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 New models are commonly designed to solve certain limitations of other ones. Quantile 

regression is introduced in this paper because it can provide information that a regular mean 

regression misses. This research aims to demonstrate its utility in the educational research and 

measurement field for questions that may not be detected otherwise. Quantile regression is 

appropriate when the assumption of a normal distribution of the error term is violated. It is most 

useful when the interest is at various locations along the complete distribution rather than just the 

central tendency.  

The first part of this research used quantile regression to explore a changing relationship 

between language proficiency and math achievement. Results reveal that language proficiency 

affects math achievement differently at different math ability levels. Other commonly used 

covariates such as socioeconomic status and gender are also related to math achievement 

differently at different locations on the math score distribution. It is shown that regular mean 

regression analyses fail to capture this information. 

The second part of the research models math growth longitudinally adjusting for 

language proficiency. Four rounds of data for a cohort of students are used to detect the long term 

math achievement gap between English Language Learners (ELLs), Former ELLs and NonELLs. 

Model-building process suggests that language demand in tests may have contributed to the big 

achievement gap between ELL and Non-ELLs. Long term and differential effects of other 

background variables are also detected. 

Implication of the results and limitations of the technique are discussed.
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CHAPTER I 
 

INTRODUCTION 
 

The first sentence in Chapter 9 of the most recent edition of Standards for 

Educational and Psychological Testing (hereinafter, “the Standards”, 1999) clearly 

states: 

For all test takers, any test that employs language is, in part, a measure of their 
language skills. (p.91)        
  

 This statement is true because all assessments employ language to measure 

student achievement. Students need the appropriate language skills to read the tests and 

sometimes to respond to open-ended questions. Consequently, all the test scores include 

variance introduced by the various level of language ability of students. This language 

ability is not the construct under examination in content area assessments but is 

confounded with students’ performances on these tests. Construct-irrelevant variance has 

attracted attention from many scholars who called for improvement of the psychometric 

quality of tests (Haladyna & Downing, 2004). In order to improve the content area tests, 

it is necessary to understand how language impacts academic performance in these 

assessments. The current study will focus on the relationship between language and math, 

but the method can be applied easily to other subjects to detect language impact in other 
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assessments. The relationship between language and math has been found to be shifting 

rather than stable, although the direction of the shift was not clear. With the power of 

quantile regression, the differential language impact on math achievement will be fully 

explored. Longitudinal data will also shed light onto the long term language effect on 

academic performance that has not been well represented in past research. 

Statement of the Problem 

As Abedi and Lord (2001) concluded, “the interaction between language and 

mathematic achievement is real.”(p.232) This interaction is real for all grades, for both 

genders and for various ethnic groups. Overall, language ability is positively related to 

math achievement. One of the most heated discussion of this relationship is reflected 

through the achievement gaps between native English speakers (Non-ELLs) and English 

language learners (ELLs) in the K-12 grades. Literature has provided consistent evidence 

that ELL students scored lower than Non-ELL students in math assessments.  This gap is 

regarded to be closely related to the limited language proficiency of ELLs (Abedi and 

Lord, 2001; Kato et al., 2004; Kieffer et al., 2009; Stevens et al., 2000; Wright and Li, 

2008). 

The math achievement gap between these two groups may be attributed to two 

parts: as the result of learning and the result of assessing. As the result of learning, 

students actually differ in math achievement because they did not learn the math content 

effectively; as the result of assessing, students are not so different in math achievement, 

but the tests underestimate it for some students because the language requirement in the 

test is too high for them to perform well (Bailey, 2000). There is no way to remove the 
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first cause through test scores but the second possibility can be controlled with statistical 

techniques. This research analyzes the test scores as a source of information and tackles 

the assessment issue rather than the learning issue. The learning process is better studied 

through other means like think-alouds, observations, questionnaires or interviews. 

Literature not only shows the gap between ELL and Non-ELLs, but also provides 

conflicting results on the changing status of the gap. The math achievement gap is found 

to be increasing in some studies yet decreasing in other studies as students move from 

lower grades to higher grades. There are several speculations on this discrepancy. For 

example, the ELL groups were defined according to different criterion in these studies. 

Not only did the number of categories differ, so did the sample in each study. The math 

measurements involved in each study usually differed from each other, which implies 

inequality of test specification, psychometric quality and language requirement. Other 

background factors may have also interfere with the relationship between language and 

math.  All these differences naturally led to different results. Above all the differences, 

the relationship between language and math may not be static but instead change across 

grades as well as within grade. In addition, few studies directly controlled for the 

language proficiency of students, which means the impact of language in math 

assessment for individual students was ignored, resulting in an inaccurate representation 

of overall math achievement gap. 

To counter-balance these issues, a better research design and methodology need to 

be used. For example, a cohort of students traced and measured by the same instruments 

for several years addresses the sample difference. A quantile regression methodology that 
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models more than the central tendency can handle the differential language effect at 

various math achievement levels. Adding the language proficiency covariate solves the 

last limitation in past research. 

Purpose of the Study and Research Questions 

Deeper understanding between language and math facilitates critical decisions. 

For example, language may be found to have a bigger impact on math achievement of all 

students with low math ability. Therefore, additional language support should be given to 

all students regardless if they are ELLs or not. A longitudinal examination of the 

relationship may reveal that a math score with language influence directly controlled 

produces a different magnitude of math achievement gap than if the language impact is 

not controlled. This may then suggest a different way to describe students’ math 

achievement and progress. Because test scores are frequently used to measure school 

effectiveness as well, these findings will also inform school level accountability 

decisions.  

No matter for what purpose the test is designed, if the scores are assumed to 

reflect math achievement, then analysis should start with a purer or adjusted math 

component. For this purpose, it is suggested that the language variance be partialled out 

of the math score before the math achievement and growth can be properly described. 

Whether to study the relationship between the two variables or controlling one to report 

the other, regression is the natural choice of statistical method. Quantile regression is 

used instead of traditional mean regression for the many advantages to be dicussed later. 

This study aims to answer the following three research questions: 
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1. How does language proficiency affect math achievement within and 

across grades?  

2. How does math performance vary with respect to other background 

variables such as gender and socioeconomic status after language 

proficiency is controlled? 

3. Does the math achievement gap between ELLs, former ELLs, and Non-

ELLs increase or decrease as students move to higher grades? 

Theoretical Background  

English Language Learners and the Inequality in Education 

“English language learners (ELLs)” is only one of the many terms used to refer to 

a specific group of students. This group is actually heterogeneous in first language, 

cultural background, family history, social economic status and educational orientations 

(LaCelle-Peterson & Rivera, 1994). They are also defined differently in different states 

(Goh, 2004) and according to different performance standards (Abedi, 2007; Chalhoub-

Deville & Deville, 2008). Despite all these differences, these students share the same fact 

that they are still in the process of learning the English language and may have more 

challenges in academic achievement due to their limited language proficiency. The 

current research used the term “English language learners (ELLs)” rather than “Limited 

English Proficiency students” (NCLB, 2001) to eliminate any negative connotations of a 

deficit (Kieffer et al., 2009). 
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The high educational risk for ELLs has been noticed and documented by different 

sources: ELLs have high risk of academic failure and school dropout (Garcia, 2000); 

ELLs score lower than main-stream students on national assessments in reading, math, 

and science (Kieffer et al., 2009; US. Department of Commerce Bureau of Census, 

1993); proportionally more ELLs are receiving special services (Kretschmer, 1991); and 

ELLs have lower rates of college entry and progress at the university level (Astin, 1982).   

Studies have been conducted to try to trace the cause of these phenomena. Some 

insights have also been provided. For example, scholars believe many critical decisions 

concerning ELLs focus exclusively on test scores but the reliability and validity of 

standardized test scores for ELLs are problematic (Abedi 2002; Chalhoub-Deville & 

Deville, 2008; Lam, 1993). As a result, ELLs’ achievements may be underestimated. 

Others found that ELLs lack the opportunity to learn the content knowledge (Herman & 

Abedi, 2004; Wright & Li, 2008) although they might have achieved appropriate 

language proficiency by the time they need to go to college (Pennock-Roman, 1990).  

The actual inequality in education is the result of both learning and assessment. The 

common cause of these, however, is the impact of language demands in academic 

settings (Abedi and Lord, 2001; Kato et al., 2004; Matinez et al., 2009; Stevens, Butler, 

& Castellon-Wellington, 2000; Wright and Li, 2008). 

Language Proficiency in Academic Settings 

Whenever language proficiency is discussed, BICS and CALP are the two terms 

that have to be distinguished.  Cummins first named them and emphasized the difference 

on several occasions (1979a; 1999). BICS refers to Basic Interpersonal Communicative 
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Skills and CALP refers to Cognitive Academic Language Proficiency. The former deals 

with everyday social interaction and the latter relates more closely to classroom activities. 

BICS can be learned rather quickly within two years at peer-appropriate level but CALP 

takes a much longer time for immigrant children (Collier, 1987; Cummins, 1981a, 1981b, 

1984; LaCelle-Peterson & Rivera, 1994).  

Cummins (1999) pointed out that the two concepts are not mutually exclusive. 

The distinction is made to emphasize the different patterns of development. While BICS 

such as phonological skills and fluency may reach a plateau quickly, CALP skills such as 

literacy and vocabulary continue to grow throughout schooling. In this sense and in the 

context of educational settings, language proficiency leans heavily towards CALP. The 

terminology was updated to Academic Language Proficiency (ALP) in current ELL 

literature and is sometimes referred to as Academic English since English is the language 

of instruction in the U.S. system. ALP is now widely accepted to be the key to school 

success because it is required to understand teacher talk, participate in class and handle 

content assessment (Bailey & Butler, 2003; Stevens, Butler, & Castellon-Wellington, 

2000; Wilkinson & Silliman, 2000). ALP includes all four language domains, namely 

listening, speaking, reading and writing. Reading and writing are more important than 

listening and speaking in common assessment settings because they are the skills usually 

necessary for students to understand the questions and to respond to them. 

Theory on language proficiency has developed beyond the simple and rigid way 

of decomposing it as Cummins did. Other concepts such as communicative language 
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competency (Bachman, 1990; Bachman & Palmer, 1996) and language-in-use-in-context 

(Chalhoub-Deville & Deville, 2006) introduced a framework of a changing construct 

depending on the environment rather than a static one. On the other hand, definition of 

ALP is urged to be more specifically related to academic contents (Bailey, 2000; Bailey 

& Butler, 2003). All these reveal the challenge in developing an assessment of ALP. The 

discussion on this topic will not be replicated here but it is important to be aware of 

because it limits the choice of the key independent variable for this research. 

Ideally, to control for academic English proficiency in academic assessment, a 

high quality ALP test score should be used. However, this is not widely available in 

practice. The current research for example, uses a reading score as a proxy of ALP. This 

is a reasonable practice for three solid reasons. First, there are few high quality ALP tests 

available. Research on academic language proficiency has shown the challenges in 

creating such instruments (Bailey, Butler, & Sato, 2005; Chalhoub-Deville & Deville, 

2008). Lacking guidance is just one of them, which explains the failure of existing tests 

to meet desirable psychometric quality (Abedi, 2002, 2007). Second, use of ALP 

assessment seems to be limited to the ELL population only. However, language affects 

math achievement for everyone (Abedi & Lord, 2001; Freeman & Crawford, 2008). If 

language proficiency is to be studied, it is better to have the measurement for everyone 

including Non-ELLs.  Reading assessment is usually conducted on everyone thus can 

serve this purpose. In addition to this, the heterogeneous difference within ELLs can also 

be taken into consideration by the direct measure of language proficiency at the 

individual level rather than a rough group membership of being ELLs or Non-ELLs 
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(Chalhoub-Deville & Deville, 2008).  Third, understanding written text is the first 

important form of language proficiency for cognitive functioning (Mestre, 1988). 

Reading is the skill that is inseparable for performance in tests while other modes such as 

speaking or writing are usually not as involved or critical for math assessment. In this 

sense, reading is regarded as a close substitute of academic language proficiency and 

does not overestimate language influence in assessment by involving irrelevant language 

domain skills (listening, speaking and writing). 

Accommodation for ELLs 

Standardized tests have been widely accepted in educational assessments because 

they can increase reliability and reduce random measurement error due to testing 

procedures.  The key features are the standardization of test form, test administration 

procedure and predefined scoring rubrics (Goh, 2004). However, standardized tests have 

been shown to be inappropriate for ELL population for several reasons. For example, 

ELLs may not be represented in the norming population (Davison, 1994; Stevens etal, 

2000) and the meaning of standardized tests scores may not be the same for ELL versus 

Non-ELL students (LaCelle-Peterson & Rivera, 1994). Also, assumptions about students 

who take standardized tests are obviously violated for ELLs (Lam, 1993). One of the 

assumptions is that test takers have no linguistic barriers that inhibit their performance on 

the test. This assumption was rarely supported by standardized tests. On the contrary, 

because of the confounding issue of language in content knowledge assessment, it cannot 

be judged whether student performance on standardized tests reflects their language 
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ability or content knowledge (Abedi et al., 2005; Bailey & Butler, 2003; Kieffer et al., 

2009; Rivera, et al., 2006). 

NCLB and the Standards (AERA, et al, 1999) both support the necessary 

accommodation for ELLs in standardized testing to accurately measure their 

achievements and progress. In the Standards (AERA, et al, 1999), accommodation is 

defined as: 

the general term for any action taken in response to a determination that an 
individual’s disability requires a departure from the established testing protocol. 
(p101).          
  

The disability here is the limited language proficiency for ELLs. Goh (2004) 

summarized four possible accommodations for ELLs, including setting modifications, 

timing and scheduling modifications, presentation modifications and response 

modifications. Certainly, all these accommodations assume that that language proficiency 

limitation can be easily overcome through some procedural help during testing. However, 

research has shown that only linguistic accommodations made a difference in student 

performance while other common practices such as extra time did not help (Abedi, 

1999a, 1999b; Abedi & Hejri, 2004; Francis et al., 2006; Menken, 2000). As already 

mentioned, the gap between the academic achievement of ELLs and Non-ELLs can be 

traced to both the learning process and the assessment process. Accommodation just in 

the testing procedure is not enough to eliminate irrelevant factors in assessment. 

Consistent with this insight, new programs have been started to reduce the 

linguistic burden for students both during learning and assessment.  Help with English 
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Language Proficiency (HELP) Math program (Freeman & Crawford, 2008; Tran, 2005) 

is a Web-based curriculum aimed to provide interactive lessons and “essentialize 

mathematical vocabulary and academic concepts so that students can better understand 

the content” (Freeman & Crawford, 2008, p.5). Other programs such as Obtaining 

Necessary Parity through Academic Rigor (ONPAR) aims to use innovative computer-

based items with minimal language requirement to assess ELLs (Kopriva et al., 2009).  

However, to ensure validity of test score interpretation, test format should be consistent 

with the teaching format. That is, the way the students are assessed should be the same as 

they are taught. Both HELP and ONPAR are valuable researches but they are not used in 

practice on the same students. Unless the students are taught and assessed with the same 

kind of support, the validity question of what a test is measuring remains a challenge.  

Researchers have pointed out that all accommodations require extra resources and 

money (Abedi, Hofstetter & Lord, 2004; Abedi & Lord, 2001). The above mentioned 

innovative instruction and corresponding assessment are not widely used in the U.S. Cost 

may be one of the reasons. Before all students have access to these types of innovative 

instruction and assessment, another feasible approach is needed to better describe 

students’ achievement with efficiency. 

The approach recommended in this research is to control for the language 

proficiency of students and report residual of content test scores (math in this case) after 

the language proficiency is partialled out. In this way, students’ achievement can be 

depicted independent of their language ability. Whether students’ achievement is due to 
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the learning or the assessment is not the topic here. The interest here is to describe the 

math achievement and do it in a more accurate way.  This approach is named 

“accommodation in score reporting” and can be regarded as an alternative to 

accommodation for ELLs.  To follow the principal of fairness (AERA, et al, 1999), this 

accommodation in the form of partialling out the language impact before reporting math 

should be done for both ELLs and Non-ELLs since literature has shown that language 

affects math for all students (Abedi & Lord, 2001; Freeman & Crawford, 2008; 

Kiplinger, Haug & Abedi, 2000). 

Summary   

Language proficiency affects content knowledge learning and assessment 

especially for ELLs. Regular standardized tests failed to take students’ language 

proficiency into consideration. Test results may not reflect students’ achievement 

accurately. In addition to this, the relationship between language and math may vary for 

students within and across grades. To better explore the possible differential influence of 

language on academic achievement, new research design and analysis technique will 

benefit. Reading scores can be used as a reasonable proxy of academic language 

proficiency for all individuals. When reporting content test scores, reading can be 

controlled for everyone to generate a more accurate description of content area 

achievement independent of language. Accommodation in score reporting is an 

alternative to traditional accommodation for ELLs. It may serve as a viable tool, before 

innovative instruction and assessments are both in place in practice, to eliminate 

construct-irrelevant variance in assessments due to the language requirement. 



13 
 

Assumptions of the Study 

1. The math and language items are assumed to measure the construct of 

math and language proficiency and no other factors. 

2. There is no measurement error. 

3. Variables are measured independently from each other. 

 

Limitations of the Study 

The limitations of the study are: 

1. All students are assumed to have the opportunity to learn. Once the 

language requirement in math scores are partialled out, the residuals 

reflect students’ actual math achievement. In reality, students with limited 

language proficiency may be doubly punished by the language 

disadvantage through both learning and testing. 

2. Reading score is used as an approximate indicator of academic English 

proficiency.  The best language measure for the purpose should be on the 

academic language proficiency and specific to the math subject.  

3. The students in this study are a cohort followed for eight years since early 

ages. The achievement gap between ELL and Non-ELL groups might be 

different from what is observed in any current grade in the U.S. The 

meaning and generalization of the specific achievement gap should be 

interpreted with caution. 
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Chapter II 
 

LITERATURE REVIEW 
 

Research on the Relationship between Language and Math Achievement 

A Confirmed Relationship 

Research has provided all types of evidence that language proficiency affects 

math achievement. This has been documented and confirmed for all grades including 1st 

(U.S. Department of Education, DOE, 2008), 2nd (Abedi etal, 2005), 3rd (Cottrell, 1968; 

Brown, 2005; Butler & Castellon-Wellington, 2005), 4th (Chang, Singh & Filer, 2009; 

Fry, 2007), 5th (Chang et al., 2009), 6th  (Balow, 1964; Freeman & Crawford, 2008), 7th 

(Freeman & Crawford, 2008), 8th (Abedi & Lord, 2001; Fry, 2007), 9th  (Abedi et al., 

2005), 10th (Abedi, Leon & Mirocha, 2003) and 11th grade (Butler & Castellon-

Wellington, 2005).  

Impact of language has also been found for different populations including ELLs 

and Non-ELLs, boys and girls and both students with high and low social economic 

background (Abedi & Lord, 2001; Kiplinger et al., 2000). There are also researches of its 

impact on specific immigrant students such as Cambodian (Wright & Li, 2008), Hispanic 

or Spanish (Freeman & Crawford, 2008) and Asian students (U.S. DOE, 2008). 

Through a representative sample of studies, Aiken (1971;1972) summarized the 

correlation between language and math achievement which ranged from .40 to .86.  



15 
 

Secada’s (1992) summary showed the correlation ranged from .20 to .50. All the 

correlations were positive and statistically significant. The difference in the correlation 

coefficients across all studies was due to the various measures of general and specific 

reading abilities (Aiken, 1972). As to be elaborated later, this can also be due to the 

different grades involved.  In all, these studies confirmed that there is a non-negligible 

relationship between language and math achievement. 

In summary, it is seen that language ability affects math achievement for all 

population groups at various grades. This issue is quite prevalent in the ELL community 

due to the clear language disadvantage of ELL students. 

A Changing Relationship 

Although there is a great deal of studies detecting the relationship between 

language and math, many more issues need to be explored to better understand how 

language affects math achievement. One issue is that the relationship seems to be 

changing rather than static. 

