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Compounds from natural sources, as well as those inspired by them, represent the 

majority of small molecule drugs on the market today. Plants, owing to their complex 

biosynthetic pathways, are poised to synthesize diverse secondary metabolites that 

selectively target biological macromolecules. Despite the vast chemical landscape of 

botanicals and other natural products, drug discovery programs from these sources have 

diminished due to the costly and time-consuming nature of standard practices and high 

rates of compound rediscovery. Additionally, natural product mixtures are incredibly 

complex, and the standard reductionist approaches often ignore the presence of 

combination effects such as synergy and antagonism. Bioinformatics tools can be used to 

integrate biological and chemical datasets, and statistical analyses of these datasets are 

broadly termed “biochemometrics.” Biochemometric approaches enable researchers to 

predict active constituents early in the fractionation process and to tailor isolation efforts 

toward the most biologically relevant compounds. Throughout the course of this project, 

bioinformatics approaches were used to (1) discover biologically active constituents from 

the botanical medicines, (2) develop and improve data filtering, data transformation, and 

model simplification parameters to optimize biochemometrics models, and (3) produce a 

new approach capable of predicting mixture constituents that contribute to synergy, 

additivity, and antagonism in complex mixtures.  

The first goal was achieved by applying bioassay-guided fractionation, 

biocheomometric selectivity ratio analysis, and molecular networking to 



 

 

comprehensively evaluate the antimicrobial activity of the botanical Angelica keiskei 

Koidzumi against Staphylococcus aureus. This approach enabled the identification of 

putative active constituents early in the fractionation process, and provided structural 

information for these compounds. A subset of chalcone analogs were prioritized for 

isolation, yielding antimicrobial compounds 4-hydroxyderricin, xanthoangelol, and 

xanthoangelol K. This approach successfully identified a low abundance compound 

(xanthoangelol K) that has not been previously reported to possess antimicrobial activity. 

Two studies were undertaken to achieve the second goal. First ,we demonstrated 

the effectiveness of hierarchical cluster analysis (HCA) of replicate injections (technical 

replicates) as a methodology to identify chemical interferents and reduce their 

contaminating contribution to metabolomics models. Pools of metabolites were prepared 

from the A. keiskei and analyzed in triplicate using ultraperformance liquid 

chromatography coupled to mass spectrometry (UPLC-MS). Before filtering, HCA failed 

to cluster replicates in the datasets. To identify contaminant peaks, we developed a 

filtering process that evaluated the relative peak area variance of each variable within 

triplicate injections. This filtering process identified 128 ions that did not show consistent 

peak area from injection to injection that likely originated from the UPLC-MS system. 

When interferents were removed, replicates clustered in all datasets, highlighting the 

importance of technical replication in mass spectrometry-based studies and providing tool 

for evaluating the effectiveness of data filtering prior to statistical analysis. 

 As a follow up study, the impact of data acquisition and data processing 

parameters on selectivity ratio models were assessed using an inactive botanical mixture 



 

 

spiked with known antimicrobial compounds. Selectivity ratio models were used to 

identify active constituents that were intentionally added to the mixture, as well as an 

additional antimicrobial compound, randainal, which was masked by the presence of 

antagonists in the mixture. This study revealed that data processing approaches, 

particularly data transformation and model simplification tools using a variance cutoff, 

had significant impacts on the models produced, either masking or enhancing the ability 

to detect active constituents in samples. This study emphasized the importance of data 

processing for obtaining reliable information from metabolomics models and 

demonstrates the strengths and limitations of selectivity ratio analysis to comprehensively 

assess complex botanical mixtures.  

Often, analytical tools aimed to assess biological mixtures ascribe the activity to a 

few known components. Although researchers recognize this as an oversimplification, 

research methodologies to address this problem have not been developed. To overcome 

this and to achieve the third goal of this project, a new approach called Simplify was 

developed that can both identify mixture components that contribute to biological activity 

and characterize the nature of their interactions prior to isolation. As a test case, this 

approach was applied to the botanical Salvia miltiorrhiza and successfully utilized to 

identify both additive and synergistic compounds. These findings illustrate the efficacy of 

this approach for understanding how natural product mixtures work in concert and are 

expected to serve as a launching point for the comprehensive evaluation of mixtures in 

future studies.  
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CHAPTER I 

SYNERGY AND ANTAGONISM IN NATURAL PRODUCT EXTRACTS:  

WHERE 1+1 DOES NOT EQUAL 2 

This chapter has been submitted to the journal Natural Product Reports and is 

presented in that style. Caesar, L.K., Cech, N.B. Nat. Prod. Rep. Submitted.  

 

 

Caesar, L.K. wrote all sections of this manuscript except for the section, 

“Endotoxin from bacterial endophytes in Echinacea species” which was written 

by Cech, N.B. Caesar, L.K. created all of the figures except for Figures 3 and 5-9 

which were re-printed (with permission) from existing publications. Ashley Scott 

made Figure 4. Caesar, L.K. and Cech, N.B. worked together to write the outline 

for this manuscript and collaborated on the introduction. Cech, N.B. provided 

suggestions and edits throughout manuscript preparation.

 

 

Introduction 

Plants have been used as medicine since the beginning of human history (1). 

Texts from ancient Sumeria, India, Egypt, China, and others contain recipes for medicinal 

plant preparations for the treatment of disease (1, 2). Today, medicinal plant use remains 

widespread, and a significant portion of the world’s population utilizes herbal natural 

products and supplements as the primary mode of healthcare (3-5). In the United States, 

nearly 20% of adults and 5% of children use botanical supplements to treat disease (6, 7).  

Despite centuries of use, the activity of botanical medicines is only partially 

understood, and for most natural products on the market, there is a lack of knowledge as 

to which constituents are responsible for the purported biological activity. Scientific 

investigation of botanical natural products is challenging because of their immense 
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complexity and variability (8-10). Natural products chemistry efforts are typically 

devoted to reducing complexity and identifying single “active” constituents for drug 

development. However, given that complex plant extracts, and not single molecules, are 

often administered for medicinal purposes, interactions between constituents could be of 

great importance.  

Understanding how mixtures work in concert to achieve a given biological effect 

may address the ever-increasing threat of disease resistance. Indeed, many diseases are 

not regulated by a single molecular target, but often have a multi-factorial causality (8, 

10). It has been shown in numerous studies that disease resistance is less likely to occur 

against a combination of compounds than to single active constituents (9, 11). Plants 

have evolved over millennia to address the multifactorial nature of disease pathogenesis 

by targeting pathogens through the combined action of structurally and functionally 

diverse constituents (8, 12). As such, complex natural product mixtures offer an 

important resource for drug development, and to ensure future success in natural products 

research, understanding interactions within and between the constituents of natural 

product mixtures is paramount.  

Botanical extracts may contain hundreds or even thousands of individual 

constituents at varying abundance (13) (Figure 1) and identifying the compounds 

responsible for a given biological effect represents a significant challenge. Too often, it is 

assumed that the behavior of a mixture can be described by the presence of just a few 

known constituents. However, a number of studies have shown that the overall activity of 

botanical extracts can result from mixtures of compounds with synergistic, additive, or 
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antagonistic activity (10, 14-17), and those who work in the field of botanical natural 

products research will be quick to admit that it is very often the case that isolation efforts 

on a botanical extract fail because activity is lost upon fractionation (10, 14, 17). While 

there are multiple possible explanations for this failure (including irreversible adsorption 

of compounds to the column packing), it is certainly true that in some cases loss of 

activity occurs because multiple constituents are required to observe the biological effect.  

Many investigators recognize the multi-factorial nature of botanical medicines.  

However, research methodology as applied to botanical mixtures still tends, in most 

cases, either to take a reductionist approach (focusing on just one or two “marker 

compounds” or to ignore the question of chemical composition altogether, testing the 

biological effects of complex mixtures for which active constituents are unknown. The 

problem in the latter case is that results tend to be difficult both to interpret and to 

reproduce.  Herein, we seek to provide an overview of the methodology that currently 

exists to understand combination effects within complex mixtures. We will highlight 

existing technologies for studying combination effects, placing particular emphasis on –

Omics technologies and other Big Data approaches that have developed significantly in 

the last several years. Herein we seek to provide practical advice to investigators seeking 

to comprehensively evaluate the constituents and mechanisms responsible for the 

biological activity of botanical mixtures.   
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What are Combination Effects? Definitions of Synergy and Antagonism in the 

Context of Natural Product Mixtures 

Several reviews have been written on the topic of combination effects in recent 

years that provide valuable commentary on defining combination effects in complex 

mixtures (8-10). Although the evaluation of interactions between multiple bioactive 

constituents has gained popularity in many scientific disciplines (14, 18-21), it remains 

difficult to give a undisputable definition for the term synergy (10, 22). It is generally 

agreed, however, that interactions between multiple agents can be classified as 

Figure 1. Chromatograms (Obtained with Liquid-Chromatography Coupled to Mass Spectrometry) 

of a Complex Extract of the Botanical Salvia miltiorrhiza (Chinese Red Sage or Danshen). The full 

chromatogram is shown in (A), while (B) shows a zoomed in version of the baseline that demonstrates the 

immense complexity of the mixture.  Counts for numbers of ions detected are shown at the right, and it is 

observed that the number of ions detected increases by ~10-fold with each 10-fold decrease in the cutoff for 

peak area.  Notably, each mixture component may be represented by more than one ion, making it difficult 

to assign specifically the number of mixture components.  Nonetheless, the data indicate the immense 

complexity of the botanical extract. 
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antagonistic, additive/non-interactive, or synergistic. Additive and non-interactive 

combinations indicate that the combined effect of two substances is a pure summation 

effect, while an antagonistic interaction results in a less than additive effect. Positive 

interactions, known as potentiation or synergy, occur when the combined effect of 

constituents is greater than the expected additive effect (8-10, 23-25).  

Assays for gathering biological data 

To successfully acquire useful data for understanding combination effects in 

complex mixtures, one must first choose an appropriate biological assay for combination 

testing. Because combination effects can present themselves through myriad mechanisms 

(including changes to absorption and metabolism, affecting multiple cell targets, etc.), in 

vivo model systems provide the most comprehensive assessment of the overall effects on 

a living organism (26). The development of high-throughput in vivo testing of mixture-

based libraries shows promise for identifying multi-target constituents within mixtures 

(26). Despite this, it remains challenging to address the complexity of in vivo systems, 

which require the sacrifice of test animals and maintenance of animal facilities. 

Additionally, results may not successfully translate from one animal model to another. To 

overcome some of these challenges, many researchers work with in vitro systems instead. 

However, many cell-free, high-throughput assays that search for molecular targets do not 

accurately model the biology of an intact cell, making the discovery of relevant 

combination effects unfeasible (27). As such, cell-based assays can be employed that 

strike a balance between efficiency and preservation of molecular pathway interactions 

(28). Primary tissue assays comprised of multiple cell types, such as those used to screen 
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drug combinations for anti-inflammatory activity in mixed cultures of lymphocytes, can 

also be used to reveal combination effects that work through multi-target mechanisms 

(27). In addition to carefully choosing the biological system to study for combination 

effects, data enabling the efficient comparison of a drug combination to agents in 

isolation must be gathered (9, 27). Combination effects including synergy and 

antagonism can occur over a broad range of concentrations, so various ratios of the 

samples under study must be tested (9, 27-32). 

Numerous methodologies have been developed to acquire data to discover 

combination effects in vitro, including checkerboard assays and time-kill methods, many 

of which are quite labor- and material-intensive (9, 27, 33). One of the simplest methods 

for identifying potential combination effects is through testing samples alone and in 

combination, and determining if the combined effect of the samples is greater, equal, or 

less than the expected sum of the two samples in isolation. Although simple, assays 

employing this approach cannot claim synergy without further study because they lack 

the range of concentration combinations required to fully assess combination effects, and 

should be used only to prioritize samples for more in-depth studies (34). These in-depth 

studies can be achieved using a dose-response matrix design (28), also known as a 

checkerboard assay, in which a series of dose-response curves using different dose 

combinations of the agents under study are acquired and compared (9, 27, 28).  

In addition to concentration-based approaches to evaluate combination effects, 

time-based approaches have also been developed and applied to identify antimicrobial 

synergy and to describe the relationship between bactericidal activity and sample 
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concentration (35). This method involves exposing a selected pathogen to an inhibitor (or 

combination of inhibitors), sampling cultures at regular time intervals, serially diluting 

and incubating aliquots, and comparing the colony forming units produced. The resulting 

dose response curve can be used to define additive, synergistic, and antagonistic effects 

(35). Importantly, several of these methods have been compared using the same datasets 

(29-32), revealing a lack of consistency between conclusions met using these approaches 

(29-31, 33, 36). Not only do in vitro tests often result in conflicting results, but it is very 

often the case that reproducible hits in vitro lack efficacy in vivo (26). Because of this 

inconsistency, preliminary screening efforts should be used to prioritize candidates with 

potential synergy but should not be used to unequivocally define combination effects.  

Models for assessing combination effects 

To identify if an interaction exists between individual compounds or complex 

samples, the observed combination response must be compared to the expected effect 

using a “null reference model”(37, 38). Much of the confusion around categorizing 

interactions as antagonistic, additive, or synergistic results from the use of different 

reference models that are used to define the “expected” outcome of a given combination 

(23, 39-42). As described in a recent paper by Tang et al.(22), the two major reference 

model classes are the Bliss independence model (43) and the Loewe additivity model 

(44), each of which relies on a different set of biological assumptions. The Bliss 

Independence model, for example, assumes that each sample has independent, yet 

competing effects, while the Loewe Additivity model defines the expected effect as a 

sample combined with itself (38). Recently, an additional reference model, the Zero 
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Interaction Potency (ZIP) model, was developed that takes advantage of both Loewe and 

Bliss models (38). The ZIP model is based on the assumption that two non-interacting 

samples will cause minimal changes to the dose-response curves, both in terms of the 

slope of the curve and in the half maximal effect (38). This model shows particular 

promise for high-throughput drug combination screenings and shows potential for 

identifying the variety of combination effects that can occur across different 

concentration ranges (38). These models, and other lesser utilized models, are discussed 

in depth in several publications (22, 23, 40, 45). 

Despite the existence of numerous reference models, the general isobole equation, 

based on the assumptions of the Loewe Additivity principle, remains the most popular for 

studying combination effects (9, 10, 23-25, 46). As described elsewhere, an isobole, or an 

“isobologram,” is a graphical representation of the combination effects between two 

samples (9, 10, 23-25, 46). The axes of the plot represent the doses of individual agents, 

and the points plotted indicate the combination of concentrations of the two treatments 

required to reach a particular fixed effect (i.e. 50% inhibition of cell growth) (9). If the 

two samples have no interaction, the line joining the axes will be a straight line. Synergy 

will result in a concave curve, and antagonism will result in a convex curve (Figure 2) (9, 

10, 23-25). In a recent publication, Lederer et al.(46) scrutinized the implicit assumptions 

of the Loewe Additivity model (and with it the general isobole equation), and found that 

the consistency of the model only holds if the two samples under study do not differ in 

the slopes nor the maximal effects of their dose response curves (46). In cases where one 

sample reaches an effect that cannot be reached by the other sample, the Loewe 
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Additivity Consistency Condition is violated (45, 47). To overcome this limitation with 

the Loewe Additivity Consistency Condition, Lederer et al. (46) developed an adaptation 

of the general isobole equation termed the Explicit Mean Equation.  The Explicit Mean 

Equation is equivalent to the isobole equation in cases where the two samples meet the 

Loewe Additivity Consistency Conditions and is capable of identifying combination 

effects even if this condition is violated. In a follow up study, Lederer et al.(37) compared 

six models built on either Loewe Additivity or Bliss Independence principles using 

existing, high-throughput datasets (48, 49) and found that Loewe Additivity models 

performed better than Bliss Independence at separating synergy relationships from other 

combination effects, and that the Explicit Mean Equation was the overall best performing 

model (37). 

 

 

 

 

 

 

Figure 2. Example of Isobolograms for Antagonistic, Additive, and Synergistic Components. 

Axes represent the doses of individual agents, and the points represent the combination of 

concentrations of the two agents required to reach a particular fixed effect.  
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In recent years, variants of the Loewe additivity model and the Bliss 

independence model have been developed (47, 50-54). However, because the expected 

responses from these different models are often disparate (23, 37), it is challenging to 

draw biological conclusions from the resulting data. In some instances, combination 

effects have been identified as synergistic by one model but antagonistic by another (48). 

As such, researchers should be clear about which model they have chosen to adopt, as 

stated in the Saariselkä agreement (55). Tang et al.(22) have expanded upon this 

suggestion and have proposed the use of terminology that incorporates results from both 

Bliss Independence and Loewe Additivity models. Tang et al.(22) argue that the level of 

consistency between models should be used to designate the degree of synergy or 

antagonism. For example, if both models identify a given interaction as synergistic, that 

interaction should be considered “strong synergy,” and if the combination is identified as 

synergistic by one model only, it should be considered “weak synergy”(22). By utilizing 

both models, this proposal minimizes the incorporation of bias into predictions and 

provides more informative definitions for the combination effects described. While in 

principle this proposal makes sense, it also relies on the assumption that the models are 

equally valid. While Loewe Additivity models have been shown to perform better than 

Bliss Independence models on numerous occasions (37), Russ and Kishony (56) found 

that the Bliss Independence models are more consistent when interactions between more 

than two samples are evaluated. As such, the use of any synergy model should be seen 

only as a hypothesis-generating tool to prioritize potential interaction effects for further 

study. Indisputable definitions of synergy and antagonism remain elusive, and a wider 
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agreement on the terminology used for interaction assessment is still required to 

standardize future research initiatives.   

Scoring and interpreting biological data 

In addition to a lack of consensus among the theoretical models to utilize for 

defining combination effects, there are challenges on how to apply and interpret existing 

models to analyze drug combinations (38). As stated earlier, most synergy analyses focus 

on the differences in isobologram shapes at fixed effects, and summary interaction scores 

such as the fractional inhibitory concentration (ƩFIC) index have found wide application 

(9, 38, 39, 57, 58). The ƩFIC index is calculated using equation 1(9): 

ƩFIC = FICA + FICB, 

Where FICA = [A]/IC50A, and FICB = [B]/IC50B (equation 1) 

In this equation, A and B represent the samples under study, IC50A and IC50B represent 

the concentrations of A or B in isolation to reach 50% inhibition, [A] is the IC50 of A in 

the presence of B, and [B] is the IC50 of B in the presence of A. Notably, any fixed effect 

can be used to calculate ƩFIC indices, but IC50 values are perhaps the most common 

metric.  

Despite the popularity of this method, the interpretation of ƩFIC scores for 

defining combination effects varies considerably from author to author. In their recent 

publication, van Vuuren and Viljoen provide an excellent commentary on ΣFIC score 

interpretation (9). The earliest interpretations by Berenbaum considered synergistic 

interactions to be any value below one, additive/indifferent interactions focused on one, 
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and antagonistic interactions above one (23). However, because of the inconsistency 

across null reference models, and because fixed effects can often be placed within a 

three-dilution range using in vitro assays (59), a more conservative approach is 

warranted. Taking this into consideration, van Vuuren and Viljoen (9) and the authors of 

this review suggest that synergistic interactions be defined as interactions having ƩFIC ≤ 

0.5, additive interactions range from 0.5 to 1.0, non-interactive effects range from 1.0 to 

4.0, and antagonistic effects fall at or above 4.0 (Table 1). 

Table 1. Recommended Fractional Inhibitory Concentration (ƩFIC) Indices for Assigning 

Combination Effects. 

 

 

 

Despite its popularity, the ƩFIC index, like the isobologram upon which it is 

based, is insufficient to effectively capture the combination effects that may occur across 

multiple dose regions (37, 38). An inherent limitation of the ƩFIC index is the focus on a 

single interaction parameter.  In a recent publication, Lederer et al. (37) compared 

multiple synergy measurements and found that the “lack of fit” model (60), where 

synergy scores are defined by the volume spanned between the null reference model and 

the measured response, performed better than parametric models in its ability to identify 

synergistic effects (37).  

Similarly, Yadav et al. developed a score that enables the use of an interaction 

landscape over the full dose-response matrix to identify combination effects across 

Combination Effect ƩFIC range 

Synergy ƩFIC ≤ 0.5 

Additivity 0.5 < ƩFIC ≤ 1.0 

Indifference 1.0 < ƩFIC ≤ 4.0 

Antagonism 4.0 < ƩFIC 
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multiple dosages and response levels (38). Rather than relying on a single parameter such 

as the IC50 measurement, the delta-score utilized in this study was calculated by assessing 

changes in both the shape parameter and the midpoint of each dose response curve for 

individual samples and combinations thereof. The delta scores were visualized using a 

response surface plot to visualize the combination effect landscape over all tested dosage 

combinations, enabling identification of potency changes and differences in combination 

effects even within the same sample pair (Figure 3).  

Figure 3. Example of Synergistic (Top) and Antagonistic (Bottom) Interaction Landscapes 

using Delta Scores (δ) Calculated with the Zero Interaction Potency Model of Compounds in 

Combination with Ibrutinib, an Approved Anti-Cancer Drug Targeting Bruton’s Tyrosine 

Kinase. (A) Interaction map between anti-cancer activity of ispinesib (a selective kinesin spindle 

protein inhibitor) and ibrutinib. Average delta across the dose response matrix (∆) is 17.596, 

indicative of overall synergy. (B) Interaction map between canertinib (an epidermal growth factor 

receptor family inhibitor) and ibrutinib. The ∆ value is -14.038, indicative of overall antagonism. 

Figure is reprinted with permission from Yadav et al. 2015 (38). 
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There appears to be value in using these different methods to explore synergy; however, 

these approaches have not yet been applied to understand synergy in complex natural 

products and discussion of their merit for this purpose remains hypothetical. Despite the 

aforementioned limitations, isobole analysis and the ƩFIC index have found the widest 

utility in natural products research (9). 

Documented Examples of Natural Products that Contain Synergists or Antagonists 

Proponents of the health benefits of plant-based medicines often proclaim that 

whole plant preparations are more effective than isolated compounds due to the beneficial 

interactions between constituents within them (10, 15, 61, 62). While this claim is 

sometimes disputed (63-66), considerable evidence exists that combination effects within 

complex extracts can alter the biological activity of a mixture (8-10, 67). Here, we 

provide a few case studies in which synergy and/or antagonism within botanical 

preparations have been discussed. Additional examples of synergy within and between 

botanical extracts have been extensively reviewed in several publications (9, 10, 17, 24, 

67), providing compelling evidence that at least in some cases, the combined effect of 

botanical mixtures is not simply a summation of their individual constituents. However, 

explorations into phytosynergy are only in their infancy. The vast majority of complex 

natural product mixtures still await chemical investigation, representing an untapped 

resource with considerable potential for future scientific exploration.  

Anti-plasmodium activity of Artemisia annua 

Artemisia annua L. (Asteraceae) has gained considerable popularity over the last 

few years since the award of the 2015 Nobel Prize in Physiology or Medicine to Youyou 
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Tu for her discovery of artemisinin, an antimalarial sesquiterpene lactone produced by 

this plant (68, 69). Artemisinins have been established as potent and safe antimalarial 

agents (70), and artemisinin-based combination therapies are now the front-line treatment 

recommendation by the World Health Organization (71). The replacement of ineffective 

malaria treatments such as chloroquine with artemisinin-based combination therapies has 

decreased malaria-associated morbidity and mortality worldwide (72-74). Several 

researchers have suggested that artemisinin acts to destroy Plasmodium falciparum 

parasites through the activation of a trioxane bridge in the P. falciparum food vacuole in 

a heme-dependent manner (75, 76). This disruption causes the production of free radicals 

that interrupt heme detoxification, ultimately generating more reactive oxygen species 

and killing the parasite.  

In addition to artemisinin, there are approximately 30 additional flavonoids and 

sesquiterpenes within A. annua, some of which have minor anti-plasmodial activities 

(77). As might be expected, since botanical preparations are multi-factorial rather than 

monospecific in nature, both in vitro and in vivo studies evaluating the activity of A. 

annua extracts have found that the amount of artemisinin in the extracts does not fully 

explain the extract’s efficacy against P. falciparum parasites (78, 79). Indeed, various 

combination therapies including artemisinin and its derivatives are utilized as antimalarial 

treatments (80, 81). In a recent study, Suberu et al. (82) aimed to identify the compounds 

within A. annua tea extract contributing to its anti-plasmodial efficacy. Building upon the 

work of previous studies which found that several flavonoids potentiated the activity of 

artemisinin against P. falciparum (83, 84), Suberu et al. (82) tested the tea extract, 
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purified compounds from the extract, and various combinations of artemisinin with 

purified compounds against both chloroquine-sensitive and chloroquine-resistant strains 

of P. falciparum. Interestingly, the type of combination effect observed, whether it be 

synergistic, additive, or antagonistic, often differed depending on the dosage of the 

combined constituents and/or the resistance profile of the parasite under analysis (82).  

Using isobologram analysis and calculating ƩFIC indices, Suberu et al. (82) found 

several compounds that enhanced or antagonized the activity of artemisinin against P. 

falciparum. Two compounds that contained anti-plasmodial activity, 9-epi-artemisinin 

and artemisitene, were found to antagonize the efficacy of artemisinin against both 

chloroquine-sensitive and chloroquine-resistant strains. Although the mechanism by 

which these compounds antagonize artemisinin’s activity is unknown, it is reasonable to 

assume these compounds, which have only minor structural differences, compete for the 

same molecular target, reducing the overall efficacy of the compounds in combination 

(82). Several additional compounds contained within the extract, however, did not 

demonstrate the same combination effect at all concentrations tested. For example, 3-

caffeoylquinic acid showed a summation effect in combination with artemisinin at a ratio 

of 1:3 (artemisinin to 3-caffeoylquinic acid) when tested against the chloroquine-sensitive 

strain, but at higher combination ratios (1:10-100), synergistic interactions were 

observed. Similarly, casticin, which possessed antagonistic activity at the 1:3 ratio, has 

been reported to be synergistic in other studies using higher combination ratios (1:10-

1000) (83, 84). The reason for this discrepancy is unknown, but it is possible that these 

compounds act as either anti-oxidant or pro-oxidant species depending on the dosage 
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level (85, 86). When combined at a low concentration with artemisinin, they may have 

counteracted artemisinin activity through anti-oxidative interaction, minimizing the 

oxidative stress resulting from the reactive oxygen species formed through artemisinin’s 

activity, while at higher concentrations they were pro-oxidative, increasing the oxidative 

stress and leading to increased efficacy of artemisinin (82).  

