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In studying a stationary random process on R, the covariance function is com-

monly used to characterize the second-order spatial dependency. Through the inver-

sion of Fourier transformation, its corresponding spectral density has been widely used

to describe the periodical components and frequencies. When the process is with sta-

tionary dth increments, that is, when the resulting process after undertaken dth order

of di�erences is stationary, the notion of structure function is put forward. Through

the inversion formula, the spectrum can be represented by the structure function.

In this dissertation, we �rst investigate the properties of the proposed Method of

Moments structure function estimator, through which we obtain the spectral density

function estimation of the underlying process. In particular, when the process is in-

trinsically stationary, which is also a process is with stationary increments of order 1,

we derive the spectral density functions for commonly used variogram models. Fur-

thermore, our proposed estimation method is applied to estimate the spectral density

of power variogram models. All of the above results are supplemented via simulations

and a real data analysis. Our results show that the proposed estimation method per-

forms well in recovering the true spectral density function on various processes with

stationary increments we considered.
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CHAPTER I

INTRODUCTION

In this chapter, we will give a brief introduction to some basic concepts in spa-

tial statistics. Speci�cally, we will �rst introduce the concepts of stationarity (includ-

ing strong and weak stationarity) as well as their relationships and non-stationarity

(including intrinsic stationarity and stationary increments of dth order) with their

relationships as well. In addition, the covariance and variogram functions will be

introduced under stationarity and non-stationarity.

I.1. Stochastic Process

Let R = (−∞,∞). A Stochastic (Random) process in R is a collection of

random variables with indexing on R or a subset of R. There are many examples

of stochastic processes in statistical analysis. An observed time series {Z(t) : t ∈

R} refers to a (discrete) stochastic process. Another well-known example is the so-

called Bernoulli Process. It is one of the simplest stochastic processes, consisting of

a collection of independent and identically distributed (i.i.d.) random variables with

probability of p for the value 1 and probability of 1− p for the value 0.

As Cryer and Kellet (1991)[CK91] mentioned, "to make statistical inferences

about the structure of a stochastic process on the basis of an observed record (se-

quence) of the process, we must usually make some simpli�ed assumptions about that

structure, and the simplest assumption is stationarity."

I.2. Stationarity

One of the important criteria to classify a stochastic process is its stationar-

ity. The analysis of stationary processes having the assumptions which depend only

1



on moments, is much simpler than the ones for non-stationary processes, and pro-

vides more information for prediction of future behaviors. Therefore, in statistics,

non-stationarity is often transformed to be stationarity for further spectral analy-

sis. However, in many real-life situations, the assumptions for stationarity in strict

sense are too strong and most processes do not satisfy them (Nason, 2006[Nas06]).

The second-order stationarity with weaker assumptions is normally considered and

throughtout this dissertation, weak stationarity is called just "stationarity" for short.

I.2.1. Strong (Strict) Stationarity

Let X(t) be a stochastic process, and let the joint distribution of X(t) at

(t1, t2, · · · , tn) be expressed as FX (X(t1), X(t2), · · · , X(tn)). Then X(t) is a strong

stationary process if, for any �nite number n points t1, t2, ...tn and any h > 0,

FX (X(t1), X(t2), · · · , X(tn)) = FX (X(t1 + h), X(t2 + h), · · · , X(sn + h)) .

In other words, a strong (strict) stationary process in statistics, is a stochastic

process whose �nite-dimensional joint probability distribution does not change when

the time is shifted. Consequently, the parameters such as mean and variance, if they

exist, also remain constant over time.

The assumptions of strict stationarity is normally too strong, and it is often

too restrictive for spatial applications. In addition, it is di�cult to verify, and there is

an uncertainty with the existence of moments. Another commonly used (but weaker)

assumption is weak stationarity.
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I.2.2. Weak (Second Order) Stationarity

A random process {X(t); t ∈ R} is weakly stationary (or stationary), if

E(X(t)) = µ, ∀t ∈ R,

E(X2(t)) <∞, ∀t ∈ R,

Cov(X(t), X(t+ h)) = C(h), ∀t,∀h ∈ R.

In other words, a random process X(t) is stationary if it has constant �rst

moment (mean), �nite second moment, and that the covariance function C(·) of the

process at two locations depends only on the displacement h. Obviously,

V ar(X(t)) = Cov(X(t), X(t)) = C(0).

A simple example of stationary process is a White Noise Process. A White

Noise Process is a stochastic process with uncorrelated (Cov(X(t), X(s)) = 0 if t 6= s)

random variables which have zero mean and a �nite common variance σ2. Obviously,

it is a stationary process. Figure I.1 shows a white noise process with σ2 = 1.

Figure 1. White Noise Process with σ2 = 1

3



I.2.3. Relationship between Strong and Weak Stationarity

If the random process {X(t), t ∈ R} is strongly stationary with �nite second

moment, then {X(t), t ∈ R} is weakly stationary. In other words, if the second

moment exists, then strong stationarity implies weak stationarity. The simple justi-

�cation is given below.

Since the random process {X(t), t ∈ R} is a strongly stationary process, then

for any n, the joint distribution of (X(t1), X(t2), · · · , X(tn)) is shift-invariant. In

particular, the joint distribution of (X(t1), X(t2)) is the same as the joint distribution

of (X(t1 + h), X(t2 + h)), for all t1, t2, and h ∈ R. Since {X(t), t ∈ R} has �nite

second moment, and we have

E(X(t1)) = E(X(t2)) = E(X(t)) = µ, ∀t,

Cov(X(t1), X(t2)) = Cov(X(t1 + h), X(t2 + h)) = C(h), ∀t1, t2, h.

So clearly, Cov(X(t), X(t + h)) doesn't depend on t. Therefore, the process

{X(t), t ∈ R} is also a weakly stationary process.

Note that the existence of the second moment is critical for the above con-

clusion. As an example, if the �nite-dimensional distribution of a stochastic process

follows a multivariate Cauchy distribution and is assumed to be shift-invariant (so

that the stochastic process is strongly stationary). However, it may not be weakly

stationary since the Cauchy distribution has both unde�ned mean and variance.

4



On the other hand, weak stationarity doesn't imply strong stationarity, unless

it is a Gaussian stochastic process. Here we have an example of a weak stationary

process, but it is not a strongly stationary process. Let {X(t), t ∈ Z} is a sequence

of random variables (a stochastic random process) de�ned as

X(t) =


Y (t), if t is even,

1√
2

(Y 2(t)− 1) , if t is odd,

where Y (t)
i.i.d.∼ N(0, 1).

The above process gives:

E(X(t)) =


E(Y (t)) = 0, if t is even,

1√
2
E (Y 2(t)− 1) = 0, if t is odd,

V ar(X(t)) =


V ar(Y (t)) = 1, if t is even,

1
2
V ar(Y 2(t)− 1) = 1, if t is odd.

Since X(t) and X(t+ h) are independent random variables, we have

Cov(X(t), X(t+ h)) = 0,∀k.

Therefore, the stochastic process {X(t), t ∈ Z} is a weakly stationary process.

Now we note that

P (X(t) ≤ 0) =


P (Y (t) ≤ 0) = 0.5, when t is even.

P
(

1√
2
(Y 2(t)− 1) ≤ 0

)
= P (Y 2(t) ≤ 1) = 0.6826, when t is odd.

Therefore, it is not identically distributed, and thus not strongly stationary.

5



But a Gaussian stationary process is an exception. The Gaussian process is one

of the most widely used stochastic processes and one of the properties of such a process

making it primarily popular is that a Gaussian process is completely determined by

its mean and covariance functions.

A real-valued stochastic process X(t), t ∈ R is a Gaussian process if its �nite-

dimensional distributions have a multivariate normal distribution. For a stationary

Gaussian process X(t) with covariance function C(h), we have X(t) ∼ N(µ,C(0))

for all t, and (X(t + h), X(t))′ has a bivariate normal distribution with covariance

matrix given as follows, for all t and h,

[
C(0) C(h)

C(h) C(0)

]
,

then the Gaussian stationary process is uniquely determined by its �rst and second

moments, which means it is also a strongly stationary process.

I.3. Non-Stationarity

The assumption of stationarity is too strict most of the time in practice, and

usually cannot be satis�ed. It is necessary to seek for statistical methods to investigate

non-stationary random processes. Here we discuss intrinsic stationarity and random

processes with stationary increments.

I.3.1. Intrinsic Stationarity

A random process {X(t) : t ∈ R} is intrinsically stationary, if we have

E(X(t)) = µ, ∀t ∈ R,

V ar(X(t+ h)−X(t)) = 2γ(h), ∀t, h ∈ R,

where 2γ(·) is termed as the variogram function.

6



In other words, a random process {X(t) : t ∈ R} is intrinsically stationary if

it has constant �rst moment (mean) and the variance of the di�erence between the

values at any two time points or locations t, t+h depends only on h, the displacement.

A one-dimensional (standard) Brownian Motion process {B(t), t ≥ 0} is a

real-valued stochastic process with mean µ = 0, and covariance function Cov(B(t +

h), B(t)) = σ2 min(t+h, t), which is not a function of only the displacement, indicating

that this process is not a weakly stationary process. However,

V ar(B(t+ h)−B(t))

= Cov(B(t+ h), B(t+ h)) + Cov(B(t), B(t))− 2Cov(B(t+ h), B(t))

= σ2 min(t+ h, t+ h) + σ2 min(t, t)− 2σ2 min(t+ h, t)

= σ2(t+ h) + σ2t− 2σ2 min(t+ h, t).

Therefore, the variance of the di�erence between two locations is given as,

V ar(B(t+ h)−B(t)) =


σ2(t+ h+ t− 2t) = σ2(h), ∀h ≥ 0,

σ2(t+ h+ t− 2t− 2h) = σ2(−h), ∀h < 0,

= σ2|h|, ∀h ∈ R,

It is a function of only the displacement h. Hence, the standard Brownian Mo-

tion process is intrinsically stationary. Figure I.2 shows a realization of this process.

7



Figure 2. A Standard Brownian Motion Process.

A generalization of the variogram function from Brownian Motion is the Power

Model, with the variogram function given by 2γ(h) = |h|α, (0 < α < 2). Although

the variogram 2γ(h) exists, there is no associated stationary covariance function, i.e.

C(h) does not depend only on the displacement h. Therefore, although the random

process with power model variogram function is intrinsically stationary, it is not a

weakly stationary process which implies that intrinsic stationarity does not imply

weak stationarity. On the other hand, a weakly stationary process is an intrinsically

stationary process. This can be easily justi�ed. Let {X(t), t ∈ R} be a weakly

stationary process with constant mean µ and covariance function C(h), then the

variogram function is given as follows.

2γ(h) = V ar(X(t+ h)−X(t))

= V ar(X(t+ h)) + V ar(X(t))− 2Cov(X(t+ h), X(t))

= C(0) + C(0)− 2C(h) = 2C(0)− 2C(h), a function of h,

therefore, X(t) is also a intrinsically stationary process.
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I.3.2. Random Process with dth Order Stationary Increments

According to Yaglom(1958)[Yag58], for a random process {X(t), t ∈ R},

∆(d)
τ X(t) =

d∑
k=0

(−1)k
(
d

k

)
X(t− kτ),

is called the dth increments of X(t) with the step size τ > 0.

More speci�cally, a random dth increments ∆
(d)
τ X(t) is called stationary (in

the wide sense) if the expectations

E(∆(d)
τ X(t)) = c(n)(τ) = cτn,

E(∆(d)
τ X(t+ h))(∆(d)

τ X(t)) = D(d)(t, τ),

exist for all t, h, τ , and don't depend on t, where c is a constant.

In particular, when d = 0, we obtain the usual weakly stationary random

processes, and when d = 1, and if the �rst order increment ∆
(1)
τ X(t) = X(t)−X(t−τ)

is stationary, X(t) is called a process with stationary increments of order 1. Similarly,

when d = 2, and if the second order increments ∆
(2)
τ X(t) = X(t)−2X(t−τ)+X(t−2τ)

is stationary, then X(t) is called a process with stationary increments of order 2.

Note that the second order increment is just an additional increment based on

the �rst increment, i.e., let Y (t) represent ∆
(1)
τ X(t), and U(t) represent ∆

(2)
τ X(t),

U(t) = Y (t)− Y (t− τ)

= [X(t)−X(t− τ)]− [X(t− τ)−X(t− τ − τ)]

= X(t)− 2X(t− τ) +X(t− 2τ).

In this dissertation, we will focus on two random processes with stationary

increments of order 1 and 2 in our simulations. These processes were constructed

9



by adding the corresponding linear trend (order 1) and quadratic trend (order 2),

respectively. The intrinsically stationary process, which is a more general process of

stationary increments of order 1, is also considered in Chapter 4. Here we provide

the propositions to justify these.

Proposition 1.1: A stationary process with an added linear trend is a sta-

tionary increment process with order 1. PROOF. Consider the process X(t) =

a + bt + S(t), a, b ∈ R, where S(t) is a stationary process with constant mean µ.

We need to show that the �rst increment Y (t) = X(t)−X(t− τ) is stationary.

Y (t) = X(t)−X(t− τ)

= a+ bt+ S(t)− [a+ b(t− τ) + S(t− τ)]

= S(t)− S(t− τ) + bτ,

and E[Y (t)] = E[S(t)− S(t− τ) + bτ ] = bτ, constant with a �xed τ

V ar[Y (t)] = V ar[S(t)− S(t− τ) + bτ ]

= V ar[S(t)] + V ar[S(t− τ)]− Cov[[S(t), S(t− τ)].

Since S(t) is stationary, then E(S2(t)) < ∞, and therefore, V ar[Y (t)] < ∞,

which means the second moment E(Y 2(t)) <∞, then

Cov[Y (t), Y (t+ h)]

= Cov[S(t)− S(t− τ) + bτ, S(t+ h)− S(t+ h− τ) + bτ ]

= Cov[S(t), S(t+ h)]− Cov[S(t), S(t+ h− τ)]− Cov[S(t− τ), S(t+ h)]

+ Cov[S(t− τ), S(t+ h− τ)] + (bτ)2

= 2C(h)− C(h− τ) + C(h+ τ) + (bτ)2.

10



That is, Cov[Y (t), Y (t + h)] is a function of the displacement h, with a �xed

τ > 0. Combined together, Y (t) is a process satisfying all three conditions for a

stationary process, and then our proposition follows.

Proposition 1.2: A stationary process with an added quadratic trend is a

process with stationary increments of order 2. PROOF. Consider the process X(t) =

a+bt+ct2 +S(t), a, b, c ∈ R, where S(t) is a stationary process with constant mean µ.

Then we need to show that the second increment U(t) = X(t)−2X(t−τ)+X(t−2τ)

is stationary.

U(t) = X(t)− 2X(t− τ) +X(t− 2τ)

= a+ bt+ ct2 + S(t)− 2[a+ b(t− τ) + c(t− τ)2 + S(t− τ)]

+ [a+ b(t− 2τ) + c(t− 2τ)2 + S(t− 2τ)]

= S(t)− 2S(t− τ) + S(t− 2τ) + 2cτ 2,

and E[U(t)] = E[S(t)− 2S(t− τ) + S(t− 2τ) + 2cτ 2]

= 2cτ 2. (S(t) is stationary process with constant mean µ)

Then U(t) has a constant mean 2cτ 2, with a �xed τ . And since S(t) is sta-

tionary, then V ar[U(t)] <∞, which means E(U2(t)) <∞.

Cov[U(t), U(t+ h)]

= Cov[S(t)− 2S(t− τ) + S(t− 2τ) + 2cτ 2,

S(t+ h)− 2S(t+ h− τ) + S(t+ h− 2τ) + 2cτ 2]

= 6C(h)− 4C(h− τ)− 4C(h+ τ) + C(h− 2τ) + C(h+ 2τ) + 4c2τ 4.

which is a function of the displacement h, with a �xed τ > 0, concluding the proof.
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I.4. Covariance and Variogram Functions

I.4.1. Covariance Function

In spatial statistics, the covariance function describes the spatial dependency

of a random process. For a stochastic process X(t) on a domain D, a covariance

function is de�ned as the covariance of process at the two time points or locations.

Recall that if {X(t) : t ∈ R}, is a stationary process with constant mean µ,

then Cov[X(t), X(t+ h)] = C(h) = C(−h) is de�ned as the covariance function C(·)

for all h, which can be expressed as follows

Cov[X(t), X(t+ h)] = E[X(t)− µ][X(t+ h)− µ].

A covariance function C(·) of the stationary process X(t) must be positive

de�nite, that is, for any n and any real numbers ai, i = 1, 2, · · · , n and locations

ti, i = 1, 2, · · · , n, one has to satisfy the following condition

n∑
i=1

n∑
j=1

aiajC(ti − tj) ≥ 0.

With this restriction, we note that for any linear combination of �nite random

variables Y =
∑n

i=1 aiX(ti) at n locations ti, i = 1, 2, · · · , n,

V ar

(
n∑
i=1

aiX(ti)

)
=

n∑
i,j=1

aiajC(ti − tj) ≥ 0.

One of the most commonly used covariance function models in statistics is the

Matérn covariance functions, given by Rasmussen and Williams (2006)[RW06]:

kmatern(r) =
21−ν

Γ(ν)

(√
2νr

`

)ν

Kν

(√
2νr

`

)
,
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It has the smoothness parameter ν > 0 and the distance parameter ` > 0 (Mi-

nasny and McBratney, 2005)[MM05] and Kν as a modi�ed Bessel function developed

by Abramowitz and Stegun (1965)[AS65].