Ausubel and Robinson (1969) pointed out that at least at early stages, kinesthetic 

images serve as the base of math learning for understanding arithmetical ideas in 

particular and the inductive process of concept formation in general. Naturally, it is 

reasonable to assume that language ability might not affect math learning that much at 

early math learning stages. However, as students move on to higher stages in math 

learning, concepts may not be easily visualized and more complicated reading skills 

become more and more vital. If this is true, newly classified ELLs at higher grades might 

have more difficulty with math than the newly classified ELLs at lower grades. This 
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partly explains the gap between ELL and Non-ELL students in math achievement 

between, for example, 4th grade versus 8th grade (Fry, 2007). In that study, the math 

achievement was smaller at 4th grade than at the 8th grade.  

Interestingly, some studies found the group-based math achievement gap 

increased at higher grades (Abedi et al., 2005; Butler & Castellon-Wellington, 2005; Fry, 

2007) while others found the gap decreased over time (Chang et al., 2009; Galindo 2009; 

Han, 2008). This discrepancy in findings might be due to several confounding issues.  

First, ELL status was defined differently in these studies. For example, Abedi et al 

(2005) divided students into four categories: Students with disorders (SD), Limited 

English Proficiency students (LEP), students who are LEP and SD and None of the 

above.  Chang et al (2009) divided their students into three groups: English-only 

(English), Dual-language-speaking (DUAL) and English-Language-Learner (ELL). 

These different criteria of classification obviously affected the meaning of gap between 

ELLs and Non-ELLs.  

Second, the math measures involved in these studies were different. Abedi et al 

(2005) conducted their research at two sites. The math instruments used were Iowa Tests 

of Basic Skills (ITBS) at one site and Stanford Achievement Test Series, Ninth Edition 

(Stanford 9) at the other. Butler and Castellon-Wellington (2005) also used Stanford 9. 

Fry (2007) used the National Assessment of Educational Progress (NAEP) math 

assessment and Han (2008), Chang et al (2009) and Galindo (2009) used the instrument 

created for Early Childhood Longitudinal Study- Kindergarten Cohort (ECLS-K). All 

these instruments might differ in psychometric quality. In terms of linguistic features, 
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some of them might put ELLs at a  disadvantage more than the others. As a result, the 

raw math achievement gaps are not comparable between studies.  

Third, ELL composition in each study is different. For example, Abedi et al 

(2005) studied the math gap for students from 2nd to the 11th grade. However, every grade 

was formed by a separate group of students that belonged to that grade at the time of 

assessment. Fry (2007) found out that the decline in achievement from elementary to 

middle school was partly due to change in the composition of samples.  He noticed that 

many former ELL students who caught up were no longer categorized as ELLs as they 

moved on to higher grades. At the same time, newly arrived immigrants were added to 

the ELL groups. In other words, the gap in math scores in these studies may not reflect 

the achievement difference but the difference in the initial status. When the gaps are then 

compared across grades, it is hard to say whether the achievement gap is really increasing 

or decreasing. In comparison, Han (2008), Chang et al (2009) and Galindo (2009), used a 

longitudinal data where the students were traced for several years. The difference 

between these students might more accurately reflect the achievement gap. These latter 

three studies imply the necessity of longitudinal data to better capture a long-term 

relationship because they may reduce interference from external factors such as a 

changing demographic group. 

Fourth, none of the studies used a continuous measure of language ability as a 

covariate while estimating the math achievement gap. It is reasonable to expect that 

overall, the gap in math scores will be less if the construct-irrelevant variance due to 

language is removed.  
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If Ausubel and Robinson (1969) were right, challenges in learning the math 

content will be more difficult to overcome for newly arrived ELLs at higher grades than 

at lower grades. This phenomenon will not be detected directly in this research since the 

same students were traced and only test scores are analyzed. However, reading and math 

are separate skills in the end.  Once a certain language proficiency threshold is reached, 

the influence of language on math may start to decrease. The predictive power of 

language on math scores may decrease or the achievement gap will shrink once language 

proficiency is controlled. Either way, disappearance of the gap as reflected by scores is 

not likely to happen statistically due to the large sample size usually found in these type 

of studies. The question is: if the same students are traced and the language impact in 

assessment removed, does the math achievement gap diverge or converge?  

Compared to the amount of attention on the math achievement gap across grades, 

much less was directed to the other aspect of a changing relationship that is happening 

within a grade. Freeman and Crawford (2008) demonstrated that a revised math 

curriculum that removed linguistic and cultural barriers was more effective with ELLs 

with higher language proficiency than those with lower language proficiency. Kopriva et 

al (2009) reported that math items where sentences reduced to phrases actually added to 

the difficulty of the items compared to items where language were modified but still in a 

sentence format. More research needs to be done to see how the language impact differs 

at various language and math levels within a grade as well as between grades. This 

research is expected to fill in this gap in literature which is possible with the quantile 

regression technique. 
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Other Variables of Interest 

 Secada (1992) reviewed various data on the math achievement gap and indicated 

that language proficiency does not explain the difference between students completely. 

Several other factors consistently appear in literature, which seem to contribute to math 

score variance above and beyond language or ELL status. These factors include 

socioeconomic status (SES), parental educational level, gender and race-ethnicity. An 

understanding of these factors helps with the decision to include or exclude them for the 

current research purpose.  

There is rich evidence that SES affects students’ math achievement (Abedi & 

Lord, 2001; Abedi et al., 2005; Brown, 2005; Butler & Castellon-Wellington, 2005; 

Chang etal, 2009; Liu & Wilson, 2009; Tate, 1997; Wright & Li, 2008). Some research 

even found a differential effect of SES. For example, Brown (2005) used a multiple 

regression analysis to predict math achievement for ELL and non-ELL students. He 

found out that low SES students performed similarly whether they were ELLs or not, but 

for high SES students, Non-ELLs outperformed ELLs even after language scores were 

controlled. Literature on SES is quite consistent on its impact, which highlights the 

necessity of its inclusion in any educational research. However, SES in many of these 

studies was only a categorical variable, dividing students into either high or low SES 

groups (Abedi & Lord, 2001; Abedi et al., 2005; Butler & Castellon-Wellington, 2005). 

A continuous SES regressor as in the current research might reveal more information of 

its impact.  
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 Parental educational level is a strong predictor of students’ math achievement, 

even stronger than SES according to Abedi et al (2005). A brief from the Department of 

Education (2008) showed specifically that ELLs whose mother had a bachelor’s degree 

or higher made greater gains than their peers whose mother had a lesser degree. Parental 

educational level is usually available as an ordinal variable but frequently dichotomized 

to detect the desired group difference (e.g. Abedi, et al 2005). In the current research, the 

SES index is a continuous composite including parents’ income, educational levels and 

occupations. Preliminary analysis also showed no statistical significance of parental 

educational level once SES is in the model. Based on these facts, parental educational 

level is removed from the current research. Its influence is assumed to be subsumed 

under SES. 

Gender is a variable frequently studied, but conclusions on gender differences 

tend to be controversial. There are research results favoring boys in math performance 

(Benbow & Stanley, 1980; Gallagher et al., 2000; Leahey & Guo, 2001; Mau & Lynn, 

2000), or favoring girls (Ginsburg & Russell, 1981; Kaplan & Weisberg, 1987). At the 

same time, there is no shortage of research showing no gender difference at all (Geary, 

1994; Lummis & Stevenson, 1990; Tate, 1997).  Recent studies also demonstrate a 

varying impact of gender on math achievement dependent on the math proficiency level 

of students within or across grades (Benbow, 1992; Hyde, Fennema & Lamon, 1990; 

Leahey & Guo, 2001). Just like the shifting relationship between math and reading, this 

discrepancy of gender impact on math achievement may be related to the different 

samples and or instruments used. Similarly, language impact was not controlled in these 
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studies which might have affected math score comparisons between genders. Similar to 

the issues between language and math, quantile regression with longitudinal data may 

reveal more about gender effect in the current research. 

Race or ethnicity comparisons are usually limited to a few groups, perhaps 

because of the relative small size of other populations. For example, math achievement 

gaps are well documented but usually between White, African-American, Hispanic and 

Asian groups (Abedi et al 2005; Haile & Nguyen, 2008; Tate, 1997).  Although there are 

numerous ways to break down the groups, this research will follow the tradition to have 

mainly four race-ethnicity groups. Sample size limited other groups to be a meaningful 

separate unit. However, although Hawaiians and other Pacific Islanders, American 

Indians and Alaskans do not meet the common definition of ELLs, their ethnicity may 

have put them at disadvantage due to geographic isolation from main stream Americans. 

For the current research, they were coded as a separate group to represent the maybe-

disadvantaged native Americans. 

There are other possible variables that may also affect the math achievement 

differently. However, following the principle of parsimony and to focus on the current 

research question of interest, discussion of a possible list will stop here. The factors to be 

considered in this research are regarded as comprehensive enough without hindering the 

interpretability of results. To conclude, language proficiency, SES, gender and race-

ethnicity are kept as independent variables in the current research. Parental educational 
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level is embedded in the SES index and not represented by itself. Descriptions of the 

selected variables and measures will be provided in detail in the next chapter. 

Limitations of Past Research 

As explained before, there are many reasons for the conflicting results on the 

influence of language on math, especially in the long run. Limitation in research design 

and analysis techniques are the main source. Because issues like samples and variables 

included or excluded in the research affect both the soundness of the research design and 

the specific models used, they are discussed under both sections of limitations in research 

design and limitations in statistical models. 

Limitations in Research Design 

Most of the research design limitations have already been discussed in detail 

when reviewing the conflicting results on the diverging versus converging math 

achievement gap. For example, the sample difference as well as instrument difference 

contributed to the inconsistency between studies. These differences contaminated 

conclusions not only for achievement gaps but also for background gender effects. 

Several key issues are revisited below. The solution to these issues is the longitudinal 

data and a direct measure of language proficiency. 

First, as the focus of many studies, the relationship between language and math 

was revealed only in a roundabout way without a direct measure of language ability. 

Many research results concluded on the impact of language just with the average 

difference at the group level. For example, Abedi and Lord (2001) modified some items 
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from the 1992 NAEP math assessment that are identified to be potentially problematic for 

ELL students. The linguistic complexity of some items was modified. Students’ score 

differences between the original and the modified items were assumed to represent the 

language influence on math. This depiction of the language influence is only a rough 

sketch of the more complex picture. A better way is to use a continuous language 

proficiency measure so that a wide range of language proficiency can be studied 

(Chalhoub-Deville & Deville, 2008). This research uses the reading score as a proxy at 

the individual level. It benefits not only as a direct measure of language proficiency but 

also a measure with richer and finer information along a whole distribution. 

Second, most studies are cross-sectional and focused on one grade (Abedi et al., 

2005; Brown, 2005; Butler & Castellon-Wellington, 2005; Fry, 2007). Different samples 

were used in different grades and sometimes different variables were considered at each 

grade. The impact of language on math cannot be compared across grades with 

confidence.  In the same vein, changes in achievement gaps across grades might not 

reflect changes of achievement but of the status quo for each new grade because of 

demographic change. For example, Fry’s (2007) study involved students from grade 2 to 

11 but they were different students at each grade just measured at the same time. The 

composition of samples varied in percentage of ELLs. Results based on this type of 

cross-sectional studies cannot provide convincing evidence of a closing or diverging 

achievement gap between ELLs and Non-ELLs. Longitudinal studies have the advantage 

that the sample stays the same. Many background factors related to students’ academic 

achievement can be assumed to be quite stable for the same students and the math 
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achievement can be interpreted with more confidence to reflect the progress in math. For 

this reason, the Early Childhood Longitudinal Studies- Kindergarten Cohort (ECLS-K) is 

selected for the current research. 

Third, there were studies in the past that used longitudinal data but the interest 

was on the math achievement regardless of language proficiency variability among 

individual students (Chang etal, 2009; Galindo 2009; Han, 2008). Past results confirmed 

the influence of language on achievement gaps and the shifting language impact, yet 

these two phenomena were never explored within the same model. The ECLS-K dataset 

has the reading scores as well as the math scores at every assessment time point. By 

including the reading scores when modeling math, a long term language impact can be 

observed. In addition to that, since language proficiency affects student performance in 

standardized math assessment, the math growth based on the unadjusted score is not as 

accurate as a score where language proficiency is controlled. By including the reading 

score as a covariate, a purer math trajectory will result1.  

Limitation in Statistical Modeling 

In order to detect the shifting language influence on math achievements, various 

methods were tried in the past to solve the puzzle from different perspectives. For 

example, Abedi and others (2005) used simple regression, multiple regressions, principle 

component analyses and canonical correlational analyses on the same dataset to try to see 

how language affects math differently at different grades. Coordinating all results from 

various methods was already a challenging task. In addition to that, sometimes each 
                                                      
1 Note that the same regression models serve two purposes: the slope reveals the relationship and the 
residual represents the pure math achievement after accounting for language proficiency. 
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analysis used only part of the variables. The fact that all the variables are not studied at 

the same time can lead to conflicting conclusions. This latter point was very well 

reflected in Abedi and Lord (2001). Abedi and Lord (2001) conducted two separate 2-

way ANOVAs. One was to see the effects of ELL status and SES status on math and 

another to see ELL status and item types (language factor) on math. The first analysis 

produced a significant interaction term which prevents meaningful interpretation of main 

ELL effect but the second one found a consistent ELL effect. This type of discrepancy 

about ELL effect is hard to reconcile between separate analyses. A better way is to 

include all variables in the same model and analyze them simultaneously. 

The biggest statistical problem with past research, however, was that they all 

revolved around a mean or an average pattern. Sometimes groups were compared just on 

mean math scores (Abedi & Lord, 2001; DOE, 2008; Fry, 2007); sometimes mean 

regressions were used (Abedi, et al., 2005; Brown, 2005; Butler & Castellon-Wellington, 

2005; Chang et al., 2009; Han, 2008). In all, an average pattern was used to represent a 

whole distribution of possible patterns. This is fine when conditional distributions (or the 

error distribution) are normal. However, if there are changes in higher order moments 

such as skewness or kurtosis of the distribution, the median may be a more appropriate 

measure of central tendency than the mean (Edgeworth, 1888; Fox, 1997; Hao & 

Naiman, 2007; Koenker, 2005). Some studies have already hinted that language does not 

affect low math ability students the same as it affects high math ability students (Abedi et 

al., 2005; Ausubel & Robinson, 1969; Butler & Castellon-Wellington, 2005; Chang et al., 

2009; Fry, 2007; Galindo 2009; Han, 2008). If this speculation is true, locations other 



26 
 

than the median are also of interest. A natural thought is to truncate the population into 

subgroups based on the unconditional math scores and conduct several mean regressions. 

This approach, however, could create biased parameter estimates as thoroughly argued by 

Heckman (1978). When a differential effect (e.g. language) rather than a constant is 

expected for the independent variable, a quantile regression (QR) is more appropriate 

than a mean regression (MR) (Hao & Naiman, 2007; Koenker, 2005; Koenker & Hallock, 

2001).  

MR requires several assumptions which in reality are not always met. The normal 

distribution of errors and homoscedasticity are two of them. Violation of assumptions can 

produce misleading results and sometimes even prevent programs from running. For 

example, Butler & Castellon-Wellington (2005) reported that a MANOVA on Grade 3 

data did not run because of the coexistence of unequal variances and unequal sample 

sizes between groups. Violation of homoscedasticity was believed to be the issue. If the 

normality assumption holds, violation of homoscedasticity may be accommodated 

through multilevel regression models. If normality does not hold, ordinary least square 

(OLS) in mean regression still produces unbiased and consistent estimates but is not the 

most efficient estimator (Fox, 1997).  In that case, again, a robust regression method such 

as quantile regression is an alternative (Hao & Naiman, 2007; Koenker, 2005; Koenker & 

Hallock, 2001). 

In brief, technical limitations in past research can be overcome by quantile 

regression and by including all the variables of interest in the same models. Due to the 

complexity of quantile regression as a new approach, a separate section is devoted to 
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introduce it in more detail. The goal is to provide a basic understanding of quantile 

regression and its utility through some examples.  

Quantile Regression: Basics and Applications 
 

Quantile is an equivalent term to percentile (also called fractile) where the median 

is the 50th quantile. Similarly, 25th and 75th quantiles correspond to the first and third 

quartiles. Quantile regression modeling (QRM) is a term for a series of quantile 

regression alternatives. Roger Koenker (2005), the author of the first book devoted to 

quantile regression, traced quantile regression back to Boscovich, even prior to the 

discovery of least squares commonly used for mean regression. In that first attempt to 

“ever do regression” (Koenker, 2005, p.2), Boscovich estimated the slope coefficient 

through a process which Laplace later noted as the computation of a weighted median. 

However, the model was an interesting mixture because while the slope was estimated 

based on the median, the intercept was still estimated as a mean. In 1888, Edgeworth 

improved Boscovich and Laplace’s idea by proposing a process to minimize the sum of 

absolute residuals in both intercept and slope parameters (Koenker, 2005). The first 

complete quantile regression thus started. 

 Clearly, quantiles are order-statistics and are more resistant to outliers. If errors 

follow a Gaussian (normal) distribution, results of MR and QR at the median coincide. If 

errors are not normally distributed or homoscedastity does not hold, QR provides a more 

efficient estimate. In addition to that, QR can detect the differential effects of 

independent variables on the dependent variables that MR cannot detect. This quality of 
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QR enabled in-depth research in many fields. For example, Koenker and Hallock (2001) 

studied the determinants of infant birthweight. MR revealed that baby boys weighed 

more than 100 grams than girls on average. However, although this direction of disparity 

was consistent across the weight distribution, QR revealed that the magnitude of the 

disparity was less at the 5th quantile (45 grams) than at the 95th quantile (135 grams).  

QR has helped to advance knowledge in many fields. It is a frequent tool in 

economics and it is regarded as “the standard tool in wage and income studies in labor 

economics” (Yu et al., 2003, p.339). For example, Koenker and Bilias (2001) found the 

Bonus System in Pennsylvania can shorten the protected unemployment period for some 

of the unemployed but not all. Chevapatrakul and others (2009) used quantile regression 

to confirm the Taylor Principle in finance. In medicine, QR has been used for studying 

gender and demographic covariates effects for end-tail quantiles of the population 

(Abreyeya, 2001; Austin et al., 2005). It is also used for developing medical reference 

charts (Cole, 1988) and growth charts (Wei, et al., 2006). QR has also been applied to 

environmental studies (Pandey & Nguyen, 1999) and to survival analysis (Koenker and 

Geling, 2001; Yang, 1999). To the author’s awareness, however, application of QR in the 

educational measurement field is rare. QR has never been used for language-related 

research or assessment issues. As has been established, QR is a natural tool to study the 

shifting relationship between language and math (or the differential effect of language 

proficiency on math). It is hoped that this research will fill the gap in educational research 

for QR applications. 



29 
 

To fully appreciate the advantage of QR for the current research, the following 

sections are devoted to introduce basics of QR modeling (QRM)2, balanced between 

details and brevity. When appropriate, the variables for the current research are used to 

make the concept more concrete. Only one independent variable (x) is considered in the 

introduction but extension to more independent variables will be demonstrated in the 

actual research later. QR can be linear or non-linear, parametric or non-parametric. This 

introduction, however, will be limited to linear QR models. The model here is regarded 

as semi-parametric where the deterministic portion (prediction) still assumes a parametric 

form although the error term does not (Cade & Noon, 2003). 

QRM in Equations 
 

Using one covariate as an example, a simple mean regression model can be 

written as  

iii xy   10     (2.1) 

All the data are used to find one regression line that minimizes the error term or 

the least squared distance (LSD) objective function. Algebraically, the goal is to find the 

point where the first derivative of the mean squared deviation is zero with respect to the 

mean. Graphically, the resulting regression line is a line that minimizes the sum of 

squared vertical distances of all response observations to the line. The best fitting line is 

actually the one that passes the expected means of the response distributions conditioned 

at every covariate value.  

