004 0.003 0.003 0.003 

-1.00 0.006 0.007 0.006 0.005 0.005 

LAV 

None None 0.001 0.001 0.001 0.001 0.001 

25% 

-0.25 0.002 0.002 0.002 0.002 0.002 

-0.50 0.002 0.002 0.002 0.002 0.002 

-1.00 0.002 0.001 0.002 0.002 0.001 

50% 

-0.25 0.003 0.003 0.003 0.002 0.002 

-0.50 0.005 0.006 0.004 0.004 0.004 

-1.00 0.010 0.013 0.010 0.008 0.007 

CC 

None None 0.001 0.001 0.001 0.001 0.001 

25% 

-0.25 0.001 0.001 0.001 0.001 0.001 

-0.50 0.002 0.002 0.002 0.002 0.002 

-1.00 0.003 0.004 0.003 0.004 0.003 

50% 

-0.25 0.002 0.002 0.002 0.002 0.002 

-0.50 0.003 0.003 0.003 0.003 0.003 

-1.00 0.006 0.007 0.005 0.006 0.006 

FPC 

None None 0.001 0.001 0.001 0.001 0.001 

25% 

-0.25 0.002 0.002 0.002 0.002 0.001 

-0.50 0.002 0.002 0.002 0.002 0.002 

-1.00 0.004 0.003 0.003 0.003 0.003 

50% 

-0.25 0.002 0.002 0.002 0.002 0.002 

-0.50 0.004 0.004 0.003 0.003 0.003 

-1.00 0.006 0.006 0.005 0.006 0.005 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Classification Accuracy - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.002 0.002 0.002 0.003 0.002 

SL 

25% 

-0.25 0.003 0.005 0.005 0.005 0.004 

-0.50 0.006 0.008 0.008 0.008 0.006 

-1.00 0.015 0.018 0.017 0.018 0.014 

50% 

-0.25 0.006 0.008 0.008 0.008 0.006 

-0.50 0.015 0.019 0.017 0.018 0.015 

-1.00 0.048 0.053 0.045 0.050 0.040 

HB 

None None 0.002 0.002 0.002 0.003 0.001 

25% 

-0.25 0.003 0.004 0.004 0.005 0.003 

-0.50 0.004 0.007 0.007 0.007 0.005 

-1.00 0.009 0.013 0.012 0.012 0.009 

50% 

-0.25 0.005 0.007 0.007 0.007 0.006 

-0.50 0.013 0.017 0.015 0.016 0.013 

-1.00 0.039 0.045 0.038 0.041 0.033 

LAV 

None None 0.002 0.002 0.002 0.003 0.001 

25% 

-0.25 0.002 0.003 0.004 0.004 0.003 

-0.50 0.002 0.003 0.003 0.003 0.002 

-1.00 0.002 0.002 0.002 0.002 0.001 

50% 

-0.25 0.005 0.007 0.007 0.007 0.006 

-0.50 0.008 0.012 0.012 0.009 0.009 

-1.00 0.025 0.029 0.024 0.016 0.016 

CC 

None None 0.003 0.002 0.002 0.004 0.001 

25% 

-0.25 0.004 0.004 0.004 0.005 0.003 

-0.50 0.006 0.008 0.006 0.008 0.006 

-1.00 0.015 0.019 0.016 0.020 0.015 

50% 

-0.25 0.006 0.008 0.006 0.008 0.006 

-0.50 0.015 0.018 0.015 0.019 0.014 

-1.00 0.052 0.058 0.046 0.059 0.044 

FPC 

None None 0.002 0.002 0.002 0.003 0.001 

25% 

-0.25 0.003 0.004 0.004 0.005 0.003 

-0.50 0.005 0.007 0.006 0.007 0.005 

-1.00 0.014 0.016 0.013 0.016 0.011 

50% 

-0.25 0.006 0.007 0.006 0.008 0.005 

-0.50 0.015 0.017 0.014 0.017 0.013 

-1.00 0.045 0.048 0.036 0.047 0.035 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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Bias for Classification Consistency - 3,000 Examinees  

 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None -0.002 -0.002 -0.003 -0.001 -0.001 

