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Chapter 1: Introduction

The ultimate goal of our work is to understand the Riemann zeta function, which is
perhaps the most important function in all of mathematics. For more than 150 years
mathematicians have tried to understand the behavior of this function’s zeros. One of
the seven Millennium Prize Problems, a prize of one million dollars, is for the proof of
the Riemann hypothesis, which states that its non-real zeros have real part 1

2
, (shown

as black points on Figure 1.1), was announced in 2000.
Our aim in this thesis is not to prove the Riemann hypothesis, but to gain a better

understanding of other properties of the Riemann zeta function. We will do so by
investigating the zeros of its derivatives and the zeros of derivatives of several related
functions, such as the Euler η function and Dirichlet L-functions.

There are a lot of results for the Riemann zeta function and its zeros as you take
higher and higher integer order derivatives, see Sections 3.4, 3.6 and 3.5. However, a
relatively new method for analyzing derivatives are fractional derivatives.

The notion of Fractional Calculus has been circulating around in the mathematical
community for over three hundred years, but has only been heavily studied in the
past sixty years. It all started when Leibniz introduced the notion of derivatives as
dny
dxn and many mathematicians including Bernoulli raised the question; “Can you have
a non-integer order derivative?” to which Leibniz answered “It will lead to a paradox,
a paradox from which one day useful consequences will be drawn, because there are
no useless paradoxes.” And thus fractional Calculus was born.

Over the years many mathematicians and scientists alike have studied this notion
of fractional calculus with the intent to better understand things like electromagnetism,
signal processing, and other various engineering methods. This unfortunately brought
rise to many different methods for approximating fractional derivatives. We will
discuss these approaches in Section 2.2. We use these derivatives to explore the path
the zeros take for the Riemann zeta function. In the previous work of my advisors,
Sebastian Pauli and Filip Saidak, it was found that these zeros exhibit a surprisingly
regular behavior and that this property also extends to fractional derivatives. For real
valued functions this phenomenon has become known as the crystallization of zeros
of derivatives. In this thesis we present a proof of an extension of this interesting
quasi-periodic behaviour to the general theory of Dirichlet L-functions.
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We start by looking at the alternating zeta function, also known as the Eu-
ler/Dirichlet eta function. As in the Riemann zeta case, an algorithm for evaluating
the function is needed. We looked at the series of two functions and then applied the
Euler-Maclaurin formula to get an explicit algorithm. This allows us to make fast
computations and create visuals to confirm our intuition of the relation between the
Dirichlet eta function and the Riemann zeta function. The Dirichlet eta function also
takes on this regular behavior. We also notice that the zeros of the fractional derivative
of eta have a one-to-one correspondence to the original zeros the the Riemann zeta
function. That and other proofs are given in Chapter 4. We turn our attention to
generalizations of these results to Dirichlet L-functions.

In Chapter 5, we present an algorithm for evaluating Dirichlet L-functions for any
character χ. This allows us to extend the crystallization property to all Dirichlet
series. We also formulate an algorithm for the evaluation of Stieltjes constants, see
Section 5.3, and establish results about the asymptotic behaviors for these constants.

In the last chapter, we study the effect fractional derivatives have on polynomials,
the most fundamental of all mathematical functions. We use two different methods to
compute the fractional derivatives, namely, the Riemann-Liouville fractional derivative,
introduced in Section 2.2.1, and the Caputo derivative, in Section 2.2.2. We find that
the Riemann-Liouville is better suited for polynomials, since their zeros form continuous
paths. These paths have very interesting properties, namely, as one continues to take
higher positive fractional derivatives the path tends to the center of the fractional
derivatives. These paths also exhibit asymptotic behavior when considering derivatives
higher than the degree of the polynomial and negative fractional derivatives.

2
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Figure 1.1. • Zeros of ζ(s), x Zero of ζ(s)− 1, •(k) Zero of ζ(k)(s)
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Chapter 2: Preliminaries

2.1 Complex Analysis

We start by recalling some results from complex analysis. Definitions and theorems
can be found in [BA18], [Ahl66] and [Wri64]. We define i to be a solution to the
equation

x2 + 1 = 0,

that is, i2 + 1 = 0 or i2 = −1. A complex number, denoted by s = σ + it, can be
broken down into its real part, σ = ℜ(s), and its imaginary part, t = ℑ(s). Another
way to look at s is in the polar form: s = reiθ, where r = |s| is the modulus, indicating
its distance from the origin, and θ = arg(s) is the unique argument within the interval
(−π, π].

Now that we have established a definition of complex numbers, we can delve into
the intricacies of complex functions and their derivatives, but first we introduce some
elementary topology.

Definition 2.1. Suppose G is a subset of C.

(a) A point a ∈ G is an interior point of G if some open disk with center a is a
subset of G.

(b) A point d ∈ G is an isolated point of G if some open disk centered at d contains
no point of G other than d.

Moreover, a set G is open if all its points are interior points and is closed if it
contains all it boundary points. Now we can introduce the notion of a path.

Definition 2.2. A path (or curve) in C is a continuous function c : [a, b]→ C, where
[a, b] is a closed interval in R. We may think of c as a parametrization of the image
that is painted by the path and often write the parametrization as c(t) with a ≤ t ≤ b.
The path c is called smooth when it is differentiable and the derivative c′ is continuous
and nonzero.

4



Definition 2.3. The path c[a, b]→ C is simple if c(t) is one-to-one, with the possible
exception that c(a) = c(b).

Once a path is established, we can then discuss complex functions and explore the
idea of continuity.

Definition 2.4. A complex function f is a map from a subset G ⊂ C to C; in this
situation we write f : G → C and call G the domain of f . This means that each
element s ∈ G gets mapped to exactly one complex number, called the image of s and
usually denoted by f(s).

There are various examples of complex functions such as, but not limited to
polynomials, discussed in Chapter 6 and and rational functions, i.e. f(s) = 1/ns for
any n = 1, 2, 3, . . . . which will be the main topic of Chapters 3, 4, and 5.

Example 2.5. The exponential function is the solution of the differential equation

f ′(s) = f(s)

with the initial value f(0) = 1. The solution is denoted by es or exp(s) where for a
complex number s = σ + it

es = eσ+it = eσeit = eσ(cos(t) + i sin(t)).

Example 2.6. The inverse of the complex exponential is the principal logarithm.
The principal logarithm is the function log : C \ {0} → C defined via log(s) :=
log(|s|) + i arg(s).

In the mathematical field of complex analysis, a branch point of a multi-valued
function (usually referred to as a "multifunction" in the context of complex analysis
is a point such that if the function is n-valued (has n values) at that point, all of its
neighborhoods contain a point that has more than n values [Das11]. Another way to
view a branch cut, is a curve (with ends possibly open, closed, or half-open) in the
complex plane across which an analytic multivalued function is discontinuous. For
convenience, branch cuts are often taken as lines or line segments. Branch cuts (even
those consisting of curves) are also known as cut lines [AW85, p. 397], slits [Kah87],
or branch lines.

In 1758, Lambert [Lam58] solved the trinomial equation x = q + xm by giving a
series development for x in powers of q. Later in [Lam71], he extended the series to
give powers of x as well. In [Eul83], Euler transformed Lambert’s equation to the
more symmetrical form

xa − xb = (a− b)vxa+b
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by substituting x−b for x and setting m = ab and q = (a− b)v. Euler looked at special
cases, starting with a = b. To see what this means in the original trinomial equation
to get

log x = vxa.

Euler noticed that if we can solve the equation above for a = 1, then we can solve it
for any a ̸= 0. Which then leads us to the Lambert W function [CGH+96],

Wk(z)e
Wk(z) = z

The Lambert W function has various different properties, but the one we will use for
this thesis, Chapters 3 and 5, is its association to branch cuts.

For each integer k there is one branch, denoted Wk(s), which is a complex-valued
function of one complex argument. For k = 0, W0 is known as the principal branch.
A principal branch is a function which selects one branch ("slice") of a multi-valued
function.

Now that we have some clear concrete examples of complex functions, we can
look at what it means for these complex functions to be continuous. We will use the
following definitions of continuity. The first being the topological definition, namely:

Definition 2.7. Suppose f : G→ C. If s0 ∈ G and either s0 is an isolated point of G
or

lim
s→s0

f(z) = f(s0)

then f is continuous at s0, More generally, f is continuous on E ⊂ G if f is continuous
at every s ∈ E.

The second being the more classical ϵ and δ definition, which is used heavily in
continuity proofs.

Definition 2.8. Suppose f : G→ C and s0 ∈ G. Then f is continuous at s0 if, for
every positive real number ϵ there is a positive real number δ so that

|f(s)− f(s0)| < ϵ for all s ∈ G satisfying |s− s0| < δ.

Having honed our foundational grasp of paths and complex functions, we turn our
attention to the central theme of this paper—the introduction of the concept of a
complex derivative.

Definition 2.9. Suppose f : G→ C is a complex function and s0 is an interior point
of G. The derivative of f at s0 is defined as

f ′(s0) = lim
s→s0

f(s)− f(s0)
s− s0

,

provided this limit exists. In this case, f is called differentiable at s0.
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If f is differentiable for all points in an open disk centered at s0 then f is called holo-
morphic at s0. in the disk. Functions that are differentiable (and hence holomorphic)
in the whole complex plan C are called entire.

Let’s delve into other fundamental definitions to unveil a cornerstone in complex
analysis—the Cauchy integration formula.

Definition 2.10. Suppose c0 and c1 are closed paths in the region G ⊂ C, parameter-
ized by c0(s), 0 ≤ s ≤ 1, and c1(s), 0 ≤ s ≤ 1, respectively. Then c0 is G-homotopic
to c1 if there exist a continuous function h : [0, 1]2 → G such tat, for all s, r ∈ [0, 1]

h(s, 0) = c0(s),

h(s, 1) = c1(s),

h(0, r) = h(1, r).

We use the notation c1 ∼G c2 to mean c1 is G-homotopic to c2
Definition 2.11. Let G ⊂ C be a region. If the closed path c is G−homotopic to a
point (that is, a constant path) then c is G−contractible, and we write c ∼G 0.

Theorem 2.12 (Cauchy’s Integral Formula [Cau23]). Suppose f is holomorphic in
the region G and c is a positively oriented, simple, closed, piecewise smooth path, such
that s is inside c and c ∼G 0. Then

f(s) =
1

2πi

∮
c

f(τ)

τ − s
dτ

This Theorem can then be extended for higher derivatives as the following.

Theorem 2.13 (Cauchy’s Differentiation Formula, compare [BA18, p.151]). Suppose
f is holomorphic and differentiable in the region G and c is a positively oriented,
simple, close, piecewise smooth path, such that t is inside c and c ∼G 0 and n ∈ Z.
Then

f (n)(s) =
n!

2πi

∮
c

f(τ)

(τ − s)n+1
dτ

This theorem serves as the foundation for delving into the realm of fractional
calculus, as explored in Section 2.2.

Theorem 2.14 (Rouché [Rou62]). If f(s) and g(s) are two analytic functions within
and on a simple closed curve C such that |f(s)| > |g(s)| at each point on C. then both
f(s) and f(s) + g(s) have the same number of zeros inside C.

Theorem 2.15 (Jensen’s formula [Jen99]). Let f be an analytic function on a region
containing the closed ball B(0; r) and suppose that a1, . . . , an are the zeros of f in an
open ball B(0; r) repeated according to multiplicity, if f(0) ̸= 0 then

log |f(0)| = −
n∑

k=1

log

(
r

|ak|

)
+

1

2π

∫ 2π

0

log |f(reiθ)|dθ.
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Daniel Bernoulli (1700-1782), in a noteworthy achievement, derived a function
representing the factorial operation for natural numbers, laying the groundwork for
our exploration. For a natural number n, n! =

∏n
j=1 j. The complex valued Gamma

function is the “continuous factorial", see Artin [Art64].

Definition 2.16 (Compare [Her11]). Let n ∈ R and z ∈ C,

Γ(z) = lim
n→∞

n!nz

z(z + 1)(z + 2) · · · (z + n)

or alternatively

1

Γ(z)
= zeγz

∞∏
n=0

(
1 +

z

n

)
e−z/n,

where

γ = lim
n→∞

(
n∑

j=1

1

j
− log n

)
= 0.57721 . . .

known as the Euler-Mascheroni constant [Eul40] and [Mas90].

For ℜ(z) > 0 we can represent the Gamma function as the Legendre integral form
[Leg18]

Γ(z) =

∫ ∞
0

tz−1e−tdt.

Some basic proprieties of the Gamma function are as follows

Γ(1 + z) = zΓ(z).

From the equation above, we can then deduce to the fact for all natural numbers n

Γ(1 + n) = n!.

Corollary 2.17. For α ∈ R+ and k ∈ N(
α

k

)
=

Γ(α + 1)

Γ(k + 1)Γ(α− k + 1)
. (2.1)

Lemma 2.18 (Euler Reflection Formula). Let z ∈ C. We have

1. Γ(1− z)Γ(z) = π

sin πz
for z ̸∈ Z

2. Γ(z − n) = (−1)n−1 Γ(−z)Γ(1 + z)

Γ(n+ 1− z)
where n ∈ Z
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Lemma 2.19. The reciprocal of the Gamma function, 1
Γ(z)

, is an entire function of z
with simple zeros at z = 0,−1,−2, . . . , and has zeros nowhere else.

To Euler we also owe the discovery of the Euler-MacLaurin summation formula.

Lemma 2.20 (compare [J+13]). Let f be a complex function that is analytic in a
given domain N ∈ Z and U ∈ Z and let M be a positive integer. Let Bn denote the
n-th Bernoulli number and Pn(t) = Bn(t − ⌊t⌋) denote the n-th periodic Bernoulli
polynomial. The Euler-Maclaurin summation formula states

n∑
k=m

g(k) =

n∫
m

g(x)dx+
ℓ∑

k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣n
m

+ (−1)ℓ+1

n∫
m

Pℓ(x)g
(ℓ)(x)dx. (2.2)

2.1.1 Weierstrass and Hadamard factorization

The following section has several definitions and theorems from [Con78] that provide
some important insights into the Weierstrass (2.31) and Hadamard (2.32) factorization.
Revisiting the concept of a path, i.e. definition (2.2), we introduce and define some
additional properties, namely:

Definition 2.21 (compare [Con78, p.81]). If c is a closed rectifiable curve in C then
for a /∈ {c}

n(c; a) =
1

2πi

∫
c

(s− a)−1dz

is called the index of c with respect to the point a. It is also sometimes called the
winding number of c around a.

Using (2.21), one can deduce the following results.

Lemma 2.22 (compare [Con78, p.82]). Let c be a closed rectifiable curve in C. Then
n(c; a) is constant for a belonging to a component of G = C− {c}. Also, n(c; a) = 0
for a belonging to the unbounded component of G.

Lemma 2.23 (Argument principle, compare [Con78, p. 123]). Let f be meromorphic
in G with poles p1, p2, . . . , pm and zeros s1, s2, . . . , sn counted according to multiplicity.
If c is a closed rectifiable curve in G with c ≈ 0 and not passing through p1, . . . , pm;
s1, . . . , sn; then

1

2πi

∫
c

f ′(s)

f(s)
dz =

n∑
k=1

n(c; sk)−
m∑
j=1

n(c; pj). (2.3)

For notational purposes, it is important to introduce the next definition.
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Definition 2.24. An elementary factor is one of the following functions Ep(s) for
p = 0, 1, · · · :

E0(s) = 1− s,

Ep(s) = (1− s) exp
(
s+

s2

2
+ · · ·+ sp

p

)
, p ≥ 1.

The function Ep(s/a) has a simple zero at z = 0 and no other zero. We’ll now
delve into the connection between the rank and zeros of a complex function f .

Definition 2.25. Let f be an entire function with zeros {a1, a2, . . . } repeated accord-
ing to multiplicity and arranged such that |a1| ≤ |a2| ≤ · · · . Then f is of finite rank
if there is r ∈ Z such that

∞∑
n=1

|an|−(r+1) <∞.

If r is the least integer such that this occurs, then f is of rank r. A function with only
a finite number of zeros has rank 0. A function is of infinite rank if it is not of finite
rank.

We use Definition (2.25) and Definition (2.24) to produce a product representation
for an entire function f.

Definition 2.26. Let f be an entire function of rank r with zeros {a1, a2, . . . }. Then
the product

P (z) =
∞∏
n=1

Er

(
z

an

)
is the standard form for f .

Now armed with this product representation, we can glean additional insights
into the function and its corresponding bounds. We first define what it means for a
function to have finite genus.

Definition 2.27. An entire function f has finite genus if f has finite rank and if
f(z) = zmeg(z)P (z) where P is in standard form for f and the resulting function g
is a polynomial. If r is the rank of f and q is the degree of the polynomial g, then
µ = max{r, q} is the genus of f.

We can use this finite genus to bound our respected function in the following way:

Lemma 2.28. Let f be an entire function of genus µ. For each positive number β
there is a number r0 such that for |z| > r0 we have |f(z)| < exp(β|z|µ+1).
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Definition 2.29. An entire function f is of finite order if there is a positive constant
a and an r0 > 0 such that |f(z)| < exp(|z|a) for |z| > r0. If such a and r0 do not exist
then f is of infinite order. If f is of finite order then λ = inf{a||f(z)| < exp(|z|a) for
|z| sufficiently large} is the order of f.

A direct consequence can be seen in the following lemma.

Lemma 2.30. Let f be a non constant entire function of order λ with f(0) ̸= 0 and
let {a1, a2, . . . } be the zeros of f repeated according to multiplicity and arranged so
that |a1| ≤ |a2| ≤ · · · . If r is an integer such that r > λ− 1 then

dr

dzr

[
f ′(z)

f(z)
= −r!

∞∑
n=1

1

(an − z)r+1

]

for z ∈ {a1, a2, . . . }.

With a grasp of the definitions and theorems in hand, we can now proceed to
introduce the Weierstrass and Hadamard Factorization theorems.

Theorem 2.31 (The Weierstrass Factorization Theorem, [Wei94]). Let f be an entire
function and let {an} be the zeros, where ai ̸= 0 for i = 1, . . . n, of f repeated according
to multiplicity; suppose f has a zero at z = 0 of order m ≥ 0 (a zero of order m = 0 at
z = 0 means f(0) ̸= 0). Then there is an entire function g and a sequence of integers
{pn} such that

f(z) = zmeg(z)
∞∏
n=1

Epn

(
z

an

)
.

Theorem 2.32 (The Hadamard’s Factorization Theorem, [Had93]). If f is an entire
function of finite order λ then f has finite genus µ ≤ λ. Therefore, f can be factored
as

f(z) = zmeg(z)
∞∏
n=1

Eµ

(
z

an

)
where g is a polynomial of degree at most µ.

These definitions and theorems not only play a pivotal role in the outcomes
presented in this paper but also contribute significantly to shaping a comprehensive
understanding of the subject matter. Beyond serving as instrumental tools for the
specific results discussed here, many of these concepts lay the foundation for delving
into the intriguing realm of fractional calculus, as further explored in Section 2.2.
Their multifaceted utility not only enriches the current discourse but also sets the
stage for deeper explorations into the intricacies of the subject.
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2.2 Fractional Calculus

There exist a multitude of different definitions of fractional derivatives, each with its
own particular advantages and disadvantages. In the following section we discuss the
different types of fractional derivatives and their advatages and disadvantages.

For every function f(z) (belonging to some class of functions) and every α ∈ C, we
wish to assign a new function Dα[f(z)] by differentiation and Iα[f(z)] by integration
with the following criteria:

1. If f(z) is an analytic function of a complex variable z, then Dα[f(z)] and
Iα[f(z)]is an analytic function of α and z.

2. The operation Dα[f(z)] must produce the same result as ordinary differentiation
when α is a positive integer and Iα[f(z)] must produce the same result as
ordinary integration when α is a positive integer.

3. The operation of D0[f(z)] and I0[f(z)] leaves the f unchanged. That is,
D0[f(z)] = f(z) = I0[f(z)].

4. The operation of Dα[f(z)] and Iα[f(z)] is linear. That is, for arbitrary a, b ∈ C,
Dα[af(z) + bg(z)] = aDα[f(z)] + bDα[g(z)].
Iα[af(z) + bg(z)] = aIα[f(z)] + bIα[g(z)].

5. The composition rule. That is,
Dα
[
Dβ [f(z)]

]
= Dα+β [f(z)] and Iα

[
Iβ [f(z)]

]
= Iα+β [f(z)].

6. Dα[f(z)] and Iα[f(z)] are inverse functions i.e., Dα [Iα[f(z)]] = f(z)

Another important property all operators must have is the generalized Leibniz Rule.

Lemma 2.33 (Leibniz Rule [Ort11, p. 19]). Let f(t) = ϕ(t) · ψ(t) where t ∈ C and
assume that one of the functions is analytic in a given region, then we obtain

Dα
θ [ϕ(t)ψ(t)] =

∞∑
n=0

(
α

n

)
ϕn(t)ψα−n(t), (2.4)

where
(
α
n

)
is defined in Corollary 2.17.

It is important to note that the formula is not commutative if only one function is
analytic. However, if both functions are analytic in the given region then the formula
is commutative.
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2.2.1 Riemann-Liouville Fractional Derivative

The exploration of fractional derivatives begins by establishing a solid foundation
through the Cauchy Integral formula (2.13), as initiated by Riemann-Liouville in
their derivation process. When delving into the complexities of complex analysis, it
becomes crucial to precisely define the domains in which these formulas remain valid.
Therefore, for the subsequent discussion, we narrow our focus to closed intervals and
Lebesgue spaces.

Definition 2.34 (Lebesque space, compare [Die10]). For 1 ≥ p and a, b ∈ [−∞,∞]
we have the following

Lp[a, b] =

{
f : [a, b]→ R; is measurable on [a, b] and

∫ b

a

|f(x)|pdx <∞
}
.

Now that we have set our region we introduce the notion of the Riemann-Liouville
integral and then derive the derivative.

Definition 2.35 (Riemann-Liouville fractional derivative, compare [GKP19, Definition
2]). Let α ∈ R and f ∈ L1[to, t] and t ∈ [t0, t].

RLD
(α)
t0 f(t) =

1

Γ(m− α)
dm

dtm

∫ t

t0

(t− τ)m−α−1f(τ) dτ.

The majority of functions under consideration in our study exhibit poles, presenting
significant challenges when applying the Riemann-Liouville derivative. To address
this, it becomes essential to designate a specific branch cut, leading us to introduce
left and right-sided integrals. When we set t = ∞, we refer to this as a right-sided
derivative. Furthermore, if t = −∞, it corresponds to a left-sided derivative.

It is important to note that a problem arises with a composition rule of functions,
which is addressed by Oldham and Spanier [OS74], see Example 2.37 below for a
counterexample.

For completeness, we define the derivative used by Keiper (1953-1995) [Kei75].

Remark 2.36 (Keiper). Let α < −1 and f(z) be an analytically continued function
with c ∈ R. Then,

KD(α)
c [f(z)] =

1

Γ(−α)

∫ z

c

f(t)

(z − t)t+1
dt.

In his master thesis on fractional derivatives, Keiper analytically continues the
function above for α > 0 and then lets c = −∞ as seen in the Weyl approach.
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Power Function

We only consider the special case of polynomials, composed of the simple power
functions p(x) = (x− a)β, where β ∈ R, a ∈ C. For these, the α-th Riemann-Liouville
fractional derivative can be computed using the Power Rule:

RLD(α)
a (x− a)β =

0 if α− β − 1 ∈ N
Γ(β + 1)

Γ(β − α + 1)
(x− a)β−α otherwise

(2.5)

A noteworthy fact is that the Riemann-Liouville fractional derivative satisfies all
properties expected of a regular derivative, with the exception of the composition rule.
The following example shows why it fails:

Example 2.37. By equation (2.5), the 1.5-th derivative of p(x) = 1 is RLD
(1.5)
0 p(x) =

2√
π
x−1.5 and RLD

(1)
0

(
RLD

(0.5)
0 p(x)

)
= 2√

π
x−0.5. However, RLD

(0.5)
0

(
RLD

(1)
0 p(x)

)
=

RLD
(0.5)
0 0 = 0.

When β ∈ R \ Z we still have RLD
(α)
a

(
RLD

(β)
a p(x)

)
= RLD

(α+β)
a p(x).

Exponential Function

For the Riemann-Liouville derivatives of the exponential function we first need to
introduce the definition of the two-parameter Mittag-Leffler (ML) function.

Definition 2.38. Let β and κ be two complex parameters with ℜ(β) and z ∈ C.
Then the two-parameter ML function is defined by

Eβ,κ(z) =
∞∑
k=0

zk

Γ(βk + κ)

We can introduce the Riemann-Liouville derivatives of the exponential function.

Proposition 2.39 (compare [GKP19, Proposition 9]). Let α > 0,m = ⌈α⌉ and
t0 ∈ R. For any s ∈ C and t > t0 the exponential function es(t−t0) has the following
fractional derivative:

RLD
(α)
t0 e

s(t−t0) = (t− t0)−αE1,1−α(s(t− t0))

Roberto Garrappa, Eva Kaslik and Marina Popolizio [GKP19] note that the
main drawback arises when the Riemann-Liouville is applied to fractional differential
equations (FDEs). The Riemann-Liouville derivative needs to be initialized with the
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same kind of values. In applications, these values are not available because they do
not have a clear physical meaning and therefore the description of the initial state of
a system is quite difficult. This is one of the reasons which motivated introducing the
fractional Caputo derivative.

2.2.2 Caputo Fractional Derivative

In 1967, Michele Caputo [Cap67] reformulated the definition of the Riemann–Liouville
fractional derivative, by switching the order of the ordinary derivative with the
fractional integral. By doing so, the Laplace transform of this new derivative depends
on integer order initial conditions, differently from the initial conditions when we use
the Riemann–Liouville fractional derivative, which involve fractional order conditions.
Therefore, we introduce the Caputo fractional derivative as the following:

Definition 2.40 (Caputo fractional derivative, [Cap67]). Let α ∈ R and f ∈ L1[to, t]
and t ∈ [t0, t].

CD
(α)
t0 f(t) =

1

Γ(m− α)

[ ∫ t

t0

(t− τ)m−α−1f (n)(τ)

]
dτ,

which is then broken up as before by left and right sided derivatives, taking t0 = 0
and t =∞ respectfully.

The Caputo approach is common in real world application, see [Die10] for example.
Another advantage that the Caputo fractional derivative has over the Riemann-
Liouville derivative is that the composition rule holds.

Power Function

As in the Riemann-Liouville case, we only consider the special case of polynomials,
composed of the simple power functions p(x) = (x− a)β, where β ∈ R, a ∈ C. The
α-th Caputo fractional derivative is computed using the Power Rule:

CD(α)
a (x− a)β =


0 β ∈ {0, 1, . . . ,m− 1}
Γ(β+1)

Γ(β−α+1)
(x− a)β−α β > m− 1

non existing otherwise
(2.6)

It is important to note that, for k ∈ N we have

CD(α)tk = 0 for k < α

and diverges for k > α.
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Exponential Function

For the Caputo derivatives of the exponential function we use the two-parameter
Mittag-Leffler (ML) function (2.38). The Caputo derivatives of the exponential
function.