                                                      
2 The organization of this section follows the framework of Hao and Naiman (2005). 
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Analogically, quantile regression models can be written as 
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The only notational difference between Equation 1 and 2 is the extra superscript 

‘p’, which specifies the pth quantile regression model.3 Depending on the quantiles of 

choice, the QR regression lines are different. In practice, usually a whole set of quantile 

regression models are compared to detect the different covariate effect on the dependent 

variable at various quantiles of response distribution. Still, all the data are used for every 

quantile regression modeling4. The residuals are still minimized but by minimizing the 

absolute distance rather than the squared distance. The best fitting line is the one that 

passes the conditional pth percentiles of the response distribution. Taking the current 

research as an example where reading score is the independent variable and math the 

dependent variable,  the best fitting line for p=.5 passes the conditional medians (50th 

percentile) of the math score distributions. In other words, half of the math scores lie 

above the line and half below the line. The same concept extends to other quantile 

regression models at other ps.  

QRM Parameter Estimation 
 

In mean regression modeling (MRM), estimates of the intercept and slope 

coefficients of the best-fitting line are the ones that minimize the sum of squared errors  

                                                      
3 Koenker and other authors used τ rather than p. p is kept here for obvious meaning of “percentile”.  
4 It is a misconception that only a subset of the observation is used for every quantile regression. All 
observations are used to locate a quantile since it is the pth value in the ordered observation. Also, the 
quantile regression analysis is a minimization of weighted sum of absolute residuals that involves all the 
observations. 
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When linearity, constant variance and independence of x values are true, ordinary least 

square estimation coincides with maximum-likelihood estimation. The corresponding 

slope coefficients are regarded the best linear unbiased estimator (BLUE) of the 

population parameter. 

In QRM, estimates of the intercept and slope coefficients corresponding to the 

best-fitting line are the ones that minimize the weighted sum of absolute errors 
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5 Koenker’s notation for this concept is 
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1

)(  . Notation used here are consistent with what they 

commonly mean in social science field. This is decided to facilitate understanding and communication 
among general readers. 



32 
 

The solution that minimizes the weighted absolute distance is when 

i
pp

i xy )(
1

)(
0ˆ    equals the pth percentile. Further details can be found in Koenker 

(2005) and Hao and Naiman (2007).  

Several algorithms are available to estimate the quantile regression parameters 

such as simplex (Koenker & d’Orey, 1987), interior point (Portnoy & Koenker, 1997), 

and smoothing method (Chen, 2007). The default algorithm in Quantreg in R and SAS 

are both simplex. However, this algorithm is computationally demanding and is not 

recommended for sample size larger than 5000 (SAS, 2008, p.5380). For larger sample 

size, interior point is faster.   

QRM Standard Error Calculation and Confidence Interval 
 

Once the coefficients are estimated, standard errors are calculated to test the 

statistical significance of the coefficient estimate 1̂ . The intercept usually is not of 

interest in hypothesis testing and is not discussed here. 

In MRM, the standard error for the coefficient 1 is calculated by assuming the 

normal distribution of the error term. That is, the i in equation 2.1 is regarded as 

independently and identically distributed (i.i.d.) across all covariate values. (In that sense, 

the subscript “i” can be dropped from the equation.) 
1̂

S is the estimated standard error of 

1 and the
1

ˆ11 /)ˆ(  s is assumed to follow a Student’s t distribution with n-k degrees of 
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freedom (k is the number of all coefficients plus an intercept). Consequently, the 100(1-

α)% confidence interval for 1 is calculated in the form 
1

ˆ2/1̂  st  . 

The very motivation for the development of QRM is that the conditional response 

distribution is skewed. More importantly, the error terms do not follow i.i.d. Traditional 

approach for standard error thus is not appropriate and can be replaced by a bootstrap 

(Efron’s, 1979) technique which does not necessarily require a specific form of 

distribution. The observed data set is regarded as the population. One method is to 

bootstrap pairs of observations (e.g. a reading score with a corresponding math score) 

from the observed data repeatedly and generate multiple samples. Every sample gives a 

parameter estimate. In this way, a distribution of the s1̂  can be collected. The standard 

deviation of these s1̂  
is taken as the standard error of the parameter 1  . The confidence 

interval can be calculated following a standard normal distribution in the form 

of
1

ˆ2/1̂  sz .  Another approach to determine the confidence interval is to take the 

empirical values from the same distribution of the estimated s1̂  
and locate the 

corresponding empirical percentiles. For example, the 95% confidence interval of the 

parameter 1  starts from the 2.5th percentile of the estimated s1̂  in the distribution and 

ends at the 97.5th percentile of the estimated s1̂ . 

The approach for SE described above is the standard xy-pair bootstrap. Within the 

bootstrap family, there are also other versions developed for QRM such as Parzen, Wei 

and Ying’s (1994) version of the xy-pair bootstrap, the Markov chain marginal bootstrap 
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(MCMB) of He and Hu (2002) and Kocherginsky, He, and Mu (2005). Non-bootstrap 

methods are also developed that employ rank score function, sparsity function or kernel 

estimation of Huber sandwich (Powell, 1991). For more details about these methods, 

please refer to Koenker (2005). 

Hao and Naiman (2007) gives a guideline that the number of bootstrap samples 

should be between 50 and 200 for standard deviation estimation and between 500 and 

2,000 for a confidence interval. Fox (1997) recommended 100 to 200 for standard error 

and 1000 to 2000 for confidence interval. SAS uses the MCMB method for both SE and 

CI estimation but cautions its appropriateness only for large samples with at least 5000 

observations and/or 20 variables. 

Hypothesis Testing 
 

For large sample size, after standard errors are calculated, hypothesis testing for 

the significance of a single covariate takes advantage of central limit theorem and follows 

the regular regression procedures. The t-statistics are calculated following  
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and compared against the critical t with n-2 degrees of freedom under the null 

distribution. 

The bootstrapping method described above can produce a covariance matrix of 

the cross-quantile estimates. This matrix can be used for another type of hypothesis 
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testing to see whether any difference between the slope coefficients for the same 

covariate is statistically different across quantiles. For example, does reading ability 

predict math achievement the same way (e.g., is the slope coefficient the same) for a 

student who is at the 10th percentile of the math score distribution versus a student who is 

at the 90th percentile of the math score? This is called test of equivalence in the current 

research. The Wald statistics is for this purpose.  
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p is the parameter estimate from the pth quantile regression model and )(
1̂

q is 

the parameter estimate from the qth quantile regression model. In this case, the Wald 

statistic follows a 2 distribution with one degree of freedom. If there are p covariates in 

the models, the Wald statistic follows a 2 distribution with p degrees of freedom 

(Koenker & Machado, 1999). Thus the Wald statistic can be readily extended for more 

complicated models for test of equivalence of coefficients across quantiles.  

Obviously, Wald statistics can also be used to test the difference between a 

restricted model and an unrestricted model where one of them is nested within the other 

with only a subset of covariates. Likelihood ratio test can also provide similar 

information for this type of linear test. Koenker and Machado (1999) prove that these two 

tests are equivalent and follows a chi-square distribution under the null hypothesis. 
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Wald test based on the bootstrapping samples can be realized in at least two 

computer programs. Stata uses the sqreg command and Quantreg (Koenker, 2009), a free 

R package, uses the command anova.rq to test the equivalence of coefficients across 

quantiles. A goodness-of-fit test, Khmaladez Test in Quantreg (to be explained in the 

next section), provides additional criterion that can serve the same purpose. SAS has a 

command to test null hypothesis of 0: )(
10 pH   but makes no mention of test of 

coefficients equivalence across quantiles. However, the same approach from Quantreg 

might be developed by manipulating commands already extant in SAS.  

QRM Goodness-of-fit Index 
 

In MRM, 2R is the usual measure of goodness-of-fit. It is defined as:   
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 (2.5) 

This equation means 2R is the ratio between the sum of squares due to regression 

and the sum of squares of the total model. In another word, it represents the proportion of 

variance in the response variable being explained by the covariates in the regression 

model. It ranges between 0 and 1 with a higher value indicating better fit.  

In QRM, a similar index is suggested by Koenker and Machado (1999) which is 

the likelihood ratio between the sum of weighted absolute distances for the full pth 

quantile regression model and the sum of the weighted absolute distances for a model 
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with only the intercept. Let )(1 pV represents the former and )(0 pV the latter, still 

modeling one covariate, the equation representation for this index is 
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Stata named this “pseudo- R2” to distinguish it from 2R for regular MRM. 

For the model that only includes an intercept, the intercept is the sample pth 

quantile )(ˆ pQ of the response variable. Both )(0 pV and )(1 pV  are nonnegative since they 

are the sum of some absolute values. )(1 pV is always equal or smaller than )(0 pV  since 

a covariate is supposed to have explained some variance. Thus R(p) is also within the 

range of [0,1], with a larger R(p) indicating a better model fit just like the 2R  .  

The R(p) defined above naturally leads to a relative term that can be used to 

evaluate improvement in model fit by a more constrained model. Let )(2 pV be the sum of 

the weighted absolute distances for the less constrained model and )(1 pV for the more 

constrained one, 
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 (2.7) 

However, this pseudo-R2 index works well just with local comparisons at the 

same quantile. In reality, a covariate may have an effect on the response variable at the 

tails (p=.9 or .1) but not at the median (p=.5). Also, classical inference statistics depend 
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on a distribution form, which destroys the advantage of QRM models that is distribution 

free for the error term (Koenker & Machado, 1999; Koenker & Xiao, 2002). For this 

purpose, a distribution free test, Khmaladez test, is developed. This test uses the 

martingale approach which was first developed by Khmaladez (1981) and was extended 

to QRM by Koenker and Xiao (2002). This test can test the covariate effect in location 

shift, location and scale shift or additional shape shift. It can test individual covariate 

effect as well as overall model effect, effect at a certain quantile or across all quantiles. 

This test function is available in the free R package Quantreg and the critical values were 

developed and summarized into a table by Koenker and Xiao (2002).  Results of 

Khmaladez test also offers supplements to other measures of location, scale and skewness 

shifts such as the ones recommended by Hao and Naiman (2007). 

QRM Coefficients as Measures of Location, Scale and Skewness Shifts 

 

An important advantage of QRM over traditional MRM models is that QRM is 

robust to location, scale and skewness shifts as it does not require the normality and 

homoscedasitity assumptions like MRM does. On the other hand, all these shifts can be 

studied and compared across quantiles to see the different effects of the same covariate. 

Location shift refers to the shift in the measure of central tendency. This is an 

expected part for most regression analyses and is not a unique feature limited to QRM. 

However, in addition to this, QRM reveals shape shifts of the response distribution that 

MRM fails to capture. Shape shifts include both a scale shift and a skewness shift with 
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the former referring to the change in the dispersion of response variables and the latter 

the change in the skewness of the response variable distribution. 

Usually, graphics are used to inspect these shifts. For example, Koenker and 

Hallock (2001) used a set of box-plots to show the location and scale shifts in the annual 

compensation of chief executive officers. They also demonstrated how the various 

quantile regression lines reveal the skewness and skewness shifts of the Food 

Expenditure at different Household Income value using Engels’ data of 1857. Others 

graphed the coefficients from various quantile regression models and interpret shape 

shifts accordingly (Buchinsky,1994; Hao & Naiman, 2007; Prieto-Rodriguez et al., 

2008). 

Location shift is readily reflected in the coefficient estimates.  
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Shape shifts, however, are not as obvious. Hao and Naiman (2007) contributed to 

the quantile regression literature by developing measures of shape shifts using the QRM 

coefficient estimates. In their own words: “These measures provide direct answers to 

research questions about a covariate’s impact on the shape of the response distribution” 

(p.5).  However, they also pointed out that these measures are suitable for a model with 

only main effects.  
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Compared with the standard deviation as the measure of spread for normal 

distribution, Hao and Naiman (2007) suggested the pth quantile range/ quantile-based 

scale measure (QSC) / interquantile range (IQR) for skewed distributions.6 In quantile 

regression models, every p relates to two sample quantiles: )1(ˆ pQ 
 (the [1-p]th quantile) 

and )(ˆ pQ  (the pth quantile). The pth quantile range can be defined as 

)()1()( ˆˆ ppp QQIQR   .7 This quantity describes the range of the middle (1-2p) 

proportion of the distribution. For example, for p=.1, the interquantile range is between 

the 10th and 90th percentiles and describes the middle 80% of the distribution. When 

p=.25, the interquantile range becomes the interquartile range.  

Any reference group and a comparison group can also be compared on scale 

change. For any fixed quantile of choice, an interquantile range can be found as 

RRR LUIQR   for the reference group and CCC LUIQR  for the comparison group. 

The difference between these two IQRs is a measure of scale-shift effect which Hao and 

Naiman (2007) named “difference-in-differences” scale-shift effect or )( pSCS .  

Scale-shift effect or )( pSCS  can be estimated by QRM coefficient estimates. For 

the same model used as the example in this chapter, )(
1̂

p  is the fitted coefficient for a 

covariate in a pth quantile-regression model and it indicates the change in any particular 

                                                      
6 These various terminologies appear at difference places in Hao and Naiman (2007) but refer to the same 
thing. 
7 I made a change to the original equation by adding the absolute value constraint so that the sign will not 
interfere with interpretation. This is because if p<.05, IQR is positive, if p>.05, IQR is negative. Using 
absolute difference will always give the range in the positive term. Another way to define it is 
that .5p whenˆˆ and.5p whenˆˆ )()1()()1()(   pp(p)ppp QQIQRQQIQR  which is used for the 

derivation for SCS later. 
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quantile as the covariate increases by one unit. As a result, the corresponding pth 

interquantile range changes by the amount pp
1

)1(
1

ˆˆ    , which is )( pSCS .8 The connection 

is easy to see: 
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Zero SCS gives evidence of no scale change. Positive value indicates increase in 

scale as the covariate value increase. Negative value indicates decrease in scale as the 

covariate increase.  

  A quantile-based skewness (QSK) measure is also proposed by Hao and Naiman 

(2007) compared to the traditional skewness measure for a normal distribution. This is 

the ratio of the upper spread to the lower spread relative to the median minus 1 or 

1
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for p<.5. 

Positive QSK indicates a positively skewed distribution and negative QSK 

indicates a negatively skewed distribution. 

                                                      
8 Hao and Naiman (2007) pointed out, the scale effect does not depend on the reference group if only a 
linear QRM with no covariate interactions is fitted. When interactions exist, measure of SCS is more 
complex. As of now, interaction terms have not been studied extensively in quantile regression literature. 
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 Along the same logic, difference in skewness between a comparison and a 

reference group is proposed as the “ratio of the ratios” or 
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where 
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p
C QQ  is the upper spread (range from the median to the upper quantile of interest) for the comparison group 

)5(.)1(
R

p
R QQ  is the upper spread (range from the median to the upper quantile of interest) for the reference group 

)()5(. p
CC QQ  is the lower spread (range from the median to the lower quantile of interest) for the comparsion group 

)()5(. p
RR QQ  is the lower spread (range from the median to the lower quantile of interest) for the reference group

 

A value of 1 indicates no skewness shift. A value larger than 1 means the right-

skewness is increased. A value less than 1 means the right-skewness is reduced. This 

value minus 1 gives the percentage change which is now called skewness shift, or SKS. 

 Hao and Naiman (2007) derived SKS from the QRM coefficient estimates in the 

following way. For this purpose, the typical covariate setting with only the intercept is 

defined as the reference group. The SKS for the middle 100(1-2p)% of the population is 

then:
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SKS is a measure of skewness “above and beyond proportional scale shifts” (Hao 

& Naiman, 2007). A value of zero can mean either no scale shift at all or a proportional 

scale shift. However, a negative value means decrease in right-skewness due to the 

covariates and a positive value indicates increase in the right-skewness. Thus a non-zero 

value of SKS means a sure skewness shift. 

One final note from Hao and Naiman is on the overall evaluation of a covariate’s 

impact on the inequality of the response. To decide whether all the shifts are statistically 

significant, it is necessary to examine the alignment of the signs of location, scale, and 

skewness shifts. For this purpose, two more terminologies are introduced: in-sync and 

out-of-sync. In-sync means that the signs for location, scale and skewness shifts are 

consistent with each other. Using comparison groups versus the reference group, if the 

signs are all positive, this means that the median of the comparison group is higher than 

the reference group, the scale of the comparison group is more spread about than the 

reference group and the comparison group is more right-skewed than the reference group. 

In the context of an inequality study, these in-sync shifts “make the total distribution 

more unequal” which means the covariate/ predictor “exacerbates inequality through both 

location and shape changes” (Hao & Naiman, 2007).  On the other hand, when the shifts 

are out-of-sync, the covariate affects the location and shape of the response distribution in 

different directions which compromises the total effect due to this covariate. 

Hao & Naiman (2007) provided examples of codes in STATA to calculate the 

location and shape shifts. Quantreg package in R produces Khmaladez test results. A 
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combination of these two methods will reveal a complete picture of the stochastic 

relationship between variables that MRM cannot cover. However, both statistics are 

suitable for models without interaction terms. When interactions are involved, the 

approach by Hao & Naiman is not appropriate. It is unclear whether Khmaladez test 

statistics will be misleading when interactions terms are included in the model. 

QRM Applications in the Educational Field 
 

For a long time, estimation challenges precluded QRM use with large scale 

applications. Linear programming and modern technology makes efficient computation a 

manageable task. QRM has now become a standard function in programs such as STATA 

and SAS. As the result, QRM has become a common tool in many fields such as 

economics, finance, medicine, biology and environmental studies. QR application in the 

educational field was very recent. Most of these were on equality issues and appeared in 

journals of economics (Haile & Nguyen, 2008; Levin, 2001; Prieto-Rodriguez, Barros & 

Vieira, 2008; Wöβmann, 2005). For example, Haile and Nguyen (2008) studied the 

achievement gap between ethnic groups and genders. Results from mean regression were 

consistent with traditional findings that Asian students scored better than White students 

in mathematics. Quantile regression results showed, however, that Asian male students 

performed better than their White counterparts only at the 0.1 quantile but Asian females 

outperformed their White counterparts at all quantiles except 0.1. Wöβmann (2005) 

explored the heterogeneity in the central examination effect using several international 

databases and concluded that central exit examinations were conducive to students’ 
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performance and could even reduce the effect of parents’ educational background. 

Levin’s (2001) research on class size was also motivated out of economic concerns 

because smaller class size requires more resources. Using QR, he found out that despite 

conventional belief, reduced class size actually related negatively with scholastic 

achievement for less able students. Rather than the class size, peer effect was the variable 

in his data that correlated positively with students’ achievement at the lower distribution 

of abilities. All these applications of QR, however, were closer to the economic field than 

the educational field. The single application that can be regarded as for the educational 

measurement and assessment purpose was Betebenner’s (2009) growth model, named 

Student Growth Percentiles (SGP).  

SGP builds on a simple concept to take prior status into consideration when 

modeling the current growth. This is necessary because it is not reasonable to expect all 

the students to grow at the same rate and achieve the same proficiency criterion within 

the same time frame (Betebenner, 2009). For example, a student who was at the 10th 

percentile in math assessment at grade one has a low probability to score at the 50th 

percentile at grade 2. However, another student who was at the 90th percentile at grade 

one is almost ensured to score above the 50th percentile the next year.  Clearly, a 

reasonable description of growth should be based on conditional achievement. In 

Betebenner’s model, growth is conditioned on prior status. 

Traditionally, student’s observed achievement scores were used to model the 

conditional growth (Chang et al., 2009; Galindo 2009; Han, 2008). However, the scale 
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difference in scores across years makes the absolute mean difference between years not 

very informative (Betebenner, 2009; Yen 2007). As Yen (2007) and Betebenner (2009) 

showed, parents, teachers and administrators were not satisfied with how much students 

scored below, above or at a specific proficiency cut point.  They wanted to know whether 

the score difference was appropriate and how far away the students were from being 

proficient compared to their peers. SGP takes advantage of quantile regressions and is 

aimed to show this relative or norm-reference achievement. As Betebenner (2009) points 

out, it serves as a supplement to mean-regression-based, criterion-referenced 

achievement. 