The Matérn model is commonly used in spatial statistics due to its great

�exibility with the smoothness parameter ν. When ν is small (ν → 0), it implies that

the spatial process is rough, and when it is large (ν →∞) that the process is smooth

(Minasny and McBratney, 2005)[MM05].

Since the Matérn covariance functions only depend on the displacement be-

tween points, then if a random process has a constant mean and Matérn covariance

function, then it is stationary.

The Matérn covariance functions become especially simple when ν is half-

integer: ν = p + 1/2, where p is a non-negative integer. In this case, the covariance

function is a product of an exponential and a polynomial of order p, the general

expression was derived and given by Abramowitz and Stegun(1965)[AS65]:

kν=p+1/2(r) = exp

(
−
√

2νr

`

)
Γ(p+ 1)

Γ(2p+ 1)

p∑
i=0

(p+ i)!

i!(p− i)!

(√
8νr

`

)p−i

.

When ν = 1/2, the process is actually an exponential model, but for ν > 7/2,

Rasmussen and Williams (2006)[RW06] stated that "in the absence of explicit prior

knowledge about the existence of higher order derivatives, it is probably very hard

from �nite noisy training examples to distinguish between values of ν ≥ 7/2" .
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With the above formula, we list the following three special cases with ν = 1/2,

3/2, and 5/2, which are most of interest and commonly used in spatial statistics,

geostatistics, machine learning and other �elds.

kν=1/2(r) = exp
(
−r
`

)
.

kν=3/2(r) =

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
.

kν=5/2(r) =

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
.

We will use Matérn covariance functions with ν = 3/2 and ` = 1 for further

simulations, under which the covariance function is given by

C(h) = (1 +
√

3|h|)e−
√

3|h|, h ∈ R.

I.4.2. Variogram Function

The variogram function was proposed by Matheron (1973)[Mat73] as an al-

ternative measure to the covariance function. It is de�ned as the variance of the

di�erence between two values at two time points or locations. When the process X(t)

is intrinsically stationary, E[X(t)] = µ constant.

2γ(h) = V ar[X(t+ h)−X(t)].

Here γ(h) is called the semivariogram, a function of the displacement h. More-

over, if {X(t)} is stationary and C(h) is the corresponding covariance function, then

we have γ(h) = C(0)− C(h).
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A valid continuous variogram function 2γ(·) with γ(0) = 0 must be condition-

ally negative de�nite (CND), that is, for any �nite number of time points or locations

{si; i = 1, 2, · · · ,m} and real constants {ai; i = 1, 2, · · · ,m} such that
∑m

i=1 ai = 0,

we have
m∑
i=1

m∑
j=1

aiajγ(ti − tj)) ≤ 0.

It implies that for any linear combination Y =
∑n

i=1 aiX(ti) with
∑m

i=1 ai = 0,

− V ar

(
m∑
i=1

aiX(ti)

)

= −E

(
m∑
i=1

aiX(ti)−
m∑
i=1

aiµ

)2

= −E

(
m∑
i=1

aiX(ti)

)2

= −E

(
m∑
i=1

m∑
j=1

aiajX
2(ti) +

m∑
i=1

m∑
j=1

aiajX
2(tj)−

m∑
i=1

m∑
j=1

aiajX(ti)Z(tj)

)

= −E

(
m∑
i=1

m∑
j=1

aiaj
[
X2(ti)− 2X(ti)X(tj) +X2(tj)

])

= −E

(
m∑
i=1

m∑
j=1

aiaj [X(ti)−X(tj)]
2

)

=
m∑
i=1

m∑
j=1

aiajγ(X(ti)−X(tj))

≤ 0,

and therefore, V ar (
∑m

i=1 aiX(ti)) ≥ 0 will be satis�ed since the variogram function

is conditionally non-negative de�nite.

Variogram and covariance functions both measure the strength of correlation

as a function of displacement h. If a process is stationary, we usually use a covariance

function to model the dependency, and if a process is intrinsically stationary, but

not stationary, then the covariance function should be replaced by the variogram
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function. Intuitively, things are (positively) spatially dependent if the quantities that

are located close together are more similar (less variability) than the quantities that

are located farther apart (more variability).
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CHAPTER II

SPECTRAL ANALYSIS AND LITERATURE REVIEW

In this Chapter, we �rst provide a simple introduction to spectral analysis.

Then the spectral analysis through periodogram under stationary time series is dis-

cussed. As one of the most commonly used methods for estimating the spectral density

function under stationarity, periodogram is obtained from the inverse of Fourier trans-

formation on the covariance function. Next, the covariance and variogram estimation

are discussed with the corresponding simulation results. In Section 3, simulations

are computed under non-stationarity for estimating the covariance and variogram

functions. Literature review for the spectral analysis of random processes under non-

stationarity is then provided at the end of this chapter.

II.1. Introduction to Spectral Analysis

Spectral analysis originated about a century ago when Schuster(1986)[Sch98]

�rst detected periodicity in time series, and as one of the most important character-

istics of time series, the studies and tests on detecting periodicity have been developed

byWalker(1914)[Wal14], Fisher(1929)[Fis29], Jenkins and Priestley(1957)[JP57], Han-

nan(1961)[Han61], and many others. Spectral analysis is a topic that contributes in

many diverse �elds. For example, a signal can be measured and provides informa-

tion on wear and other characteristics of mechanical parts by spectral contents in

vibration monitoring; in speech analysis, spectral models can be used for both speech

synthesis and speech recognition; we can also provide useful material for diagnosis

by the spectral analysis of various signals measured from a patient (Stoica, et al.

2005)[SM+05]; spectral analysis of a received signal can provide information for lo-
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cating the signal source; even more, in economics, and many other �elds, the spectral

analysis provides information about "hidden periodocities", and further study on the

cyclic behavior of the process. A summary of these early developments were given by

Marple (1987)[MM87] and Brockwell and Davis (1991)[BD16].

In physical sciences, a simple application of spectral analysis is speech recogni-

tion. Speech recognition was a major goal during the last four decades, with the aim

to extract the useful information from the speech signal and use the useful informa-

tion to convert the acoustic signal into a sequence of words. Stationary sounds (e.g.,

vowel) can be recognized from a single spectrum. Shumway and Sto�er (2011)[SS11a]

provided a simple example that a small 0.1 second (1000 points) sample of recorded

speech for the phrase aaa · · ·hhh was collected as a signal, and the problem of great

interest is to produce a signature of this phrase by spectral analysis, so that it can

be recognized when compared with the signatures in library syllables, and thus �nd

a match.

Figure 3. Speech Recording of the Syllable aaa · · ·hhh Sampled at 10, 000 Points Per
Second with n = 1020 Points.
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Di�erent approaches of computing the spectrum of speech have been developed

recently by Ernawan, et al. (2011)[EAS11], Saini and Mehra (2015)[SM15]. In recent

medical research, the spectral analysis of human voice has been recommended in

the laboratories as a potentially useful tool in speech and language rehabilitation

(Albertini, et al. 2009[AGM09] and Sigmund, 2007[Sig07]).

Estimation of the spectral density function is one of the most important parts

of spectral analysis. It essentially measures the variance (or power) in a particu-

lar kind of periodic oscillation in the function by changing the time domain to the

frequency domain. In other words, it provides information on the frequencies with

strong or weak variations. We denote f(ω) as the spectral density of the variance

function, where the variance is measured as a function of the frequency of oscillation

ω. When the process is assumed to be stationary, its corresponding spectral density

is widely used to detect the hidden periodicities and its cyclic activities.

For example (Cryer and Kellet, 1991[CK91]), Figure II.2 shows a linear com-

bination of two cosine curves with a multiplier of 2 on the low-frequency curve and a

multiplier of 3 on the higher-frequency curve,

Y (t) = 2cos
(

2πt
4

96

)
+ 3cos

[
2π(t

14

96
+ 0.3)

]
.

The "hidden" periodicities in Figure II.2 can be discovered easily by spectral

analysis. Figure II.3 shows the estimation of the spectral density for the above process,

and it clearly shows that the hidden periodicities contained in the series are two cosine-

sine components at the frequencies 4/96(≈ 0.04167) and 14/96(≈ 0.14583) marked

on the frequency axis, and that the higher-frequency component is much stronger.
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Figure 4. Plot for a Process of A Linear Combination of Two Cosine Curves.

Figure 5. Spectral Analysis for Detecting the Periodicities of the Above Process.

II.2. Spectral Analysis under Stationarity

In this section, we will discuss the spectral analysis under stationarity. We

will �rst provide a general idea for spectral representation of the covariance function,

and then the periodogram for estimating the spectral density under stationarity is

stated. The estimations of the covariance and variogram functions are also discussed,

and the simulation results are presented.
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II.2.1. Covariance Function and Its Spectral Representation

A given covariance function C(h) of a continuous stationary process {X(t), t ∈

R} has the following spectral representation (Bochner, 1938[Boc38]):

C(h) =

∫ ∞
−∞

eiωhdF (ω),

where F (ω) is a bounded monotone non-decreasing function of ω.

If F (ω) is further assumed to have the derivative f(ω) (f(ω) ≥ 0, f(−ω) =

f(ω)), then according to Bochner (1938)[Boc38], we have

C(h) =

∫ ∞
−∞

cos(ωh)f(ω)dω,

and f(ω) =

∫ ∞
−∞

cos(ωh)C(h)dh.

For a stationary time series {X(t), t ∈ Z}, the spectral representation of the covari-

ance function can be written as (Brockwell and Davis, 1991[BD91])

C(h) =

∫ π

−π
eiωhf(ω)dω.

If
∑∞

h=−∞ |C(h)| < ∞ is further assumed, as is the case in most applications

for theoretical simplicity, the values C(h)/2π are simply the Fourier coe�cients in

the Fourier series expansion of the periodic function f(ω),

f(ω) =
1

2π

∞∑
h=−∞

e−iωhC(h).

Then f(ω) is called the spectral density for the stationary time series X(t).
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II.2.2. Periodogram for Estimating Spectral Density

The estimation of spectral analysis under stationarity has been well developed.

Stoica and Moses (2005)[SM+05] mentioned that the main goal of spectral analysis

is to convert a �nite record from time domain to frequency domain, so that we can

obtain the information for its distribution of power over frequency. It would, of course,

be desirable that the estimated spectral density obtained from a �nite record is as

close to its true spectral density function as possible.

Depending on the information provided by the signal, the techniques for es-

timating the spectral density of a stationary process can generally be divided into

parametric and non-parametric approaches. The parametric or model-based meth-

ods of spectral estimation assume that the signal satis�es a known functional model,

and then proceeds by estimating the parameters in the assumed model, and then the

signal's spectral analysis could be conducted from the estimated model. But as Jenk-

ins and Watts (1968)[JW68] stated, that the non-parametric methods for estimating

spectral density have no need for proposing modeling ahead of time, and only rely on

the de�nitions of spectral density. Although the spectral density estimation provided

by the parametric method may be more accurate than the non-parametric method,

it depends strongly on whether a proper model is assumed for the given process.

However, in many situations, the observed data do not satisfy the assumed models,

so nonparametric methods may be prefered which do not require �tting any assumed

models. This observation has motivated renewed interest in the nonparametric ap-

proach to spectral estimation (Stoica and Moses, 2005)[SM+05].

As one of the most commonly used non-parametric methods for estimating

the spectral density, periodogram (the Fourier Transform of the covariance function)

has been applied broadly for stationary random processes. It was named by Schus-
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ter (1900)[Sch] as a motivation for this method determining the possible "hidden

periodicities", where one of the purposes of the analysis is to identify the dominant

frequencies (or periods) in the observed series. When the cycles are not the com-

monly used ones such as monthly or seasonally, the periodogram is a starting tool for

identifying the hidden cyclical behavior in a series. It measures the relative strength

of possible frequencies that might explain the oscillation pattern of the observed data

and is the simplest technique to estimate the spectrum.

Figure II.4 shows an example of a periodogram for detecting the "hidden"

periodicities in the �eld of astronomy (Shumway and Sto�er, 2011[SS11b]). The

observed series (n = 459) is collected for the number of sunspots for each half year.

Figure 6. Plot for Seires of Semi-annual Sunspot Activities for n = 459 Time Periods.
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Figure II.5 presents the periodogram of the given data. It shows a dominant

peak at the frequency around 0.05, corresponding to a period of about 1/.05 = 20 time

periods. Since this is semi-annual data, there appears to be a dominant periodicity

of about 10 years in sunspot activity.

Figure 7. Periodogram Analysis Showing Periodicities for the Above Example.

When the process is stationary (that is, the covariance function C(h) is well-

de�ned, and it is non-negative de�nite), the spectral density can be estimated through

the periodogram by the inverse Fourier transform. The use of the fast Fourier trans-

form in the periodogram for estimating the spectral analysis was summarized in Bing-

ham et al.(1967)[BGT67]. Brockwell and Davis (1991)[BD91] provided a detailed

derivation of the periodogram.
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More explicity, the periodogram I(ωj) at the Fourier frequencies ωj = 2πj/n,

where ωj ∈ (π, π], j ∈ Fn = {−(n/2) + 1, · · · , (n/2)} for a stationary time series

{X1, X2, · · · , Xn} in terms of the sample autocovariance function is given by

In(ωj) = n−1
∣∣∣ n∑
t=1

Xt e
−itωj

∣∣∣2,
which is equivalent to

In(ωj) =


n|X̄|2, ωj = 0∑
|k|<n Ĉ(k)e−ikωj , ωj 6= 0,

where Ĉ(k) = n−1
∑n−|k|

t=1 (Xt − X̄)(Xt+|k| − X̄) and X̄ = n−1
∑n

t=1 Xt. A natural

estimate of the spectral density f(ωj) for ωj 6= 0 is given as I(ωj)/(2π).

Despite the simplicity of the periodogram, and although it is unbiased, the

method su�ers from de�ciencies. It is an inconsistent estimator, because of sampling

variation, and therefore it doesn't converge to the true spectral density as n→∞, but

this can be �xed by smoothing techniques. Warner (1998)[War98] provided a general

idea of the smoothing method as well as a detailed introduction and summary of the

smoothing methods. Simono� (2012) [Sim12] and Einicke (2012)[Ein12] summarized

more developed smoothing methods.

As mentioned above, the periodogram is obtained from the Fourier transform

of the covariance function, the condition of stationarity is assumed to satisfy that the

covariance function of the process is a function of only the dispacement h. Therefore,

one of the important limitations of the periodogram for estimating the spectral density

is that the periodogram can be only used to estimate the spectral density when the

random process Xt is stationary.
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II.2.3. Covariance and Variogram Estimation under Stationarity

Covariance and Variogram estimation is a fundamental problem for stationary

stochastic processes, having wide-ranging applications (Solo, 1992)[Sol92] and playing

a crucial role in spectral analysis (Koopmans, 1995[Koo95]). In practice, for a given

realization of a process, the covariance or variogram function is unknown. There-

fore, we need to obtain a valid and accurate estimator (compared with its theoretical

values) in order to perform the spectral analysis. A natural estimator for covari-

ance and variogram (known as classical or empirical) was proposed by Matheron

(1962)[Mat62], based on the method-of-moments (MOM).

Let {X(t) : t = 0, 1, 2, · · · , n − 1} be the observed time series (n data points

in total) and assume that X(t) is stationary with unknown constant mean µx. Then

the covariance function is given by

C(h) = Cov[X(t), X(t+ h)] = E[X(t)− µx][X(t+ h)− µx].

The MOM estimator of the covariance function C(·) is then given by:

Ĉ(h) =
1

n− h

n−1−h∑
t=0

(X(t)− X̄)(X(t+ h)− X̄). h = 0, 1, 2, · · · , n− 1.

Let {Y (t) : t = 0, 1, 2, · · · , n − 1} be the observed time series and further

assumed to be intrinsically stationary with unknown constant mean µy. Then the

variogram function is given by

2γ(h) = V ar[Y (t+ h)− Y (t)] = E[(Y (t+ h)− Y (t)]2.

The MOM estimator for variogram function is then given by:

2γ̂(h) =
1

n− h

n−1−h∑
t=0

[Y (t+ h)− Y (t)]2, h = 0, 1, 2, · · · , n− 1.
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II.2.4. MOM Estimators of Covariance and Variogram Functions

Cressie (1993)[Cre93] stated that under stationarity, the covariance MOM es-

timator is actually a biased estimator of C(h), and the variogram MOM estimator

is also a biased estimator of 2γ(h), but its bias is with a smaller order than that

for the covariance estimator. In addition, Cressie (1993)[Cre93] also stated that the

variance and covariance of Ĉ(h) and γ̂(h) are both of O(1/n). In this section, we

conduct simulations to illustrate the performance of MOM covariance and variogram

estimators assuming a stationary time series. Matérn covariance model with ν = 3/2

and ` = 1 is applied to generate the process. More explicity,

C(h) = (1 +
√

3h) e−
√

3h, h = kτ, k = 0, 1, 2 · · · , (n− 1).

Throughout this dissertation, simulations follow the below algorithm to generate the

time series {Xi = X(ti), ti = iδ, i = 0, 1, 2, · · · , (n− 1)} with step size δ > 0.

Table 1. Algorithm for Generating the Simulation Dataset.

Step 1: Generate an identical and independent distributed (i.i.d.) standard nor-

mal random vector which is given by Z = (Z0, Z1, · · · , Zk, · · · , Zn−1).

Step 2: Use the underlying covariance model to construct a variance-covariance

matrix Σ = Σij, that is Σij = Cov[X(ti), X(tj)].