Proposition 2.41 (compare [GKP19, Proposition 9]). Let α > 0,m = ⌈α⌉ and
t0 ∈ R. For any s ∈ C and t > t0 the exponential function es(t−t0) has the following
fractional derivative:

CD
(α)
t0 e

s(t−t0) = sm(t− t0)m−αE1,m−α+1(s(t− t0)).

2.2.3 Grünwald-Letnikov Fractional Derivative

Finally, we introduce the most commonly used method that we use for taking a
fractional derivative, the Grünwald-Letnikov [Grü67,Let68a,Let68b] derivative. In
order to understand the derivative, we first introduce the basic idea of an integer order
derivative by taking the limit of the difference quotient,

f ′(z) = lim
h→0

f(z)− f(z − h)
h

Its known that you can generalize the limit above for higher order integer derivatives.

Lemma 2.42. Let z ∈ R and n ∈ N and assume that f is n-times differentiable.
Then,

f (n)(z) = lim
h→0

n∑
j=0

(−1)j
(
n

j

)
f(z − jh)

hn
.

Now that we have obtained the general form of an integer order derivative, we
can now extend it to the general form of the incremental ratio valid for any order as
follows.

Definition 2.43. [Ort11] Let f(z) be a complex valued function and define the
fractional derivative by the limit of the fractional incremental ratio

GLD
(α)
θ f(z) = e−jθα lim

|h|→0

∞∑
k=0

(−1)k(αk)f(z − kh)

|h|α
(2.7)

where h = |h|ejθ is a complex number, with θ ∈ (−π, π].
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We are most interested in two special values of θ. The forward derivative, indicated
with a (→) symbol for θ = 0, and backward derivative, indicated with a (←) symbol
for θ = π. The reasoning behind this is related to time. Assuming that z is time and
h is real, then θ = 0 deals with present and past values where θ = π is looking at
present and future values.

In order to make some nice relationships between the Grünwald-Letnikov derivative
and the other fractional derivatives we introduce the notion of the truncated Grünwald-
Letnikov derivative. In essences this means that we are taking the original function f
and picking a point t0 such that everything before that point will be considered zero.

Theorem 2.44 (Truncated Grünwald-Letnikov derivative, compare [Ort11]). Let
α > 0 and f ∈ Ln[a, b] and a < x ≤ b then the truncated Grünwald-Letnikov derivative
is defined as the following

GLD̃
(a)
θ f(z) = lim

N→∞

N∑
k=0

(−1)k
(
α

k

)
f(z − khN)

hαN
(2.8)

such that hN = (x− a)/N .

Power Functions

We can compute the Grünwald-Letnikov fractional derivative for causal power function
defined p(t) = tβu(t) with β > 0 be defined as our power function. It is well know
that the Laplace transformation for p(t) is P (a) = Γ(β+1)

sβ+1 Therefore the fractional
derivative using Grünwald-Letnikov is defined as [Ort11]

GLD
(α)
f tβu(t) =

Γ(β + 1)

Γ(β − α + 1)
tβ−αu(t).

Which is the same as the general order derivative if α = N

GLD
(N)
f tβu(t) = (β)N t

β−Nu(t).

However, neither the forward nor backward Grünwald-Letnikov fracional derivatives
converge for polynomials.

Exponential Functions

There are many other properties that hold for Grünwald-Letnikov fractional derivatives
making it seem like the ideal way to take a derivative of real order. A classic example
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is looking at the exponential function. Namely f(z) = esz. For the forward derivative
we let h > 0, we have the series,

esz
∞∑
k=0

(−1)k
(
α

k

)
e−ksh.

Which converges for the main branch cut g(s) = (1− e−sh)α provided that |e−sh| < 1,
i.e ℜ(s) > 0. That then provides us with the following,

GLD
(α)
θ f(z) = lim

h→0

esz
∞∑
k=0

(−1)k
(
α
k

)
e−ksh

hα

= lim
h→0+

(1− e−sh)
hα

esz = lim
h→0+

(
(1− e−sh)

h

)α

esz = |s|αejθαesz

which holds if and only if θ ∈ (−π/2, π/2) which corresponds to the power function
and assuming the branch cut line is in the left hand complex half-plane.

For the backwards derivative, we consider another binomial series:
∞∑
k=0

(−1)k
(
α

k

)
eksh

that is convergent to the main branch of f(s) = (1 − esh)α provided ℜ(s) < 0. We
obtain,

GLD(α)
← f(z) = |s|αejθαesz

valid if and only if θ ∈ (π/2, 3π/2). This goes to show that e−z and ez derivatives
cannot exists simultaneously. This gives us an idea how the fractional derivatives can
still have flaws. Similar to what we saw in the Grünwald-Letnikov example. However,
as we saw in the in the previous method there are flaws when taking the fractional
derivative.

2.2.4 Relationships between Fractional Derivatives

Although all methods of taking the fractional derivative have drawbacks, there are
some nice relationships between all of the methods.

Definition 2.45 (Caputo fractional derivative, compare [Ort11]). Let f be analytic
on a convex open set C let and a ∈ C. Let α > 0 and m = ⌈α⌉ then the α-th Caputo
fractional derivative is

CD(α)
a f(t) = RLI(m−α)a

dm

dtm
f(t).
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Theorem 2.46 ([Die10, Theorem 2.25]). Suppose that the truncated Grünwald-Letnikov
derivative and the Riemann-Liouville derivative exist for a given function. We have,

GLD̃
(α)
t0 = RLD

(α)
t0

A strong result is the relationship between the Caputo method and the Riemann-
Liouville method.

Theorem 2.47 ([GKP19, Proposition 5]). Suppose that the truncated Grünwald-
Letnikov derivative and Caputo derivatives exists. Then

GLD̃
(α)
t0 (f(t)− Tm−1[f ; t0](t)) = CD

(α)
t0

where Tm−1[f ; t0](t) is the Taylor polynomial of f centered at t0.

Another interesting result of the Grünwald-Letnikov derivative is the relationship
it has with the generalized Cauchy derivative.

Theorem 2.48 ([OC04, Theorem 4]). Let f(z) be a complex variable function analytic
in the region inside and continuous on the U shaped contour C. Then

GLD
(α)
f f(z) = lim

h→0+

∞∑
k=0

(−1)k(αk)f(z − kh)

hα
=

Γ(α + 1)

2πi

∫
C

f(w)
1

(w − z)α+1
.
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Chapter 3: Riemann Zeta Function

In this chapter we present results about the Riemann zeta function to lay a base for
our results in the following two Chapters 4 and 5 on the Euler-Dirichlet eta function
and Dirichlet L-function. The special values of fractional derivatives in Section 3.6.2
are new.

3.1 Classical Results

The Riemann zeta function is a cornerstone in the vast landscape of mathematics, its
significance echoing through the ages. Countless mathematicians, fueled by unyielding
curiosity, have dedicated their lives to unraveling its intricacies and discovery of
profound theorems. In the upcoming chapters, particularly Chapter 4 and Chapter 5,
we will shed further light on this mathematical journey by drawing parallels to these
well-known results, paving the way for new mathematical concepts.

3.1.1 Euler

The zeta function was first introduced by L. Euler who studied the distribution of
prime numbers using the infinite product formula

Lemma 3.1 ([Eul37]). For s ∈ C with Re(s) we have

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1
where the product runs through all prime numbers p.

Already in 1734, Euler discovered a clever way using the sine product formula to
compute ζ(2) = π2

6
. More generally he proved for all even integers,

ζ(2n) =
1

12n
+

1

22n
+

1

32n
+ · · · = (−1)n+1B2n2

2n−1π2n

(2n)!
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where Bn are the Bernoulli numbers (introduced by Bernoulli in [Ber13] of 1713).
Building on Euler’s pioneering contributions to the zeta function, subsequent mathe-
maticians delved into its intricacies, unearthing a wealth of insights.

3.1.2 Riemann

A century after Euler looked at the zeta function, Bernhard Riemann [Rie59] considered
the function for complex variable s, deriving results that eventually lead to the proof of
the Prime Number Theorem by Hadamard [Had96] and de la Vallée Poussin [DLVP96].

Theorem 3.2 (Prime Number Theorem). The number of primes p ≤ x satisfies the
asymptotic formula

π(x) ∼ x

log x

Non-vanishing of ζ(s) on the line ℜ(s) = 1; a fact that became crucial step to
establishing the result. In 1859, Riemann [Rie76] was able to show that ζ(s) converges
for ℜ(s) > 1 and has an analytic continuation to the whole complex plane. It is
also holomorphic except for a simple pole at s = 1 with residue 1. This analytic
continuation is characterized by the functional equation

ζ(1− s) = 2Γ(s)ζ(s)(2π)−s cos(
πs

2
). (3.1)

There are some other interesting properties of the Zeta function, such as zero-free
regions discussed in Sections 3.4, 3.5, and 3.6.

3.1.3 Higher Derivatives

Now, for all k ∈ N, the derivatives ζ(k)(s) of the Riemann zeta function, for s ∈ C
with ℜ(s) > 1, are

ζ(k)(s) = (−1)k
∞∑
n=1

(log n)k

ns
, (3.2)

since
d(1/ns)

ds
=
d(e−s logn)

ds
=
d(−s log n)

ds
e−s logn =

− log n

ns
,

so that every new derivative with respect to s introduces an extra factor of (− log n).
Similar to the Riemann zeta function itself, all ζ(k)(s) can be extended to meromorphic
functions with a single pole at s = 1; however, unlike ζ(s), these derivatives have
neither Euler products nor functional equations. As a result, their nontrivial zeros do
not lie on a line, but appear to be distributed seemingly at random, the majority of
them located to the right of the critical line σ = 1

2
(compare [Spi65b]).
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However, within the apparent randomness of the distribution of zeros of ζ(k)(s),
certain intriguing patterns and structures can be detected. As it was shown in [BPS15],
for sufficiently large values of k we have: a) an increasing number of zero-free regions
in the right half-plane, with surprising vertical periodicity of the zeros located in
the strips between them; and b) with the increasing integer-valued k, the zeros seem
to transition (in an almost periodic fashion, see Figure 1.1) to the left, creating a
lattice-like grid. There seems little doubt that this ‘movement’ between the zeros
of high derivatives is continuous (as conjectured in [BPS15]), however that means
that, in order to describe and investigate this intriguing phenomenon, the behavior
of the fractional derivatives needs to be understood first. We can then apply the
Grünwald-Letnikov fractional derivative to yield a fractional generalization of (3.2) to
all α > 0 for any s ∈ C with ℜ(s) > 1:

ζ(α)(s) = GLD(α)
s [ζ(s)] = (−1)α

∞∑
n=1

logα(n+ 1)

ns
. (3.3)

As a direct consequence of the Laurent expansion (3.8) of the fractional derivatives
we obtain:

(a) We choose the branch cut of the complex logarithm, which creates a discontinuity
in GLD

(α)
s [ζ(s)] along (−∞, 1], for all α ̸∈ N.

(b) GLD
(α)
s [ζ(s)] is analytic on C \ (−∞, 1]; it is a continuous function of both s and

α > 0.

(c) If σ ∈ (1,∞) and α ̸∈ N, then GLD
(α)
s [ζ(σ)] is non-real.

(d) For s ∈ C \ (−∞, 1], we have GLD
(α)
σ [ζ(s)] = (−1)2αGLD

(α)
σ [ζ(s)].

Properties (c) and (d) describe the symmetry of locations of the zeros of GLD
(α)
σ [ζ(s)]

in C, with respect to the real axis, but not the actual mirroring of properties or the
related dynamics.

3.2 Evaluation

As seen in [FPS20], ζ(α)(s) = Dα
s [ζ(s)] = (−1)α

∑∞
k=2

logα k
ks

where s ∈ C with ℜ(s) > 1.
Using (2.2), let g(x) = log(α)(x)

xs . Then
∑∞

k=2 g(k) converges for ℜ(s) > 1.
We evaluate the first summand of (2.2) as is, namely as

Gα
s (m) :=

m−1∑
k=2

g(k) =
m−1∑
k=2

logα k

ks
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The second term of the right hand side of (2.2) can be written in terms of the Upper
Incomplete Gamma function Γ(α, s) (compare [GR07, p. 346] and [AS64, 6.5.3]):

Iαs (m) :=

∞∫
m

g(x)dx =

∞∫
m

logα x

xs
dx =

Γ(α + 1, (s− 1) log(m))

(s− 1)α+1

For the third term we assume that v is even and get:

Bα
s (m, v) :=

v∑
k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣∞
x=m

=
1

2

logα(m)

ms
−
⌊v/2⌋∑
j=1

B2j

(2j)!

(
logα(m)

ms

)(2j−1)

We use the non-central Stirling numbers S(k, i, s) to evaluate the derivatives g(k−1).
Let

(α)i = α · (α− 1) · (α− 2) · · · · · (α− (i− 1)) =
Γ(α + 1)

Γ(α− i+ 1)
(3.4)

be the falling factorial and denote the Stirling numbers of the first kind by s(j, i).
Then

S(k, i, s) =
k−i∑
j=0

(−1)k−i+j(−1)k
(
k

j

)
(−α)js(k − j, i). (3.5)

The derivatives of g can be written as [Jan09, Theorem 1]:

g(k)(x) =

(
logα x

xs

)(k)

=
k∑

i=0

S(k, i, s)(α)i
logα−i(x)

xs+k

Now we determine a bound for the fourth term of (2.2). Writing s = σ + it and

Eα
s (m, v) :=

1

v!

∞∫
m

Pv(x)g
(v)(x)dx

we get

|Eα
s (m, v)| =

∣∣∣∣ 1v!
∫ ∞
m

Pv(x)g
(v)(x)dx

∣∣∣∣ ≤ |Bv|
v!

∫ ∞
m

|g(v)(x)|dx

≤ |Bv|
v!

(
v∑

j=0

|S(v, j, s)(α)j|

)(∫ ∞
m

logk(x)

xσ+v
dx

)

=
|Bv|
v!

(
v∑

j=0

|S(v, j, s)(α)j|

)
Γ(α + 1, (σ + v − 1) log(m))

(σ + v − 1)α+1
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The error term Eα
s (m, v) converges for σ + v > 1 and m > 2.

For all s ∈ C \ (∞, 1] we can choose m ∈ N and v ∈ N such that |Eα
s (m, v)|

becomes arbitrarily small. We can thus approximate Dα
s [ζ(s)] as

Dα
s [ζ(s)] ≈ (−1)α (Gα

s (m) + Iαs (m) +Bα
s (m, v))

where the error is |Eα
s (m, v)|.

3.2.1 Skorokhodov connectors

The higher derivatives you take of ζ(s) the zeros start to form distinct chains, see
Section 3.4. Skorokhodov also noticed that the zeros of ζ(s)− 1 can be regarded as
the first points in these chains, and that there are curves from some zeros of ζ(s) to
these points given by the zeros of ζ(s)− c for c ∈ [0, 1) (see Figure 3.1).
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Figure 3.1. Zeros of derivatives of ζ(k)(s) (denoted by •(k)) and the paths from zeros
of ζ(s) (denoted by •) to the zeros of ζ(s)− 1 (denoted by ×).
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Theorem 3.3 ([Sko03]). The function ζ(s) is distinct from unity at σ ∈ (σ0,∞),
where

σ0 = 1.940101683745 . . .

is the zero of the function

f(σ) = 1 + 2−σ − (1− 2−σ)ζ(σ), σ > 1.

Skorokhodov [Sko03] noticed that the zeros of ζ(s)− 1 can be regarded as the first
points in these chains, and that there are curves from some zeros of ζ(s) to these
points given by the zeros of ζ(s)− c for c ∈ [0, 1) . Our main utility of the connectors
is finding starting point of curves of fractional derivatives.

The curves of zeros s(c) of ζ(s)− c for c ∈ [0, 1) either end at a zero of ζ(s)− 1

or go off to the left approaching their asymptote t = ℜ(s) = (2m+1)π
log 2

for some m ∈ Z
as σ = ℜ(s) approaches infinity. If each zero of ζ(s) − 1 indeed corresponded to a
zero of ζ(α)(s) for α ∈ R, then some zeros of ζ(s) would not correspond to zeros with
derivatives, namely those from which the paths of zeros of ζ(s)− c for c ∈ [0, 1) goes
off to the right. A right bound σ = 3 for the zeros of ζ(s)− 1 can be easily obtained
with the triangle inequality and an estimate for ζ(σ)− 1

2σ
− 1. S. Skorokhodov was

able to get a better bound by applying the triangle inequality to a real valued function
that only considers terms of the zeta function with n odd:

Lemma 3.4 (Skorokhodov [Sko03]). The function ζ(s) is distinct from unity at
σ ∈ (σ0,∞), where

σ0 = 1.940101683745 . . .

is the zero of the function

f(σ) = 1 + 2−σ − (1− 2−σ)ζ(σ), σ > 1.

For c ∈ [0, 1) we find zero-free regions of ζ(s) − c that depend on t. We obtain
them by considering the real and imaginary part of ζ(s)− c separately.

Lemma 3.5 ([BP13, Lemma 3]). If c ∈ [0, 1) and |sin(t log 2)| ≥ 2σζ(σ)− 2σ − 1 then
ζ(σ + it)− c ̸= 0.

Lemma 3.6 ([BP13, Lemma 4]). If c ∈ [0, 1) and cos(t log 2) ≥ 2σζ(σ)− 2σ − 1, then
ζ(σ + it)− c ̸= 0.

These regions can be extended a bit if we restrict ourselves to certain values of t.

Lemma 3.7 ([BP13, Lemma 5]). If c ∈ [0, 1), m ∈ Z, and t is fixed at 2πm
log 2

, then
ℜ(ζ(s)− c) ̸= 0 for σ > 1.95.
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Figure 3.2. The paths from zeros of ζ(s) (denoted by •) to the zeros of ζ(s) − 1
(denoted by ×), the barrier on the left (denoted by ↑), the zeros of ℑ

(
ζ
(
−1

2
+ it

))
with 0 ≤ t < 13.7 (denoted by •), the borders of zero-free regions of ζ(s) − c for
c ∈ [0, 1) (denoted by –), and the zero-free region of ζ(s)− 1 on the right in grey.

3.3 Laurent Series Expansion

The Riemann zeta function is meromorphic with a single pole of order one at s = 1.
It can therefore be expanded as a Laurent series about s = 1 defined as

ζ(s) =
1

s− 1
+
∞∑
n=0

γn
n!

(s− 1)n (3.6)

where the γn are called the Stieltjes constants [HS05]. Berndt [Ber72] shows

γn = lim
m→∞

((
m∑
k=1

(log(k))n

k

)
− (log(m))n+1

n+ 1

)
. (3.7)
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The constant term γ0 is the Euler-Mascheroni constant. The Stieltjes constants were
generalized to fractional Stieltjes constants γβ, for β ∈ (0,∞) by Kreminski [Kre03].
They are defined by the Laurent series expansions of the fractional derivatives of the
Riemann zeta function:

ζ(α)(s) = (−1)α
(

Γ(α + 1)

(s− 1)α+1
+

∞∑
n=0

(−1)nγn+α

n!
(s− 1)n

)
. (3.8)

3.3.1 Asymptotic Behavior of Stieltjes Constants

Research on questions related to approximating and bounding Stieltjes constants,
dates back to Stieltjes [HS05], Jensen [Jen87], and Ramanujan [Ram85], and more
recently it has received a lot of renewed attention in the works of Adell [Ade12], Adell
& Lekuona [AL17], Blagouchine [Bla16], Coffey [Cof16], Coffey & Knessl [CK11], and
others.

Our Theorem 5.18 for γα = γα(1, 1) immediately yields the specialization of
[FPS21, Theorem 2] to the Riemann zeta function.

Corollary 3.8 ([FPS21, Theorem 2]). Let α > 0 and set w(α) = W0

(
αi
2π

)
and let

γ̃α :=
logα(2)

4
− logα+1(2)

α + 1
−ℑ

(√
2α

π(w(α) + 1)
e−w(α)+h(w(α))

)

where h(t) = 2πi(et − 1) + α log t. Then γα ∼ γ̃α.

A similar result for discrete values can be found in [Maś22, Equation 34].

Theorem 3.9. Let n ∈ N. Then

γα ∼
√

2

π
n! · ℜ

 Γ(sn)e
−csn

(sn)n
√
n+ sn +

3
2


where sn is the saddle point:

sn =
n+ 3

2

W0

(
n+ 3

2

2πi

)
and c = log(2πi).
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3.3.2 Bounds for Stieltjes Constants

In a recent paper by Pauli and Saidak, they were able to prove a new bound for the
Stieltjes constants γα.

Theorem 3.10 ([PS24, Theorem 8]). For α ≥ 2π denote the fractional Stieltjes
constants by γα. If we set wα(1) := W0

(
αi
2π

)
, where W0 is the principal branch of the

Lambert W function, then

|γα| < α2 +
3

4
α2 logα ·

∣∣eα(logwα(1)−1/wα(1))
∣∣ .

Note that the main term of the bound in Theorem 3.10 differs only by a factor of
α2 logα from the conjectured bound given in [FPS21]:

|γα| ≤ 2
∣∣eα(logwα(1)−1/wα(1))

∣∣ . (3.9)

In Figure 3.3 we compare Theorem 3.10 and (3.9) with previously known bounds for
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Figure 3.3. On a logarithmic scale we show the absolute values of the Stieltjes constants
γα, along with the bounds by Berndt, Williams and Zhang, Matsuoka, and Saad Eddin,
the conjecture from [FPS21] as well as the bound from Theorem 3.10.

γα. For m ∈ N we have:
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1. the bound by Berndt [Ber72]: |γm| ≤ (3+(−1)m)(m−1)!
πm

2. the bound by Williams and Zhang [ZW94]: |γm| ≤ (3+(−1)m)(2m)!
mm+1(2π)m

3. the bound by Matsuoka [Mat85] which holds for m > 4: |γm| < 10−4(logm)m

4. the bound by Saad Eddin [Edd13]: Let θ(m) = m+1

log
2(m+1)

π

− 1 then

|γm| ≤ m! · 2
√
2e−(n+1) log θ(m)+θ(m)(log θ(m)+log 2

πe)
(
1 + 2−θ(m)−1 θ(m) + 1

θ(m)− 1

)
.

5. the bound by Farr [FPS21]: For α ∈ (0,∞) let x = π
2
eW0( 2(α+1)

π ) then

|γα| ≤
(3 + (−1)n+1)Γ(α + 1)

(2π)n+1(n+ 1)α+1

(2(n+ 1))!

(n+ 1)!
where n =

{
⌊x⌉ if x < α
⌈α− 1⌉ otherwise

3.4 Right Half-Plane

Zero-free regions on the right half-plane have been described by several authors. We
start with Spira’s result from 1965.

Figure 3.4. Zeros of ζ(100) with zero-free regions and lines

Theorem 3.11 ([Spi65b]). If k ∈ N and σ ≥ 7
4
k + 2, then ζ(k)(s) ̸= 0.
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Binder, Pauli and Saidak, [BPS15], were able to prove the existence of zero-free
regions of integer order derivatives of ζ(s) and extended these results to fractional
derivatives [PS22]. These are found where one of the terms of the Dirichlet series
expansion of ζ(α)(s) dominates the series.

Let α ∈ R+ and let Qα
n(s) :=

logα n
ns denote the n-th term of the Dirichlet series for

(−1)αζ(α)(s), so that

(−1)αζ(α)(s) =
∞∑
n=2

logα n

ns
=
∞∑
n=2

Qα
n(s). (3.10)

One of the terms of (3.10), say Qα
M (σ), dominates the rest of the series, that is, when

Qα
M(σ) >

∑
n̸=M

Qα
n(σ), (3.11)

and, in complementary fashion, we look for the zeros of ζ(α)(s) near the regions of the
complex plane where Qα

M(σ) = Qα
M+1(σ), in other words where no term of the series

can attain dominance and, in fact, where the cancellation of terms might happen.
They get:

Theorem 3.12 (Theorem 1, [BP13]). Let α > 0. We have:

(a) For all σ > q2α + 2.6, we have ζ(α)(s) ̸= 0.

(b) If Q3α + 4 log 3 < q2α− 2, then ζ(α)(s) ̸= 0 for

q3α + 4 log 3 ≤ σ ≤ q2α− 2.

(c) If M ∈ N, M > 3 and qMα + (M + 1)u ≤ qM−1α−Mu, then ζ(α)(s) ̸= 0 in the
regions

qMα + (M + 1)u ≤ σ ≤ qM−1α−Mu

where u ∈ (0,∞) is a solution of 1− 1
eu−1 −

1
eu

(
1 + 1

u

)
≥ 0.

Note: The value u ∈ (0,∞) that gives us the widest zero-free regions is u =
1.1879426249 . . . , which is the solution of the equation

1− 1

eu − 1
− 1

eu

(
1 +

1

u

)
= 0.

Let Sα
M be the vertical strip between the zero-free regions obtained from the

dominance of Qα
M(qMα) and Qα

M+1(qMα) in (3.10), respectively, as described in
Theorem 3.12. The strip Sα

M exists when α reaches

AM :=

{
4 log 3+2
q2−q3 if M = 2
(2M+3)u
qM−qM+1

if M > 2
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Considering the imaginary parts of the solutions of Qα
M (qMα + it) = Qα

M (qM+1α + it)
we find that ζ(α)(σ + it) ̸= 0 for σ ∈ Sα

M and

t =
2πJ

log(M + 1)− log(M)
(3.12)

For J ∈ Z. Together, the borders of the zero-free regions to the left and right of Sα
M

the lines of (3.12), for J = j and J = j+!, where j ∈ Z form a contour around the
zero

qM · α +
π(2j + 1)

log(M + 1)− log(M)
i. (3.13)

qM+1α+(M+2)u qMα−(M+1)u qMα qM +α(M+1)u qM−1α−Mu
σ

2jπ

log(M+ 1)− logM

(2j+ 1)π

log(M+ 1)− logM

2(j+ 1)π

log(M+ 1)− logM

t

Qα
M+1(s) =

logα(M+1)

(M+1)s

dominates

Fα
M, j

SαM

Qα
M(s) =

logαM

M s

dominates

Figure 3.5. Regions Fα
M,j that contains exactly one zero of ζ(α)(σ+it). Rouché’s theorem

can be used to establish simplicity of the zero using the zero of Qα
M (s) +Qα

M+1(s), see
Theorem 3.12
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Theorem 3.13 (Theorem 2, [BP13]). Let M ≥ 2 denote a natural number, j ∈ Z,
and α > AM . Let Fα

M,j ⊂ Sα
M be given by

2πj

log(M + 1)− log(M)
< t <

2π(j + 1)

log(M + 1)− log(M)
(3.14)

Then Fα
M,j contains exactly one zero of ζ(α)(s), and the zero is simple.