SL 

25% 

-0.25 -0.002 -0.005 -0.006 -0.004 -0.004 

-0.50 -0.001 -0.007 -0.009 -0.006 -0.007 

-1.00 0.002 -0.009 -0.013 -0.009 -0.012 

50% 

-0.25 -0.001 -0.007 -0.009 -0.006 -0.007 

-0.50 0.000 -0.011 -0.014 -0.011 -0.013 

-1.00 0.007 -0.013 -0.023 -0.015 -0.022 

HB 

None None -0.002 -0.002 -0.003 -0.001 -0.001 

25% 

-0.25 -0.001 -0.004 -0.005 -0.003 -0.003 

-0.50 0.001 -0.005 -0.007 -0.004 -0.005 

-1.00 0.009 -0.002 -0.008 -0.002 -0.006 

50% 

-0.25 0.000 -0.006 -0.008 -0.005 -0.007 

-0.50 0.003 -0.007 -0.012 -0.007 -0.011 

-1.00 0.017 -0.003 -0.014 -0.004 -0.014 

LAV 

None None -0.002 -0.002 -0.003 -0.001 -0.001 

25% 

-0.25 -0.001 -0.004 -0.004 -0.002 -0.002 

-0.50 0.000 -0.002 -0.003 0.000 -0.001 

-1.00 0.000 -0.001 -0.002 0.002 0.001 

50% 

-0.25 0.000 -0.006 -0.008 -0.004 -0.006 

-0.50 0.007 -0.003 -0.008 -0.001 -0.006 

-1.00 0.025 0.006 -0.005 0.008 -0.002 

CC 

None None -0.005 -0.004 -0.002 -0.002 -0.001 

25% 

-0.25 -0.006 -0.007 -0.006 -0.005 -0.004 

-0.50 -0.005 -0.009 -0.009 -0.007 -0.008 

-1.00 -0.002 -0.013 -0.017 -0.012 -0.015 

50% 

-0.25 -0.005 -0.010 -0.009 -0.007 -0.008 

-0.50 -0.004 -0.015 -0.017 -0.013 -0.015 

-1.00 0.002 -0.023 -0.032 -0.021 -0.030 

FPC 

None None -0.003 -0.002 -0.002 0.000 0.000 

25% 

-0.25 -0.003 -0.005 -0.005 -0.003 -0.003 

-0.50 -0.002 -0.007 -0.008 -0.005 -0.006 

-1.00 0.001 -0.010 -0.013 -0.007 -0.010 

50% 

-0.25 -0.002 -0.008 -0.008 -0.005 -0.006 

-0.50 -0.001 -0.012 -0.014 -0.009 -0.012 

-1.00 0.004 -0.017 -0.024 -0.014 -0.021 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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SE for Classification Consistency - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.003 0.003 0.002 0.003 0.002 