Other compounds, including rosmarinic acid and arteannuin B, showed 

differential combination effects when tested against sensitive and resistant strains of P. 

falciparum. Rosmarinic acid was synergistic against the sensitive strain, but showed 

antagonistic activity in the resistant strain (82). Similarly, arteannuin B had an 

additive/indifferent interaction in the chloroquine sensitive strain, but a synergistic 

interaction with the resistant strain, leading to a three-fold improvement in artemisinin’s 

activity (82). Because arteannuin B selectively potentiates the activity of artemisinin in 

the chloroquine-resistant strain, it likely targets the parasite’s chloroquine resistance 

mechanism, illustrating the promise of combination treatments not only for developing 

therapeutics against drug-resistant pathogens, but also for providing insight into the 

mechanisms by which parasites gain resistance as a whole.  

It is important to note that Suberu et al. chose somewhat liberal ranges for the 

ƩFIC indices used to define their combination effects (82), and other researchers, 

depending on the models chosen, may have categorized some of the synergistic and 

antagonistic interactions as “additive” or “indifferent”(9). Even if one were to re-

categorize interactions based on conservative estimates, however, all three types of 

combination effects (synergy, additivity, and antagonism) were witnessed during the 
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course of this study. While the specific categorizations of synergy, additivity, and 

antagonism chosen by Suberu et al. may be disputed, it is clear that the nature of 

combination effects did often change depending on both the dosage and the parasite 

strain under study (82). 

Endotoxin from bacterial endophytes in Echinacea species 

Few botanicals have been the subject of as much research or as much controversy 

as plants from the genus Echinacea.  This botanical, which is widely used for the 

treatment of upper respiratory infections, has been the subject of several clinical trials.  

Although these trials had conflicting results (87, 88), Echinacea species remain one of 

the most popular and best-selling botanical medicines in the United States (89), and 

preparations from this plant are popular in Europe as well (90).  

The constituents responsible for the activity of Echinacea purpurea extracts and 

the mechanisms by which these constituents exert their purported beneficial effects have 

been studied extensively.  Early research on Echinacea attributed its purported health 

benefits to its ability to “activate” or “stimulate” immune cells.  These findings were 

based upon early work by Wagner and co-workers, in which isolated Echinacea 

polysaccharides were observed to stimulate phagocytosis and induce TNF-alpha secretion 

by macrophages (91).  Later research demonstrated that much of the immunostimulatory 

activity originally attributed to Echinacea polysaccharides could instead be linked to the 

lipopolysaccharides and lipoproteins.  These lipoproteins and lipopolysaccharides are 

components of bacterial cell walls, and can be attributed to the presence of bacterial 

endophytes, bacteria living asymptomatically within the Echinacea plant tissues (92-95).  
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Even very minute quantities of certain lipoproteins and lipopolysaccharides induce 

pronounced immunostimulatory effects in macrophages, so the presence of these 

compounds as contaminants can confound in vitro assay data.  

An alternative narrative about the immunomodulatory activity of Echinacea 

preparations focused on alkylamide constituents.  Contrary to the research on 

polysaccharides, lipoproteins, and lipopolysaccharides, these alkylamides were observed 

to suppress the production of pro-inflammatory cytokines by macrophages (96-99). Such 

activity could translate to a beneficial anti-inflammatory effect in vivo. The apparently 

contradictory activity of various classes of compounds, both isolated from Echinacea, 

suggested the possibility that the activity of some constituents might be masked by others 

in the context of complex Echinacea extracts.  This was shown in a study by Todd et al. 

(95), in which complex E. purpurea extracts possessed little to no cytokine-suppressive 

activity, but could be separated to produce sub-fractions with opposing effects.  Some 

fractions, those containing alkylamides, suppressed cytokine and chemokine production 

by macrophages, while others, those containing lipopolysaccharides, induced cytokine 

production.  Thus, it was demonstrated that lipopolysaccharides (and likely other 

compounds of bacterial origin) masked the anti-inflammatory effect of complex 

Echinacea preparations, effectively acting as antagonists.  It was not until these fractions 

were separated that the individual activities of the various constituents could be observed.  

Underlying Mechanisms of Synergy 

Synergy can occur through a variety of mechanisms, including (i) 

pharmacodynamic synergism through multi-target effects, (ii) pharmacokinetic synergism 



 

20 

 

through modulation of drug transport, permeation, and bioavailability, (iii) elimination of 

adverse effects, and (iv) targeting disease resistance mechanisms (9, 10, 67, 68, 100). 

While the general mechanisms by which synergy can occur are relatively well studied, 

the mechanisms by which specific botanical preparations exert synergistic effects remain 

largely unknown (67, 101), stymying efforts to standardize and optimize them for 

therapeutic purposes. Only through understanding the nature of synergistic activity within 

botanical extracts will we be able to optimize safe and efficacious preparations for the 

treatment of disease.  

Pharmacodynamic synergism 

Cancerous cells and pathogenic organisms can quickly gain resistance to drugs 

containing a single compound, and many cancers and resistant bacterial infections are 

now treated with complex drug combinations affecting multiple targets to overcome the 

development of resistance (102, 103). Plants have long had to defend themselves against 

multi-factorial diseases, and have evolved to produce multiple active constituents that can 

adhere to cell membranes, intercalate into RNA or DNA, and bind to numerous proteins 

(8, 104-106). Pharmacodynamic synergism results from the targeting of multiple 

pathways, which can include enzymes, substrates, metabolites, ion channels, ribosomes, 

and signal cascades (10, 107).  

Oftentimes, disease targets are able to counteract the therapeutic effect of an 

active metabolite, resulting in its reduced efficacy (67). One type of pharmacodynamic 

synergism involves  “anti-counteractive action” in which a synergistic compound binds to 

an anti-target, effectively inhibiting the disease target from counteracting the therapeutic 
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effect of the active constituent (67). Pharmacodynamic synergy may also occur through 

complementary actions, in which synergists in a mixture interact with multiple points of a 

given pathway, resulting in positive regulation of a process affecting the drug target or in 

the negative regulation of competing mechanisms. Through the selective variation of 

target activity and expression through complementary actions, pharmacodynamic 

synergists can both augment beneficial effects of treatments and reduce adverse effects of 

the disease (67). For example, Ginkgo biloba has been shown in numerous studies to 

have synergistic neuroprotective effects both in vivo and in vitro by inhibiting the 

formation of free radicals, scavenging reactive oxygen species, regulating gene 

expression of mitochondrial targets, and reducing excessive stimulation of nerve cells by 

neurotransmitters (57, 108).  

Pharmacokinetic synergism 

In addition to pharmacodynamic synergy, plants often contain compounds that do 

not possess specific pharmacological effects themselves, but increase the solubility, 

absorption, distribution, or metabolism of active constituents (8, 10, 67, 109). These 

pharmacokinetic effects result in enhanced bioavailability of active constituents, enabling 

increased efficacy of the extract as compared to individual constituents in isolation (10). 

Several examples exist in which mixture constituents improve the solubility of active 

constituents. For example, hypericin from Saint John’s Wort (Hypericum perforatum), is 

poorly soluble in water. However, when hypericin is combined with H. perforatum 

mixture constituents including procyanidin B2 and hyperocide, solubility and oral 

bioavailability of hypericin are significantly improved (110). Absorption of active 
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constituents can be improved through a variety of mechanisms, including the inhibition 

of drug exporters such as P-glycoproteins (100, 111, 112). Additionally, transport barriers 

may be disrupted or their recovery delayed, improving permeability of active constituents 

into target cells (67). For example, the absorption of baicalin, a constituent of the 

plant Scutellaria baicalensis, is synergistically enhanced by the addition of both 

coumarins and volatile oils from the botanical Angelicae dahurica, likely by affecting 

transport systems independent of P-glycoproteins (113). Pharmacokinetic synergy also 

results from constituents that inhibit enzymes that convert drugs into excretable or 

inactive forms, or that activate enzymes that convert pro-drugs into active forms (8, 67). 

Elimination of adverse effects 

An additional type of synergy occurs when inactive mixture constituents serve to 

neutralize the unwanted side effects of a toxic, yet bioactive constituent. This type of 

synergy, if it can truly be called that, does not function to improve the efficacy of the 

active compound(s) per se, but rather functions to minimize the negative effects that the 

active agent may cause (10). Many potent chemotherapeutic agents, for example, while 

successful in targeting tumor cells, are often limited by severe side effects caused by 

action of active agents against healthy cells. In a recent study, an extract of staghorn 

sumac (Rhus hirta) was combined with the chemotherapeutic drug 5-fluorouracil (5-FU) 

commonly used to treat breast and colon cancer (114). In combination with 5-FU, the R. 

hirta extract was found to protect normal cells from 5-FU toxicity in vitro. This 

chemoprotective effect may have be attributed in part to the presence of antioxidants in 
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the R. hirta extract (115), which minimized oxidative stress and cell damage initiated by 

5-FU treatment (114). 

Targeting disease resistance mechanisms 

Many diseases, such as cancers and infectious diseases, have evolved resistance to 

single-target drugs. In cancer, drug resistance to single chemotherapeutic agents has 

increased largely due enzymatic cross-talk (116) and counteractive pathways (117, 118). 

Combination chemotherapy is growing in popularity, in part due to the ability for multi-

constituent mixtures to modulate different pathways and overcome drug resistance (119). 

Infectious diseases, including those caused by fungi (120), viruses (121), and bacteria 

(122), are also becoming more challenging to treat due to the development of drug 

resistance. For example, bacterial pathogens gain resistance to antibiotics due to three 

major reasons: (i) active site modification resulting in inefficient drug binding, (ii) 

metabolism of antibiotics into inactive forms, or (iii) efflux of antibiotics out of bacterial 

cells (Figure 4) (17, 100). By targeting these resistance mechanisms, it may be possible to 

re-sensitize resistant organisms to existing treatments and to slow the development of 

resistance.   

Many bacteria have gained resistance to beta-lactam antibiotics such as penicillin 

and ampicillin due to the development of beta-lactamase enzymes that cleave the 

antibiotics into inactive forms (123). One strategy for synergistically overcoming this 

resistance mechanism is to combine beta-lactam antibiotics with beta-lactamase 

inhibitors. In a recent study, Catteau et al. (124)  found that a dichloromethane extract of 

shea butter tree leaves (Vitellaria paradoxa) synergized the activity of ampicillin, 
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oxacillin, and nafcillin against methicillin-resistant Staphylococcus aureus by targeting 

PBP2a +/- beta-lactamase enzymes. Ursolic acid and oleanolic acid, major constituents of 

V. paradoxa, were found to be responsible both for synergistic enhancement of beta-

lactam activity and also possessed antimicrobial activity of their own (124). 

 

 

 

 

 

 

 

 

Figure 4. Bacterial Resistance Mechanisms that Could be Targeted with Combination 

Therapy Enabling Re-Sensitization of Resistant Organisms to Existing Antibiotics. 

 Another resistance mechanism that protects microbes from antimicrobial agents is 

the presence of promiscuous efflux pumps that extrude a wide array of compounds from 

bacterial cells (125, 126). While many naturally-occurring compounds, particularly 

positively charged alkaloids, are efflux pump substrates, many medicinal plants also 

contain inhibitors that target efflux pumps, potentiating the effects of antimicrobial 

agents. In their hallmark paper, Stermitz et al. (15) described the presence of an inhibitor 

of the norA efflux pump, 5’-methoxyhydnocarpin, in Berberis species that potentiated the 

activity of the antimicrobial compound berberine. More recently, the berberine-
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containing plant H. canadensis was found to contain norA efflux pump inhibitory activity 

(127). Many of these synergistic efflux pump inhibitors have been characterized in 

subsequent publications (14, 18, 128).  

Identifying Constituents Responsible for Combination Effects 

When working with complex natural product mixtures, constituents responsible 

for activity are often not known. Additionally, the composition of natural product extracts 

varies depending on how and where the source material is grown, prepared, processed, 

and stored (129), and as such, there is a lack of knowledge for many natural products 

about the dosage and identity of what is being consumed. To address this safety risk, and 

to improve efficacy of natural product mixtures, bioactive mixtures should be 

comprehensively characterized and the concentrations and identities of constituents 

contributing to the biological activity (whether it be through additive, synergistic, or 

antagonistic means) should be determined. This task, while straightforward in theory, is 

quite challenging in practice since the biologically important constituents are often not 

known and are part of a complex matrix containing hundreds or thousands of unique 

constituents (13). 

Isolation and structure elucidation 

Bioactivity-guided approaches to identify active molecules 

One of the most common approaches for identifying bioactive mixture 

components is bioassay-guided fractionation. With this approach, active extracts are 

separated using a variety of chromatographic techniques, the simplified fractions 

screened for biological activity, and the process iteratively repeated until active 
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compounds have been isolated and characterized (14, 130-134). In the last decade, 

substantial developments have been made in improving extraction and separation 

efficiency, and facilitating the isolation of minor constituents that may contribute to 

activity (130).  Despite the historical effectiveness of bioassay-guided fractionation (135), 

loss of activity during fractionation is very common (131, 134). Additionally, because 

structural information is not used to guide separations, this approach may result in the 

repeated isolation of previously described molecules (134).  

To avoid re-isolation of known molecules, preliminary structural assessment steps 

to identify and discard samples containing known active constituents can be taken (134, 

136-138). This process, termed “dereplication,” enables prioritization of samples likely to 

contain new biologically important entities, facilitating efficient use of resources for 

compound discovery (134, 136-138). Dereplication is often achieved by comparing the 

spectral patterns of mixture constituents through mass spectrometry (136, 139-141), 

NMR (142), or UV spectroscopy (136), and searching for known compounds with 

matching spectral fingerprints in a dereplication database.  Recently, the Global Natural 

Product Social molecular networking (GNPS) platform has been developed that enables 

spectral annotation and identification of related compounds using MS/MS molecular 

networking (134, 138, 143). In addition, GNPS provides researchers the ability to share 

raw MS/MS spectra online, enabling crowdsourced spectra annotation and knowledge 

sharing between laboratories around the world (138).  

 

 



 

27 

 

Bioactivity-guided approaches to identify synergists 

While dereplication protocols have advanced significantly, reducing the 

likelihood of compound rediscovery, bioassay-guided fractionation may be unsuitable for 

identifying synergistic compounds from complex mixtures (14, 131). Often, synergistic 

compounds possess no biological activity on their own, but enhance the activity of active 

compounds in combination (23). If these compounds are separated from active 

compounds during the fractionation process, they may be overlooked. Recently, a 

modification of bioassay-guided fraction was developed, termed “synergy-directed 

fractionation,” which combines chromatographic separation and synergy testing in 

combination with a known active constituent in the original extract (14). With this 

process, extracts are subjected to synergy testing, active extracts are fractionated, and 

resulting fractions again tested for synergy. This process is repeated iteratively until pure 

compounds have been obtained (Figure 5). By combining fractions with a known active 

constituent and testing for combination effects, synergists that did not possess activity on 

their own could still be identified. This approach enabled the identification of three 

synergists in the botanical medicine Hydrastis canadensis that potentiated the activity of 

berberine through NorA multidrug resistance pump inhibition that would have been 

overlooked using conventional techniques (14). 

Metabolomics and biochemometrics 

Metabolomics approaches to identify active constituents 

While bioassay-guided fractionation (and modifications of it such as synergy-

directed fractionation) have improved significantly with advancements in separation 
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techniques and dereplication protocols, these methods have a tendency to focus toward 

the compounds that are most easily isolated in the mixture rather than those that are most 

likely to be active (18, 132). Thus, it would be desirable instead to identify bioactive 

compounds in complex mixtures before several rounds of bioactivity-guided fractionation 

steps have been completed. Towards this goal, many researchers have sought to guide 

isolation efforts by combining chemical and biological profiles of samples under analysis 

to identify markers of activity (131-134, 144-147). Using approaches broadly termed as 

“biochemometrics,” chemical and biological datasets can be interpreted using 

multivariate statistics and putative bioactive constituents identified early in the 

fractionation process (131-134, 144-147). Biochemometrics has been successfully 

employed by several research groups to identify minor active constituents from complex 

natural product mixtures. For example, in a recent study assessing the anti-tuberculosis 

activity of the Alaskan botanical Oplopanax horridus, a total of 29 bioactive constituents 

were identified based on biological and gas chromatography-mass spectrometry data. 

Importantly, nearly half of the bioactive constituents identified (14 out of 29) had 

individual peak areas accounting for less than 1% of the active fraction chromatograms 

(131).  

In mass spectrometry-based biochemometrics studies, the number of variables 

(ions detected) tends to greatly outnumber the number of samples analyzed (i.e. extracts 

or simplified fractions), posing a problem for many multiple regression models (148). 

Partial least-squares (PLS) analysis, however, due to its combination of principal 

component analysis (PCA) and multiple regression analysis, is less affected by this 
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mismatch between sample and variable number and is the most popular tool for 

modelling biochemometric data (148). The resulting PLS models, however, are often 

incredibly complex and difficult to decipher. Numerous data visualization tools have 

been developed to extract meaningful information from PLS datasets (132, 148-150). 

 

 

 

 

 

 

 

 

 

Figure 5. Synergy-Directed Fractionation Workflow. Reproduced with permission from Junio et 

al. 2011 (14). 

One commonly used tool is the S-plot, in which correlation and covariance of 

variables with a given biological activity are plotted. In a recent study, S-plots were 

utilized to identify differences in metabolite profiles (detected using UPLC-QTOF-MS) 

of Garcinia oblongifolia leaves, branches, and fruits and to correlate those differences to 

differences in biological activity (147).  Using this approach, 12 marker compounds were 

identified, primarily xanthones, that were likely responsible for the enhanced antioxidant 

and cytotoxic properties of the branch extract over other plant parts (147). In another 
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study, S-plots were generated from bioactivity and chemical profiles of Ganoderma 

sinense to identify potential anti-tumor agents. This approach successfully identified five 

known cytotoxic compounds with significant antitumor potential (146). A recent study 

compared the use of S-plot analysis with an additional data visualization tool, the 

selectivity ratio, to identify antimicrobial constituents from the fungal organisms 

Alternaria and Pyrenochaeta sp.(132). In this study, both S-plot and selectivity ratio 

analyses identified macrosphelide A as the dominant bioactive constituent from 

Pyrenochaeta sp. However, when attempting to identify bioactive compounds from 

Alternaria sp., the selectivity ratio outperformed the S-plot in its ability to identify 

altersetin, a low abundance antimicrobial constituent, without being confounded by 

highly abundant (and only weakly active) constituents in the mixture (132).  

In a follow up study, an inactive mixture was spiked with known antimicrobial 

compounds to identify the impact of data acquisition and data processing parameters on 

biochemometric analysis using the selectivity ratio plot (144). This study found that data 

transformation, contaminant filtering, and model simplification tools had major impacts 

on the selectivity ratio models, emphasizing the importance of proper data processing 

approaches for extracting reliable information from biochemometric datasets (144). In all 

selectivity ratio studies applied to identify bioactive natural products (132, 144, 145), 

bioactive mixture constituents were identified early in the fractionation process, enabling 

chromatographic isolation efforts to be tailored towards mixture constituents that were 

most likely to possess biological activity. 
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These numerous examples illustrate the efficacy of biochemometrics for 

distinguishing between active and inactive chemical entities in complex mixtures. 

However, these approaches do not provide structural information about putative unknown 

active constituents, hindering the ability to truly optimize isolation efforts. To address 

this gap, a recent study utilized a combination of selectivity ratio analysis and GNPS 

molecular networking to identify putative active constituents from the botanical medicine 

Angelica keiskei and the molecular families to which they belonged (145). Using this 

approach, a subset of chalcone analogs were targeted for isolation, yielding two known 

antimicrobial constituents and an additional, low-abundance compound not previously 

known to possess antimicrobial activity (145). This concept was streamlined into a 

process called “bioactive molecular networking,” in which bioactivity predictions are 

directly visualized in molecular networks themselves, where the size of individual nodes 

correspond to the predicted bioactivity score for each ion (Figure 6) (134).   

 

 

 

 

 

Figure 6. Bioactive Molecular Networking in which Nodes Connected in a Network Represent 

Structurally Related Compounds Based on MS/MS Fragmentation Patterns, and the Size of 

Nodes Represents the Correlation of Compound Peak Areas with Biological Activity of 

Interest. Figure is reprinted with permission from Nothias et al. 2018 (134). 
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By including both MS/MS fragmentation data and peak area data in the production of 

molecular networks, bioactive molecular networking enables dereplication, compound 

annotation, and identification of putative active compounds in one step (134).  

An additional approach, Compound Activity Mapping was developed by the 

Linington laboratory that utilizes image-based cytological screening data and high-

resolution mass spectrometry-based metabolomics data to predict both the identities and 

biological functions of putative bioactive constituents early in the fractionation workflow 

(133). Using Compound Activity Mapping, biological and chemical datasets are 

integrated to identify putative bioactive constituents that show consistent positive 

correlation with phenotypes of interest (Figure 7) (133). The data are presented as a 

network display, enabling identification and prioritization of lead compounds, even those 

of low abundance, that likely contribute to a specific biological activity.  

                                                                                                                                                                  

Figure 7. Compound Activity Mapping Workflow. (A) Network analysis of the full chemical space of 

the tested actinobacterial extracts. Light blue nodes represent extracts connected to all m/z features (red), 

illustrating the immense chemical complexity of the extract library. (B). Activity histograms and cluster 

scores for all m/z features. (C) Compound Activity Map, displaying only extracts and m/z features predicted 

to be responsible for consistent phenotypes of interest. (D) Close up of a specific bioactive cluster, 

belonging to the staurosporine natural product family. This figure is reprinted with permission from Kurita 

et al. 2015 (133). 
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The utility of this approach was demonstrated through the investigation of 234 

extracts of actinobacterial origin (133). Using Compound Activity Mapping, biological 

and chemical datasets from these samples were combined to identify 13 clusters of 

bioactive fractions containing 11 known molecular families and four new compounds. 

Subsequent isolation efforts targeted towards these new compounds revealed the presence 

of a new natural product family, the quinocinnolinomycins, which were predicted to elicit 

a cytotoxic response through the induction of endoplasmic reticulum stress (133).   

Metabolomics approaches to identify synergists 

In a recent study, an inactive botanical extract was spiked with four known 

antimicrobial compounds to assess the ability of selectivity ratio analysis to identify 

known constituents. Despite the fact that the spiked extract contained concentrations of 

active constituents that should have completely inhibited the growth of Staphylococcus 

aureus, the extract only caused about a 30% reduction in growth even at the highest 

concentration tested. To assess the large discrepancy between the predicted and observed 

activities of the spiked extract, checkerboard assays were conducted in combination with 

the active constituents berberine and magnolol, yielding ΣFIC indices of 3 and 5, 

respectively, and strongly indicating the presence of antagonists in the mixture. After 

chromatographic separation had been conducted, however, antagonists were separated 

from active constituents and activity of the mixture was restored (144). In a traditional 

natural products discovery setting, this extract may not have been targeted for isolation 

efforts despite the fact that it contained active compounds. This example illustrates that 

predictive tools capable of identifying active compounds alone may not be sufficient to 
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comprehensively model the complexity of natural product mixtures, and approaches 

capable of identifying the presence of synergists and antagonists that may not possess any 

biological activity on their own are needed.  

To identify synergists and additives in complex botanical mixtures, Britton et al. 

recently combined biochemometric analysis with synergy-directed fractionation to 

identify mixture components from Hydrastis canadensis that enhanced the antimicrobial 

efficacy of berberine through additive or synergistic mechanisms (18). In this study, 

mass-spectrometry datasets were combined with biological assay data to produce 

selectivity ratio plots predicting putative additives and synergists (Figure 8). In these 

plots, negative selectivity ratios are indicative of biological activity, because growth 

inhibition data (where smaller values indicate biological activity) were used to guide the 

models. Unlike other biochemometric studies of its kind (132, 145), the biological 

activity data used in this study did not measure of antimicrobial activity, per se, but was 

rather measured each sample’s ability to improve the antimicrobial efficacy of berberine. 

Using this approach, six flavonoids not previously identified using synergy-directed 

fractionation approaches alone (14) were identified as putative additives or synergists. Of 

these, one compound, predicted by selectivity ratio models to be the top contributor to 

activity, was isolated and characterized for the first time and its activity as a synergist 

confirmed. Notably, this compound possessed no antimicrobial activity on its own and 

may have been missed using biochemometric analyses guided by antimicrobial data alone 

(18). 
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Figure 8. Selectivity Ratio plots for First, Second, and Third Stages of Fractionation [(A), (B), and 

(C), Respectively] of the Botanical Hydrastis canadensis. Growth inhibition data were used to guide 

selectivity ratio analysis, so variables with negative selectivity ratio are most likely to possess additive or 

synergistic activity. Known flavonoids (likely to be synergists) are marked in green, while known alkaloids 

(likely to be additives) are marked in red. First-stage (A) and second-stage (B) models were not able to 

identify known compounds as contributing to activity. However, the third-stage model (C) predicted seven 

flavonoids (1, 2, 3, 5, 6, 8, 29) and three alkaloids (10, 22, 23) to possess additive or synergistic activity. 

With this approach, a new synergistic flavonoid (29) was identified in H. canadensis, and known 

flavonoids and alkaloids not previously known to possess additive or synergistic activity were prioritized 

for future studies. This figure is reprinted with permission from Britton et al. 2017 (18). 
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Elucidating Mechanisms that Underlie Synergy and Antagonism 

In addition to identifying putative active constituents contributing to biological 

effects of complex mixtures and recognizing the type of interactions they are involved in, 

it is important to understand the cellular and molecular mechanisms by which complex  

mixtures exert their effects. To ascertain the molecular targets of mixtures, direct and 

indirect approaches can be taken.(151) The direct approach utilizes targeted biological 

assays to identify molecules that affect specific molecular targets while indirect 

approaches aim to identify mechanisms of action through the evaluation of changes in 

gene, protein, and/or metabolite profiles in an untargeted manner.(151) While these 

technologies show great promise, their effectiveness for identifying mechanisms of 

synergy and antagonism remains to determined. 