3.4.1 Positive Real Axis

We can see from [BP13, Theorem 2] that there do not exist any zeros on the positive
real axis for ζ(α) for σ > 0.

Using 3.8 and because of the branch cut of the complex logarithm, there is a
discontinuity along (−∞, 0] for α /∈ N. As a direct consequence we obtain the
following useful property:

Proposition 3.14 (Proposition 1,[FPS20]). If σ ∈ (1,∞) and α /∈ N then GLD
(α)
σ [ζ(σ)]

is non-real

3.5 Critical Strip

The region known as the critical strip (0 < σ < 1) shrouds itself in profound mystery,
accentuated by its association with a millennium prize question.

Conjecture 3.15 (The Riemann Hypothesis,[Rie59]). All non-trivial zeros for the
Riemann zeta function lie on the critical line ℜ(s) = 1/2.

3.5.1 Riemann Hypothesis and Derivatives

As mathematicians began to comprehend the derivatives of the Riemann zeta function,
they started drawing parallels between it and the Riemann hypothesis.

Theorem 3.16 (Speiser [Spi73]). The Riemann Hypothesis is equivalent to the fact
that the non-trivial zeros of the derivatives ζ ′(s) have ℜ(s) ≥ 1/2, that is, that they
are on the right of the critical line.

The original result is due to Speiser see [LM74], however in 1974 Norman Levinson
and H. L. Montgomery provide a detailed proof of:

Theorem 3.17 (Corollary to Theorem 1,[LM74]). The Riemann Hypothesis is equiv-
alent to ζ ′(s) have no zeros in 0 < σ < 1

2
.
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Figure 3.6. Zeros σ + it with t ≥ 0 of the fractional derivatives of ζ(s) on the left
half-plane. For k ∈ N zeros of ζ(k)(s) are labeled with k. Not all zeros on the real axis
are shown. The values for α are 1/100 apart.

3.6 Left Half-Plane

Levinson and Montgomery made the following observation about the number of zeros
of integral derivatives on the left half-plane.

Theorem 3.18 ([LM74]). Let k ∈ N then ζ(k) has finitely many non-real zeros on the
left half-plane.

More concretely Yıldırım showed:

Theorem 3.19 ([Yıl00, Theorems 2 and 3]). There is only one pair of nonreal zeros
of ζ ′′(s) as well as ζ ′′′(s) in the left half-plane.

Using an implementation of the approximation to ζ(α)(s), see Section 3.2, one
observes, see Figure 3.6, that the zeros on the left half-plane given in [FP13] appear
to be connected in a similar manner as on the right half-plane. Counting the zeros of
integral derivatives obtained, one gets Table 3.1. This leads to the conjecture:

Conjecture 3.20 ([FPS20]). Let k ∈ N. The number of pairs of non-real zeros of
ζ(k)(s) with σ ≤ 0 is at most k+1

2
.
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k 0 1 2 3 4 5 6 7 8 9 10 11 12⌊
k+1
2

⌋
0 1 1 2 2 3 3 4 4 5 5 6 6

N 0 0† 1‡ 1‡ 2 3 3 3 4 4 4 4 4

Table 3.1. The number N of pairs of non-real zeros of ζ(k)(s) for ℜ(s) < 1. † Levinson
and Montgomery [LM74, Theorem 9], ‡ Yıldırım [Yıl00, Theorems 2 and 3]. The
values for k > 3 are experimental.

3.6.1 Negative Real Axis

As a direct consequence of the functional equation (3.1) for n ∈ N, we have ζ(−2n) = 0.
These are called the trivial zeros of ζ(s). For the first derivative, Spira noticed:

Theorem 3.21 ([Spi73]). If |s| > 165, then ζ ′(s) has only real zeros of σ ≤ 0, and
exactly one real zero in each open interval (−1− 2n, 1− 2n), n = 1, 2, · · · .

Rolles Theorem then yields zeros in between these intervals for all derivatives, see
[LM74] for results.

Theorem 3.22 ([Spi70]). For k ≥ 0 there is an sk so that ζ(k)(s) has only real zeros
for σ ≤ sk, and exactly one real zero in each open interval (−1 − 2n, 1 − 2n) for
1− 2n ≤ αk

For the first derivative, these are the only zeros on the left half-plane.

Theorem 3.23 ([LM74, Theorem 9]). For N ≥ 2 there is a unique solution of
ζ ′(s) = 0 in the interval (−2n,−2n+2) and there are no other zeros of ζ ′(s) in σ ≤ 0.

3.6.2 Special Values

As noted in the Introduction, special values of Γ(s) and ζ(s) and their derivatives have
a special place in the history of mathematics. Simple formulas that yield new insights
are rare, which makes their existence for the “complicated” fractional derivatives
that much more surprising, even though in their complex environment the discovered
patterns only concern their real values.

We consider the Laurent series expansion of the fractional derivatives of ζ(α), see
(3.8):

ζ(α)(s) = (−1)α
(

Γ(α + 1)

(s− 1)α+1
+

∞∑
n=0

(−1)nγn+α

n!
(s− 1)n

)
(3.15)

The term affected by the branch cut of the logarithm is

Γ(α + 1)

(s− 1)α+1
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whose branches are of the form

Γ(α + 1)

exp((log(s− 1) + b · 2πi) · (α + 1))
where b ∈ Z.

We write ζ(α)0− for the principal branch obtained with the principal branch of the
logarithm where the branch cut is along (−∞, 1). We obtain the other branches, again
with branch cut along (−∞, 1), as

ζ
(α)
b− (s) = (−1)α

(
(−1)−αζ(α)0− −

Γ(α + 1)

(s− 1)α+1
+

Γ(α + 1)

exp((log(s− 1) + b · 2πi) · (α + 1))

)
(3.16)

where b ∈ Z. From the above the functions ζ(α)b+ (s) with the branch cut along (1,∞)
are obtained as

ζ
(α)
b+ (s) =

{
ζ
(α)
b− (s) for ℑ(s) ≥ 0

ζ
(α)
(b+1)−(s) for ℑ(s) < 0

(3.17)

Theorem 3.24. For all k ∈ N0, b ∈ Z, and real σ < 1,

ℜ
(
ζ
(k+ 1

2
)

b+ (σ)
)
= (−1)b

Γ(k + 1
2
+ 1)

(1− σ)k+ 1
2
+1
. (3.18)

Proof. We consider a special case of 3.16, with m = 2, v = 1, and α = k + 1
2
:

ζ
(k+ 1

2
)

b+ (σ) = (−1)k+
1
2

(
Γ(k + 1

2
+ 1)

exp((log(s− 1) + b · 2πi) · (1
2
+ k + 1))

+
∞∑
n=1

(−1)nγ 1
2
+k+n

n!
(s− 1)n

)
.

Since γα ∈ C \ R we have

ℜ
(
ζ
(k+ 1

2
)

b+ (σ)
)
= ℜ

(
(−1)ki

Γ(k + 1
2
+ 1)

(σ − 1)
1
2
+k+1(−1)b

)
= (−1)b

Γ(k + 1
2
+ 1)

(1− σ) 1
2
+k+1

which confirms the statement of the theorem, and finishes its proof.

Remark 3.25. The special values of Γ(s) involved in (3.18) have a closed form (see
above), and imply:

ℜ
(
ζ(k+

1
2
)(σ)

)
= − (2k + 2)!

4k+1(k + 1)!(1− σ)k+ 1
2
+1

√
π.

Since this formula is valid for all real σ, it provides a variety of new interesting
special cases.
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Example 3.26. Fractional half derivatives of ζ at the origin (σ = 0):

ℜ(ζ(
1
2
)(0)) = −Γ

(
1 +

1

2

)
= −1

2

√
π

ℜ(ζ(3/2)(0)) = −Γ
(
1 +

3

2

)
= −3

4

√
π

ℜ(ζ(5/2)(0)) = −Γ
(
1 +

5

2

)
= −15

8

√
π

ℜ(ζ(7/2)(0)) = −Γ
(
1 +

7

2

)
= −105

16

√
π.

Example 3.27. Fractional half derivatives of ζ at the negative integers (σ = −n,
with n ∈ N):

ℜ(ζ(1/2)(−1)) = −
√
2π

8

ℜ(ζ(1/2)(−2)) = −
√
3π

18

ℜ(ζ(1/2)(−3)) = −
√
4π

32

ℜ(ζ(1/2)(−4)) = −
√
5π

50
.

3.7 Number of Zeros

We let Nζ(T ) and Nk
ζ (T ) denote the number of such zeros ρ with 0 ≤ ℑ(ρ) ≤ T of ζ(s)

and ζ(k)(s), respectively. The classical Riemann-von Mangoldt formula (see [Lan09])
states that

Nζ(T ) =
T

2π
log

T

2π
− T

2π
+O(log T ). (3.19)

and, according to Berndt [Ber70], we have

Nk
ζ (T ) = N(T )− T log 2

2π
+O(log T ). (3.20)

So, there are about T log 2/2π less zeros with imaginary part less than T of ζ(k)(s)
than of ζ(s), which is also equal to the number of Skorokhodov changes, i.e. zeros of
ζ(s)− c.
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Chapter 4: Euler Eta Function

4.1 Introduction

Let s = σ + it, then the Euler eta function (sometimes called Dirichlet eta function or
alternating zeta function), is defined as

η(s) =
∞∑
n=1

(−1)n+1

ns
(4.1)

which converges for σ > 0. Unlike the Riemann zeta function, the Euler eta function
does not have a pole at s = 1. In fact, η(1) is known as the alternating harmonic series
with the value η(1) = ln(2). The Euler eta function satisfies the following relation
with the Riemann zeta function:

η(s) =
(
1− 21−s

)
ζ(s). (4.2)

The Euler eta function has the integral representation,

η(s)Γ(s) =

∫ ∞
0

ts−1

et + 1
dt.

Godfrey Harold Hardy (1977-1947) was able to give a simple proof for the functional
equation of the Euler η function [Har22],

η(−s) = 2π−s−1sΓ(s) sin
(πs
2

) 1− 2−s−1

1− 2−s
η(s+ 1). (4.3)

Similar to ζ(s), the k−th derivative of η(s) where k ∈ N is

η(k)(s) =
∞∑
n=1

(−1)n logk(n)
ns

for ℜ(s) > 0. (4.4)

Applying the Grünwald-Letnikov fractional derivative (Definition 2.43) we obtain

η(α)(s) := GLD(α)
← [η(s)] = (−1)α

∞∑
n=1

(−1)n logα(n)
ns

(4.5)

where s ∈ C with ℜ(s) > 0.
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4.2 Evaluation
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Figure 4.1. Zeros of the fractional derivatives of the Euler η function: • Zeros of η(s),
x Zero of η(s)− 1, •(k) Zero of η(k)(s), Grey lines are Skorokhodov connectors. For
the nonreal zeros of the left also see Figure 4.7.

There are several methods to evaluate η(α)(s). One notable method by Cohen-
Villegas-Zagier is convergence acceleration of alternating series [Example 3., [CVZ00]].
This is not suitable for the left half-plane for higher derivatives because the functional
equation would have to be used.

Because we also want to evaluate η(α)(s) on the left half-plane we evaluate it using
Euler-Maclaurin summation (2.20). Recall

N∑
k=m

g(k) =

N∫
m

g(x)dx+
v∑

k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣N
x=m

+(−1)v+1

N∫
m

Pv(x)g
(v)(x)dx,
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where g(x) ∈ Cv [m,n], v ∈ N, Bk denotes the k-th Bernoulli number, and Pk(x) =
Bk(x−⌊x⌋)

k!
is the kth periodic Bernoulli polynomial. If g(x) decreases rapidly enough for

N →∞, then

∞∑
k=2

g(k) =
m−1∑
k=2

g(k) +

∞∫
m

g(x)dx+
v∑

k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣∞
x=m

(4.6)

+ (−1)v+1

∞∫
m

Pv(x)g
(v)(x)dx

For η(α)(s) we have

η(α)(s) =
∞∑
n=1

(−1)n logα(n)
ns

=
∞∑
n=1

− logα(2n)

(2n)s
+

logα(2n+ 1)

(2n+ 1)s
.

Therefore, let

g(x) = − logα(2x)

(2x)s
+

logα(2x+ 1)

(2x+ 1)s

Then
∑∞

n=1 g(n) converges for ℜ(s) > 0 and
∑∞

n=1 g(n) = η(α)(s). We evaluate the
first summand of (4.6) as is, namely as

Gα
s (m) :=

m−1∑
n=1

g(n) =
m−1∑
n=1

(
− logα(2n)

(2n)s
+

logα(2n+ 1)

(2n+ 1)s

)
For the second term of the right hand side of (4.6) we distinguish two cases:

Case 1: s = 1, we have using substitution

Iα1 (m) :=

∞∫
m

g(x)dx

=

∞∫
m

− logα(2x)

2x
+

logα(2x+ 1)

2x+ 1
dx

= −1

2

∫ ∞
2m

logα u

u
du+

1

2

∫ ∞
2m+1

logα u

u
du

= −1

2

∫ 2m+1

2m

log(α) u

u
du

= − 1

2(α + 1)

(
logα+1(2m+ 1)− logα+1(2m)

)
.
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Case 2: for s ̸= 1 the second term can be written in terms of the Upper Incomplete
Gamma function Γ(α, s) (compare [GR07, p. 346] and [AS64, 6.5.3]):

Iαs (m) :=

∞∫
m

g(x)dx

=

∞∫
m

− logα(2x)

(2x)s
+

logα(2x+ 1)

(2x+ 1)s
dx

= −1

2

∫ ∞
2m

logα(u)

(u)s
du+

1

2

∫ ∞
2m+1

logα(u)

(u)s
du

=
−Γ(α + 1, (log(2m)))

2(s− 1)α+1
+

Γ(α + 1, (log(2m+ 1)))

2(s− 1)α+1

=
Γ(α + 1, (log(2m+ 1)))− Γ(α + 1, (log(2m)))

2(s− 1)α+1

=
1

2
· Γ(α + 1, (log(2m+ 1)))− Γ(α + 1, (log(2m)))

(s− 1)α+1
.

Let v be an even integer. Then for the third term, we get:

Bα
s (m, v) :=

v∑
n=1

(−1)nBn

n!
g(n−1)(x)

∣∣∣∣∞
x=m

=
1

2
g(m) +

v∑
n=1

(−1)nBn

n!
g(n−1)(x)

∣∣∣∣∞
x=m

=
1

2
g(m) +

v/2∑
j=1

B2j

(2j)!
g(2j−1)(x)

∣∣∣∣∞
x=m

=
1

2
g(m)−

v/2∑
j=1

B2j

(2j)!
g(2j−1)(m).

As in Section 3.2, we use the non-central Stirling numbers (3.5) and the falling
factorial (3.4) to evaluate the derivatives g(n−1)(x). Then we have,

g(n)(x) =

(
− logα(2x)

(2x)s
+

logα(2x+ 1)

(2x+ 1)s

)(n)

=

(
− logα(2x)

(2x)s

)(n)

+

(
logα(2x+ 1)

(2x+ 1)s

)(n)

40



= 2n ·
(
− logα(2x)

(2x)s

)(n)

+ 2n ·
(
logα(2x+ 1)

(2x+ 1)s

)(n)

= 2n ·
n∑

i=0

S(n, i, s)(α)i
− logα−i(2x)

(2x)s+n
+ S(n, i, s)(α)i

logα−i(2x+ 1)

(2x+ 1)s+n
.

Now we determine a bound for the fourth term of (4.6). Writing s = σ + it and

Eα
s (m, v) :=

1

v!

∞∫
m

Pv(x)g
(v)(x)dx

we obtain

|Eα
s (m, v)| =

∣∣∣∣ 1v!
∫ ∞
m

Pv(x)g
(v)(x)dx

∣∣∣∣ ≤ |Bv|
v!

∫ ∞
m

|g(v)(x)|dx

≤ |Bv|
v!

v∑
j=0

∫ ∞
m

∣∣∣∣S(v, j, s)(α)j logα−j(x)xs+v

∣∣∣∣ dx
≤ |Bv|

v!

(
v∑

j=0

|S(v, j, s)(α)j|

)(∫ ∞
m

logn(x)

xσ+v
dx

)

=
|Bv|
v!

(
v∑

j=0

|S(v, j, s)(α)j|

)
Γ(α + 1, (σ + v − 1) log(m))

(σ + v − 1)α+1
.

The error term Eα
s (m, v) converges for σ + v > 1 and m > 2. For all s ∈ C \ (∞, 1]

we can choose m ∈ N and v ∈ N such that |Eα
s (m, v)| becomes arbitrarily small. We

can thus approximate Dα
s [ζ(s)] as

Dα
s [ζ(s)] ≈ (−1)α (Gα

s (m) + Iαs (m) +Bα
s (m, v))

where the error is |Eα
s (m, v)|.

4.2.1 Skorokhodov connectors

As in the ζ(s) case we use the Skorokhodov connector, see Section 3.2.1, to find the
starting point of the paths of the zeros of η(α)(s).

Theorem 4.1. The function η(s) is distinct from unity at σ ∈ (σ0,∞), where

σ0 = 1.940101683745 . . .

is the zero of the function

f(σ) = 1 + 2−σ − (1− 2−σ)ζ(σ), σ > 1.
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Figure 4.2. Zeros of derivatives of η(k)(s) (denoted by •k) and the paths from zeros of
η(s) (denoted by •) to the zeros of η(s)− 1 (denoted by ×).

Proof. Using a similar relation as in [Sko03, p.1293]

(1 + 2−s)η(s) =
∞∑
n=0

1

(2n+ 1)s
, σ > 1, (4.7)

one obtains

(1 + 2−s)|η(s)− 1| = −2−s +
∞∑
n=1

1

(2n+ 1)s
, σ > 1, (4.8)

From (4.8), by virtue of the inequalities

|a|+ |b| ≥ |a− b| ≥ |a| − |b|

it follows that

|1− 2−s||η(s)− 1| ≥ | − 2−s| −
∞∑
n=1

1

|(2n+ 1)s|
= 1 + 2−σ +

∞∑
n=0

1

(2n+ 1)σ
. (4.9)
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Using (4.7), rewrite (4.9)

|1 + 2−s||η(s)− 1| ≥ 1 + 2−σ − (1− 2−σ)|η(s)|
≥ 1 + 2−σ − (1− 2−σ)ζ(σ) =: f(σ), σ > 1.

Now that we have established a similar result to Theorem 3.3, we can find zero-free
regions for η(s)− c.

Lemma 4.2. If c ∈ [0, 1) and | sin(t log 2)| ≥ 2σζ(s) + 2σ − 1 then η(σ + it)− c ̸= 0.

Proof. We consider the imaginary part of η(s)− c and obtain

|ℑ(η(s)− c)| ≥
∣∣∣∣ 12σ sin(t log 2)

∣∣∣∣−
∣∣∣∣∣
∞∑
n=3

(−1)n−1

nσ

∣∣∣∣∣
=

∣∣∣∣ 12σ sin(t log 2)

∣∣∣∣− ∣∣∣∣η(s)− 1 +
1

2σ

∣∣∣∣
≥
∣∣∣∣ 12σ sin(t log 2)

∣∣∣∣− ζ(σ)− 1 +
1

2σ
,

which is positive when

| sin(t log 2)| ≥ 2σζ(σ) + 2σ − 1.

Lemma 4.3. If c ∈ [0, 1) and cos(t log 3) ≥ 3σζ(s)− 3σ − 1, then η(σ + it)− c ̸= 0

Proof. For the real part of η(s)− c we obtain

ℜ(η(s)− c) = 1− c− 1

2σ
cos(t log 2) +

1

3σ
cos(t log 3)−+ · · ·

≥ − 1

2σ
cos(t log 2) +

1

3σ
cos(t log 3)−ℜ

(
η(s)− 1− 1

3σ

)
assuming c = 1.

≥ 1

3σ
cos(t log 3)−

(
ζ(s)− 1− 1

3σ

)
,

which is positive when
cos(t log 3) ≥ 3σζ(s)− 3σ − 1.

These regions can be extended a bit if we restrict ourselves to certain values of t.

Lemma 4.4. If c ∈ [0, 1), m ∈ Z, then ℜ(η(s)− c) ̸= 0 for σ > 1.34, and t = 2mπ
log 3
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Proof. Let ℜ(η(s)− c) = 1− c− 1
2σ

cos(t log 2) + 1
3σ

cos(t log 3) +− · · · With t log 3 =
2mπ, we get:

ℜ(η(s)− c) = 1− c−
cos
(

log 2
log 3

2mπ
)

2σ
+

1

3σ
−+ . . .

≥
∞∑
ν=1

1

(3ν)σ
−ℜ

(
η(s)− 1−

∞∑
ν=1

1

(3ν)σ

)

≥ 1 + 2
∞∑
ν=1

(
1

3σ

)ν

−ℜ(η(s))

≥ 1 +
2

1− 1
3σ

− ζ(σ)

which is positive for σ > 1.34.

Lemma 4.5. If c ∈ [0, 1), m ∈ Z, then ℜ(η(s)− c) ̸= 0 for σ > 1.54 , and t = 2mπ
log 2

.

Proof. Let ℜ(η(s)− c) = 1− c− 1
2σ

cos(t log 2) + 1
3σ

cos(t log 3) +− · · · With t log 2 =
2mπ, we get:

ℜ(η(s)− c) = 1− c− 1

2σ
+

cos
(

log 3
log 2

2mπ
)

3σ
−+ . . .

≥
∞∑
ν=1

(−1)ν

(2ν)σ
−ℜ

(
η(s)− 1−

∞∑
ν=1

(−1)ν

(2ν)σ

)

≥ 1 + 2
∞∑
ν=1

(
− 1

2σ

)ν

−ℜ(η(s))

≥ 1 +
2

1 + 1
2σ

− ζ(σ)

which is positive for σ > 1.54.

Proposition 4.6. If c ∈ [0, 1), m ∈ Z, for any prime p > 2, and t = 2mπ
log p

, then
ℜ(η(s)− c) ̸= 0 for

1 +
2

1− 1
pσ

> ζ(σ)

Proof. Let ℜ(η(s)− c) = 1− c− 1
2σ

cos(t log 2)+ 1
3σ

cos(t log 3)+− · · · where t log 2 =
2mπ, we get:
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ℜ(η(s)− c) = 1− c−
cos
(

log 2
log p

2mπ
)

2σ
+

cos
(

log 2
log(9)

2mπ
)

3σ
−+

1

pσ
− = . . .

≥
∞∑
ν=1

1

(pν)σ
−ℜ

(
η(s)− 1−

∞∑
ν=1

1

(pν)σ

)

≥ 1 + 2
∞∑
ν=1

(
1

pσ

)ν

−ℜ(η(s))

≥ 1 +
2

1− 1
pσ

− ζ(σ)

4.3 Power Series Expansions

The function η(s) is entire and has a power series expansion [HK22] of the form

η(s) =
∞∑
j=0

(−1)j γj(η)
j!

(s− 1)j (4.10)

Repeated differentiation yields:

η(k)(s) =
∞∑
j=0

(−1)j+k γk+j(η)

j!
(s− 1)j (4.11)

which implies that γk(η) = η(k)(1).
A formula similar to Williams and Zhang’s formula (3.7) also exists for alternating

Hurwitz zeta functions [HK22]. For the special case of η(s) it is known

γj(η) = lim
m→∞

m∑
n=1

(−1)n+1 log
j(n)

n

Example 4.7. Some examples of η(k)(1) are the following:

η(1) = log 2 ≈ 0.6931

η′(1) = log 2γ − log2 2

2
≈ 0.1598

η′′(1) ≈ −0.0654
η(3)(1) ≈ 0.0094
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We generalize these Taylor expansion to the α−th derivative as the following:

η(α)(s) =
∞∑
j=0

(−1)j+αγα+j(η)

j!
(s− 1)j (4.12)

which implies that γα(η) = η(α)(1) for α ∈ [0,∞). See Figure 4.3.
As a direct consequence of Theorem 5.18 which will be established in Chapter 5,

we have

Corollary 4.8. Let wα(2) := W0

(
αi
π

)
be an extension of wα from Theorem 3.10 and

define

γ̃α(η) =
3

2

logα(2)

2
+

logα+1(3)

2(α + 1)
− logα+1(4)

4(α + 1)
−ℑ

(
−

√
2α

π(wα(2) + 1)
e−wα(2)+h1(wα(2))

)

+ ℑ

(
−

√
2α

π(wα(2) + 1)
e−wα(2)+h2(wα(2))

)
where h1(t) = πi(et − 1) + α log t and h2(t) = πi(et − 2) + α log t. Then

γ̃α(η) ∼ γα(η).

4.4 Right Half-Plane

Let Qα
n(s) := (log n)α/ns denote the n-th term of the Dirichlet series for (−1)αη(α)(s),

so that

(−1)αη(α)(s) = (−1)α
∞∑
n=2

(−1)n−1 logα n
ns

= (−1)α
∞∑
n=2

(−1)n−1Qα
n(s). (4.13)

We prove the existence of zero-free regions where one of the terms of (4.13), say
Qα

M(σ), dominates the rest of the series, that is, when

Qα
M(σ) >

∑
n̸=M

Qα
n(σ), (4.14)

and, in a complementary fashion, we look for the zeros of η(α)(s) near the regions
of the complex plane where Qα

M(s) = Qα
M+1(s), in other words where no term of the

series can attain dominance and, in fact, where the cancellation of terms might happen.
This occurs at

qM :=
log
(

logM
log(M+1)

)
log
(

M
M+1

) . (4.15)
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Figure 4.3. Stieljes constants γα for ζ in blue and γα(η) for η in black. and γ̃α(η) in
red

Our main goal is to prove a generalization of [BPS15, Theorem 2.1] for η(α)(s). We
later generalize it for all Dirichlet L-functions in Chapter 5:

Theorem 4.9. Let α > 0. We have:

(a) For all σ > q2α + 2.6, we have η(α)(s) ̸= 0.

(b) If q3α + 4 log 3 < q2α− 2, then η(α)(s) ̸= 0 for

q3α + 4 log 3 ≤ σ ≤ q2α− 2.

(c) If M ∈ N, M > 3, and qMα+ (M +1)u ≤ qM−1α−Mu, then η(α)(s) ̸= 0 in the
regions

qMα + (M + 1)u ≤ σ ≤ qM−1α−Mu,

where u ∈ (0,∞) is a solution of 1− 1
eu−1 −

1
eu
(1 + 1

u
) ≥ 0.