Step 3: Then X = Σ
1
2Z is the observed time series on the pre-speci�ed

locations.
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In this simulation, without loss of generality, we set δ = 1 and µ = 0. Simula-

tions are conducted with sample size n = 100, and repeated for 1000 iterations. Both

estimated covariance and variogram values (red points) are plotted along with their

theoretical values (blue points) for comparison.

Figure 8. Estimated and Theoretical Covariance and Variogram Values under Sta-
tionarity.

The above simulations show that, under stationarity, the covariance function

has a shift between the estimated and theoretical values. Variogram function provides

a better estimation which con�rms what Cressie (1993)[Cre93] had already stated.

Normally, if a process is stationary, we use a covariance function to model the

dependency of random variables from two locations or time points, and when the

random process is intrinsically stationary, the variogram function often replaces the

covariance function.
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II.3. Spectral Analysis under Non-stationarity

In this section, we �rst investigate the performance of the MOM covariance and

variogram estimators under processes with stationary increments of order 1 and order

2, respectively. In particular, we present the simulation results for their performance

when the underlying process is stationary with an added linear trend and quadratic

trend, respectively. In Section 2.3.2, we provide a literature review on spectral analysis

under non-stationarity, in particular, the random processes with stationary increments

of order d.

II.3.1. Covariance and Variogram Estimation under Non-stationarity

We have checked the performance of MOM estimators of covariance and var-

iogram functions under stationarity in Section 2.2.4, and both estimators have good

performances when the underlying process is stationary. But for non-stationary pro-

cesses, for example, processes with an added linear (or quadratic) trend which has

been showed to be with stationary increments of order 1 (or 2), the performance of

the MOM estimators for covariance and variogram functions also need to be checked

for further estimation of spectral density functions.

We �rst conduct simulations to investigate the performance of MOM covari-

ance and variogram estimators when the underlying process is a stationary pro-

cess with an added linear trend. More explicitly, let X(t) be a stationary pro-

cess with Matérn covariance model when ν = 3/2 and ` = 1 as given above. Let

Yt = Xt+(a+bt), where a+bt is the added linear trend. Note that, from Proposition

1.1, Yt is also a random process with stationary increments of order 1. In our simu-

lation, data is generated according to the algorithm speci�ed in Section 2.2.4, with

a = b = 1.
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Note that in order to compute the MOM covariance and variogram estimators,

we need to remove the estimated trend �rst, so the resulting data {Zt} are generated.

The same steps and formulas are applied to Z(t) for estimating the covariance and

variogram functions and their estimated values (red points) are plotted with their

theoretical values (blue points). Simulations are conducted n = 100, and repeated

for 1000 iterations. Figure II.7 shows the simulation results under stationarity with

an added linear trend.

Figure 9. Estimated and Theoretical Covariance and Variogram Values under Sta-
tionarity with Added Linear Trend.

The above results show that under stationarity with an added linear trend, the

covariance function estimation is away from the theoretical values and the variogram

function estimator performs worse. Parallel steps are applied to a stationary process

with an added quadratic trend, a process with stationary increment of order 2: Q(t) =

a + bt + ct2 + X(t). In our simulation, we set a = b = c = 1, and X(t) is stationary

with Matérn covariance function of ν = 3/2 and ` = 1. Here are the simulation

results.
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Figure 10. Estimated and Theoretical Covariance and Variogram Values under Sta-
tionarity with Added Quadratic Trend.

Figure II.8 shows the simulation results that under stationary increments of

order 2, the MOM estimators of covariance and variogram functions performs even

worse. It seems that both MOM covariance and variogram estimators perform unsat-

isfactorily as the order of stationary increments increases. Therefore, it is necessary

to seek estimation methods when underlying processes are not stationary.

II.3.2. Literature Review on Spectral Analysis under Non-stationarity

For intrinsically stationary processes, the statistical dependence of the data is

often modeled through variogram function, instead of the covariance function. There-

fore, the variogram function has been well studied due to its role in spectral density

estimations for intrinsically stationary processes.

Valid variogram functions must satisfy conditional negative de�niteness. How-

ever, Cressie (1993)[Cre93] mentioned that the usual MOM estimations of variogram

functions based on a sample is not guaranteed to be conditionally negative-de�nite.

To ensure this property, strategies have been developed to estimate variogram func-

tions by �tting conditionally negative de�nite models to data in the form of a sample
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variogram (Cressie, 1985)[Cre85]. But a non-parametric method for estimating vari-

ogram functions that is guaranteed to be conditionally negative de�nite is also desired

(Cressie, 2015)[Cre15].

Huang et al. (2011)[HHC11] proposed a new non-parametric variogram esti-

mator for its spectral representation, the methodology is based on estimation of the

variogram's spectrum by solving a regularized inverse problem through quadratic pro-

gramming, and the estimated variogram is guaranteed to be conditionally negative-

de�nite.

Yang and Zhu (2016)[YZ15] extended Huang et al. (2011)[HHC11]'s work, and

provided a semiparametric estimation to estimate the spectral density function on the

real line. Both methods seem to focus on the estimation when the underlying process

is intrinsically stationary. Therefore, it is necessary to develop a uni�ed method that

could be applied for a larger class of non-stationary processes.

For random processes with stationary increments of order d, the notion of

the structure equation was developed by Yaglom(1955)[Yag55]. He also provided its

properties, as well as its spectral representation. Some other related work includes

Matheron's (1973)[Mat73] Intrinsic Random Functions (IRFs) and generalized covari-

ance function.

Zhang and Huang (2014)[ZH14] provided a detailed derivation of the inversion

formula where the spectrum can be represented by structure function, and their the-

orems o�er a way to estimate the spectral function from an easily estimated structure

function.
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In addition, by directly applying the formulas, one can derive the spectral

density function of commonly used power variogram. However, Zhang and Huang

(2014)[ZH14] focused on theoretical derivations and further research on spectrum

estimation and practical procedures are yet to be developed.

II.4. Outline of This Dissertation

In Chapter 3, we �rst introduce the structure function Dτ (h) and its prop-

erties provided by Yaglom(1955)[Yag55]. Simulations are also conducted to check

the performance of its MOM estimator under both stationarity and non-stationarity.

Estimation of the spectral density of a continuous random process through the struc-

ture function Dτ (h) under both stationarity and non-stationarity are then discussed

in details. In Chapter 4, the spectral analyses for intrinsically stationary processes

are discussed for some commonly used variogram functions. The estimations of their

spectral densities are derived through the structure function. In particular, the esti-

mation of spectral density for power models are discussed in details with simulations.

In Chapter 5, we provide a spectral density estimation for a real dataset for U.S.

monthly single-family housing starts from January 1964 to August 1978 (Dickey et

al. 1986)[DBM86]. An interpretation of the result is provided at the end of this

chapter. Finally, some future research directions will be discussed in Chapter 6.
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CHAPTER III

STRUCTURE FUNCTION AND ITS SPECTRAL DENSITY ESTIMATION

In this chapter, we �rst provide an introduction to the structure functionDτ (h)

and its properties. We then consider its MOM estimator under both stationarity and

non-stationarity. The respective simulations are conducted to demonstrate the ad-

vantages of our proposed structure function estimator. In Section 3.2, we propose the

spectral density estimation of a random process through the structure function Dτ (h)

under both stationarity and non-stationarity. We discuss the asymptotic unbiased-

ness of our estimation method and the potential aliasing e�ect when the discretized

data are sampled on R. Simulations are conducted to demonstrate the performance

of our proposed estimation method. Finally in Section 3.3, we apply our estimation

method when the spectral density is band-limited. Some conclusions and discussions

are given in Section 3.4.

III.1. Introduction to Structure Function

Consider a random process {X(t), t ∈ R} with stationary increments of dth

order. Let τ > 0 be the step size. The notion of a structure function is given below

(Yaglom, 1955, 1987)[Yag58][Yag55].

Dτ (h) = E
[
[∆τ

(d)X(t)][∆τ
(d)X(t+ h)]

]
, h ∈ R,

where

∆(d)
τ X(t) =

d∑
k=0

(−1)k
(
d

k

)
X(t− kτ).
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First we consider three special cases when d = 0, 1, and 2. When d = 0,

∆
(0)
τ X(t) = X(t), that is, the random process itself is a stationary process with a

constant mean µx and covariance function Cx(h).

Then the structure function is given by

Dτ (h) = E [(X(t)(X(t+ h)] , for τ > 0.

More explicitly,

Dτ (h) = E[X(t)X(t+ h)]

= E[(X(t)− µx) + µx][(X(t+ h)− µx) + µx]

= E[(X(t)− µx)(X(t+ h)− µx)] + µxE[X(t)− µx]

+µxE[X(t+ h)− µx] + µ2
x

= Cov(X(t), X(t+ h)) + µ2
x

= Cx(h) + µ2
x.

That is, when X(t) is stationary, the structure function is the stationary covariance

shifted by a constant. When d = 1,

∆(1)
τ X(t) =

1∑
k=0

(−1)k
(

1

k

)
X(t− kτ) = X(t)−X(t− τ),

is a stationary process. Its structure function is given by

Dτ (h) = E [(X(t)−X(t− τ))(X(t+ h)−X(t+ h− τ))] , for τ > 0.

In particular, when h = 0, we have Dτ (0) = E[Y (t) − Y (t − τ)]2, which is actually

the variogram function of X(t).
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Now let X(t) be a stationary process with a constant mean µx and covariance

function Cx(h). Letting Y (t) = X(t) + a + bt, a, b ∈ R, it is a random process with

stationary increments of order 1 (Proposition 2.1). Then

Cy(h) = Cov[Y (t)− Y (t− τ), Y (t+ h)− Y (t+ h− τ)]

= Cov[X(t)−X(t− τ) + bτ, X(t+ h)−X(t+ h− τ) + bτ ]

= Cov[X(t)−X(t− τ), X(t+ h)−X(t+ h− τ)]

= E[X(t)−X(t− τ)][X(t+ h)−X(t+ h− τ)]

= Cov[X(t), X(t+ h)]− Cov[X(t), X(t+ h− τ)]

−Cov[X(t− τ), X(t+ h)] + Cov[X(t− τ), X(+h− τ)]

= 2Cx(h)− Cx(h− τ)− Cx(h+ τ),

µy = E[Y (t)− Y (t− τ)] = E[X(t) + a+ bt− (a+ b(t+ h) +X(t+ h))]

= bτ.

Then for a stationary process with an added linear trend, the structure function is

given by

Dτ (h) = Cy(h) + µ2
y = 2Cx(h)− Cx(h− τ)− Cx(h+ τ) + (bτ)2.

When d = 2,

∆(2)
τ X(t) =

2∑
k=0

(−1)k
(

1

k

)
X(t− kτ) = X(t)− 2X(t− τ) +X(t− 2τ),

is a stationary process and its structure function for τ > 0 is given by

Dτ (h) = E[X(t)− 2X(t− τ) +X(t− 2τ)][X(t+ h)− 2X(t+ h− τ) +X(t+ h− 2τ)].

36



In particular, let X(t) be a stationary process with a constant mean µx and

covariance function Cx(h), and let Y (t) = X(t) + a + bt + ct2, a, b, c ∈ R, a random

process with stationary increments of order 2 (Proposition 2.2). Then

Cy(h)

= Cov[Y (t)− 2Y (t− τ) + Y (t− 2τ), Y (t+ h)− 2Y (t+ h− τ) + Y (t+ h− 2τ)]

= Cov[X(t)− 2X(t− τ) +X(t− 2τ) + 2cτ 2,

X(t+ h)− 2X(t+ h− τ) +X(t− 2τ) + 2cτ 2]

= Cov[X(t)− 2X(t− τ) +X(t− 2τ), X(t+ h)− 2X(t+ h− τ) +X(t− 2τ)]

= E[X(t)− 2X(t− τ) +X(t− 2τ)][X(t+ h)− 2X(t+ h− τ) +X(t− 2τ)]

= 6Cx(h)− 4Cx(h− τ)− 4Cx(h+ τ) + Cx(h− 2τ) + Cx(h+ 2τ),

µy = E[Y (t)− 2Y (t− τ) + Y (t− 2τ)]

= E[X(t)− 2X(t− τ) +X(t− 2τ) + 2cτ 2]

= 2cτ 2.

Now the structure function for Y (t) is given by

Dτ (h)

= Cy(h) + µ2
y

= 6Cx(h)− 4Cx(h− τ)− 4Cx(h+ τ) + Cx(h− 2τ) + Cx(h+ 2τ) + (2cτ 2)2.

The above results will be extensively used in our simulations in this chapter.
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III.1.1. Properties of the Structure Function Dτ (h)

1. By de�nition, Dτ (0) = E
[
∆τ

(d)X(t)
]2

, which is non-negative.

2. |Dτ (h)| ≤ Dτ (0) for all h ∈ R. This is due to the Cauchy-Schwartz inequality.

3. Dτ (−h) = Dτ (h), that is, Dτ (h) is symmetric about 0.

PROOF:

Dτ (−h) = E
[
[∆τ

(d)X(t)][∆τ
(d)X(t− h)]

]
= E

[
[∆τ

(d)X(t+ h)][∆τ
(d)X((t+ h)− h)]

]
= E

[
[∆τ

(d)X(t+ h)][∆τ
(d)X((t)]

]
= Dτ (h) (By the de�nition of Dτ (h)).

4. Dτ (h) is positive de�nite for each �xed τ .

PROOF: ∀n ∈ Z, ∀a1, a2, · · · , an ∈ R and t1, t2, · · · , tn ∈ R, we have

n∑
i=1

n∑
j=1

aiajDτ (ti − tj)

=
n∑
i=1

n∑
j=1

aiajE[∆d
τX(ti)][∆

d
τX(tj)]

= E[
n∑
i=1

ai∆
d
τX(ti)]

2

≥ 0.

Therefore, Dτ (·) is positive de�nite for each �xed τ > 0.
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III.1.2. Estimation of Structure Function Dτ (h)

In this section, we investigated the MOM estimator for the structure function

Dτ (h). We assume X(t), t ∈ R is a random process with stationary increments of

order d. Let X = (X(0), X(δ), X(2δ), · · · , X((n− 1)δ)) be the observed data vector

of size n with a �xed step size δ > 0. Throughout this dissertation, for notational

simplicity, we simply rewrite the above random vector X as {X0, X1, · · · , Xn−1} and

set τ = δ.

Based on the above observed data, the MOM estimator for Dτ (h) is given by

D̂τ (h) =
∑
R(h)

[∆(d)Xi][∆
(d)Xi+k]/

∑
R(h)

1, where R(h) = {i : 0 ≤ i ≤ i+ |k| ≤ n− 1}

which can be represented as follows:

D̂τ (h) =
1

n− |k| − d

n−1−|k|∑
i=d

[∆(d)Xi][∆
(d)Xi+|k|],

where h = kτ, k = 0,±1,±2, · · · ,±(n− 1− d), and

∆(d)Xi =
d∑

m=0

(−1)m
(
d

m

)
Xi−m.

III.1.3. Properties of D̂τ (h)

Proposition 3.1: ∀h ∈ R, D̂τ (−h) = D̂τ (h).

PROOF:

D̂τ (−h) =
1

n− | − k| − d

n−1−|−k|∑
i=d

[∆(d)Xi][∆
(d)Xi+|−k|]

=
1

n− |k| − d

n−1−|k|∑
i=d

[∆(d)Xi][∆
(d)Xi+|k|]

= D̂τ (h).
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Proposition 3.2: The MOM estimator of the structure function, D̂τ (h) is

an unbiased estimator of Dτ (h).

PROOF:

E[D̂τ (h)] = E

∑
R(h)

[∆(d)Xi][∆
(d)Xi+|k|]/

∑
R(h)1


= E

 1

n− |k| − d

n−1−|k|∑
i=d

[∆(d)Xi][∆
(d)Xi+|k|]


=

1

n− |k| − d

n−1−|k|∑
i=d

E[∆(d)Xi][∆
(d)Xi+|k|]

=
1

n− |k| − d
(n− |k| − d)Dτ (h)

= Dτ (h), h = kτ, k = 0,±1,±2, · · · ,±(n− 1− d).

where R(h) = {i : 0 ≤ i ≤ i+ |k| ≤ n− 1}.

In order to further estimate the spectral density, the same as considered for co-

variance estimator justi�cation under statioary time series, we consider the following

estimator instead for Dτ (h) throughout the rest of this dissertation,

D̂τ (h) =
1

n− d

n−1−|k|∑
i=d

[∆(d)Xi][∆
(d)Xi+|k|].
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Proposition 3.3: D̂τ (h) is positive de�nite.

PROOF: Consider the following (n−d)×2(n−d) matrix Γ, with the non-zero

entries shifted to the left for each row going down.

Γ =



0 · · · · · · 0 ∆(d)X1 ∆(d)X2 · · · ∆(d)Xn−d

0 · · · 0 ∆(d)X1 ∆(d)X2 · · · ∆(d)Xn−d 0

... · · · · · · · · · · · · · · · . .
. ...

0 ∆(d)X1 ∆(d)X2 · · · ∆(d)Xn−d 0 · · · 0



ΓΓ
′
=



D̂(0) D̂(1τ) · · · D̂((n− 1− d)τ)

D̂(−1τ) D̂(0) · · · D̂((n− 2− d)τ)

...
...

. . .
...

D̂((n− 1− d)τ D̂((n− 2− d)τ) · · · D̂(0)


(n−d)×(n−d)

By Proposition 3.1, D̂τ (−h) = D̂τ (h), the above matrix ΓΓ
′
is symmetric.