Targeted assays evaluating specific mechanisms of action (direct approaches) 

Targeted approaches to identify mechanisms of action rely on appropriate in vitro 

and in vivo models. One important example involves identifying compounds that 

synergize with existing antibiotics through the inhibition of bacterial efflux pumps (15, 

127, 152). A popular method for evaluating efflux pump inhibition involves the use of an 

efflux pump substrate (such as ethidium bromide or Nile Red) that fluoresces upon 

contact with cellular DNA (152-154). When efflux pumps are inhibited, fluorescence of 

the substrate increases due to increased cellular accumulation. This approach has been 

successfully utilized in numerous studies to identify efflux pump inhibitors from complex 

botanical mixtures (15, 127). While often successful, these fluorescence-based methods 

are subject to false results due to matrix quenching effects, particularly when screening 
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complex natural product mixtures (152). Fluorescence quenching is so common in the 

biological evaluation of drug candidates that fluorescence quenchers have been tagged as 

one type of “PAINS” (pan-assay interference compounds) (155, 156). However, the 

ability to absorb UV/Vis light (and quench fluorescence) is a common feature of 

druggable small molecules (for example, tetracycline antibiotics) and only constitutes a 

problem with fluorescence assays. To overcome this limitation, mass spectrometric 

assays have been developed to monitor efflux pump inhibition or cellular accumulation in 

Staphylococcus aureus (152), Escherichia coli (157, 158), Bacillus subtilis (157), and 

Mycobacterium smegmatis (157). These assays also offer the distinct advantage of being 

able to monitor drug accumulation of molecules that do not fluoresce.  

Efflux pump inhibition assays, like many other assays used in classical drug 

discovery approaches, test compounds or mixtures one at a time to identify compounds 

with promising biological activity. To improve efficiency of these methods, mixtures of 

drugs can be simultaneously evaluated, but identifying which molecules in these mixtures 

exert biological effects can be challenging (159). To overcome this limitation, Pulsed 

ultrafiltration mass spectrometry (PUF-MS) was developed, which enables screening of 

mixtures such as natural products and synthetic combinatorial libraries (159). PUF-MS 

involves the incubation of small molecule mixtures with a target protein in solution. 

Those molecules with affinity for the target will bind to the protein, and compounds that 

are not bound can be washed away using an ultrafiltration membrane (159). This 

approach, though effective, is slowed by the ultrafiltration step. To improve the speed of 

screening, a Magnetic Microbead Affinity Selection Screening (MagMASS) protocol was 
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developed, in which the protein target of interest is not free in solution, but rather is 

bound to magnetic beads (160). To separate compounds with and without affinity for the 

given target, the receptor-bound fraction can be held in solution using a magnet (160). In 

a recent study, PUF-MS and MagMASS were compared, and both screening methods 

were found to reliably identify ligands of a specific molecular target from complex 

botanical matrices (160). MagMASS showed a 6-fold faster separation of bound and 

unbound compounds when compared to PUF-MS and is compatible with a 96-well plate 

format (160). Notably, these methods do not require molecules to bind to a particular 

active site on the target of interest, and can identify ligands that bind to active or 

allosteric sites. In this way, the assay could be modified to identify combination effects in 

which the protein’s activity is changed through allosteric activation or inhibition (160).  

However, given that this approach utilizes protein targets rather than whole cells, the 

combination effects discovered may not translate to intact biological systems. 

Furthermore, these approaches require access to purified material of the protein target of 

interest.  Therefore, methods based on PUF-MS and its iterations are not applicable for 

situations where the target of the active compound is either not known or not available.  

Indirect approaches to identify multiple targets 

While targeted approaches may be useful for identifying compounds that act upon 

specific molecular targets, assays involving single targets only are not capable of 

identifying combination effects that involve multiple targets. To identify these multi-

target effects, whether it be for a single compound or a combination of multiple 

constituents, indirect approaches are particularly useful. As discussed in a recent review, 
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synergistic drug combinations and their modes of action have been explored using 

molecular interaction profiles (67), and investigation of herbal ingredients using 

molecular interaction profiles may enable detection of synergistic mechanisms of action. 

At the time of the review, over 1800 active ingredients from more than 1200 herbs had 

been subjected to molecular interaction profiling and found to interact with nearly 1000 

proteins, many of which were therapeutic targets (67). Although these connections can be 

utilized to detect potential synergies, the efficacy of complex natural product mixtures 

and their impact on molecular targets can be influenced by variations in genetics, 

environment, host behaviour, and timing and dosage of treatment (67). These tools 

should, therefore, be considered hypothesis-generating, providing a framework for more 

comprehensive assessment.  

The use of DNA and RNA microarrays is another popular tool for probing 

combination effects within complex mixtures, enabling identification of genes that are 

up- or down-regulated by natural product extracts alone and in combination. In a recent 

study, an RNA microarray of neuroglia cells was utilized to compare the number of genes 

impacted by treatment with Andrographis paniculata, Eleutherococcus senticosus, and 

their fixed combination Kan Jang (161). Results illustrated that A. paniculata and E. 

senticosus deregulated 211 and 207 genes, respectively, 36 of which were common to 

cells treated with each extract (Figure 9A). Using this information, researchers expected 

that 382 genes would be deregulated in cells treated with the fixed combination Kan 

Jang. However, only 250 genes were deregulated in Kan Jang treated cells, 111 of which 

were unique to the Kan Jang combination, potentially due to synergistic interactions 
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between A. paniculata and E. senticosus. Alternatively, 170 genes were only affected by 

treatments with A. paniculata or E. senticosus and not by the Kan Jang mixture, possibly 

due to antagonistic interactions between the plant species when applied in combination 

(Figure 9B) (161). Importantly, microarray analyses do not provide infallible evidence 

that genes induced by treatments are responsible for physiological effects or mechanisms 

of synergy, but provide a framework for future research.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. Venn Diagrams of Genes Induced by Treatment of Neuroglia Cells with (a) Andrographis 

paniculata and Eleutherococcus senticosus Alone, and (b) A. paniculata and E. senticosus Alone and 

in Combination (Kan Jang, Abbreviation KJ). 111 genes are unique deregulated by the Kan Jang 

mixture, indicating potential gene targets affected by synergistic interactions. The 55 and 170 genes 

deregulated only by A. paniculata and E. senticosus, respectively, represent genes potentially impacted by 

antagonistic interactions in the Kan Jang combination. Reprinted with permission from Panossian et al. 

2015 (161).  

Because of the material- and time-consuming nature of biological testing, in silico 

approaches have been developed that enable prediction of activity and mechanism of 

action without the need for direct biological testing. Existing experimental activity data 
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can be used to mine ligand-target relationships and reveal potential biological activities of 

diverse molecules (162). Key to the success of this approach for identifying putative 

mechanisms of action is the availability of compound databases that will facilitate sharing 

of data and innovation in drug discovery research with both single-target and multi-target 

approaches (162). Similarly, computational approaches including molecular docking, 

pharmacophore modelling, and similarity searching can be used as so-called “virtual 

screening” techniques to identify candidate compounds for follow-up testing (162). Of 

course, these techniques are subject to error and may not provide accurate representation 

of the biological system in question, particularly if the model datasets are based on 

incorrect literature-based annotations of compound activities and/or incomplete 

understanding of molecular processes of disease.  

A systems biology-based approach, network pharmacology, predicts the complex 

interactions between small molecules and proteins in a biological system, and shows 

potential as a way to evaluate pharmacological effects of natural product mixtures (162). 

Unlike the classic “silver bullet” approach where single-target mechanisms are identified 

for single drugs, network pharmacology focuses on multiple constituents with multiple 

targets. Several studies have successfully utilized network pharmacology to putatively 

identify both known and unknown molecular targets (151, 162). Networks can be built 

using existing literature data, computationally-derived data, or experimental data. The 

predictive accuracy of the resulting networks relies on the completeness of databases, the 

robustness of the computational models, the understanding of the underlying mechanisms 

of disease, and/or the chosen biological assay (162).  
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Recently, a broad-scale approach was developed in which Functional Signature 

Ontology (FUSION) maps are utilized to classify putative mechanisms of action of 

natural products (163). With this method, cellular responses to natural product treatment 

can be tracked by measuring gene expression of a small, representative subset of genes 

that provide insight into the physiological state of the cell. The resulting data can then be 

combined into FUSION maps capable of linking putative bioactive molecules to the 

proteins and biological pathways that they target in cells (163). This approach has been 

successfully utilized to link natural products to their mechanisms of action (163) and to 

identify a marine-derived natural product that inhibits AMPK kinase activity in colon 

tumor cells (164).  

 A similar approach, the Connectivity Map, or CMap, was developed in which 

genes, drugs, and disease states are connected based on the gene expression fingerprints 

that they share (165). Originally produced using 164 drugs and mRNA expression 

profiling, the CMap has since been expanded more than 1,000-fold, and now contains 

over 1.3 million publicly available profiles. This scale-up was achieved using a high-

throughput, reduced representation in which only 1,000 landmarks are assessed rather 

than the full transcriptome. This approach, termed L1000, is sufficient to recover 81% of 

the information contained in the full transcriptome. The L1000 approach offers 

advantages over popular approaches such as gene expression microarrays and RNA 

sequencing because of its low cost and hybridization-based nature, making detection of 

low-abundant transcripts possible without the need for deep sequencing (165). 

Preliminary testing has illustrated the potential of the expanded L1000 CMap to 
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determine the mechanisms of action of small molecules based on the similarities of their 

genetic perturbations to those of compounds with known activities. This approach can 

also be utilized to identify potential off-target effects of a drug or drug combinations 

(165).  

During a pilot study, the L1000 CMap was successfully utilized to recover known 

mechanisms of action from 63% of existing drugs under analysis, to identify the 

mechanism of action of a previously uncharacterized compound, and to identify 

compounds with a particular activity of interest. Importantly, the L1000 CMap is not 

infallible, and 37% of small molecules with known mechanisms of action were not linked 

to their expected targets during this study. The authors suggest six reasons for this failure: 

(1) incomplete inhibition of the target by the compound, (2) off target effects, (3) 

incomplete information in the L1000 data, (4) incorrect data in the literature, (5) 

biological differences between complete loss of function and loss of a specific protein 

function, and (6) existence of previously unrecognized connections with stronger 

connections than expected ones (165). Despite these limitations, the preliminary results 

of this study emphasize the potential of the L1000 CMap as a launching point for both 

target-and ligand-based drug discovery (165).  Although they have not been explicitly 

applied to identify mechanisms of synergy or antagonism, the utilization of FUSION 

maps and the L1000 CMap platform may represent useful tools to enable identification of 

genes and pathways impacted by a synergistic/antagonistic combination, providing 

insight into potential mechanisms of action in complex natural product mixtures.  
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Conclusions and Future Directions 

In recent years, the concept of synergy in natural product mixtures has gained 

attention, and the importance of multi-target combination therapies has come to the 

forefront. However, the classification of combination effects within complex mixtures 

and the identification of contributing constituents remains a challenging task, particularly 

when the majority of established tools have been designed to reduce complexity of 

natural product mixtures. Additionally, there remains a lack of consensus in the field 

about which reference models are best for defining combination effects, making 

interpretation of studies challenging. Recent models using the Explicit Mean Equation 

(46) and the Zero Interaction Potency model (38) represent newly developed and robust 

reference models that may permit improved identification combination effects. These 

models have yet to be employed for real world applications in studying natural product 

mixtures, and future studies will reveal their applicability for this approach.  

Metabolomics and biochemometric approaches are promising tools for studying 

synergy, and have just begun to be applied to identifying constituents that participate in 

combination effects.(18) While useful, biochemometric models are subject to limitations 

based on the biological assays and reference models used to define biological activity. 

Similarly, the linear regression models used to predict active constituents are inherently 

limited given that true linear relationships rarely exist, particularly when assessing 

complex mixtures with numerous unknown combination effects. The application of 

statistical tools capable of identifying non-linear relationships will be helpful for future 

research initiatives. In addition, untargeted approaches to identify molecular targets of 
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synergy and unravel synergistic (or antagonistic) mechanisms of action have just begun 

to be explored, and continued studies on this topic are of the utmost importance. 

Advancements in Big Data approaches show great promise for identifying active mixture 

constituents, characterizing the nature of their interactions, and elucidating their potential 

mechanisms of action. Integrated technologies capable of completing all of these tasks 

simultaneously remain to be developed. The production of such integrated techniques 

will become increasingly important in our continued pursuit to understand the biological 

activities of complex mixtures.  
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Introduction  

Complementary health practices are gaining global popularity, and a recent 

National Health Interview Survey estimated that nearly 18% of adults in the United 

States regularly took non-vitamin, non-mineral dietary supplements in 2012 (7). Because 

of the growing popularity of herbal medicine, it is important to understand the chemical 

basis behind the purported activities of botanicals. Angelica, a member of the Apiaceae 

(Umbelliferae) family, is a large genus comprised of over 60 species. Members of the 

genus have been utilized as medicines across the world, most notably in Asia, to treat 

numerous ailments, including influenza, hepatitis, arthritis, indigestion, fever, and 

microbial infections (166). An increasing number of studies are being conducted on a 

medicinally promising member of the genus, Angelica keiskei Koidzumi (Apiaceae), or 

ashitaba. This large leafy perennial plant native to the Pacific coast of Japan is used 

throughout Asia for its diuretic, laxative, stimulant, and galactagogue properties (167). In 



 

47 

 

the past decade, several active constituents representing chalcones, flavanones, and 

coumarins, have been isolated and characterized from ashitaba, and several bioactivities 

have been described. This review presents the current progress on ashitaba 

pharmacological studies, with focus on isolated secondary metabolites, biological 

activity, toxicological data, and clinical relevance. 

Bioactive Metabolites Isolated from Ashitaba  

Chalcones 

Most of the literature on bioactive metabolites from ashitaba concerns the diverse 

activity of various chalcones (Table 2; Figure 10), which are most abundant in the root 

bark of the plant (168). Chalcones are formed from phenylpropanoid starter units, 

extended with three malonyl-CoA molecules. The resulting polyketide is folded by the 

enzyme chalcone synthase to promote Claisen condensations and subsequent enolizations 

(169). Interestingly, the bioactive chalcones found in ashitaba are prenylated at the 5’-

position (Figure 10), indicating that these molecules have undergone multiple 

biosynthetic steps, travelling through the acetate, shikimate, and isoprenoid pathways.  

Many chalcones, both from ashitaba and other natural product sources, have been 

shown to possess chemopreventive, anti-diabetic, antibacterial, anti-inflammatory, and 

anxiolytic properties, as well as others (170-174). In many instances, a single chalcone 

may demonstrate multiple bioactive properties. These diverse bioactivities may be 

attributed to the flexible structural conformation of the chalcone backbone, leading to 

promiscuous substrate behavior (175). Two chalcones, 4-hydroxyderricin (1) and 
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xanthoangelol (2) are most abundant in this plant, and possess cytotoxic, anti-

inflammatory, and anti-diabetic properties (176). 

Table 2. Isolated Bioactive Components from Angelica keiskei Koidzumi and Plant Part from which 

they were First Isolated. 

 

No. Compound name Part of plant References 

Chalcones    

1 4-hydroxyderricin Roots (177) 

2 xanthoangelol Roots (177) 

3 xanthoangelol B Roots (178) 

4 xanthoangelol C Roots (178) 

5 xanthoangelol D Roots (178) 

6 xanthoangelol E Roots (178) 

7 xanthoangelol F Roots (179) 

8 xanthoangelol G Roots (179) 

9 xanthoangelol H Roots (179) 

10 xanthoangelol I Stems (167) 

11 xanthoangelol J Stems (167) 

12 xanthoangelol K Stems (180) 

13 xanthokeistal A Leaves a (181) 

14 isobavachalcone Roots  (179) 

15 (2E)-1-[3,5-Dihydroxy-2-methyl-2-(4-methyl-3-penten-

1-yl)-3,4-dihydro-2H-chromen-8-yl]-3-(4-

hydroxyphenyl)-2-propen-1-one 

Roots (182) 

16 (2E)-1-[4-Hydroxy-2-(2-hydroxy-2-propanyl)-2,3-

dihydro-1-benzofuran-7-yl]-3-(4-hydroxyphenyl)-2-

propen-1-one 

Roots (182) 

17 (2E)-1-[4-Hydroxy-2-(2-hydroxy-6-methyl-5-hepten-2-

yl)-2,3-dihydro-1-benzofuran-5-yl]-3-(4-

hydroxyphenyl)-2-propen-1-one 

Roots (182) 

18 (2E)-1-(3-[(2E)-6,7-Dihydroxy-3,7-dimethyl-2-octen-1-

yl]-2,4-dihydroxyphenyl)-3-(4-hydroxyphenyl)-2-

propen-1-one 

Roots (182) 

19 

 

 

20 

21 

22 

(2E)-1-(3-[(2E)-6-Hydroperoxy-3,7-dimethyl-2,7-

octadien-1-yl]-2-hydroxy-4-methoxyphenyl)-3-(4-

hydroxyphenyl)-2-propen-1-one 

xanthokeismin A 

xanthokeismin B 

xanthokeismin C 

Roots 

 

 

Stems 

Stems 

Stems 

(182) 

 

(183) 

(183) 

(183) 

Coumarins    

23 (3'R)-3'-hydroxy-columbianidin Stems (184) 

24 3'-senecioyl khellactone Stems (184) 

25 5-methoxypsoralen Fruit (178) 

26 4'-senecioyl khellactone Stems  

27 archangelicin Fruit (178) 

28 isolaserpitin b Fruit (178) 

29 laserpitin b Fruit (178) 

30 osthenol Stems (167) 
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31 

32 

33 

pteryxin 

demethylsuberosin 

selinidin 

Stems 

Aerial portion 

Fruit 

(184) 

(185) 

(178) 

Flavanones    

34 

35 

8-geranylnaringenin 

4’-O-geranylnaringenin 

Stems 

Stems 

(167)  

(184) 

36 Isobavachin Stems (167) 

37 

38 

munduleaflavanone 

munduleaflavanone B 

Stems 

Stems 

(184) 

(167) 

39 prostratol F Stems (184) 

Other compounds 

40 ashitabaol A Seeds (186) 

41 falcarindiol Stems (184) 

42 pregnenolone Aerial portion (185) 

43 4-hydroxy-3,5,5-trimethyl-4-(1,2,3,-

trihydroxybutyl)cyclohex-2-enone 

Aerial portion (185) 

a part of plant was inferred, but not directly stated by authors.  
b common names laserpitin and isolaserpitin also refer to sesquiterpene-type compounds. In this case, they 

refer to angular coumarin derivatives isolated from Ashitaba fruits. Other references cited in this review 

utilize this nomenclature, as well. 

Coumarins 

Ashitaba contains numerous coumarins with medicinal properties (Table 2; Figure 

11). Coumarins result from the addition of an hydroxy- group ortho- or para- to the 

propanoid side chain of cinnamic acids (187). Although basic coumarins are comprised 

solely of a phenyl-propanoid backbone with varying degrees of hydroxylation, many 

others have more complex carbon frameworks derived from isoprene units. These 5-

carbon units can lead to cyclization with a phenol group, eventually yielding complex 

coumarin derivatives (187). Depending on the position of the initial dimethylallylation, 

furocoumarin derivatives may be angular (23, 24, 26-29, 31, 33), or linear (25).  

Coumarins isolated from a number of plant species have been shown to possess 

anti-inflammatory and chemopreventive properties (188, 189). Indeed, coumarins 

isolated from ashitaba have demonstrated cytotoxic properties (167, 184, 190), in 
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addition to anti-diabetic (180), anti-obesity (176), and blood pressure reducing effects 

(191). 

                                                                                                                                                                   

Figure 10. Structures of Chalcones Isolated from Angelica keiskei Koidzumi. Absolute configuration at 

points marked with an asterisk (*) were not specified in original articles. 
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Flavanones 

Considering the abundance of chalcones found in ashitaba, it is not surprising that 

this plant also possesses several flavanones (Table 2; Figure 12). Chalcones, with a 

nucleophilic phenol group positioned near to an α,β-unsaturated ketone readily undergo 

Michael-type attack, leading to cyclization and flavanone formation (192). 

 

Figure 11.  Structures of Coumarins Isolated from Angelica keiskei Koidzumi. Absolute configuration 

at points marked with an asterisk (*) were not specified in original articles. 

Flavanones are distributed throughout the plant kingdom and are found in 42 plant 

families both in aerial and below ground tissue. These compounds have been shown to 

possess radical-scavenging, anti-inflammatory, and chemopreventive effects (193). 

Flavanones in ashitaba, though less studied than the chalcones 1 and 2, have been studied 

most for their potential as chemopreventive agents (184). 
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Figure 12. Structures of Flavanones Isolated from Angelica keiskei Koidzumi. 

Other active compounds 

Ashitaba also possesses active polyacetylenes, triterpenes, and cyclohexenones. 

One sesquiterpene, ashitabaol A (40) has been isolated from ashitaba seeds (Table 2, 

Figure 13) and shows free radical scavenging activity (186). Sesquiterpenes containing a 

hexahydrobenzofuran or tetrahydro-backbone with the 3-methyl-but-2-enylidene unit are 

extremely uncommon in nature. Compound 40 is only the second reported natural 

product, after bisbolangelone, with this unusual structure (186). 

 
Figure 13. Other Compounds Isolated from Angelica keiskei Koidzumi. 
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Biological Activities of Ashitaba 

Extracts of ashitaba, whether containing complex mixtures or isolated 

compounds, are used to treat many diseases. In this section we describe ashitaba’s 

cytotoxic, anti-diabetic, anti-obesity, antioxidant, anti-inflammatory, antithrombotic, 

antihypertensive, and antimicrobial properties. When possible, structure-activity 

relationships of known active constituents will be described. A summary of the in vivo 

and in vitro studies on ashitaba extracts can be found in Table 3. A comprehensive list of 

known bioactivities for each isolated compound can be found in Table 4. 

Table 3. In vitro and in vivo Bioactivity Studies on Ashitaba Extracts. 

 

Plant 

Part 

Extract Type Biological Activity 

Tested 

Results References 

Cytotoxicity 

Not 

specifieda 

Ethyl acetate 

extract 

Anticarcinogenicity 

(in vitro) 

Hep G2 cells treated with ashitaba 

extract (1 mg mL-1) showed a 1.42-fold 

induction of quinone reductase 

expression, an anticarcinogenic marker 

enzyme. 

 

(194) 

Fresh 

aerial 

portion 

95% ethanol 

extract 

Anticarcinogenicity 

(in vitro) 

Murine hepatoma Hepa 1c1c7 cells 

treated with 25 µg mL-1 ashitaba extract 

showed a 2.44-fold induction of 

NAD(P)H quinone oxidoreductase 1, 

protecting against quinone-induced 

damage. 

 

 

 

(185) 

Anti-diabetic and Anti-obesity activity 

Stem 

exudate 

Ethyl acetate 

extract 

Anti-

hyperlipidemic  

(in vivo) 

Male stroke-prone spontaneously 

hypertensive rats fed a diet containing 

0.2% ashitaba extract for 6 weeks 

showed increased levels of serum HDL 

levels and reduced liver triglyceride 

levels correlated with down-regulation 

of hepatic acyl-coenzyme A synthetase 

mRNA. 

 

(195) 
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Leaves 

and 

processed 

products 

of leaves 

Whole leaves, 

juice, 

fermented 

juice, and/or 

squeeze 

debris 

Anti-adiposity 

(in vivo) 

Male Sprague-Dawley rats fed a high fat 

diet with 3-5% ashitaba whole leaves or 

a combination of juice and solid squeeze 

debris for 6 weeks showed decreased 

liver, kidney, epididymal fat, and rear 

fat weights. Ashitaba and its processed 

products increased luteolin absorption 

and suppressed diet-induced cholesterol 

build up in the liver by increasing 

antioxidant enzyme gene expression. 

 

(196) 

Stem 

exudate 

Ethyl acetate 

extract 

Anti-adiposity  

(in vivo) 

Male C57BL/6 mice fed a high-fat diet 

with 0.01% ashitaba extract by weight 

for 16 weeks showed lowered diet-

induced body weight and body fat and 

lowered serum levels of glucose, 

insulin, and cholesterol when compared 

to positive controls. Ashitaba extract 

regulated lipid metabolism in adipose 

and liver tissue by activating AMP-

activated protein kinase. 

 

(176) 

Not 

specifiedb 

Ashitaba 

powder 

Anti-adiposity  

(in vivo) 

Male Wistar rats fed a high fat diet in 

combination with ashitaba powder at 17, 

170, or 1700 mg 100 g-1 body weight for 

28 days did not show significant 

differences in body weight gain, food 

intake, or relative organ weights when 

compared to positive controls. 

 

(197) 

Dried 

leaves 

and 

stems 

Ethanol 

extract 

Anti-diabetic 

(in vivo) 

Male Wistar rats fed a high-fructose diet 

with 3% ashitaba extract by weight for 

11 weeks had 16.5% lower blood 

glucose levels, 47.3% lower serum 

insulin, 56.4% lower HOMA-R, and 

24.2% lower triglyceride content, 

leading to improved insulin resistance 

and hypertriglyceridemia when 

compared to positive controls, likely by 

enhancing expression of genes related to 

β-oxidation of fatty acids. .  

 

(198) 

Roots Ethanol 

extract 

Anti-diabetic  

(in vitro) 

Ashitaba extract showed insulin-like 

activity following incubation with 3T3-

L1 cells. Dose-dependent glucose 

uptake and differentiation of 

preadipocytes to adipocytes were 

observed in treated cells but not in 

controls. 