SGP is a model that triggers the current research on the utility of quantile 

regression to study the language impact on math.  Concept such as taking previous status 

into consideration is worthy of exploration. However, there are several issues with SGP. 

First, Betebenner’ model does not consider the language impact in assessments. When 

language ability is confounded with content ability as literature has confirmed, partialling 

out the influence of language ability should be the first step before content achievement is 

modeled. Second, SGP is a full autoregression model in which all the previous scores 

were included in predicting the current score. For example, to model the 4th grade score, 

all first, second and third grade scores are counted in the model. This might magnify the 

influence of previous status too much. It is more reasonable to assume that wherever 

students start, their previous year’s performance sufficiently serves as the base for current 

growth. The inclusion of all previous terms is more out of need for statistical fit rather 
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than theoretical support9. To focus on students’ achievement no matter what leads to it, 

attention should be directed to the current factors that test scores can reveal. In the current 

research, that factor is language.  

Summary 
 

 Literature has confirmed the impact of language on math achievement. This 

impact is found for all population groups at various grades, for both genders, different 

ethnicity groups and groups with various social and family background. There was also 

evidence that the impact of language is not constant within grades or across grades. In 

addition, conclusions on the long-term effect were conflicting between studies. 

Limitations in research design and statistical techniques were the causes. To better 

explore the shifting influence of language on math achievement, longitudinal data 

together with quantile regression modeling are recommended. Advantages of quantile 

regression make it a more appropriate tool for these research questions. Available 

software facilitates the estimation and hypothesis testing. The introduction of quantile 

regression into the educational field has already started and this research aims for its 

application in the language research and assessment community. More specifically, 

quantile regression is the right tool to explore the differential relationship between 

language and math achievement. 

                                                      
9 The author found out through personal communication with Betebenner that the decision to include scores 
from all previous years was mainly due to statistical needs. The model fitted best in this way.  
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Chapter III 
  

DATA AND METHODOLOGY 
 

Research Questions as a Review 
 

Data and methodology were selected to answer the following four research 

questions: 

1. How does language proficiency affect math achievement within and 

across grades?  

2. How does math performance vary with respect to other background 

variables such as gender and socioeconomic status after language 

proficiency is controlled? 

3. Does the math achievement gap between ELLs, former ELLs, and Non-

ELLs increase or decrease as students move to higher grades? 

Data 
 

This research uses data from the Early Childhood Longitudinal Study, 

Kindergarten Class of 1998-99 (ECLS-K). The ECLS-K was developed under the 

sponsorship of the U.S. Department of Education, Institute of Education Sciences and 

National Center for Education Statistics (NCES). Westat and Educational Testing Service 
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(ETS) conducted the actual study. The ECLS-K is an unprecedented study in terms of 

following a cohort of students from kindergarten to eighth grade to measure the cognitive 

and social development of children. It involves a seven-wave, multi-stage data collection 

design starting from Fall 1998. The baseline population includes 21,260 nationally 

representative kindergarteners at the beginning of the study from 934 public schools and 

346 private schools throughout the country. However, minority, low-income, disabled, 

and special-needs children were oversampled. The sample was freshened in Spring 2000 

to include children who were not in kindergarten neither full-time nor part-time in the US 

during the 1998-1999 school year. Thus, the ECLS-K data is representative of 

kindergartners in 1998 and first graders in 2000 in US school system but not for other 

grades. In addition, 30 percent subsamples were drawn in Fall 1999 for the purpose to 

measure the extent of summer learning loss. Table 3.1 is a replication from a user’s 

manual to show the seven rounds of data collection time points, grade and school year.  

 
Table 3.1 Crosswalk between Round Number of Data Collection, Grade, and School 
Year: School Years 1998-99, 1999-2000, 2001-02, 2003-04, 2006-07 
Round number Child Code Grade School year 
1 C1 Fall-kindergarten Fall 1998 
2 C2 Spring-kindergarten Spring 1999 
3 C3 Fall-first grade (subsample) Fall 1999 
4 C4 Spring-first grade Spring 2000 
5 C5 Spring-third grade Spring 2002 
6 C6 Spring-fifth grade Spring 2004 
7 C7 Spring-eighth grade Spring 2007 

 

The complete dataset from K to 8th grade is described but only the last four time 

points are used for the core analysis in this research. There are three reasons for this 
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decision. First, the first two time points are for kindergarten students. Kindergarten 

constructs can be reasonably assumed to be different from later years of schooling. The 

8th grade psychometric report pointed out that some basic reading skills for kindergarten 

were not tested later because almost all children had mastered them by the end of the first 

grade.  Second, the sampling framework changed at the fourth time point. Third, the last 

four time points correspond to grades 1, 3, 5 and 8. They are commonly of interest for 

assessment.  These students were all tested in spring thus summer learning loss (if there is 

any) would not complicate the interpretation.  

There are several data sets available. The specific set used in this study is the 

Kindergarten-Eighth Grade Full Sample Public-Use Data File especially prepared for 

longitudinal studies. This file includes data from the base, first-, third-, fifth, and eighth-

grade years and have all data for all ECLS-K sample cases that have been publicly 

released in any of the rounds. More information about this dataset can be located in the 

Combined User’s Manual for the ECLS-K Eighth-Grade and K-8 Full Sample Data Files 

and the Electronic Codebooks (Tourangeau, et al., 2009, hereafter referred to as the 

“Manual”) and the ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) 

(Najara, Pollack, & Sorongon, 2009).  

Chapters five and ten in the Manual provide a different set of complete records 

other than the actual data file on the website. These are listed in Table 3.2. All the 

numbers reported in the manual are greater than the real data because the “complete” data 

in the manual include children who were excluded from direct assessment due to a 
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disability. The real assessment data show these children as missing thus giving a smaller 

number for the record counts. Round 7 has much lower response rate because a new 

process was involved by asking parents’ consent before collecting data. Also, children 

were given the choice to decide to participate or not. So, the big decrease in Round 7 was 

unavoidable. Round 3 is the subsample described above. Because there are several 

missing data codes that are not useful for this study, these are recoded by ignoring the 

reason for missing and replaced with a “.” for this research. This procedure further 

decreases the count of actual observations. The corrected empirical valid counts are 

included in Table 3.2. All analyses are based on the final recoded data. 

 

Table 3.2 Comparison of Direct Child Assessment Records:  
School Years 1998-99, 1999-2000, 2001-02, 2003-04, 2006-07 

   Count   
Round Grade Manual Data Recoded
C1 Fall-kindergarten 19172 19126 17622
C2 Spring-kindergarten 19967 19917 18937
C3 Fall-first grade (subsample) 5291 5267 5053
C4 Spring-first grade 16727 16683 16336
C5 Spring-third grade 14470 14415 14280
C6 Spring-fifth grade 11346 11294 11265
C7 Spring-eighth grade 9358 9307 9225

 

 

There are various instruments used to collect data including direct child 

assessment, and questionnaires from children, parents and teachers. For the current study, 

direct reading and math assessments are used to indicate children’s academic 

achievement and questionnaires are used to locate background variables such as gender, 

ELL status, socioeconomic status and race-ethnicity. 
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Reading scores and math scores are time-varying variables. Both of these are 

scale scores based on three-parameter IRT models. Reading scores are the independent 

variable and math direct assessment scores are the dependent variable. Psychometric 

quality is assumed good with ECLS-K data because of all the resources and experts 

involved. Also, the psychometric reports document the quality control procedures in great 

detail. The reading and math ability score reliability are all high with the lowest being 

.87. These values are replicated in Table 3.3.   

 

Table 3.3 Reliability of Direct Assessments 
Reliability Round 1 

K 
Round2 
K 

Round 3 
Grade 1 
subsample 

Round 4 
Grade 1 

Round 5 
Grade 3 

Round 6 
Grade 5 

Round 7 
Grade 8 

Reading .92 .95 .96 .96 .94 .93 .87 
Math .91 .93 .94 .94 .95 .95 .92 

 

 

Ideally, academic language proficiency should be used as the independent 

variable. As distinguished before, that is the part of language proficiency that 

continuously affects academic learning. However, this information is not available in 

ECLS-K. Reading ability is a proxy for language proficiency because understanding 

written text is the first form of language proficiency relevant to cognitive functions 

(Mestre, 1988).  

Time invarying variables include ELL status, gender (GENDER), socioeconomic 

status (SES) and race-ethnicity. These variables are chosen based on past literature. 

GENDER is recoded ignoring reason for missing. ELL status is recoded to subset 
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students into three groups: Non-ELLs (0), ELLs until Round 4 or Former ELLs (1) and 

ELLs after Round 4 (2)10. Because ELL status is based on an oral test, it reflects the 

English oral proficiency of students. This is different from the reading scores which 

reflect the reading proficiency of students. Thus in this research, two out of the four 

domains of language skills are actually represented.  

SES is a composite of parents’ income, educational levels and occupations. It 

involves 13 income categories, nine educational levels and 22 occupation types and is a 

weighted z-score. In other studies, there were usually either a high- or a low-SES group 

(Abedi et al 2005; Tate, 1997) or an above- or below-Bachelor’s degree educational 

group (Abedi et al 2005; DOE, 2008). Because SES is a continuous variable in this study, 

it should act as a more powerful covariate than in the previous research. 

Race is the variable that classifies students into different ethnic groups. It is based 

on parent reported data. It includes traditional categories of White, African American, 

Hispanic and Asian. Some other groups are recoded into two more categories:  Isolated  

(Native Hawaiian or other Pacific Islander, American Indian or Alaska Native) and 

Others (more than one race specified). Because Others does not represent a meaningful 

comparison group for my purpose, it is not used for any analysis. 

There is balanced proportion of the two genders (10950 boys and 10446 girls), but 

a strikingly small portion of ELLs and Former ELLs (2576 or 14.9%). This might be 

explained by the fact that many ELLs are immigrants who are not born in the USA and 

                                                      
10 Language screening tool used to decide student ELL status was not used after round 4 because most 
students are regarded as having met the oral proficiency by then. 
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move here much later than kindergarten or first grade. The cohort of this study, on the 

other hand, was decided at kindergarten and/or first grade. As the manual explained, the 

sample does not represent the current student population at each grade level in the U.S. 

Descriptive statistics reveal that the unconditional math and reading scores both 

changed in location and shape across time. Appendix A shows the distribution of reading 

and math score at the last four rounds of data collection. For every grade, there is a box-

plot, a quantile plot and a histogram. Figure 3.1 shows the residual distribution from math 

scores by mean regression with all the covariates controlled. The graphs clearly show 

violation of normality and homoscedasticity assumptions for mean regression modeling. 

This justifies the choice of quantile regression over mean regression as the statistical 

technique for this data. 
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Figure 3.1  Residual Distribution and Residual Plot against Fitted Math                    
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Models 
 

The relationship between language and math is modeled through regressions. A 

linear mean regression serves as the base model. Seven quantile regressions are studied 

with detail per grade to detect the differential language effect11. The seven quantiles are 

5th, 10th, 25th, 50th, 75th, 90th and 95th. Finer differences in quantiles are used at both ends 

because it is suspected that the impact may vary more at ends than in the middle. For 

example, if Ausubel and Robinson (1969) were right, language may have smaller impact 

on math achievement at lower ability level than at the higher ability level. 

The mean regression is represented as  

imimiy   βX0   (3.1) 

  i refers to the person and m refers to the specific independent variables. X and β 

are vectors representing the set of independent variables and corresponding coefficients. 

Independent variables in this study include ELL status, gender, SES, race-ethnicity and 

reading (proxy for language proficiency). Reading scores are group mean centered at 

each grade to facilitate interpretation of the intercept. Appendix A summarizes the names 

and scale of measurement of all the variables. To facilitate understanding, the full 

equation is written out below in the form of a mean regression. 

                                                      
11 For graphic presentations, more quantiles are used. The APPENDIX C graphics are based on 50 quantile 
points and figures in Chapter 4 are based on 19 quantile points evenly spread between .05 to .95. 
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ISOLATED*READING+ASIAN*READING+HISPANIC*READING+BLACK*READING

 +ELL*READING+FORMER*READING+GENDER*READING+SES*READING

+ISOLATED+ASIAN+HISPANIC+BLACK+ELL+FORMER+GENDER+SES+READING=MATH

  

It is necessary to distinguish between a variable and a regressor. A variable is of 

the original interest to the current study, a regressor is the actual manifestation that enters 

the regression equation.  A variable can have several forms (regressors) such as the 

original value, a squared term, or an interaction. It can also be on any scale. To 

acknowledge these as well as the existence of measurement error, all the regressors are 

represented by capitalized letters. The original variables of interest are written in the 

traditional way which can be lower case (e.g. gender) or capitalized (e.g. SES). Reporting 

of regression results mostly involves the capitalized terms and interpretation involves the 

traditional form of the term. 

Descriptive statistics show that there are very few students falling into several of 

the ELL-by-race-ethnicity categories. Interactions between ELL status and race-ethnicity 

group thus are not included in the current research although these are of interest. For 

parsimony reasons and to focus on the issue of reading and math achievement, interaction 

terms between SES and gender and SES and ELL status are also not included in the 

model. Three-way interactions are not explored because this will lead to four-way 

interaction in the longitudinal model where the variable TIME (grade) is added to the 

model. Interpretation of three-way interaction is already hard to translate into practical 

meaning (Good & Hardin, 2006). As a result, the highest interaction term explored 

throughout this study is three-way as in the longitudinal model. 
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Quantile regressions are represented by  

)()()(
0

p
i

p
mim

p
iy   βX   (3.2) 

Again, i is the person, m is the specific independent variable. p refers to the 

specific quantile regression. For every grade, there are seven quantile regression models 

corresponding to the percentile value of .05, .1, .25, .5, .75, .90 and .95.  

Both equations are replicated for grade 1, 3, 5 and 8. This means in total, there are 

32 grade level regression equations to be solved. Also, since the categorical variables are 

all dummy coded to enable comparisons, every full equation produces 17 coefficient 

estimates. The large sample size makes estimation possible. Standard errors will be 

produced by bootstrapping with 1000 replications.  

Besides separate models for each grade, an overall longitudinal model is proposed 

to include the time variable. The equation looks like 3.2 but with an extra “TIME” 

variable added to the right side. The reading scores are grand-mean centered across all 

grades. TIME is coded as 0,1,2 and 3 with 0 being the first grade. The differential 

language impact across time is revealed through the interaction term between TIME and 

READING. Similarly, two way interaction terms between TIME and gender, and TIME 

and SES will also reveal the shifting influence of gender and SES on math achievement 

across time. The same seven quantiles are decided to see how all these effects vary 

depending on the students’ conditional math ability in a continuum spread from 5th 

percentile to the 95th percentile and across all four grades.  
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Parameter estimates will be obtained using the Quantreg packages in R, Stata and 

SAS to cross check. All programs produce standard error estimates and relevant 

information to test significance but SAS does not have a ready function to test 

equivalence of coefficients between quantiles. Wald statistics will be used to make the 

final conclusion of the significance of the coefficients. Wald test, likelihood ratio test and 

the pseudo-R2 statistics as proposed by Koenker and Machado (1999) will be used as 

indices of model fit. Khmaladez test results (Koenker & Xiao, 2002) will detect the 

individual as well as the overall location shift or location-and-scale shift effect of the 

variables. 

 Whenever there are large amounts of information to present, graphics can help. 

Due to the many quantile models involved, graphics can supplement tables of statistics to 

facilitate reading. However, since graphics are supposed to highlight only key points, 

correct reading and full understanding of results will have to rely on tables as well. This 

is the dilemma of complex models: there will be more information, but there is more of a 

challenge to understand the information.
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Chapter IV 
 

RESULTS 
 

The purpose of the current study is two-fold: to explore the changing relationship 

between language proficiency and math achievement and to demonstrate the advantages 

of quantile regression over regular mean regression. The purposes are well reflected in 

the following three research questions:  

1. How does language proficiency affect math achievement within and 

across grades?  

2. How does math performance vary with respect to other background 

variables such as gender and socioeconomic status after language 

proficiency is controlled? 

3. Does the math achievement gap between ELLs, former ELLs, and Non-

ELLs increase or decrease as students move to higher grades? 

Based on literature and the availability of information in the data, the current 

research involves five independent variables, include reading scores (READING), gender 

(GENDER), SES, three ELL status (Non-ELL, FORMER and ELL) and five race-

ethnicity groups (WHITE, BLACK, HISPANIC, ASIAN and ISOLATED).  The 

longitudinal model also includes the grade (TIME). The dependent variable is math score 
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(MATH). Appendix A includes more descriptions of the variables and Appendix B 

provides relevant descriptive and diagnostic statistics. 

In brief, the results show that language proficiency is the key variable that 

explains the math achievement gaps between ELLs and Non-ELLs. In addition, quantile 

regression revealed that language influence on math achievement differed between 

students with different math ability. The strength of relationship also decreases as 

students move up to higher grades. Consistent with past research, gender, SES, and race-

ethnicity are all significantly related to math achievement. However, quantile regression 

revealed differential relationships depending on students’ math ability. 

Due to the large amount of and close relation among all results, the following 

sections are not organized to answer each research question separately. Rather, grade 

level models are discussed first and then longitudinal models second. Within each 

section, overall model fit is discussed before individual variables are interpreted. Grade 

level models serve as a base for longitudinal model building but results from the latter are 

interpreted with more confidence and detail since it has all the variables in the same 

model and was a statistically best-fitting model.  Answers to research questions are 

summarized at the end based on key observations that stand out among all the results. A 

quick glance over the summary may guide readers to filter through the logic and 

arguments made here on. 
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Grade Level Results  

Overall Model Fit 
 

Three sets of regression models are compared and evaluated: a simple regression 

that includes only READING as the independent variable and two multiple regressions 

that include other covariate variables, with and without interaction terms.  Table 4.1 

summarized all the R2s from mean regressions and the pseudo-R2s from seven quantile 

regressions.  R2 revealed that READING by itself explains 44%-54% of the variance in 

MATH.  Adding other covariates helps explain at most an additional 4% of variance. 

Adding interaction terms yields at most an additional 1% of the variance. Heuristically, 

Pseudo- R2 from each quantile regression gives the same message as mean regressions. 

The absolute values are much smaller in Pseudo- R2 than R2 because the calculation is 

based on absolute deviation rather than squared deviation12. However, mean regression 

results show that about half of the variance in MATH is not explained by the dependent 

variables in all these models. The impact of this will be discussed later.
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Table 4.1  
R-square for Mean Regression and Pseudo-R-square for Quantile Regressions 

Mean 
regression Quantile regressions 

Grade Model .05 .1 .25 .5 .75 .9 .95 
Grade 1 Simple regression   
  N=16334 .442 .299 .292 .272 .259 .265 .256 .225 
  Multiple regression                 
  N=8072 .468 .303 .292 .280 .278 .292 .287 .260 
  With interactions                 
  N=8072 .473 .307 .297 .286 .282 .292 .290 .267 
Grade 3 Simple regression                 
  N=14263 .543 .288 .317 .346 .342 .318 .291 .271 
  Multiple regression                 
  N=8023 .579 .318 .350 .376 .367 .346 .315 .297 
  With interactions                 
  N=8023 .580 .326 .355 .378 .367 .347 .319 .305 
Grade 5 Simple regression                 
  N=11256 .539 .342 .360 .362 .332 .288 .244 .203 
  Multiple regression                 
  N=7992 .580 .393 .403 .396 .358 .316 .269 .232 
  With interactions                 
  N=7992 .582 .395 .404 .396 .361 .324 .280 .246 
Grade 8 Simple regression                 
  N=9212 .535 .390 .385 .393 .332 .269 .195 .148 
  Multiple regression                 
  N=7959 .567 .417 .414 .393 .354 .288 .211 .163 
  With interactions                 
  N=7959 .568 .421 .416 .394 .356 .296 .224 .178 
Note:  Simple regressions include only Reading as the indicator. Multiple regressions include all the independent variables described in 
Chapter 2. The third model includes all independent variables and two-way interaction terms of interest.  
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Although model improvement beyond the main effect of READING in terms of 

R2  is not big, Wald and Likelihood Ratio tests produce evidence that by including all 

other independent variables and interaction terms, both mean regression and quantile 

regression models fit the data better statistically (Appendix C). This is true for all grades.   