SL 

25% 

-0.25 0.003 0.003 0.002 0.003 0.002 

-0.50 0.003 0.003 0.002 0.003 0.002 

-1.00 0.003 0.003 0.002 0.003 0.002 

50% 

-0.25 0.003 0.003 0.002 0.002 0.002 

-0.50 0.003 0.003 0.002 0.003 0.003 

-1.00 0.003 0.003 0.003 0.003 0.003 

HB 

None None 0.003 0.003 0.002 0.002 0.002 

25% 

-0.25 0.003 0.003 0.002 0.002 0.002 

-0.50 0.003 0.003 0.002 0.003 0.002 

-1.00 0.003 0.002 0.002 0.003 0.002 

50% 

-0.25 0.003 0.003 0.002 0.002 0.002 

-0.50 0.003 0.003 0.002 0.003 0.002 

-1.00 0.003 0.003 0.003 0.003 0.003 

LAV 

None None 0.003 0.003 0.002 0.003 0.002 

25% 

-0.25 0.004 0.003 0.003 0.003 0.003 

-0.50 0.004 0.003 0.002 0.003 0.003 

-1.00 0.004 0.003 0.002 0.003 0.002 

50% 

-0.25 0.004 0.003 0.003 0.003 0.003 

-0.50 0.004 0.003 0.003 0.003 0.003 

-1.00 0.005 0.003 0.003 0.003 0.003 

CC 

None None 0.002 0.002 0.002 0.002 0.002 

25% 

-0.25 0.002 0.002 0.002 0.002 0.002 

-0.50 0.002 0.002 0.002 0.002 0.002 

-1.00 0.003 0.003 0.002 0.002 0.002 

50% 

-0.25 0.003 0.002 0.002 0.002 0.002 

-0.50 0.003 0.003 0.002 0.002 0.002 

-1.00 0.003 0.003 0.003 0.003 0.003 

FPC 

None None 0.003 0.002 0.002 0.002 0.002 

25% 

-0.25 0.003 0.002 0.002 0.002 0.002 

-0.50 0.003 0.003 0.002 0.002 0.002 

-1.00 0.003 0.003 0.002 0.002 0.002 

50% 

-0.25 0.003 0.003 0.002 0.002 0.002 

-0.50 0.003 0.003 0.002 0.002 0.002 

-1.00 0.003 0.003 0.003 0.003 0.003 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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RMSE for Classification Consistency - 3,000 Examinees 

Method 
Drifted 

Items 

Drift 

Magnitude 

Ability Distribution 

N(0, 1) N(0.5, 1) N(1, 1) S(0.5, 1) S(1, 1) 

 None None 0.003 0.003 0.003 0.003 0.002 

SL 

25% 

-0.25 0.003 0.006 0.006 0.005 0.005 

-0.50 0.003 0.007 0.009 0.007 0.008 

-1.00 0.004 0.009 0.013 0.009 0.012 

50% 

-0.25 0.003 0.008 0.009 0.007 0.008 

-0.50 0.003 0.011 0.015 0.011 0.013 

-1.00 0.007 0.014 0.023 0.015 0.023 

HB 

None None 0.003 0.004 0.003 0.003 0.002 

25% 

-0.25 0.003 0.005 0.006 0.004 0.004 

-0.50 0.003 0.005 0.007 0.005 0.006 

-1.00 0.009 0.003 0.008 0.003 0.007 

50% 

-0.25 0.003 0.007 0.009 0.006 0.007 

-0.50 0.005 0.008 0.012 0.008 0.011 

-1.00 0.017 0.004 0.014 0.005 0.014 

LAV 

None None 0.003 0.004 0.004 0.003 0.002 

25% 

-0.25 0.004 0.005 0.005 0.003 0.003 

-0.50 0.004 0.004 0.004 0.003 0.003 

-1.00 0.004 0.003 0.003 0.003 0.002 

50% 

-0.25 0.004 0.006 0.009 0.005 0.007 

-0.50 0.008 0.004 0.009 0.004 0.006 

-1.00 0.025 0.007 0.006 0.008 0.004 

CC 

None None 0.006 0.005 0.003 0.003 0.002 

25% 

-0.25 0.006 0.007 0.006 0.005 0.005 

-0.50 0.005 0.010 0.010 0.008 0.008 

-1.00 0.003 0.014 0.017 0.012 0.015 

50% 

-0.25 0.006 0.010 0.010 0.008 0.008 

-0.50 0.005 0.015 0.017 0.013 0.015 

-1.00 0.003 0.023 0.032 0.021 0.030 

FPC 

None None 0.004 0.003 0.003 0.002 0.002 

25% 

-0.25 0.004 0.006 0.005 0.003 0.003 

-0.50 0.003 0.008 0.008 0.005 0.006 

-1.00 0.003 0.010 0.013 0.008 0.010 

50% 

-0.25 0.004 0.008 0.008 0.006 0.006 

-0.50 0.003 0.012 0.014 0.009 0.012 

-1.00 0.005 0.017 0.024 0.014 0.022 

SL = Stocking Lord; HB = Haebara; LAV = Least Absolute Values; CC = Concurrent 

Calibration; FPC = Fixed Parameter Calibration 
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APPENDIX G 

EMPIRICAL ITEM ESTIMATES 
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Base Form New Form 