(199) 

Anti-inflammatory activity 

root 

cores, 

Methanol 

extract 

Xanthine oxidase 

inhibition  

Xanthine oxidase enzyme from bovine 

serum milk inoculated with 3.12, 6.25, 

(168) 
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root bark, 

leaves, 

and 

stems 

(in vitro) and 12.5 µM of 4 extracts and 20 mM 

xanthine was assayed by tracking 

xanthine oxidation 

spectrophotometrically. Extracts all 

showed lower OD273 values than the 

positive control, allopurinol, indicating 

that all extracts had potent XO 

inhibitory activity. Stem and root bark 

extracts were the most potent inhibitors.  

 

Not 

specified 

n-hexane 

extract 

Anti-inflammatory 

(in vitro) 

Ashitaba extract 10, 30, 50, or 100 µg 

mL-1 suppressed lipopolysaccharide-

induced JNK, p38, and ERK1/2 

activation in RAW 264.7 macrophages. 

NF-КB was suppressed as well through 

inhibition of p65 translocation and 

phosphorylation. 

 

(200) 

Stem 

exudate 

Yellow 

exudate, ethyl 

acetate 

extract, 

chalcone-rich, 

and 

coumarin-rich 

fractions 

Anti-inflammatory 

(in vivo) 

Male kwl ICR mice (pathogen free 

grade) injected intraperitoneally with 

Ashitaba exudate for 7 days before 

injection with lipopolysaccharide 

significantly inhibited increase of PAI-1 

antigen in lung and liver tissue at 6 and 

9 hours. Additionally, ethyl acetate 

extract and chalcone-rich fractions 

decreased production of LPS-induced 

PAI-1.  

(201) 

Antihypertensive activity 

Freeze 

dried 

leaves 

Purified 

fraction from 

80% ethanol 

crude extract 

Antihypertensive 

(in vivo) 

Male spontaneously hypertensive rats 

given ashitaba extract at 21.8 mg kg-1 a 

day for 10 weeks showed significantly 

lower blood pressure (200 ± 7.3 mmHg) 

when compared to control rats (211 ± 

3.7 mmHg)  

(202) 

a edible parts of washed vegetables 
b “Ashitaba powder commercially available as a so-called functional food” 

Table 4. Bioactivities Attributed to Compounds Isolated from Ashitaba. 

 

Compound Bioactivities References 

 

1 Chemopreventive, antidiabetic, anti-adipogenic, 

anti-inflammatory, anti-platelet, anti-influenza,  

antibacterial 

 

(168, 176, 180-182, 184, 

185, 199, 203-209) (210) 

 

2 Chemopreventive, antidiabetic, anti-adipogenic, anti-

inflammatory, antioxidant, anti-platelet, antibacterial 

(168, 176, 180, 182-185, 

199, 201, 203, 205, 208, 

209) (204, 206, 210) 
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3 Anti-inflammatory, antioxidant, anti-platelet, 

anti-influenza 

 

(168, 181, 183, 201, 210) 

 

4 Anti-inflammatory (210) 

 

5 Anti-diabetic, anti-inflammatory, anti-influenza (180, 181, 201, 207) 

 

6 Anti-diabetic, anti-inflammatory, anti-platelet, (180), (210) (201) 

 

7 Chemopreventive, anti-diabetic, anti-inflammatory, 

antioxidant; anti-influenza 

 

(167, 168, 180, 181, 184, 

203) 

 

8 Anti-influenza (181) 

 

9 Chemopreventive (184) 

 

10 Chemopreventive, anti-inflammatory (167) 

 

11 Chemopreventive, anti-inflammatory (167) 

 

12 Anti-diabetic (180) 

 

13 Anti-influenza (181) 

 

14 Chemopreventive, anti-inflammatory (167, 168, 184, 185, 203) 

 

15 Anti-diabetic, antioxidant (182, 185) 

 

16 Anti-diabetic (182) 

 

17 Anti-diabetic (182, 185) 

 

18 Chemopreventive, anti-diabetic (182) 

  

19 Anti-diabetic (182) 

 

20 Antioxidant (183) 

 

21 Antioxidant (183)  

 

22 Antioxidant (183)  

 

23 Chemopreventive (184) 

 

24 Chemopreventive; anti-inflammatory (167, 184) 

 

25 Anti-diabetic (180) 

 

26 Chemopreventive, anti-inflammatory (167, 184) 

 

27 Chemopreventive (190) 
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28 Chemopreventive, anti-inflammatory (167, 184) 

 

29 Chemopreventive, anti-inflammatory (167, 184) 

 

30 Chemopreventive, anti-inflammatory (167, 184) 

 

31 Chemopreventive, anti-inflammatory (167, 184) 

 

32 Anti-diabetic (185) 

 

33 Anti-inflammatory (167, 184) 

 

34 Chemopreventive, anti-inflammatory (167, 184) 

 

35 Chemopreventive (184) 

 

36 Chemopreventive (167) 

37 Chemopreventive (184) 

 

38 Chemopreventive, anti-inflammatory (167, 184) 

 

39 Chemopreventive (184) 

 

40 Antioxidant (199) 

 

41 Anti-diabetic (185) 

 

42 Anti-oxidant (183) 

 

43 Anti-oxidant (183) 

 

 

Antidiabetic and anti-obesity activities 

Although ashitaba has been purported to possess numerous bioactivities, it has 

most notably been utilized as a medicinal plant to prevent obesity and its complications. 

Ashitaba extracts and their isolated constituents have been shown to possess antidiabetic 

and anti-obesity properties. However, the purported properties and modes of action are 

often contradictory between studies, suggesting a need for more comprehensive analysis 

of these activities.  
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 Tyrosine-protein phosphatase 1B (PTP1B) negatively regulates the insulin 

signaling pathway, and is a promising target for the treatment of type-II diabetes mellitus 

(180). Several compounds isolated from ashitaba, including chalcones 1, 2, 5, 6, 7, and 

12 and a coumarin (25), inhibited PTP1B activity with IC50 values of 0.82-4.42 µg mL-1. 

Kinetic studies revealed that compound 12 was a fast-binding competitive inhibitor of 

PTP1B (180). Additionally, KK-Ay mice, known to develop hyperglycemia with aging, 

were fed diets comprised of 0.15% 1 or 2 and showed suppressed development of insulin 

resistance, as well as lower levels of blood glucose (50% and 33% lower, respectively) 

when compared to controls (199). 

 Alpha-glucosidases aid in carbohydrate digestion and glucose release, and 

increased activity of these enzymes can lead to hyperglycemia and the development of 

type-II diabetes. Alpha glucosidase inhibitors are target molecules for suppressing the 

onset of this disorder. Four compounds, 14, 32, and 41, had alpha glucosidase inhibitory 

activity with IC50 values below 20 µM when using 4-nitrophenyl-alpha-D-

glucopyranoside as the substrate, considerably lower than the control drug acarbose (IC50 

= 384 µM) (185). 

 To maintain blood sugar homeostasis, it is imperative that skeletal muscle cells 

uptake glucose. Obesity can impair this uptake and lead to hyperglycemia. The majority 

of the translocation of glucose is completed by glucose transporter 4 (GLUT4). The 

activity of GLUT4 is regulated by protein kinase ζ/λ (PKC ζ/λ), protein kinase B (Akt), 

and adenosine monosphosphate activated protein kinase (AMPK). The activities of 1 and 

2 on the activation of GLUT4 glucose translocation in rat skeletal muscle L6 cells were 



 

59 

 

determined and compared to the activity induced by insulin (205). At 30 µM, 1 

stimulated glucose uptake into L6 myotubes 2.8-fold, and 2 stimulated the uptake 1.9-

fold, as did insulin. At 10 µM, 1, 2, and insulin induced GLUT4 translocation equally. Of 

the compounds screened, the prenylated chalcones had the highest GLUT4 inducing 

activity. The hydrophobic groups may interact directly with the myotubes and facilitate 

activation of transporters (205). Interestingly, the authors found that proteins that 

typically induce GLUT4 activity, notably PKC ζ/λ, Akt, and AMPK, were not activated 

by 1 and 2. Thus, 1 and 2 affect other signaling components in the cascade. 

 The differentiation of adipocytes from pre-adipocytes plays a large role in the 

development of obesity (209). Peroxisome proliferator-activated receptor γ (PPAR-γ) and 

CCAAT/enhancer binding proteins (C/EBPs) play important regulatory roles in adipocyte 

differentiation. Activation of C/EBP-β and C/EBP-δ begins a cascade that increases 

expression of C/EBP-α, PPAR-γ, and GLUT4 (209). AMPK downregulates C/EBP-α and 

PPAR-γ expression, and modulates the activity of other factors through the inactivation 

of acetyl-CoA carboxylase (ACC). Inactivation of ACC by phosphorylation halts the 

biosynthesis of malonyl-CoA, leading to fatty acid oxidation by carnitine 

palmitoyltransferase-1A (CPT-1A) (176).  

Counterintuitively, ligands that activate PPAR-γ have been developed to treat 

type-II diabetes mellitus. Small adipocytes can enhance glucose uptake upon insulin 

stimulation, enabling the reduction of insulin resistance (199). One study determined that 

incubation of 3T3-L1 cells with compounds 1 and 2 instead of insulin led to equal levels 

of adipocyte differentiation, but compound 1 resulted in the highest induction of glucose 



 

60 

 

uptake. In a follow-up experiment, the effects of 1 and 2 on PPAR-γ were evaluated, 

along with the effects of a known PPAR-γ agonist, pioglitazone. Interestingly, only the 

known agonist pioglitazone activated PPAR-γ, indicating that compounds 1 and 2 induce 

glucose uptake by a different mechanism than PPAR- γ activation (199).  

 Other studies have reported contradictory results, and indicate that ashitaba 

extracts, and particularly compounds 1 and 2 suppress adipocyte differentiation by 

inactivating PPAR-γ (176, 209). Treatment of 3T3-L1 cells with 1 and 2 phosphorylated 

AMPK, leading to its activation, and subsequent downregulation of C/EBP-α, C/EBP-β, 

PPAR-γ, and GLUT4 expression (209). To determine if adipogenesis was inhibited as a 

result of AMPK activation, cells were treated with compound C, an AMPK inhibitor, and 

with compounds 1 and 2. Compound C reversed the anti-adipogenic effects of the 

chalcones, further supporting the involvement of 1 and 2 in AMPK activation (209). 

Adiponectin helps to improve insulin resistance, so compounds aiding in 

adiponectin production may be useful in inhibiting the development of metabolic 

syndrome (182). In one study, the effects of compounds 1, 2, and 15-19 were assessed for 

their effects on adiponectin production in 3T3-L1 adipocytes. All chalcones up-regulated 

expression of adiponectin mRNA, particularly compounds 17 (7.80-fold induction) and 

18 (8.27-fold induction). Compounds 1, 2, and 15-19 also significantly enhanced 

adiponectin production (182).  

One clinical study was conducted to determine ashitaba’s efficacy for treating 

metabolic syndrome.  For this study, 9 subjects ingested ashitaba juice comprised of dried 

leaves and stems for 8-weeks (211). Following ingestion, all subjects had significantly 
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lower visceral fat, body fat, and body weight at the end of the 8th week, and no adverse 

clinical changes were attributed to ashitaba. However, this study lacked controls and as 

such provides insufficient evidence for ashitaba’s efficacy in treating metabolic 

syndrome. 

 Numerous in vitro and in vivo studies support the use of ashitaba as an anti-

obesity and anti-diabetic agent, although clinical trials are needed to confirm the 

relevance of these compounds in humans. However, contradictions in the literature 

suggest that further research to understand the mechanisms of action and molecular 

targets of active constituents should be conducted in addition to clinical tests. 

Additionally, research on other ashitaba constituents besides compounds 1 and 2 may 

lead to novel discoveries.  

Chemopreventive activity 

Ashitaba extracts have been shown to possess chemopreventive properties in 

vitro, involving both antiproliferative and antimutagenic mechanisms. Quinone reductase 

plays an important role in detoxification by reducing electrophilic quinones. This defends 

cells against quinone-induced cytotoxic effects and subsequent carcinogenesis(194). An 

ethyl acetate soluble crude vegetable extract of ashitaba was shown to induce Hep G2 cell 

quinone reductase activity by nearly fifty percent in 48 hours (1.42 ± 0.06 fold 

induction)(194). Unfortunately, the part of the plant extracted was not specified, and 

chemical consituents were not determined(194). Another study determined that NAD(P)H 

quinone oxidoreductase 1 (NQO1), which also protects against quinone-induced damage, 

was activated in murine hepatoma Hepa 1c1c7 cells by an ethanol soluble extract of 
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ashitaba (2.44-fold induction at 25 µg mL-1). Subsequent compound isolation indicated 

that four chalcones, 1, 2, 14, and 18 had the highest rates of NQO1 induction when tested 

against murine hepatoma Hepa 1c1c7 cells (185).  

 Several researchers have studied the inhibitory effects of ashitaba compounds on 

the induction of the Epstein-Barr virus Early Antigen (EBV-EA) by 12-O-tetradecanoyl 

phorbol 13-acetate (TPA). EBV is associated with numerous diseases, including types of 

lymphoma and cancer, and the inhibitory effects on its induction are often used to 

evaluate antitumor-promoting activity in preliminary studies (167). In Raji cells, 

compounds 10, 11, 14, 30, 34, 36, and 38 were more potent inhibitors than retinoic acid, 

the reference compound, with IC50 values ranging from 215-320 mol ratio 32 pmol-1 

TPA(167).  In a previous study, compounds 1, 2, 7, 9, 23, 24, 26, 28, 29, 31, 35, 37, and 

39 also showed potent inhibitor effects, ranging from 92-100% inhibition at 1000 mol 

ratio, and 51-84% at 500 mol ratio. In Raji cells, inhibitors 1, 14, 35, 37, and 39 were 

more potent than the reference compound β-carotene (184). Compound 27 was also 

found to have TPA-inhibiting properties (190). All of these active compounds have, in 

addition to the chalcone, coumarin, or flavanone backbone, a prenyl or genanyl group, 

suggesting that the addition of isoprene units results in an increase in chemopreventive 

potential (167). 

Three prenylated chalcones, 1, 2, and 7, were transformed by the fungal microbe 

Aspergillus satoi, resulting in flavanone, prenyl-chain hydrated, and ring-B-hydroxylated 

derivatives. Several flavanone and prenyl-chain derivatives, along with compounds 1, 2, 

and 7, also suppressed EBV-EA induction in Raji cells with IC50 values ranging from 
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211-348 mol ratio 32 pmol-1 TPA (203). Interestingly, biotransformation products in 

which the prenyl or geranyl chain was hydrated had the most potent inhibitor effects, 

even more than parent compounds. Products that had been cyclized from chalcones to 

flavanones, on the other hand, showed weakened activity (203). 

A prenyl-chain hydrated biotransformation product of 1, 2”,3”-dihydro-4,3”-

dihydroxyderricin (44, Figure 14), was shown to possess cytotoxic activity (IC50 = 2.9 

µM) against human leukemia cells (HL60) (203). To determine if this compound played 

a role in regulating apoptosis, a follow up experiment was conducted. Indeed, HL60 cells 

treated with 30, 40, or 50 µM of this compound displayed morphological characteristics 

consistent with apoptosis, including chromatin condensation, nuclei fragmentation, and 

mitochondrial membrane collapse (203). In two-stage carcinogenesis tests in mouse skin, 

it was determined 14 and 6”,7”-dihydro-7”-hydroxyxanthoangelol F (45, Figure 14), a 

hydrated prenyl-chain biotransformation product of 7, inhibited the rate and number of 

skin tumors produced in mice . When topically treated twice a week with 7,12-

dimethylbenz[a]anthracene (DMBA) and TPA, control mice developed papillomas 100% 

by 11-weeks. When treated topically with 85 nmol of 45 before application of DMBA 

and TPA, the incidence was lowered to 27% at 11-weeks and 87% at 20 weeks (203). 

Similarly, after 10-weeks only 20% of mice given a topical treatment (85 nmol) of 14 

before contact with tumor-inducing compounds developed papillomas when compared to 

100% of controls. At 20-weeks, 87% of treated mice had developed papillomas (167).  

Several in vitro studies have been conducted on ashitaba’s cytotoxic effects. 

However, only a few in vivo tests have been completed using animal models, and no 
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clinical trials have been conducted in humans. As such, no conclusive evidence yet exists 

to confirm the use of ashitaba compounds as anticancer agents. More robust animal 

studies followed by clinical trials are necessary to support the use of these constituents 

for cancer treatment.  

 

Figure 14. Chalcone Biotransformation Products from Angelica keiskei Koidzumi. 
 

 

Oxidative stress relief and anti-inflammatory activity 

Compounds isolated from ashitaba have been shown to possess antioxidant 

properties, thereby reducing inflammation by a number of routes. Modes of action 

include xanthine oxidase (XO) inhibition (168), free-radical scavenging activity (183, 

185, 186), and reduction in expression of pro-inflammatory transcription factors (200, 

207, 208). 

 Xanthine oxidase (XO) reduces molecular oxygen, leading to anionic O2
- and 

hydrogen peroxide. These free radicals commonly result in inflammation, so regulators of 

XO activity could be potent anti-inflammatory agents (168). When tested against XO 

from bovine serum milk, ashitaba stem and root bark extract demonstrated significant XO 

regulation as indicated by increased levels of xanthine oxidation. Isolated chalcones 1, 2, 

3, 7, and 14 showed IC50 values against XO ranging from 8.1 to 54.3 µM. Compound 2 
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was found to be the most effective (IC50 = 8.1 µM) and likely functions as a reversible 

inhibitor of xanthine oxidase (168). 

 Generation of free radicals can result in damage to cellular machinery. Compound 

40 from ashitaba seed coat tissue exhibited 2,2’-azino-bis(3-ethylbenzothiazoline-6-

sulphonic acid (ABTS) free radical scavenging activity (186). Additionally, compounds 

2, 15, 42, and 43 were found to scavenge 2,2,-diphenyl-1-picrylhadrazyl (DPPH) radicals 

(185), indicating that these compounds may be useful antioxidant agents. Compounds 3, 

20, 21, and 22 were also shown to scavenge superoxide radicals (0.51-1.1 µM IC50 

values), with 20 showing the most potent activity (183).  

Nitric oxide (NO) is another mutagen that affects microbial and mammalian cells 

due to the production of free radicals. When tested against Chang liver cells, compounds 

7, 10, 11, 14, 24, 26, 28, 29-31, 33, 34, and 38 showed inhibitory effects on NO almost 

equal to the reference compound glyzyrrhizin (167, 184). In another study, compounds 1 

and 2 were also shown to suppress the production of NO in RAW264 macrophages, with 

negligible effects on cellular function (208). The authors noted that prenylated chalcones 

were more effective in suppressing NO formation, with 2 being more potent than 1. Since 

2 contains a geranyl group and 1 contains a dimethylallyl group, it is possible that the 

increased hydrophobicity of additional isoprene units facilitates compound accumulation 

into the cell, promoting antioxidative activity (208). 

Tumor necrosis factor alpha (TNF-α) has been implicated as an important 

participant in the induction of inflammation (208) and is regulated by transcription 

factors activator protein 1 (AP-1) and the nuclear factor kappa-light-chain-enhancer of 
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activated B cells (NF-КB). Ashitaba extract and compound 2 were shown to inhibit 

inflammation induced by TNF- α in male kwl ICR mice (201). Another study determined 

that isolated compounds 1 and 2 had similar TNF- α suppressing effects in RAW264 

macrophages (208), and compound 5 induced suppression in porcine aortic endothelial 

cells (207). In RAW246.7 macrophages, the n-hexane ashitaba extract had anti-

inflammatory activity resulting from down-regulation of NF- КB-dependent gene 

products (200). Ashitaba’s anti-inflammatory properties can also be attributed to its 

effects on histamine release. Histamine is an important messenger compound released by 

mast cells in response to foreign agents and consequently plays a large role in allergic 

reactions and inflammation. Compounds 1, 2, 3, 4, and 6 have been illustrated to show 

histamine release inhibition in rat peritoneal mast cells (210). 

Again, many tests have been conducted in vitro on ashitaba constituents and their 

antioxidant and anti-inflammatory effects, but the translatability of these tests to in vivo 

and clinical tests has yet to be determined. Additionally, it should be noted that most 

substances exhibit some antioxidant effects, especially at high enough concentrations, 

and calorimetric tests such as those used to evaluate DPPH scavenging activity do not 

provide strong enough data to confirm antioxidant activity. More robust analyses utilizing 

cell lines are less likely to yield false positive results and are thus provide more valuable 

indications of antioxidant capacity. 

Antithrombotic activity 

Compounds isolated from ashitaba stem tissue show promise as antithrombotic 

agents due to their antiplatelet activity. Increased levels of plasminogen activator 
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inhibitor-1 (PAI-1), can result in persistent blood clots leading to thrombotic 

complications including heart attacks and strokes. TNF-α, a player in inflammation 

responses, is also involved in the induction of PAI-1 expression. Again, chalcones in 

ashitaba, namely compounds 2, 3, 5, and 6, were found to suppress activities induced by 

TNF-α, resulting in a reversal of PAI-1 increase in human umbilical vein endothelial cells 

(201).  

In another study, 1 and 2 illustrated dose-dependent anti-platelet activity against a 

number of platelet aggregation inducers, including collagen-, phorbol 12-myristate 13-

acetate (PMA), and platelet-activating factor (PAF) in washed rabbit platelets (206). The 

authors found that 1 and 2 have antiplatelet activity equivalent to aspirin. Because 1 and 2 

did not show strong inhibition against thrombin-induced clotting, which is induced 

through the phospholipase C-β (PLC-β) pathway, the authors concluded that the activity 

results through the intracellular mobilization of Ca2+ by the phospholipase-γ (PLC- γ) 

pathway, which is also stimulated by collagen and PAF (206). 

Blood pressure reducing activity 

Although little research has been completed regarding the antihypertensive 

properties of ashitaba, preliminary research has shown promise for its use in reducing 

blood pressure. The renin-angiotensin (R-A) system involves the angiotensin I-converting 

enzyme (ACE), which produces angiotensin II, a vasoconstrictor (202). ACE is a major 

player in essential hypertension, which is the most prominent type of hypertension 

diagnosed in the medical field. A compound isolated from ashitaba leaf tissue was found 

to inhibit ACE from rabbit lung acetone powder. It showed no effect on body weight or 
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serum lipid levels in spontaneously hypertensive rats (202). Mass spectral data and 

inhibitory activity data suggested that this compound may be structurally related to 

nicotianamine. More data is required, both in vitro and in vivo, to determine the efficacy 

of ashitaba in treating hypertension. 

Antimicrobial activity 

Ashitaba chalcones have also shown promise as antimicrobial agents. For 

example, compounds 1, 3, 5, 7, 8, and 13 were found to have potent influenza virus 

neuraminidase (NA) inhibition on recombinant NA from the 1918 Spanish flu virus 

(A/Bervig_Mission/1/18), suggesting that they may be useful as anti-influenza agents 

(181). The authors noted that the activity against NA was influenced by small changes in 

molecular structure. Elongation of prenyl chains from dimethylallyl groups to geranyl 

groups caused a two-fold loss of activity. When 2-hydroxy-3-methyl-3-butenyl alkyl 

(HMB) groups were also prenylated, 2-fold loss of activity was also observed. 

Conversion of dimethylallyl and geranyl groups to their HMB counterparts, on the other 

hand, resulted in a gain of activity (181). Compound 5 was found to be the most potent 

inhibitory agent, and the authors suggested that the location of the HMB group may be 

responsible for its potency (181). 

 Compounds 1 and 2 have also been identified as potent antibacterial agents, 

particularly against Gram-positive bacteria. Using an agar dilution test, these chalcones 

were shown to have MIC values below 7 µg mL-1 for Staphylococcus aureus 209-P, and 

below 2 µg mL-1 against Bacillus subtilis PCI-219, B. subtilis ATCC_6633, B. cereus 

FDA-5, S. aureus IFO-3060, S. epidermidis IFO-3762, and Micrococcus luteus IFO-
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12708 (204). These compounds were also shown to have potent antibacterial activity 

(MIC ≤ 1.00 µg mL-1) against plant-pathogenic bacteria, including Agrobacterium 

tumefaciens IFO-3058, Pseudomonas syringae pv. phaseolicola IFO-12656, P. syringae 

pv. tabaci IFO-3508, P. stutzeri IFO-12510 (204).   

Bioavailability 

Ashitaba chalcones possess a number of purported health effects, but no reports 

about the bioavailability of its prenylated chalcones in human tissue currently exist. 

However, several studies have examined the pharmacokinetic properties of xanthohumol, 

a prenylated chalcone found in hops, in both humans and rats. Rats and humans given 

oral administrations of hops typically had nanomolar concentrations of xanthohumol and 

related prenylflavonoids in their plasma (212-214). In a study conducted on human 

microbiota-associated rats, the overall excretion of xanthohumol and its related 

metabolites after two days was only 4.2% of the ingested amount, indicating that this 

compound is likely hydrolysed by human intestinal microorganisms (213). Additionally, 

interindividual variability in gut microbiota was found to play a large role in the 

availability of xanthohumol, and some species of bacteria rapidly hydrolyze this chalcone 

into 8-prenylnaringenin, a potent phytoestrogen that can affect estrogen signaling 

pathways (212-214). The associated health effects of the consumption of xanthohumol 

depends largely on the amount ingested, as well as on the phenotype of the individual 

ingesting this compound. Whether or not these trends will translate to other prenylated 

chalcones such as those contained in ashitaba tissue is uncertain, and future studies 

should aim to determine bioavailability of these compounds. Additionally, studies 



 

70 

 

determined to identify the in vivo differences in metabolism in individuals with variable 

gut microbiota should be conducted. 

Toxicology 

The safety of ashitaba was assessed using multiple good laboratory practice 

(GLP) tests, including a bacterial reverse mutation test, chromosome aberration test, in 

vivo mouse micronucleus test, acute oral toxicity tests, and a 13-week oral toxicity test 

(215). Additionally, the safety of using ashitaba for cosmetic purposes was assessed using 

the eye irritancy test (216). 