Note: The value of u ∈ (0,∞) that gives us the widest zero-free regions is
u = 1.1879426249 . . . , which is the solution of the equation

1− 1

eu − 1
− 1

eu

(
1 +

1

u

)
= 0. (4.16)
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Figure 4.4. Zero-free regions and lines for η(100)(s)

The proof follows from [FPS18], (see Figure 4.5). We know that |η(α)(s)| ≥ |ζ(α)(s)|.
Let Sα

M be the vertical strip between the zero-free regions obtained from the dominance
of Qα

M (qMα) and Qα
M+1(qMα) in (4.13), respectively, as described in Theorem 4.9. The

strip Sα
M exists when α reaches

AM :=

{ 4 log 3+2
q2−q3 if M = 2

(2M+3)u
qM−qM+1

if M > 2.

Recall that Qα
M(qMα) = Qα

M+1(qMα). Considering the imaginary parts of the
solutions of Qα

M(qMα + it) − Qα
M+1(qMα + it) = 0 we find that η(α)(σ + it) ̸= 0 for
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Figure 4.5. Regions Fα
M,j that contains exactly one zero of η(α)(σ + it). Rouche’s

theorem can be used to establish simplicity of the zero using the zero of Qα
M(s) −

Qα
M+1(s)

σ ∈ Sα
M and

t =
π(2J + 1)

log(M + 1)− log(M)
(4.17)

for J ∈ Z. Together with the border of the zero-free regions to the left and right of
Sα
M the lines from (4.17), for J = j and J = j− 1, where j ∈ Z form a contour around

the zero
qM · α +

2πj

log(M + 1)− log(M)
i (4.18)

of Qα
M(qMα + it) − Qα

M+1(qMα + it). Exactly as in [BPS15], Rouché’s theorem
immediately shows that there is exactly one zero of η(α)(s) in the rectangular area
shown in Figure 4.5. In other words, a natural generalization of [BPS15, Theorem 2.2]
can be quickly obtained, mutatis mutandis, replacing integer values of k by positive
real numbers α:

Theorem 4.10. Let M ≥ 2 denote a natural number, j ∈ Z, and α > AM . Let

49



Fα
M,j ⊂ Sα

M be given by

π(2j − 1)

log(M + 1)− log(M)
< t <

(2j + 1)π

log(M + 1)− log(M)
. (4.19)

Then Fα
M,j contains exactly one zero of η(α)(s), and the zero is simple.

Computations conducted with the methods from Section 4.2, suggests that the
zeros in the regions Fα

M,j form continuous, mostly horizontal lines. We observe that
the lines of zeros of fractional derivatives passing through the regions Fα

M,j with j > 0
end at a zeros of η(s)− 1 where −1

2
< ℜ(s) < 1.9402, see Theorem 4.1.

Far enough to the right the existence of these lines follows from Theorem 4.10: Let
M ∈ Z, M ≥ 2 and α > AM so that Sα

M is non empty. Then for each j ∈ Z there is
s = σ + it ∈ Fα

M,j such that η(α)(s) = 0. As s is a simple zero of η(α)(s) we have that
η(α+1)(s) ̸= 0. By the implicit function theorem there is an analytic function z defined
on an open neighborhood U ⊂ C of α such that η(β)(z(β)) = 0 for β ∈ U . As this
holds for all α > AM we obtain a function z that is analytic on an open neighborhood
of (AM ,∞) in C and thus analytic on (AM ,∞).

Corollary 4.11. Let M ∈ N with M ≥ 2 and j ∈ Z. The zeros s = σ + it of η(α)(s)
for α > AM with

π(2j + 1)

log(M + 1)− log(M)
< t <

π2j

log(M + 1)− log(M)

are images of an analytic function z : (AM ,∞)→ C.

Lemma 4.12. Let M ≥ 2 and α ∈ R. If s ∈ Sα
M , then η(α)(s) ̸= 0 for

s = σ + i · π(2j + 1)

log(M + 1)− logM
.

Proof. In the center of the strip Sα
M , that is on the line σ = qMα we have |Qα

M(s)| =
|Qα

M+1(s)|. We consider the line segments in Sα
M with

qMα− (M + 1)u ≤ σ ≤ qMα + (M + 1)u.

and
t =

π(2j + 1)

log(M + 1)− logM
, where j ∈ Z,

see Figure 4.5. Everywhere hereafter we write Hα
M(s) for the "head" and Tα

M(s) for
the "tail" of the series η(α)(s) split by Qα

M(s) :

Hα
M(s) :=

M−1∑
n=2

|Qα
n(s)| =

M−1∑
n=2

∣∣∣∣ logα(n)ns

∣∣∣∣
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and

Tα
M(s) :=

∞∑
n=M+1

|Qα
n(s)| =

∞∑
n=M+1

∣∣∣∣ logα(n)ns

∣∣∣∣ .
Our choice of t gives Qα

M (qMα + it)−Qα
M+1(qMα + it) = 0 (compare equation (4.17))

and therefore cos(t logM) = − cos(t log(M + 1)) and sin(t logM) = sin(t log(M + 1)).
We set s = σ+ it, with t and σ as above, and consider the real and imaginary parts of

η(α)(s) =
∞∑
n=2

(−1)n−1 (cos(t log n)− i · sin(t log n))Qα
n(σ).

With |ℑ(Qα
n(s)| ≤ Qα

n(σ) and |ℜ(Qα
n(s)| ≤ Qα

n(σ) we obtain

|ℜ(η(α)(s))| ≥ | cos(t logM)Qα
M(σ) + cos(t log(M + 1))Qα

M+1(σ)|
−Hα

M(σ)− Tα
M+1(σ),

|ℑ(η(α)(s))| ≥ | sin(t logM)Qα
M(σ) + sin(t log(M + 1))Qα

M+1(σ)|
−Hα

M(σ)− Tα
M+1(σ).

If t = 0, the situation is trivial. If t ≠ 0, then we either have | sin(t logM)| ≥
sin(π/4) = 1/

√
2 or | cos(t logM)| ≥ cos(π/4) = 1/

√
2. Because |η(α)(s)| ≥ |ℜ(η(α)(s))|

and |η(α)(s)| ≥ |ℑ(η(α)(s))| we get:

|η(α)(s)| ≥ 1√
2

(
Qα

M(σ) +Qα
M+1(σ)

)
−Hα

M(σ)− Tα
M+1(σ)

= Qα
M(σ)

(
1√
2
+

1√
2

Qα
M+1

Qα
M

(σ)− Hα
M

Qα
M

(σ)−
Qα

M+2

Qα
M

(σ)−
Tα
M+2

Qα
M

(σ)

)
= Qα

M(σ)

(
1√
2
− Hα

M

Qα
M

(σ) +
Qα

M+1

Qα
M

(σ)

(
1√
2
−
Qα

M+2

Qα
M+1

(σ)−
Tα
M+2

Qα
M+1

(σ)

))
From the proof of Theorem 4.9 (b) we know that for σ ≥ qM+1α + (M + 2)u and
u = 1.1879426249 . . .

1√
2
−
Qα

M+2

Qα
M+1

(σ)−
Tα
M+2

Qα
M+1

(σ) ≥ 1√
2
−
Qα

M+2

Qα
M+1

(σ) (1 +RM+2(σ))

≥ 1√
2
− 1

eu

(
1 +

1

u

)
> 0.

Similarly, since Hα
M

Qα
M
(σ) is increasing in σ (see equation (5.21)) and because σ <

qM−1α−Mu, we get that

1√
2
− Hα

M

Qα
M

(σ) ≥ 1√
2
− Hα

M

Qα
M

(qM−1α−Mu) ≥ 1√
2
− 1

eu − 1
> 0,

which concludes the proof of the lemma.

51



Proof of Theorem 4.10. Let Z(s) = Qα
M(s) − Qα

M+1(s). It is easy to check that the
function Z(s) has exactly one (simple) zero in Rj, namely

s = qMα + i · 2πj

log(M + 1)− logM
.

In order to be able to apply Rouché’s Theorem we need to show that |η(α)(s)−Z(s)| <
|Z(s)| for all s on Rj.

The vertical sides of Rj are in the zero-free regions for M and M + 1. As shown
in the proof of Theorem 4.9 the term Qα

M(s) dominates η(α)(s) on the right vertical
side of Rj and the term Qα

M+1(s) dominates η(α)(s) on the left vertical side of Rj.
Thus |η(α)(s)− Z(s)| < |Z(s)| on the vertical sides of Rj. Furthermore we have seen
in the proof of Lemma 4.12 that Z(s) = Qα

M(s) +Qα
M+1(s) dominates η(α)(s) on the

horizontal sides of Rj. Hence |η(α)(s) − Z(s)| < |Z(s)| on the horizontal sides of
Rj.

4.4.1 Positive Real Axis

Recall in Section 3.4.1, ζ(α)(s) did not have zeros on the positive real axis. The same
can not be said about the Dirichlet eta function. From the alternating property, the
imaginary part of the dominating terms used in Theorem 4.10 shifts the boxes to
include the real axis. This guarantees a zero of η(α)(s) to lie on the real axis. Because
η(k)(s) has the same number of zeros as ζ(s), see Section 4.7, we expect that these
zeros on the real axis lie on paths of fractional derivatives that originate on the left
half-plane, see Figure 4.6.

4.5 Critical Strip

One can quickly see from (4.2) that the zeros of ζ(s) are also the zeros of η(s). Dirichlet
eta in addition has infinitely many zeros of the form sn = 1+ 2nπi

ln(2)
where n is a nonzero

integer, which are the zeros of the factor (1− 21−s).

4.5.1 Derivatives

There are several theorems, already discussed in Section 3.5, that relate the Riemann
hypothesis to the location of the zeros of the derivatives of ζ(s). We prove a new
relation of this type for η(s).

Theorem 4.13. The Riemann hypothesis implies η′(s) ̸= 0 for 0 < σ < 1/2.
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Figure 4.6. The path η(α)(s) takes on the real axis in the σ − α plane: x zero of η(s),
• zero of η(s)− 1,

k• zero of η(k)(s), Grey lines are Skorokhodov connectors

Proof. We first recall 4.2
η(s) = (1− 21−s)ζ(s).

Therefore,
η(1− s) = (1− 2−s)ζ(1− s)

. Take σ > 1/2 ,|t| ≠ 0. the functional equation 3.1 of the ζ(s), and above gives

−η
′(1− s)
η(1− s)

= − log(2π)− 1

2
π tan

(πs
2

)
+

Γ′(s)

Γ(s)
+
ζ ′(s)

ζ(s)
+

2−s log 2

(1− 2−s)
(4.20)

= − log(2π)− 1

2
π tan

(πs
2

)
+

Γ′(s)

Γ(s)
+
ζ ′(s)

ζ(s)
+

log 2

(2s − 1)
.

Next, using [THB86], also seen in Section 2.1.1,

ζ ′(s)

ζ(s)
= log(2π)− 1− γ

2
− 1

s− 1
−

Γ′( s
2
+ 1)

2Γ( s
2
+ 1)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
(4.21)
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where the series runs over the complex roots of the zeta function and converges
absolutely, we obtain,

−η
′(1− s)
η(1− s)

= −
(
1 +

γ

2
+

1

s− 1
+

1

2
π tan

(πs
2

))
+

log 2

2s − 1

+
Γ′(s)

Γ(s)
−

Γ′( s
2
+ 1)

2Γ( s
2
+ 1)

+
∑
ρ

(
1

s− ρ
+

1

ρ

)
. (4.22)

Since for a zero ρ = a+ bi, we have

ℜ
(

1

s− ρ
+

1

ρ

)
=

σ − a
(σ − a)2 + (t− b)2

+
a

a2 + b2
> 0,

using the Riemann hypothesis, we get

−η
′(1− s)
η(1− s)

>ℜ
(
Γ′(s)

Γ(s)

)
−ℜ

(
Γ′( s

2
+ 1)

2Γ( s
2
+ 1)

)
−ℜ

(
1 +

γ

2
+

1

s− 1
+

1

2
π tan

(πs
2

))
+ ℜ

(
log 2

2s − 1

)
.

(4.23)

In the plane cut along the non-positive real axis,

Γ′(s)

Γ(s)
= log(s)− 1

2s
− 1

12s2
+ 6

∫ ∞
0

Ps(x)

(s+ x)4
dx

where Ps(x) is a function of period 1 which is equal to

x(2x2 − 3x+ 1)/12

on [0, 1], and the log is principal. As in (4.20), 6|P3(x)| ≤ 1
8
, so

6

∫ ∞
0

Ps(x)

(s+ x)4
dx ≤ 1

8

∫ ∞
0

dx

|s+ x|4
≤ 1

6|s|3
, (4.24)

the last inequality coming from [Spi65a, equation (6)]. Thus,

ℜ
(
Γ′(s)

Γ(s)

)
≤ log |s| − 1

2
|s| − 1

12
|s|2 − 1

6
|s|3, (4.25)

and

ℜ
(
Γ′( s

2
+ 1)

Γ( s
2
+ 1)

)
≤ log |s

2
+ 1|+ 1

|s+ 2|
+

1

3
|s+ 2|2 + 4

3
|s+ 2|3., (4.26)
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Next,

ℜ
(
tan
(πs
2

))
≤ | tan

(πs
2

)
| ≤ 1 + e−π|t|

1− e−π|t|
(4.27)

by [Spi65a, equation (14)], and this last function is monotone decreasing with increasing
|t|. Also,

log

(
2|s|2

|s+ 2|

)
= log 2 + log |s| − log |1 + 2

s
|. (4.28)

and

log

∣∣∣∣1 + 2

s

∣∣∣∣ ≤ log

(
1 +

2

|s|

)
≤ 2

|s|
. (4.29)

Finally,

ℜ
(

1

(s− 1)

)
≤
∣∣∣∣ 1

(s− 1)

∣∣∣∣ ≤ 1

|s| − 1
. (4.30)

Putting (4.25),(4.26),(4.27),(4.28),(4.29), and (4.30) in (4.23), we obtain for |s| > 1

−2ℜ
(
η′(1− s)
η(1− s)

)
> log |s|+ log 2− 2− γ − 2

|s|
− π(1 + e−π|t|)

1− e−π|t|

+
2

|s| − 1
+

log 2

2|s| − 1
− 1

|s|
− 1

6
|s|2 − 1

3
|s|3

− 1

|s+ 2|
− 1

3
|s+ 2|2 − 4

3
|s+ 2|3. (4.31)

Using now |t| ≥ 2, |s| ≥ 164, we obtain easily that the left hand side of (4.31) is
great than 0. Thus, on the Riemann hypothesis, we have η′(s) ̸= 0 for 0, σ < 1

2
,

|t| ≥ 164.

4.6 Left Half-Plane

One clear observation we can make from Figure 4.1, is that on the left, other than the
double zero around 5, see Figure 4.7, there appear to be no nonreal zeros. We suspect
that this is true for various different reasons. The first being in Theorem 4.10 we see
that there are zero chains that are on the real axis. However, the Skorokhodov chains
connect all the zeros of the Riemann zeta function to paths in the fractional chain of
Dirichlet eta function. Therefore the paths along the real axis must come from the
trivial zeros on the left. Path of zeros for eta can only leave the real axis or arrive on
the real axis at a double zero. This observation leads us to the following conjecture
by our collaborator Professor Ricky E. Farr.
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σ 0.0
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0.4
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1.0
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t

1

Figure 4.7. Zeros of the fractional derivatives of the Euler η function on the left half
plan with a double zero for α ≈ 0.514 near σ = −4.499: • Zeros of η(s), x Zero of
η(s)− 1, •(k) Zero of η(k)(s), Grey lines are Skorokhodov connectors.

Conjecture 4.14 (Farr [Far22]). Let k ∈ N and σ+ it ∈ C with σ < 0 and t ̸= 0 then
η(k)(σ + it) ̸= 0.

4.6.1 Negative Real Axis

Since η(s) has the same zeros of ζ(s), then η(s) has trivial zeros at −2n for n = 1, 2, . . . .
We were unable to prove Farr’s conjecture but discovered a couple of new intriguing
properties, which we state below as conjectures.

Conjecture 4.15. If |s| > 165, then η′(s) has only real zeros for σ ≤ 0, and exactly
one real zero in each open interval (−1− 2n, 1− 2n), n = 1, 2, . . . .

Conjecture 4.16. For k ≥ 0 there is a βk so that η(k)(s) has only real zeros for σ ≤ βk,
and exactly one real zero in each open interval (−1− 2n, 1− 2n) for 1− 2n ≤ βk.

4.6.2 Special Values

We are able to prove the following:
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Theorem 4.17. For all k ∈ N0, b ∈ Z, and real σ < 1,

ℜ
(
η(k+

1
2
)(σ)

)
= 0. (4.32)

Proof. Recall (4.12), the Taylor series expansion of η(α)(s) is

η(α)(s) = (−1)α
∞∑
j=1

(−1)j γ̃j+k

j!
(s− 1)j.

Since γ̃ ∈ C \ R, then

ℜ
(
η(k+

1
2
)(s)
)
= ℜ

(
(−1)α

∞∑
j=1

(−1)j
γ̃j+k+ 1

2

j!
(s− 1)j

)
= 0.

4.7 Number of Zeros

As seen in Figure 4.1, the chains of the Dirichlet eta have a one to one correspondence
to the zeros of the Riemann zeta function. We observe that the real part of the
Skorokhodov connectors originating on the zeros of η(s) on the line σ = 1 tend to go to
infinity. This observation led us to investigate the number of zeros for the derivatives
of eta. In a similar fashion as Berndt, see [Ber72], we give an explicit formula for the
number of zeros for derivatives of integer order.

Theorem 4.18. Let k ≥ 1. Then as T →∞,

Nk
η (T ) = Nζ(T ) +O(log T )

Proof. We choose σk large enough so that η(k)(s) has no zeros for σ ≥ σk > 1, and βk
sufficiently negative so that η(k)(s) has no complex zeros for σ ≤ βk. Choose σk also
large enough so that

∞∑
n=3

logk(n)

(n/2)σk
≤ 1

2
logk(2). (4.33)

If follows that for σ ≥ σk,

|η(k)(s)| ≥ logk(2)

2σ
−
∞∑
n=3

logk(n)

nσ

≥ logk(2)

2σ
− 1

2

logk(2)

2σ
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=
1

2

logk(2)

2σ
(4.34)

Choose τk > 0 so that η(k)(s) has no zeros for 0 < t ≤ τk. Lastly, choose Tk = T
so that the line t = T is free of zeros for η(k)(s). Let C be the rectangle (described
positively) with vertices

βk + iτk, σk + iτk, σk + iT, βk + iT.

By the principle of the argument,

Nk
η (T ) =

1

2πi

∫
C

d

ds
log(η(α))ds

=
1

2πi

{∫ σk+iτk

βk+iτk

+

∫ σk+iT

σk+iτk

+

∫ βk+iT

σk+iT

+

∫ βk+iτk

βk+iT

}
d

ds
log(η(α))ds

=
1

2πi
{I1 + I2 + I3 + I4},

say. We examine I1, I2, I3 and I4 in turn.
Firstly, I1 is independent of T. Hence, I1 = O(1). Secondly,

I2 =
[
log(η(k)(s))

]σk+iT

σk+iτk

=

[
log

(
(−1)k+1 log 2

2s

)]σk+iT

σk+iτk

+ [log(1 + g(s))]σk+iT
σk+iτk

where,

g(s) =
∞∑
n=3

(−1)n−2(log(n)/ log 2)k

(n/2)s

By, (4.33) we see that on the line σ = σk, |g(s)| ≤ 1
2
. Hence, ℜ{1 + g(s)} ≥ 1

2
and the

argument of 1 + g(s) ranges over an interval length no greater than π as s traverses
the line σ = σk. Hence,

I2 = −iT log 2 +O(1).

To estimate I3 we put

ϕk(s) = (−1)keiT log 2η(k)(s).

Hence, the leading term of the Dirichlet series for ϕk(s) is positive at s = σk + iT .
Now, if q denotes the number of zeros of ℜ{·} on J = (βk + iT, σk + iT ), it is divided
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into at most q + 1 subintervals in each of which ℜ{·} is of constant sign. Hence, the
variation of ℑ{log(ϕk(s)} = arg{ϕk(s)} is at most π in each subinterval.

ℑ{I3} = |ℑ{[log(ϕk(s)]
βk+iT
σk+iT}| ≤ (q + 1)π.

To estimate q we first let

f(z) =
1

2
{ϕσ(z + iT ) + ϕσ(z + iT )}

and not that if z = σ is real,

f(σ) = ℜ{ϕσ(σ + iT )}

. Choose T so large that
T > τk + 2(σk − βk).

Let R = T − τk and consider those z with |z − σk| < R. Then,

ℑ{z + iT} > T −R = τk > 0.

Thus, ϕσ(z + iT ), and hence f(z), is analytic for |z − σk| < R. Let n(ρ) denote the
number of zeros of f(z) in the circle |z − σk| ≤ ρ. If r = 2(σk − βk) and r1 =

1
2
r, we

have ∫ r

0

n(ρ)

ρ
dρ ≥ n(r1)

∫ r

r1

dρ

ρ
= n(r1) log 2

From Jensen’s theorem 2.15, we have

n(r1) ≤
1

2π log 2

∫ 2π

0

log |f(reiθ + σk)|dθ −
1

log 2
log |f(σk)|. (4.35)

Since η(α)(s) = O(tA) as t tends to ∞ and

f(σk) = ℜ{ϕk(σk + iT )}

= ℜ

{
logk(2)

2σk
+
−1
2σk

∞∑
n=3

(−1)n−1 logk(n)
(n/2)σk+iT

}

≥ logk(2)

2σk
+
−1
2σk

∞∑
n=3

(−1)n−1 logk(n)
(n/2)σk

≥ 1

2

logk(2)

2σk

by (4.33), it follows from (4.35) that n(r1) = O(log T ). Now, the zeros of ℜ{σk+iT}
on J correspond to an equal number of zeros of f(z) on (βk, σk). since r1 = σk − βk,
(βk, σk) is contain in the disc |z − σk| ≤ r1. Hence q ≤ n(r1) and

ℑ{I3} = O(log T ).
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Lastly,
I4 = [log(η(k)(s)]βk+iτk

βk+iT

From the functional equation for η(s) and Leibniz’ Rule,

η(k)(s) =
{
(2− 2s)πs−1(−s) sin

(
−sπ

2

)
Γ(−s)ζ(1− s)

}(k)

=
{
(2− 2s)πs−1s sin

(sπ
2

)
Γ(−s)

}(k)

ζ(1− s)

+
k−1∑
j=0

(
k

j

){
(2− 2s)πs−1s sin

(sπ
2

)
Γ(−s)

}(j)

ζ(k−j)(1− s). (4.36)

We set

µk =
{
(2− 2s)πs−1(−s) sin

(
−sπ

2

)
Γ(−s)

}(k)

and

µk−j =
k−1∑
j=0

(
k

j

){
(2− 2s)πs−1s sin

(sπ
2

)
Γ(−s)

}(j)

Therefore from (4.36) we have for the first derivative that

η(k)(s) = µkζ(1− s) + µk−jζ
′(1− s)

= µk + µk(ζ(1− s)− 1) + µk−jζ
(k)(1− s).

Some important things to note are for sufficiently negative values s∣∣∣∣ 1

2− 2s

∣∣∣∣ ≤ 1

and ∣∣∣∣1s
∣∣∣∣ ≤ 1.

We look at the following derivatives

{πs}(j) = log(π)j(π)s (4.37)

and (
sin
(sπ
2

))(j)
= ±(π

2
)j
{

sin( sπ
2
)

cos( sπ
2
)

}
, (4.38)
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depending upon whether j is even or odd. Also, by Stirling’s formula for Γ(s), it is
easily seen that

Γ(j)(s) = Γ(s)

{
logj(s) +

j−1∑
n=0

Enj(s)log
n(s)

}
, (4.39)

where Enj(s) = O(1/s). From (4.37)-(4.39) we see that we can write (4.36) in the form

η(k)(s) = (2− 2s)(π)se
isπ
2 Γ(−s){R1(s) +R2(s)}, (4.40)

where

R1(s) =
µk

(2− 2s)(π)se
isπ
2 Γ(−s)

and

R2(s) =
µk(ζ(1− s)− 1) + µk−jζ

k(s− 1)

(2− 2s)(π)se
isπ
2 Γ(−s)

R1(s) and R2(s) are finite sums, each term of which is O(logk(s)) on J ′ = (βk+iT, βk+
iτk). Since (4.39),{

(2− 2s)πs−1s sin
(sπ
2

)
Γ(−s)

}(k)

=
k∑

j=0

(
k

j

){
(2− 2s)πs−1s sin

(sπ
2

)}(k−j)
Γ(−s)

{
logj(−s) +

j−1∑
n=0

Enj(s) log
n(−s)

}

where Enj(s) = O(1/s), we see from (4.37), (4.38), and (4.40) that for βk sufficiently
negative, R1(s) is dominated by logk(−s) and is bounded away from zero. Also, choose
βk sufficiently negative so that (4.34) holds and so that∣∣∣∣R2(s)

R1(s)

∣∣∣∣ =
∣∣∣∣∣µk(ζ(1− s)− 1) + µk−jζ

k(s− 1)

(2− 2s)(π)se
isπ
2 Γ(−s)

÷ µk

(2− 2s)(π)se
isπ
2 Γ(−s)

∣∣∣∣∣
=

∣∣∣∣µk(ζ(1− s)− 1) + µk−jζ
(k)(s− 1)

µk

∣∣∣∣
=

∣∣∣∣ζ(1− s)− 1 +
µk−j

µk

ζ(k)(1− s)
∣∣∣∣

< 1,
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where s belongs to the segment J ′. Thus arg
{
1 + R2(s)

R1(s)

}
varies over an interval of

length no greater that π as s traverses J ′. Hence, from (4.40),

I4 =

[
log(2− 2s) + log(π)s + log(s)− isπ

2
+ log(Γ(−s))

+ log(R1(s)) + log

{
1 +

R2(s)

R1(s)

}]βk+iτk

βk+iT

= O(1)− iT log(π) +O(1) +O(log T )− Tπ

2
+O(1)

+

[
−(s+ 1

2
) log(−s) + s+O(1)

]βk+iτk

βk+iT

+O{log(log T )}+O(1),

upon use of Stirling’s formula for log(Γ(s). Now,

(αk +
1

2
+ iT ) log(−αk − iT ) = (αk +

1

2
+ iT ) log(−iT (1− αk)/iT )

= (αk +
1

2
+ iT ) log(−iT ) +O(1)

= iT log T +
1

2
πT +O(log(T )).

Thus.

I4 = iT (log T − log(π)− 1) +O(log T )

Hence,

Nk
η (T ) =

1

2π

4∑
j=1

ℑ{Ij}

=
1

2π
{T log 2 + T (log T − log(π)− 1)}+O(log T )

= Nk
ζ (T ) +

T log 2

2π
+O(log T )

= Nζ(T ) +O(log T ).

We arrive at the next conjecture from Figure 4.1.