Item a b c Item a b c 

1 0.999 -0.396 0.281 1 1.195 -0.386 0.247 

2 1.310 -0.173 0.339 2 1.078 -0.300 0.289 

3 0.916 -2.104 0.340 3 1.056 -1.982 0.306 

4 0.596 -1.201 0.311 4 0.963 -0.615 0.315 

5 1.210 -3.068 0.329 5 0.813 -4.258 0.318 

6 0.922 -2.173 0.301 6 1.258 -1.491 0.346 

7 1.183 -0.129 0.316 7 1.357 0.248 0.407 

8 0.736 -2.906 0.288 8 1.016 -2.335 0.286 

9 0.889 0.482 0.425 9 0.548 -0.157 0.222 

10 0.626 -1.719 0.300 10 0.778 -1.391 0.279 

11 0.928 -3.161 0.312 11 1.041 -3.038 0.307 

12 1.035 -2.144 0.312 12 0.945 -2.293 0.303 

13 0.760 -3.294 0.312 13 0.827 -2.727 0.331 

14 0.868 -1.363 0.246 14 0.784 -1.280 0.266 

15 0.834 -4.430 0.330 15 1.211 -3.134 0.330 

16 0.860 -3.580 0.318 16 0.814 -3.455 0.328 

17 0.573 -3.172 0.299 17 0.595 -3.366 0.311 

18 0.744 -3.210 0.312 18 0.607 -4.221 0.313 

19 0.356 -4.254 0.306 19 0.254 -5.207 0.318 

20 0.789 0.309 0.204 20 0.587 0.445 0.189 

21 1.179 -1.360 0.329 21 1.062 -1.374 0.408 

22 1.538 -2.002 0.375 22 1.082 -2.865 0.311 

23 0.555 1.400 0.270 23 0.570 0.934 0.307 

24 0.868 -4.450 0.336 24 0.902 -4.473 0.329 

25 0.308 -3.528 0.317 25 0.192 -6.485 0.319 

26 0.463 -5.906 0.318 26 0.573 -5.075 0.316 

27 1.256 -3.526 0.330 27 0.998 -4.042 0.328 

28 0.835 -3.055 0.297 28 0.674 -3.323 0.313 

29 0.309 3.399 0.298 29 0.295 4.135 0.318 

30 0.625 -0.137 0.263 30 0.680 -0.717 0.313 

31 0.285 -2.855 0.328 31 0.263 -2.183 0.319 

32 0.486 -2.795 0.325 32 0.503 -2.777 0.331 

33 1.232 -2.995 0.349 33 1.332 -2.849 0.284 

34 0.943 -1.401 0.312 34 0.889 -1.426 0.292 

35 0.722 -1.388 0.251 35 0.659 -1.271 0.269 

36 0.497 -3.427 0.294 36 0.619 -2.745 0.307 

37 0.971 -0.156 0.360 37 0.934 -0.061 0.435 

38 0.999 -0.591 0.253 38 0.926 -0.971 0.280 

39 0.817 -1.827 0.278 39 0.848 -1.602 0.300 

40 0.957 -1.910 0.280 40 1.370 -1.670 0.299 
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Base Form New Form 