Therefore ∀n ∈ Z, ∀a1, a2, · · · , an−d ∈ R and hij = ti − tj = kijτ with kij ∈ R(h) =

{i : 0 ≤ i ≤ i+ |k| ≤ n− d}, we have

n−d∑
i=1

n−d∑
j=1

aiajD̂(hij)

=
(
a1 · · · an−d

)


D̂(0) D̂(1τ) · · · D̂((n− 1− d)τ)

D̂(−1τ) D̂(0) · · · D̂((n− 2− d)τ)

...
...

. . .
...

D̂((n− 1− d)τ D̂((n− 2− d)τ) · · · D̂(0)





a1

a2

...

an−d


= a

′
ΓΓ

′
a = (Γ

′
a)

′
(Γ

′
a) ≥ 0.
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III.1.4. Simulation Results for Estimations of Structure Function Dτ (h)

In this section, we explore the performance of the proposed MOM structure

function estimator via simulations. We assume the underlying process is with sta-

tionary increments of orders d = 0, 1 and 2, respectively. More explicitly, we consider

three di�erent underlying processes: the stationary process, the stationary process

with an added linear trend, and the stationary process with an added quadratic

trend. We follow the same setup as given in Sections 2.2 and 2.3, assuming the step

size τ = 1, and the Matérn covariance function with parameters ν = 3/2 and ` = 1

is given by by the following equation,

C(h) = (1 +
√

3|h|)e−
√

3|h|.

Under the above scenarios, we compute the corresponding theoretical Dτ (h)'s.

When d = 0, since µ = 0, we have the theoretical Dτ (h) given by

Dτ (h) = C(h).

When d = 1, with a linear trend with a = b = 1, we have

Dτ (h) = 2C(h)− C(h− 1)− C(h+ 1) + 1.

When d = 2, with a quadratic trend with a = b = c = 1, we have

Dτ (h) = 2C(h)− C(h− 1)− C(h+ 1) + 1.

Simulations are conducted with n = 100 and repeated for 1000 iterations,

respectively. The estimated D̂τ (h) values are calculated and are plotted (red points)

along with the theoretical values (blue points) for each value of d. For comparison,

the estimates of covariance and variogram functions along with the corresponding
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theoretical values are also plotted on the same scale. Figures III.1-III.3 show the

simulation results for each of the above scenarios.

Figure 11. Comparison of the Estimated and Theoretical Values for Dτ (h) under
Stationarity Together with Estimations of Covariance and Variogram Functions.

Figure 12. Comparison of the Estimated and Theoretical Values for Dτ (h) under
Stationarity with An Added Linear Trend, Together with Estimations of Covariance
and Variogram Functions.
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Figure 13. Comparison of the Estimated and Theoretical Values for Dτ (h) under Sta-
tionarity with An Added Quadratic Trend, Together with Estimations of Covariance
and Variogram Functions.

From the above plots, the MOM estimator of the structure function Dτ (h)

maintains its stability as the order of stationary increments increases, performing

comparably or better than the MOM covariance and variogram estimators under

both stationarity and stationarity with an added (linear or quadratic) trend.

III.2. Spectral Density Estimation Through Structure Function

When a random process is with stationary increments of order d, Zhang and

Huang (2014)[ZH14] proved an inversion formula that obtains the spectral density

function through the structure function Dτ (h). This o�ers a way to estimate the

spectral density from an easily estimated structure function.

In Section 3.2.1, we �rst outline the theoretical setup and apply it on three

processes that we have considered previously. We then discuss the aliasing e�ect

due to the discretized data observations. In Section 3.2.3, we propose our spectral

density estimator through the MOM structure function estimator and then discuss

its properties. Lastly, simulations are conducted to demonstrate the performance of
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our proposed estimator in recovering the true underlying spectral density function.

Some conclusions and discussions are given in Section 3.4.

III.2.1. Spectral Density Through the Structure Function Dτ (h)

Yaglom(1955)[Yag55] has shown that the structure function Dτ (h) has the

following spectral representation

Dτ (h) =

∫ π

−π
eiωh(1− eiτω)d(1− e−iτω)d

(1 + ω2)d

ω2d
f(ω)dω,

assuming that the spectral density f(ω) exists.

Zhang and Huang (2014)[ZH14] provided its inversion formula for the spectral

density function f(ω), for ω ∈ [ω1, ω2], under which (1− cos(ωτ))/ω2 has no zeros for

ω, the spectral density f(ω) is given as follows,

f(ω) = fτ (ω)q(τ, ω),

where fτ (ω) =

∫ ∞
−∞

e−iωhDτ (h)dh,

and q(τ, ω) =
1

2d(1− cos τω)d

(
ω2

1 + ω2

)d
. (III.1)

Note that by Zhang and Huang (2014)[ZH14], the spectral density f(ω) is

actually free of τ . This result o�ers a way to estimate a spectral density function

through an easily estimated structure function Dτ (h).

In particular, when d = 0, q(τ, ω) = 1; when d = 1, q(τ, ω) = ω2

2(1−cos τω)(1+ω2)
;

and when d = 2, q(τ, ω) = ω4

4(1−cos τω)2(1+ω2)2
. Note that when ω = 0, we will assign

q(τ, 0) = 1/τ 2d since lim
ω→0

q(τ, ω) = 1/τ 2d.
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In practice, to estimate the true spectral density of a continuous process based

on a discretized time series, as we mentioned in Chapter 2, there will exist the alising

e�ect due to the di�erence of considerations. In the next section, the aliasing e�ect

will be considered and discussed in detail.

III.2.2. Aliasing E�ect

Aliasing refers to the e�ect which is produced when a signal is sampled at

a frequency that is not high enough to be distinguished from another signal, and

therefore it is not possible to create an accurate spectral representation of it. With

the aliasing e�ect, the signal cannot be reconstructed from the original signal, and

then become indistinguishable (or aliases of one another). When a signal is banded

at a �xed frequency range, the power from other signals that is above the �xed band

range will be added to the original signal, and therefore be aliases with the other

signals. This frequency limit is called Nyquist frequency(Olshausen, 2000)[Ols00].

Cryer and Chan (2008)[CC08] provided a simple example to illustrate the

aliasing e�ect. Consider two cosine curves, one with frequency f = π/2 (solid, red)

and the one shown with blue dashed lines at frequency f = 3π/2.

Figure 14. Illustration of Aliasing E�ect.
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If we only observe the series at the discrete-time points 0, 1, 2, 3, · · · , then

two series are identical. With discrete-time observations, we can never distinguish

between these two curves. Then the power from the blue curve will be added to the

power of the red curve. We say that the two frequencies π/2 and 3π/2 are aliased

with one another.

To illustrate the statistical properties concerning aliasing e�ects, we follow

closely the development of Yaglom(1987)[Yag87].

We assume {X(t), t ∈ R} is a stationary random process with covariance

function C(h) and its corresponding spectral density function f(ω), both of which

are related via Fourier transformation (Yaglom, 1987)[Yag87]:

C(h) =

∫ ∞
−∞

eiωhf(ω)dω, h ∈ R,

f(ω) =
1

2π

∫ ∞
−∞

e−iωhC(h)dh, ω ∈ R. (III.2)

Let {X(tk), tk = kδ, k = 0,±1,±2, · · · }, or for short, {Xk, k = 0,±1,±2, · · · },

be the discretized sample (time series) of X(t) at the sampling locations tk = kδ, k =

0,±1,±2, · · · with equal-spacing δ > 0. Let Cδ(k) = C(kδ) be the covariance function

of the stationary time series {Xk, k = 0,±1,±2, · · · }, and fδ(ω), ω ∈ (−π/δ, π/δ] be

the corresponding spectral density.

Then Cδ(h) and fδ(ω) are related via Fourier transformation,

Cδ(h) =

∫ π/δ

−π/δ
eihδωfδ(ω)dω, h = k = 0,±1,±2, · · · , (III.3)

fδ(ω) =
1

2π

∞∑
k=−∞

Cδ(k)e−ikδω, ω ∈ (−π/δ, π/δ]. (III.4)
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In addition, fδ(ω) is related to the spectral density function f(ω) according to

the following formula from Yaglom(1987)[Yag87]:

fδ(ω) =
∞∑

k=−∞

f

(
ω +

2kπ

δ

)
, ω ∈ (−π/δ, π/δ]. (III.5)

Note that with the discrete sample observations from a stationary random

process, our goal is to estimate the spectral density function f(ω) over the frequency

interval ω ∈ (−π/δ, π/δ]. For a stationary time series, fδ(ω) can be estimated through

(smoothed) periodograms. However, as one can see from equation (III.5), the esti-

mated periodograms contain not only the true spectral density of the continuous

process, corresponding to the term k = 0 in equation (III.5), but also contains the

power coming from the frequencies that are di�ering by 2kπ/δ, k = ±1,±2, · · · . In

other words, when applied to stationary random processes, the components, which

can not be distinguished from the original signal with frequencies as an integer mul-

tiple of 2π/δ is the aliasing e�ect and the frequencies ω + 2πk/δ, k = ±1,±2, · · · ,

are the aliases of the frequency ω (Yaglom, 1987)[Yag87].

III.2.3. Spectral Density Estimation through D̂τ (h)

Now we consider the spectral density estimation through a seires of �nite

observations. Let {X(tk), tk = kδ, k = 0, 1, 2, · · · , (n−1)} be the observed data values

of the underlying process X(t) on equally spaced locations with step size δ > 0. We

propose the following spectral density estimator

f̂(ω) = f̂τ (ω)q(τ, ω), −π/δ < ω ≤ π/δ. (III.6)

Here f̂τ (ω) is estimated through the structure function estimator D̂τ (h) and

q(τ, ω) is given by (III.1). Note that D̂τ (h) is symmetric and positive de�nite (Section

3.2.1), therefore, we can obtain the spectral density estimator f̂τ (ω) through the
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inverse Fourier transformation of the structure function estimator D̂τ (h) (Brockwell

and Davis, 1991)[BD91], that is,

f̂τ (ω) =
1

2π

∑
|k|<n−d

D̂τ (k)e−ikτω, −π/τ < ω ≤ π/τ. (III.7)

Remark 1: As we can see from the above approach, the derivation of f̂τ (ω)

mimics the derivation of a periodogram in estimating the spectrum for stationary

processes. Therefore, all the asymptotic properties regarding the periodogram can

be carried over to f̂τ (ω), and to f̂(ω). For example, parallel to a result for the

periodogram, we have the following proposition.

Proposition 3.4. If X(t) is a random process with stationary increments of

order d, and assume that Dτ (·) is absolutely integrable, then

Ef̂(ω)→ f(ω), if ω 6= 0.

Moreover, for any ω0 > 0 and with ω0 < ω < π/δ, Ef̂(ω) converges uniformly

to f(ω).

Remark 2: For a stationary process, the periodogram is not a consistent

estimator of the spectral density function due to its bias at ω = 0. The same phe-

nomenon occurs for f̂τ (ω) and hence for f̂(ω). Therefore, smoothing methods used for

periodogram could be potentially applied to our proposed spectral density estimator.

This will be an area for future research.
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III.2.4. Aliasing E�ect for the Process with Stationary Increments

In this section, the aliasing e�ects for both a stationary process and a process

with stationary increments of order d are discussed in details.

Consider a random process {X(t)} with stationary increments of order d with

corresponding spectral density f(ω). According to Zhang and Huang (2014)[ZH14],

we have the following inversion fomula:

f(ω) = fτ (ω)q(τ, ω),

with

fτ (ω) =

∫ ∞
−∞

Dτ (h)e−iωhdh, q(τ, ω) =
1

2d(1− cos(τω))d

(
ω2

1 + ω2

)d
.

Note that Dτ (h) is symmetric and positive de�nite, hence, we can treat it as a

covariance function. Therefore, to estimate fτ (ω) from an equally spaced time series,

we need to consider the aliasing e�ect.

Now we consider a general formula for the aliasing e�ect when the continuous

process X(t) is with stationary increments of order d in R. Denote U(t) = ∆
(d)
τ X(t),

and so it is stationary in R. Let {X(tk), tk = kδ, k = 0,±1,±2, · · · } = {Xk, k =

0,±1,±2, · · · } be the observed discretized sample (time series) of X(t). We choose

the step size τ = lδ for some integer l > 0, and let {Uk, k = 0,±1,±2, · · · } be

the corresponding discretized sample (time series) of U(t) and Dτ (h), h = kδ, k =

0,±1,±2, · · · be the structure function based on {Uk}. Therefore, the spectral density

function based on time series {Uk} through the inverse Fourier transformation on

Dτ (·) is given by

f τδ (ω) =
1

2π

∞∑
k=−∞

Dτ (kδ)e
−ikδω, ω ∈ (−π/δ, π/δ].
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On the other hand, parallel to the approach for stationary process as seen by

(III.5), we have the f τδ (ω) also given as follows.

f τδ (ω) =
∞∑

k=−∞

fτ

(
ω +

2kπ

δ

)
, −π/δ < ω ≤ ω/δ

= fτ (ω) +
∞∑
k=1

[
fτ

(
ω +

2kπ

δ

)
+ fτ

(
ω − 2kπ

δ

)]
.

Hence, the spectral density function of the discretized time series {Xk} is given

by

fδ(ω) = f τδ (ω)q(τ, ω)

= fτ (ω)q(τ, ω) +
∞∑
k=1

[
fτ

(
ω +

2kπ

δ

)
+ fτ

(
ω − 2kπ

δ

)]
q(τ, ω)

= f(ω) +
∞∑
k=1

[
fτ

(
ω +

2kπ

δ

)
+ fτ

(
ω − 2kπ

δ

)]
q(τ, ω)

= f(ω) + fa(ω), (III.8)

where

fa(ω) =
∞∑
k=1

[
fτ

(
ω +

2kπ

δ

)
q(τ, ω + 2kπ/δ) · q(τ, ω)

q(τ, ω + 2kπ/δ)

+fτ

(
ω − 2kπ

δ

)
q(τ, ω − 2kπ/δ) · q(τ, ω)

q(τ, ω + 2kπ/δ)

]
=

∞∑
k=1

[
f

(
ω +

2kπ

δ

)
q(τ, ω)

q(τ, ω + 2kπ/δ)
+ f

(
ω − 2kπ

δ

)
q(τ, ω)

q(τ, ω − 2kπ/δ)

]
Now we consider

q(τ, ω)

q(τ, ω ± 2kπ/δ)
=

2d(1− cos(τ(ω ± 2kπ/δ)))dω2d(1 + (ω ± 2kπ/δ)2)d

2d(1− cos(τω))d(1 + ω2)d(ω ± 2kπ/δ)2d
.
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Since we normally choose τ as a multiplier of the δ, that is, τ = lδ for an

integer l > 0,

1− cos(τ(ω ± 2kπ/δ)) = 1− cos(τω ± 2kπl) = 1− cos(τω).

Hence

q(τ, ω)

q(τ, ω ± 2kπ/δ)
=

ω2d(1 + (ω ± 2kπ/δ)2)d

(1 + ω2)d(ω ± 2kπ/δ)2d
=

(
ω2

1 + ω2

)d
· (1 + (ω ± 2kπ/δ)2)d

(ω ± 2kπ/δ)2d
,

implying

fa(ω) =
∞∑
k=1

[
f

(
ω +

2kπ

δ

)
(1 + (ω + 2kπ/δ)2)d

(ω + 2kπ/δ)2d

+f

(
ω − 2kπ

δ

)
(1 + (ω − 2kπ/δ)2)d

(ω − 2kπ/δ)2d

]
ω2d

(1 + ω2)d
.

III.2.5. Simulations for Spectral Density Estimation with Structure Function

In this section, we conduct simulations to investigate the performance of

our proposed spectral density estimator given in Section 3.2.3. We will assume

the underlying process to be one of the following three cases: a stationary process

{X(t)} (d = 0), a stationary process with an added linear trend {Y (t) : Y (t) =

X(t) + a + bt, a, b ∈ R} (d = 1), and a stationary process with an added quadratic

trend {Z(t) : Z(t) = X(t) + a+ bt+ ct2, a, b, c ∈ R} (d = 2), respectively.

First, we indicate that the above three processes X(t), Y (t), and Z(t) have the

same covariance structure. In fact, generally, we have the following proposition. The

proof of the result is straightforward, and so is skipped.
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Proposition 3.5: Let U(t) = X(t) + p(t), t ∈ R where p(t) is a deterministic

polynomial of t up to a certain degree. Then Cov[U(t), U(t+h)] = Cov[X(t), X(t+h)],

that is, U(t) and X(t) have the same covariance structure.

Throughout simulations, we use the Matérn covariance model for the station-

ary process X(t) due to its �exibility and generality. Moreover, without loss of gener-

ality, we assume E(X(t)) = 0. According to Rasmussen and Williams (2006)[RW06],

for the given Matérn class of covariance function of the form

Cmatern(r) =
21−ν

Γ(ν)

(√2νr

`

)ν
Kν

(√2νr

`

)
, r, ν, ` > 0,

the corresponding spectral density in D-dimension of a continuous process is given by

f(ω) =
2D πD/2 Γ(ν + D

2
) (2ν)ν

Γ(ν) `2ν

(2ν

`2
+ 4π2ω2

)−(ν+D
2

)

.

For simulation, we set ν = 3/2 and ` = 1, so that the stationary covariance

function is given by

C(h) = (1 +
√

3|h|) e−
√

3|h|, h ∈ R,

and its corresponding theoretical spectral density function is given by

fX(ω) =
2

π
· 3

3
2

(3 + ω2)2
, ω ∈ R.