Conjecture 4.19. For α ∈ R+. As T →∞, we have

Nα
η (T ) = Nζ(T ) +O(log T )
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Chapter 5: Dirichlet L-Functions

5.1 Introduction

Our focus now shifts to Dirichlet L-functions, L(s, χ), a class of mathematical functions
named after Peter Gustav Lejeune Dirichlet. Introduced in 1837, through his seminal
work [Dir37], Dirichlet’s Theorem 5.1 on primes in arithmetic progressions. The use
of these functions marked a significant breakthrough in mathematical analysis of
algebraic problems, thereby laying the foundation for this important branch of analytic
number theory.

Theorem 5.1 (Dirichlet Theorem). Let a,m ∈ Z, with gcd(a,m) = 1. Then there are
infinitely many prime numbers in the sequence of integers a, a+m, a+ 2m, . . . , a+
km, . . . for k ∈ N.

In the course of the proof, Dirichlet shows that L(s, χ) is non-zero at s = 1.
Otherwise, the L function is entire.

5.1.1 Characters

In the following we give definitions and theorems, from [Apo98], that set the foundation
of Dirichlet L-functions.

Definition 5.2. If n ≥ 1 the Euler totient φ(n) is defined to be the number of positive
integers not exceeding n which are relatively prime to n; thus,

φ(n) =
∑

1≤k≤n

gcd(k,n)=1

1.

There is a simple formula for the divisor sum, namely

Lemma 5.3. If n ≥ 1 we have ∑
d|n

φ(d) = n.
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Definition 5.4. Let G be an arbitrary group. A complex-valued function f defined
on G is called a character of G if f has the multiplicative property

f(ab) = f(a)f(b)

for all a, b in G, and if f(c) ̸= 0 for some c in G.

Lemma 5.5. If f is a character of a finite group G with identity element e, then
f(e) = 1 and each function value f(a) is a root of unity. In fact, if an = e then
f(a)n = 1.

Let G be a finite abelian group of order n. The principal character of G is denoted
by f1. The others, denoted by f2, f3, . . . , fn are called non-principal character. They
have the property that f(a) ̸= 1 for some a ∈ G.

Lemma 5.6. If multiplication of characters is defined by the relation

(fifj)(a) = fi(a)fj(a)

for each a ∈ G, then the set of characters of G forms an abelian group of order n. We
denote this group by Ĝ. The identity element of Ĝ is the principal character f1. The
inverse of fi. The inverse of fi is the reciprocal 1/fi.

Definition 5.7. Let G be a finite abelian group of order n with elements a1, a2, . . . , an,
and let f1, f2, . . . , fn be the characters of G, with f1 the principal character. We denote
by A = A(G) the n×n matrix [aij ] whose element aij in the i-th row and j-th column
is

aij = fi(aj).

Lemma 5.8. The sum of the entries in the ith row of A is given by

n∑
r=1

fi(ar) =

{
n if fi is the principal character (i = 1)

0 otherwise

Lemma 5.9. The sum of the entries in the jth column of A is given by

n∑
r=1

fr(aj) =

{
n if aj = e

0 otherwise

We want to establish that a reduced residue system modulo k is a set of φ(k)
integers {a1, a2, . . . , aφ(k)} incongruent modulo k, each of which is relatively prime
to k. For each integer a the corresponding residue class â is the set of all integers
congurent to a modulo k :

â = {x|x ≡ a( mod k)}.
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Multiplication of residue classes is defined by the relation

â · b̂ = âb (5.1)

We now introduce the important notion of a character.

Definition 5.10 (Dirichlet characters). Let G be the group of reduced residue classes
modulo k. Corresponding to each character f of G we define an arithmetical function
χ = χf as follows

χ(n) = f(n̂) if gcd(n, k) = 1,

χ(n) = 0 if gcd(n, k) > 1

Where n̂ = {x|x ≡ n( mod k)}. The function χ is called a Dirichlet character modulo
k. The principal character χ1 is that which has the property

χ1(n) =

{
1 if gcd(n, k) = 1

0 if gcd(n, k) > 1

Lemma 5.11. There are φ(k) distinct Dirichlet characters modulo k, each of which
is completely multiplicative and periodic with period k. That is we have

χ(mn) = χ(m)χ(n) for all m,n (5.2)

and

χ(n+ k) = χ(n) for all n.

Conversely, if χ is completely multiplicative and periodic with period k, and if χ(n) = 0
if gcd(n, k) > 1, then χ is one of the Dirichlet characters mod k.

We use the fact that χ(n)φ(k) = 1 whenever gcd(n, k) = 1, so χ(n) is a φ(k)-th
root of unity. We also note that if χ is a character mod k so is the complex conjugate.
This information suffice to show the following table for all Dirichlet character mod 5
and 7

Definition 5.12 ([Spi69]). We say a character χ mod k is imprimitive if there is a
proper divisor K of k such that if a ≡ b (mod k) and gcd(a, k) = gcd(b, k) = 1, then
χ(a) = χ(b); otherwise, the character is call primitive. Such a number K is called a
modulus of imprimitivity.

Corollary 5.13 ([Spi69]). If k ≡ 2 (mod 4), then there are no primitive characters
mod k.
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For primitive Dirichlet’s characters modulus q, in other words q ≥ 3 and q ̸≡ 2
(mod 4), we define:

a =

{
0 if χ(−1) = 1,

1 if χ(−1) = −1,
(5.3)

It is not difficult to list all characters modulo 3, 4, 5, 6 and 7, see Tables 5.1, 5.2,
5.3, 5.4 and 5.5.

n 1 2 3 a
χ1(n) 1 1 0 0
χ2(n) 1 -1 0 1

Table 5.1. All φ(3) = 2 characters modulo 3

n 1 2 3 4 a
χ1(n) 1 0 1 0 0
χ2(n) 1 0 -1 0 1

Table 5.2. All φ(4) = 2 characters modulo 4

n 1 2 3 4 5 a
χ1(n) 1 1 1 1 0 0
χ2(n) 1 -1 -1 1 0 0
χ3(n) 1 i -i -1 0 1
χ4(n) 1 -i i -1 0 1

Table 5.3. All φ(5) = 4 characters modulo 5

5.1.2 Dirichlet L-Functions

For s = σ + it the Dirichlet L-function is

L(s, χ) =
∞∑
n=1

χ(n)

ns
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n 1 2 3 4 5 6 a
χ1(n) 1 0 0 0 1 0 0
χ2(n) 1 0 0 0 -1 0 1

Table 5.4. All φ(6) = 2 characters modulo 6

n 1 2 3 4 5 6 7 a
χ1(n) 1 1 1 1 1 1 0 0
χ2(n) 1 1 -1 1 -1 -1 0 1
χ3(n) 1 ω2 ω −ω −ω2 -1 0 1
χ4(n) 1 ω2 −ω −ω ω2 1 0 0
χ5(n) 1 −ω ω2 ω2 −ω 1 0 0
χ6(n) 1 −ω −ω2 ω2 ω -1 0 1

Table 5.5. All φ(7) = 6 characters modulo 7 where ω = eπi/3.

where χ is any Dirichlet character. The Euler product is

L(s, χ) =
∏
p

(
1− χ(p)

ps

)−1
ℜ(s) > 1

where the product is over all prime numbers p.
For primitive χ modulo q > 1 its functional equation

L(s, χ) = ε(χ)2sπs−1q1/2−s sin

(
π(s+ a)

2

)
Γ(1− s)L(1− s, χ)

where a is as in (5.3) and

ε(χ) =
τ(χ)

ia
√
q

where τ(χ) is a Gauss sum, namely

τ(χ) =

q∑
n=1

χ(n) exp(2πin/q).

It is important to note that only L(s, χ), where χ is a principal character, have a
pole at s = 1. Now that have summarized the theory of Dirichlet L-functions we can
investigate them further.
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10 5 5 10
σ

10

20

30

40

50

60

70

80

t

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 162 3 4 5 6 7 8 9 10 11 12 13 14 15 16 21 22 23 24 253334
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9 10111213141516171819

1 2 3 4 5 6 7 8 9 101112131415161718191 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 9101112131415161718192021222324

1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 151 2 3 4 5 6 7 8 910111213141516171819202122232425262728
1 2 3 4 5 6 7 8 91 2 3 4 5 6 7 8 9 10111213141516171819202122

1 2 3 4 5 6 7 8 9 1011121314151617181920212223241 2 3 4 5 6 7 8 9

1 2 3 4567 8 910111213141516171819202122232425262728293031

1 2 3 4 5 6 7 8 9101112131415161718192021222324252627282930311 2 3 4 5 6 7 8 9 10 11 12 13 141 2 3 456 7 8 91011121314151617181920212223241 2 3 4 5 6 7 8
1 2 3 4 5 6 7 8 91011121314151617181920212223242526
1 2 3 4 5 6 7 8 9 1011121314 15 16 17 18 19
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Figure 5.1. • Zero of L(s, χ2), x Zero of L(s, χ2) − 1, •(k) Zero of L(k)(s, χ2), χ2 :
[0, 1, ω4

6, ω
2
6, ω

2
6, ω

4
6, 1]

5.2 Evaluation

We apply Euler-Maclaurin summation (2.2) in order to evaluate Dirichlet L-functions.
Let q ∈ N. For 1 ≤ r ≤ q define

ζ(s, r, q) =
∞∑
n=0

1

(q · n+ r)s

Then

ζ(α)(s, r, q) =
∞∑
n=0

logα(n · q + r)

(n · q + r)s

Let χ be a Dirichlet character of modulo q. Then

L(s, χ) =

q∑
r=1

χ(r)ζ(s, r, q)
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and thus

L(α)(s, χ) =

q∑
r=1

χ(r)ζ(α)(s, r, q)

We apply Euler-Maclaurin formula to the double sum. Let g(x) = logα(x·q+j)
(x·q+r)s

, then

L(α)(s, χ) =

q∑
r=1

χ(r)ζ(α)(s, r, q)

=

q∑
r=1

χ(r)
∞∑
n=0

g(k)

=

q∑
r=0

χ(r)

(N−1∑
n=1

g(n) +

∫ ∞
N

g(x)dx+
1

2
g(N)−

⌊v/2⌋∑
j=1

B2j

(2j)!
g2j−1(N)

+ (−1)v+1

∫ ∞
N

Pv(x)g
(v)(x)dx

)
(5.4)

Bk denotes the k-th Bernoulli number, and Pk(x) =
Bk(x−⌊x⌋)

k!
Now let us evaluate

each term. The first term is

Aα
s (N) =

q∑
r=1

χ(r)
N−1∑
n=1

g(n) =

q∑
r=1

χ(r)
N−1∑
n=1

logα(n · q + r)

(n · q + r)s
.

For s ̸= 1 the second term is

Iαs (N) =

q∑
r=1

χ(r)

∫ ∞
N

g(x)dx

=

q∑
r=1

χ(j)

∫ ∞
N

logα(x · q + r)

(x · q + r)s
dx

=

q∑
r=1

χ(r)

q

∫ ∞
N ·q+r

logα(y)

(y)s
dy substitute y = x · q + r

=

q∑
r=1

χ(r)

q

Γ(α + 1, (s− 1) log(N · q + r)

(s− 1)α+1
.

Using (5.8) we see that for s = 1 and nonprincipal χ we have with substitute
y = x · q + r:
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Iα1 (N) =

q∑
r=1

χ(r)

∫ ∞
N

g(x)dx

=

q∑
r=1

χ(r)

∫ ∞
N

logα(x · q + r)

(x · q + r)
dx

=

q∑
r=1

χ(r)

q

(∫ q(N+1)

N ·q+r

logα(y)

y
dy +

∫ ∞
q(N+1)

logα(y)

y
dy

)

=

q∑
r=1

χ(r)

q

∫ q(N+1)

N ·q+r

logα(y)

y
dy +

q∑
r=1

χ(r)

q

∫ ∞
q(N+1)

logα(y)

y
dy

=

q∑
r=1

χ(r)

q

∫ q(N+1)

N ·q+r

logα(y)

y
dy

=

q∑
r=1

χ(r)

q

(
logα+1(q(N + 1)

α + 1
− logα+1(N · q + r)

α + 1

)

=

q∑
r=1

χ(r)

q

logα+1(q(N + 1))

α + 1
−

q∑
r=1

χ(r)

q

logα+1(N · q + r)

α + 1

= −
q∑

r=1

χ(r)

q

logα+1(N · q + r)

α + 1
.

And

Cα
s (N) =

q∑
r=1

χ(r)
1

2
g(N) =

1

2

q∑
r=1

χ(r)
logα(N · q + r)

(N · q + r)
.

Then for,

Bα
s (N, v) = −

q∑
r=1

χ(r)

⌊v/2⌋∑
j=1

B2j

(2j)!
g(j−1)(N)

= −
q∑

r=1

χ(r)

⌊v/2⌋∑
j=1

B2j

(2j)!

2j−1∑
i=1

(m)iS(2j − 1, i, s)(α)i
logα−i(x · q + r)

(x · q + r)s+2j−1 .

Now we determine a bound for the fifth term of the (5.4). Writing s = σ + it and

Eα
s (N, v) =

q∑
r=1

χ(r)(−1)v+1

∫ ∞
N

Pv(x)g
(v)(x)dx
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we obtain,

|E(N, v)| =

∣∣∣∣∣
q∑

r=1

χ(r)(−1)v+1

∫ ∞
N

Pv(x)g
(v)(x)dx

∣∣∣∣∣
=

q∑
r=1

∣∣∣∣ 1v!
∫ ∞
N

Bv(x− ⌊x⌋)g(v)(x)dx
∣∣∣∣

≤
q∑

r=1

|Bv|
v!

∫ ∞
N

|g(v)(x)|dx

≤
q∑

r=1

|Bv|
v!

v∑
i=0

∫ ∞
N

∣∣∣∣S(v, i, s)(α)i logα−i(x · q + r)

(x · q + r)s+v

∣∣∣∣ dx
≤

q∑
r=1

|Bv|
v!

(
v∑

i=0

|S(v, i, s)(α)i|

)(∫ ∞
N

logα(x · q + r)

(x · q + r)σ+v
dx

)

=

q∑
r=1

|Bv|
v!

(
v∑

i=0

|S(v, i, s)(α)i|

)(
Γ(α + 1, (σ + v − 1) log(N · q + r)

(σ + v − 1)α+1

)

The error term Eα
s (N, v) converges for σ + v > 1 and q > 2. Therefore for all

s ∈ C(∞, 1] we can choose q ∈ N and v ∈ N such that |Eα
s (N, v)| becomes arbitrarily

small. We can thus approximate L(α)(s, χ) as

L(α)(s, χ) ≈ (−1)α
(

q−1∑
r=2

χ(r)
logα(r)

rs
+ Aα

s (N) + Iαs (N) + Cα
s (N) + Eα

s (N, v)

)

5.2.1 Skorokhodov connectors

The ideas from Sections 3.2.1 and 4.2.1 can be extended to Dirichlet L-functions. The
following results give us zero-free regions for L(s, χ)− c where c ∈ [0, 1).

Proposition 5.14. If c ∈ [0, 1),m ∈ Z, for k ∈ [1, n] and t = 2mπ
log k

, then ℜ(L(s, χ)−
c) ̸= 0, when

1 +
1

1 + χ(k)
kσ

> ζ(σ)

Proof. ℜ(L(s, χ)−c) = 1−c+χ(2)
2σ

cos(t log 2)+χ(3)
3σ

cos(t log 3)+· · ·+χ(n)
nσ cos(t log n) · · ·

Where t is fixed and t log k = 2mπ, we get:
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Figure 5.2. Zeros of derivatives of L(α)(s, χ) (denoted by •k) and the paths from zeros
of L(s, χ) (denoted by •) to the zeros of L(s, χ)− 1 (denoted by ×).

ℜ(L(s, χ)− c) = 1− c+
χ(2) cos

(
log 2
log k

2mπ
)

2σ
+ · · ·+ χ(k)

kσ
+ · · ·

+
χ(n) cos

(
log(n)
log k

2mπ
)

nσ
+ · · ·

≥
∞∑
ν=1

χ(k)

(kν)σ
−ℜ

(
L(s, χ)− 1−

∞∑
ν=1

χ(k)

(kν)σ

)

≥ 1 + 2
∞∑
ν=1

(
χ(k)

kσ

)ν

−ℜ(L(s, χ))

≥ 1 +
2

1− χ(k)
kσ

− ζ(σ)
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Lemma 5.15. If c ∈ [0, 1),k,m ∈ Z and t = 2mπ
log k

and χ1 is principal, then ℜ(L(s, χ)−
c) ̸= 0, when

1 +
2

1 + χ1(k)
kσ

≥ L(σ, χ1)

Proof. ℜ(L(s, χ1)−c) = 1−c+χ1(2)
2σ

cos(t log 2)+χ1(3)
3σ

cos(t log 3)+· · ·+χ1(n)
nσ cos(t log n) · · ·

Where t is fixed and t log k = 2mπ, we get:

ℜ(L(s, χ1)− c) = 1− c+
χ1(2) cos

(
log 2
log k

2mπ
)

2σ
+ · · ·+ χ1(k)

kσ
+ · · ·

+
χ1(n) cos

(
log(n)
log k

2mπ
)

nσ
+ · · ·

≥
∞∑
ν=1

χ1(k)

(kν)σ
−ℜ

(
L(s, χ1)− 1−

∞∑
ν=1

χ1(k)

(kν)σ

)

≥ 1 + 2
∞∑
ν=1

(
χ(k)

kσ

)ν

−ℜ(L(s, χ1))

≥ 1 +
2

1− χ1(k)
kσ

− L(σ, χ1),

where the last inequality holds because χ1 is a principal character.

5.3 Laurent Series Expansion

Because L-functions can be analytically continued to the whole complex plane, except
for the pole at 1 for principle characters, we can express the L-function as a Laurent
series. Let γn(χ) denote the n-th Laurent-Stieltjes coefficients around s = 1 of the
associated Dirichlet L-series for a given primitive Dirichlet character χ modulo q.
These constants are defined by

L(s, χ) =
δχ
s− 1

+
∑
n≥0

(−1)nγn(χ)
n!

(s− 1)n,

where δχ = 1 when χ is principal and δχ = 0 otherwise. We may regard ζ(s) as
the Dirichlet L-functions to the principal character χ0 modulo 1. Then, we have
γn(χ0) = γn. When χ is non-principal, (−1)nγn(χ) = L(n)(1, χ).

Recall that for q ∈ N and 1 ≤ r ≤ q and α ∈ R+ we have

ζ(s, r, q) =
∞∑
n=0

1

(q · n+ r)s
and ζ(α)(s, r, q) =

∞∑
n=0

logα(n · q + r)

(n · q + r)s
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For α ∈ R+ we define the fractional Stieltjes constants γα(r, q) to be the coefficients of
the Laurent expansion of the Grünwald-Letnikov fractional derivative of ζ(α)(s, r, q):

ζ(α)(s, r, q) =
δα(r, q)

(s− 1)α−1
+
∞∑
n=0

(−1)nγα+n(r, q)(s− 1)n

n!

Also see Knopfmacher [Kno78].
Let χ be a Dirichlet character of modulo q. Then

L(s, χ) =

q∑
r=1

χ(r)ζ(s, r, q) and L(α)(s, χ) =

q∑
r=1

χ(r)ζ(α)(s, r, q).

If we denote the coefficients of the Laurent expansion L(α)(s, χ) by γα(χ) and δα(χ)
such that for complex numbers s ̸= 1

L(α)(s, χ) =
δα(χ)

(s− 1)α−1
+
∞∑
n=0

(−1)nγα+n(χ)(s− 1)n

n!

then

δα(χ) =

q∑
r=1

χ(r)δα(r, q) and γα(χ) =

q∑
r=1

χ(r)γα(r, q).

Remark 5.16. If χ is principal, then δα(χ) = 1 and if χ is non-principal, δα(χ) = 0.

Theorem 5.17. Let α ∈ R with α > 0, q ∈ N and 1 ≤ r ≤ q. Then

δα(r, q) =
Γ(α + 1)

q
and

γα(r, q) =
m∑
k=0

logα(k · q + r)

k · q + r
− logα+1(m · q + r)

q(α + 1)
− logα(m · q + r)

2(m · q + r)
+

∞∫
m

P1(x)g
′(x)dx,

where g(x) = logα(q·x+r)
q·x+r

and P1(x) = x− ⌊x⌋ − 1
2
.

Proof. Recall the following form of the Euler-Maclaurin summation formula 2.2

n∑
k=m

g(k) =

n∫
m

g(x)dx+
ℓ∑

k=1

(−1)kBk

k!
g(k−1)(x)

∣∣∣∣n
m

+ (−1)ℓ+1

n∫
m

Pℓ(x)g
(ℓ)(x)dx, (5.5)

where g(x) ∈ Cℓ [m,n], ℓ ∈ N and Pk(x) denotes the kth periodic Bernoulli polynomial

Pk(x) =
Bk(x− ⌊x⌋)

k!
.
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In (2.2) we choose ℓ = 1 and set g(x) = logα(x·q+r)
(x·q+r)s

. Letting n→∞, we obtain

∞∑
n=0

logα(n · q + r)

(n · q + r)s
=

m−1∑
n=0

logα(n · q + r)

(n · q + r)s
+

∞∫
m

logα(x · q + r)

(x · q + r)s
dx+

logα(m · q + r)

2(m · q + r)s

+

∞∫
m

P1(x)g
′(x) dx

=
m∑

n=0

logα(n · q + r)

(n · q + r)s
+

∞∫
m

logα(x · q + r)

(x · q + r)s
dx− logα(m · q + r)

2(m · q + r)s

+

∞∫
m

P1(x)g
′(x) dx

=: A(s) + I(s)− C(s) + E(s).

We consider each of these four terms separately. For the first term A(s) we have:

A(s) =
m∑

n=0

logα(n · q + r)

(n · q + r)s

=
m∑

n=0

logα(n · q + r)

n · q + r
e−(s−1) log(n·q+r)

=
m∑

n=0

logα(n · q + r)

n · q + r

∞∑
k=0

(−1)k logk(n · q + r)

k!
(s− 1)k

=
∞∑
k=0

(−1)k(s− 1)k

k!

m∑
n=0

logα+k(n · q + r)

n · q + r
.

The second term I(s) can be written in terms of the Upper Incomplete Gamma
function Γ(α, s) using [GR07, p. 346] or [AS64, 6.5.3]:

I(s) =

∫ ∞
m

logα(x · q + r)

(x · q + r)s
dx y = x · q + r,

dy

dx
= q

=
1

q

∫ ∞
m·q+r

logα(y)

es log y
dx u = log y,

du

dy
=

1

y
=

1

eu

=
1

q

∫ ∞
log(m·q+r)

uα

eu(s−1)
dt t = u(s− 1),

dt

du
= s− 1

=
1

q(s− 1)α+1

∫ ∞
(s−1) log(m·q+r)

tα

et
dt
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=
1

q(s− 1)α+1
Γ (α + 1, (s− 1) log(m · q + r))

=
1

q(s− 1)α+1
[Γ (α + 1)− γ (α + 1, (s− 1) log(m · q + r))]

=
1

q(s− 1)α+1

[
Γ(α + 1)

− (s− 1)α+1 logα+1(m · q + r)
∞∑
n=0

(−1)n(s− 1)n logn(m · q + r)

(α + 1 + n)n!

]

=
Γ(α + 1)

q(s− 1)α+1
− logα+1(m · q + r)

∞∑
n=0

(−1)n(s− 1)n logn(m · q + r)

q(α + 1 + n)n!

=
Γ(α + 1)

q(s− 1)α+1
−
∞∑
n=0

(
logα+n+1(m · q + r)

q(α + n+ 1)

)
(−1)n(s− 1)n

n!
.

For the third term C(s), we write:

C(s) =
logα(m · q + r)

2(m · q + r)s

=
logα(m · q + r)

2(m · q + r)

∞∑
n=0

(−1)n logn(m · q + r)(s− 1)n

n!

=
∞∑
n=0

(
logα+n(m · q + r)

2(m · q + r)

)
(−1)n(s− 1)n

n!
.

If we define

Gα,m(n) :=
m∑
k=0

logα+n(k · q + r)

k · q + r
− logα+n+1(m · q + r)

q(α + n+ 1)
− logα+n(m · q + r)

2(m · q + r)
,

then combining the above three expressions for A(s), I(s) and C(s) yields:

m∑
k=0

logα(k · q + r)

(k · q + r)s
+

∞∫
m

logα(x · q + r)

(x · q + r)s
dx− logα(m · q + r)

2(m · q + r)s

=
Γ(α + 1)

(s− 1)α+1
+
∞∑
n=0

Gα,m(n)
(−1)n(s− 1)n

n!
.

From the definition of the fractional Stieltjes constants it follows that:

Γ(α + 1)

q(s− 1)α+1
+
∞∑
n=0

Gα,m(n)
(−1)α+n(s− 1)n

n!
+ E(s)
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=
δα(r, q)

(s− 1)α+1
+
∞∑
n=0

(−1)α+nγα+n(q, r)(s− 1)n

n!
.

Thus δα(r, q) = Γ(α+1)/q. Subtracting the first term and taking successive derivatives
with respect to s, of both sides of this equation, and then evaluating them at s = 1,
we obtain for all n ∈ N ∪ {0}:

γα+n(r, q) = Gα,m(n) + E(n)(1). (5.6)

Setting n = 0 in (5.6) we obtain

γα(r, q) = Gα,m(0) + E(1)

=
m∑
k=0

logα(k · q + r)

k · q + r
− logα+1(m · q + r)

q(α + 1)
− logα(m · q + r)

2(m · q + r)
+

∞∫
m

P1(x)g
′(x)dx,

where g′(x) =
(

logα(q·x+t)
q·x+r

)′
. which proves the theorem.

5.3.1 Asymptotic Behavior of Fractional Stieltjes Constants

In the following we obtain an asymptotic formula for the γα(r, q) using the method of
steepest decent or saddle point method, see [Erd56, Section 2.4 Laplace’s method] for
an overview. We have∫ d

b

f(t)eαh(t) dx ∼ f(t0)e
αh(t0)

√
2π

−αh′′(t0)
as α→∞ (5.7)

where t0 is a saddle point of h(t).
Recall that γα(q, r) are the coefficients of the Laurent expansion

∞∑
n=1

1

(n · q + r)s
=

1

s− 1
+
∞∑
n=0

(−1)nγα(r, q)
n!

(s− 1)n

We generalize [FPS21, Theorem 2].

Theorem 5.18. Let α > 0 and set wα(q) = W0

(
qαi
2π

)
and let

γ̃α(r, q) :=
1

2

logα(r)

r
− logα+1(q + r)

q(α + 1)
+ ℑ

(
−

√
2α

π(wα(q) + 1)
e−wα(q)+h(wα(q))

)

where h(t) = 2πi(et − r)/q + α log t. Then γα(r, q) ∼ γ̃α(r, q).
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Figure 5.3. Absolute values of the fractional Stieltjes constants γα for ζ(s) and γα(χ3)
for L(s, χ3) where χ3 = χ2(n) modulo 3 in Table 5.1 and γα(χ7) for L(s, χ7) where
χ7 = χ2(n) modulo 7 in Table 5.5.