Item a b c Item a b c 

41 0.732 -1.669 0.319 41 0.767 -1.851 0.291 

42 0.412 -3.281 0.305 42 0.542 -2.785 0.302 

43 0.753 -1.044 0.322 43 0.856 -1.323 0.303 

44 0.384 -2.124 0.312 44 0.590 -1.283 0.334 

45 0.802 -0.859 0.355 45 0.613 -1.635 0.298 

46 0.384 -1.746 0.311 46 0.414 -1.463 0.272 

47 0.928 -0.126 0.228 47 1.065 0.395 0.327 

48 0.960 -2.644 0.264 48 0.709 -3.436 0.305 

49 0.669 -0.742 0.231 49 0.704 -0.822 0.240 

50 0.582 -0.267 0.276 50 0.679 0.234 0.259 

51 1.438 -2.216 0.330 51 1.126 -2.805 0.285 

52 0.883 -1.726 0.321 52 0.866 -1.542 0.258 

53 0.704 -2.399 0.325 53 0.726 -2.489 0.309 

54 0.560 -2.867 0.291 54 0.776 -2.018 0.292 

55 0.869 -1.027 0.334 55 0.980 -1.579 0.337 

56 1.188 0.318 0.198 56 1.221 0.949 0.206 

57 0.299 -6.732 0.315 57 0.363 -5.506 0.315 

58 0.847 -1.574 0.402 58 0.691 -2.146 0.343 

59 0.668 0.813 0.364 59 0.626 0.503 0.290 

60 0.506 -1.905 0.351 60 0.451 -2.418 0.313 

61 0.685 -2.075 0.296 61 0.768 -1.898 0.269 

62 0.480 -2.391 0.338 62 0.553 -2.254 0.330 

63 1.007 -2.701 0.308 63 1.288 -2.171 0.348 

64 0.577 -0.748 0.286 64 0.457 -0.906 0.314 

65 0.899 -2.517 0.334 65 0.866 -2.443 0.366 

66 1.396 -1.504 0.386 66 1.343 -1.818 0.240 

67 0.365 7.693 0.275 67 1.091 -0.220 0.359 

68 0.469 -3.274 0.295 68 0.691 -2.680 0.316 

69 0.607 -3.117 0.300 69 0.608 0.659 0.295 

70 0.474 -2.058 0.304 70 0.611 -6.416 0.333 

71 1.067 -0.557 0.252 71 0.557 -0.608 0.298 

72 0.713 -0.102 0.236 72 0.775 -1.391 0.255 

73 0.613 -3.491 0.321 73 0.613 -1.111 0.273 

74 1.125 -2.811 0.317 74 0.699 -1.462 0.334 

75 0.668 -0.410 0.282 75 0.962 -0.462 0.325 

76 0.470 -3.902 0.303 76 1.110 -2.384 0.328 

77 0.856 -1.259 0.318 77 0.867 0.750 0.286 

78 0.577 -1.376 0.307 78 0.647 -1.726 0.318 

79 0.568 -2.243 0.312 79 0.743 -6.774 0.353 

80 0.499 -3.424 0.301 80 0.856 -4.220 0.330 
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Base Form New Form 

Item a b c Item a b c 

81 0.759 0.152 0.194 81 0.593 -4.787 0.317 

82 1.180 -2.052 0.319 82 0.388 -2.886 0.291 

83 0.408 -2.745 0.288 83 0.673 -3.950 0.308 

84 0.997 -2.764 0.307 84 0.990 -2.079 0.295 

85 1.018 -0.092 0.517 85 0.635 -3.327 0.317 

86 0.796 -2.016 0.308 86 0.926 -1.627 0.267 

87 0.365 -11.136 0.337 87 0.605 -0.346 0.270 

88 0.897 1.109 0.197 88 0.790 -2.542 0.314 

89 0.485 0.778 0.333 89 0.499 -2.745 0.310 

90 0.213 -2.157 0.328 90 0.582 -0.767 0.256 

91 0.391 -1.427 0.293 91 0.534 2.458 0.303 

92 0.607 0.785 0.310 92 0.637 0.225 0.327 

93 0.282 -0.455 0.302 93 0.939 -1.520 0.276 

94 0.775 -0.331 0.237 94 0.697 0.884 0.226 

95 0.552 1.059 0.236 95 1.042 -1.479 0.252 

96 0.239 0.339 0.377 96 0.561 -1.915 0.278 

97 0.893 -3.299 0.299 97 0.725 -4.211 0.312 

98 0.619 -2.540 0.278 98 0.684 -3.574 0.317 

99 0.484 -1.399 0.281 99 0.636 1.208 0.258 

100 0.837 -0.618 0.292 100 1.303 -1.967 0.306 

101 0.317 -4.077 0.313 101 0.453 -3.149 0.314 

102 0.368 -2.789 0.301 102 0.186 -9.179 0.316 

103 0.996 0.277 0.212 103 1.007 -2.269 0.261 

104 0.231 -3.774 0.330 104 0.536 -3.126 0.310 

105 1.158 -0.717 0.364 105 0.713 -1.652 0.329 

106 0.752 -2.786 0.300 106 1.002 -2.603 0.327 

107 0.867 1.069 0.176 107 0.681 -0.132 0.277 

108 0.399 -4.599 0.310 108 0.815 -3.435 0.299 

109 0.529 -3.598 0.314 109 0.905 -0.424 0.216 

110 1.065 0.542 0.394 110 0.701 -1.633 0.294 

Note: The first 66 highlighted rows are common items. Linked item estimates are from the SL method. 

 

 

 

 

 