The pattern of significance of each specific variable or interaction term is not the 

same across quantiles or between grades (Appendix D). To reach the statistically best-

fitting models, insignificant terms should be dropped. However, this means the models at 

each grade will be different. For example,  based on test statistics, 

READING*HISPANIC should be kept only for some lower quantile regressions at grade 

1 but should be dropped completely from all quantile regressions at all other grades. ELL 

should be dropped from grade 1, 3 and 8 but should be kept at grade 5. To make things 

comparable, the same model is maintained for all grades, which includes the same main 

effects and interaction terms although not all of them are significant at all quantiles 

and/or all grades. Appendix D summarizes the significance test results for each variable 

and the interaction term. The details of the differences are discussed under the individual 

effects section below. 

Quantile process plots (Appendix E) are used to present the slope estimates for 

the same variable at each quantile. These plots reveal that READING has a very strong 

and precisely estimated effect on MATH over the entire math score distribution. 

READING process plots do not mimic the shape of the intercept process plot, meaning 

READING exerts more than a location-scale effect on math score distribution. (Koenker 
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& Xiao, p.23). Also, several other slope coefficients do not stay constant which means a 

mean regression is not enough to describe these covariates’ relationship with math scores. 

Table 4.2 summarizes the results of tests on the equivalence of the slope coefficients 

across quantiles. It gives additional statistical evidence (at 05.p ) that the effects of 

READING and READING*SES varies across quantiles at all four grades. SES, 

GENDER, BLACK, READING*GENDER, and READING*BLACK have a differential 

effects at some of the grades. All other variables, that is, FORMER, ELL, HISPANIC, 

ASIAN, ISOLATED, READING*FORMER, READING*ELL, READING*HISPANIC, 

READING*ASIAN and READING*ISOLATED have a constant effect across quantiles 

at all grades. This means quantile regression does not give statistically more information 

than a mean regression on this last group of variables.  

Khmaladez test based on main effects (Appendix F) shows similar results. There 

is statistically significant location and scale shift effect for all covariates and shape-

shifting effect for some variables. Although not all individual covariates are related to the 

shape change in math score distribution by themselves, there is strong evidence that 

together, they do. They contribute to the shape shift in the math scores distribution for 

grade 1 (negatively skewed) and 8 (positively skewed).  
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Table 4.2.  
Test of Equivalence 

  Grade 1 Grade 3 Grade 5 Grade 8   Grade 1 Grade 3 Grade 5 Grade 8 

  F(6, 8054) F(6,8005) F(6,7974) F(6,7941)   F(6, 8054) F(6,8005) F(6,7974) F(6,7941) 
READING 7.73 8.67 59.94 104.41 READING*SES 3.49 6.86 4.83 7.09 

  .00 .00 .00 .00   .00 .00 .00 .00 
  *** *** *** ***   *** *** *** *** 

SES 3.2 1.85 1.19 2.13 READING*GENDER 1.72 3.83 1.89 5.32 
  .00 .09 .31 .05   .11 .00 .08 .00 
  *** *   *     *** * *** 

GENDER 13.26 6.44 .50 5.22 READING*FORMER .65 1.24 .36 1.22 
  .00 .00 .81 .00   .69 .28 .91 .29 
  *** ***   ***           

FORMER .50 .56 .24 1.47 READING*ELL .14 .41 1.01 .83 
  .81 .76 .96 .18   .99 .88 .42 .55 
                    

ELL .42 .69 .72 .33 READING*BLACK 1.26 3.51 6.07 3.14 
  .87 .66 .63 .92   .27 .00 .00 .00 
              *** *** *** 

BLACK 6.14 1.88 2.25 .97 READING*HISPANIC .97 .38 .49 1.45 
  .00 .08 .04 .44   .45 .89 .82 .19 
  *** * **             

HISPANIC 1.35 .94 .27 .86 READING*ASIAN .45 1.6 1.72 .9 
  .23 .46 .95 .53   .84 .14 .11 .49 
                    

ASIAN .64 1.18 1.06 .79 READING*ISOLATED .55 1.64 1.77 1.37 
  .70 .31 .38 .58   .77 .13 .10 .22 
                    

ISOLATED 1.05 .13 1.06 .46           
  .39 .99 .39 .84           
                    

Note: First rows are the estimates, second row the p-value. *** indicates significance level at or below .01. ** indicates significance level at or below .05. 
* indicates significance level at or below .1. The .1 significance level is listed just for information. Decisions about significance are based at alpha level of 
.05 or lower. 
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Individual Variable Effects  
 

To better examine the shifts of slope coefficients at each grade, individual 

coefficients are plotted with the same vertical scale range across grades. Figure 4.1 and 

4.2 present the main effects and the interaction terms respectively. These figures are 

based on 19 quantile regressions for smoother appearance although all the relevant tables 

such as Appendix D include only seven quantiles for ease in reading. 

For all the figures, x-axis represents the conditional quantiles under examination, 

ranging from .05 to .95. Y-axis corresponds to the intercept and individual slope 

estimates. The black solid line with shaded band is the coefficient estimate with 

confidence interval from quantile regression. The confidence band outside the quantile 

interval (.05, .95) is not displayed because there are usually insufficient data at extremes, 

making the confidence intervals not stable at those locations (SAS, 2008, p.5361). The 

red solid line is the mean regression estimate and the dashed lines are the upper and lower 

limit of the confidence interval. When possible, a vertical line at y=0 is also displayed. 

This corresponds to the null hypothesis of the parameter being zero. 

The intercepts represent the conditional math score of a white, male, non-ELL 

student with average reading ability at the grade level and average socioeconomic status. 

The mean conditional math scores for the reference group are 66.4, 104.54, 129.05 and 

145.81 for grade 1, 3, 5 and 8. The median (50th quantile) conditional math scores for the 

reference group are 64.9, 104.99, 130.65 and 147.42. 
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Figure 4.1a.  Intercept and Main Effect READING 
Note: Vertical scale range is (40,170) for intercept and (0, 0.8) for READING. 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.1b.  Main Effect: SES and GENDER 
Note: Vertical scale range is (0,6) for SES and (-10,1 ) for GENDER 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.1c. Main Effect: Former ELL and ELL 
Note: Vertical scale range is (-10, 5) for Former ELL and (-20,20) for ELL 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
The shaded confidence intervals are not shown for ELL at Grade 1 and at some higher quantiles at Grade 5 because they are beyond the vertical 
range of (-10, 5). 
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Figure 4.1d.  Main Effect: BLACK and HISPANIC 
Note: Vertical scale range is (-15, 10) 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.1e.  Main Effect: ASIAN and ISOLATED 
Note: Vertical scale range is (-15,10) 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.2a.  Interaction: READING_SES and READING_Gender 
Note: Vertical scale range is (-.2, .2)  
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.2b. Interaction: READING_FORMER and READING_ELL 
Note: Vertical scale range is (-.2, .2) for READING_FORMER and (-.5, .5) for READING_ELL 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
The confidence band is not shown for READING_ELL because it is out of the range of vertical scales used here. 
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Figure 4.2c. Interaction: READING_BLACK and READING_HISPANIC 
Note: Vertical scale range is (-.5, .4) 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.2d.  Interaction: READING_ASIAN and READING_ISOLATED 
Note: Vertical scale range is (-.5, .4) 
The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed because they tend to be unstable as 
extremes. The y axis represents the intercept or slope coefficient corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Several main effects immediately stand out. Both READING and SES are 

positively related to math scores across all quantiles at all grades. Both GENDER and 

BLACK are negatively related to math scores across all quintiles at all grades. More 

specifically, students with higher language proficiency have higher math scores; students 

with higher SES status have higher scores; girls have lower math scores than boys; and 

black students consistently scored lower than their white counterparts. There are 

significant interactions that moderate the magnitude of these main effects; however, they 

do not change the direction of these effects.  

Although mean regression results detected the statistical significance of these four 

main effects on average, quantile regressions revealed that the same variable does not 

have the same effect along the conditional math ability distribution.  At grade 1, as 

students’ math ability increases, the relationship between language and math achievement 

also increases in strength (Figure 4.1a).  Mean regression overestimates this relationship 

for low math ability students and underestimates it for high math ability students. This 

trend reversed from grade 3 to grade 813. At these later grades, although language is still 

strongly and positively related to math scores, the strength of the relationship decreases 

as students’ language proficiency increases. At these grades, mean regression 

underestimated the relationship for low math ability students and overestimated it for 

high math ability students. 

                                                      
13 Patterns related to grade 1 is very different from those in later grades with regard to many variables. This 
phenomenon is revealed throughout this chapter. 
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 The process plot for the READING slope coefficient at grade 1 mimics the shape 

of the intercept, which means the language proficiency of students exerts a location and a 

scale shift of the math score distribution. The dispersion among high math ability 

students is larger than low math ability students. However, the variance becomes quite 

stable at grade 3 and is larger for low math ability students than high math ability 

students at grade 5 and 8. This phenomenon has already been demonstrated by the 

residual plots in Figure 3.1. It can also be easily seen through the relative position of the 

quantile regression lines as in Figure 4.3. While the lines diverge at high quanitles at 

grade 1, they converge at grade 5 and 8.  

SES is strongly and positively related to math scores. At grade 1, the strength of 

the relationship increases as students’ conditional math ability14 increases. Tests of 

equivalence (Table 4.2) show that at later grades, the relationship is stable across 

quantiles. In other words, regardless of the conditional math ability, the influence of SES 

on the math scores stays the same in magnitude. The mean regression captures the 

relationship between SES and math scores as well as quantile regressions within these 

grades (Figure 4.1b). 

GENDER has negative estimates for all quantiles and at all grades (Figure 4.1b). 

This is consistent with the majority of past research, that other things being equal, girls 

performed worse than boys on math assessment (Benbow & Stanley, 1980; Mau & Lynn, 

2000). Test of equivalence (Table 4.2) shows that the gender gap varies between 

                                                      
14 The terms “math ability” and “math scores” are used interchangeably because the scores are regarded to 
reflect students’ current and end-product math ability regardless of other factors. 
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Figure 4.3 Simple Quantile Regression Plots 

Note:  The blue solid line is the mean regression line. The red dotted line is the median regression line. The 
gray lines represent the results corresponding to  the 5th, 15th, 25th, 75th, 90th and 95th quantiles regression 
models. 

The quantile models here are different from the complete regression model. Only READING is kept as the 
independent variable. Reading scores are all centered at the corresponding grade. 
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Figure 4.4 Plots of Score Difference between Boys and Girls 

 

 

Figure 4.5 Plots of Score Difference between White and Black 
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quantiles for grade 1, 3 and 8. At grade 1, gender gap is bigger for high math ability 

students than for low math ability students. Or, the low math ability students are similarly 

low being a boy or a girl but the high math ability students differ more between girls and 

boys. For example, the score difference between a girl and a boy at the 5% percentile is 

less than 1 point at grade 1. The difference at the 95% percentile is more than 7 points 

(Figure 4.4).  This trend seemed to change as students moved to higher grades. At grade 

8, the gender gap is bigger for students with low math abilities (about 5 points at 5th math 

percentile) but smaller for high math abilities students (about 3 points at the 95th math 

percentile). Still, the results suggest that girls started school at a disadvantage compared 

to boys and this disadvantage continued as students grew in age. 

Results for the subgroup BLACK are similar to GENDER.  Consistent with past 

research, black students performed worse than their white counterparts (e.g. Tate, 1997) 

regardless of conditional math ability or grades (Figure 4.1d). Tests of equivalence (Table 

4.2) show that the White-Black gap varies between quantiles only at grade 1 and 5. At 

grade 3 and 8, black students are homogeneously similar within group although still 

significantly worse than the white students. Figure 4.5 shows that at grade 1, the White-

Black ethnicity gap is about 4 points at the 5th quantile and about 10 points at the 95th 

quantile. At grade 8, the gaps are about 5 points at the 5th quantile and 3 points at the 95th 

quantile. These results suggest that although black students started school at a 

disadvantage compared to white students, this disadvantage was more obvious for high 

math ability students at grade 1. The disadvantage observed in early grades for the black 
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students remained as students moved into upper grades. However, schooling seems to 

have narrowed the gap within black students as they moved up the grades.  

Central to the research questions is the ELL status impact. When READING is 

controlled for, neither Former-ELLs nor ELLs differ from non-ELLs at any grade. 

Although there are some sporadic significant results at some quantiles, they are not 

significant at most quantiles (Appendix D). Tests of equivalence (Table 4.2) showed that 

the coefficients are not significantly different from each other between quantiles.  Based 

on this, the sporadic significant coefficients, such as for FORMER at the 25th quantile at 

grade 8, may be simply Type I errors. This is especially possible for the ELL effect since 

there are only 191 ELLs in total out of the complete sample. In brief, when READING is 

controlled for, there is no significant difference between the math scores of ELL, former 

ELL and non-ELL students. This result is different from many previous studies where 

gap is reported and the gap between these groups is considered increasing or decreasing 

(Abedi et al., 2005; Chang et al., 2009; Fry, 2007; Han, 2008). It seems that it is less the 

difference between these groups in math achievement scores and more the language 

proficiency that explains the variability. In the present data, since ELL status was decided 

based upon an oral language test, it also means that oral language proficiency is not a 

good indicator of students’ math achievement. Rather, the math score difference between 

ELLs and Non-ELLs is likely the result of the reading skills required by the tests. Of 

course, not every reading subskill is necessary for math assessment, neither are the 

reading skills the same as the academic language proficiency for math learning. Still, the 
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insignificance of ELL status in the presence of a reading score highlighted the language 

impact on math achievements for ELLs. 

To further explore the language factor, models with and without READING are 

compared. For simplicity, only main effects are explored. The small difference in R2 and 

pseudo- R2 between models with and without interaction terms (Table 4.1) gives a 

foundation for this decision. The comparison results are summarized in Table 4.3.  

Former ELLs do not differ from non-ELLs at grade 3, 5 and 8 regardless of the 

READING being controlled for or not. This suggests that once students have mastered 

certain level of oral language proficiency at early stage (grade 1), they can handle class 

work quite well to be comparable to their non-ELL peers later on. For grade 1, however, 

when READING is controlled for, there is no difference between Former ELLs and Non-

ELLs; when READING is not controlled for, there is a difference between Former ELLs 

and Non-ELLs.  This means language limitations still put the Former ELLs at 

disadvantage immediately after they are re-designated15. However, as the language 

proficiency of former ELLs continues to grow, by grade 3, these students can perform 

comparably well to their Non-ELL peers. 

At all grades, when READING is controlled, math score difference between ELLs 

and non-ELLs are not statistically significant. When READING is not controlled, the 

difference is significant. This supports that math achievement gaps between ELLs and 

non-ELLs are mostly related to the language proficiency between these groups. 

                                                      
15 The last round of language proficiency screening to decide ELL status stopped at Grade 1 for ECLS-K. 
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Table 4.3 
Significance Comparison between Models with and without READING 

    .05 .1 .25 .5 .75 .9 .95 MR   .05 .1 .25 .5 .75 .9 .95 MR 

G
ra

de
 1

 

READING + + + + + + + + 

G
ra

de
 3

 

READING + + + + + + + + 
                                

SES + + + + + + + + SES + + + + + + + + 
+ + + + + + + + + + + + + + + + 

GENDER - + + + + + + + GENDER + + + + + + + + 
+ + - + + + + + - + + + + + + + 

FORMER - - - - - - + - FORMER - - - - - - - - 
- + + + + + + + - - - - + + - - 

ELL - - - - - - - - ELL - - - - - - - - 
+ + + - + - - + + + + + + + + + 

BLACK + + + + + + + + BLACK + + + + + + + + 
+ + + + + + + + + + + + + + + + 

HISPANIC - + + + + + + + HISPANIC - + + - - - - + 
- + + + + + + + + + + + + + - + 

ASIAN + + + + + - - + ASIAN - - - - + + - - 
- - - - - - - - - - - - + + - - 

ISOLATED + + + + + + + + ISOLATED - - - - + - - - 
+ + + + + + + + + + + + + + + + 

R2 .30 .29 .28 .28 .29 .29 .26 .47 R2 .32 .35 .38 .37 .35 .32 .30 .58 

.10 .11 .10 .10 .12 .12 .11 .20   .10 .13 .15 .14 .13 .11 .10 .25 
 
Note: “+” indicates coefficient estimate that is significant at or below .05. “–“ indicates coefficient  estimate that is insignificant at or below .05. The 
first row of the symbols are the results of the model with READING, the second row are the results of the model without READING. MR means mean 
regression results. The gray areas are of interest for the original comparison purpose. The yellow areas represent variables that changed significance 
levels between models.  
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Table 4.3 Continued 

  .05 .1 .25 .5 .75 .9 .95 MR     .05 .1 .25 .5 .75 .9 .95 MR 

G
ra

de
 5

 

READING + + + + + + + + 

G
ra

de
 8

 

READING + + + + + + + + 

                                

SES + + + + + + + + SES + + + + + + + + 

+ + + + + + + + + + + + + + + + 

GENDER + + + + + + + + GENDER + + + + + + + + 

+ + + + + + + + - - + + + + + + 

FORMER - - + - - - - - FORMER - - + - - - - - 

- - - - - - - - - + - - - - - - 

ELL - - - - - - - - ELL - - - - - - - - 

+ + + + + + + + + + + + + + + + 

BLACK + + + + + + + + BLACK + + + + + + + + 

+ + + + + + + + + + + + + + + + 

HISPANIC - - - - + - - + HISPANIC - - - - - - - - 

+ - + + + + - + + - + + + + + + 

ASIAN + + + + + + + + ASIAN - + + + + + + + 

- + + + + + + + - + + + + + + + 

ISOLATED - - - + + - - - ISOLATED - - + - - - - + 

+ + + + + + + + + + + + + - - + 

R2 .39 .40 .40 .36 .32 .27 .23 .58 R2 .42 .41 .39 .35 .29 .21 .16 .57 

  .15 .17 .17 .15 .13 .10 .08 .26   .17 .17 .17 .15 .11 .07 .05 .25 
 
Note: “+” indicates coefficient estimate that is significant at or below .05. “–“ indicates coefficient  estimate that is insignificant at or below .05. The first 
row of the symbols are the results of the model with READING, the second row are the results of the model without READING. MR means mean 
regression results. The gray areas are of interest for the original comparison purpose. The yellow areas represent variables that changed significance levels 
between models. 
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In terms of the ethnicity group difference, at grades 3, 5 and 8, when language 

proficiency is controlled for, the HISPANIC-WHITE and ISOLATED-WHITE gaps are 

not significant. When language proficiency is not controlled for, they are significant at 

most conditional math ability levels. Combined with results from Figure 4.1d and 4.1e, 

this means that the low math achievement of the Hispanics and the isolated students is 

related to their language proficiency. The change in significance for the ISOLATED 

seem to suggest that although the geographically isolated students are rarely considered 

ELLs by common definitions, their language proficiency actually have put them at 

disadvantage in their performance in math assessment. In contrary to these two groups, 

Asians, however, do not seem to differ with READING controlled for or not. 