Proof. Let

gα(x) =
logα(x · q + r)

x · q + r
.

Then

g′α(x) =
α · logα−1(x · q + r) · q
(x · q + r)(x · q + r)

− logα(x · q + r) · q
(x · q + r)2

=
q · logα−1(x · q + r)(α− log(x · q + r)

(x · q + r)2
.

We set m = 0 in Theorem 5.17 and get

γα(q, r) =
logα(r)

r
− logα+1(r)

q(α + 1)
− logα(r)

2r
+

∞∫
0

P1(x)g
′
α(x) dx

=
1

2

logα(r)

r
− logα+1(r)

q(α + 1)
+

∞∫
0

P1(x)g
′
α(x) dx
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for α ∈ R with α > 0 The first periodized Bernoulli polynomial P1 has the Fourier
series [AS64, page 805]

P1(x) =
−1
π

∞∑
j=1

sin(2πjx)

j
.

With the above and the change of variable t = log(x · q + r), x = (et − r)/q,
dt
dx

= q/(x · q + r) = q/et. We obtain∫ ∞
0

P1(x)g
′
α(x) dx =

∞∑
j=1

−1
πj

∫ ∞
0

sin(2πjx)
q · logα−1(x · q + r)(α− log(x · q + r))

(x · q + r)2
dx

=
∞∑
j=1

−1
πj

∫ ∞
0

ℑ
(
e2πijx

) q · logα−1(x · q + r)(α− log(x · q + r))

(x · q + r)2
dx

=
∞∑
j=1

−1
πj

∫ ∞
log(r)

ℑ
(
e2πij

) tα−1(α− t)
e2t

(et)dt

= ℑ

(
∞∑
j=1

−1
πj

∫ ∞
log(r)

e2πij(e
t−r)e−t+α log tα− t

t
dt

)
.

Comparing the Fourier series for P1 with the Fourier series expansion of x− [x] one
sees that the series is dominated by the j = 1 term.

To find an asymptotic expression for the integral we apply the method of steepest
decent (5.7). We set h(t) = 2πi(et − r)/q + α log t. Then h′(t) = 2πiet/q + α/t and
h′′(t) = 2πiet/q − α/t2. We have saddle points where

h′(wα(q)) = 2πiewα(q)/q + α/wα(q) = 0. (5.8)

The Lambert W function yields wα(q) = W0

(
qαi
2π

)
. We get h′′(wα(q)) = −α/wα(q)−

α/wα(q)
2 and thus∫ ∞

log(r)

e2πi(e
t−r)/q+α log te−t

α− t
t

dt =

∫ ∞
log(r)

eh(t)e−t
α− t
t

dt

∼ α− wα(q)

wα(q)

√
2π√

−h′′(wα(q))
eh(wα(q))e−wα(q)

=

(
α

wα(q)
− 1

) √
2π√

−h′′(wα(q))
eh(wα(q))e−wα(q)

=
1

wα(q)
(α− wα(q))

√
2π√

α/wα(q) + α/wα(q)2
eh(wα(q))−wα(q)

=

√
2π

α(wα(q) + 1)
e−wα(q)+h(wα(q))(α− wα(q))
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∼

√
2πα

wα(q) + 1
· e−wα(q)+h(wα(q)).

Therefore ∫ ∞
1

P1(x)g
′
α(x) dx ∼ ℑ

(
−1
π

√
2πα

wα(q) + 1
e−wα(q)+h(wα(q))

)
(5.9)

Corollary 5.19. Let χ be a Dirichlet character, then

γα(χ) =

q∑
r=1

χ(r)γα(r, q) ∼
q∑

r=1

χ(r)γ̃α(r, q)

Lemma 5.20 ([PS24, Lemma 1]). Let W0 be the principal branch of the Lambert W
function. Consider I(t) := ℑ(W0(it)) for t ∈ (0,∞). We have:

1. ℜ(W0(it)) = I(t) · tan(I(t)).

2. T (y) :
(
0, π

2

)
→ (0,∞) given by T (y) = y

cos y
· ey·tan(y) is the inverse of I(t).

3. T ′(y) > 0 for y ∈
(
0, π

2

)
, and therefore I(t) > 0, for t ∈ (0,∞].

4. limt→∞ I(t) =
π
2
.

5. ℜ(W0(it)) > 0 for t ∈ (0,∞).

By Lemma 5.20 the function I
(
qα
2π

)
and thus ℜ(wα(q)) = I

(
qα
2π

)
tan(I

(
qα
2π

)
) both

increase with α and q. We have wα(q) = I
(
qα
2π

)
(i+ tan(I

(
qα
2π

)
)).

Lemma 5.21. Let wα(q) = W0

(
qα
2π
i
)
. Then

1. arg(wα(q)) =
π
2
−ℑ(wα(q))

2. ℜ(wα(q)) < log
(
qα
2π

)
for αq > 2πe

Proof. Using the notation from Lemma 5.20 we write

wα(q) = I
(qα
2π

)
+ I

(qα
2π

)
tan
(
I
(qα
2π

))
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1. For the argument of wα(q)) we get

arg(wα(q)) = arg
(
I
(qα
2π

)
tan
(
I
(qα
2π

))
+ iI

(qα
2π

))
= tan−1

(
I
(
qα
2π

)
I
(
qα
2π

)
tan
(
I
(
qα
2π

)))
= tan−1

1

tan
(
I
(
qα
2π

))
=
π

2
− I

(qα
2π

)
2. By Lemma 5.20 2. we have

αq

2π
= T (ℑ(wα(q))) =

ℑ(wα(q)

cos (ℑ(wα(q)))
· eℜ(wα(q)

Thus
log
(αq
2π

)
= log

(
ℑ(wα(q))

cos (ℑ(wα(q)))

)
+ ℜ(wα(q)))

Because 0 ≤ ℑ(wα(q)) <
π
2

and because ℑ(wα(q)) > 1 for αq > 2πe we have

log
(αq
2π

)
> ℜ(wα(q)))

Lemma 5.22. Let Vα(r, q) = −1
2
log(wα(q) + 1)− wα(q) + h(wα(q)) and let T as in

Lemma 5.20.- Then

1. ℜ (Vα(r, q)) does not depend on r.

2. d
dq
ℜ (Vα(r, q)) > 0 for α > max

{
2πT (π/4),−2W−1

(
− 1

q2

)}
3. d

dq
ℑ (Vα(r, q)) < 0 for α > 2πT (π/4).

Proof. With Equation 5.8 we get

Vα(r, q) = −
1

2
log(wα(q) + 1)− wα(q) +

2πi(ewα(q) − r)
q

+ α logwα(q)

= −1

2
log(wα(q) + 1)− wα(q)−

2πir

q
− α

wα(q)
+ α logwα(q).
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1. Because wα(q) does not depend on r, also

ℜ(Vα(r, q)) = ℜ
(
−1

2
log(wα(q) + 1)− wα(q)−

α

wα(q)
+ α logwα(q)

)
does not depend of r.

2. For the derivative with respect to q of Vα(r, q) we gave

d

dq
Vα(r, q) = −

1

2

w′α(q)

wα(q) + 1
− w′α(q) +

α · w′α(q)
(wα(q))2

+
α · w′α(q)
wα(q)

+
2πir

q2
.

The derivative of the Lambert W -function is W ′(t) = W (t)
t(W (t)+1)

. Thus writing w
for wα(q) we get

d

dq
Vα(r, q) =−

1

2

w

q(w + 1)2
− w

q(w + 1)
+

α

q · w(w + 1)
+

α

q · (w + 1)
− 2πir

q2

=
1

q

−1
2
w2 − w2(w + 1) + α(w + 1) + α · w(w + 1)

w(w + 1)2
+

2πir

q2

=
1

q

−w3 + (α− 3
2
)w2 + 2α · w + α

w3 + 2w2 + w
+

2πir

q2
(5.10)

Considering the real part of (5.10) and expanding by the conjugate of the
denominator we obtain the numerator

ℜ
(
−|w|6 − 2|w|4w − |w|2w2 + (α− 3

2
)(|w|4w + 2|w|4 + |w|2w

+ 2α(|w|2w2 + 2|w|2w + |w|2) + α(w3 + 2w2 + w)
)

=− |w|6 + (α− 7
2
)|w|4ℜ(w) + (2α− 3)|w|4 + (2α− 1)|w|2ℜ(w2)

+ (5α− 3
2
)|w|2ℜ(w) + 2α|w|2 + αℜ(w3) + 2αℜ(w2) + αℜ(w)

For d
dq
ℜ(Vα(r, q)) > 0 it is sufficient that |w|2 < (α− 7

2
)ℜ(w) if α is sufficiently

large. It follows from Lemma 5.20 that for α > 2πT (π/4) = 15.3066 . . . we have

|w|2 = ℜ(w)2 + ℑ(w)2 < 2ℜ(w)2.

We obtain the stronger inequality 2ℜ(w) < α− 7
2

and with 0 < ℜ(w) < log( qα
2π
)

for α > 2πe
q

by Lemma 5.21 we see that it is sufficient to consider

2 log
(qα
2π

)
< α− 7

2
. (5.11)

The inequality holds for q = 1 and α > 2πT (π/4). Suppose q ≥ 2. Since
2 log(2π)) > 7

2
a solution of

2 log (qα) < α.
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is also a solution of the inequality (5.11). Because the right hand side increases
faster with α than the right hand side, we only need to find α0(q) such that
q2α2 = eα or equivalently

−α
2
e−α/2 = − 1

q2

The solution is given by the Lambert W-functions as −2W−1
(
− 1

q2

)
.

3. Taking the derivative of (5.10) we get

d2

dq2
Vα(r, q) =−

1

2

w′q(w + 1)2 − w(q2(w + 1)w′ + (w + 1)2)

q2(w + 1)4

− w′q(w + 1)− w(qw′ + w)

q2(w + 1)2

Considering the imaginary part of (5.10) and expanding by q2 and the conjugate
of the denominator we obtain the numerator

q · ℑ
(
−|w|6 − 2|w|4w − |w|2w2 + (α− 3

2
)(|w|4w + 2|w|4 + |w|2w)

+ 2α(|w|2w2 + 2|w|2w + |w|2) + α(w3 + 2w2 + w)
)
+ 2πr

=q ·
(
−2|w|4ℑ(w)− |w|2ℑ(w2) + (α− 3

2
)(−|w|4ℑw + |w|2ℑ(w))

+ 2α(−|w|2ℑ(w2)− 2|w|2ℑw) + α(−ℑ(w3)− 2ℑ(w2)−ℑ(w))
)
+ 2πr

=q ·
(
(−1

2
− α)|w|4ℑ(w) + (−1− 2α)|w|2ℑ(w2) + (−3α− 3

2
)|w|2ℑ(w)

+ α(−ℑ(w3)− 2ℑ(w2)−ℑ(w))
)
+ 2πr

We get that d
dq
ℑ(Vα(r, q)) < 0 for α > 2πT (π/4).

Theorem 5.23. For Vα(r, q) = −
1

2
log(wα(q) + 1)− wα(q) + h(wα(q)) we have

γ̃α(r, q) =
1

2

logα(r)

r
− logα+1(r)

q(α + 1)
−
√

2α

π
sinℑ(Vα(r, q)) · eℜ(Vα(r,q))

The amplitude eℜ(Vα(r,q)) of γα(r, q) increases with q for α > max
{
2πT (π/4),−2W−1

(
− 1

q2

)}
.

Proof. We have

ℑ

(
−

√
2α

π(wα(q) + 1)
e−wα(q)+h(wα(q))

)
= −

√
2α

π
· ℑ
(
eVα(r,q)

)
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= −
√

2α

π
· sinℑ(Vα(r, q)) · eℜ(Vα(r,q))

Thus with Theorem 5.18 we have

γ̃α(r, q) =
logα(r)

r
− logα+1(r)

q(α + 1)
− logα(r)

2r
−
√

2α

π
· sinℑ(Vα(r, q)) · eℜ(Vα(r,q))

With Lemma 5.22 2. we get that the amplitude ℜ(Vα(r, q)) increases for α >

max
{
2πT (π/4),−2W−1

(
− 1

q2

)}
.

With the above and Theorem 5.18 we see that γα(r, q) increase with q for α >

max
{
2πT (π/4),−2W−1

(
− 1

q2

)}
. The analogous result holds for γα(χ) where χ is a

character modulo q.

5.4 Critical Strip

Let χ be a primitive character modulo q, with q > 1. There are no zeros of L(s, χ) with
ℜ(s) > 1. for ℜ(s) < 0, there are trivial zeros for certain negative integers. Namely:

(i) If a = 0, then only zeros of L(s, χ) with ℜ(s) < 0 are simple zeros at
−2,−4,−6, . . . (There is also a zero at s = 0). These correspond to the poles of
Γ( s

2
) in the functional equation.

(ii) If a = 1, then only zeros of L(s, χ) with ℜ(s) < 0 are simple zeros at
−1,−3,−5, . . . . These correspond to the poles of Γ( s+1

2
) in the functional

equation.

The remaining zeros lie in the critical strip 0 ≤ ℜ(s) ≤ 1, and are non-trivial zeros.
the non-trivial zeros are symmetrical about the critical line ℜ(s) = 1/2. That is, if
L(ρ, χ) = 0 then L(1− ρ, χ) = 0 too, because of the functional equation. If χ is a real
character, then the non-trivial zeros are also symmetrical about the real axis, but not
if χ is a complex character. The generalized Riemann hypothesis is the conjecture
that all the non-trivial zeros lie on the critical line ℜ(s) = 1/2. Yıldırım was able to
show an equivalence of the Generalize Riemann Hypothesis to the non-vanishing of
the first derivative.

Theorem 5.24 ([Yıl96, Theorem 1]). Assume General Riemann Hypothesis. If
a = 0 and q ≥ 216, then L′(s, χ) has exactly one zero ρ1 with 0 ≤ ℜ(ρ1) < 1

2
, at

1
log q

+O( log log q
log2 q

). If a = 1 and q ≥ 23, then L′(s, χ) has no zeros in the left-half of the
critical strip.
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Yıldırım also remarked:

Remark 5.25. (i) For small q the possibility remains that L′(sχ) has zeros β1+ iγ1
with 0 < β1 <

1
2
, |γ1| < 3.

(ii) We can see that ℜL′

L
(1
2
+ it, χ) < 0 if L(1

2
+ it, χ) ̸= 0. So L′(s, χ) nay vanish on

the critical line only at a multiple zero of L(s, χ).

Example 5.26. With the computations we have produces, we can easily verify Remark
5.25 (i). For examples, χ3 : [0, 1, ω2

6, ω6, ω
4
6, ω

5
6,−1] modulo 7 has only one zero at

s ≈ 0.1725− i0.6901 and χ5 : [0, 1, ω
4
6, ω

5
6, ω

2
6, ω6,−1] modulo 7 has only one zero at

s ≈ 0.1725 + i0.6901. It is clear that χ3 and χ5 modulo 7 are conjugate pairs, which
makes sense since the respective zeros are conjugates of each other.

5.4.1 Derivatives

In 1996 Yıldırım proved that the zero-free regions only depend on the modulus of the
character.

Theorem 5.27 ([Yıl96, Theorem 2]). Let m be the smallest prime that doesn’t divide
q. Then L(k)(s, χ) ̸= 0 for σ > 1 + m

2

(
1 +

√
1 + 4k2

m logm

)
.

Theorem 5.28 ([Yıl96, Theorem 5]). Assuming General Riemann Hypothesis, there
are at most finitely many zeros of L(k)(s, χ) in the strip −ϵ ≤ σ ≤ 1

2
.

5.5 Right Half-Plane

LetQα
n(s) := (log n)α/ns denote the n-th term of the Dirichlet series for (−1)αL(α)(s, χ),

so that

(−1)αL(α)(s, χ) = (−1)α
∞∑
n=2

(−1)n−1χ(n) logα n
ns

= (−1)α
∞∑
n=2

(−1)n−1χ(n)Qα
n(s).

(5.12)
We prove the existence of zero-free regions where one of the terms of (5.12), say
Qα

M(σ), dominates the rest of the series, that is, when

Qα
M(σ) >

∑
n̸=M

Qα
n(σ), (5.13)

and, in a complementary fashion, we look for the zeros of η(α)(s) near the regions
of the complex plane where Qα

M(s) = Qα
M+d(s), in other words where no term of the
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Figure 5.4. Zeros of L(100), where χ = [1, 1,−1, 1,−1,−1] with zero-free regions and
lines

series can attain dominance and, in fact, where the cancellation of terms might happen.
This occurs at

qMM+d =
log( logM

log(M+d)
)

log( M
M+d

)
qM−cM =

log( logM
log(M−c))

log( M
M−c)

(5.14)

where we denote the gap of zeros of size d after M and the gap of zeros of size c before
M .

Theorem 5.29. Let α > 0. If M ∈ N, M ≥ 3, and qmM+dα+(M+d)u ≤ qM−cα−Mu,
then L(α)(s, χ)(s) ̸= 0 in the regions

qMM+dα + (M + d)u ≤ σ ≤ qM−cM α− (M − c)u,

where u ∈ (0,∞) is a solution of 1− 1
edu−1 −

1
ecu

(1 + 1
u
) ≥ 0.
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Let Sα
M be the vertical strip between the zero-free regions obtained from the

dominance of Qα
M(qMM+dα) and Qα

M+d(q
M
M+dα) in (4.13), respectively, as described in

Theorem 4.9. The strip Sα
M exists when α reaches

AM :=
{

(2M+d+c)u
qM−qM+1

if M ≥ 2.

Recall that Qα
M(qMM+dα) = Qα

M+d(q
M
M+dα). Considering the imaginary parts of

the solutions of χ(M)Qα
M(qMM+dα + it) = χ(M + d)Qα

M+d(q
M
M+dα + it) we find that

L(α)(s, χ)(σ + it) ̸= 0 for σ ∈ Sα
M and

it =
log
(

χ(M+d)
χ(M)

)
+ 2πiJ

log(M + d)− log(M)
(5.15)

for J ∈ Z. Together with the border of the zero-free regions to the left and right of
Sα
M the lines from (4.17), for J = j and J = j +1, where j ∈ Z form a contour around

the zero

qMM+d · α +
log
(

χ(M+d)
χ(M)

)
+ iπ(2J + 1)

log(M + d)− log(M)
(5.16)

of χ(M)Qα
M(qMM+dα+ it) + χ(M + d)Qα

M+d(q
M
M+dα+ it) = 0. Exactly as in [BPS15],

Rouché’s theorem immediately shows that there is exactly one zero of L(α)(s, χ) in
the rectangular area shown in Figure 5.5. In other words, a natural generalization of
[BPS15, Theorem 2.2] can be quickly obtained, mutatis mutandis, replacing integer
values of k by positive real numbers α:

Theorem 5.30. Let M ≥ 3 denote a natural number, j ∈ Z, and α > AM . Let
Fα
M,j ⊂ Sα

M be given by

log
(

χ(M+d)
χ(M)

)
+ 2iπj

log(M + d)− log(M)
< t <

log
(

χ(M+d)
χ(M)

)
+ 2iπ(j + 1)

log(M + d)− log(M)
. (5.17)

Then Fα
M,j contains exactly one zero of L(α)(s, χ), and the zero is simple.

In our proof of Theorem 5.29 we follow, with some modifications, the general
approach developed in order to establish [BPS15, Theorem 2.1]. We show that
L(α)(s, χ)(s) has no zeros if (α, σ) in the ασ-plane lies in one of the wedges given by

qMM+dα + b1 ≤ σ ≤ qM−cM α + b2

for constants b1, b2 ∈ R, chosen in a way that guarantees the dominance (in the
modulus) of the term |Qα

M (s)| =
∣∣∣χ(M) logα M

Ms

∣∣∣ of the series for L(α)(s, χ)(s, χ). We call
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Figure 5.5. Regions Fα
M,j that contains exactly one zero of L(α)(s, χ). Rouche’s theorem

can be used to establish simplicity of the zero using the zero of χ(M)Qα
M (s) + χ(M +

d)Qα
M+d(s)

the remaining terms of the series the ‘head’

Hα
M(s) :=

M−c∑
n=2

|Qα
n(s)| =

M−c∑
n=c

∣∣∣∣χ(n) logα nns

∣∣∣∣
and the ‘tail’

Tα
M(s) :=

∞∑
n=M+d

|Qα
n(s)| =

∞∑
n=M+d

∣∣∣∣χ(n) logα nns

∣∣∣∣ .
The key idea is to show that in our well-defined regions

|L(α)(s, χ)(s)| ≥ Qα
M(σ)−Hα

M(σ)− Tα
M(σ)

= Qα
M(σ)

(
1− Hα

M

Qα
M

(σ)− Tα
M

Qα
M

(σ)

)
> 0, (5.18)

thus proving that L(α)(s, χ)(s) does not vanish. In order to find suitable upper bounds
to the tails Tα

M (σ), a couple of preliminary bounds are needed. For the case of Dirichlet
L-functions [PS24, Lemma 1] yields
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Lemma 5.31. Fix 2 ≤M ∈ N, and assume α < (σ− 1) logM. Then for any modulus
and d = 1

Tα
M(σ) =

∞∑
n=M+1

χ(n) logα n

nσ
≤

∞∑
n=M+1

logα n

nσ
≤
∫ ∞
M

logα x

xσ
dx ≤ Qα

M(σ)Rα
M(σ),

(5.19)
where

Rα
M(σ) =

M

σ − 1

(
1 +

α

(σ − 1) logM − α

)
.

Next, we find a bound for Rα
M(σ). We have:

Lemma 5.32 (Lemma 2[PS24] ). If a1α + b1 ≤ σ and A ≤ α and a1 > 1
logM

, then

Rα
M(σ) ≤ Rα

M(a1α + b1) ≤ RA
M(a1α + b1) ≤ RA

M(a1A+ b1), (5.20)

Note: In what follows, we apply the estimates for Tα
M(σ) from Lemma 5.31 in the

proof of Theorem 5.29 via the useful separation

Tα
M(σ) = Qα

M+1(σ) + Tα
M+1(σ)

≤ Qα
M+2(σ)(1 +Rα

M+2(σ))

≤ Qα
M(qMα + b1)(1 +Rα

M+2(qMα + b1)),

which holds since Qα
M+2(σ) ≤ Qα

M (σ). The series with these Rα
M+2(qMα+b1) converges

because, by [BPS15, Lemma 3.1], qM > 1/ log(M + 1).

Lemma 5.33. Let c ∈ R be positive. Then y(n) =
(
n−x
n

)cn is monotonously increasing
with asymptote 1/exc.

Proof. As limn→∞
(
1 + x

n

)cn
= exc, we evidently have limn→∞

(
n−x
n

)cn
= 1/exc. Fi-

nally,

y′(n) = c · y(n)
(
log
(
1− x

n

)
+

1

n− x

)
> 0

proves the monotonicity assertion.

Before we get to the main argument of the proof of Theorem 5.29 (c), let us
perform a technical transformation. We rewrite the series (5.12) as

Hα
M(σ) = Qα

M(σ)

(
Qα

M−c

Qα
M

(σ) +
Qα

M−c−1

Qα
M

(σ) + · · ·+ Qα
2

Qα
M

(σ)

)
= Qα

M(σ)

(
Qα

M−c

Qα
M

(σ)

(
1+

Qα
M−c−1

Qα
M−c

(σ)

(
1+. . .

(
1+

Qα
2

Qα
3

(σ)

)
. . .

)))
. (5.21)
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with the hope of finding bounds for Qα
n−c

Qα
n
(σ). Observe that because

Qα
n−c

Qα
n

(σ) =

(
log(n− c)

log n

)α(
n

n− c

)σ

the quotient Hα
M

Qα
M
(σ) increases with σ. That means that, for 2 ≤ n ≤ M and σ ≤

qM−cM α + b2, we can write

Qα
n−c

Qα
n

(σ) ≤
Qα

n−c

Qα
n

(qM−cM α + b2) ≤
Qα

n−c

Qα
n

(qn−cn α + b2) =

(
n

n− c

)b2

,

where the second inequality holds since qM−cM < qn for n ≤M and the equality holds
because σ = qn−cn α is the solution of Qα

n(σ) = Qα
n−c(σ). Thus, in order for Hα

M

Qα
M
(σ) to

stay bounded, we must choose b2 < 0.
By [BPS15, Lemma 4.4] we have, for 3 ≤ n ≤M and σ ≤ qM−cM α− u(M − c),

Qα
n−c

Qα
n

(σ) ≤
(

n

n− c

)−u(M−c)
≤
(

M

M − c

)−u(M−c)
≤ 1

ecu
.

Combined with the equation (5.21), this yields

Hα
M

Qα
M

(σ) ≤
∞∑
n=1

1

(ecu)n
=

1

1− 1
ecu

− 1 =
1

ecu − 1
. (5.22)

We are now ready to prove the final part (c) of Theorem 5.29.

Proof. of Theorem 5.29 Let α > 0. We show that if M ∈ N, M ≥ 3, and qMM+dα +
(M + d)u ≤ qM−cM α−Mu then L(α)(s, χ) ̸= 0 for

qMM+dα + (M + d)u ≤ σ ≤ qM−cd α− (M − c)u.

where u ∈ (0,∞) is a solution of 1− 1
ecu−1 −

1
edu

(1 + 1
u
) ≥ 0. Similar to the proof of

Theorem 5.29 (b) we write∣∣L(α)(s, χ)
∣∣ ≥ Qα

M(σ)−Hα
M(σ)− Tα

M(σ)

≥ Qα
M(σ)

(
1− Hα

M

Qα
M

(σ)−
Qα

M+d

Qα
M

(σ)
(
1 +Rα

M+d(σ)
))

.

Now, notice that

Rα
M+d(σ) :=

M + d

σ − 1

(
1 +

α

(σ − 1) log(M + d)− α

)
<

1

u
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is equivalent to (σ − 1)2 log(M + d) − (σ − 1)(u(M + d) log(M + d) + α) > 0 and
this quadratic inequality is satisfied whenever σ > 1 + u(M + d) + α

log(M+d)
. Thus, by

Lemma 5.32, for σ ≥ qMM+dα+ u(M + d), α ≥ αM := (2M+d+c)u

qM−c
M −qMM+d

, and M ≥ 3, we have

Rα
M+d(σ) ≤ RαM

M+d(q
M
M+dαM + u(M + d)) <

1

u
.

But by [BPS15, Lemma 4.4]
(
n−1
n

)cn is monotonously increasing with the asymptote
1/ec. And therefore

Qα
M+d

Qα
M

(qMM+dα + u(M + d)) =

(
M

M + d

)u(M+d)

<
1

edu
.