 Ashitaba yellow sap chalcone powder was found to be non-mutagenic based on 

results from the bacterial reverse mutation assay, chromosome aberration assay, and in 

vivo micronucleus assay. Decreased platelet counts were noted in male and female 

Sprague Dawley rats, which is an expected effect based on known antithrombotic 

properties of several bioactive chalcones. It was noted that the magnitude of the platelet 

count reduction is marginal, and not of toxicological significance without other clinical 

signs (215). Statistically significant levels of serum alkaline phosphatase, total 

cholesterol, and serum phospholipid and triglycerides were noted in rats fed the highest 

amount of ashitaba chalcone powder (1000 mg kg-1 body weight). This is also an 

unsurprising discovery based on the known effects of ashitaba on cholesterol transport 

and lipid metabolism. 

 Interestingly, male and female rats fed the highest dose showed dilated intestinal 

lacteals involved in the absorption of dietary fats in the small intestine. Such dilation is 

indicative of lymphangiectasia, a rare disorder that can lead to edema and its related 
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complications, including fatigue, abdominal pain, diarrhea, vitamin deficiencies, and 

weight loss (217). The observation of jejunal lacteal dilation is extremely rare in rodent 

toxicity studies, so the no observed adverse effect level (NOAEL) of ashitaba powder 

was concluded to be 300 mg kg-1 body weight (215). 

To determine the safety of ashitaba as a topical agent, 100 mg of aqueous or 

ethanol ashitaba leaf extracts were dropped into the eyes of New Zealand White rabbits 

and the reactions were assessed each day for 7 days. No damages were reported in terms 

of corneal lesions, turbidity, or eyelid swelling (216). As such, aqueous and ethanol 

extracts of ashitaba are candidates for use as cosmetic agents. 

Although the issue of furanocoumarin toxicity has not been specifically addressed 

with ashitaba, it should be noted that a number of furanocoumarins have been shown to 

be phototoxic and photogenotoxic, in addition to interfering with drug metabolism by 

cytochrome P450 enzymes (218). Ashitaba, as is typical with members of the Apiaceae 

family, contains bioactive furanocoumarins (25) and furanocoumarin analogs containing 

a tetrahydrofuran, rather than a furan, ring (23, 27). In fact, compound 25 has illustrated 

phototoxic and photogenotoxic effects in a number of studies (218, 219). A recent report 

assessed by the Senate Commission on Food Safety determined that compound 25 and its 

isomer 8-methoxypsoralen are only weakly mutagenic in the absence of UV light, but in 

the presence of UV radiation, these compounds bind covalently to DNA in bacteria and 

yeasts, leading to genotoxic and mutagenic effects (219). Because numerous 

furanocoumarin derivatives are present within ashitaba plant tissue, it is necessary to test 

individual compounds for phototoxic and photogenotoxic effects. Additionally, 



 

72 

 

bioavailability is affected both by extract composition as well as the route of 

administration, and studies are required to determine if phototoxic compounds, such as 

compound 25, are at high enough concentrations to be of toxicological concern.  

The toxicological data on ashitaba extracts has been addressed to some extent, but 

more robust toxicological examinations, such as teratogenicity tests, are needed. 

Additionally, toxicological analyses on isolated compounds should be conducted. In 

particular, the toxicological profiles of prenylated chalcones (1-22), the representative 

structural class of ashitaba, as well as those of furanocoumarins (23, 25, 27), must be 

thoroughly characterized to determine ranges of toxicity.  

Conclusions 

This review summarizes the known phytochemistry and bioactivities of ashitaba. 

Although there is some inconsistency in the literature, most notably on the effect of 

ashitaba on adipocyte differentiation, in vivo evidence supports the use of ashitaba as a 

medicinal plant with anti-obesity properties. Although thorough in vitro testing has been 

completed for many of ashitaba’s other purported bioactivities, more robust in vivo and 

clinical experiments are needed to confirm the medicinal applications from a clinical 

standpoint. Clinical testing is warranted to assess ashitaba’s anti-diabetic and anti-obesity 

efficacy, whereas in vivo data is needed before pursuing clinical testing for other 

biological activities. In addition in vivo and clinical testing, future studies should focus 

not only on chalcones 1 and 2, but also on the bioactivities of other related compounds. 
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CHAPTER III 

 

INTEGRATION OF BIOCHEMOMETRICS AND MOLECULAR 

NETWORKING TO IDENTIFY BIOACTIVE 

CONSTITUENTS OF ASHITABA 

This chapter has been published in the journal Planta Medica and is presented in 

that style. Caesar, L.K., Kellogg, J.J., Kvalheim, O.M., Cech, R.A., Cech, N.B. 

Planta Medica. 2018, 84(9-10), 721-728.  
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Introduction 

The complexity of botanicals makes them a rich source for medicinally useful 

compounds, but leads to many analytical challenges. The traditional workflow for natural 

product discovery is bioassay-guided fractionation (220, 221), in which bioactive extracts 

and subsequent fractions are chromatographically separated and retested for bioactivity 

until active compounds have been isolated. Because botanical extracts contain thousands 

of individual constituents, it is often difficult to assign activity to individual components, 

thus, the most abundant or easily isolatable compounds are often presumed to be 

responsible for bioactivity (131, 132). New methods are needed that will enable isolation 
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efforts to be focused on those components most likely to be responsible for the desired 

biological activity.   

Compounds from nature have been utilized to treat microbial infections 

throughout history (222), and some sources estimate that up to two-thirds of antibacterial 

agents on today’s market are derived from natural products (223). The virtually limitless 

chemical diversity of natural products, particularly botanicals, results from their complex 

biosynthetic pathways, and many plant secondary metabolites, including flavonoids, 

alkaloids, and coumarins, have shown antimicrobial activity (221, 222, 224-227). 

Angelica keiskei Koidzumi (Apiaceae), or ashitaba, is a member of the Angelica genus 

native to the southernmost islands of Japan that is popularly utilized as a food and a 

medicinal herb, purportedly to extend life expectancy, increase vitality, and to treat a 

broad range of diseases and infections. Most of these activities result from the action of 

unique prenylated chalcones, as well as coumarins and flavanones (reviewed in (228)). 

Two compounds from A. keiskei, 4-hydroxyderricin (1) and xanthoangelol (2) have been 

shown to possess activity against methicillin-resistant Staphyloccoccus aureus (MRSA) 

(204). Additionally, A. keiskei chalcones xanthoangelol F and isobavachalcone are active 

against other Gram-positive organisms, though they have not been tested against 

pathogenic bacteria such as MRSA (229). With this study, we sought to employ 

antimicrobial extracts of A. keiskei as a test case for the development of new methods to 

prioritize bioactive compounds early in the isolation process for a complex botanical.  

In combination with chromatographic techniques, mass spectrometry can be 

utilized to analyze hundreds of secondary metabolites simultaneously (132, 230, 231). 
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Using a process called biochemometrics, quantitative chemical information and 

biological activity data can be incorporated into a statistical model. With this statistical 

modeling approach, it is possible to discovery chemical patterns related to bioactivity 

(132). Partial least squares (PLS) analysis can be used in combination with 

chromatographic and mass spectrometric data to correlate metabolite profiles with 

biological data (232). A recent study from our laboratory showed that selectivity ratio 

analysis was useful for the identification of trace bioactive constituents in fungal extracts 

without being confounded by highly abundant compounds (132). The selectivity ratio 

compares the correlation and covariance to the residual variance, and provides a 

quantitative measurement of the ability of a given variable to differentiate between active 

and inactive groups (233). 

Biochemometric analysis is helpful for distinguishing between active and inactive 

chemical constituents, but it is also useful to obtain structural information for the purpose 

of prioritizing new compounds for isolation. To address this, we have utilized the Global 

Natural Product Social Molecular Networking (GNPS) database (143)to build molecular 

networks from mass spectral fragmentation data. These fragmentation data provide useful 

chemical information, and structurally similar molecules should possess similar mass 

spectral fragmentation patterns. By comparing cosine similarity scores of individual 

compounds’ fragmentation patterns, GNPS can produce visual networks comprised of 

chemically related compounds and enables the identification of known compounds, 

molecular families, and structural analogs. By combining GNPS networking with 

biochemometric analysis, we propose that it would be possible to identify the structural 
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classes of putative active molecules. The goal of this project is to utilize this integrated 

approach to prioritize isolation efforts on biologically relevant compounds from A. 

keiskei and to gain a more comprehensive understanding of which constituents contribute 

to the antimicrobial activity of this botanical against MRSA.  

Results and Discussion 

The first goal of this study was to utilize biochemometric analysis to identify 

putative bioactive constituents contributing to the antimicrobial activity of A. keiskei. 

Bioactivity screening demonstrated complete inhibition of methicillin-resistant S. aureus 

(MRSA, strain USA300 LAC strain AH1263) (234) by the A. keiskei extract at 10 

µg/mL. This extract was then fractionated in several stages (see fractionation schemes, 

Appendix C, Figures S1 and S2), with the fractions displaying the most pronounced 

antimicrobial activity against MRSA prioritized for further isolation (Table 5).  

Bioactivity and mass spectral data from the second stage of fractionation (AK-3-1 

through AK-3-8 and AK-4-1 through AK-4-4) (Table 5) were utilized to produce a 

biochemometric model predicting which constituents were responsible for antimicrobial 

activity. The internally cross-validated model generated five components that accounted 

for 83.61% of the independent (mass spectral), and 99.93% of the dependent (growth 

inhibition) variation (component 1: 32.58% independent, 53.16% dependent; component 

2: 24.85% independent, 30.29% dependent; component 3: 11.54%, 13.98%; component 

4: 7.86%, 1.93%; component 5: 6.79%, 0.57%).  
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Table 5. Antimicrobial Activity of Angelica keiskei Koidzumi (AK) Crude Extract (CR) and Second-

Stage Fractions AK-3-1 through AK-4-4a 

 

 

Sample 

Methicillin-resistant S. aureus growth inhibition (%) 

50 µg/mL 5 µg/mL 

Chloramphenicolb 100 ± 0 46.7 ± 1.8 

AK-CR 99.22 ± 0.39 6.4 ± 6.0 

AK-3-1 0 ± 0b 21 ± 16 

AK-3-2 99.35 ± 0.65 26.0 ± 1.3 

AK-3-3 99.09 ± 0.91 11.14 ± 0.79 

AK-3-4 100 ± 0 0 ± 0 

AK-3-5 90.7 ± 3.3 99.61 ± 0.23 

AK-3-6 0 ± 0b 26 ± 15 

AK-3-7 0 ± 0 0 ± 0 

AK-3-8 0 ± 0 0 ± 0 

AK-4-1 97.4 ± 2.4 19.76 ± 0.26 

AK-4-2 98.8 ± 1.2 98.95 ± 0.47 

AK-4-3 99.74 ± 0.26 3.2 ± 1.2 

AK-4-4 0 ± 0 0.66 ± 0.66 
a Growth inhibition of methicillin-resistant S. aureus strain (MRSA USA300 LAC strain AH1263) (234) 

relative to vehicle control measured turbidimetrically by OD600. Data presented are the result of triplicate 

analyses ± SEM. b Chloramphenicol (Sigma-Aldrich, 98% purity) served as the positive control.  
b Higher concentration samples of AK-3-1 and AK-3-6 show lower activity than their low-concentration 

counterparts, likely due to low solubility in aqueous media at high concentrations. 

To interpret the model and tentatively identify the chemical entities responsible 

for the MRSA growth inhibition, a selectivity ratio plot was generated (Figure 15A). This 

plot revealed several marker ions that were strongly correlated with bioactivity, but could 

not provide structural information about these components. To generate such structural 

information, molecular networks were generated using MS/MS data from second-stage 

and third-stage chromatographic fractions (fractions resulting from two or three rounds of 

chromatographic separation, Appendix C, Figure Fig. S1). The resulting molecular 

networks were filtered using the biochemometric selectivity scores to identify molecular  

families of putative active compounds and assign tentative structures to candidate 

molecules (Supplementary Fig. S3). Interestingly, one second-stage molecular network 
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and one third-stage molecular network identified the chalcones 4-hydroxyderricin (1) and 

xanthoangelol (2), the only known anti-MRSA compounds from A. keiskei (204).   

  

Figure 15. Selectivity Plot (A) and Selected Molecular Networks of Second-Stage (B) 
Figure 15. Selectivity Plot (A) and Selected Molecular Networks of Second-Stage (B) and Third-Stage 

(C) Fractions of A. keiskei Root Extract. Bars have been color coded in A and points have been color 

coded in B and C only if they were both correlated with bioactivity and appeared in molecular networks of 

interest. Predicted active compounds in A appeared almost exclusively in these networks, indicating that a 

particular class of compounds is responsible for A. keiskei’s antimicrobial activity. 
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Other known A. keiskei chalcones were also identified (Figure 16). The same networks 

also contained masses of seven of the top ten contributors to bioactivity (marker ions A-

G, Table 6) based on the biochemometric model (Figures 15B-15C), suggesting that 

chalcones are responsible for A. keiskei’s antimicrobial efficacy against MRSA. The 

combination of biochemometrics and molecular networking enabled identification of a 

subset of these chalcones for prioritization and subsequent analysis, making it possible to 

predict the identity of biologically active extract components prior to isolating them. 

 

Figure 16. Molecular Networks Comprised of Compounds Detected in A. keiskei Built from Fractions 

Following One (Left) and Two (Right) Stages of Fractionation. In top networks, compounds marked in 

red match accurate masses of known A. keiskei chalcones. In bottom networks, green compounds match 

accurate masses of known antimicrobials 1 and 2, yellow compounds match known chalcones that have not 

been shown to possess anti-MRSA activity, and red compounds were correlated with bioactivity based on 

biochemometric selectivity ratio analysis but do not match known masses from the literature. 
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Table 6. Tentative Identification of Putative Bioactive Chalcones from A. keiskei.  

 

Marker ion Ion/retention time 

(molecular formula, 

δ (ppm)) 

Adducts and fragments 

(molecular formula, δ 

(ppm)) 

Tentative identification(s) 

A 421.202 [M-H]- / 6.23 

(C26H29O5
-, 1.189) 

 4,2’,4’-trihydroxy-3’-[(2E, 5E)-7-

methoxy-3,7-dimethyl-2,5-

octadienyl]chalcone a 

Xanthoangelol G a 

B 391.191 [M-H]- / 6.77 

(C25H27O4
-, 0.168) 

505.184 [M-H + TFA]- 

(C25H27O4 + C2HF3O2, 0.399) 

271.134 [M-H – C8H8O]-  

(C17H19O3
-, 2.141) 

783.389 [2M-H]-  

(2C25H28O4 – H, 0.886)  

 

 

Xanthoangelol b 

C 391.191 [M-H]- / 5.59 

(C25H27O4
-, 0.168) 

 Xanthoangelol I a  

D 351.123 [M-H]- / 5.52 

(C21H19O5
-, 0.708) 

 Xanthoangelol K b 

E 407.186 [M-H]- / 6.58 

(C25H27O5
-,0.371) 

 Xanthoangelol B a 

(2E)-1-[3,5-dihydroxy-2-methyl-

2-(4-methyl-3-[penten-1-yl)-3,4-

dihydroxy-2H-chromen-8-yl]-3-

(4-hydroxyphenyl-2-propen-1-

one) a 

(2E)-1-[4-hydroxy-2-(2-hydroxy-

6-methyl-5-hypten-2-yl)-2,3-

dihydro-1-benzofuran-5-yl]-3-(4-

hydroxyphenyl)-2-propen-1-one a 

F 379.155 [M-H]- / 5.97 

(C23H23O5
-, 1.19) 

 Potentially new chalcone 

derivative c 

G 439.211 [M-H]- / 5.17 

(C26H31O6
-, 2.422) 

 Potentially new chalcone 

derivative c 

a previously reported from Angelica keiskei Koidzumi, identified using accurate mass data (228). 
b isolated and confirmed by NMR 
c accurate masses do not match accurate masses of known A. keiskei chalcones, yet these masses appeared 

in chalcone molecular networks, indicating that they may be new chalcone derivatives. 

Fifteen of the features in networks of interest matched the reported accurate 

masses of known chalcones (228) that have not yet been associated with antimicrobial 
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activity (Figure 16). Of these, five were predicted as potentially contributing to 

bioactivity by the biochemometric model, including the top contributor at m/z 421.202. 

Two additional compounds in these networks were identified among the top ten 

contributors by the biochemometric model that did not match accurate masses of 

bioactive chalcones from A. keiskei (Figure 16). Because these compounds clustered with 

known chalcones based on similarities in mass spectral fragmentation patterns (Figure 

16), it was predicted that other chalcone antimicrobials might be present. 

Biochemometric and molecular networking analysis identified marker ions 

associated with activity (Table 6). Purification of active A. keiskei fractions was 

conducted to assess the predictive accuracy of this approach, and four compounds were 

isolated (Figure 17). The two known anti-MRSA compounds from A. keiskei, 1 and 2, 

were isolated using a combination of normal- and reversed-phase chromatography. 

Compound 1 was isolated at 98% purity following two stages of normal-phase flash 

chromatography and one stage of reversed-phase flash chromatography. Compound 2 

was obtained at 95% purity following three stages of fractionation using both normal-

phase flash chromatography and reversed-phase preparative-scale HPLC. The structures 

of compounds 1 and 2 were confirmed with 1H and 13C NMR by comparing to literature 

data (235) (Appendix C, Figures S4-S7). 

Two additional chalcones, 3 and 4, were isolated following a scale-up extraction 

and isolation. Compound 3 was isolated with 96% purity following two rounds of 

normal-phase flash chromatography, and 4 at 99% purity required an additional round of 

reversed-phase preparative HPLC. 1H and 13C NMR were utilized to confirm the 
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identities of these compounds by comparing to published data (178, 180) (Appendix C, 

Figures S8-S12). For 4, HMBC data were collected to confirm the presence of a ketone 

peak that did not appear in the 13C NMR spectra (Appendix C, Figure S12), likely due to 

keto-enol tautomerization.  

 

Figure 17. Structures of Compounds 1-4, which were Isolated from Ashitaba (Angelica keiskei) and 

Assessed for Antimicrobial Activity.  

By integrating biochemometrics and molecular networking into the traditional 

bioassay-guided fractionation workflow, it was possible to prioritize minor constituents 

in A. keiskei for isolation (see workflow, Appendix C, Figure S3). Using 

biochemometrics to filter molecular networks and focus on specific structural classes, a 

subset of chalcone derivatives were identified that were most likely to possess 

antimicrobial activity and were prioritized for isolation. With this method, known, 
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abundant antimicrobial compounds 1 and 2 were isolated, similar to previous bioassay-

guided fractionation approaches alone (204). Compounds 1 and 2 demonstrated MICs 

against MRSA (USA300 LAC strain AH1263) (234) of 4.6 µM and 4.0 µM, respectively 

(Table 7, Figure S13). The biochemometrics/GNPS approach also enabled isolation of an 

additional low abundance antimicrobial compound (4), marker ion D (Table 6) that has 

not previously been reported to possess antimicrobial activity. In selectivity ratio plots, 4 

was listed as the fourth top contributor to the observed biological activity of A. keiskei 

despite its low relative abundance (Figure 15A, Table 6). In the base-peak chromatogram 

of the A. keiskei root extract, the peak area associated with 4 only accounted for 0.8% of 

the total fraction (Figure 18). Compound 4 did inhibit growth of MRSA (IC50 at 168 µM, 

Table 7, Appendix C, Figure S13) although did not reach MIC at the highest 

concentration tested (284 µM).  Finally, as additional confirmation, we also isolated 3, 

which appeared in the chalcone molecular network (Figure 16) but was not predicted to 

be antimicrobial. As predicted by biochemometrics, 3 did not possess antimicrobial 

activity, despite structural similarity to active compounds.  Collectively, the agreement 

between predicted and observed biological activity of 1-4 demonstrates that the 

biochemometrics process as employed can be effective for identifying a subset of 

molecules for isolation based on their likely biological activity. 
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Figure 18. Base-Peak Chromatogram of Ethyl Acetate A. keiskei Root Extract with Peaks of Interest 

Identified by Biochemometric Selectivity Ratio Analysis. This analysis was successful in enabling 

prioritization of trace peaks of interest for isolation. 

Table 7. MIC and IC50 Data for Compounds 1-4 against Methicillin-Resistant S. aureus (MRSA 

USA300 LAC Strain AH1263) Relative to Vehicle Control Measured Turbidimetrically by OD600. 

Presented data were calculated using four-parameter logistic curves of triplicate data.  

 

a The MIC value expressed is likely higher than the actual MIC value, which lies somewhere between the 

lowest tested concentration that inhibited bacterial growth and the highest tested concentration that did not 

completely inhibit bacterial growth (236). 

The results described here are consistent with previous studies which suggest that 

prenyl- and geranyl- moieties on the A-ring of chalcones (present in 1 and 2) are 

associated with antimicrobial activity (229). Compound 3 has a markedly different side 

chain from 1 and 2, with a flexible peroxide group, which is likely responsible for its 

decreased antimicrobial activity. Compound 4, though it does not contain an prenyl side 

chain, could possess weak activity due to the similarity of its side chain in rigidity and 

size to the prenyl substituent seen in 1.   

Compound MICa IC50
 

1 4.6 µM 2.0 µM 

2 4.0 µM 2.3 µM 

3 -- -- 

4 -- 168 µM 
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Several additional features identified as possibly contributing to biological 

activity were identified in GNPS as chemically related to isolated chalcones 1-4 (Figures 

15 and 16). Based on these networks and accurate mass data of these compounds, we 

tentatively identified these compounds (Table 6). Unfortunately, material was too limited 

to isolate these compounds or assess biological activity. From a drug discovery 

standpoint, however, this approach is useful in dereplication, as it allowed us to identify 

these compounds as chalcones early in the fractionation process. Since chalcones are well 

documented antimicrobials (237), we did not complete an additional scale up to pursue 

their isolation.  

In this example, marker ion A (Table 6) at m/z [M-H]- 421.202 eluting at 6.2 

minutes was identified as the constituent most correlated with bioactivity and accounted 

for 0.4% of the total extract based on peak area. Unfortunately, even with a scale up 

extraction and chromatographic efforts tailored to this specific compound, isolation 

efforts for this compound were unsuccessful.  This failure to isolate the active constituent 

demonstrates one of the inherent limitations of the biochemometric approach for 

identifying bioactive compounds.  While it is possible based on mass spectrometric data 

to identify minor compounds that may have important biological activity, it may be 

infeasible (due to limited quantity) to isolate such minor compounds for confirmation of 

structure and activity.   

One limitation of this study is that biochemometric analysis did not predict 

biological activity for the most abundant isotopes of 1 and 2, despite the confirmed 

antimicrobial activity of these compounds. Based on relative peak area, 2 accounted for 
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37.8% of the relative abundance in the EtOAc extract, and 1 accounted for 12.5%. The 

high abundance and antimicrobial potency of these compounds likely led to a mismatch 

in biological and chemical data. While the relative peak area of these compounds varied 

in every fraction under study, the biological activity was saturated at 100% in multiple 

fractions. Consequently, the linearity between the relative abundance of these compounds 

and their corresponding bioactivity was likely skewed, leading to false negative results. 

Although the [M-H]- peak for the most abundant (12C) isotope of 2 was not identified as 

active (Figure 15), several of the 13C isotopes as well as the TFA adduct, and an in-source 

fragment of this compound were predicted to be active (marker ion B, Table 6). The 

adducts and isotopes of 2 were only evident in fractions where 2 was extremely abundant, 

and consequently, they were identified by the selectivity score as marker ions related to 

bioactivity. The identification of an active isotope of a compound that is not itself 

predicted to be active is clearly an artifact of an error in the data analysis process, given 

that all isotopes co-occur in the sample, and the adducts are formed in the ionization 

process and likely not present in the sample at all.   

An important goal for the comprehensive characterization of a botanical medicine 

should be to isolate minor constituents within the extract. However, it is not feasible to 

isolate all minor constituents in a complex mixture, so putative bioactive constituents 

must be prioritized. A major strength of the biochemometric selectivity ratio analysis is 

its ability to identify low-abundance constituents contributing to activity without being 

confounded by compounds of high abundance. However, this strength comes with an 

important weakness in that bioactive compounds of high abundance may be overlooked. 
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This weakness can easily be overcome, however, if this statistical analysis is incorporated 

into the traditional bioassay-guided fractionation workflow, which favors the isolation of 

abundant active compounds.  It is also possible that this limitation could be addressed by 

diluting samples to reduce the level of high abundance compounds, although this 

approach would come at the expense of sacrificing response of those present at low 

abundance. 

In combination with bioassay-guided fractionation, biochemometrics and 

molecular networking can be utilized to identify structural families of putative active 

constituents present at very low levels, allowing for the prioritization of isolation of both 

high and low abundance components that contribute to activity, or alternately, enabling 

the dereplication of known bioactive compounds and their structural analogs. The latter 

application is important because it prevents time being wasted on reisolating known 

active compounds. Had we been searching for bioactive compounds with novel structures 

only, we may have chosen not to pursue further isolation with A. keiski once we 

identified chalcones as the major class of active constituents within this plant. However, 

for the purpose of this study, a botanical containing known antimicrobial constituents 

served as a useful test case. The approach employed here not only facilitated the 

identification of a trace antimicrobial constituent from A. keiskei, but also yielded new 

and more complete information about which constituents are responsible for the 

antimicrobial activity of this botanical. Additionally, it provided insight into which 

structural characteristics of chalcones are associated with their antimicrobial effects.  
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Materials and Methods 

General experimental procedures 

NMR spectra were obtained using a JEOL ECA-500 MHz spectrometer. UPLC-

MS analysis was completed in both negative and positive modes using an LTQ Orbitrap 

XL mass spectrometer (Thermo Fisher Scientific) connected to an Acquity UPLC system 

(Waters Corporation). When collecting UPLC-MS data, 3 μL of 1 mg/mL samples 

suspended in MeOH were injected into the column. Using a flow rate of 0.3 mL/min, 

samples eluted from the column (BEH C18 1.7 μm, 2.1 x 50 mm, Waters Corporation) 

using the following gradient with solvent A consisting of water with 0.1% formic acid 

and solvent B consisting of acetonitrile with 0.1% formic acid: 90:10 (A:B) from 0-0.5 

min, increasing to 0:100 (A:B) from 0.5-8.0 min. The gradient was held at 100% B for 

0.5 min, before returning to starting conditions over 0.5 min and held from 9.0-10.0 min. 