All these observations described so far are consistent at grade 3, 5 and 8. Patterns 

at grade 1 are opposite. Collinearity diagnosis reveals that Asian and Hispanics are 

correlated to Former ELL or ELL status. This might explain the unique pattern for the 

Asians. However, the variance inflation factor (VIF) is low and is less than 1.8 even at 

the extreme. For this reason, these two variables are kept in the model together with ELL 

status. However, there are only 191 ELLs out of the complete sample, which explains the 

width of the confidence interval around the estimates for ELLs (Figure 4.1c). The 

confidence interval for ELLs is not even displayed in Figure 4.1c because it is far beyond 

the vertical range used for the graphs.  Like for many other effects described before, 

grade 1 stands out different from all later grades. Student performance at this grade seems 

quite varied and hard to interpret. 
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Test of equivalence (Table 4.2) shows that the estimates for HISPANIC, ASIAN 

and ISOLATED are similar across quantiles. This means, mean regression gives as much 

information as quantile regressions for these three variables.  Based on Table 4.2 and 

Figure 4.1, it can be summarized that Hispanic students performed worse than their 

White counterparts at grade 1 and 3 but caught up at grade 5 and 8. Students from the 

geographically isolated areas started worse than their White counterpart at grade 1 but 

caught up by grade 3. Asian students, uniquely, performed worse than their White peers 

at grade 1 but caught up by grade 3. More impressively, they outperformed their White 

peers at both grade 5 and 8.  

Traditionally it is regarded that main effects should be interpreted with interaction 

terms if the latter are significant. Thus so far, the main effects are discussed in terms of 

general trend. As to be seen soon, interaction terms moderated the magnitude of the main 

effects but did not change the direction of the main effects. However, since the grade 

level models are not the statistically best-fitting model at each grade, interaction terms are 

not discussed here. More specific interpretation is presented in a different way through 

the longitudinal model.  

Longitudinal Model Result 

Model Building 
 

Model building is an important step to reach a statistically best-fitting model. 

Results can be interpreted with more confidence when the statistics are based on the best-

fitting model. The model building process can also provide better guidance for readers to 
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understand and evaluate the current research for their own benefit. For this purpose, the 

process is described in great detail in this section. 

The longitudinal model was built step by step from a full model (Model 1) with 

all relevant 2-way and 3-way interactions. Models were compared and evaluated at each 

step by looking at the R2 and significance pattern of each coefficient. High-way 

interactions are examined first and the main effects last. However, to avoid fishing and to 

be efficient, a systematic and abbreviated strategy is used. Whenever 3-way interactions 

are under examination, all 2-way interactions are kept in the reduced model even if they 

are insignificant. After decisions about 3-way interactions are finalized through model 

comparison, 2-way interactions are then studied.  Whenever 2-way interactions are under 

examination, all main effects are kept in the reduced model even if they are insignificant.  

There are two reasons a term is removed. First, it is consistently insignificant at an 

alpha level of .05 at all quantiles in all the models up to the one under examination.  An 

example of this is the Reading*ELL interaction which is consistently insignificant at the 

.05 level in both Model 1 and Model 2. Thus it has been removed since Model 3. Second, 

a variable is removed if the significance level jumps between quantiles and/or models 

although it is significant at or below alpha level of .05 at some quantiles.  An example of 

this is the Reading*Hispanic*Time. This term is significant (p=.03) at the 10th quantile 

in Model 1 but is not significant at any quantile in Model 2. It is thus removed starting 

from Model 3. Once a term is removed, it is not considered in the following models 

again. In this sense, this procedure falls into the backward elimination family. It is an 
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improved procedure because the decision to eliminate a term is postponed to the next 

model results rather than on the immediate results. This is necessary because for quantile 

regression modeling, there are usually several models evaluated at the same time. 

However, least absolute deviance estimators are unstable. A tiny change in the data can 

lead to relatively big changes in the fitted plane (Good & Hardin, 2006, pp.165). To be 

conservative, decisions are better made basing on consistent results from more than one 

model. 

The model comparison results are represented in Figure 4.6. It revealed the 

significance level change of all the variables kept until the final reduced model. The color 

of the bars for each variable indicates the significance level. Dark gray means the 

coefficient is significant at or below .01 and medium gray means significant at or below 

.05. Light gray indicates significance level higher than .05 but lower than .1. This last 

category is included just for information but is not discussed in the current study. The 

vertical scale refers to the specific quantile regression the result is based on. 
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Figure 4.6a Main Effects 
 
Note: M1 is the most complicated model with all the terms of original interest. M5 is the final reduced 
model with mostly significant terms only. Vertical scale indicates the corresponding quantile regression 
within each model. 
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Figure 4.6b Two-way Interaction 
 
Note: M1 is the most complicated model with all the terms of original interest. M5 is the final reduced 
model with mostly significant terms only. Vertical scale indicates the corresponding quantile regression 
within each model. 
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Figure 4.6c Two-way Interaction Continued 
 
Note: M1 is the most complicated model with all the terms of original interest. M5 is the final reduced 
model with mostly significant terms only. Vertical scale indicates the corresponding quantile regression 
within each model. 
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Figure 4.6d Three-way Interaction  
 
Note: M1 is the most complicated model with all the terms of original interest. M5 is the final reduced 
model with mostly significant terms only. Vertical scale indicates the corresponding quantile regression 
within each model. 
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Figure 4.7a Main Effects 

The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed 
because they tend to be unstable as extremes. The y axis represents the intercept or slope coefficient 
corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.7b Main Effects: Race-Ethnicity 

The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed 
because they tend to be unstable as extremes. The y axis represents the intercept or slope coefficient 
corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.7c Two-way Interaction  

The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed 
because they tend to be unstable as extremes. The y axis represents the intercept or slope coefficient 
corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.7d Two-way Interaction Continued  

The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed 
because they tend to be unstable as extremes. The y axis represents the intercept or slope coefficient 
corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 
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Figure 4.7e Three-way Interaction  

The x axis represents the quantile range from 0 to 1. The extreme values below .05 and .95 are not graphed 
because they tend to be unstable as extremes. The y axis represents the intercept or slope coefficient 
corresponding to each specific variable at each quantile. 
The black line with shade area represents the quantile regression results with 95% confidence interval. 
The red solid line is the mean regression results with dotted lines representing the 95% confidence interval. 
A black horizontal reference line at y=0 is also graphed when possible for hypothesis testing. 

 



 

99 
 

 

Table 4.4a  
Longitudinal Model Results : Main Effects 
 

  .05 .10 .25 .50 .75 .90 .95 MR 

Intercept 
68.88 74.27 84.07 94.44 104.61 113.13 118.73 94.23 

(.49) (.41) (.35) (.33) (.34) (.37) (.47) (.26) 

*** *** *** *** *** *** *** *** 

READING 
.50 .53 .59 .63 .64 .61 .59 .60 

(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) 

*** *** *** *** *** *** *** *** 

SES 
1.09 1.46 1.74 1.77 2.10 2.53 2.66 1.73 

(.37) (.41) (.31) (.34) (.31) (.39) (.43) (.24) 

*** *** *** *** *** *** *** *** 

GENDER 
-4.67 -5.24 -7.01 -7.89 -8.17 -8.10 -8.10 -7.22 

(.43) (.35) (.32) (.3) (.27) (.31) (.38) (.22) 

*** *** *** *** *** *** *** *** 

BLACK 
-7.75 -7.71 -7.24 -9.18 -9.13 -6.76 -6.54 -8.61 

(1.13) (1.26) (1.02) (.99) (.98) (1.43) (1.47) (.76) 

*** *** *** *** *** *** *** *** 

HISPANIC 
-4.29 -3.82 -2.79 -2.33 -1.97 -2.53 -2.12 -2.86 

(.92) (1.02) (.75) (.74) (.72) (.82) (1.05) (.55) 

*** *** *** *** *** *** ** *** 

ASIAN 
-1.58 -2.18 -1.76 -1.26 .17 1.53 2.71 -.74 

(1.15) (1.25) (1.09) (1.04) (1.16) (1.32) (1.44) (.77) 

  *         *   

ISOLATED 
-7.23 -6.37 -5.20 -4.49 -3.67 -3.07 -4.58 -4.27 

(2.22) (1.53) (1.92) (1.64) (1.29) (2.33) (2.59) (1.3) 

*** *** *** *** ***   * *** 

TIME 
6.25 6.70 8.40 9.99 11.34 12.33 12.37 9.55 

(.3) (.27) (.25) (.24) (.2) (.24) (.29) (.17) 

*** *** *** *** *** *** *** *** 
Note:  
MR refers to mean regression. The first rows are estimates, second rows are standard errors. 
Third rows are significance level. 
*** indicates significance level at or below .01 
** indicates significance level at or below .05 
*indicates significance level at or below .1 
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Table 4.4b  
Longitudinal Model Results : Two-way Interaction 

.05 .1 .25 .5 .75 .90 .95 MR 

READING*TIME 
.08 .06 .01 -.04 -.08 -.11 -.13 -.03 

(.01) (0) (0) (0) (0) (0) (0) (0) 
*** *** *** *** *** *** *** *** 

SES*TIME 
1.00 1.05 1.12 1.57 1.52 1.50 1.19 1.40 
(.27) (.29) (.26) (.25) (.21) (.26) (.27) (.17) 
*** *** *** *** *** *** *** *** 

BLACK*TIME 
2.20 2.24 .68 .38 .31 -.82 -.44 .98 
(.63) (.74) (.6) (.58) (.55) (.77) (.85) (.41) 
*** ***           ** 

HISPANIC*TIME 
1.84 1.90 1.06 .91 .56 .54 .35 1.08 
(.61) (.62) (.52) (.5) (.48) (.53) (.61) (.34) 
*** *** ** *       *** 

ASIAN*TIME 
.68 2.33 2.83 3.70 2.25 1.85 1.42 2.44 
(1) (1.09) (.79) (.87) (.81) (.91) (1.16) (.57) 

  ** *** *** *** **   *** 

ISOLATED*TIME 
3.57 3.17 1.14 1.14 -.87 -.43 .69 .58 

(1.06) (.73) (1.03) (1.04) (.69) (1.36) (1.34) (.68) 
*** ***             

READING*SES 
-.01 .00 .01 -.01 -.02 -.02 -.03 -.01 

(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) 
        *** *** *** ** 

READING*GENDER 
-.08 -.07 -.08 -.08 -.06 -.04 -.01 -.06 

(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) 
*** *** *** *** *** ***   *** 

READING*BLACK 
-.07 -.07 -.06 -.08 -.04 .04 .06 -.05 

(.02) (.02) (.02) (.02) (.02) (.02) (.03) (.02) 
*** *** *** *** ***   * *** 

READING*HISPANIC 
-.07 -.05 -.02 -.01 .00 .03 .04 -.01 

(.02) (.01) (.01) (.01) (.01) (.01) (.02) (.01) 
*** ***       ** **   

READING*ASIAN 
.01 .02 .04 .06 .08 .12 .09 .07 

(.02) (.03) (.02) (.02) (.02) (.02) (.03) (.02) 
    * *** *** *** *** *** 

READING*ISOLATED 
-.08 -.08 -.07 -.05 .00 .03 .02 -.02 

(.04) (.03) (.03) (.02) (.02) (.04) (.05) (.02) 
** *** ** *         

Note:  
MR refers to mean regression. The first rows are estimates, second rows are standard errors. 
Third rows are significance level. 
*** indicates significance level at or below .01 
** indicates significance level at or below .05 
*indicates significance level at or below .1 
 



 

101 
 

Table 4.4c  
Longitudinal Model Results : Three-way Interaction 

.05 .1 .25 .5 .75 .90 .95 MR 

READING*SES*TIME 
.01 .00 -.01 -.02 -.02 -.02 -.02 -.01 

(0) (0) (0) (0) (0) (0) (0) (0) 

    *** *** *** *** *** *** 

READING*GENDER*TIME 
.01 .02 .03 .05 .05 .05 .04 .03 

(.01) (.01) (0) (0) (0) (0) (0) (0) 

** *** *** *** *** *** *** *** 

READING*BLACK*TIME 
-.01 .00 .03 .05 .05 .03 .02 .03 

(.01) (.01) (.01) (.01) (.01) (.01) (.01) (.01) 

    *** *** *** ***   *** 

READING*ASIAN*TIME 
.01 .00 -.02 -.05 -.04 -.06 -.06 -.03 

(.02) (.01) (.01) (.01) (.01) (.01) (.01) (.01) 

    * *** *** *** *** *** 

READING*ISOLATE*TIME 
-.02 .00 .02 .03 .04 .02 .01 .02 

(.03) (.01) (.01) (.01) (.01) (.02) (.02) (.01) 

      ** ***       
Note:  
MR refers to mean regression. The first rows are estimates, second rows are standard errors. Third 
rows are significance level. 
*** indicates significance level at or below .01 
** indicates significance level at or below .05 
*indicates significance level at or below .1 
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Results 
 

It is clear that the pattern of the significance of the remaining variables is quite 

consistent both between models and within quantiles. The stability of the results between 

models gives confidence that there is no serious collinearity issue. Stability within 

quantiles guides the necessity to interpret the quantile regression results that stand out 

consistently. For example, READING is consistently significant. This gives strong 

support to the relationship between READING and math achievement. The Asian*TIME 

interaction term changes in significance level at some quantiles between models, but the 

coefficients for quantiles between .1 to .9 are always significant. In this case, the 

interpretation of the effect within this region of math score distribution is guaranteed. 

Interpretation of the modeling results are also facilitated by two other sources of 

information from Figure 4.7 and Table 4.4. Figure 4.7 plots the final quantile regression 

estimates based on 19 quantiles and Table 4.4 summarizes the statistical results for the 

seven quantiles at the 5th, 10th, 25th, 50th, 75th, 90th and 95th percentile for the same 

models. 

Unlike the grade level models in the previous section, READING is centered 

around the grand mean across four grades here. The grades are coded as “TIME” with 

values of 0, 1, 2 and 3. The intercept thus refers to the math score of a White, male, non-

ELL student with average SES background and average across-grade language 

proficiency at grade 1. Similar to Figure 4.1 and 4.2, x-axis marks the quantiles and the y-

axis the specific intercept or slope estimate. The black solid line with shaded bands 
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represents the quantile regression results and the red lines the mean regression results. 

When possible, a black vertical line at y=0 is also plotted for null hypothesis.  

Results are similar as in the separate grade level models. However, since all the 

data is put into the same model, trends across time can be interpreted with more 

confidence. Math and reading scores are both vertically scaled using 3PL item response 

theory (Najarian, Pollack & Sorongon, 2009). The assumption here is that the vertical 

scale is valid. This assumption, also true for regular mean regression, is less of concern in 

quantile regression modeling since quantile regression uses order statistics and is free 

from normality assumption. As long as the relative standing of the students’ ability 

maintains, the pattern and trend of the relationship between language and math remains.  

Many main effects are consistently and statistically significant.  Most two-way 

and three-way interactions are also significant. However, the statistical significance may 

be less meaningful when the estimates are in the hundredth of one point. This is an 

observation in the current study for many two-way and three-way terms. As Good and 

Hardin (2006) discussed, higher-order interaction terms can neither be given practical 

interpretation nor “have real meaning” (p.67). They can be examples of Type I errors and 

should not be over-interpreted. With these cautions in mind, rather than giving routine 

but meaningless sentences such as “GENDER modifies the interaction between 

READING and TIME by …”, three –way interactions will be presented in graphics to 

understand the meaning in a more concrete way.   
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Just as in previous grade level models, READING is strongly and positively 

related to math achievement at all grades. The magnitude of the relationship, however, 

follows a concave down shape (Figure 4.7a).  Overall, the strongest relationship is at the 

center bulk of the math score distribution. READING*TIME is positive at lower 

quantiles and negative at higher quantiles and the absolute value tends to be larger at 

higher quantiles than at lower quantiles. This could mean two things. First, the 

relationship between language and math achievement is not the same across time. 

Second, while the relationship is getting stronger for lower math ability students, it is 

getting weaker for higher math ability students over time. These interpretations are best 

seen in Figure 4.8 where the specific coefficients at each quantile and grade are 

calculated and plotted. 

 

 
Figure 4.8 READING Effect at Each Grade 
Note: Grade level results are calculated from the estimates in the longitudinal 
model where READING is centered around the grand mean of the vertical scale. 
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Just like the grade level model results, the relationship between READING and 

MATH is unique at grade 1. While the strength of the relationship keeps on increasing as 

math ability increases until the 75th percentile of conditional math ability at this grade, it 

evidently decreases at all quantiles for all other grades. The climbing relationship at 

quantile below .75 at grade 1 may be due to the fact that more and more math concepts 

start to rely on language skills to be expressed and understood (Ausubel & Robinson, 

1969).  Students at this grade are thus more sensitive to the language factor as their math 

skills expand. However, once some language proficiency threshold is reached, the 

language impact starts to decrease. The declining relationship at high math ability and at 

later grades may indicate that only some reading skills--- closer to academic language 

that is specific to the math content --- continue to affect math performance in tests. In the 

end, math and reading are two distinct subjects; the overlap between them (vocabulary, 

syntax) may be diminishing fast. A reasonable hypothesis is that students’ high math 

ability can compensate for some possible deficiency in language skills in test 

performance. This offset may have happened because the linguistic threshold (Burns et 

al., 1983; Cummins, 1979b) is reached that minimizes the role language plays in math 

learning. In the same vein, high math ability have counterbalanced the language 

requirement in math assessment. Of course, other significant interaction terms involving 

READING moderate this relationship. The specific READING influence for each gender 

or ethnicity is discussed separately below. 

SES is strongly and positively related to math achievement. In addition, 

SES*TIME is positive, meaning that the relationship between SES and math continues to 
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increase as students grow (Figure 4.9). In all, high SES keeps on benefiting students at all 

math ability levels. 

 

 
Figure 4.9 SES Effect at Each Grade 

 

GENDER effect is the same as previously discussed. GENDER*TIME is not 

significant and has been removed from the final model. In summary, girls started first 

grade with lower math scores than boys and the gap continued throughout later grades.  

Low math ability students are similar whether a boy or a girl. However, for other ability 

levels, girls performed much worse than boys in math assessments (Table 4.4a).   
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Figure 4.10 Race-Ethnicity Effect at Each Grade 
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Among all the race-ethnicity groups, Black students consistently scored lower 

than White students; and students at geographically isolated regions scored lower than 

their White counterparts at most ability levels. Interaction with TIME is significant at the 

lower tails of math score distribution for BLACK, HISPANIC and ISOLATED but at the 

central of the distribution for Asian. Figure 4.10 plots the race-ethnicity gaps across time 

for all four groups. 

Although Black students performed significantly lower than White students at all 

grades, the gap is generally larger for high math ability students than for low math ability 

students. Thus, while the weaker ones are similarly weak between the two ethnicities, the 

stronger ones are more different between the ethnicities. 

 Figure 4.10 seems to suggest that Hispanic students are catching up with their 

White counterparts across time. By grade 8, lower math ability Hispanic students actually 

performed better than low math ability White students after language proficiency is 

controlled.  Like Black students, however, at the high end of math score distribution, the 

Hispanic students still did not fare as well as the White students. 

Asian is the only race-ethnicity group that not only catches up with the White by 

grade 3 at most quintiles, they actually outperformed the White students at grade 5 and 8 

at all quantiles. The pattern of difference is similar to the Black and Hispanic versus the 

White: the gap between Asian and White is smaller for low ability students but larger for 

higher ability students. The only difference here is the direction of difference. In 
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summary, the lower ability Asians caught up by grade 3 and the high ability Asians 

scored much higher than the high ability Whites at all grades. 

Overall, the isolated students scored lower than the White students. Like 

Hispanics, at grade 8, the lower ability students in this group outperformed their White 

counterparts. The high ability students, however, still scored lower than their White 

peers. Like most other minority groups, there seems to be a ceiling that prevents the 

isolated group from being equal with the white at the high end of math score distribution. 