Finally, with the help of the bound (5.22), we can see, that for M ≥ 4 and qMM+dα+
u(M + d) ≤ σ ≤ qM−cc α + uM , we have

1− Hα
M

Qα
M

(σ)−
Qα

M+d

Qα
M

(σ)
(
1 +Rα

M+d(σ)
)
> 1− 1

ecu − 1
− 1

edu

(
1 +

1

u

)
≥ 0,

which completes the proof of the theorem.

Corollary 5.34. Let M ∈ N with M ≥ 2 and j ∈ Z. The zeros s = σ+ it of L(α)(s, χ)
for α > AM with

log
(

χ(M+d)
χ(M)

)
+ 2iπj

log(M + d)− log(M)
< it <

log
(

χ(M+d)
χ(M)

)
+ 2iπ(j + 1)

log(M + d)− log(M)

are images of an analytic function z : (AM ,∞)→ C.

Lemma 5.35. Let M ≥ 2 and α ∈ R. If s ∈ Sα
M , then L(α)(s, χ) ̸= 0 for

s = σ +
log
(

χ(M+d)
χ(M)

)
+ 2iπj

log(M + d)− logM
.

Proof. In the center of the strip Sα
M , that is on the line σ = qMM+dα we have |Qα

M (s)| =
|Qα

M+d(s)|. We consider the line segments in Sα
M with

qMM+dα− (M + d)u ≤ σ ≤ qMM+dα + (M + d)u.

and

it =
log
(

χ(M+d)
χ(M)

)
+ iπ(2j + 1)

log(M + d)− logM
, where j ∈ Z,
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see Figure 5.5. Our choice of t gives χ(M)Qα
M (qMM+dα+ it) +χ(M + d)Qα

M+d(q
M
M+dα+

it) = 0 (compare equation (5.15)) and therefore cos(t logM) = cos(t log(M + d)) and
sin(t logM) = − sin(t log(M + d)). We set s = σ + it, with t and σ as above, and
consider the real and imaginary parts of

L(α)(s, χ) =
∞∑
n=2

χ(n) (cos(t log n) + i · sin(t log n))Qα
n(σ).

With |χ(n)ℑ(Qα
n(s))| ≤ Qα

n(σ) and |χ(n)ℜ(Qα
n(s))| ≤ Qα

n(σ) we obtain

|ℜ(L(α)(s, χ))| ≥ | cos(t logM)Qα
M(σ) + cos(t log(M + d))Qα

M+d(σ)|
−Hα

M(σ)− Tα
M+d(σ),

|ℑ(L(α)(s, χ))| ≥ | sin(t logM)Qα
M(σ) + sin(t log(M + d))Qα

M+d(σ)|
−Hα

M(σ)− Tα
M+d(σ).

If t = 0, the situation is trivial. If t ≠ 0, then we either have | sin(t logM)| ≥
sin(π/4) = 1/

√
2 or | cos(t logM)| ≥ cos(π/4) = 1/

√
2. Because |L(α)(s, χ)| ≥

|ℜ(L(α)(s, χ))| and |L(α)(s, χ)| ≥ |ℑ(L(α)(s, χ))| we get:

|L(α)(s, χ)| ≥ 1√
2

(
Qα

M(σ) +Qα
M+d(σ)

)
−Hα

M(σ)− Tα
M+d(σ)

= Qα
M(σ)

(
1√
2
+

1√
2

Qα
M+d

Qα
M

(σ)− Hα
M

Qα
M

(σ)−
Qα

M+d+1

Qα
M

(σ)−
Tα
M+d+1

Qα
M

(σ)

)
= Qα

M(σ)

(
1√
2
− Hα

M

Qα
M

(σ) +
Qα

M+d

Qα
M

(σ)

(
1√
2
−
Qα

M+d+1

Qα
M+d

(σ)−
Tα
M+d+1

Qα
M+d

(σ)

))
From the proof of Theorem 5.29 we know that for σ ≥ qMM+dα + (M + d)u

1√
2
−
Qα

M+d+1

Qα
M+d

(σ)−
Tα
M+d+1

Qα
M+d

(σ) ≥ 1√
2
−
Qα

M+d+1

Qα
M+d

(σ) (1 +RM+d+1(σ))

≥ 1√
2
− 1

edu

(
1 +

1

u

)
> 0.

Similarly, since Hα
M

Qα
M
(σ) is increasing in σ (see equation (5.21)) and because σ <

qM−cM α− (M − c)u, we get with (5.22) that

1√
2
− Hα

M

Qα
M

(σ) ≥ 1√
2
− Hα

M

Qα
M

(qM−cM α− (M − c)u) ≥ 1√
2
− 1

ecu − 1
> 0,

which concludes the proof of the lemma.
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Proof of Theorem 5.30. Let Z(s) = χ(M)Qα
M(s) + χ(M + d)Qα

M+d(s). It is easy to
check that the function Z(s) has exactly one (simple) zero in Rj, namely

s = qMM+dα +
log
(

χ(M+d)
χ(M)

)
+ iπ(2j + 1)

log(M + d)− logM
.

In order to be able to apply Rouché’s Theorem we need to show that |L(α)(s, χ) −
Z(s)| < |Z(s)| for all s on Rj.

The vertical sides of Rj are in the zero-free regions for M and M + d. As shown
in the proof of Theorem 5.29 the term Qα

M(s) dominates L(α)(s, χ)(s) on the right
vertical side of Rj and the term Qα

M+d(s) dominates L(α)(s, χ) on the left vertical
side of Rj. Thus |L(α)(s, χ)− Z(s)| < |Z(s)| on the vertical sides of Rj. Furthermore
we have seen in the proof of Lemma 5.35 that Z(s) = Qα

M(s) +Qα
M+d(s) dominates

L(α)(s, χ) on the horizontal sides of Rj. Hence |L(α)(s, χ) − Z(s)| < |Z(s)| on the
horizontal sides of Rj.

5.5.1 Special Cases

Corollary 5.36. Let α > 0 and any modulo k that has 2 as a divsor. We have :

(a) For moduli 2r where r ∈ N, then for all σ > q3α+2.364, we have L(α)(s, χ)(s) ̸= 0.

(b) If M ∈ N, M ≥ 3, and qMM+dα + (M + d)u ≤ qM−cM α − (M − c)u, then
L(α)(s, χ)(s) ̸= 0 in the regions

qMM+dα + (M + d)u ≤ σ ≤ qM−cM α− (M − c)u,

where u ∈ (0,∞) is a solution of 1− 1
edu−1 −

1
ecu

(1 + 1
2u
) ≥ 0.

Note: The smallest u with c = d = 2 is u = 0.594

In our proof of Theorem 5.36 we follow, with some modifications, the general
approach developed in order to establish 5.29. Thus the idea is to show that in our
well-defined regions with a better bound

|L(α)(s, χ)(s)| ≥ Qα
M(σ)−Hα

M(σ)− Tα
M(σ)

= Qα
M(σ)

(
1− Hα

M

Qα
M

(σ)− Tα
M

Qα
M

(σ)

)
> 0, (5.23)

thus proving that L(α)(s, χ)(s) does not vanish.
In order to find suitable upper bounds to the tails Tα

M(σ), a couple of preliminary
bounds are needed. We begin with the following lemma to better bound the tail:

93



Lemma 5.37. Fix 2 ≤M ∈ N, and assume α < (σ − 1) logM. Let any modulo of χ
be a divisor of 2. Then with d = 2 and odd M we have,

Tα
M(σ) =

∞∑
n=M+2

|χ(n)| logα n
nσ

≤ Qα
M+2(σ)

(
1 +

1

2
Rα

M+3(σ)

)
, (5.24)

where
Rα

M(σ) =
M

σ − 1

(
1 +

α

(σ − 1) logM − α

)
.

Proof. First, for the upper incomplete Gamma function we have the bound (see
[NP00, equation (3.2)]): Γ(a, x) < Bxa−1e−x, valid for all B > 1, a > 1 and x > B(1−a)

1−B .
This means that we can write:

Tα
M(σ) =

∞∑
n=M+2

χ(n) logα n

nσ
≤ logα(M + 2)

(M + 2)σ
+

∞∑
n=M+3

logα n

nσ
−

∞∑
n=M+3

2

logα 2n

(2n)σ

≤ logα(M + 2)

(M + 2)σ
+

∫ ∞
M+3

logα x

xσ
dx− 1

2

∫ ∞
M+3

logα x

xσ
dx

=
logα(M + 2)

(M + 2)σ
+

(
1− 1

2

)∫ ∞
M+3

logα x

xσ
dx

=
logα(M + 2)

(M + 2)σ
+

1

2

Γ(α + 1, (σ − 1) log(M + 3))

(σ − 1)α+1

<
logα(M + 2)

(M + 2)σ
+

1

2

B((σ − 1) log(M + 3))α+1−1e−(σ−1) log(M+3)

(σ − 1)α+1

=
logα(M + 2)

(M + 2)σ
+

1

2

logα(M + 3)

(M + 3)σ
M + 3

σ − 1
B.

Here, with the choice of x = (σ − 1) log(M + 3) and a = α + 1 in x > B(1−a)
1−B , we can

obtain a lower bound for B:

B >
(σ − 1) log(M + 3)

(σ − 1) log(M + 3)− α
= 1 +

α

(σ − 1) log(M + 3)− α
,

and if we set B := 1 + ϵ+ α
(σ−1) logM−α , for any ϵ > 0, then we get:

Tα
M(σ) <

logα(M + 2)

(M + 2)σ
+
1

2

(
logα(M + 1)

(M + 1)σ
M + 1

σ − 1

)(
1 + ϵ+

α

(σ − 1) log(M + 3)− α

)
.

Letting ϵ→ 0 this bound becomes

Tα
M(σ) ≤ logα(M + 2)

(M + 2)σ
+

1

2

(
logα(M + 3)

(M + 3)σ
M + 3

σ − 1

)(
1 +

α

(σ − 1) log(M + 3)− α

)
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= Qα
M+2(σ) +

1

2
Qα

M+3(σ)R
α
M+3(σ)

≤ Qα
M+2(σ) +

1

2
Qα

M+2(σ)R
α
M+3(σ)

= Qα
M+2(σ)

(
1 +

1

2
Rα

M+3(σ)

)

since Qα
M+2(σ) ≥ Qα

M+3(σ) which proves the lemma.

We conclude with the proof of Corrolary 5.36 and some immediate consequences.

of Corollary 5.36 (a). We consider the case where Qα
3 (σ) =

logα(3)
3σ

is the dominant
term of L(α)(s, χ), that is in (5.18) we have M = 3. We show that, for all real α > 0
and all σ > q33α + 2.364, we have L(α)(s, χ)(s) ̸= 0. First, write

|L(α)(s, χ)(s)| ≥ logα 3

3σ
− Tα

3 (σ)

≥ Qα
3 (σ)−Qα

5 (σ)

(
1 +

1

2
Rα

6 (σ)

)
≥ Qα

3 (σ)

(
1− Qα

5 (σ)

Qα
3 (σ)

(
1 +

1

2
Rα

6 (σ)

))

By Lemma 5.32 for A ≥ α we have

Rα
6 (σ) ≤ Rα

6 (q
3
3A+ b)

= Rα
6 (q

3
3α + b)

=
6

q3α + b− 1

(
1 +

α

(q33α + b− 1) log 6− α

)
=

6

q33α + b− 1

(
1 +

α

(q33 log 6− 1)α + (b− 1) log 6

)
≤ RA

6 (q
3
3A+ b) =

6

q33A+ b− 1

(
1 +

A

(q33A+ b− 1) log 6− A

)
Now, the quotient Qα

5

Qα
3
(σ) is decreasing in σ, and as one can easily verify

Qα
M+2

Qα
M

(qMα + b1) =

(
M

M + 2

)b1

for all M ≥ 3 and real numbers b1 and b2. Therefore,

Qα
5

Qα
3

(σ) ≤ Qα
5

Qα
3

(qMα + b) =

(
3

5

)b

.
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For A = 0 and α > A and b = 2.32 and σ ≥ q33α + b we get

1− Qα
5 (σ)

Qα
3 (σ)

(
1 +

1

2
Rα

6 (σ)

)
≥ 1− 0.3057(1 + 2.27) > 0.

Thus for all real α > 0 and all σ ≥ q33α + 2.32 we have L(α)(s, χ)(s) ̸= 0.

Theorem 5.36 (a) generalizes Verma & Kaur’s bound [VK82] to fractional deriva-
tives. Our bound is a bit weaker than theirs, as we consider any α > 0 instead of
α ≥ 3. Smaller values of b in the proof of Theorem 5.36 (a) yield tighter bounds that
hold for greater α. In particular, any b > 0 yields a bound that holds for all sufficiently
large values of α. With b = 2 we obtain the bound proved in [VK82] for α ≥ 3.

Corollary 5.38. For any b > 0 there is an A ∈ R such that for all α > 0 we have
L(α)(s, χ)(s) ̸= 0, for all s = σ + it with σ ≥ q33α + b.

Proof. Let b > 0. For estimating Rα
6 (q

3
3α+ b) we set A := 0 and α = 1/q33. We obtain

Rα
6 (q

3
3α+ b) ≤ 3

b
. We use the bounds from the proof of Theorem 5.36 (a). We have

L(α)(s, χ)(s) ̸= 0 for σ ≥ q33α + b when(
3

5

)b(
1 +

3

b

)
< 1

Which is not dependent on α.

By [BPS15, Lemma 4.4] we have, for 3 ≤ n ≤M and σ ≤ qM−cα− u(M − c),

Qα
n−c

Qα
n

(σ) ≤ 1

ecu
.

Combined with equation (5.21), this yields

Hα
M

Qα
M

(σ) ≤ 1

ecu − 1
. (5.25)

We are now ready to prove the final part (b) of Theorem 5.36.

of Theorem 5.36 (b). Let α > 0. We show that if M ∈ N, M ≥ 3, and qMM+dα+ (M +
d)u ≤ qM−cM α− (M − c)u then L(α)(s, χ) ̸= 0 for

qMM+dα + (M + d)u ≤ σ ≤ qM−cM α− (M − c)u.
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where u ∈ (0,∞) is a solution of 1− 1
ecu−1 −

1
edu

(1 + 1
2u
) ≥ 0. Similar to the proof of

Theorem 5.36 (b) we write∣∣L(α)(s, χ)
∣∣ ≥ Qα

M(σ)−Hα
M(σ)− Tα

M(σ)

≥ Qα
M(σ)

(
1− Hα

M

Qα
M

(σ)−
Qα

M+d

Qα
M

(σ)

(
1 +

1

2
Rα

M+d+1(σ)

))
.

Now, we know

Rα
M+d+1(σ) :=

M + d+ 1

σ − 1

(
1 +

α

(σ − 1) log(M + d+ 1)− α

)
<

1

u

But by [BPS15, Lemma 4.4]
(
n−1
n

)cn is monotonously increasing with the asymptote
1/ec. And therefore

Qα
M+d

Qα
M

(qMM+dα + u(M + d)) =

(
M

M + d

)u(M+d)

<
1

edu
.

Finally, with the help of the bound (5.25), we can see, that for M ≥ 4 and qMM+dα+
u(M + d) ≤ σ ≤ qM−cM α + (M − c)u, we have

1− Hα
M

Qα
M

(σ)−
Qα

M+d

Qα
M

(σ)

(
1 +

1

2
Rα

M+d+1(σ)

)
> 1− 1

ecu − 1
− 1

edu

(
1 +

1

2u

)
≥ 0,

which completes the proof of the theorem.

5.6 Left Half-Plane

Yıldırım was able to show zero-free regions on the left half-plane for Dirichlet L-
functions.

Theorem 5.39 ([Yıl96, Theorem 3]). Given any ϵ > 0, there exists a K = K(k, ϵ,a)
such that there is no zero of L(k)(s, χ) is the region |s| > qK , σ < −ϵ, |t| > ϵ.

5.7 Number of Zeros

Yıldırım then calculates Nk(T, χ). For k ≥ 1, the number of zeros of L(k)(s, χ) in a
region −qK < σ < σk, where q and K are the same as in Theorem 5.39, |t| ≤ T as
T →∞. T is chosen so that there are no zeros of L(k)(s, χ) on the lines t = ±T and
σk is taken large enough so that

(i) L(k)(s, χ) has no zeros in σ ≥ σk.
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(ii)
∑∞

n=m+1
(logn)k

nσk
≤ 1

2
(logm)k

mσk
. Where m satisfies Theorem 5.27.

Theorem 5.40 ([Yıl96, Theorem 4.]). Let χ be a primitive character modulo q and
K is the same as in Theorem 5.39. Then

Nk(T, χ) =
T

π
log

qT

2πem
+O(qK log T ),

as T →∞.

He then states the connection of the theorem of Bohr and Landau [BL14], a
Dirichlet series which converges for σ > 0 (in particular L(k)(s, χ), k ≥ 0) has O(T )
zeros in σ > σ0 >

1
2
, |t| ≤ T.
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Chapter 6: Polynomials

6.1 Introduction

Questions concerning finding exact or approximate values of the zeros of polynomial
functions p(x) = cnx

n + cn−1x
n−1 + · · ·+ c1x+ c0 are classical, and (for the case of

real coefficients c0, c1, · · · cn) properties of the distribution of these zeros have been
studied since at least 1637, when Descartes established his fundamental Rule of Signs
(in La Géométrie [Des27]). This important result was refined to finite intervals by
Budan in 1807 and by Fourier in 1820 (see [Fou92] or [Tie36]). By then, thanks to
the work of Euler, Gauss and Argand (see [FR97] for more details), the Fundamental
Theorem of Algebra had been established, guaranteeing that a polynomial of degree
n has exactly n complex zeros (counted with multiplicity). Not much later, in 1829,
Cauchy [Cau09] was able to prove that all zeros of a monic polynomial p(x), with
complex coefficients, must lie inside the disk |z| < 1 + max0≤k≤n−1 |ck|, the bounds
that were eventually generalized by Landau [Lan07], Fejér [Féj08] and others.

In another direction, one could ask about the relation between locations of the
zeros of a polynomial p(x) and the zeros of its derivative p′(x), as Rolle has done in
his Traité d’algèbre of 1690 (see [Sha37]); the well-known theorem bearing his name –
that states that between any two zeros of a real polynomial there lies at least one zero
of the derivative – was proved rigorously by Cauchy [Cau12] in 1823. In the complex
plane, the situation becomes even more interesting. As Gauss noted in 1836, all zeros
of p′(x) lie in the convex hull of the zeros of p(x) (see Figure 6.1). The first proof
of this proposition was published by Lucas [Luc74] in 1874; it is now known as the
Gauss-Lucas Theorem (also see [Mar66]). At the beginning of the 20th century it
was refined by Bôcher [Bôc04], Jensen [Jen12] and Walsh [Wal20], and in more recent
times, several related extensions and generalizations of it have been considered by
Dimitrov [Dim98], Brown & Xiang [BX99], Sendov [Sen21], Tao [Tao22] and others.

The main aim of our work is to investigate connections between these two central
themes. We show that their key ideas can be combined in a very natural way, but
to quite surprising effects, if one considers the fractional derivatives p(α)(x), where
α ∈ R is a variable 0 ≤ α ≤ n = deg p(x). Our main goal in this paper is to answer
one of the most intriguing questions that arises as soon as one begins to study these
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p(x) = (x+ 2+i)(x−4−2i)(x−4+i)(x−2−2i)

p(k)(z) = 0

Figure 6.1. The roots of the polynomial p(x) = (x+2+i)(x−4−2i)(x−4+i)(x−2−2i)
and its derivatives p(k), illustrating that the convex hull of the roots 0• of p(x) contains
the roots 1• of p′(x) and that the convex hull of the roots 1• of p′(x) contains the
roots 2• of p′′(x) and that that the convex hull of the roots 2• of p′′(x) contains the
root 3• of p′′′(x).

topics: since obviously deg p′(x) = deg p(x)−1, and the Fundamental Theorem asserts
than the same reduction must occur for the total number of zeros, what happens
to the zeros of fractional derivatives, as the real α increases continuously from 0
to n? How do the zeros of polynomials vanish, and why? As it turns out, these
questions have remarkably simple and elegant answers. Namely, for a polynomial p(x)
of degree n, each of its n zeros belong to a path of unique length that connects it to
the origin, where the “length” of the path can be measured by the number of zeros of
its derivatives it contains; in other words, for each 0 ≤ k ≤ n− 1 there is a unique
path (originating at one of the zeros of p(x)) that contains exactly k zeros of its higher
derivatives. (Figure 6.2 shows this general property for a generic cubic polynomial).

Another goal of this chapter is to try to understand some of the particulars of
the paths the fractional zeros take, their dynamical properties. In order to state our
results concerning this general flow of polynomial zeros more precisely, first we need
to recall some basic definitions and properties of fractional derivatives.

The remainder of this chapter is structured as follows. In Section 6.2 we recall
results about Riemann-Liouville fractional derivatives of polynomials. In Section
6.3 this theory is applied to the two simplest cases: polynomials of degree one and
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Figure 6.2. Paths z(α) of zeros of the Riemann-Liouville fractional derivatives RLD
(α)
0 p

and RLD
(α)
1−ip of the polynomial p(x) = x3 + (1 + i)x2 + x− i. We end the paths when

z(α) reaches the “origin” (a = 0 in the first case, and a = 1− i in the second).

two. These are the two cases where, thanks to the manageable classical formulas
for the zeros, all the main questions can be conclusively answered. With the cubic
polynomials things become somewhat murky, but general convergence trends can still
be established. In Section 6.4 we do just that: we examine how the zeros of integral
derivatives are connected to the zeros of fractional derivatives in the most general
setting, and we look at the paths of zeros and investigate their convergence and the
overall flow. In Section 6.5 we consider the behaviour of the zeros on a larger scale
and we prove bounds for the Mahler measure of the fractional derivatives, which are
then also established for the Caputo fractional derivative in Section 6.5.1 Finally, in
Section 6.6, we discuss some intriguing open problems and unsolved questions.

6.2 Path of Zeros

Recall that for the simple power functions p(x) = (x− a)β, where β ∈ R, a ∈ C, the
α-th Riemann-Liouville fractional derivative can be computed using the Power Rule
(Section 2.2.1 equation (2.5)):

RLD(α)
a (x− a)β =

0 if α− β − 1 ∈ N
Γ(β + 1)

Γ(β − α + 1)
(x− a)β−α otherwise

(6.1)

Remark 6.1. The Riemann-Liouville fractional derivative of a monomial f(x) = xn is
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multivalued. When changing the branch of the complex logarithm in the computation
of the fractional derivative all coefficients of the derivative are changed by the same
factor. So choosing a different branch of the complex logarithm does not change the
zeros of the derivative, which means that we can fix the branch in our consideration
of zeros of derivatives of polynomials. We use the principal branch of the complex
logarithm.

It should be noted that the constant a that centers the expansion (2.5) plays a key
role in all our computations below, as the “origin,” or the limit of convergence, of the
flow of zeros of derivatives (Figure 6.2 illustrates its role).

Remark 6.2. It is possible to go beyond the standard values of 0 ≤ α, and consider
what happens for α < 0. Here, there are n+1 complex roots, because the first term in
Equation 6.2 below has the root 0. Just like in the standard case, the extended curves
z(α) of zeros of the differintegral RLD

(α)
a p are continuous for α < 0 unless RLD

(α)
a p has

a double root; however, they are not be smooth at integral α > 0. More on this will
be said in Section 6.4 below.

In what follows, we consider the zeros of the the fractional derivatives of polynomials
p ∈ C[x] of degree n, and we investigate the implicit functions z : (0, n)→ C given by

RLD(α)
a f(z(α)) = 0.

If
(
RLD

(α)
a p(x)

)′
̸= 0, for α ∈ (0, n), then z(α) is differentiable on (0, n). We denote

the roots of the polynomial p(x) by z1, z2, . . . , zn and for 1 ≤ k ≤ n we define the the
implicit function zk : [0, n)→ C by zk(0) = zk and RLD

(α)
a p(z(α)) = 0.

The following representation of the fractional derivatives of a general monic
polynomial will be most useful.

Lemma 6.3. Let p(x) = (x− a)n +
∑n−1

j=0 cj(x− a)j ∈ C[x] and α ̸∈ N. Then

RLD(α)
a p(x) =

n!

Γ(n+ 1− α)
(x−a)−α

[
(x− a)n +

n−1∑
j=0

(
n∏

k=j+1

(k − α)

)
· j!
n!
cj(x− a)j

]
.

(6.2)

Proof. Applying the Power Rule (2.5), we obtain

RLD(α)
a p(x) =

Γ(n+ 1)

Γ(n+ 1− α)
(x− a)n−α +

n−1∑
j=0

Γ(j + 1)

Γ(j + 1− α)
cj(x− a)j−α

=
Γ(n+ 1)

Γ(n+ 1− α)
(x− a)−α

[
(x− a)n +

n−1∑
j=0

Γ(n+ 1− α)
Γ(j + 1− α)

Γ(j + 1)

Γ(n+ 1)
cj(x− a)j

]
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=
n!

Γ(n+ 1− α)
(x− a)−α

[
(x− a)n +

n−1∑
j=0

(
n∏

k=j+1

(k − α)

)
· j!
n!
cj(x− a)j

]
,

as wanted.

Remark 6.4. The representation of the fractional derivatives of polynomials given in
the above Lemma 6.3 has the property that their roots only depend on the factors
in square brackets, which in turn implies the useful fact that the branch cut of the
complex logarithm does not affect the paths z(α) of zeros of these fractional derivatives.

We also see that for p(x) = (x− a)n we have:

RLD(α)
a p(a) =


0 if α < n

Γ(n+ 1) if α = n

undefined if α > n

(6.3)

Remark 6.5. A few words should be said about our plots of the implicit functions
z : R → C with z(α) given by RLD

(α)
a p(z(α)) = 0. The dots labelled ‘•k’ represent

zeros of the kth Riemann-Liouville differintegral (thus ‘•0’ represent the zeros of the
polynomial p(x) itself), while circles ‘◦k’ represent points that are limits of z(α) as
α→ k but are not zeros of RLD

(k)
a p. These occur for integral k with k ≥ deg p(x),

where RLD
(k)
a p(x) is constant, for example at x = a, see Equation (6.3). Moreover,

when a point is either a zero or a limit point of zeros of both the jth and the kth
differintegrals, then it is represented by ‘• j & k’ or ‘◦ j & k’ respectively. In Figures
6.2, 6.4, and 6.5 we let all paths of zeros of RLD

(α)
a p(x) end when they reach the origin

a. In Figures 6.3, 6.4, 6.6, 6.7, and 6.8 we continue the paths past a. In Figures 6.3
and 6.6 we display the path of zeros z(α) for α < 0 and α > n in lighter colors than
for 0 ≤ α < n where n is the degree of the polynomial. The point a is only labeled
with values for α for α ≥ 0.