Then we have the following two propositions for deriving the spectral density

for the processes {Y (t)} and {Z(t)}.
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Proposition 3.6. Let Y (t) = X(t) + a + bt, where X(t) is a stationary pro-

cess with covariance function CX(h) and the corresponding spectral density function

fX(ω). Obviously, Y (t) is a random process with stationary increments of order 1

with spectral density fY (ω). Then

fY (ω) = fX(ω) ·
(

ω2

1 + ω2

)
.

PROOF: We want to derive the spectral density function for Y (t), which is a random

process with stationary increments of order 1. Therefore, its spectral density is given

by (Zhang and Huang, 2014[ZH14]):

fY (ω) = fτ (ω) · q(τ, ω),

where

fτ (ω) =

∫ ∞
−∞

Dτ (h)e−ihωdh, q(τ, ω) =
1

2(1− cos τω)

(
ω2

1 + ω2

)
.

Now we notice that Dτ (h) = 2CX(h)−CX(h− τ)−CX(h+ τ) + (bτ)2. Then we have

fτ (ω)

=

∫ ∞
−∞

Dτ (h)e−ihωdh =

∫ ∞
−∞

(2CX(h)− CX(h− τ)− CX(h+ τ) + (bτ)2)e−ihωdh

= 2

∫ ∞
−∞

CX(h)e−ihωdh−
∫ ∞
−∞

CX(h− τ)e−ihωdh−
∫ ∞
−∞

CX(h+ τ)e−ihωdh

= 2fX(ω)−
∫ ∞
−∞

CX(u)e−i(u+τ)ωdu−
∫ ∞
−∞

CX(u)e−i(u−τ)ωdu

= 2fX(ω)− e−iτωfX(ω)− eiτωfX(ω) = (2− e−iτω − eiτω)fX(ω)

= 2(1− cos(τω))fX(ω).

fY (ω) = 2(1− cos(τω))fX(ω) · 1

2(1− cos τω)

(
ω2

1 + ω2

)
= fX(ω) ·

(
ω2

1 + ω2

)
.
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Proposition 3.7. Let Z(t) = X(t) + a+ bt+ ct2, where X(t) is a stationary

process with covariance function CX(h) and the corresponding spectral density func-

tion fX(ω). Obviously, Z(t) is a random process with stationary increments of order

2 with spectral density fZ(ω). Then

fZ(ω) = fX(ω) ·
(

ω2

1 + ω2

)2

.

The proof of this proposition is straightforward, similar to the one for Propo-

sition 3.6, which is skipped here.

Now we consider the analysis on aliasing e�ect from Section 3.2.4 under three

scenarios. Recall that the spectral density function based on the discretized time

series is given by

fδ(ω) = f(ω) + fa(ω), ω ∈ (−π/δ, π/δ]. (III.9)

Here the theoretical spectral densities f(ω) are fX(ω) (for d = 0), fY (ω) (for

d = 1), and fZ(ω) (for d = 2), respectively. Next we provide the aliasing e�ect in

detail on the above scenarios.

First, if d = 0, that is, X(t) itself is stationary. (III.8) reduces to (III.5) and

the spectral density function of X(t) is given by

fδ(ω) =
∞∑

k=−∞

fX

(
ω +

2kπ

δ

)
, ω ∈ (−π/δ, π/δ]

= fX(ω) +
∞∑
k=1

[
fX

(
ω +

2kπ

δ

)
+ fX

(
ω − 2kπ

δ

)]
,

where

fa(ω) =
∞∑
k=1

[
fX

(
ω +

2kπ

δ

)
+ fX

(
ω − 2kπ

δ

)]
.
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Next if Y (t) = X(t) + a + bt, where X(t) is stationary with spectral density

function fX(ω), and so the spectral density function of Y (t) is given by

fY (ω) = fX(ω)

(
ω2

1 + ω2

)
.

Therefore,

f(ω ± 2kπ/δ) = fY (ω ± 2kπ/δ) = fX(ω ± 2kπ/δ)

(
(ω ± 2kπ/δ)2

1 + (ω ± 2kπ/δ)2

)
.

Hence, we have,

fa(ω) =
∞∑
k=1

(fX(ω + 2kπ/δ) + fX(ω − 2kπ/δ))

(
ω2

1 + ω2

)
,

and

fδ(ω) = fY (ω) +
∞∑
k=1

(fX(ω + 2kπ/δ) + fX(ω − 2kπ/δ))

(
ω2

1 + ω2

)

=
∞∑

k=−∞

fX(ω + 2kπ/δ)

(
ω2

1 + ω2

)
. (III.10)

Finally, if Z(t) = X(t) + a + bt + ct2 is considered, which is a the stationary

process with an added quadratic trend (therefore, it is the process with stationary

increments of order 2), we have

fδ(ω) = fZ(ω) + fa(ω), −π/δ < ω ≤ π/δ,

with the aliasing e�ect component given by

fa(ω) =
∞∑
k=1

(fX(ω + 2kπ/δ) + fX(ω − 2kπ/δ))

(
ω2

1 + ω2

)2

.
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Simulations are conducted with sample size n = 100 and repeated for 1000

iterations. The estimated spectral density f̂δ(·) (red points) through the estimated

structure function D̂τ (h) are plotted together with the theoretical spectral density

f(ω) (green curve) for the corresponding continuous processes. Throughout this dis-

sertation, due to the symmetry of the spectral density at ω = 0, we only compare the

spectral density functions for ω > 0. Figures III.5-III.10 are the simmulation results

for the processes {X(t)}, {Y (t)} and {Z(t)}, respectively.

Figure 15. Comparison of the Estimated and Theoretical Spectral Density Values
under Stationarity

57



Figure 16. Comparison of the Estimated and Theoretical Spectral Density Values
under Stationarity, After Removing the Aliasing E�ect.

Figure 17. Comparison of the Estimated and Theoretical Spectral Density under
Stationarity with an Added Linear Trend.

58



Figure 18. Comparison of the Estimated and Theoretical Spectral Density Values
under Stationarity with an Added Linear Trend, After Removing the Aliasing E�ect.

Figure 19. Comparison of the Estimated and Theoretical Spectral Density Values
under Stationarity with an Added Quadratic Trend.
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Figure 20. Comparison of the Estimated and Theoretical Spectral Density Values
under Stationarity with an Added Quadratic Trend, After Removing the Aliasing
E�ect.

The above graphs show that under all these three cases, there is a shift (es-

pecially the tail of the curve) between the estimated f̂δ(ω) and theoretical spectral

densities f(ω) for ω ∈ (−π, π], especially on the high frequencies, which is due to

the aliasing e�ect. After removing the aliasing e�ect, the estimated spectral densities

fδ(ω) match very well with the theoretical spectral densities for the continuous pro-

cesses {X(t)}, {Y (t)} and {Z(t)}, respectively. Therefore, the proposed estimator

for the spectral density through the estimation of structure function performs well

for all these three processes.

Remark: The results in this dissertation are based on the simulations with

sample size n = 100. We also conducted simulations with exponential model when

the sample size n = 20, the results are similar. However, when n = 20 with Matérn

model ν = 3/2 and ` = 1, the simulation results are not as good as what we expected.

The minimum requirement of the sample size needs further investigation.
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III.3. Spectral Density Estimation Through Structure Function for Band-

Limited Continuous Processes

It would be ideal, of course, if all the frequencies outside the band −π/δ < ω ≤

π/δ made no contribution at all to the process X(t), so that the aliasing e�ect would

be eliminated and the spectral density can be estimated as accurately as possible. One

of the best known methods for anti-aliasing is to apply the Nyquist Theorem which is

also related to the Nyquist interval or Nyquist frequency, and correspondingly a more

practical alternative is to limit the bandwidth of the signal processes (Olshausen,

2000)[Ols00].

A band-limited process is a random process whose power-spectral density oc-

cupies a �nite bandwidth. In other words, a band-limited process is a process with

the spectral density within the band range, and zero otherwise. In real life situations,

almost all of the processes in nature are band-limited because for most of the physical

systems, there always exists a bandwidth limit.

Therefore, the case of the so-called band-limited random process X(t) is of

special interest from the point of view of using the discrete sample. In this section,

we �rst assume the underlying process Y (t) to be the random process with stationary

increments of order 1, in particular, we assume Y (t) = X(t) + a + bt, where a and b

are constants, X(t) is stationary, and it (and so Y (t)) has the band-limited spectral

density function f(ω) with support ω ∈ (−π, π]. We then discuss how the sampling

frequencies a�ect the estimates of the true spectral density. Finally we conduct sim-

ulations to demonstrate how our proposed spectral density estimator performs under

various of sampling frequencies.
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III.3.1. Sampling Frequencies and Aliasing E�ect

In this section, the aliasing e�ect for the stationary process with an added

linear trend is discussed with di�erent step sizes at δ = 1, δ = 1/2, and δ = 2.

Here we consider that the spectral density function for the continuous stationary

process {X(t)}, noted as fX(ω) is band-limited with support −π < ω ≤ π. Then

by Proposition 3.6, the spectral density function for the stationary process with an

added linear trend {Y (t) = X(t) + a+ bt, a, b ∈ R}, noted as fY (ω), is given by

fY (ω) = fX(ω)

(
ω2

1 + ω2

)
, −π < ω ≤ π.

Let C(h) be the covariance function for X(t) (and so for Y (t)), then through the

inverse Fourier transform, we have

C(h) =

∫ ∞
−∞

fX(ω)eiωhdω =

∫ π

−π
fX(ω)eiωhdh.

Now observations of a continuous process of stationary increments of order 1

({Y (t)}) is carried out only at uniformly spaced time points δ units apart, denoted

as {Y (tk) = Yk : tk = kδ, k = 0,±1,±2, · · · .}.

Then refer to (III.10), with any δ > 0, the spectral density function for the

discretized sample of the process {Y (t)} is given as

fδ(ω) = fY (ω) +
∞∑
k=1

(fX(ω + 2kπ/δ) + fX(ω − 2kπ/δ))

(
ω2

1 + ω2

)

=
∞∑

k=−∞

fX(ω + 2kπ/δ)

(
ω2

1 + ω2

)
,

where the corresponding aliasing e�ect is given by

fa(ω) =
∞∑
k=1

(fX(ω + 2kπ/δ) + fX(ω − 2kπ/δ))

(
ω2

1 + ω2

)
.
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In particular, if the step size is δ = 1, the spectrum of observations {Yk : k =

0,±1,±2, · · · } is concentrated within −π/δ < ω ≤ π/δ ⇒ ω ∈ (−π, π], which is

exactly the same with the bandwidth. Therefore, there will not be any aliasing e�ect

existed for this case. Then the estimated spectral density fδ(ω) should be able to

recover the true spectral density of the continuous process {Y (t)}, that is

fδ(ω) =

{
fY (ω), −π < ω ≤ π

0, otherwise.

If the step size δ = 1/2, the spectrum of observations {Yk : k = 0,±1,±2, · · · }

is concentrated within −π/δ < ω ≤ π/δ ⇒ ω ∈ (−2π, 2π], which is larger than the

bandwidth (−π, π]. Then there will still not be any aliasing e�ect existed for this

case.

Therefore, the estimated spectral density fδ(ω) can recover the true spectral

density of the continuous process {Y (t)}, that is

fδ(ω) =

{
fY (ω) −2π < ω ≤ 2π

0 otherwise.

=

{
fY (ω) −π < ω ≤ π, since the support of fY (ω) is on (−π, π)

0 otherwise.

If the step size δ = 2, the spectrum of observations {Yk : k = 0,±1,±2, · · · }

is concentrated within −π/δ < ω ≤ π/δ ⇒ ω ∈ (−π/2, π/2], which is smaller than

the bandwidth (−π, π].
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Then refer to (III.10), when ω ∈ [0, π/2], fX(ω − π)
(

ω2

1+ω2

)
will be added to

the true spectral density of {Y (t)}, and when ω ∈ (−π/2, 0), fX(ω + π)
(

ω2

1+ω2

)
will

be added to the true spectral density of {Y (t)}, both leading to the aliasing e�ect.

More explicity,

fδ(ω) =


fY (ω) + fX(ω − π)

(
ω2

1+ω2

)
, ω ∈ [0, π/2]

fY (ω) + fX(ω + π)
(

ω2

1+ω2

)
, ω ∈ (−π/2, 0)

0 otherwise.

Therefore, we can only estimate fY (ω) in the frequency range (−π/2, π/2], and the

estimated f̂Y (ω) is "contaminated" with either fX(ω − π)
(

ω2

1+ω2

)
when ω ∈ [0, π/2]

or fX(ω + π)
(

ω2

1+ω2

)
when ω ∈ (−π/2, 0).

In summary, from the above three cases, we need to choose δ ≤ 1 to avoid the

aliasing e�ect when a band-limited spectral function of a continuous process has the

support of (−π, π]. In general, given a band-limited spectral function supported on

(−ωc, ωc], we need to choose a proper sample rate in order to avoid the aliasing e�ect.

This is related to the well-known Nyquist theorem, which indicates that a band-

limited continuous-time signal can be sampled and perfectly reconstructed from its

samples if the sampling frequency is at least twice of the highest frequency of the

band, and this theorem provided us a detailed instruction for the proper sampling

frequency.
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III.3.2. Simulation Results

Here we investigate our proposed spectral estimator under various sampling

frequencies through simulations. We assume that the underlying process X(t) is

stationary with band-limited Matérn covariance function with ν = 3/2 and ` = 1,

supported on (−π, π]. More speci�cally, we assume

fX(ω) =


2
π
· 3

3
2

(3+ω2)2
, −π < ω ≤ π

0, otherwise.

By the inverse Fourier transform, the covariance function of X(t) is given by

CX(h) =

∫ ∞
−∞

fX(ω)eiωhdω =

∫ π

−π
fX(ω)eiωh dω

=
2

π
· 3

3
2

∫ π

−π

1

(3 + ω2)2
(coshω + i sinhω) dω

=
4

π
· 3

3
2

∫ π

0

cos(hω)

(3 + ω2)2
dω

No closed form is available to integrate the above integral. We pursue a nu-

merical approximation on CX(h) to be used in our simulations.

We now consider Y (t) = X(t)+1+ t, which is now the process with stationary

increments of order 1. The data generation for simulations follows exactly the same

as what was proposed in Section 3.3, except that the covariance values to generate

the data are given through numerical approximation given above.
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For δ = 1 and δ = 1/2, as shown previously in Section 3.3.1, we have the

proposition that the estimated spectral densities fδ(ω) under both cases can recover

the true spectral density fY (ω), for ω ∈ (−π, π].

fδ(ω) =


fY (ω), −π < ω ≤ π

0, otherwise.
=


2
π

3
3
2

(3+ω2)2

(
ω2

1+ω2

)
, −π < ω ≤ π

0, otherwise.

Simulations are conducted with sample size n = 100 and repeated for 1000

iterations. Figure III.11 and Figure III.12 are the simulation results for δ = 1 and

δ = 1/2, respectively.

Figure 21. The Estimated and Theoretical Values of a Band-limited Spectral Density
for Stationary Process with an Added Linear Trend, with δ = 1.

Figure III.11 and Figure III.12 demonstrated the conclusions as what we ex-

pected from our propositions. That is, when δ = 1 and δ = 1/2, the aliasing e�ect

will be eliminated when estimating the spectral density through the structure function

Dτ (h).
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Figure 22. The Estimated and Theoretical Values of a Band-limited Spectral Density
for Stationary Process with an Added Linear Trend, with δ = 1/2.

The following graphs are the simulation results for δ = 2.

Figure 23. The Estimated and Theoretical Values of a Band-limited Spectral Density
for Stationary Process with an Added Linear Trend, with δ = 2.
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Figure 24. The Estimated and Theoretical Values of a Band-limited Spectral Density
for Stationary Process with an Added Linear Trend, with δ = 2, After Removing the
Aliasing E�ect.

The above graphs indicate that when δ = 2, the aliasing e�ect exists. After

removing the aliasing e�ect, as we expected, the estimated spectral density matches

well with the true theoretical spectral density.

Similar simulations are also conducted for a stationary process with added

quadratic trend. The same conclusion can also be made regarding the performance

of our proposed spectral density estimator.

III.4. Conclusions and Discussions

In this chapter, we propose a non-parametric spectral density estimation method

for estimating the underlying spectral density when the random process is with sta-

tionary increments. The method is based on the inversion formula such that the

spectral density can be represented by a non-negative de�nite structure function. We

perform simulation studies to estimate the spectral density function when the under-

lying process is the stationary process with added either a linear trend or quadratic

trend. It is noted that when observations are sampled over a continuous process on

R, the aliasing e�ect needs to be considered. Our results show the estimated spectral
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density matches well with the theoretical counterpart, after removing any potential

aliasing e�ect. Our proposed method will be further discussed in Chapter 4 when the

underlying process is an intrinsically stationary process as well as applied for data

analysis in Chapter 5.
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CHAPTER IV

SPECTRAL DENSITY FUNCTIONS AND ESTIMATION FOR POPULARLY

USED VARIOGRAMS

In Chapter 2, when a process is stationary, estimation of the spectral density

could be obtained by periodograms from the covariance function through the inverse

of Fourier transformation. In parallel, when a process is intrinsically stationary, one

can also obtain the spectral density through the variogram function. However, there

are limited results for estimating the spectral density through a variogram estimator

in the literature, which is possibly due to the di�culty in verifying/guaranteeing the

conditionally nonnegative positiveness of a variogram estimator. In this chapter, we

�rst show that intrinsic stationarity implies the stationarity increments of order 1. In

Section 4.2, we derive the spectral densities for some commonly used variogram models

through the structure function Dτ (h). Lastly in Section 4.3, we apply the spectral

density estimation method in Chapter 3 to the intrinsically stationary process with

power variogram models.