READING*SES*TIME is significant at most quantiles and READING*SES is 

significant only at higher quantiles (Figure 4.7d). Figure 4.11plotted the READING 

effect at both the mean SES status and one standard deviation above the mean SES at 

each grade. The reference line corresponds to the former and the colored solid lines the 

latter. Clearly, for all grades, READING effect is the strongest at the central math ability 

distribution and weaker at both ends. This suggests if items are modified to minimize 

linguistic requirement in math assessment, a bigger score gain should be observed for the 

medium math ability students rather than the extremes. This pattern of impact is true with 

or without SES mediation in Figure 4.11. However, higher SES status seems to be able to 

downplay the language impact to some degree. And this moderating function of SES 

increases in magnitude from grade 1 to grade 8. This might be related to accumulated 

advantages of high SES families on math learning. 
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Figure 4.11 Differential READING Effect Moderated by SES at Each Grade 
 
Note: The dotted line is the READING effect at the mean SES status. The 
colored solid lines refer to the calculated READING effect at each grade. 

 

READING*GENDER*TIME is positive at all quantiles. READING*GENDER is 

negative and statistically significant at almost all quantiles. To better examine the 

READING*GENDER gap, Figure 4.12 plotted the differential READING impact for the 

two gender groups at each grade separately. Overall, the impact of language proficiency 

seems to be increasing as students’ math ability increases. However, this trend stops at 

around the 75th percentile of conditional math distribution. From here on, the language 

impact started to decrease. Again, this could be that high math ability compensated for 

some deficiency of language skills.  

More importantly, the READING impact varies between gender and grade. At 

grade 1, this impact is consistently stronger for boys than for girls. At later grades, this is 
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only true for the lower math ability students (at or below 75th percentile at grade 3, at or 

below about the 40th percentile at grade 5 and at or below the 20th percentile at grade 8). 

At the other end of math ability, READING impact is stronger for girls than for boys. As 

Figure 4.7a has shown, girls consistently performed worse than boys in math, especially 

at the higher end of math score distribution. Their math ability may have not become 

strong enough to compensate for the language influence as it does for boys. Despite all 

these rippling effects, language has a consistent and positive relationship with math 

scores regardless of grade or gender. 

Three-way and two-way interactions involving race-ethnicity are mostly 

significant. Figure 4.13 summarized the differential relationship between READING and 

MATH for each race-ethnicity group. Overall, READING has an increasing impact on 

math achievement for all groups until near the 90th percentile (for BLACK) or 75th 

percentile (for all other groups including WHITE). After this point, the impact starts to 

decrease. Furthermore, the impact increases as Black and Hispanic students grow, and 

decreases for the Asian students. There is no three-way interaction in the model involving 

the Hispanics based on previous decision during model building. Still, the impact is 

stronger for high math ability Hispanics than for low math ability Hispanics. These 

observations can be similarly explained by the compensatory and threshold hypotheses. 

Except Asians who might have passed some threshold and start to benefit from the 

compensation mechanism of their high math ability, the other minority groups all fell 

behind their White peers. 
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Figure 4.12 Differential READING Effect between Gender at Each Grade 
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Figure 4.13 Differential READING Effect by Race at Each Grade 
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Summary  
 

After individual level language proficiency is controlled, difference between 

ELLs, former ELLs and Non-ELLs disappear.  Also, language proficiency has a 

consistent and positive effect on students’ math performance. However, this effect is 

different along the math score distribution. Overall, the relationship is stronger for low 

math ability students and weaker for high math ability students.  These answered research 

questions 1 and 3. 

The answer to research question 2 is more complicated. In general, the results are 

consistent with past research on these variables. For example, there are obvious math 

achievement gaps between race-ethnicity groups. Except for Asian who caught up with 

the White reference group very quickly and outperformed the latter by grade 3, all other 

race groups are generally at or behind their White peers. Girls scored lower than boys at 

all quantiles within all grades and low SES students consistently performed worse than 

high SES students.  

As expected, quantile regression provided richer information than mean 

regression, such as the differential language impact on math achievement depending on 

the math ability of the students. It also detected various, rather than constant, math 

achievement gaps related to gender, SES, or race-ethnicity. It is with the help of quantile 

regression that evidence is found that while gaps between low ability students decreased 

along time, there seem to be a ceiling for the disadvantaged (girls and/or most minority 

ethnicity groups) that prevented them from being comparable to the reference group at 
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higher math ability.  These are all the advantages that quantile regressions bring to the 

current research that mean regression cannot capture accurately. 

It is prevalent through all the results that high math ability students seem to be 

less influenced by factors such as gender, SES or language proficiency. There are three 

hypotheses that can be adjusted to explain phenomena like the ones observed in the 

current study.  Cummins (1979b) proposed a “threshold of linguistic competence” for 

bilingual students. He hypothesized that bilingual students may have to master a certain 

level of language proficiency before language is no longer a barrier for cognitive growth. 

Burns et al (1981) proposed a “technical threshold” in which they hypothesized students 

have to master technical language or symbolic language in the technical domain (here, 

math) before becoming good problem solvers. In the current data, the positive 

relationship between language and math means that high math ability students also tend 

to be high language ability students. According to the two threshold hypotheses, the 

decreasing language influence on math may be due to the fact that these students have 

passed the language threshold. More specifically, they have passed the technical 

threshold which is embedded in the definition of academic language for math. These 

threshold hypotheses can provide some degree of explanation for many rippling effects 

observed between language and math.  

A third hypothesis, that is, compensatory hypothesis can also explain the 

discoveries regarding the moderating effect of most demographic variables on the 

relationship between language and math.  The concept relevant to this hypothesis was 
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first proposed by Meyer & Schvaneveldt (1971), later appeared in Posner and Snyder 

(1975a, 1975b) and then elaborated by Stanovich (1980). This hypothesis was originally 

used to explain the paradoxical patterns of fluent reading which neither a top-down or 

bottom-up model can explain cleanly. The terminology is adopted here to refer to a 

possible compensatory mechanism that may explain the observations that high math 

ability students (mostly at or above the 75th percentile) seem to be less sensitive to 

language impact within each gender or race group and with similar SES background. In 

other words, high math ability may be able to compensate for the disadvantage of 

language limitation regardless of other factors such as gender, SES and race-ethnicity. 

Why and what makes high ability students less sensitive to language influence may differ 

between the factors of gender, SES and race-ethnicity. In many cases, it might be the 

combination of both threshold and compensatory hypothesis that have been working 

jointly to offset these individual level disadvantages. 
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Chapter V 
 

DISCUSSION 
 

Implications 
 

When controlling for language ability, the achievement gap between ELLs and 

Non-ELLs disappeared. This might reduce some stress for math teachers and school 

administrators. Also, it can be suggested that before a valid accountability decision is 

discussed, reporting academic achievement adjusted in terms of language proficiency 

may provide more accurate information on ELLs.  

Results have shown that even between the two main ELL population source 

groups (Asian and Hispanic), language impact on math achievement is different. This 

implies that trying to accommodate the needs of various ELLs with a one-size-fits-all 

method for all groups of ELLs is inappropriate. Literature has already shown that only 

linguistic accommodations make a difference in ELLs’ performance in assessments 

(Abedi & Hejri, 2004; Francis et al., 2006). This research exposed additional challenges 

in test accommodation. Just like LaCelle-Peterson and Rivera (1994) described: all ELLs 

vary in many other characteristics including cultural heritage, ethnic group affiliation, 

gender and individual learning differences. All these are educationally relevant and 

should be considered for instruction and assessment accommodations. 
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Many decisions are based on test scores. However, differences in scores may reflect other 

factors beyond students’ competency (LaCelle-Peterson & Rivera, 1994; Minicucci & 

Olsen, 1992; Stevens, 1993). For example, if students did not have the opportunity to 

learn, that is, no access to the content knowledge and did not participate in classroom 

instruction and interaction, assessments based on equal opportunity to learn is biased. No 

statistical technique can correct for this type of inadequacy in assessment.  

There is also implication for teacher preparation. Although the focus of the 

current study is assessment, lack of instruction preparation also harms students with low 

language proficiency during the learning process. The observed changing relationship 

between language and math may reflect the teachers’ varying instructional styles in 

addition to the influence of language demand in assessment. The report by National 

Council on Teacher Quality (NCTQ, 2009) summarized that few states have prepared 

their elementary teachers well enough to teach reading and math. Only five states have an 

adequate test in reading instruction and only one state has an adequate test of 

mathematics. For middle schools, 21 states permit middle school teachers to teach on a k-

8 generalist license. NCTQ concluded that this suggested many states believe that the 

pedagogy needed to teach later grade content is the same as the early elementary grades. 

The shifting relationship between READING and MATH in this study questions that 

practice. If teachers are not aware of the strong and shifting relationship between reading 

and math and have not been trained systematically to teach the two, their instruction may 

not enable differential approaches to help the linguistically disadvantaged. Stone (1988) 
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speculated on the teaching of the deaf and made a statement that can be borrowed 

verbatim for the teaching of ELLs:  

It is possible that in the face of difficult communication, we have a 
tendency to eliminate as much conventional language as possible… Elimination 
of written and spoken language hardly enriched the context of instruction for 
students who have language problems, although in the short run this may seem to 
ease the task of the teacher. It is human nature to try to make a complex situation 
more simple, but finally the simple reduction of language in situations where 
communication is difficult … does not result in greater learning. (p.120) 

 
Integrated teaching is a common practice in many classrooms now. However, 

traditional integrated teaching plans focus on a common topic spanning different 

disciplines at the same time. Results from the current research suggests to plan integrated 

teaching by paying attention to the academic language suitable for the topic but specific 

to each disciplines to best promote the learning. Rather than organizing units under 

weekly or monthly topics, using the academic language for the same topic but from 

different discipline will better help students to learn the content as well as the language. 

This is closely related to researches on academic English which is still at its infant stage. 

Observations on grade 1 are very different from all other grades. For example, the 

relationship between language and math is increasing until the 75th percentile of 

conditional math ability at grade 1 but decreasing at all other grades; the variance of math 

score distribution is larger at high language proficiency and smaller at low language 

proficiency at grade 1 but the opposite for later grades; the relationship between SES and 

math keeps on increasing at grade 1 but is quite constant at all later grades; the 

confidence band for the slope estimate of ELL is too big at grade 1 but much smaller 



 

120 
 

across other grades; and the pattern of significance change of race-ethnicity gap with or 

without READING controlled for at grade 1 is different from later grades. Performance at 

grade 1 is very different. The unique patterns for grade 1 seem to suggest that the 

construct for grade 1 may be more difficult to define thus leading to not so-well-guided 

test item development.  Testing at grade 1 may not be as meaningful and vertical scaling 

may work better by excluding first grade. 

The READING slope estimates started to decrease at the 75th percentile of 

conditional math ability at grade 1 and grade 3 for both boys and girls, students with 

various SES background and most race-ethnicity groups. It seems that the 75th percentile 

is a threshold. It is also starting from here, students’ math ability seems to be able to 

compensate for the language influence in math assessment. What makes this specific 

percentile so important is not clear but future research may help locate the reasons and 

help guide instruction and assessment. 

Limitations and Future Research 
 

This is an exploratory research that needs to be cross-validated using different 

samples and instruments. Also, there are some limitations that future research should try 

to overcome. 

Due to the limited number of ELLs and Former ELLs from different race-

ethnicity groups, interaction terms between ELL status and race-ethnicity group were not 

studied. Future research may include these interaction terms to better control for the 

differences between various race-ethnicity groups. Interaction between other covariates 
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such as SES and GENDER or SES and ELL status are not of interest to the key issue 

here. However, future researches may also include these interaction terms to explore 

other issues. The requirement of sample size is a major consideration. 

One justification for the choice of quantile regression over mean regression in the 

current study is the nonnormal error distribution. However, non-normality can also be 

due to model misspecification (Fox, 1997). R2 and pseudo-R2 show that the covariates 

explained only half of the variance in the math scores. These means that there are other 

variables that could be included if the purpose is to explain the math score variance.  

Literature has suggested other factors such as participation in advanced courses (Myers & 

Milne, 1988) and the number of courses taken (Mau & Lynn, 2000; Tate, 1997) in math 

are important factors for that purpose. Once included, these may interact with the 

relationship between language proficiency and math achievement. 

It should be pointed out that quantile regression is not the only robust model when 

normal assumption or homoscedasticity does not hold. When normality holds, 

homoscedasticity can be modeled by including a shifting error term. However, this 

function is not widely implemented in commonly available packages. As demonstrated, 

quantile regression method is straightforward and graphic presentation of results can 

facilitate non-statisticians to use the model rather than limit it to “experts.” Quantile 

regression modeling can provide much more information beyond a regular mean 

regression.  The interpretation, however, is very challenging. This might be a natural 
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dilemma for any models: the more complicated it is, the more information that can be 

gleaned but the more difficult to summarize.  

As Monroe and Englehart (1931) pointed out long ago, to better inform 

instruction and assessment, it is urgent to study the relationship between specific 

language skills and math skills. If the specific language skills that affect math 

achievement at each grade can be identified, this may guide math instruction and test 

development tremendously. Grimm (2008) explored the relationship between reading 

comprehension and three components of mathematics. He found out that reading has a 

strong relationship with Problem Solving and Data Interpretation but is almost irrelevant 

to Mathematical Computation. His research used a general reading test (Iowa Test of 

Basic Skills), however, it is reasonable to hypothesize that not all reading skills are 

equally relevant to the above math components during learning or assessment. For 

example, the complexity of sentence, specialized vocabulary, genre and language 

function for math may vary across grades (Bailey & Butler, 2003); thus a general reading 

skill measurement has a different effect than academic language proficiency on math 

achievement. Actually, both math sub-skills and reading sub-skills are identified in the 

ECLS-K data for the current study, but the high multicollinearity within each subject 

prevented the exploration of detailed relationship in this direction. This is an important 

issue that deserves more research in the future.  

English language proficiency in the current study is treated as an exogenous 

variable that affects the math outcome. Literature exists that has also explored factors that 
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contribute to the difference in second language proficiency such as native language 

proficiency (Oller, 1980), overlap in oral and written form between first language and 

second language (Dressler, 2006), language aptitude (Clément & Kruidenier, 1985), 

learner strategies (O’Malley & Chamot, 1990; Oxford, 1989), motivation (Gardner, 1988; 

Ramage, 1990) and learner type (Skehan, 1991). In that case, English language 

proficiency is also an endogenous variable influenced by other factors. This is the 

quantile regression version of structural equation modeling (SEM). Once developed, it 

can give even more insight to the relationship between these factors, language 

proficiency and math achievement. Methodological research in this direction has already 

started (Koenker, 2005). Application to language testing may be possible in the near 

future. 

Related to the methodological research of SEM, it is also fundamental to 

understand the issue of multicollinearity in the context of quantile regression. Indices 

such as vector inflation factor (VIF) are based on mean regression and ordinary least 

squares. Because quantile regression minimizes weighted absolute deviation rather than 

squares of deviation, the concept of multicollinearity takes on a different meaning. How 

to diagnose collinearity in quantile regression may also be different. Whether mean 

regression modeling is more sensitive to multicollinearity than quantile regressions is an 

interesting and important line of research. Research on this will advance understanding 

and application of quantile regression. 
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A limitation not specific to this study but to longitudinal studies in general is that 

students are not representative of current grades other than the one where they were first 

identified. The grade level gaps between gender and race-ethnicity groups might not be 

the same as any current grade randomly chosen in the U.S. at this moment. Even the 

results based on another longitudinal study may be different from this study. There are 

too many factors involved in any research, of which sampling framework and time are 

just two examples. Thus, the specific estimates in this study should be used with caution. 
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APPENDIX A: VARIABLE SUMMARY 

Variable 
Name 

Meaning Scale Possible 
values 

Note 

MATH Math Scaled 
Score 

Continuous 0 - 212  Students’ responses are scaled by 
using all the responses for all 7 
rounds. The final scores are thus on 
the same scale. 

READING Reading 
Scaled Score 

Continuous 1 - 174  

 

Students’ responses are scaled by 
using all the responses for all 7 
rounds. The final scores are thus on 
the same scale. 

For interpretation purpose, Reading 
scores are group centered for grade 
level analysis and grand-mean 
centered for longitudinal model. 

ELL ELL status Norminal 0, 1, 2 Non-ELL=0 

FormerELL=1 

ELL=2 

GENDER Gender Norminal 0, 1 Male=0 

Female=1 

SES Family 
socioeconomi
c background  

Continous -2.48 to 
2.54 

A composite of parent’s income, 
educational levels and occupations. 

RACE Race-
ethnicity 

Norminal 1 - 5 White=5 Black=4 Hispanic=3 
Asian=2 Isolated=1 

Isolated includes all native 
Americans such as Indians, 
Hawaiians, Pacific Islanders and 
Alaska natives. 

All the variables are also dummy 
coded as indicators for comparison 
purpose. 
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Grade 1 Grade 3 Grade 5 Grade 8 
Total 

20 40 60 80 100 120 140 160 180

  

Non-ELL/ELL=0 
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ELL/ELL=2 
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Reading score distribution                      
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Math score distribution                
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APPENDIX B: DESCRIPTIVE AND DIAGNOSTIC STATISTICS 
 

 

 

 

 

 

 

 

 

 

 

 

 

Descriptive Statistics 

Variable Mean Std. Deviation N 

G1 
MATH 63.91 18.24 8072 

READING 2.52 23.83 8072 

G3 
MATH 102.05 24.22 8023 

READING 3.69 27.73 8023 

G5 
MATH 126.18 24.26 7992 

READING 2.82 26.02 7992 

G8 
MATH 143.41 21.56 7959 

READING 1.22 27.18 7959 

Note: READING is centered around group mean. 
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Correlations VIF 

 
MATH GENDER FORMER ELL BLACK HISPANIC ASIAN ISOLATED SES READING 

 

G
ra

d
e 

1 

MATH 1.00 

GENDER -.06 1.00 
  

1.01 

FORMER -.15 .01 1.00 
  

1.69 

ELL -.01 .00 -.01 1.00 1.00 

BLACK -.20 .01 -.11 .02 1.00 1.12 

HISPANIC -.15 -.01 .50 .02 -.14 1.00 
  

1.58 

ASIAN .01 .02 .32 .03 -.08 -.10 1.00 1.27 

ISOLATED -.10 .02 -.03 -.01 -.06 -.08 -.04 1.00 
 

1.04 

SES .40 -.01 -.21 -.01 -.20 -.23 .03 -.10 1.00 1.30 

READING .65 .09 -.13 -.01 -.14 -.15 .08 -.09 .39 1.00 1.21 

 

 

 

Correlations VIF 

 
MATH GENDER FORMER ELL BLACK HISPANIC ASIAN ISOLATED SES READING 

 

G
ra

d
e 

3 

MATH 1.00 

GENDER -.10 1.00 
  

1.01 

FORMER -.10 .00 1.00 
  

1.69 

ELL -.16 -.01 -.05 1.00 1.23 

BLACK -.23 .01 -.10 -.04 1.00 1.14 

HISPANIC -.18 -.01 .46 .30 -.15 1.00 
  

1.74 

ASIAN .04 .01 .32 .01 -.08 -.11 1.00 1.27 

ISOLATED -.10 .02 -.02 -.03 -.06 -.08 -.04 1.00 
 

1.05 

SES .44 -.01 -.20 -.19 -.18 -.27 .03 -.09 1.00 1.40 

READING .73 .08 -.14 -.22 -.19 -.22 .02 -.11 .47 1.00 1.39 
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Correlations VIF 

 
MATH GENDER FORMER ELL BLACK HISPANIC ASIAN ISOLATED SES READING 

 

G
ra

d
e 

5 

MATH 1.00 

GENDER -.11 1.00 
  

1.01 

FORMER -.08 .00 1.00 
  

1.70 

ELL -.15 -.01 -.05 1.00 1.24 

BLACK -.25 .01 -.11 -.04 1.00 1.15 

HISPANIC -.16 -.01 .46 .30 -.15 1.00 
  

1.74 

ASIAN .07 .02 .32 .01 -.08 -.11 1.00 1.28 

ISOLATED -.10 .02 -.03 -.03 -.06 -.08 -.04 1.00 
 

1.05 

SES .45 -.01 -.20 -.20 -.19 -.27 .02 -.09 1.00 1.42 

READING .73 .06 -.13 -.21 -.21 -.20 .01 -.12 .48 1.00 1.39 

 