6.3 Low Degrees

Formulas for finding zeros of polynomials of low degrees have been known for centuries.
Applying the Riemann-Liouville derivative to these low-degree cases has proved to
be a simple but informative exercise. In this section we summarize some of these
results, stating the most useful ones as lemmas. They are examples of a dynamic that
shares certain key characteristic with most high-degree cases, but some aspects of
which are often unique. For example, in the linear case, the path the zeros take is also
linear, while already in the quadratic case one observes a considerably more complex
behavior.

Let us start with the linear polynomials. Here the situation is simple. The paths
of zeros is always linear and they can be completely described. We have:
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Figure 6.3. Path z(α) of zeros of differintegrals of the polynomials p(x) = x− 2− 3i
and p(x) = (x− 2− 3i)(x+ 2 + i).

Lemma 6.6 (Linear Polynomials). Let p(x) = (x− a) + c0. As α increases from 0 to
1, the path of zeros of RLD

(α)
a p(x) is given by z(α) = (α− 1)c0 + a.

Proof. From (2.5), with β = 1, we get: RLD
(α)
a p(x) = (x− a)−α ((x− a) + (1− α)c0).

Remark 6.7. In addition to considering the α-th derivatives in the usual range
0 ≤ α ≤ n, one could also look at what happens when α < 0 and when α > n. In the
linear case this is, again, simple. From Lemma 6.6 we can deduce that, as with α < 0,
the line of roots of the derivatives continues. Similarly, for α > 1, α ̸∈ Z lie on the
same line, see Figure 6.3 below.

Let us now consider the quadratic case. This case is considerably more interesting,
since there are now two paths of zeros of the fractional derivatives, and they exhibit a
much more complex and intricate behavior. We first notice that the path of the zero
closest to a directly connects with a, while the path of the zero farthest from a in the
process of reaching a passes through the zero of the first derivative.

Lemma 6.8. Let p(x) = x2 + bx+ c ∈ C[x] with roots s1 and s2 and let d = 1− 4c
b2

.
For d ∈ C \ R<0, denote by

√
d the complex number r with r2 = d and ℜ(r) > 0

and for x ∈ R let sgn(x) = x
|x| .
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1. If d ∈ C \ R<0 and b ̸= 0, then for the roots s1 = −b+sgn(ℜ(b))
√
b2−4c

2
and s2 =

−b−sgn(ℜ(b))
√
b2−4c

2
of p(x) we have |s2| ≥ |s1|.

2. If b = 0, then |s1| = |s2|.

3. If d ∈ R<0, then |s1| = |s2|.

Proof. 1. The roots of p(x) are

−b±
√
b2 − 4c

2
=
b

2

(
−1±

√
b2 − 4c

b

)
=
b

2

(
−1±

√
b2 − 4c

sgn(ℜ(b))
√
b2

)

=
b

2

(
−1± sgn(ℜ(b))

√
1− 4c

b2

)
=
b

2

(
−1± sgn(ℜ(b))

√
d
)

Considering the absolute value of the last term we get:∣∣∣−1± sgn(ℜ(b))
√
d
∣∣∣2 = (−1± sgn(ℜ(b))

√
d
)(
−1± sgn(ℜ(b))

√
d
)

= 1∓ sgn(ℜ(b))
√
d∓ sgn(ℜ(b))

√
d+ |d|

= 1∓ 2 sgn(ℜ(b))ℜ(
√
d) + |d|

Because ℜ
(√

d
)
> 0 we have

| − b+
√
b2 − 4c| > | − b−

√
b2 − 4c| when sgn(ℜ(b)) = −1

| − b−
√
b2 − 4c| > | − b+

√
b2 − 4c| when sgn(ℜ(b)) = +1

and
| − b− sgn(ℜ(b))

√
b2 − 4c| > | − b+ sgn(ℜ(b))

√
b2 − 4c|

which implies |s2| > |s1|.

2. When b = 0 the roots of p(x) are s1,2 = ±
√
−4c
2

. Hence |s1| = |s2|.

3. Here ℜ
√
d = 0 and thus

∣∣∣−1 +√d∣∣∣2 = 1 + |d| =
∣∣∣−1−√d∣∣∣2, which implies

|s1| = |s2|.
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Remark 6.9. As of yet, there is no known reliable ordering of the zeros for any of
the higher degree polynomials. In fact, there exist examples of cubic polynomials for
which the standard Euclidean distance (which works so well for the linear and the
quadratic cases) can be shown to fail: see Figure 6.5.

In addition to the natural ordering on the quadratic roots, another question that
seems to be of interest is the one that concerns the trends of descent of their paths,
especially since it had such a nice answer in the linear case. As it turns out, the
asymptotes of the two quadratic paths exist, and the quadratic formula alone is enough
to help us find them.

Theorem 6.10. For the quadratic polynomial p(x) = (x− a)2 + c1(x− a) + c0, the
paths of zeros of the fractional derivatives RLD

(α)
a p(x) are given as

z1,2(α) = a+
−(2− α)c1 ± sgn(ℜ(c1))

√
(2− α)2 · (c1)2 − 8(2− α)(1− α) · c0

4
, (6.4)

with |z1(α)| ≥ |z2(α)|, for α ∈ [0, 2], and limα→1 z1(α) = a and limα→2 z1,2(α) = a.

Proof. With the help of (2.5), the fractional derivatives of p(x) can be written as

RLD(α)
a p(x) =

2(x− a)−α

Γ(3− α)

(
(x− a)2 + (2− α) · c1

2
(x− a) + (2− α)(1− α) · c0

2

)
.

Now, set y = x− a. Then the roots of y2 + (2−α)·c1
2

y + (2−α)(1−α)·c0
2

are

z1,2(α) = a+
−(2− α)c1 ± sgn(ℜ(c1))

√
(2− α)2 · (c1)2 − 8(2− α)(1− α) · c0

4

The ordering of the roots |z1(α)| ≥ |z2(α)|, for α ∈ [0, 2], follows with Lemma 6.8.
Furthermore, we have

lim
α→1

z1,2(α) = a+
−c1 ±

√
(c1)2

4
= a+

−c1 ± c1
4

.

Thus limα→1 z1(α) = a and limα→1 z2(α) = a+ c1
2
. Similarly

lim
α→2

[
a+
−(2− α)c1 ±

√
(2− α)2 · (c1)2 − 8(2− α)(1− α) · c0

4

]
= a.

Corollary 6.11. For α→ ±∞, the asymptotes of the quadratic paths are

z1,2(α) ≈ (2−α)c1
4

[
−1±

√
1− 8c0

c1

]
.
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Proof. By (6.4) we have,

z1,2(α) =
−(2− α)c1 ± (2− α)c1

√
1− 8 (1−α)

(2−α) ·
c0
c1

4

=
(2− α)c1

4

[
−1±

√
1− 8c0(1− α)

c21(2− α)

]
,

and since 1−α
2−α → 1, as α→ ±∞, this yields linear asymptotes for z1(α) and z2(α).

An noteworthy special case occurs when the polynomial has a double root. Then
the paths display an interesting symmetry, see Figure 6.4. In fact, it is easy to see
that specializing our Proposition 6.10 to the case of a double zero of the polynomial
itself yields:

Corollary 6.12. If p(x) = (x− z0)2 then the zeros of RLD
(α)
0 p are

z1,2(α) =
z0

(
−(2− α)±

√
α(2− α)

)
2

.
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Figure 6.4. Paths z(α) of zeros of the fractional derivatives of p(x) = x2 + (2 + 6i)x−
12 + 9i where RLD
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0 p has a double root. In the plot on the right the wide, light

green graph represents the real part of z(α), while the thin, dark red graph represents
its imaginary part.
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Another natural question to ask is whether, given that a quadratic polynomial has
distinct zeros, can its fractional derivative have a double zero. Setting z1(α) = z2(α)
one gets:

Corollary 6.13. Let p(x) = (x− a)2 + c1(x− a)1 + c0(x− a)0. Then the fractional
derivative RLD

(α)
a (p(x)) has a double zero precisely for one α ∈ R \ N, namely: α =

1− c21
8c0−c21

.

6.4 Flow of Zeros

As stated above, one of our main goals was to consider the paths of zeros of the
fractional derivatives of polynomials p(x) ∈ C[x] of arbitrary degrees. Unfortunately,
unlike in the linear and quadratic cases, already for the cubics we find that the
situation becomes considerably more complicated. This can be seen from the fact that
one of the nicest properties – the natural ordering of zeros – fails already for degree 3:
in other words, it is not true in general that zeros furthest away from the origin yields
the longest paths of zeros of fractional derivatives on its way to the origin. Figure 6.5
shows a notable counterexample.
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Figure 6.5. The paths z(α) of zeros of the fractional derivatives of the cubic p(x) =
(x− 3− 2i)(x− 2 + 5i)(x− 4 + 4i) and the absolute values |z(α)|. In the latter case,
the zero of p(x) with the greatest absolute value is not the starting point of the longest
path.

However, certain convergence properties of the paths can be established in general.
For example, the following theorem shows that all the paths terminate in the origin a.
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Theorem 6.14. Let p(x) ∈ C[x] of degree n such that for all α ∈ [0, n] the frac-
tional derivative p(α)(x) has no double zeros. Then there is an ordering of the roots
z1, z2, ..., zn or p such that for p(α)(zj(α)) = 0 and zj(0) = zj for j ∈ {1, ..., n} we
have limα→j zj(α) = a

Proof. We denote the coefficients in the expansion proved in Lemma 6.3 by

dαj :=
n∏

k=j+1

(k − α) · j!
n!
. (6.5)

Let 0 ≤ j ≤ n and m > j. Here, clearly

lim
α→m

dαj = lim
α→m

n∏
k=j+1

(k − α) · j!
n!

= 0.

Write the coefficients of the derivatives RLD
(α)
a p(x) by dαj cj as symmetric functions of

the roots z1(α), z2(α), . . . , zn(α) of RLD
(α)
a p(x). Because

0 = lim
α→m

dα0 c0 = lim
α→m

n∏
k=1

zk(α)

we have limα→m zk1(α) = 0, for at least one 1 ≤ k1 ≤ n. Inductively, continuing with
the next coefficient we get:

0 = lim
α→m

dα1 c1 = lim
α→m

n∑
l=1

∏
k ̸=l

zk(α). (6.6)

There is one summand in (6.6) that does not contain zk1(α). So we need to have
limα→m zk2(α) = 0 for at least one k2 ≠ k1. This argument also holds for all dαj cj with
j < m. Therefore, we get limα→m zk(α) = 0 for at least m distinct k ∈ {1, . . . , n}.

6.5 Bounds

As stated in the introduction, for f ∈ C[x] the Gauss-Lucas theorem states that all
zeros of f ′ lie in the convex hull of the set of zeros of f , see [Mar66, Theorem 6.1].
By induction this generalizes to all integral derivatives. Unfortunately, although all
roots of the fractional derivatives converge to the origin, by our Theorem 6.14, the
analogue of the Gauss-Lucas theorem does not hold for the fractional derivatives. This
is an immediate consequence of a result by Genchev and Sendov [GS58], which is also
stated as [NS14, Theorem 2]:
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Figure 6.6. Paths z(α) of zeros of RLD
(α)
0 (x3 + x2 + x+ 1 + i). illustrating the growth

of the absolute value of z(α) as α → ∞ and α → −∞ and the Mahler measure of
RLD

(α)
0 p along with the bounds from Theorems 6.17 and 6.18.

Theorem 6.15. Let L : C[x]→ C[x] be a linear operator, such that L(p) ̸= 0 implies
that the convex hull of the set of roots of p contains the roots of L(p). Then L is a
linear functional or there are c ∈ C \ {0} and k ∈ N such that L(p) = cp(k).

Figure 6.5 illustrates this result by giving a specific counterexample to the Gauss-
Lucas property for the case of the Riemann-Liouville fractional derivatives. Neverthe-
less, it is possible to make some useful statements about how the absolute values of
zeros zk(α) of the fractional derivatives RLD

(α)
0 f decrease as α increases in terms of

the Mahler measure of f .
Let p(x) = xn +

∑n−1
j=1 cjx

j =
∏n

j=1(x− zj) ∈ C[x]. For the Mahler measure M(f)
[Mah61] we have

M(p) = exp

(∫ 1

0

log(|f(e2πiθ)|) dθ
)

=
n∏

j=1

max{1, |zj|}.

Denote the height of f by ∥p∥∞ = max{c0, . . . , cn} and the length of f by ∥p∥1 =
|c0|+ · · ·+ |cn|. Recall that Mahler was able to prove the bounds(

n

⌊n/2⌋

)−1
∥p∥∞ ≤M(p) ≤ ∥p∥∞

√
n+ 1 (6.7)

and
2−n∥p∥1 ≤M(p) ≤ ∥p∥1. (6.8)
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For ∥p∥2 =
(∑n

j=1 |cj|2
) 1

2 we have Landau’s inequality [Lan05]

M(p) ≤ ||p||2. (6.9)

We generalize the definition of the Mahler measure to fractional derivatives. Let Z(α)
be the set of zeros of RLD

(α)
0 p. We set

M
(
RLD

(α)
0 p
)
=
∏

z∈Z(α)

max{1, |z|}.

and prove bounds similar to Equations 6.7, 6.8, and 6.9 for the fractional cases. We
first estimate the coefficients dαj from Proposition 6.14 and then use them to derive

bounds for M
(
RLD

(α)
0 p
)
.
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Figure 6.7. Comparing paths z(α) of zeros of the Riemann-Liouville (left) and Caputo
(right) fractional derivatives of the quintic p(x) = (x + 1 − 2i)(x − 3 − 2i)(x − 2 +
5i)(x− 3 + 3i)(x+ 1 + 5i), for 0 ≤ α ≤ 5.
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Lemma 6.16. Let n ∈ N and α ∈ R \ N. Let dαj =
(∏n

k=j+1(k − α)
)
· j!
n!

where
0 ≤ j ≤ n− 1. Then

1. |dαj | ≤ n−α
n

, for 0 < α < n.

2. |dαj | ≤
|n−α|n

n
, where |n− α|n =

∏n−1
k=0 |n− α− k|, for α < 0 and α > n.

3. |dαj | ≥
|n−α|

n
, for α < 0 and α > 2n.

4. |dαj | ≥ α−n
n

(
n−1

(n−1)/2

)−1, for n < α ≤ 2n.

Proof. 1. For 0 ≤ α < j + 1, we have

|dαj | =
n− α
n

n−1∏
k=j+1

k − α
k
· j!
j!
<
n− α
n

.

When j + 1 < α set h := ⌊α⌋. We get

|dαj | =
n− α
n
· (n− 1− α) · · · (h+ 1− α) · (α− j − 1) · · · (α− h) · j!

(n− 1)!
≤ n− α

n
.

2. For α < 0 and α > n, we have

|dαj | =
|n− α| · · · |j + 1− α| · j!

n!

=
|α− n| · · · |α− j − 1| · j!

n!

≤ |α− n| · · · |α− 1|
n!

=
|n− α|n

n!
.

3. For α < 0 and α > 2n, we have

|dαj | ≥
|n− α|
n

· |n− 1| · · · |j + 1| · j!
(n− 1)!

=
|n− α|
n

.

4. For 2n > α > n, we have

|dαj | =
(α− n) · · · (α− j − 1) · j!

n!

≥ α− n
n
· 1 · · · (n− j − 1) · j!

(n− 1)!

≥ α− n
n

(
n− 1

(n− 1)/2

)−1
.

112



0 1 2 3 4 5
α

0

1

2

3

4

5

6

|z
(α

)|
p(x)=(x+1−2i)(x−3−2i)(x−2+5i)(x−3+3i)(x+1+5i)

RLD
(α)
0 p(z(α)) = 0

0 1 2 3 4 5
α

0

1

2

3

4

5

6

|z
(α

)|

p(x)=(x+1−2i)(x−3−2i)(x−2+5i)(x−3+3i)(x+1+5i)

CD
(α)
0 p(z(α)) = 0

Figure 6.8. Comparing the absolute value of z(α) of zeros of the Riemann-Liouville
(left) and Caputo (right) fractional derivatives of the quintic p(x) = (x+ 1− 2i)(x−
3− 2i)(x− 2 + 5i)(x− 3 + 3i)(x+ 1 + 5i), for 0 ≤ α ≤ 5.

We show that M
(
RLD

(α)
0 p
)

is bounded from above for 0 < α < deg p where the
bound linearly decreases with α. Furthermore, in Theorem 6.18, we see that for α < 0

and α > deg p the Mahler measure M
(
RLD

(α)
0 p
)

increases at least linearlily with α.
In our proofs we use the following notation. We set

RLD
(α)
0 ∗ f(x) =

Γ(n+ 1− α)
n!

xα · RLD
(α)
0 f(x). (6.10)

Because RLD
(α)
0 ∗ f(x) has the same roots as RLD

(α)
0 except for the additional root 0. we

have

M
(
RLD

(α)
0 ∗ f

)
=M

(
RLD(α)

a f)
)
.

Theorem 6.17. Let f(x) ∈ C[x] be monic and let 0 < α < n. Then

1. M(RLD
(α)
0 f) ≤ n−α

n
∥f∥1 + 1

2. M(RLD
(α)
0 f) ≤

√
n+ 1max

{
n−α
n
∥f∥∞, 1

}
3. M(RLD

(α)
0 f) ≤ n−α

n
∥f∥2 + 1

Proof. Write f(x) =
∑n

j=1 cjx
j. With the notation from Lemma 6.3 we have

RLD
(α)
0 ∗ (x) = xn +

n−1∑
j=0

(
n∏

k=j+1

(k − α)

)
· j!
n!
cjx

j = xn +
n−1∑
j=0

dαj cj x
j.
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This yields the following three bounds for the Mahler measure of RLD
(α)
a f .

1. With Lemma 6.16 (1), we get

∥RLD
(α)
0 ∗ ∥1 = |d

(α)
0 c0|+ |d(α)1 c1|+ · · ·+ |d(α)n−1cn−1|+ 1

≤ n− α
n

(|c0|+ |c1|+ · · ·+ |cn−1|) + 1

≤ n− α
n
∥f∥1 + 1.

With Mahler’s (6.8), we get

M
(
RLD(α)

a f
)
=M

(
RLD

(α)
0 ∗

)
≤ ∥RLD

(α)
0 ∗ ∥1 ≤

n− α
n
∥f∥1 + 1.

2. By Lemma 6.16 (1), we have

∥RLD
(α)
0 ∗ ∥∞ = max{|d(α)0 c0|, |d(α)1 c1|, . . . , |d(α)n−1cn−1|, 1}

≤ max

{
n− α
n

max{|c0|, |c1|, . . . , |cn−1|}, 1
}

≤ n− α
n
∥f∥∞ + 1.

With Mahler’s (6.7), we get

M
(
RLD(α)

a f
)
=M

(
RLD(α)

a ∗ f
)
≤
√
n+ 1∥RLD

(α)
0 ∗ ∥∞ ≤

√
n+ 1max

{
n− α
n
∥f∥∞, 1

}
.

3. By Lemma 6.16 (1), we have

∥RLD
(α)
0 ∗ ∥2 =

√
(d

(α)
0 c0)2 + · · ·+ (d

(α)
n−1cn−1)

2 + 1

≤ n− α
n

√
c20 + · · ·+ c2n−1 + 1

≤ n− α
n
∥f∥2 + 1.

With Landau’s (6.9), we get

M(RLD(α)
a f) =M

(
RLD

(α)
0 ∗

)
≤ ∥RLD

(α)
0 ∗ ∥2 ≤

n− α
n
||f ||2 + 1.

Now we are able to prove:
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Theorem 6.18. Let f(x) ∈ C[x] be monic of degree n. Then

1. M(RLD
(α)
0 f) ≥ 2−n n−α

n
(∥f∥1 − 1) + 1, for α < 0 and α > 2n

2. M(RLD
(α)
0 f) ≤ |n−α|n

n!
∥f∥1 + 1, for α < 0 and α > n

3. M(RLD
(α)
0 f) ≥ 2−n

(
n−1

⌈(n−1)/2⌉

)−1 α−n
n
∥f∥1, for n < α ≤ 2n

Proof. 1. By Lemma 6.16 (3), we have

∥RLD
(α)
0 ∗ f∥1 = |d

(α)
0 c0|+ |d(α)1 c1|+ · · ·+ |d(α)n−1cn−1|+ 1

≥ |n− α|
n

(|c0|+ |c1|+ · · ·+ |cn−1|+ 1− 1) + 1

=
|n− α|
n

(∥f∥1 − 1) + 1.

With Mahler’s (6.8), we get

M(RLD
(α)
0 f) =M

(
RLD

(α)
0 ∗

)
≥ 2−n∥RLD

(α)
0 ∗ ∥1 ≥ 2−n

n− α
n

(∥f∥1 − 1) + 1.

2. By Lemma 6.16 (2), we have

∥RLD
(α)
0 ∗ f∥1 =

√
(d

(α)
0 c0)2 + · · ·+ (d

(α)
n−1cn−1)

2 + 1

≤ |n− α|n
n!

√
c20 + · · ·+ c2n−1 + 1

≤ |n− α|n
n!

∥f∥2 + 1.

With Landau’s (6.9), we get

M
(
RLD(α)

a f
)
=M

(
RLD(α)

a ∗ f
)
≤ ∥RLD(α)

a ∗ f∥1 ≤
|n− α|n

n!
∥f∥2 + 1.

3. By Lemma 6.16 (4)

∥RLD
(α)
0 ∗ ∥1 = |d

(α)
0 c0|+ |d(α)1 c1|+ · · ·+ |d(α)n−1cn−1|+ 1

≥ α− n
n

(
n− 1

⌈(n− 1)/2⌉

)−1
(|c0|+ |c1|+ · · ·+ |cn−1|+ 1)

=
α− n
n

(
n− 1

⌈(n− 1)/2⌉

)−1
∥f∥1
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With Mahler’s (6.8), we get

M(RLD
(α)
0 f) =M

(
RLD

(α)
0 ∗

)
≥ 2−n∥RLD

(α)
0 ∗ ∥1 ≥ 2−n

α− n
n

(
n− 1

(n− 1)/2

)−1
∥f∥1.

In Figure 6.6 we present the paths of zeros and the Mahler measures of the
fractional derivatives of a degree 3 polynomial along with the bounds from Theorems
6.18 and 6.17. Furthermore Figures 6.3, 6.4, and 6.6 show the growth of M(RLD

(α)
0 p)

for α < 0 and α > 0.
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Figure 6.9. Mahler measure of the Riemann-Liouville and Caputo fractional derivatives
of the quintic p(x) = (x+ 1− 2i)(x− 3− 2i)(x− 2 + 5i)(x− 3 + 3i)(x+ 1 + 5i) for
0 ≤ α ≤ 5 along with the bound from Theorem 6.17 and Corollary 6.19.

6.5.1 Caputo Fractional Derivatives

The Riemann-Liouville and Caputo fractional derivatives differ, but the zeros of their
derivatives obey some common general trends. Figures 6.7 and 6.8 compare the paths
of zeros of the Riemann-Liouville and Caputo derivatives of a degree 5 polynomial.

The upper bounds from Theorem 6.17 easily transfer to the Caputo fractional
derivative. Because the coefficients of the Caputo fractional derivatives of a polynomial
p ∈ C[x] are either the same as those of the Riemann-Liouville fractional derivative or
zero, see equation (2.6), we have

∥CD(α)
0 ∗ ∥k ≤ ∥RLD

(α)
0 ∗ ∥k,
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for k ∈ {1, 2,∞}. This yields the bounds:

Corollary 6.19. Let p ∈ C[x] be monic of degree n and let 0 < α < n. Then

1. M(CD
(α)
0 p) ≤ n−α

n
∥p∥1 + 1,

2. M(CD
(α)
0 p) ≤

√
n+ 1max

{
n−α
n
∥p∥∞, 1

}
,

3. M(CD
(α)
0 p) ≤ n−α

n
∥p∥2 + 1.

6.6 Open Questions

The bounds we have established in Section 5 and Section 6 were sufficient for our
purposes, but they are far from best possible. Figure 6.9 illustrates the decline of
M(RLD

(α)
0 p) and M(CD

(α)
0 f), when α approaches n, as described by Theorem 6.17

and Corollary 6.19 and Theorem 6.14. In a future work, it would be interesting to
consider the true growth of the paths of zeros, for α < 0 and α > n. Also, the maximal
extent of loops of paths, after traversing the origin a, is something that could be worth
looking at. Moreover, as Figure 6.6 clearly shows, the paths exhibit very distinct
linear asymptotes in both directions α→∞ and α→ −∞. For polynomials of higher
degrees, their exact directions are not yet known.

In addition to this, as we have noted earlier, the useful Gauss-Lucas property does
not hold universally for the fractional derivatives of polynomials. However, some of the
dynamical properties we have observed could be investigated with insights related to
those that play a key role in the integral case. In particular, Gauss himself suggested a
very intriguing physical interpretation of the nontrivial critical points of a polynomial
(the critical points which are not zeros) as the equilibrium points in certain force fields,
generated by particles placed at the zeros of the polynomial, with masses equal to
the multiplicity of the zeros and repelling with a force inversely proportional to the
distance. This amazing physical application of a purely theoretical polynomial concept
is exceedingly intriguing and should be investigated further. It could go a long way in
explaining the profound intricacies of the paths of zeros, and their seemingly chaotic
local behavior.
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Chapter 7: Conclusion

The common tread running through the thesis is the chain of zeros created by the
fractional derivatives. In the Dirichlet series case the chains form continuous curves
that continue as one takes higher derivatives. In the polynomial case the zeros tend
to a center a discussed in Theorem 6.14. Both form zero-free regions that can be
investigated and produce several important consequences. There is a large number of
unsolved questions one could consider. The following list gives a handful of them.

(i) Within the realm of polynomials, one pressing inquiry emerges: is there an
optimal value for a in Lemma 6.3 that leads to the shortest path of zeros? Could
this optimal a coincide with the zero of the (n− 1)th derivative? Moreover, does
the asymptotic behavior exhibit variance across different a values?

(ii) For degrees higher than three, is there an universal ordering of distances of zeros
from the origin a? Could the angles between asymptotes be explicitly evaluated
in terms of the coefficients?

(iii) A direct correlation between polynomials and Dirichlet series becomes apparent
when the Riemann-Liouville fractional derivative is applied. Might this fractional
derivative offer deeper insights into Dirichlet series? Are the asymptotic behaviors
of Dirichlet series akin to those of polynomials? Do polynomials exhibit uniform
zero spacing as α approaches infinity, mirroring Dirichlet series?

(iv) The left half-plane of Dirichlet series adds another layer of intrigue. Here the
curves have different shapes that we don’t understand. The number of zeros on
these paths still remain unknown. The distributions of higher derivative zeros
along the negative real axis also needs to be investigated further.

(v) In Figure 4.7, the existence of double zeros is shown. This extremely rare
phenomenon still needs to be explored further.

These unresolved inquiries, among others, could lay the groundwork for future
endeavors and potentially inspire forthcoming scholars and researchers.
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