Before we compute the spectral densities through the structure function, we

will �rst prove the following proposition. The proposition provides the basis for our

estimation method through the rest of this chapter.
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Proposition 4.1: Intrinsically Stationary Process⇒ Process with stationary

increments of order 1.

PROOF: Assume that {X(t)} is an intrinsically stationary process, then by

de�nition, V ar[X(t+ τ)−X(t)] = 2γ(τ), a function depending only on the displace-

ment τ . In addition, we have that E(X(t)) = µ, a constant, implying E(∆τX(t)) = 0.

Now with the following identity,

(a− b)(c− d) =
1

2
((a− d)2 + (c− b)2 − (a− c)2 − (b− d)2),

we have,

Cov(∆τX(t+ h),∆τX(t))

= E[(X(t+ h+ τ)−X(t+ h)][(X(t+ τ)−X(t)]

=
1

2

[
E(X(t+ h+ τ)−X(t))2 + E(X(t+ h)−X(t+ τ))2

−E(X(t+ h+ τ)−X(t+ τ))2 − E(X(t+ h)−X(t))2
]

=
1

2

[
2γ(h+ τ) + 2γ(h− τ)− 2γ(h)− 2γ(h)

]
= γ(h+ τ) + γ(h− τ)− 2γ(h),

which is a function of τ and h, denoted as Dτ (h). Hence ∆τX(t) is a process with

stationary increment of order 1, concluding the proof of this proposition.

Remark: From the above proof, we note the following relationship between

Dτ (h) and γ(τ), which will be extensively used later:

Dτ (0) = 2γ(τ), and Dτ (h) = γ(h+ τ) + γ(h− τ)− 2γ(h).
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IV.1. Spectral Densities for Commonly Used Variogram Functions

In this section, we �rst introduce the procedure based on the inversion formula

given in Zhang and Huang (2014)[ZH14] to calculate the spectral density for a given

variogram function. Then we apply the procedure to derive the spectral density func-

tions for commonly used variogram models, including exponential, power, spherical,

hole-e�ect etc. Finally we give some discussion to generate the results.

According to Zhang and Huang (2014)[ZH14], the spectral density for a given

variogram function γ(u) is given by

f(ω) =
1

2π

(
lim
T→∞

∫ T

−T
(γ(u+ τ) + γ(u− τ)

−2γ(u)) cos(uω)du
) 1

2(1− cos(τ(ω))

(
ω2

1 + ω2

)
=

1

2π

(∫ ∞
0

(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du

)
1

1− cos(τω)

(
ω2

1 + ω2

)
,

since γ(u) = γ(−u) is symmetric at u = 0.

Note that the above calculation involves the following two steps.

1. Show that

lim
T→∞

∫ T

−T
(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du,

or in particular ∫ ∞
0

(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du

exists for each given variogram function.

2. Note that the spectral density function f(ω) does not depend on τ . Hence, we

will take τ → 0 to derive the spectral density function.
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Now we derive the spectral density function for each of commonly used vari-

ogram functions.

IV.1.1. Spherical Variogram

The spherical variogram is given by, for h ≥ 0, cs, as > 0.

γ(h) =


cs

(
3
2

(
h
as

)
− 1

2

(
h
as

)3
)
, 0 < h < as

cs, h ≥ as,

Proposition 4.2. The spectral density function for the above spherical vari-

ogram is given by

f(ω) =
3cs

2πω2a3
s

(
(ωas − sin(ωas))

2 + (1− cos(ωas))
2
)
·
(

1

1 + ω2

)
.

PROOF: We go through the above two steps. Note that

γ(u+ τ) + γ(u− τ)− 2γ(u)

=


cs

(
3
as

(τ − u)− 1
a3s

(τ 3 − u3 + 3u2τ)
)
, 0 < u < τ,

cs

(
− 1
a3s

(3uτ 2)
)
, u ≥ τ,

0, u ≥ as.

Obviously,
∫∞

0
(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du exists, and it is given by∫ ∞

0

(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du

= cs

∫ τ

0

(
3

as
(τ − u)− 1

a3
s

(
τ 3 − u3 + 3u2τ

))
cos(uω)du

−cs
∫ as

τ

1

a3
s

(
3uτ 2

)
cos(uω)du

= cs

(
3

as

1− cos(ωτ)

ω2
− 1

a3
s

(
3 (ω2τ 2 + 2) (ωτ sin(ωτ)− 1) + 6 cos(ωτ)

ω4

))
−cs

(
1

a3
s

3τ 2 (ωas sin (ωas) + cos (ωas)− ωτ sin(ωτ)− cos(ωτ))

ω2

)
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Since f(ω) does not depend on τ , after the above term is divided by (1 −

cos(ωτ)), we let τ → 0 to have

f(ω) =
cs
2π

(
3

as

1

ω2
− II

a3
s

− III

a3
s

)(
ω2

1 + ω2

)
,

II = lim
τ→0

(
3 (ω2τ 2 + 2) (ωτ sin(ωτ)− 1) + 6 cos(ωτ)

ω4

)
1

1− cos(ωτ)

= lim
τ→0

(
3ω2τ 2(ωτ sin(ωτ)− 1)

ω4(1− cos(ωτ))
+

6ωτ sin(ωτ)

ω4(1− cos(ωτ))
− 6(1− cos(ωτ))

ω4(1− cos(ωτ))

)
= − 6

ω4
+

12

ω4
− 6

ω4
= 0.

III = lim
τ→0

3τ 2 (ωas sin (ωas) + cos (ωas)− ωτ sin(ωτ)− cos(ωτ))

ω2

1

1− cos(ωτ)

=
6 (ωas sin (ωas) + cos (ωas)− 1)

ω4
.

Hence, the spectral density function for spherical variogram is given by

f(ω) =
3cs

2πω4a3
s

(
ω2a2

s − 2ωas sin(ωas)− 2 cos(ωas) + 2
)( ω2

1 + ω2

)
=

3cs
2πω4a3

s

(
ω2a2

s − 2ωas sin(ωas)− 2 cos(ωas)

+1 + cos2(ωas) + sin2(ωas)
)( ω2

1 + ω2

)
=

3cs
2πω2a3

s

(
(ωas − sin(ωas))

2 + (1− cos(ωas))
2
)( 1

1 + ω2

)
.
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IV.1.2. Rational Quadratic Variogram:

The rational quadratic variogram is given by

γ(h) = cr
h2

1 + h2/ar
, h 6= 0, cr, ar > 0

Proposition 4.3. The spectral density function for the above rational quadratic

variogram is given by

f(ω) =
cra

3/2
r

2
e−
√
arω

(
ω2

1 + ω2

)
.

The proof is straightforward but tedious, which is given in the Appendix.

IV.1.3. Exponential Variogram

The Exponential variogram is given by

γ(h) =

{
0, h = 0

ce (1− exp(−h/ae)) , h 6= 0,

with ce, ae > 0. Then we have

Proposition 4.4. The spectral density function for the above exponential

variogram function is given by

f(ω) =
aece
π

1

1 + a2
eω

2

(
ω2

1 + ω2

)
.

Again, the proof of the above proposition is straightforward but tedious. We

leave it in the Appendix.
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IV.1.4. Discussions

The above calculations (as well as the calculation of the spectral density for

the power variogram 2γ(h) = |h|α, 0 < α < 2 in Zhang and Huang (2014)[ZH14]) lead

us to consider a more general result regarding the derivation of the spectral density

function.

First, it has been noted, for example Yaglom (1987)[Yag87], that if 2γ(h) is

the variogram of an intrinsically stationary process,

lim
h→∞

2γ(h)

|h|2
= 0.

That is, the variogram function γ(h) = o(|h|2).

Now we consider the following two cases, where γ(h) = O(|h|α), for 0 ≤ α < 1

and 1 < α < 2. Here is the result we propose for future research.

Remark. Under further assumptions on γ(h), we have

Let γ(h) = O(|h|α), for 1 < α < 2. If we assume that γ(τ) has continuous

second derivative for τ > 0, and

0 ≤
∫ ∞

0

cos(uω)γ′′(u)du <∞.

Then the spectral density f(ω) is given by the following equation,

f(ω) =
1

π(1 + ω2)

∫ ∞
0

cos(uω)γ′′(u)du, ω > 0.
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Let γ(h) = O(|h|α), for 0 < α < 1. If we assume that γ(τ) has continuous

�rst derivative for τ > 0, and

0 ≤
∫ ∞

0

sin(uω)γ′(u)du <∞.

Then the spectral density f(ω) is given by the following equation,

f(ω) =
ω

π(1 + ω)

∫ ∞
0

sin(uω)γ′(u)du, ω > 0.

Now we derive Propositions 4.2 - 4.4 by applying the above conjectures.

Power variogram. The power variogram is given by 2γ(h) = hα, h > 0 and

0 < α < 2. First, for 1 < α < 2, since

γ”(h) =
α(α− 1)

2
hα−2

and ∫ ∞
0

γ”(u) cos(uω)du =
α(α− 1)

2

∫ ∞
0

cos(uω)

u2−α du

=
α(α− 1)

2

Γ(α− 1)

ωα−1
cos((α− 1)π/2)

=
Γ(α + 1)

2

sin(απ/2)

ωα−1
> 0,

and due to the following formula provided by Gradshteyn and Ryzhik (2007)[GR14],∫ ∞
0

cos(ax)

x1−µ dx =
Γ(µ)

aµ
cos(µπ/2), 0 < µ < 1.

77



Hence, for the power model with 1 < α < 2, (we choose µ = α−1 in the above

identity)

f(ω) =
1

π(1 + ω2)

Γ(α + 1)

2

sin(απ/2)

ωα−1
=

Γ(α + 1)

2π(1 + ω2)

sin(απ/2)

ωα−1
.

When 0 < α < 1, we have γ′(h) = α
2
hα−1, and∫ ∞

0

γ′(u) sin(uω)du =
α

2

∫ ∞
0

sin(uω)

u1−α du

=
α

2

Γ(α)

ωα
sin(απ/2) =

Γ(α + 1)

2

sin(απ/2)

ωα
> 0,

Therefore, based on the following ((3.761.4) formula provided by Gradshteyn

and Ryzhik (2007)[GR07]), we have∫ ∞
0

sin(ax)

x1−µ dx =
Γ(µ)

aµ
sin(µπ/2), 0 < µ < 1.

Hence, when 0 < α < 1, (we choose µ = α)

f(ω) =
ω

π(1 + ω2)

Γ(α + 1)

2

sin(απ/2)

ωα
=

Γ(α + 1)

2π(1 + ω2)

sin(απ/2)

ωα−1
.

In summary, when 0 < α < 2, α 6= 1,

f(ω) =
Γ(α + 1)

2π(1 + ω2)

sin(απ/2)

ωα−1
.

This matches with what has been given in Zhang and Huang (2014).

Remark: When α = 1, the conjecture seems not working. We need to cal-

culate it directly through the structure function Dτ (h) = (τ − |u|)I|u|<τ as given in

Zhang and Huang (2014).
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Spherical variogram. We note that γ(h) = o(|h|α) with 0 < α < 1. We

apply the second part of the proposition. We have γ′(h) = cs

(
3
2

(
1
as

)
− 3

2

(
h2

a3s

))
.

Moreover,∫ ∞
0

sin(uω)γ′(u)du =
3cs
2a3

s

∫ as

0

sin(uω)
(
a2
s − u2

)
du

=
3cs
2a3

s

(
2 + a2

sω
2 − 2 cos(asω) + 2asω sin(asω)

ω3

)
=

3cs
2a3

s

(
(1− cos(asω))2 + (asω − sin(asω))2

ω3

)
.

The spectral density is then given by

f(ω) =
3cs

2πa3
s

(
(1− cos(asω))2 + (asω − sin(asω))2

ω2

)(
1

1 + ω2

)
.

Rational quadratic variogram. Note that γ(h) = o(|h|α) with 0 < α < 1.

We apply the second part of the proposition. For this variogram function,

γ′(h) =
2ha2

rcr
(ar + h2)2

, h > 0,

∫ ∞
0

sin(uω)γ′(u)du = 2a2
rcr

∫ ∞
0

sin(uω)
udu

(ar + u2)2
= 2a2

rcr
ωπe−

√
arω

4
√
ar

.

Hence, the spectral density is given by

f(ω) =
ω

π(1 + ω2)

∫ ∞
0

sin(uω)γ′(u)du

=
ω

π(1 + ω2)
2a2

rcr
ωπe−

√
arω

4
√
ar

=
a

3/2
r cr
2

e−
√
arω

(
ω2

1 + ω2

)
.
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Exponential variogram. Again, we also note that γ(h) = o(|h|α) with

0 < α < 1. We apply the second part of the proposition. Note that

γ′(h) =
ce
ae

exp(−h/ae), h > 0,

and ∫ ∞
0

sin(uω)γ′(u)du =
ce
ae

∫ ∞
0

sin(uω) exp(−u/ae)du =
ce
ae

ω

(1/ae)2 + ω2
,

Therefore, the spectral density is given by

f(ω) =
ω

π(1 + ω2)

∫ ∞
0

sin(uω)γ′(u)du =
ceae

π(1 + a2
eω

2)

(
ω2

1 + ω2

)
.

Note that all the results above match well what we have actually calculated.

IV.2. Spectral Density Estimation for Power Variograms

We now bring our attention to the special density estimation for the intrin-

sically stationary process, which is the random process with stationary increments

of order 1. Among those commonly used variograms introduced in Section 4.2, the

power variogram, which is given by 2γ(h) = |h|α, 0 < α < 2, is an unbounded

function of the displacement. In addition, there does not exist a corresponding

stationary covariance function C(h). In fact, its covariance function is given by

Cov(X(s), X(t)) = (|s|α+ |t|α−|s− t|α)/2, where X(t) is the underlying intrinsically

stationary process. Power variograms have been widely studied and commonly used

in practice, for example, see Yaglom (1987)[Yag87], Cressie (1993)[Cre93], Huang

et al. (2011b)[HHC11]) etc. among others. In this section, we will investigate the

proposed spectral density estimation in Chapter 3 under the intrinsically stationary

process with power variogram models.
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LetX(t) be an intrinsically random process with constant mean µ and modeled

by the power variogram function. It is well known that the power variogram has the

following spectral function (Yaglom (1987)[Yag87] and Schoenberg (1938)[Sch38]).

f(ω) =
Γ(α + 1)

2πω2

( sin(απ/2)

|ω|α−1

)
, ω ∈ R.

The above result was also derived by Zhang and Huang (2014)[ZH14] through the

structure functions, giving the following spectral density function.

f(ω) =
Γ(α + 1)

2π(1 + ω2)

( sin(απ/2)

|ω|α−1

)
, ω ∈ R.

In this section, we will perform our simulations based on the theoretical spec-

tral density given by Zhang and Huang (2014)[ZH14]. The performance of our pro-

posed spectral density estimator are investigated under the power variogram models

with α = 1/2, 1, and 3/2, respectively.

IV.2.1. Power Variogram Model with α = 1/2

When α = 1/2, the theoretical spectral density f(ω) is given by

f(ω) =

√
2π

8π

|ω|1/2

1 + ω2
, ω ∈ R. (IV.1)

We now assume X(t) is intrinsically stationary with mean 0 and power variogram

function with α = 1/2. By Proposition 4.1, we have the following inversion formula:

f(ω) = fτ (ω) · q(τ, ω),

with

fτ (ω) =

∫ ∞
−∞

Dτ (h)e−iωhdh, and q(τ, ω) =
1

2(1− cos(τω))

(
ω2

1 + ω2

)
.
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Now let {Xk = X(tk), tk = kδ, k = 0,±1,±2, · · · } be the observed gridded

realizations of the continuous process X(t) above. Therefore, we need to consider the

aliasing e�ect. For simplicity, we set δ = 1 and τ = 2 as the step size for process

di�erencing. Note that with δ = 1 so that the estimated spectral density fδ(ω) will

have the support of (−π, π].

From the remark of Proposition 4.1, we have the following relationship between

the structure function Dτ (h) and the variogram function γ(h),

Dτ (h) = γ(h+ τ) + γ(h− τ)− 2γ(h).

In particular, for the power variogram 2γ(h) = |h|α, we have

Dτ (h) =
1

2
(|h+ τ |α + |h− τ |α − 2|h|α).

Hence, under the discrete time series {Xk, k = 0,±1,±2, · · · }, the theoretical spectral

density is given by, for ω ∈ (−π, π],

fδ(ω) =
1

2π

∞∑
k=−∞

Dτ (k)e−ikω · q(τ, ω)

=
1

2π

[
2
∞∑
k=1

Dτ (k) cos(kω) +Dτ (0)
]
· q(τ, ω)

=
1

2π

[ ∞∑
k=1

(|k + τ |α + |k − τ |α − 2|k|α) cos(kω) + |τ |α
]
· q(τ, ω).

When α = 1/2 and τ = 2, we introduce the following lemma.
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Lemma 4.2. For ω ∈ R, the in�nite series

S =
∞∑
k=3

(
√
k + 2 +

√
k − 2− 2

√
k) cos(kω) converges.

The proof of the above series is straightforward and deferred in the Appendix.