Mass analysis was completed in both positive and negative ionization modes over a scan 

range of 150-2000 with the following settings: capillary voltage at -21.00 V, capillary 

temperature at 275.00 °C, tube lens offset at -95.00 V, spray voltage at 3.50 kV, sheath 

gas flow at 30.00, and auxiliary gas flow at 15.00. The top 4 most intense ions were 

fragmented with CID set to 35.0.  

Flash chromatographic separations were completed using a CombiFlash RF 

system (Teledyne-Isco) and examined using a PDA detector and an evaporative light 

scattering detector (ELSD). Preparative and analytical HPLC separations were conducted 

with a Varian HPLC system (Agilent Technologies) using Galaxie Chromatography 
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Workstation software (version 1.9.3.2, Agilent Technologies). All chemicals were 

acquired through Sigma-Aldrich and were spectroscopic or microbiological grade.  

Plant material 

Fresh roots of Angelica keiskei Koidzumi were collected on November 14, 2015 

from Strictly Medicinal Seeds in Williams, Oregon (Sample # 12421, N 42°12’17.211”, 

W 123°19’34.60). Scale up material was completed using plant material from the same 

source collected on December 29, 2016 (Sample #12444, N 42°12’17.211”, W 

123°19’34.60). The identity of this plant material was confirmed by Richard A. Cech at 

Strictly Medicinal Seeds, and a voucher specimen was deposited at the herbarium of the 

University of North Carolina at Chapel Hill (NCU627665). 

Extraction 

Fresh A. keiskei roots were dried in a single-wall transite oven (Blue M Electric 

Company) at 40 °C for 24 hours. The resulting dry mass (138.90 g) was ground using a 

Wiley Mill Standard Model No. 3 (Arthur Thomas Company) and submerged in MeOH 

at 160 g/L for 24 hours three times. The resulting MeOH extract was concentrated in 

vacuo and then subjected to liquid-liquid extraction. First, the extract was defatted by 

partitioning between 10% aqueous MeOH and hexane (1:1). The dried aqueous MeOH 

layer was partitioned further between 4:5:1 EtOAc/MeOH/H2O. To remove hydrosoluble 

tannins, the EtOAc layer was washed with a 1% NaCl solution. The resulting EtOAc 

extract was dried under nitrogen, yielding 3,650.32 mg dried extract, before further 

experimentation. Scale up material (964 g) was dried, extracted, and partitioned using the 
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same methods listed above, ultimately yielding 18.10 g of dried EtOAc extract for 

subsequent chromatographic separation. 

Chromatographic separation and isolation 

The isolation scheme is provided in Appendix C (Figures S1 and S2). The first-

stage separations of the EtOAc extract (3,100 mg) were conducted using normal-stage 

flash chromatography (40 g silica gel column) at a 40 mL/min flow rate with a 35 min 

hexane/CHCl3/MeOH gradient. The last two fractions (AK-3 and AK-4) were subjected 

to a second stage of normal-phase flash chromatography. Fraction 3 (AK-3, 1355 mg) 

was separated again with a 40 g silica gel column at a flow rate of 40 mL/min and 

fraction 4 (AK-4, 536 mg) was separated on a 12 g silica column with a flow rate of 30 

mL/min. Each run lasted 45 minutes, and was completed using a hexane/EtOAc/MeOH 

gradient. The most active fraction from the separation of AK-3 (fraction 2, AK-3-2, 1000 

mg) was subjected to a final round of reversed-phase flash chromatography using a 130g 

C18 reversed phase RediSep Rf column with an 85 mL/min flow rate. A 25-minute 

gradient of CH3CN/H2O was used, starting at 40:60 and increasing to 85:15. It was 

increased to 100:0 for 5 minutes, upon which starting conditions were re-established. 

Compound 1 eluted at 18 min (234.45 mg, 98% purity, 7.6% yield). Fraction AK-4-2 

(364 mg) was also subjected to a final round of reversed-phase preparative HPLC 

injected onto a Luna preparatory column (5 µm PFP, 250 × 21.20mm; Phenomenex).  

The 35 minute run began at 40:60 CH3CN:H2O and was increased to 100:0 over thirty 

minutes. Compound 2 was collected from 28-35 minutes (284.59 mg, 95% purity, 9.1% 

yield). 
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Compounds 3 and 4 were isolated following scale up extraction. First, 17.5 g of 

EtOAc extract were separated on a 120g silica column with an 85mL/min flow rate using 

the same hexane/CHCl3/MeOH gradient as used for the first fractionation of original 

extract. The second fraction (S-AK-2, 5.3 g) was separated again using normal-phase 

flash chromatography on a 120 g silica column at 85 mL/min flow rate with a 55-minute 

gradient of hexane/EtOAc/MeOH. Compound 3 eluted at 31 minutes (150 mg, 96% 

purity, 0.85% yield). Fraction 4 (S-AK-2-4, 172 mg) was subjected to a final 45-minute 

round of reversed-phase preparative HPLC on a Gemini-NX preparatory column (5 µm 

C18, 250 × 21.20 mm; Phenomenex) at a flow rate of 21.4 mL/min with a gradient of 

55:45 CH3CN:H2O. Compound 4 (1.5 mg, 99% purity, 0.0086% yield) eluted at 19 

minutes. 

4-hydroxyderricin (1): yellow crystalline solid; HRESIMS m/z 337.1438 [M-H]- 

(calculated for C21H21O4
-, 337.1440); 1H NMR (500 MHz, CDCl3) and 13C NMR (125 

MHz, CDCl3) chemical shifts matched literature values (205) and are provided in 

Appendix C (Figures S4 and S5). 

Xanthoangelol (2): yellow crystalline solid; HRESIMS m/z 391.1907 [M-H]- (calculated 

for C25H27O4
-, 391.1909); 1H NMR (500 MHz, CDCl3) and 13C NMR (125 MHz, CDCl3) 

chemical shifts matched literature values (205) and are provided in Appendix C (Figures 

S6 and S7). 

Xanthoangelol E (3): yellow, amorphous powder; HRESIMS m/z 369.1340 [M-H]- 

(calculated for C21H21O6
-, 369.1338); 1H NMR (500 MHz, DMSO) and 13C NMR (125 
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MHz, DMSO) chemical shifts matched literature values (178) and are provided in 

Appendix C (Figures S8 and S9). 

Xanthoangelol K (4): yellow amorphous powder; HRESIMS m/z 351.1231 [M-H]- 

(calculated for C21H19O5
-, 351.1232); 1H NMR (500 MHz, CDCl3),

13C NMR (125 MHz, 

CDCl3), and HMBC (400 MHz, CDCl3) chemical shifts matched literature values (180) 

and are provided in Appendix C (Figures S10-S12). 

Antimicrobial assay 

Antimicrobial activity was monitored by assessing growth inhibition of a 

laboratory strain of Staphylococcus aureus (SA1199) (238) and a clinically relevant 

strain of methicillin-resistant S. aureus (MRSA USA300 LAC strain AH1263) (234), 

obtained from Dr. Alexander Horswill at the University of Colorado Anschutz Medical 

Campus. Cultures were grown from a single colony isolate of each strain in Müeller-

Hinton broth (MHB) and diluted to 1.0 x 105 CFU/mL based on absorbance at 600 nm 

(OD600).  

Samples were screened in triplicate at final concentrations of 10 and 100 μg/mL 

or 5 and 50 μg/mL. Samples were dissolved in 1:1 EtOH/DMSO (v/v) and diluted with 

MHB to prepare final concentrations in broth with less than 2% EtOH/DMSO. The 

known antibiotic chloramphenicol (98% purity, Sigma-Aldrich) was used as a positive 

control at the same concentrations as tested extracts. The vehicle was 2% EtOH/DMSO 

in MHB. Each well was inoculated with bacteria and incubated for 24 hours at 37 °C. 

OD600 was evaluated after incubation and used to calculate the percent growth inhibition. 
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All fractions were subjected to analysis and active fractions were chosen for further 

fractionation.  

Minimal inhibitory concentrations (MICs) were calculated for pure compounds 

based on the Clinical Laboratory Standards Institute (CLSI) standard protocols (236). 

Isolated compounds or chloramphenicol (positive control, 98% purity, Sigma-Aldrich) 

were added to 96-well plates in triplicate at concentrations ranging from 0-100 µg/mL in 

MHB. Broth containing 2% 1:1 EtOH/DMSO was used as the vehicle control. The 

concentration of EtOH/DMSO was set at a fixed value of 2% for all wells. After a 24-

hour incubation at 37 °C, OD600 values were measured using a Synergy H1 microplate 

reader (Biotek). The MIC was defined as the concentration at which no statistically 

significant difference between the blank wells (containing sample and broth but no 

bacteria) and the treated sample was observed.  

Biochemometric analysis 

LC-MS data were collected in both negative mode and positive mode and 

individually analyzed, aligned, and filtered utilizing MZmine 2.21.2 

(http://mzmine.sourceforge.net/) (239). Raw mass spectral data files from second-stage 

fractions were uploaded for peak picking into MZmine based upon m/z values within 

each spectrum above a set baseline for all batch samples. Chromatograms were 

constructed for all m/z values lasting longer than 0.1 minute, following which they were 

deconvoluted using algorithms that were applied to chromatograms to recognize 

individual peaks. The peak detection parameters were set as follows: noise level (absolute 

value) at 1.25 × 106 (positive mode) and at 2 × 106 (negative mode), minimum peak 

http://mzmine.sourceforge.net/
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duration at 0.5 seconds, m/z variation tolerance at 0.05, and m/z intensity variation 

tolerance at 20%. Peaks were aligned if their masses were within 5 ppm and their 

retention times were a maximum of 0.15 minutes from one another. Peak list filtering and 

retention time alignment were completed to produce an aligned peak list. The resulting 

data matrix, consisting of m/z, retention time, and peak area, was imported into Excel 

(Microsoft) and merged with bioactivity data from samples at tested at 5 μg/mL to form 

the final data set for biochemometric analysis. 

Biochemometric analysis was completed using Sirius version 10.0 statistical 

software (Pattern Recognition Systems) (240). Before analysis, data were adjusted using 

a fourth root transformation to normalize noise across treatments (241). An internally 

cross-validated PLS model was then produced using 100 iterations and a significance 

level of 0.05. Statistical algorithms internal to the Sirius software utilized model 

predictions to produce selectivity ratios identifying putative antimicrobial constituents.   

Molecular networking analysis 

 

Mass spectral data were converted to mzXML format using FileZilla version 

3.14.1, part of the ProteoWizard platform (http://proteowizard.sourceforget.net/#). 

Following file conversion, mass spectral and fragmentation data were uploaded to the 

GNPS data analysis portal in 3 groups, where fractions active at 5 μg/mL were included 

in Group 1, fractions active at 50 μg/mL were included in Group 2, and inactive fractions 

were included in Group 3. These data were then combined into consensus spectra using 

the MS-clustering algorithm (242) within the Global Natural Product Social Molecular 

Networking (GNPS) database (143).  

http://proteowizard.sourceforget.net/
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Molecular networks were produced using the online GNPS workflow. First, 

MS/MS peaks within 17 Da of the precursor m/z were removed, and only the top six 

fragment peaks were compared for analysis. Using MS-Cluster, consensus spectra were 

produced with a parent mass tolerance of 0.5 Da and an MS/MS fragment ion tolerance 

of 0.3 Da. Consensus spectra containing fewer than 10 spectra were discarded. Molecular 

networks were subsequently produced, and compounds were connected if they had a 

cosine score (similarity score) above 0.65 and more than 6 matched fragment peaks. If 

more than 10 compounds shared a cosine score above this threshold with a given 

compound, only the top 10 most similar compounds were connected. Parameters for 

third-stage fractions were the same, except that the minimum cluster size was adjusted to 

100. Fragmentation patterns were compared to databases within GNPS, including the 

GNPS Library, the GNPS-NIH-Natural Products Library, GNPS Prestwick 

Phytochemical Library, and the RESPECT Library to tentatively ID components 

matching MS/MS patterns already contained within the system. Networks were viewed in 

GNPS using the network visualizer in addition to being imported to Cytoscape (243) for 

visualization. To simplify investigation of networks, nodes containing accurate masses 

identified by biochemometric analysis as putative active compounds were prioritized for 

structural characterization. 
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CHAPTER IV 

 

HIERARCHICAL CLUSTER ANALYSIS OF TECHNICAL REPLICATES  

TO IDENTIFY INTERFERENTS IN UNTARGETED  

MASS SPECTROMETRY METABOLOMICS 

 

This chapter has been published in the journal Analytica Chimica Acta and is 

presented in that style. Caesar, L.K., Kvalheim, O.M., Cech, N.B. Anal Chim 

Acta. 2018, 1021, 69-77.  
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Introduction 

Metabolomics is a growing field in which analysts seek to comprehensively 

analyze and compare quantities of metabolites (small molecules) in biological samples 

(186, 244-249). Creative applications of metabolomics span over a wide range of 

subjects, and this tool has been applied to facilitate the understanding of disease 

pathogenesis (247), to study the effects of diet and drug interactions (250), for biomarker 

identification (251-253), and for natural products drug discovery (132, 248, 254). Mass 

spectrometry is often the analytical technology of choice for metabolomics research, due 

to its unparalleled ability to detect metabolites present at low levels (244). The large data 
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sets generated using untargeted mass spectrometry metabolomics can, however, be 

difficult to deconvolute.    

Because metabolites are not directly coded in to an organism’s DNA and are often 

influenced by stage of life, source of material, and environmental conditions, it is quite 

difficult to define the number of metabolites in a given biological sample (255). As such, 

a central challenge in the metabolomics field is data analysis (245, 249, 256, 257). The 

data sets generated from metabolomics analysis may contain tens of thousands of 

individually detected compounds, which may include many experimental artefacts (246, 

258). The effective handling of such large data sets is a unique challenge (244), and 

investigation into these data sets requires advanced statistical tools capable of extracting 

relevant information from the vast quantity of data produced (256). Unfortunately, these 

multivariate techniques are often used incorrectly and lack proper validation (256). False 

positives are likely to occur when performing statistical analyses on these types of data 

sets (244) since the number of samples analyzed is typically much lower than the number 

of variables analyzed. As a consequence, overfitting the data is a serious concern (246, 

256). The problem of false positives grows when peaks not associated with the sample 

are included in the dataset, and effective filtering of contaminants is a critically important 

step to increase the accuracy of multivariate modeling (259).   

Removing interferents prior to statistical analysis has numerous advantages. The 

filtering process allows for a more comprehensive annotation, and if artefacts are not 

removed, the relationships between samples may be distorted, potentially leading to a 

different biological interpretation (249, 256, 259). Typically a two-step process is 
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required to remove random analytical noise. First, chromatograms must be visually 

inspected to identify the signal intensity of the baseline. Following baseline signal 

assessment, any signals at or below the assigned baseline cutoff are then subtracted from 

the dataset. The remaining peaks should represent compounds associated with true 

chemical signals, although interpreting whether these signals originate from the sample or 

from background contamination remains a challenge (244). 

Numerous types of chemical interferents can confound statistical analysis. Many 

interfering species are introduced as part of the sample preparation process itself, and 

may include solvent contaminants or polymeric interferents originating from sample 

vials, pipette tips or filter membranes. These contaminants will be consistent across 

samples, and are not the focus of this study. Some chemical interferents are not 

incorporated into the sample during sample preparation, but are introduced during the 

sample analysis step. These interferents originate from the analytical instrumentation, 

including silica capillaries, tubing, and HPLC column packing materials used for 

chromatographic separation (260, 261). We predict that chemical signals from these types 

of interferents may vary from sample to sample, and, consequently, will not be removable 

by blank subtraction (262). 

Numerous approaches exist for identifying peaks exclusively associated with 

sample. One approach utilizes isotope-enriched nutrients in the growing media for 

mammalian cell culture (256, 263), plant tissue culture (264), or fungal culture (265).
 

This approach produces labeling patterns that enable identification of which compounds 

are associated with the organism, and can highlight systematic changes in metabolic 
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processes due to various factors including environmental stress, genetic mutations, and 

disease state (256). Isotope labeling is an undeniably useful tool, but is only appropriate 

for applications assessing organisms grown in controlled environments.   

Hierarchical cluster analysis (HCA) is a tool that uses an algorithm to produce a 

dendrogram that assembles variables or objects into a single tree, allowing users to 

visualize the similarity of the samples under analysis (244, 266). The HCA approach is 

usually used as a clustering tool to evaluate intra- and inter-group similarities and 

differences, similar to principal component analysis (PCA) (244, 267). In one study, 

HCA was used as a filtering tool to identify fragment ions associated with contaminant 

peaks (268). This process was used to overcome a common problem in gas 

chromatography-mass spectrometry GC-MS analysis, which is the production of 

molecular fragments originating from background contaminants such as fiber material. 

Using HCA, the investigators clustered the fragments in their samples, and identified and 

subsequently removed a cluster of masses associated with non-sample molecular 

fragments (268).  

Here we present a new application of HCA, that of identifying chemical 

interferents in LC-MS analyses. We have chosen to use HCA over other clustering tools 

due to its distinct advantages for this application. First, HCA is a quantitative method to 

assess chemical similarity of different samples under analysis and the visualization in 

terms of a dendrogram makes it easy to assess if the removal of interferents has been 

successful. In other approaches, including K-Means clustering, density-based special 

clustering of applications with noise (DBSCAN), and PCA, the similarity of individual 
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points is often difficult to determine by eye and dependent on the components being 

graphically displayed. Furthermore, supervised analyses such as partial least squares-

discriminant analysis (PLS-DA) require dependent variables that are able to separate 

contaminating interferents from discriminating compounds originating in the samples, 

and are not possible for this application. The goal of this study is to identify interferents 

that are introduced to the sample during the analysis process. This is achieved by 

comparing triplicate injections of the same sample (technical replicates) using HCA. 

Because the sample composition across replicate injections is identical, it is our 

expectation that chemical entities that vary across replicates will be interferents 

originating from analytical instrumentation, and that their removal will improve the 

quality of the data.  

Experimental Section 

Sample preparation 

The sample used for this study was produced as part of a separate project with the 

goal of optimizing the workflow for chemometric analysis in natural products research. 

These same samples were selected as a basis for the current study because they provided 

a good test case for evaluating chemical interference.  To prepare the samples, a 

simplified extract of the botanical Angelica keiskei Koidzumi was spiked with four 

known compounds: alpha-mangostin (1% of total extract mass), cryptotanshinone (2% of 

total extract mass), magnolol (7% of total extract mass), and berberine (15% of total 

extract mass). Details about the method of extract preparation and can be found in 

Appendix A (Protocol S1). 
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Fractionation procedure 

The spiked Angelica keiskei root extract was divided into three equal portions and 

subjected to reversed-phase HPLC separations. All three separations were conducted 

using the same gradient using a Gemini-NX reversed phase preparative HPLC column 

(5µm C18, 250 × 21.20 mm; Phenomenex, Torrance, CA, USA) at a flow rate of 21.4 mL 

min-1. Starting conditions were 30:70 ACN:H2O, which was increased to 55:45 over 8 

min. Over the next two min., conditions were increased to 75:25, after which they were 

increased to 100% ACN by 28 min. Finally, the solvent composition was held at 100% 

ACN for two min.  

Chromatographic separation was completed three times, with each separation 

yielding 90 test tubes. To evaluate the effect of sample complexity on hierarchical 

clustering analysis and data filtering approaches, we varied the number of pools in which 

the resulting tubes were combined. A “pool” is defined as a set of chromatographic 

fractions (in this case, multiple individual test tubes) that are combined together 

following chromatographic separation. The first set of 90 tubes was combined into three 

pools containing 30 tubes each, representing our most chemically complex samples. The 

second set of 90 tubes was combined into five pools consisting of 18 tubes each, and the 

final set of 90 tubes was combined into ten pools, each containing 9 tubes (Scheme 1). 

Each pool was dried under nitrogen and resuspended prior to LC-MS analysis.  
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Scheme 1. Workflow for Subset Preparation and Subsequent Analysis. A botanical mixture spiked with 

the known compounds berberine, magnolol, cryptotanshinone, and alpha-mangostin was fractionated three 

times and separated into equal sample sets containing 3, 5, or 10 final pools. The resulting pools were 

suspended at 0.1 or 0.01 mg mL-1 (reported as mass of dry extract per volume solvent) in methanol for 

UPLC-MS analysis. Each data subset was analyzed using hierarchical cluster analysis (HCA) before and 

after filtering to remove chemical interferents.  

Mass spectral analysis 

Full scan ultraperformance liquid chromatography-mass spectrometry (UPLC-

MS) analysis was conducted on each pool using a Thermo-Fisher Q-Exactive Plus 

Orbitrap mass spectrometer (ThermoFisher Scientific, MA, USA) connected to an 

Acquity UPLC system (Waters, Milford, MA, USA) with reversed phase UPLC column 

(BEH C18, 1.7 μm, 2.1 x 50 mm, Waters Corporation, Milford, MA, USA). All pools 

were analyzed in triplicate at two different concentrations (0.1 mg mL-1 and 0.01 mg mL-

1 in methanol, where concentration is expressed as mass of pool per volume of solvent), 

with 3 μL injections. The gradient was comprised of solvent A (water with 0.1% formic 

acid) and solvent B (acetonitrile with 0.1% formic acid). The gradient began with 90:10  
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(A:B) from 0-0.5 min, and increased to 0:100 (A:B) from 0.5-8.0 min. The gradient was 

held at 100% B for 0.5 min, before returning to starting conditions over 0.5 min and held 

from 9.0-10.0 min. Mass analysis was performed separately in both positive and negative 

ion modes over a m/z range of 150-1500 with the following settings: capillary voltage at -

0.7 V, capillary temperature at 310°C, S-lens RF level at 80.00, spray voltage at 3.7 kV, 

sheath gas flow at 50.15, and auxiliary gas flow at 15.16. The top four most intense ions 

were fragmented with CID of 35.0. 

Baseline correction and hierarchical cluster analysis 

Baseline correction/MZmine parameters  

UPLC-MS data collected in both negative and positive modes were individually 

analyzed, aligned, and filtered utilizing MZmine 2.21.2 software 

(http://mzmine.sourceforge.net/) (239). Raw mass spectral data from triplicate injections 

of each pool within the three sets were uploaded for peak picking into MZmine. 

Chromatograms were constructed for all m/z values with peak widths greater than 0.1 

minute, after which they were simplified using algorithms applied to recognize individual 

peaks. The peak detection parameters were set as follows: noise level (absolute value) at 

2.0 × 106 (positive mode, 0.1 mg mL-1 samples), 1.0 × 107 (positive mode, 0.01 mg mL-1 

samples), and 1.0 × 106 (negative mode, both 0.1 mg mL-1 and 0.01 mg mL-1 samples), 

m/z tolerance of 0.0001 Da or 5 ppm, and an intensity variation tolerance at 20%. Peaks 

were aligned if their masses were within 5 ppm and their retention times differed by less 

than 0.2 min from one another. Peak list filtering and retention time alignment were 

completed to produce an aligned peak list.  The resulting data matrix, consisting of m/z, 

http://mzmine.sourceforge.net/
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retention time, and peak area, was imported into Excel (Microsoft, Redmond, WA, USA). 

Peak lists for positive and negative ions were combined, and separate data sets were 

generated for high and low concentration samples. No further pre-processing of data sets 

was completed before hierarchical cluster analysis and data filtering.  

Hierarchical cluster analysis and chromatograph visualization 

Hierarchical clustering analysis and resulting filtering protocols were completed 

using Sirius version 10.0 statistical software (Pattern Recognition Systems AS, Bergen, 

Norway) (240, 269). For this analysis, an average-linkage algorithm (270) was used to 

cluster objects. Euclidean distance was used as a metric to evaluate object similarity.  

Six data sets were produced (three high-concentration and three low-

concentration data sets containing 3-, 5-, or 10-pools and their triplicate injections) and 

inspected using HCA. A dataset was considered correctly clustered only when all 

triplicate injections were linked to each other before being linked to other samples in the 

dendrogram. If triplicate injections did not cluster, spectral variables (mass/retention time 

pairs) were inspected for each set of triplicates. Since highly abundant or highly ionizable 

compounds inherently have higher count variance, the contaminant masses were 

identified by examining relative variance within each set of technical replicates, defined 

by equation 1. Variance (sk
2) represents the sum of the squared differences of each 

compound’s peak area (xk) from the mean of its peak area within replicate injections (x̄k), 

divided by the number of replicates (Nr). Relative variance of peak k in sample i (RVk,i) 

was calculated by dividing the variance within replicates by the mean. 
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RVk,i = sk
2/x̄k, where sk

2 = Ʃ(xk - x̄k)
2 / Nr (equation 1) 

Of course, it is possible that a non-interferent peak may show high variability in 

peak area from injection to injection, particularly if it co-elutes with another sample 

component that impacts its ionization. To minimize the risk of removing false positives, 

we chose to sort variables from high to low RV based on their average relative variance 

values (R̅V), defined by equation 2. Even if in one sample the ionization of a given 

sample component was affected by matrix effects, it is unlikely that this response would 

be consistent across samples with different chemical constituents. Average relative 

variance for the peak k (R̅Vk) was calculated by dividing the sum of the relative variances 

(calculated within each pool’s set of replicate injections: RVk,1, RVk,2, . . . RVk,p) by the 

number of pools (Np).  