 

 

Correlations VIF 

 
MATH GENDER FORMER ELL BLACK HISPANIC ASIAN ISOLATED SES READING 

 

G
ra

d
e 

8 

MATH 1.00 

GENDER -.06 1.00 
  

1.01 

FORMER -.08 .01 1.00 
  

1.67 

ELL -.15 -.01 -.05 1.00 1.22 

BLACK -.25 .01 -.11 -.04 1.00 1.16 

HISPANIC -.16 -.01 .46 .30 -.15 1.00 
  

1.74 

ASIAN .08 .02 .31 .00 -.08 -.11 1.00 1.25 

ISOLATED -.09 .02 -.03 -.03 -.06 -.08 -.04 1.00 
 

1.04 

SES .44 -.01 -.19 -.20 -.19 -.27 .03 -.08 1.00 1.41 

READING .73 .09 -.10 -.19 -.25 -.20 .06 -.09 .47 1.00 1.40 
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APPENDIX C: GRADE LEVEL MODEL COMPARISON 
STATISTICS 
 

Wald Test 
 

    .05 .1 .25 .5 .75 .9 .95 

Grade  
1 

S vs.F  140.74 206.17 384.07 618.08 848.77 471.41 379.88 

F vs.I  1570.57 2016.7 2378.99 2456.55 1284.91 1086.64 688.53 

Grade 
3 

S vs.F  60 179.7 450.08 704.87 603.95 377.94 377.37 

F vs.I  973.28 1982.01 2868.9 3514.16 3585.54 1724.03 1352.42 

Grade 
5 

S vs.F  217.25 222.74 608.65 560.52 636.1 371.97 314.32 

F vs.I  1609.88 2219.09 3716.25 3412.36 2644.35 1554.87 1179.39 

Grade 
8 

S vs.F  102.5 223.58 511.91 383.45 377.03 215.4 92.62 

F vs.I  1455.62 2089.08 3051.81 3054.65 3260.81 1737.36 771.14 

                
Likelihood Ratio Test 

 

    .05 .1 .25 .5 .75 .9 .95 

Grade 
1 

S vs.F  134.26 190.53 295.11 479.06 552.02 411.68 263.44 

F vs.I  954.75 1177.88 1754.46 2100.88 1953.35 1231.53 767.42 

Grade 
3 

S vs.F  81.92 158.7 355.31 639.82 582.31 352.11 270.44 

F vs.I  837.66 1338.38 2064.98 2707.49 2317.39 1479.2 1144.07 

Grade 
5 

S vs.F  166.64 201.83 420.98 623.04 618.58 372.56 256.71 

F vs.I  990.19 1243.11 2100.39 2446.4 2229.27 1372.89 874.88 

Grade 
8 

S vs.F  105.19 204.84 411.49 389.69 341 190.91 127.79 

F vs.I  966.21 1390.59 2065.59 2428.86 2231.57 1478.91 1011.16 
Note:  
S refers to simple regression where there is only one independent variable: Reading. 
F refers to a full regression with all other covariates in addition to Reading but without any 
interactions. 
I refers to the full regression with all the interaction terms in addition to main effects. 
All the statistics are statistically significant below .01 level. 
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APPENDIX D: GRADE LEVEL FULL MODEL  
Table 4.2a. Grade 1  

  QRM MRM 

  .05 .1 .25 .5 .75 .9 .95   
Intercept 45 49.33 56.27 64.9 75.1 85.16 92.53 66.4 

(.38) (.32) (.27) (.31) (.41) (.49) (.69) (.24) 

*** *** *** *** *** *** *** *** 
READING .41 .43 .48 .51 .56 .59 .58 .5 

(.01) (.01) (.01) (.01) (.02) (.03) (.04) (.01) 

*** *** *** *** *** *** *** *** 
SES 2.18 2.23 2.4 2.9 3.79 3.65 3.96 3.15 

(.32) (.29) (.22) (.23) (.32) (.48) (.64) (.21) 

*** *** *** *** *** *** *** *** 
GENDER -.56 -1.3 -2.27 -3.61 -4.98 -6.12 -7.35 -3.76 

(.45) (.39) (.31) (.32) (.45) (.6) (.8) (.3) 

  *** *** *** *** *** *** *** 
FORMER -.87 -.98 -.14 -.11 -.92 -.72 -1.46 -.72 

(1.06) (.79) (.63) (.6) (.87) (1.57) (2.14) (.59) 

                
ELL 12.7 9.23 2.98 .24 -7.64 -15.63 -22.25 -2.24 

(359.26) (183.66) (62.47) (41.29) (94.28) (444.52) (793.72) (6.34) 

                
BLACK -4.38 -4.3 -3.94 -5.07 -7.72 -9.9 -10.47 -6.22 

(.87) (.8) (.5) (.53) (.64) (1.28) (1.59) (.54) 

*** *** *** *** *** *** *** *** 
HISPANIC -1.24 -1.11 -2.01 -2.59 -2.65 -4.16 -3.32 -2.61 

(1.02) (.71) (.53) (.51) (.82) (1.53) (2.2) (.52) 

    *** *** *** ***   *** 
ASIAN -1.44 -2.27 -2.84 -3.36 -3.45 -3.74 -1.41 -2.92 

(1.06) (.84) (.92) (.88) (1.19) (1.85) (2.36) (.79) 

  *** *** *** *** **   *** 
ISOLATED -4.1 -3.19 -4.39 -3.78 -5.26 -7.06 -8.81 -5.43 

(1.34) (1.33) (1.06) (.96) (1.11) (1.95) (2.46) (.91) 

  ** *** *** *** *** *** *** 
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READING*SES -.03 -.04 -.06 -.05 -.06 -.07 -.12 -.05 

(.01) (.01) (.01) (.01) (.02) (.02) (.02) (.01) 

*** *** *** *** *** *** *** *** 
READING*GENDER -.02 -.05 -.08 -.08 -.08 -.07 -.07 -.07 

(.01) (.01) (.01) (.01) (.02) (.03) (.04) (.01) 

* *** *** *** *** ** ** *** 
READING*FORMER .05 .03 .02 0 -.02 -.04 .04 0 

(.03) (.02) (.03) (.03) (.04) (.06) (.07) (.02) 

*               
READING*ELL .48 .45 .14 -.03 -.24 -.46 -.33 -.06 

(43.85) (22.4) (6.19) (4.87) (1.41) (55.96) (88.08) (.73) 

                
READING*BLACK 0 -.03 -.01 -.04 -.09 -.06 -.05 -.04 

(.02) (.02) (.02) (.03) (.04) (.06) (.07) (.02) 

        **     * 
READING*HISPANIC -.09 -.07 -.05 -.02 0 0 -.04 -.04 

(.02) (.02) (.03) (.03) (.04) (.05) (.08) (.02) 

*** *** **           
READING*ASIAN -.03 -.02 -.05 -.05 0 0 .03 -.02 

(.03) (.03) (.03) (.04) (.05) (.06) (.08) (.03) 

                
READING*ISOLATE
D 

-.11 -.1 -.11 -.06 -.03 -.13 -.11 -.1 

(.04) (.03) (.04) (.05) (.06) (.12) (.17) (.04) 

*** *** **         *** 
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Table 4.2b. Grade 3  

  QRM MRM 

  .05 .1 .25 .5 .75 .9 .95   
Intercept 76.19 82.09 93.35 104.99 116.1 125.71 130.82 104.54 

(.61) (.47) (.49) (.35) (.39) (.49) (.4) (.29) 

*** *** *** *** *** *** *** *** 
READING .63 .63 .65 .62 .58 .51 .5 .6 

(.02) (.02) (.01) (.01) (.01) (.02) (.02) (.01) 

*** *** *** *** *** *** *** *** 
SES 1.96 2.56 2.62 3.05 3.22 4.05 4.1 3.01 

(.55) (.43) (.36) (.32) (.4) (.53) (.39) (.27) 

*** *** *** *** *** *** *** *** 
GENDER -5 -4.95 -7.44 -8.22 -8.71 -8.68 -8.49 -7.67 

(.72) (.52) (.5) (.46) (.49) (.56) (.56) (.36) 

*** *** *** *** *** *** *** *** 
FORMER 2.06 1.98 1.31 .78 -.02 .03 1.43 1.04 

(1.36) (1.05) (.94) (.98) (1) (1.24) (1.46) (.71) 

  *             
ELL -7.92 -4.13 .23 -.63 5.27 3 2.03 -.06 

(4.46) (5.2) (4.42) (4.01) (5.06) (4.62) (6.67) (2.74) 

*               
BLACK -6.1 -5.74 -6.28 -7.71 -7.6 -4.72 -4.91 -6.75 

(1.16) (1.11) (.87) (.79) (.93) (1.12) (1.21) (.68) 

*** *** *** *** *** *** *** *** 
HISPANIC -1.7 -2.19 -3.13 -1.86 -.86 -.57 -1.09 -1.98 

(1.37) (.9) (.91) (.87) (1.01) (.9) (1.27) (.63) 

  ** *** **       *** 
ASIAN .86 .4 .96 2.06 2.12 3.88 .63 1.49 

(1.88) (1.39) (1.63) (1.21) (1.23) (1.5) (1.61) (.92) 

      * * ***     
ISOLATED -1.57 -2.79 -3.02 -1.96 -1.85 -2.38 -1.79 -1.97 

(2.55) (1.98) (2.11) (1.69) (1.24) (1.95) (2.26) (1.18) 

              * 
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READING*SES .06 .05 .02 0 -.02 -.05 -.07 -.01 

(.02) (.01) (.01) (.01) (.01) (.02) (.01) (.01) 

*** *** **     *** ***   
READING*GENDER -.1 -.07 -.05 -.03 0 .04 .05 -.02 

(.03) (.02) (.02) (.02) (.02) (.02) (.02) (.01) 

*** *** *** *   * **   
READING*FORMER .04 .05 .01 -.05 0 .04 0 -.01 

(.05) (.04) (.03) (.03) (.04) (.05) (.06) (.03) 

                
READING*ELL -.15 -.07 -.07 -.07 .06 -.03 -.08 -.06 

(.11) (.11) (.1) (.09) (.12) (.12) (.14) (.07) 

                
READING*BLACK -.14 -.09 -.04 .01 .06 .11 .13 .01 

(.04) (.04) (.03) (.03) (.03) (.04) (.05) (.03) 

*** **     ** *** **   
READING*HISPANIC -.06 -.05 -.02 0 -.02 -.01 .02 0 

(.05) (.04) (.03) (.03) (.04) (.04) (.05) (.02) 

                
READING*ASIAN .08 .02 .1 .14 .09 .07 .18 .1 

(.08) (.06) (.04) (.04) (.04) (.06) (.07) (.03) 

    *** *** **   *** *** 
READING*ISOLATED -.13 -.12 -.07 .03 .05 .04 -.03 -.01 

(.1) (.06) (.05) (.05) (.04) (.06) (.09) (.04) 

  *             
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Table 4.2c. Grade 5  

  QRM MRM 

.05 .1 .25 .5 .75 .9 .95   
Intercept 100.41 107.08 118.64 130.65 140.8 148.42 152.78 129.05 

(.61) (.67) (.43) (.35) (.34) (.43) (.4) (.3) 

*** *** *** *** *** *** *** *** 
READING .75 .74 .69 .58 .47 .39 .34 .58 

(.02) (.02) (.02) (.01) (.01) (.02) (.02) (.01) 

*** *** *** *** *** *** *** *** 
SES 3.68 3.1 3.74 3.52 3.15 3.9 3.75 3.39 

(.48) (.55) (.42) (.33) (.29) (.4) (.35) (.27) 

*** *** *** *** *** *** *** *** 
GENDER -7.41 -6.87 -7.31 -7.5 -7.23 -6.68 -6.74 -7.3 

(.72) (.76) (.53) (.43) (.37) (.5) (.47) (.35) 

*** *** *** *** *** *** *** *** 
FORMER .24 1.08 2.17 1.3 1.05 1.05 .81 1.56 

(1.71) (1.67) (1.22) (.83) (.94) (1.01) (1.22) (.72) 

    *         ** 
ELL -2.18 1.91 9.06 6.93 6.25 3.28 8.57 5.97 

(6.29) (7.07) (4.06) (3.43) (2.77) (5.17) (6.01) (2.34) 

    ** ** **     ** 
BLACK -7.07 -5.42 -6.41 -7.87 -7.65 -5.82 -3.81 -6.85 

(1.82) (1.3) (.87) (1.07) (.84) (1.26) (1.31) (.68) 

*** *** *** *** *** *** *** *** 
HISPANIC -1.94 -2.51 -1.46 -1.06 -1.71 -1.66 -1.33 -1.55 

(1.51) (1.52) (1.04) (.75) (.76) (.89) (1.13) (.63) 

  *     ** *   ** 
ASIAN 2.81 2.5 5.48 6.29 4.03 3.94 4.52 4.63 

(2.52) (2.13) (1.44) (1.24) (1.1) (1.27) (1.17) (.91) 

    *** *** *** *** *** *** 
ISOLATED 1.6 -.37 -1.32 -2.41 -4.18 -1 -.63 -1.64 

(3.58) (1.85) (1.54) (1.26) (1.53) (1.88) (3.13) (1.16) 

      * ***       
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READING*SES .01 .03 -.03 -.05 -.05 -.07 -.07 -.04 

(.02) (.02) (.01) (.01) (.01) (.01) (.01) (.01) 

  * ** *** *** *** *** *** 
READING*GENDER 0 .01 .03 .05 .07 .07 .09 .04 

(.03) (.02) (.02) (.01) (.01) (.02) (.02) (.01) 

      *** *** *** *** *** 
READING*FORMER -.02 -.03 .04 0 0 0 .03 .01 

(.06) (.05) (.04) (.03) (.04) (.04) (.06) (.03) 

                
READING*ELL -.15 -.05 .16 .1 .15 .02 .13 .09 

(.16) (.15) (.11) (.08) (.09) (.14) (.17) (.06) 

        *       
READING*BLACK -.15 -.03 -.03 .08 .16 .13 .18 .06 

(.06) (.04) (.03) (.03) (.03) (.05) (.06) (.02) 

**     ** *** ** ***   
READING*HISPANIC .04 .03 -.03 .01 .04 .06 .06 .02 

(.07) (.05) (.04) (.03) (.03) (.04) (.06) (.03) 

                
READING*ASIAN .12 .1 -.06 -.03 .05 .07 .01 .03 

(.07) (.07) (.05) (.04) (.04) (.06) (.07) (.04) 

*               
READING*ISOLATED -.15 -.05 -.09 0 .06 .11 .05 .01 

(.12) (.05) (.04) (.04) (.05) (.09) (.12) (.04) 

    **           
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Table 4.2d. Grade 8  

  QRM MRM 

  .05 .1 .25 .5 .75 .9 .95   
Intercept 120.27 126.48 137.37 147.42 156.18 162.35 165.42 145.81 

(.66) (.53) (.36) (.32) (.26) (.22) (.25) (.27) 

*** *** *** *** *** *** *** *** 
READING .74 .73 .62 .53 .39 .28 .2 .51 

(.03) (.02) (.02) (.01) (.01) (.01) (.01) (.01) 

*** *** *** *** *** *** *** *** 
SES 3.48 3.69 3.59 2.94 2.87 2.28 1.95 3.11 

(.59) (.42) (.31) (.27) (.21) (.22) (.24) (.24) 

*** *** *** *** *** *** *** *** 
GENDER -5.1 -5.53 -6.42 -5.31 -4.09 -3.27 -3.25 -4.98 

(.82) (.61) (.46) (.37) (.31) (.31) (.3) (.32) 

*** *** *** *** *** *** *** *** 
FORMER -.29 -1.07 -2.87 -1.23 -.16 .26 -.23 -.72 

(1.62) (1.52) (1.01) (.72) (.6) (.61) (.65) (.64) 

    *** *         
ELL -3.89 -.16 .93 -1.04 0 -1.2 -2.66 -.41 

(6.99) (4.84) (2.76) (1.94) (2.7) (3.35) (3.89) (1.81) 

                
BLACK -5.03 -4.66 -4.42 -5.15 -4.73 -3.81 -2.74 -4.64 

(1.54) (1.32) (1.08) (.9) (.73) (.85) (.92) (.65) 

*** *** *** *** *** *** *** *** 
HISPANIC -1.52 .51 .96 .37 -.43 -.04 .12 .13 

(1.34) (1.45) (.89) (.7) (.58) (.54) (.55) (.56) 

                
ASIAN -.52 3.63 4.68 4.81 3.63 3.1 3.19 3.73 

(2.8) (2.26) (1.27) (.96) (.76) (.65) (.85) (.84) 

    *** *** *** *** *** *** 
ISOLATED -2.59 -.8 -2.71 -.78 -.66 -.18 -.38 -.86 

(3.13) (2.16) (1.79) (1.66) (.93) (1.53) (1.6) (1.04) 
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READING*SES .04 .03 .01 -.03 -.06 -.07 -.06 -.03 

(.02) (.02) (.01) (.01) (.01) (.01) (.01) (.01) 

** **   *** *** *** *** *** 
READING*GENDER -.06 -.06 -.01 .05 .07 .07 .08 .02 

(.03) (.03) (.02) (.01) (.01) (.01) (.01) (.01) 

** **   *** *** *** *** * 
READING*FORMER .05 .02 .03 .08 .02 .01 .03 .04 

(.05) (.04) (.03) (.03) (.02) (.03) (.03) (.02) 

      ***         
READING*ELL -.11 .03 .07 .03 -.02 -.12 -.06 .01 

(.14) (.1) (.05) (.06) (.08) (.11) (.12) (.04) 

                
READING*BLACK -.12 -.11 -.03 -.01 .01 .1 .09 -.02 

(.04) (.05) (.03) (.03) (.03) (.03) (.03) (.02) 

*** **       *** ***   
READING*HISPANIC -.07 -.06 -.03 -.05 .02 .03 .01 -.02 

(.05) (.04) (.03) (.03) (.02) (.03) (.03) (.02) 

      *         
READING*ASIAN .14 .04 .02 -.03 -.05 -.07 -.09 -.01 

(.1) (.09) (.04) (.04) (.03) (.03) (.04) (.03) 

          ** **   
READING*ISOLATED -.08 0 .09 .06 .14 .07 .07 .09 

(.14) (.07) (.06) (.05) (.03) (.08) (.09) (.03) 

        ***       
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APPENDIX E: FULL QUANTILE PROCESS PLOT BY GRADE 
 

 

Grade 1 
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Grade 3 
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Grade 5 
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Grade 8 
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APPENDIX F: KHMALADEZ TEST AT GRADE LEVEL 
 

  Grade 1 Grade 3 Grade 5 Grade 8 

L Shift LS Shift L Shift LS Shift L Shift LS Shift L Shift LS Shift 

READING 6.64 *** 1.11 1.67 .52 .90 .89 6.63 *** 3.64 ***

SES 1.58 1.26 .53 .81 .22 .41 1.27 .43

GENDER 2.38 ** .33 .93 .51 .23 .78 4.37 *** 1.96

FORMER .53 .48 1.87 .84 .31 .72 1.53 1.45

ELL 4.97 *** .46 .37 .44 .22 .88 .68 1.24

BLACK 3.98 *** .64 1.18 1.29 .45 1.27 1.41 1.18

HISPANIC 1.52 .59 1.60 .57 .37 .62 .83 1.42

ASIAN .46 .33 .45 .54 1.40 .94 3.26 *** 1.00

ISOLATED 1.00 .66 1.31 .37 .62 .36 1.92 .92

Overall 23.99 *** 11.88 *** 7.91  4.50  3.71  6.29  48.12 *** 18.97 ***
Note:  
L Shift: Location shift only hypothesis 
LS Shift: Location-scale shift hypothesis 
*** significant at or below .01 
** significant at or below .05 