Then based on the convergency of S, we can show that the following fδ(ω) is

�nite, and be able to derive the aliasing e�ect for power model with α = 1/2.

fδ(ω)

=
1

2π

[
∞∑
k=1

(|k + τ |α + |k − τ |α − 2|k|α) cos(kω) + |τ |α
]
·

1

2(1− cos(2ω))

(
ω2

1 + ω2

)

=
ω2

4π(1− cos(2ω))(1 + ω2

(
∞∑
k=1

(|k + 2|1/2 + |k − 2|1/2 − 2|k|1/2) cos(kω) +
√

2

)

=
1

4π(1− cos(2ω))

(
ω2

1 + ω2

)(√
2 + (

√
3− 1) cos(ω) + (2− 2

√
2) cos(2ω)

+
∞∑
k=3

(
√
k + 2 +

√
k − 2− 2

√
k) cos(kω)

)
,

On the other hand, we also have

fδ(ω) =
∞∑

k=−∞

fX(ω + 2kπ/δ)

(
ω2

1 + ω2

)

=
∞∑

k=−∞

fX(ω + 2kπ)

(
ω2

1 + ω2

)
(δ = 1)

= f(ω) +
∞∑
k=1

[
fX(ω + 2kπ) + fX(ω − 2kπ)

]( ω2

1 + ω2

)
= f(ω) + fa(ω),
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Here f is the theoretical spectral density given by (IV.1) and fa(ω) is the

aliasing component given by

fa(ω) =
∞∑
k=1

[
f(ω + 2kπ) + f(ω − 2kπ)

]( ω2

1 + ω2

)

=

√
2π

8π
·
∞∑
k=1

[ 1

|ω + 2kπ|3/2
+

1

|ω − 2kπ|3/2
]( ω2

1 + ω2

)
.

Now the observed �nite gridded sample of size n {X0, X1, X2, · · · , Xn−1} is

generated via the algorithm given in Chapter 2 with the covariance function given by

Cov(X(s), X(t)) =
1

2
(|s|1/2 + |t|1/2 − |s− t|1/2).

Simulations are then conducted with the sample size n = 100, repeated for

1000 iterations. We plot f(ω) as the theoretical values and then compare them with

estimates f̂δ(ω) · q(τ, ω) obtained through the inverse of Fourier transformation of the

structure function D̂τ (h).

Figure 25. Estimated and Theoretical Spectral Density for Power Variogram with
α = 1/2 and τ = 2.
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The above graph shows a shift between the estimated and theoretical spectral

densities. Now we remove the aliasing component fa(ω) leading to the following plot,

which is a good match between the estimated values and the true values.

Figure 26. Estimated and Theoretical Spectral Density for Power Variogram After
Removing Aliasing E�ect with α = 1/2 and τ = 2.

IV.2.2. Power Variogram Model with α = 3/2

A similar approach is given for α = 3/2, and the spectral density is given by

f(ω) =
3
√

2π

32π |ω|1/2(1 + ω2)
, ω ∈ R.

Here we set δ = 1 and τ = 2, and we obtain the following two plots.
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Figure 27. Estimated and Theoretical Spectral Density for Power Variogram with
α = 3/2 and τ = 2.

Figure 28. Estimated and Theoretical Spectral Density for Power Variogram with
α = 3/2 and τ = 2.

Figure IV.3 shows the comparison of the estimated spectral density values

with the true values when the aliasing e�ect exists, and Figure IV.4 shows that the

estimated spectral density matches with the true spectral density after removing the

aliasing e�ect. Therefore the same conclusion is also reached.
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IV.2.3. Power Variogram Model with α = 1

Lastly, we investigate the performance of our proposed estimator when the

underlying intrinsically stationary process X(t), sometimes referred as the Brownian

Motion process, which is also the random process with power variogram of order

α = 1 and the spectral density function given by

f(ω) =
1

2π(1 + ω2)
, ω ∈ R.

The structure function of X(t) is given by Zhang and Huang (2014)[ZH14].

Dτ (h) = (τ − |h|)I|h|<τ , h ∈ R.

When a time series {Xk, k = 0,±1,±2, · · · } (here δ = 1) of the process X(t)

is observed, we have, setting τ = 2,

D2(h) =


2, h = 0

1, h = 1

0, h ≥ 2,

fδ(ω) =
1

2π

∞∑
k=−∞

D2(k)e−iωk · q(τ, ω)

=
1

2π

[
2
∞∑
k=1

D2(k) cos(ωk) +D(0)
]
· q(τ, ω)

=
1

2π

[
2 cosω + 2

]
· 1

2(1− cos(2ω))

(
ω2

1 + ω2

)

=
1

2π
·

1

2(1− cosω)

(
ω2

1 + ω2

)
, ω ∈ (−π, π].
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On the other hand, we have the spectral desnty fδ(ω) based on the observed

time seires given as

fδ(ω) =
1

2πω2
+

1

2π

∞∑
k=1

[ 1

(ω + 2kπ)2
+

1

(ω − 2kπ)2

]( ω2

1 + ω2

)
= f(ω) + fa(ω),

with

fa(ω) =
1

2π

∞∑
k=1

[ 1

(ω + 2kπ)2
+

1

(ω − 2kπ)2

]( ω2

1 + ω2

)
.

Simulations are conducted with the sample size n = 100, repeated for 1000 iterations.

Similar conclusions can be draw based on the following two plots.

Figure 29. Estimated and Theoretical Spectral Density for Brownian Motion Process
with τ = 2.
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Figure 30. Estimated and Theoretical Spectral Density for Brownian Motion Process
After Removing the Aliasing E�ect with τ = 2.

IV.2.4. Conclusions

In summary, our proposed spectral density estimation method performs well

in estimating the spectrum when the underlying process is an intrinsically stationary

process with power variogram models, consistent with what we have seen from Chap-

ter 3. In addition, we can also consider an intrinsically stationary process with the

band-limited spectral density, where the true spectral density could be fully recov-

ered. As a �nal remark, in our simulations we have also experimented with a di�erent

τ value such as τ = 3. The same conclusions as above have been obtained. In all,

the proposed estimation method through the structure function seems to provide an

e�ective way to estimate the underlying spectral function of a continuous process

with stationary increments of order d.
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CHAPTER V

DATA ANALYSIS

Given an unknown process, to apply the procedures for estimating the spectral

density through the structure function Dτ (h), we need �rst determine the order (d)

of the stationary increments (how much di�erencing the process is needed to achieve

second-order stationarity). In this chapter, we will �rst brie�y introduce the graphical

procedure for determining nonstationarity for integrated processes provided by Cressie

(1988)[Cre88], and then in Section 5.2, we will follow Cressie's method and provide

the spectral analysis for a real data.

Yajima(1985)[Yaj85] worked on the problem of estimating increment order d

based on residual mean squares by �tting an AR(k) model to the dth di�erencing of

the process. But this method is not pratical in real life situations, because it requires

a large order k and the user needs to specify two "arbitrary" increasing functions of

k. Then the residual mean square terms (n−k−δ) will become rather few. Dickey et

al. (1986)[DBM86] provided a method for determining the increment order d based

on the hypothesis tests for H0 : d = 1 versus H1 : d = 0, but no further testing for

higher order. Box and Jenkins(1970)[BJRL70] provided plotting techniques, for ex-

ample, a graphical inspection of autocorrelation functions of Xt,∆Xt,∆
2Xt, · · · . But

this method was demonstrated to be dissatis�ed by Anderson(1985)[And85] through

a series of examples diagnosed by Box-Jenkins method that are actually nonstation-

ary. Cressie (1988[Cre88], 1990[Cre90]) provided a upgraded graphical procedure for

determining nonstationarity for integrated processes, by generating plots that were

scaled version of semivariogram, linvariogram and quadvariogram. This procedure
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has been proved to be practical and convenient. Here we will brie�y introduce his

procedure for determining the order d of the stationary increments, and apply it to

our data analysis.

Brockwell and David[BD87] mentioned that in practice, the stationary incre-

ment order d which is the di�erencing times required to be stationary, is found to be

very small, and normally stops at d = 1 or d = 2, and therefore, our approach focuses

on the increment order that is no more than 2.

V.1. Introduction to the Graphical Procedure for Determining the Incre-

ment Order d

Given an observed data set {Xi, i = 0, 1, 2, · · · , (n − 1)}, to determine the

order d, according to Cressie (1988)[Cre88], the scaled version of semivariogram, lin-

variogram and quadvariogram which are γ̂(h)/ĈX(0), γ̂1(h)/Ĉ∆X(0), γ̂2(h)/Ĉ∆2X(0)

are calculated, respectively.

In particular, the scaled semivariogram is calculated as γ̂(h)/ĈX(0), where,

γ̂(h) =
1

2

∑
R(h)

(Xti −Xtj)
2/
∑
R(h)

1;

R(h) = {(i, j) : (ti, tj) = (i, i+ h) or (i, i− h)},

and

ĈX(h) =
n−h∑
t=1

(Xt+h − X̄)(Xt − X̄)/(n− h);

ĈX(0) =
1

n

n∑
t=1

(Xt − X̄)2.
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The scaled linvariogram is calculated as γ̂1(h)/Ĉ∆X(0) with

γ̂1(h) =
1

h

{ h−1∑
j=1

α̂(j)

2j(j + 1)

}
;

where

α̂(h) =
∑
R(h)

(hXti − (h+ 1)Xtj +Xt`)
2/
∑
R(h)

1,

R(h) = {(i, j, `) : (ti, tj, t`) = (i, i+ 1, i+ h+ 1) or (i, i− 1, i− h− 1)},

and

Ĉ∆X(0) =
1

n− 1

n−1∑
t=1

(Yt − Ȳ )2;

where

Yt = ∆(1)Xt = Xt −Xt−1.

The scaled quadvariogram is calculated as γ̂2(h)/Ĉ∆2X(0), with

γ̂2(h) =
6
[∑h−2

j=1{(h− 1− j)β̂(j)}/4j(j + 1)(j + 2)
]

h3
;

where

β̂(h) =
∑
R(h)

[
− h(h+ 1)Xti + 2h(h+ 2)Xtj − (h+ 2)(h+ 1)Xt` + 2Xtm

]2

/
∑
R(h)

1,

R(h) = {(i, j, `,m) : (ti, tj, t`, tm) = (i, i+ 1, i+ 2, i+ h+ 2)

or (i, i− 1, i− 2, i− h− 2)},

and

Ĉ∆(2)X(0) =
1

n− 2

n−2∑
t=1

(Zt − Z̄)2;

where Zt = ∆(2)Xt = Xt − 2Xt−1 +Xt−2.
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To determine the smallest order d of the stationary increments, we need to

plot the above scaled semivariogram, linvariogram and quadvariogram versus h one

by one, until we have an observed leveling out with expected. For further veri�cation,

Cressie (1988)[Cre88] provided a judgment to make sure the decision is right, instead

of only depending on the visual graphs, and the procedures are discribed as below,

which follows closely on the procedures provided by Cressie (1988)[Cre88]. If the

initial leveling out occurs for the scaled semivariogram, which means the process is

stationary (d = 0), then the expected curve is

e(h) = 1.

Then the con�dence band is given by

e(h) ± 2{var(γ̂(h)/ĈX(0))}1/2, (n/3) ≤ h ≤ (n/2),

which was proved to be approximated to

e(h) ± 2 · 1.35

n1/2
, (n/3) ≤ h ≤ (n/2).

If it occurs for the scaled linvariogram, which means it is a process with sta-

tionary increments of order 1 (d = 1), then the expected curve is

e(h) =
1

2
− (

1

2h
).

Then the con�dence band is given by

e(h) ± 2{var(γ̂1(h)/Ĉ∆X(0))}1/2, (n/3) ≤ h ≤ (n/2),

which was proved to be approximated to

e(h) ± 2 · 0.15

n1/2
, (n/3) ≤ h ≤ (n/2).
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If it occurs for the scaled quadvariogram,which means it is a process with

stationary increments of order 2 (d = 2), then the expected curve is

e(h) =
1

4
− (

1

2h
)− (

1

4h2
) + (

1

2h3
).

Then the con�dence band is given by

e(h) ± 2{var(γ̂2(h)/Ĉ∆2X(0))}1/2, (n/3) ≤ h ≤ (n/2),

which was proved to be approximated to

e(h) ± 2 · 0.09

n1/2
, (n/3) ≤ h ≤ (n/2).

If the scaled variogram curve falls outside of the con�dence band within the

range of h ∈ [n/3, n/2], we need to continue on the higher order until the scaled

variogram falls totally inside the con�dence band, then we may stop and make the

decision on the corresponding order d.

V.2. Spectral Estimation in Real Data Analysis

The following example is a series {Xt} of U.S. monthly single-family housing

starts, January 1964-August 1978 (Dickey et al. 1986)[DBM86], totally 176 data

points. The data are presented in the following table. Due to seasonal behavior of

the series, the data are transformed to Zt = Xt−Xt−12 (Dickey et al. 1986)[DBM86].

This leaves n = 164 Z-values for estimating the spectral density.
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Table 2. U.S. Monthly Single-Family Housing Starts, January 1964 -August 1978 (in
Thousands)

58.008 62.448 82.180 94.927 98.230 100.875 89.885 91.988

79.757 89.435 67.514 55.227 52.149 47.205 82.150 100.931

98.408 97.351 96.489 88.830 80.876 85.750 72.351 61.198

46.561 50.361 83.236 94.343 84.748 79.828 69.068 69.362

59.404 53.530 50.212 37.972 40.157 40.274 66.592 79.839

87.341 87.594 82.344 83.712 78.194 81.704 69.088 47.026

45.234 55.431 79.325 97.983 86.806 81.424 86.398 82.522

80.078 85.560 64.819 53.847 51.300 47.909 71.941 84.982

91.301 82.741 73.523 69.465 71.504 68.039 55.069 42.827

33.363 41.367 61.879 73.835 74.848 83.007 75.461 77.291

75.961 79.393 67.443 69.041 54.856 58.287 91.584 116.013

115.627 116.946 107.747 111.663 102.149 102.882 92.904 80.362

76.185 76.306 111.358 119.840 135.167 131.870 119.078 131.324

120.491 116.990 97.428 73.195 77.105 73.560 105.136 120.453

131.643 114.822 114.746 106.806 84.504 86.004 70.488 46.767

43.292 57.593 76.946 102.237 96.340 99.318 90.715 79.782

73.443 69.460 57.898 41.041 39.791 39.959 62.498 77.777

92.782 90.284 92.782 90.655 84.517 93.826 71.646 55.650

53.997 72.585 92.443 107.804 112.242 119.627 112.807 112.798

108.038 109.114 89.368 71.584 55.746 87.172 125.802 138.772

152.198 149.061 138.181 140.527 131.644 135.398 109.310 87.123

63.349 72.800 121.391 139.857 154.928 154.278 139.219 140.106

V.2.1. Determine the Order d

The �rst step is to determine the stationary increments order d following the

above steps provided by Cressie(1988)[Cre88]. The scaled version of semivariogram,

linvariogram and quadvariogram were plotted as γ̂(h)/ĈX(0) versus h, γ̂1(h)/Ĉ∆X(0)

versus h, γ̂2(h)/Ĉ∆2X(0) versus h, respectively. At the same time, the con�dence

band was also calculated and plotted in the same plot.
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The following three �gures show the sequence of the scaled variogram plots,

and it is clear that initial leveling out occurs at d = 1, but also possibly at d = 0 or

d = 2. Therefore, we need the con�dence band to further con�rm our conclusion.

If d = 0, e(h) = 1, then we have the con�dence band as {e(h)±0.211, 55 ≤ h ≤

82}, the graph shows that the scaled semivariogram falls outside of the con�dence

band curve (red) within 55 ≤ h ≤ 82, therefore, we need to keep moving on the higher

order d = 1.

Figure 31. Scaled Semivariogram Estimation versus h for Determining d = 0 with
the Expected Semivariogram and Con�dence Band.

If d = 1, e(h) = 1
2
− ( 1

2h
), then we have the con�dence band as {e(h) ±

0.023, 55 ≤ h ≤ 82}, the graph shows that the scaled linvariogram falls totally inside

of the con�dence band curve (red) within 55 ≤ h ≤ 82, therefore, we may stop here

to make the decision that d = 1.
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Figure 32. Scaled Linvariogram Estimation versus h for Determining d = 1 with the
Expected Linvariogram and Con�dence Band.

To be more positive about the decision, we continued on the higher order d = 2

with e(h) = 1
4
− ( 1

2h
)− ( 1

4h2
) + ( 1

2h3
) and the con�dence band {e(h)± 0.014, 55 ≤ h ≤

82}. Figure V.3 shows that the scaled quadvariogram falls outside of the con�dence

band within 55 ≤ h ≤ 82, therefore, we will keep our decision that d = 1.

Figure 33. Scaled Quadvariogram Estimation versus h for Determining d = 2 with
the Expected Semivariogram and Con�dence Band.

V.2.2. Spectral Analysis with d = 1

After determining the order d of the stationary increments, we can apply our

procedures in Chapter 3 for estimating the spectral density through the structure
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function Dτ (h) with d = 1. The following is the graph of the estimated spectral

density for the above example. The frequencies with high power of spectral densities

were marked as red. Here we set 10 as a breakthrough point for the high power.

Figure 34. Estimated Spectral Density f̂(ω) for U.S. Monthly Housing Starts, January
1964-August 1978.

The above graph shows that there are a total of 10 points having high power,

and the corresponding frequencies are listed in the following table.