R̅Vk = (RVk,1 + RVk,2 + . . . + RVk,p) / Np (equation 2) 

Using equation 2, the variables with the highest average relative variance were 

identified and removed, and intermittent hierarchical cluster analysis was conducted. To 

assist the analysis, spectral variable plots were utilized to visualize mass/retention time 

pairs identified using the selected relative variance cutoff as contaminants as well as their 

corresponding ions. The ions that demonstrated peak area variability within triplicate sets 

higher than the selected threshold, as well as their associated isotopes, in-source clusters, 

or fragments were removed from analysis. HCA was repeated to visualize how well 

samples clustered once the contaminants were removed. This was repeated until triplicate 

injections of each sample were linked before being linked to other samples in all datasets.   
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Results and Discussion 

Hierarchical cluster analysis and data filtering 

The goal of this study was to identify and remove chemical contaminants from 

mass spectral data sets. Towards this goal, HCA was conducted on six sets of pools, 

where each pool was injected in triplicate (technical replicates) into the UPLC-MS 

system. Each dataset was analyzed by HCA after baseline correction and peak 

alignment(244). It was expected that the replicates would show high chemical similarity 

and cluster together in the dendrogram. Before filtering out chemical interferents with 

high peak area variability within technical replicates, however, triplicate injections 

clustered together in only one of the six data sets—the three-pool subset analyzed at 0.1 

mg mL-1 (Table 8, Figure 19).  

Table 8. Summary of Hierarchical Clustering Analysis Before and After Data Filtering.  

 

 

 

Sample Set 

Percentage of Correct 

Triplicate Clusters Before & 

After Filtering Analysis 

(Before, After) 

Average  

Dissimilarity Score* Before & After  

Filtering  

Analysis   

(Before, After) 

Three pool set, 0.1 mg mL-1 

 

100%, 100% 5.23 × 109, 3.23 × 109 

Three pool set, 0.01 mg mL-1 

 

33%, 100% 6.17 × 109, 8.62 × 108 

 

Five pool set, 0.1 mg mL-1 

 

60%, 100% 

 

6.18 × 109, 2.34 × 109 

 

Five pool set, 0.01 mg mL-1 

 

20%, 100% 

 

5.71 × 109, 4.54× 108 

 

Ten pool set, 0.1 mg mL-1 

 

40%, 100% 3.05 × 109, 1.36 × 109 

 

Ten pool set, 0.01 mg mL-1 0%, 100% 

 

8.13 × 109, 3.72 × 108 

 

*Average dissimilarity scores were computed in Sirius 10.0 (240, 269) and represent n-dimensional 

Euclidean distance values.  
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Figure 19. Euclidean Dendrograms of the Ten-Pool, 0.01 mg mL-1 Data Subset Before (A) and After 

(B) Filtering Analysis. Samples have been identified first by their pool number followed by the injection 

number. For example, 1-1 is the first pool, and first injection of three technical replicates.   

On inspecting the data sets, it was determined that certain masses were present in 

all samples but did not display consistent peak area across triplicates.  We hypothesized 

that these masses were chemical interferents and not truly sample components.  Thus, 

removing these masses from the data sets should result in the expected clustering of 

replicates.  To identify the variables representing chemical interference, the relative 

variance of each variable was calculated for each set of triplicate injections as defined in 

equations 1 and 2. The relative variance cutoff was determined by reducing the threshold 

until dendrograms showed the expected classification of replicate injections. The dataset 

was considered filtered when replicates clustered together before clustering to additional 

samples. Contaminant peaks were assigned as those that had an average relative variance  
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ratio (across all pools) greater than 1.0 × 107 for low concentration data sets, and 4.1× 107 

for high concentration data sets. The same interferents were identified in both subsets, 

though more interferents were identified using the low concentration data subsets. 

In addition, each chromatogram was visually inspected using a spectral variable 

plot, in which the mass/retention time of each unique spectral variable was plotted on the 

x-axis, and corresponding peak area of that variable was plotted on the y-axis (Figure 

20A). Ions that were part of the sample, including the known compounds spiked into the 

mixture, showed consistent peak area across triplicate injections (Figure 20B), whereas 

purported contaminants typically did not (Figure 20C). Spectral variable visualization 

also enabled the identification of peaks associated with the contaminant masses, such as 

13C isotopes and in source clusters and fragments, which were not identified based solely 

on the mathematical approach. For example, two mass/retention time pairs were 

identified at m/z 744.201 and 744.211 using the relative variance cutoff. Upon spectral 

variable inspection, additional isotope peaks and mass spectral artefacts associated with 

this contaminant were identified (e.g. m/z 746.188, 746.198, and 746.208, Appendix B, 

Table S1), despite their low relative variance (Figure 20C). Removing these ions 

improved clustering, allowing for a more complete representation of contaminants. 

Background contaminants with high peak area variation between triplicate injections, as 

well as their associated masses, were removed from the peak list, and HCA was repeated. 

Following the removal of these compounds, triplicates clustered in all six sample subsets 

and the average dissimilarity score of technical replicates decreased (Table 8). An 

example dendrogram before and after filtering is shown in Figure 19.  It is important to 
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note that there is the possibility that true sample components may share the same m/z and 

retention times as isotopes and mass spectral artefacts and be accidentally removed 

during this process. In some cases, fragmentation patterns can be evaluated to assess 

whether or not these masses are truly associated with contaminant peaks showing high 

relative variance. This may not always be possible, however, so users familiar with the 

analytical instrumentation and the biological sample under analysis should conduct this 

part of the filtering process carefully, with the goals of the project in mind.  

 

Figure 20. Spectral Variable Inspection of Triplicate Injections from the Second Pool from the Five-

Pool, 0.01 mg mL-1 Data Subset. 20A. Overlaid spectral variable plots of triplicate injections in which 

peak areas of each variable are plotted for comparison. 20B. Spectral variables associated with the sample 

under analysis. Overlapping traces are consistent from injection to injection. 20C. Spectral region 

associated with chemical contamination showing a variance/mean peak area ratio greater than 1.0 × 107.   
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Sources of Contamination 

Source of chemical interferents with high peak area variability 

As analytical instruments have become more sensitive and more high-throughput, 

the list of potential interferents detected grows (271). During chromatographic separation 

and mass spectral analysis, the sample comes into contact with a variety of surfaces that 

could lead to chemical contamination not associated with the sample, such as polymeric 

interferences from plasticware and tubing (271). We hypothesized that ions 

demonstrating high peak area variation between triplicate injections were due to chemical 

interferents coming from sources such as these. These contaminants (Appendix B, Table 

S1) were consistent in their identity (although not peak area) across data sets. Of the 128 

contaminant peaks removed from analysis, 22 were tentatively identified (using accurate 

mass data) as associated with polysiloxanes as reported by Keller et al. (271). Indeed, 

polysiloxanes are found in silica capillary tubes such as those used for UPLC-MS 

analysis as well as in column packing materials (260, 261). 

 To investigate our hypothesis that these contaminants originated from the 

analytical instrumentation, the accurate masses and retention times of common 

interferents were compared to blank injections containing methanol with no sample. 

Methanol blanks were included throughout the run. Of the 128 contaminants identified, 

121 were present in at least one of the blanks. Interestingly, 44 of the interferent features 

were not found in every blank.  Thus, it appears that the interferents originate from the 

UPLC-MS system itself, and not from the solvent alone (although it is possible that both 

the solvent and the UPLC-MS system might contain some of the same contaminants). 
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It is common practice in metabolomics analysis to subtract peaks contained within 

the blank from the data sets under study (262). However, our results (Figure 20) show 

that ion abundance of chemical contaminants can vary from injection to injection, so the 

list of contaminants removed will likely not be comprehensive using a simple blank 

subtraction. Indeed, when we produced a dendrogram of the 0.01 mg mL-1, ten-pool set 

after subtracting peaks contained within one of the blanks, the triplicate injections only 

clustered together for two out of ten pools (Figure 21). Additionally, in cases where 

carryover occurs between sample and blank injections, it is possible that ions contained in 

the sample can be inadvertently removed by blank subtraction. The method proposed 

here in which replicate injections are compared to identify potential contaminants 

circumvents the problems associated with subtracting the peaks from a single blank 

injection.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Euclidean Dendrogram of the Ten-Pool, 0.01 mg mL-1 Data Subset Following Subtraction 

of Masses Contained in One Blank from Analysis. This example illustrates that blank subtraction was 

insufficient since replicates do not cluster correctly. 
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The potential for false positives 

We have illustrated that an important type of chemical interference originates 

from the LC-MS equipment itself, and have developed a method to minimize its 

contribution to metabolomics datasets. However, there is the potential for this approach 

to remove actual sample components that show high variability among replicate 

injections. Peak area variance can occur for a number of reasons, including matrix 

ionization effects, injection errors, and sample carryover from previous injections (272). 

Matrix effects leading to changes in compound ionization efficiency or mobility can 

result from interactions with other components of the sample. If a particular compound 

co-elutes with another sample component that impacts its ionization, for example, it may 

not show consistent peak area from injection to injection and could be identified as a 

false positive. Similarly, injection errors, in which the actual sample volume analyzed via 

LC-MS is different than expected, can lead to large differences in peak area across 

injections, even for true sample components (272). 

 Although there is a risk for removing false positives with the method proposed 

herein, the use of average relative variance as a metric to define contaminants (equation 

2) reduces this risk. It is likely, for example, that in at least one set of triplicate injections 

a real sample component may be affected by matrix effects and consequently show a high 

relative variance. It is unlikely, however, for this matrix effect to be consistent across all 

samples under analysis, and the high relative variance value from one sample should be 

normalized by averaging with low relative variance values from other samples. The same 

is true for injection errors and sample carryover.  
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It is of course possible that even when using average relative variance, we may 

unintentionally remove important sample components from our datasets. To reduce this 

risk further, we recommend the use of internal standards. These internal standards should 

consist of compounds possessing diverse properties and should not be found in the 

biological sample under analysis (272). Differences in peak areas of these internal 

standards can allow researchers to identify samples that may have been compromised by 

sample injection errors or matrix effects, and back-calculations can be used to correct for 

changes resulting from these processes.  

Complementary quality control practices to improve metabolomics datasets 

It is important to note that the types of chemical contaminants identified using the 

approach presented here are only those contaminants that vary distinctly from replicate 

injection to injection. Interferents that originate from the sample preparation process will 

be consistent across technical replicates and not identified with the HCA approach 

demonstrated here. Complex calibrants such as process blanks, which do not contain 

biological material but have undergone the same chemical treatment as biological 

samples (272) should be included in LC-MS analyses to identify interferents resulting 

from sample preparation. Compounds found in process blanks may represent some of the 

same contaminants identified using this HCA approach (if the sample had gone through 

some sort of chromatographic separation step before LC-MS analysis, for example), but 

will likely contain additional chemical contaminants including pipette tip contaminants 

and extraction solvent impurities (272, 273). Although we have illustrated that the 

inclusion of solvent blanks is not sufficient to remove all contaminants from analysis, 
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blank runs are still undeniably important, as they allow researchers to define an 

appropriate baseline cutoff, estimate background noise, and evaluate carryover effects 

(262, 272). 

Effects of sample number and concentration on dendrogram analysis 

To evaluate the effect of sample number and concentration on filtering analysis, 

we compared sets containing three-, five-, or ten-pools at concentrations of 0.1 mg mL-1 

and 0.01 mg mL-1 (expressed as mass of the mixture per volume solvent). Because the 

three-, five-, and ten-pool subsets all originated from the same starting mixture, the 

resulting pools will be the most complex with the lowest number of pools (Scheme 1). 

Data sets containing greater numbers of samples were more impacted by chemical 

interferents, as were samples injected at the lower concentration of 0.01 mg mL-1 (Table 

9). For example, the average dissimilarity scores, calculated by averaging scores from the 

0.1 mg mL-1 subsets and the 0.01 mg mL-1 subsets, respectively, were higher in low-

concentration groups when compared to their high-concentration counterparts (6.67 × 109 

versus 4.82 × 109, respectively). Following filtering analysis, high-concentration groups 

showed greater dissimilarity scores than the low- concentration subsets (2.71 × 109 and 

8.39 × 108, respectively). After filtering, both high- and low-concentration subsets 

displayed lower dissimilarity scores than they did preceding data filtering, indicating that 

the contaminant peaks contributed to the high dissimilarity between triplicate injections.   

The results of these comparisons are illuminating, and suggest that metabolomics 

studies of simpler samples may be more impacted by chemical interferents. Indeed, the 

three-pool dataset, regardless of injection concentration, consistently showed the highest 
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number of correct clusters before filtering analysis. Because they contain more 

compounds that are consistent between triplicate injections, the varying concentrations of 

contaminants have less effect on the overall clustering of more complex pools. With the 

simpler pools in the ten-pool dataset, the effect of high variability in peak area of 

contaminant peaks has a greater influence on the overall model. Similarly, the effect of 

contaminant interference appears to be greater with low-concentration injections, 

presumably because the contaminant peaks have larger relative peak areas in these 

subsets. This is an important point, because metabolomics analysis is often focused on 

identifying very low-abundant peaks from highly complicated samples. As such, filtering 

analysis to remove interferents may be critical for success. 

PCA scores and loadings 

Principal Component Analysis (PCA) is one of the most commonly employed 

tools in metabolomics data analysis and is used to group objects by chemical similarity 

(132). Groupings of objects can be visualized in a PCA scores plot, and the variables 

contributing to the groupings can be assessed using a PCA loadings plot.  PCA was used 

here as an alternative technique to HCA to assess the similarity of triplicate injections.  

 As an example, the ten-pool, low-concentration dataset was subjected to PCA 

before and after removal of the chemical interference ions. Before filtering, untargeted 

metabolomics analysis of these pools yielded 467 marker ions with unique retention time-

m/z pairs. The resulting PCA model comparing the pools was comprised of two 

components explaining 81.8% of the variance (component 1: 53.1%, component 2: 
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28.7%). The technical replicates of each pool did not cluster on the resulting scores plot, 

indicating that interferents have a severe impact on clustering analysis (Figure 22A). 

 

 

 

 

 

 

 

 

 

 
Figure 22. PCA Scores Plots Before (A) and After (B) Data Filtering of the Ten-Pool, 0.01 mg mL-1 

Data Subset. 22A. Technical replicates are not overlaid on the plot, and clustering of groups is difficult to 

visualize. 22B. Technical replicates are overlaid as expected, and there is distinct separation between 

groups. 

Following spectral variable inspection and removal of contaminant masses, a new 

PCA model was produced, this time containing 339 ions. The two-component model 

explained 92.29% of the variance (component 1: 82.19%, component 2: 10.10%). With 

this model, triplicate injections are overlaid on the plot, indicating that statistical analysis 

was virtually unaffected by chemical interferents (Figure 22B). If chemical interferents 
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that varied from injection to injection were still impacting the analysis, we would expect 

that triplicates would not cluster in the scores plot, as evidenced with Figure 22A. Any 

contaminants that remain in the dataset are likely consistent in peak area across all 

samples under analysis, and will consequently have little to no effect on the resulting 

principal component analysis. Additionally, clusters between groups of pools are more 

distinct following contaminant removal, ultimately improving both repeatability and 

cluster identification. 

 The PCA loadings plot before analysis is revealing (Figure 23) and shows that 

many of the loadings resulting in separation of pools are associated with interferents.  

 

 

 

 

 

 

 
Figure 23. PCA Loadings Plot of the Ten-Pool, 0.01 mg mL-1 Data Subset Before Filtering of 

Chemical Interferents. Most of the variables contributing to group separation are contaminant peaks. 

Hypothetically, it would be possible to utilize PCA loadings plots of triplicate injections 

to visualize which compounds contribute to separation of chemical replicates (Figure 24). 

Because this loadings plot is comprised solely of a set of triplicate injections, all variables 

should be clustered. However, this is clearly not the case, and any variables that lead to 
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group separation are due to chemical interference introduced after sample injection. From 

Figure 24B, it is apparent that contaminant variables are responsible for separation 

between triplicate injections. Contaminant and sample variables do begin to overlap in 

the center of the plot, making visual interpretation challenging without knowledge of 

mixture components. The loadings plot of one set of triplicate injections (first pool of the 

ten-pool set, 0.01 mg mL-1) is difficult to interpret, and contaminant peaks can only be 

arbitrarily identified (Figure 24). This was a common problem across all datasets.  

 

Figure 24. PCA Loadings Plot of Triplicate Technical Replicates from Pool One of the Ten-Pool, 0.01 

mg mL-1 Data Subset. 24A. Loadings plot illustrating all variables contributing to group separation. 24B. 

Color-coded loadings plot allowing visualization of contaminant and sample peak influence on group 

separation. Many of the chemical contaminants are close to the center cluster and would not be reliably 

identified using PCA loadings alone. 
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Conclusions 

Robust data pretreatment is necessary to extract reliable information from mass 

spectrometry data sets. The results presented here demonstrate that HCA of technical 

replicates is a valuable tool for data pretreatment by enabling the identification and 

removal of certain interferents.  In its current form, however, there is still a considerable 

amount of user-intervention required. Further developments should focus on automating 

this approach as much as possible so that users do not have to iteratively filter their data 

by hand and define the relative variance cutoff.  However, identifying peaks that are 

associated with interferents yet do not show high relative peak area variance will still 

require identification by the user, and this application will vary from experiment to 

experiment and depend on the goals of the project itself. 

 It is often assumed that chemical interference in mass spectral data is consistent 

across samples, and should, therefore, be removable by blank subtraction.  On the 

contrary, here we show that certain chemical interferents can vary in signal intensity 

across technical replicates.  Such interferents can be identified and removed with the 

approach presented here. It is particularly important to identify and remove these types of 

interferents, given that the very premise of metabolomics experiments is that the 

compounds that vary among samples are likely to be chemically or biologically relevant.  

Many studies are conducted without technical replicates, and the results of the current 

study show the potential limitation of such an experimental design and demonstrate a 

straight-forward alternative strategy.   
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Introduction 

Untargeted metabolomics is poised to make an impact in many areas of research, 

including studies to understand disease pathogenesis (247), to assess food quality and 

authenticity (250), to monitor the environmental quality of water resources (274), for 

biomarker identification (251-253), and for drug discovery (18, 132, 248, 254). Mass 

spectrometry is a leading tool for generation of untargeted metabolomics datasets, largely 

due to the applicability of this technique to provide quantitative and qualitative data on 

many metabolites simultaneously across a wide range of concentrations (244). Mass 
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spectrometry metabolomics yields high-dimensional datasets that offer a detailed 

chemical picture of the organism in question.  These data can be employed in a 

discovery-driven approach to guide understanding of complex mixtures and enable 

linkage between a biological effects and the chemical profile of a given organism (8, 

275). However, the interpretation of mass spectrometry metabolomics datasets is 

complex, requires multivariate data analysis methods, and may be confounded by 

experimental artefacts (276, 277). There is currently lack of consistency in the field 

regarding methods for collecting and interpreting metabolomics datasets, and concerns 

have been raised as to the reproducibly of conclusions drawn from metabolomics datasets 

(256).  In light of these concerns, the work described herein was undertaken to rigorously 

evaluate the advantages and limitations of metabolomics approaches for one specific 

application – that of identifying biologically active compounds in complex natural 

product extracts.   

Natural products such as plants, fungi, marine organisms, and bacteria have been 

utilized as medicines throughout history and continue to provide lead compounds 

effective against human diseases (222, 223). However, due to the diversity of identity and 

abundance of compounds produced by natural products, it remains challenging to assign 

bioactivity to individual components in such mixtures . The traditional solution to this 

problem is bioassay-guided fractionation (220, 221), in which active extracts and 

subsequent fractions are subjected to iterative chromatographic separations and biological 

evaluation until individual active compounds have been isolated. This process, despite its 

historical contribution to the discovery of important medicinal compounds, tends to be 
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biased towards the most abundant, easily detectable, and/or easily isolatable compounds 

in a given mixture (131, 220). To overcome abundance bias, trace constituents can be 

isolated, but it is impractical to isolate all trace compounds given that natural products 

often contain hundreds or even thousands of constituents (13). In recent years, multiple 

different groups have sought to guide active constituent identification by integrating 

metabolomics data (chemical profiles) with biological activity data (biological activity 

profiles), enabling isolation efforts to be targeted towards active rather than abundant 

constituents (132, 149, 150, 278). Approaches that employ multivariate statistics to 

interpret combined chemical and biological datasets are broadly referred to as 

“biochemometrics.”  

Several different data analytical approaches are used as tools in biochemometrics 

analyses.  Due to the large number of variables compared to the number of samples 

analyzed, data from complex mixtures possess a high degree of collinearity. This poses a 

problem for ordinary multiple regression models, but partial least-squares (PLS) 

regression is capable of integrating aspects from both multiple regression and principal 

component analysis, making it a good starting point for biochemometrics analysis (148). 

The resulting multicomponent PLS models are, however, often challenging to interpret. 

Several strategies have been developed for deciphering the meaning of PLS datasets 

(132, 149, 150, 278). Two graphical representations, the S-plot and the selectivity ratio 

plot, can be employed to visualize the information in PLS models and determine which 

components are likely to contribute to an observed biological activity.  
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The S-plot provides an avenue for identifying predictive components by plotting 

covariance and correlation of loading variables. Using an S-plot, constituents that have 

both high covariance and high correlation with the dependent variable in question can be 

identified (132, 279). S-plots have been successfully used in many studies to identify 

potential biomarkers for disease treatment (280), to authenticate the origin of food crops 

(281), and to identify medicinal compounds from botanical sources (282, 283), among 

others. However, the criterion of high covariance favors the identification of abundant 

compounds, while trace bioactive constituents may go undetected (233). Identifying 

points of interest can also become challenging due to the large number of spectral 

variables (132). The selectivity ratio plot (269) overcomes the abundance bias inherent to 

the S-plot by transforming the PLS components to enable quantification and ranking of 

each variables´ impact on the modelled response, i.e. bioactivity, independent of the 

abundance of the variables. The explained variance on the predictive PLS component is 

compared to the residual variance for each constituent to produce a selectivity ratio (269), 

which is a measure of the predictive contribution of each variable to bioactivity.   

In a recent study, fungal extracts were subjected to biochemometric analysis to 

determine which constituents were responsible for biological activity (ability to inhibit 

bacterial growth) (132).  Selectivity ratio plot analysis correctly identified altersetin from 

the fungus Alternaria sp. as the active constituent despite its low abundance without 

being confounded by false positive results. In a parallel study, both the S-plot and the 

selectivity ratio plot were successful in identifying the major component macrosphelide 

A as the active constituent from Pyrenochaeta sp. (132). A similar investigation was 
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undertaken to identify compounds that enhanced the antibacterial efficacy of the alkaloid 

berberine within the botanical medicine Hydrastis canadensis (18). Biological activity 

data were combined with untargeted metabolomics data to produce selectivity ratio plots, 

which successfully identified known synergistic flavonoids and a new compound, 3,3’-

dihydroxy-5,7,4’-trimethoxy-6,8-C-dimethylflavone, which also possessed synergistic 

activity (18). This study illustrated the applicability of selectivity ratio analysis to predict 

active components of complex botanical mixtures. It was possible to identify false 

positive results because they did not possess activity following isolation. However, 

without isolating every trace constituent in the mixture, the biochemometric models were 

unable to identify the frequency of false negative results.  

 With the work described herein, we aimed to evaluate the occurrence of false 

positive and false negative results when biochemometric analysis is conducted using 

selectivity ratio plot analysis and to optimize experimental conditions and data processing 

approaches to minimize the occurrence of both types of false positives.  Towards this 

goal, we generated mixtures containing an inactive botanical natural product extract 

spiked with known antimicrobial compounds (berberine, magnolol, cryptotanshinone, 

and alpha-mangostin, Figure 25. compounds 1-4, respectively).  Using these mixtures, we 

sought to assess the predictive power of selectivity ratio analysis combined with several 

data filtering and data transformation approaches for identifying active (antimicrobial) 

constituents based on chemical (metabolomics) and biological data.   
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Results and Discussion 

Chromatographic separation and generation of simplified pools 

A simplified extract of the botanical Angelica keiskei Koidzumi was spiked with 

four known constituents (compounds 1-4) and split into three chemically identical 

samples. Each sample was subjected to the same reversed-phase chromatographic 

separation process with each run yielding 90 test tubes. These tubes were re-combined 

into three pools of 30 tubes (samples 1-1 through 1-3), five pools of 18 tubes (samples 2-

1 through 2-5), or ten pools of 9 tubes (samples 3-1 through 3-10) to generate the 

simplified A. keiskei pools for biochemometric analysis and statistical comparison.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 25. Bioactive Compounds Utilized in this Study. 

Biological activity assessment and confirmation of active compounds 

Antimicrobial activity assessment  

At the highest concentration tested (100 µg/mL), seven of the spiked A. keiskei 

pools completely inhibited the growth of Staphylococcus aureus. At 50 µg/mL, only four 

pools inhibited more than 80% of bacterial growth. At 25 µg/mL, none of the treatments 
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resulted in more than 50% inhibition. The results of these assays are summarized in 

Figure 26. None of the pools showed any activity at concentrations lower than 25 µg/mL. 

 

 

 

 

 

Figure 26. Antimicrobial Activity Data of the A. keiskei Root Extract Spiked with Known 

Antimicrobial Compounds (Spiked Extract) and Eighteen Chromatographically Separated Pools 

from the Original Spiked Extract. Pools labeled 1-1 through 1-3 represent samples resulting from 

chromatographic separation of the spiked A. keiskei root mixture into three pools, 2-1 through 2-5 represent 

samples from separation into five pools, and 3-1 through 3-10 represent samples from the ten-pool set. 

Growth inhibition of Staphylococcus aureus (SA1199) (238) is displayed as percent growth inhibition 

normalized to the vehicle control (broth containing bacteria but no antimicrobial compound) using OD600 

values. Data presented are the results of triplicate analyses ± SEM. Pure compounds berberine (1), 

magnolol (2), cryptotanshinone (3), and alpha-mangostin (4) served as positive controls and their minimum 

inhibitory concentrations (75, 6.25, 12.5, and 1.56 µg/mL, respectively), are consistent with previous 

reports (132, 284-286). 