Table 3. The Estimated Spectral Densities f̂(ω) for the Points with High Powers and
Their Corresponding Frequencies ω

Frequency ω 0.12 0.31 0.93 1.31 1.39 2.20 2.27 2.39 2.81 2.89

Estimated f̂(ω) 19.30 21.78 19.74 12.77 28.67 14.44 11.75 10.21 13.96 13.85
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With the above information, we can see that there are several dominant peak

groups at around 0.25, 0.92, 1.35, 2.28 and 2.85. If we consider the frequency with

highest power at 28.67 with corresponding frequency ω = 1.388, we have the hidden

periodicity of 2π/1.39 ≈ 4.52 time periods. Since this is monthly data, there appears

to be a dominant periodicity of about 5 months in the U.S. Housing Start during

January 1964-August 1978.

In practice, the interrpretation of spectrum depends strongly on the knowledge

of the related �elds. Therefore, to better understand the above estimated spectrum,

we need more background of the housing starts.
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CHAPTER VI

FUTURE RESEARCH

There are a number of research areas that we will explore after this disserta-

tion. First, we would like to explore the assumptions in the remark of Section 4.2.

We believe that additional requirements on the variogram function 2γ(h) will be min-

imum, and so our result could be potentially applied to obtain the spectral density

for a given variogram function. In addition, we will explore in more details on the

asymptotic properties of the spectral density estimator proposed in Chapter 3.

Secondly, throughout this dissertation work, we have assumed that we observe

a gridded sample with equal-spacing along the real line. However, in real applications,

it is often that the observed data might not be equally spaced on R. Therefore, it is

very important that we extend our study to handle non-gridded observations in our

future work. One approach in literature is the so-called gridization, which projects

the irregularly observed points to their nearest grids. Various issues might come up

due to gridization such as the selection of grid size as well as e�ciency consideration.

Our dissertation work is closely related to the so-called Intrinsic Random Func-

tions (IRFs) (Matheron 1973)[Mat73]) and is associated with the generalized covari-

ance functions (Christakos, 1984[Chr84]). For example, the stationary process, or the

random process with stationary increments of order 0 in our context, is actually the

IRF-1, while the intrinsically stationary process, which is the random process with

stationary increments of order 1 in our context, is the IRF0, and so on. The theory

of IRFs is to study a broader classes of non-stationary phenomena at a minimum

price of certain restrictions. As an example, for a stationary process, the positive
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de�niteness of the covariance function guarantees that any �nite linear combination

of observed random measurements has �nite non-negative variance. But for an in-

trinsically stationary process, this �niteness of the variance holds for a certain �nite

linear combinations of observed random measurements, where the sum of coe�cients

equals to zero. However, the IRF0 can deal with a larger class of phenomena, such

as Brownian Motion, where the variance might be unbounded. As one of our future

research areas, we will explore such a connection and extend our approach to the IRF

domain. As our long term research direction, we want to extend our approach from

the random process in R to the random �eld on R2, or in general, Rn. In addition,

we would like to connect our approach with the IRFs on Rn. As far as we know, this

will totally be a new research area in spatial statistics.
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APPENDIX A

DERIVATION OF SPECTRAL DENSITIES THROUGH STRUCTURE

FUNCTION Dτ (H)

We �rst introduce the following lemma, which will be applied frequently later

for the proofs of Propositions 4.2.3 and 4.2.4. Let γ(h) be a continuous variogram

function with γ(0) = 0. For all τ > 0, de�ne

g(τ) =

∫ τ

0

γ(u)du.

Hence, g(0) = 0, g(−τ) = −g(τ) and g′(τ) = γ(τ). We have the following lemma.

Lemma 4.1. For each τ > 0, if g(τ) satis�es

lim
u→∞

(g(u+ τ) + g(u− τ)− 2g(u)) = lim
u→∞

∫ τ

0

(γ(u+ s)− γ(u− s))ds = 0,

then we have ∫ ∞
0

cos(uω) (γ(u+ τ) + γ(u− τ)− 2γ(u)) du

= ω

∫ ∞
0

sin(uω) (g(u+ τ) + g(u− τ)− 2g(u)) du,

as long as the integral on the left hand side above exists.
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PROOF: We �rst split the integral into two parts.∫ ∞
0

cos(uω) (γ(u+ τ) + γ(u− τ)− 2γ(u)) du

=

∫ ∞
τ

cos(uω) (γ(u+ τ) + γ(u− τ)− 2γ(u)) du

+

∫ τ

0

cos(uω) (γ(u+ τ) + γ(τ − u)− 2γ(u)) du

= I + II.

We now apply the integration by parts on both integrals.

I =

∫ ∞
τ

cos(uω)d (g(u+ τ) + g(u− τ)− 2g(u))

= [cos(uω) (g(u+ τ) + g(u− τ)− 2g(u))]∞τ

+ω

∫ ∞
τ

sin(uω) (g(u+ τ) + g(u− τ)− 2g(u)) du

= −2 cos(τω)(g(2τ)− 2g(τ))

+ω

∫ ∞
τ

sin(uω) (g(u+ τ) + g(u− τ)− 2g(u)) du,

For the second integral,

II =

∫ τ

0

cos(uω)d (g(u+ τ)− g(τ − u)− 2g(u))

= [cos(uω) (g(u+ τ)− g(τ − u)− 2g(u))]τ0

+ω

∫ τ

0

sin(uω) (g(u+ τ)− g(τ − u)− 2g(u)) du

= 2 cos(τω)(g(2τ)− 2g(τ))

+ω

∫ τ

0

sin(uω) (g(u+ τ)− g(τ − u)− 2g(u)) du.
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Then we have the summation of the two parts that concluding the proof.

I + II = ω

[∫ ∞
τ

sin(uω) (g(u+ τ) + g(u− τ)− 2g(u)) du

+

∫ τ

0

sin(uω) (g(u+ τ)− g(τ − u)− 2g(u)) du

]
,

Proof of Proposition 4.3: We �rst note that

γ(u+ τ) + γ(u− τ)− 2γ(u)

= cr

(
(u+ τ)2

1 + (u+ τ)2/ar
+

(u− τ)2

1 + (u− τ)2/ar
− 2

u2

1 + u2/ar

)
= arcr

(
(u+ τ)2

ar + (u+ τ)2
+

(u− τ)2

ar + (u− τ)2
− 2

u2

ar + u2

)
= arcr

(ar + (u− τ)2)(ar + u2) + (ar + (u+ τ)2)(ar + u2)

(ar + (u− τ)2)(ar + u2)(ar + (u+ τ)2)

−2arcr
(ar + (u− τ)2)(ar + (u+ τ)2)

(ar + (u− τ)2)(ar + u2)(ar + (u+ τ)2)

= 2arcr
τ 2(3u2 − ar − τ 2)

(ar + (u− τ)2)(ar + u2)(ar + (u+ τ)2)
.

Now for small τ , saying τ < 1 (we will take the limit τ → 0, hence this is

feasible), let τ0 > 0, such that

1

ar + (u− τ)2
≤ 1, for u > τ0.

Therefore, for u > τ0,

|γ(u+ τ) + γ(u− τ)− 2γ(u)| ≤ arcr
6τ 2

ar + u2
.

∫ ∞
τ0

|(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)|du ≤ 6τ 2arcr

∫ ∞
τ0

1

ar + u2
du <∞,

which implies the existence of the integral
∫∞

0
(γ(u+τ)+γ(u−τ)−2γ(u)) cos(uω)du.
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We �rst notice that, for each �xed τ > 0, we may assume u > τ since we take

u→∞,

lim
u→∞

(g(u+ τ) + g(u− τ)− 2g(u))

= lim
u→∞

∫ τ

0

(γ(u+ s)− γ(u− s))ds

= lim
u→∞

∫ τ

0

cr

(
(u+ s)2

1 + (u+ s)2/ar
− (u− s)2

1 + (u− s)2/ar

)
ds

= lim
u→∞

∫ τ

0

cr

(
(u+ s)2 − (u− s)2

(1 + (u+ s)2/ar)(1 + (u− s)2/ar)

)
ds

= lim
u→∞

∫ τ

0

cr

(
4us

(1 + (u+ s)2/ar)(1 + (u− s)2/ar)

)
ds = 0,

by the dominated convergence theorem. Hence, from Lemma 4.1,∫ ∞
0

(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du

= ω

∫ ∞
0

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du.

Now we consider the following limit

lim
τ→0

∫ ∞
0

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du
1

1− cos(ωτ)
.

Note that for x > 0,

g(x) =

∫ x

0

γ(u)du =

∫ x

0

cr
u2

1 + u2/ar
du

= crarx− cra3/2
r tan−1(x/

√
ar).
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Then we have

g(u+ τ) + g(u− τ)− 2g(u)

= crar(u+ τ)− cra3/2
r tan−1((u+ τ)/

√
ar)) + crar(u− τ)

−cra3/2
r tan−1((u− τ)/

√
ar))− 2craru− cra3/2

r tan−1(u/
√
ar))

= cra
3/2
r

(
2 tan−1(u/

√
ar)− tan−1((u+ τ)/

√
ar)− tan−1((u− τ)/

√
ar)
)

For the tan−1 function, we have the following identity.

tan−1(x)− tan−1(y) =


tan−1 x−y

1+xy
, xy > −1,

π + tan−1 x−y
1+xy

, x > 0, xy < −1,

−π + tan−1 x−y
1+xy

, x < 0, xy < −1,

When u is big,
(
u/
√
ar × (u± τ)/

√
ar
)
> −1, hence,

2 tan−1(u/
√
ar)− tan−1((u+ τ)/

√
ar)− tan−1((u− τ)/

√
ar)

= − tan−1

(
(u+ τ)− u)/

√
ar

1 + (u/
√
ar)((u+ τ)/

√
ar)

)
+ tan−1

(
(u− (u− τ))/

√
ar

1 + (u/
√
ar)((u− τ)/

√
ar)

)
= tan−1

(
τ/
√
ar

1 + u(u− τ)/ar

)
− tan−1

(
τ/
√
ar

1 + u(u+ τ)/ar

)
= tan−1

((
τ/
√
ar

1 + u(u− τ)/ar
−

τ/
√
ar

1 + u(u+ τ)/ar

)
×
(

1 +
τ/
√
ar

1 + u(u− τ)/ar
×

τ/
√
ar

1 + u(u+ τ)/ar

)−1
)

= tan−1

(
2uτ 2

a
3/2
r (1 + u(u+ τ)/ar)(1 + u(u− τ)/ar)

×
(

1 +
τ/
√
ar

1 + u(u− τ)/ar
×

τ/
√
ar

1 + u(u+ τ)/ar

)−1
)
.
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Now we use Taylor's expansion to approximate tan−1(x).

tan−1(x) = x+R2(x)

where x is close to zero and the remainder R2(x) = 1
2
tan−1′′(ξ)x2 with 0 < ξ < x.

Note that

tan−1′′(x) = − −2x

(1 + x2)2
, ⇒ |tan−1′′(ξ)| ≤ 1.

Therefore, |R2(x)| ≤ x2

2
, and∣∣∣∣∣tan−1

(
2uτ 2

a
3/2
r (1 + u(u+ τ)/ar)(1 + u(u− τ)/ar)

×
(

1 +
τ/
√
ar

1 + u(u− τ)/ar
×

τ/
√
ar

1 + u(u+ τ)/ar

)−1
)∣∣∣∣∣

≤

∣∣∣∣∣ 2uτ 2

a
3/2
r (1 + u(u+ τ)/ar)(1 + u(u− τ)/ar)

×
(

1 +
τ/
√
ar

1 + u(u− τ)/ar
×

τ/
√
ar

1 + u(u+ τ)/ar

)−1
∣∣∣∣∣

+
1

2

∣∣∣∣∣ 2uτ 2

a
3/2
r (1 + u(u+ τ)/ar)(1 + u(u− τ)/ar)

×
(

1 +
τ/
√
ar

1 + u(u− τ)/ar
×

τ/
√
ar

1 + u(u+ τ)/ar

)−1
∣∣∣∣∣
2

≤ 2τ 2

a
3/2
r

∣∣∣∣ u

(1 + u(u+ τ)/ar)(1 + u(u− τ)/ar)

∣∣∣∣
+

2τ 4

a3
r

∣∣∣∣ u

(1 + u(u+ τ)/ar)(1 + u(u− τ)/ar)

∣∣∣∣2 .
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When u is big and τ is small, we can have |u − τ | > 1. Therefore, the �rst

term above is given as follows,

u

(1 + u(u+ τ)/ar)(1 + u(u− τ)/ar)
≤ a2

r

u2
,

and so is the second term, implying∫ ∞
τ

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du <∞,

and it is also further dominated by an absolutely converging integral. By the domi-

nated convergence theorem, we can take the limit τ → 0 inside the integral to have

cra
3/2
r

∫ ∞
0

2τ 2

a
3/2
r

u

(1 + u2/ar)2
sin(uω)du

1

1− cos(τω)
=

4a
1/2
r

ω2

∫ ∞
0

u sin(uω)

(ar + u2)2
du

But ∫ ∞
0

u sin(uω)

(ar + u2)2
du =

ωπe−
√
arω

4
√
ar

,

implying

lim
τ→0

∫ ∞
0

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du
1

1− cos(ωτ)

= cra
3/2
r

4a
1/2
r

ω2

ωπe−
√
arω

4
√
ar

=
cra

3/2
r π

ω
e−
√
arω,

after repeatedly applying L'Hopital Rule and tedious calculations. Therefore, the

spectral density for the rational quadratic variogram is given by

f(ω) =
cra

3/2
r

2
e−
√
arω

(
ω2

1 + ω2

)
.
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Proof of Proposition 4.4: For all x > 0, we de�ne

g(x) =

∫ x

0

γ(u)du, that is, g′(x) = γ(x).

Hence, g(0) = 0, g(−x) = −g(x). We �rst notice that, for each �xed τ > 0, and so

we may assume u > τ since we take u→∞,

lim
u→∞

(g(u+ τ) + g(u− τ)− 2g(u))

= lim
u→∞

∫ τ

0

(γ(u+ s)− γ(u− s))ds

= ce lim
u→∞

∫ τ

0

(exp(−(u− s)/ae)− exp(−(u+ s)/ae)) ds

= ce lim
u→∞

∫ τ

0

e−u (exp(s/ae)− exp(−s)/ae)) ds = 0.

Hence, ∫ ∞
0

(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du

= ω

∫ ∞
0

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du.

Now we consider the following limit.

lim
τ→0

∫ ∞
0

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du
1

1− cos(ωτ)
.

Note that for x > 0,

g(x) =

∫ x

0

γ(u)du =

∫ x

0

(ce(1− exp(−u/ae))) du

= c0x− ceae + ceae exp(−x/ae).

113



We have

g(u+ τ) + g(u− τ)− 2g(u)

= ((c0 + ce)(u+ τ)− ceae + ceae exp(−(u+ τ)/ae))

+((c0 + ce)(u− τ)− ceae + ceae exp(−(u− τ)/ae))

−2((c0 + ce)u− ceae + ceae exp(−u/ae))

= ceae (exp(−(u+ τ)/ae) + exp(−(u− τ)/ae)− 2 exp(−u/ae))

= ceae exp(−u/ae) (exp(−τ/ae) + exp(τ/ae)− 2) .

Hence, ∫ ∞
0

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du

= aece (exp(−τ/ae) + exp(τ/ae)− 2)

∫ ∞
0

e−u/ae sin(uω)du

= aece (exp(−τ/ae) + exp(τ/ae)− 2)
ω

(1/ae)2 + ω2
.

Now take the limit τ → 0, we have

lim
τ→0

∫ ∞
0

(g(u+ τ) + g(u− τ)− 2g(u)) sin(uω)du
1

1− cos(ωτ)

= aece lim
τ→0

exp(−τ/ae) + exp(τ/ae)− 2

1− cos(ωτ)

ω

(1/ae)2 + ω2

= aece
2

a2
eω

2

ω

(1/ae)2 + ω2
=
aece
ω

2

1 + a2
eω

2
.
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Hence we have,

f(ω)

= lim
τ→0

(
1

2π

(∫ ∞
0

(γ(u+ τ) + γ(u− τ)− 2γ(u)) cos(uω)du

)
× 1

1− cos(τω)

)(
ω2

1 + ω2

)
=

2

2π
ω
aece
ω

1

1 + a2
eω

2

(
ω2

1 + ω2

)
=

aece
π

1

1 + a2
eω

2

(
ω2

1 + ω2

)
.

Proof of Lemma 4.2. Obviously,

S =
∞∑
k=3

(
√
k + 2 +

√
k − 2− 2

√
k) cos(kω)

=
∞∑
k=3

((
√
k + 2−

√
k) + (

√
k − 2−

√
k)) cos(kω)

=
∞∑
k=3

(
2

√
k + 2 +

√
k

+
−2

√
k − 2 +

√
k

)
cos(kω)

= 2 ·
∞∑
k=3

( √
k − 2−

√
k + 2

(
√
k + 2 +

√
k)(
√
k − 2 +

√
k)

)
cos(kω)

= 2 ·
∞∑
k=3

(
−4

(
√
k − 2 +

√
k + 2)(

√
k + 2 +

√
k)(
√
k − 2 +

√
k)

)
cos(kω)

= −8 ·
∞∑
k=3

(
1

(
√
k − 2 +

√
k + 2)(

√
k + 2 +

√
k)(
√
k − 2 +

√
k)

)
cos(kω).

Note that the denominator has O(k3/2), and so the above summation S ∼
∑∞

k=3
cos(kω)

k3/2

is absolutely convergent since

∞∑
k=3

∣∣∣∣cos(kω)

k3/2

∣∣∣∣ ≤ ∞∑
k=3

1

k3/2
<∞ =⇒ S <∞.
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