Quantification of known compounds and predicted activity calculations 

Concentrations of known active compounds berberine, magnolol, 

cryptotanshinone, and alpha-mangostin (compounds 1-4) were quantified using external 

calibration curves (Appendix C, Figure S14). The dose response curves of pure 

compounds (Appendix C, Figure S15) were then used to predict their biological activity 

at 100 µg/mL. A comparison of this predicted total activity and the observed bioactivity 

of the relevant pool at 100 µg/mL is shown in Figure 27. Pools 1-1, 2-1, and 3-1 

contained 50-75 µg/mL of berberine (compound 1), which was predicted to result in 75-
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100% growth inhibition. Magnolol (compound 2) was predicted to inhibit bacterial 

growth in the spiked extract before fractionation, as well as in pools 1-2, 2-3, and 3-5.  

 

 

 

 

 

 

 

Figure 27. Predicted versus Actual Antimicrobial Activity of A. keiskei Spiked Extract and Pools at 

100 µg/mL. Predicted antimicrobial activity was calculated by quantifying compounds 1-4 (berberine, 

magnolol, cryptotanshinone, and alpha-mangostin) in each pool and using these values to calculate 

predicted contribution to activity (via dose response curves). Actual activity values represent percent 

growth inhibition of Staphylococcus aureus (SA1199) (238) normalized to the vehicle control (broth 

containing bacteria but no antimicrobial compound) turbidimetric OD600 values. Data presented represent 

results of triplicate analyses ± SEM. Positive control data are the same as described for Figure 26. 

 

 

These pools contained between 5 and 10 µg/mL of magnolol, contributing 85-

100% to the predicted activity. Cryptotanshinone (compound 3) was predicted to inhibit 

15% of bacterial growth in pool 1-2 (containing approximately 3 µg/mL), and 40% of 

growth in the unseparated mixture (which contained approximately 5 µg/mL). Alpha-

mangostin (compound 4) was not present at concentrations relevant for biological 

activities in any of the pools tested.  

The observed activity of six of the active pools (1-1, 1-2, 2-1, 2-3, 3-1, and 3-5) 

matched the predicted activity from the calculated concentration of a particular bioactive 

constituent in each of those pools; thus, the activity was explained almost completely by 
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the predicted contributions of berberine and magnolol. Pools 3-2 and 3-6 demonstrated 

100% and 50% activity, respectively, which could not be attributed to the predicted 

contributions of berberine and magnolol. Interestingly, the spiked A. keiskei mixture was 

predicted to completely inhibit bacterial growth, but only illustrated approximately 35% 

inhibition.  This observation, which suggests antagonistic activity of the mixture, is 

discussed in detail later (see section: Assessment of Combination Effects in Spiked A. 

keiskei Mixture).   

Selectivity ratio analysis and comparison of protocols 

General findings 

PLS models for predicting active compounds were produced and visualized using 

selectivity ratio analysis. With these selectivity ratio models, each ion detected 

(represented by a m/z retention time pair) is plotted on the x-axis and its corresponding 

selectivity ratio is shown on the y-axis. High selectivity ratio values represent ions that 

are most strongly associated with biological activity. We sought to produce eighteen 

different models utilizing samples from datasets with three different numbers of 

chromatographic pools (3, 5, or 10), bioactivity obtained at three different concentrations 

(25, 50, or 100 µg/mL), and profiles for two different pool concentrations injected into 

the LC-MS system (0.1 or 0.01 mg/mL). In each model, selectivity ratios were ranked 

from high to low, and the rankings of active compounds berberine and magnolol were 

evaluated. These compounds should have been identified as the top two contributors to 

biological activity, so better rankings are illustrated by lower numbers (with a ranking of 

1 being the best). Comprehensive results of these models can be found in Appendix B, 
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Table S2 and a workflow can be found in Scheme 2. In four datasets of the 18 generated, 

no cross-validated models could be produced. Three of these belonged to datasets 

obtained at low concentrations (0.01 mg/mL) injected to the mass spectrometer.  

Scheme 2. Workflow for Untargeted Metabolomics Study in which Inactive A. keiskei Root Extract 

was Spiked with Known Antimicrobial Compounds. Biochemometric modeling results, and the impact 

of the of number of pools for chromatographic separation, concentration used for biological activity 

evaluation, and concentration injected into the LC-MS were evaluated. Additionally, the utility of data 

processing approaches, including data filtering and model simplification, were evaluated.   

In datasets produced using chromatographic fractions separated into five (pools 2-

1 through 2-5) or ten pools (pools 3-1 through 3-10), berberine and magnolol were the 

only constituents concentrated enough to contribute to biological activity. In the three-

pool datasets (modeled using pools 1-1 through 1-3), cryptotanshinone was concentrated 

sufficiently to contribute to biological activity when pools were tested at a concentration 

of 100 µg/mL. As such, all models produced were expected to identify both berberine 

and magnolol as bioactive, but only the 3-pool datasets were expected to identify 

cryptotanshinone.  Berberine was correctly identified among the top contributors to 

bioactivity (highest selectivity ratio) in 13 out of 14 models produced, 8 of which 
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identified berberine as the top contributor to biological activity. Magnolol was correctly 

identified as contributing the biological activity in all 14 models produced. Magnolol was 

identified among the top ten contributors to biological activity in only two out of fourteen 

models and was identified among the top twenty contributors in in ten of the remaining 

models. Cryptotanshinone, due to its low abundance, was only concentrated sufficiently 

to contribute to biological activity in the 3-pool set tested at 100 µg/mL. It was identified 

as the 19th top contributor to biological activity of this mixture when injected into the LC-

MS at 0.1 mg/mL, but was not identified in the dataset assessed at 0.01 mg/mL.  

Many problems in statistical analysis of metabolomics datasets arise because the 

number of samples (in this case, chromatographically separated mixtures) is typically 

greatly outnumbered by the variables analyzed (i.e. mass/retention time pairs) (256, 276, 

287, 288). For example, our models compared between 9-30 samples (9, 15, or 30 

samples for models produced using 3, 5, or 10 chromatographic pools) using 370 or 870 

variables (mass/retention time pairs of models assessed via LC-MS at 0.01 mg/mL and 

0.1 mg/mL, respectively). This low sample-to-variable ratio can lead to erroneous 

biological conclusions caused by correlation of nonactive to active metabolites under 

analysis (256, 276, 287, 288). In all models produced, numerous compounds were 

predicted to be active that were in fact components of the inactive botanical extract. It is 

important to note that without isolating each of these compounds and testing them 

individually, it is impossible to confirm their lack of bioactivity. However, to 

conservatively estimate the success of selectivity ratio models, they have been identified 

here as false positives. These false positives were of two types: those that co-varied with 
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spiked active compounds and those that did not. Co-varying false positives can be 

defined as compounds that were identified in the same pools, and with the same relative 

shifts in concentration, as active compounds. Non-co-varying false positives were 

identified as putatively active despite the fact they showed only minor variation across 

pools and did not share concentration shifts with active compounds. The identification of 

non-co-varying false positives is due to correlated noise, i.e. minor random variation in 

the bioassay data correlating to patterns in the concentration data (289). This is an 

important distinction because we aim to utilize this bioinformatics approach to guide the 

isolation process. While co-varying false positives will lead to the chromatographic 

separation of pools that possess active compounds (albeit not the compounds predicted), 

non-co-varying false positives may lead to the separation of a sample that will not yield 

an active compound.   

To visualize the distinction between co-varying and non-co-varying false 

positives, five compounds found within the five-set are compared in relation to biological 

activity (Figure 28). Relative peak areas (based on percentage of the abundance across all 

pools) are displayed for each compound. In this example, berberine and magnolol (orange 

and blue bars, respectively), which were intentionally spiked in to the mixture, are 

responsible for the biological activity witnessed in pools 2-1 and 2-3, respectively. 

Additional ions are detected in the mixture (components of the original inactive botanical 

mixture) that co-vary with these active compounds in a way that makes their contribution 

to activity indistinguishable from true active compounds (represented by yellow and gray 

bars in Figure 28). For a mixture of truly unknown composition, these ions would qualify 
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as “false positives” and the analyst would not know if they or the actual known 

constituents were responsible for activity. A non-co-varying compound (light blue bar), is 

found in all pools under analysis at approximately equal concentrations, yet is still 

identified as a potential contributor to biological activity.  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28. Relative Peak Area (Expressed as a Percentage of the Total Peak Area Detected Across 

Pools) of Berberine (Compound 1), Magnolol (Compound 2), and Selected “False Positives” 

Identified using Biochemometric Modeling Compared to Biological Activity Witnessed in Pools 2-1 

through 2-5. Berberine and magnolol are responsible for the activity witnessed in pools 2-1 and 2-3, 

respectively. Co-varying false positives (yellow and gray bars) did not contribute to biological activity, but 

share the same abundance profiles as true active constituents across pools, and thus statistical models could 

not disentangle their contributions from those of the true bioactive constituents (berberine and magnolol). A 

non-co-varying false positive (light blue bar) is also illustrated. This component does not share abundance 

profiles with active constituents and is found at approximately equal abundance (±5%) across all pools. It 

represents correlated noise between biological activity and concentration data identified by the PLS model. 

In the models produced, 2-18% of variables had selectivity ratios higher than 0, 

suggesting that variables in these subsets are likely to possess biological activity. Most of 

the false positives within these subsets were found in the same pools, and with the same 

relative shifts in concentration, as berberine and magnolol (representing between 43-85% 

of variables with selectivity ratios higher than 0 across all models produced, Appendix B, 
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Table S3). False positives that did not co-vary with berberine or magnolol were rarely a 

problem in datasets assessed at 0.1 mg/mL in the mass spectrometer. All models 

produced for low concentration datasets (0.01 mg/mL) had false positives that did not co-

vary with known active compounds representing between 13-43% of variables with 

selectivity ratios greater than 0 (Appendix B, Table S3).  These findings illustrate that the 

low concentration datasets are more prone to overfitting and may lead to false biological 

interpretations. 

Data acquisition and data processing parameters used to evaluate success of selectivity 

ratio models 

Various types of data are collected to conduct complex metabolomics studies, 

particularly those involving biological activity, and each stage of data collection involves 

choices that may affect subsequent statistical analyses. Biological activity can be 

measured at a range of concentrations, and LC-MS data can be acquired using samples 

analyzed at different concentrations. High concentrations will allow more compounds to 

be detected by the mass spectrometer but may risk saturating the response of highly 

abundant or ionizable compounds. Low extract concentrations will be less likely to be 

subject to saturation, but low-abundance compounds contributing to activity may be 

overlooked if they are below the limit of detection for the LC-MS system. Finally, the 

number and chemical simplicity of chromatographic pools could also influence the 

metabolomics models.  

We sought to evaluate the impact of the number of pools, bioassay concentration, 

and concentration analyzed by the mass spectrometer on the final biochemometric results.  
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To do this, we constructed models using different parameters and compared the resulting 

selectivity ratio rankings of berberine and magnolol. Berberine and magnolol were 

chosen because they were the only two added compounds that were concentrated enough 

following chromatographic separation to contribute to biological activity in all models 

tested. We also assessed the impact of number of pools, bioassay concentration, and 

concentration analyzed by mass spectrometry on the number of false positives, including 

false positives that co-varied with berberine, those that co-varied with magnolol, and 

those that did not co-vary with either active compound.   

Effect of data acquisition parameters on selectivity ratio analysis 

The models produced were built using ranked data, and as such, they do not meet 

assumptions of normality (290). Additionally, four of the eighteen subsets did not 

produce models, leading to a breaking of orthogonality. As such, we chose to use a partial 

least squares (PLS) analysis to assess the impact of the number of pools, bioassay 

concentration, and concentration injected into the LC-MS system on each of the result 

metrics (ranking of berberine, ranking of magnolol, false positives co-varying with 

berberine, false positives co-varying with magnolol, and non-co-varying false positives). 

The model generated to assess the variability among the selectivity ratio rankings of 

berberine explained 32.4% of the variability (R2 = 0.324), suggesting that the number of 

pools included in the model, the bioassay concentration, and the mass spectral 

concentration have only a minor effect on the ability of selectivity ratio models to 

identify berberine as active. Similar results were found with selectivity ratio rankings of 

magnolol. Data acquisition parameters had a greater effect on the selectivity ratio 
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rankings of magnolol than berberine (R2 = 0.484). The number of pools and the 

concentration tested in the bioassay did not have much impact on either model produced, 

and most of the variability was explained by concentration injected into the LC-MS, with 

high concentration datasets leading to better selectivity rankings. False positives co-

varying with berberine were modeled using a 1-component model (R2 = 0.627), and the 

number of false positives increased with increased concentration injected into the LC-

MS. Interestingly, the false positives co-varying with magnolol were found to increase 

with the number of pools (R2 = 0.901). Non-co-varying false positives increased with the 

number of pools and decreased with increasing concentration injected into the LC-MS 

and used in the bioassay (R2 = 0.556). 

Models produced using high concentrations in the LC-MS (0.1 mg/mL) were 

comprised of 870 unique ions. Of these 870 ions, a subset of ions, representing 2-5% of 

the total number of ions, had selectivity ratio rankings greater than 0. The low-

concentration dataset (0.01 mg/mL), was comprised of 370 ions, and a subset containing 

9-18% of the total number of ions possessed selectivity ratio rankings greater than 0. In 

all cross-validated models, between 14-34% of variables with selectivity ratios greater 

than 0 represented berberine or magnolol, including adducts and isotopes (Appendix B, 

Table S3). Our analyses revealed that datasets analyzed at higher concentrations analyzed 

in the LC-MS (0.1 mg/mL rather than 0.01 mg/mL) had improved selectivity ratio 

rankings for both berberine and magnolol, and also reduced the number of false positives 

that did not co-vary with active compounds (Appendix B, Table S2). These results 

suggest that saturation of highly abundant compounds (such as berberine) did not result 
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in a breakdown of linearity and allowed for the identification of active compounds. 

Models were made worse when assessed at lower concentrations, particularly for 

magnolol selectivity ratio rankings (Appendix B, Table S2). We infer that at low 

concentrations, magnolol may be present at levels near or below the limit of 

quantification, skewing the linearity of the response and decreasing its contribution to the 

model. Low-concentration datasets appeared to be more prone to identifying correlated 

noise, as illustrated by the increased number of non-co-varying false positives (Appendix 

B, Table S2). Although there were more false positives that co-varied with berberine in 

the high concentration datasets, these numbers were small (1 or 2 false positives), and as 

such, the benefits of high concentration analysis outweigh the risk of false positives. Not 

only are high-concentration datasets less likely to identify non-co-varying false positives 

as active, they also provide a smaller pool of putative active compounds than those of low 

concentration datasets (2-5% versus 9-18%, Appendix B, Table S3).  

Effect of data processing approaches on selectivity ratio analysis 

Because of the immense complexity of botanical extracts, it is quite challenging 

to determine the number of metabolites present in a given sample (255, 276). Often, 

metabolomics datasets contain thousands of individually detected variables, whose signal 

intensities vary over a very large range, and may result from the detection of 

experimental artefacts (246, 258, 276). Data pre-treatment, filtering of chemical 

interferents, and model simplification tools may be critically important to enable 

extraction of relevant information from such datasets (276, 291). To explore this 

possibility in the context of natural products drug discovery, the impact of data 
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transformation, data filtering, and model simplification, as well as their second-order 

interactions, were assessed using data from the 10-pool set analyzed at 100 µg/mL in 

both the bioassay and by the LC-MS.  

To measure the effects of data processing, we evaluated the selectivity ratio 

rankings of berberine and magnolol, as well as the occurrence of false positives, 

including those co-varying with berberine and magnolol and those that did not (Appendix 

B, Table S4). The six terms included in these models (data transformation, data filtering, 

model simplification, and second-order interactions) had excellent explanatory power in 

all models produced, explaining 95.2% of the variance of berberine selectivity ratio 

rankings, 99.6% of magnolol selectivity ratio rankings, 92.4% of false positives co-

varying with berberine, 99.8% of false positives associated with magnolol, and 99.7% of 

the non-co-varying false positives. Depending on the combination of data processing 

approaches utilized, we found drastic changes in the selectivity ratio ranking of berberine 

(ranging from first to 23rd) and magnolol (ranging from 8th to 213th). A wide range was 

also witnessed for all categories of false positives (Appendix B, Table S4, Figure 29). 

These results suggest that data processing approaches are particularly important for 

extracting reliable information from metabolomics datasets.  

Data transformation. It is common practice in metabolomics studies, particularly 

those utilizing mass spectrometric data, to subject data to a transformation procedure 

(241, 291). Because mass spectrometers are so sensitive in their ability to detect 

compounds at a wide range of concentrations, they are subject to errors caused by 

heteroscedastic noise in count data, in which error is proportional to the peak area (241, 
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291). As such, data transformation processes aimed to reduce  the error associated with 

large peak areas are commonly employed (241, 291). Many metabolomics projects 

utilize, for example, a fourth-root transformation of variable peak areas to minimize the 

impact of heteroscedastic noise and reduce bias against highly abundant or ionizable 

compounds (132, 241, 292). Despite the popularity of this approach, our statistical 

analysis revealed that this transformation negatively impacted the ability of models to 

accurately predict active compounds. Models built using transformed data (Figures 29E-

29H) gave berberine and magnolol worse selectivity ratio rankings than datasets using 

non-transformed data (Figures 29A-29D). There were also more false positives that did 

not co-vary with active compounds and that co-vary with berberine. Somewhat 

surprisingly, no false positives that co-varied with magnolol were detected in models that 

did not use transformed data. Likely, models that used transformed data were unable to 

identify magnolol as important for bioactivity, and as such, the compounds that co-varied 

with magnolol were not identified either. Because the non-transformed datasets were able 

to identify magnolol as active, the false positives associated with magnolol also 

increased. These results are counter to the findings of other studies (292). For example, 

while Arneberg et al. (292) found that the nth root transformation positively impacted 

their models, our models using this transformation were unable to identify active 

constituents. These differences may be due to the differences in applications between 

these two projects. While Arneberg et al. (292) were assessing proteomics datasets, our 

datasets were focused on metabolomics-driven natural products discovery. In natural 

products discovery projects, low-abundant constituents that contribute to bioactivity may  
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Figure 29. Comparison of Selective Ratios Produced with Different Data Processing Approaches. All 

models were derived from the 10-pool set analyzed at 0.1 mg/mL in the mass spectrometer using bioassay 

data at 25 µg/mL. m/z-retention time pairs (x-axis, high to low m/z) are plotted relative to their selectivity 

ratios (y-axis). The most positive selectivity ratios represent compounds with the highest explained to 

residual variance, and are predicted to be associated with biological activity. A series of identified features 

were associated with berberine and marked in yellow, including an [M]+ ion at m/z 336.123 and retention 

time (RT) 2.96 min, an [M]+ ion with m/z of 338.127 and RT of 2.961 min (containing two 13C isotopes), 

an [M]+ ion at m/z 339.129 min and RT 2.94 (containing three 13C isotopes), and an [M]+ ion at m/z 336.126 

at RT 6.355 min.  Two features were identified as associated with magnolol, and are marked in green, 

representing the [M-H]- ion at m/z 265.123 and 13C isotope at m/z 266.127 at RT 5.756 min. Polysiloxane 

contaminants are marked in red. 29A. No data processing approaches were used. 29B. Model simplified 

using a percent variance cutoff, in which ions showing less than 1% peak area variance across samples 

(when compared to the most variable peak) were assigned a ratio of 0. 29C. Model filtered using 

hierarchical cluster analysis (HCA), detailed in Caesar et al. 2018 (276) 29D. Model simplified using 

percent variance cutoff and filtered with HCA. 29E. Model produced using peak area data transformed with 

a fourth-root. 29F. Model using transformed data and variance cutoff. 29G. Model using transformed data 

and HCA filtering. 29H. Model built with transformed data, filtered with HCA, and simplified using a 

percent variance cutoff. The model in Figure 4D has the fewest false positives and the best selectivity ratios 

for both berberine and magnolol, illustrating that its combination of data processing techniques are most 

suitable for this application.  
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be present in the upper parts per million or parts per thousand range (293), while protein 

biomarkers are often found in the lower parts per billion range (294, 295). A 

transformation to reduce the impact of major peaks compared to minor peaks may be 

helpful when the compounds of interest are likely to be extremely low in abundance, but 

not necessarily in the case of natural products discovery. Another potential reason for the 

negative impact of transformation on selectivity ratio models is that the fourth-root 

transformation is a nonlinear transformation, which may cause a breakdown in the linear 

relationship between active compound concentration and bioactivity. 

Model simplification. The goal of this project is to identify active constituents 

from complex botanical mixtures, therefore, supervised methods using biological activity 

as the dependent variable should be used. Because the biological activity varies from 

sample to sample (Figure 26), the variables responsible for biological activity should also 

vary in concentration from sample to sample. To reduce the influence of variables that do 

not vary in concentration across pools on model interpretation, peak area variance was 

assessed. Variables were ranked according to their overall peak area variance between 

pools, and the variable with the highest variance was used as a reference. If variables 

contained an overall peak area variance that was less than 1% than that of the reference 

variable, it was assigned a selectivity ratio of 0.  Datasets that were evaluated using this 

approach (Figures 29B, 29D, 29F, and 29H) had better selectivity ratio rankings for 

berberine and magnolol than those that did not (Figures 29A, 29C, 29E, and 29G). 

Additionally, there were fewer false positives that co-varied with berberine and that did 

not co-vary with active compounds in simplified models when compared to their non-
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simplified counterparts. There were more false positives associated with magnolol in 

models that were produced using this simplification process, possibly because simplified 

models were better able to identify magnolol, and variables correlated with it, as 

important for biological activity.  

Interaction between data transformation and model simplification. Multiple 

studies have been conducted to evaluate the influence of data processing treatments on 

subsequent data analysis, and have revealed that there are often complex interactions 

between the parameters used (292, 296). To optimize data treatment parameters, it is 

important to inspect interactions between processing steps. Indeed, our analyses also 

revealed a strong interaction between two data processing steps: data transformation and 

model simplification using a percent variance cutoff (Figures 29B and 29D). Models that 

did not use transformed data were better than their transformed counterparts at 

identifying berberine and magnolol as active only when model simplification using a 

percent variance cutoff was utilized. Transformed datasets were barely improved using 

this simplification method, likely because the data transformation minimized peak area 

variance between different ions. Models evaluated without data transformation and with a 

percent variance selectivity ratio filter (Figures 29B and 29D) showed enhanced 

selectivity ratio rankings for both berberine and magnolol. The selectivity ratio ranking 

for berberine in these models was 1st or 2nd, while all other models had selectivity ratio 

rankings between 17 and 23. The ranking of magnolol was 8th or 9th in models that were 

not transformed but were simplified using a percent variance selectivity ratio filter, while 

all other models had magnolol selectivity ratio rankings between 110 and 213. The 



 

144 

 

number of false positives that did not co-vary, as well as false positives co-varying with 

berberine, were also reduced. Again, the number of false positives co-varying with 

magnolol was increased in these datasets (Appendix B, Table S4).  

Data filtering using relative variance and hierarchical cluster analysis of triplicate 

injections. Often in mass spectrometry-based metabolomics, background noise and 

chemical contaminants are assumed to be consistent across samples. However, as 

illustrated in a recent study by the authors (276), this is not always the case. Chemical 

interferents originating from the analytical instrumentation itself (260, 261), including 

silica capillary contaminants and HPLC column packing materials, may be introduced 

differentially from injection to injection, in which case they will not be consistent across 

samples. Data filtering for removal of these contaminants from metabolomics datasets 

can improve quality and interpretability. This data filtering approach, when applied to the 

data collected herein, did not result in statistically significant changes to selectivity ratio 

rankings of berberine and magnolol, nor in the number of false positives identified 

(Appendix B, Table S4). However, in all models that did not go through this data filtering 

process, between one and four contaminants were incorporated into the model 

predictions. In one example, a known polysiloxane contaminant (271) was falsely 

identified as the top contributor to biological activity (Appendix B, Table S4, Figure 

29B). Because many metabolomics studies rely on the assumption that compounds that 

vary in abundance from sample to sample may have biological importance, these types of 

contaminants are particularly important to identify and remove from metabolomics 

datasets.  
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Assessment of combination effects in unfractionated, spiked A. keiskei mixture 

Many studies have shown that the observed biological activity of botanical 

mixtures may be due to the combined action of multiple constituents, which can interact 

additively, synergistically, or antagonistically (9, 10, 14, 18, 127). For the study 

conducted here, we hypothesized that such combination effects could be responsible for 

the large discrepancy in the predicted and observed activities for the spiked A. keiskei 

botanical extract (Figure 27).  Specifically, we proposed that constituents of the ‘inactive’ 

botanical extract might mask or antagonize the antimicrobial activity of the antimicrobial 

compounds that had been spiked into it.  To test this hypothesis, a checkerboard assay 

typically employed to assess synergy and antagonism in antimicrobial activity (18, 127, 

297) was conducted in which purified berberine and magnolol were individually tested 

for antimicrobial activity in combination with a range of concentrations of the spiked A. 

keiskei mixture. The results of the synergy assay were illuminating, as illustrated in Table 

9 and Figure 30. The spiked extract, when tested in combination with berberine, caused 

the minimum inhibitory concentration (MIC) of berberine to change from 75 µg/mL to 

150 µg/mL and the IC50 to change from 29.5 µg/mL to 85 µg/mL (Figure 30A). Although 

these numbers may be suggestive of an antagonistic effect, using conservative ƩFIC 

indices, this effect was considered “noninteractive” (9). The spiked A. keiskei mixture 

had an even more notable impact on antimicrobial activity of magnolol (Figure 30B). The 

MIC of magnolol in combination with the spiked A. keiskei extract was increased to 25 

µg/mL, when in isolation the MIC of magnolol was four times lower at 6.25 µg/mL. The  
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Table 9. Minimum Inhibitory Concentrations and Half Maximal Inhibitory Concentrations for 

Berberine (Compound 1) and Magnolol (Compound 2) Alone and in Combination with Spiked A. 

keiskei Extract. The MICs of berberine and magnolol in are consistent with previous reports (132, 284). 

 

Treatment MIC (µg/mL) IC50 (µg/mL) FIC index a 

Berberine (1) 75 29.5 -- 

Berberine (1) + spiked A. keiskei extract b 150 85 3 

Magnolol (2) 6.25 4.1 -- 

Magnolol (2) + spiked A. keiskei extract b 25 8.9 5 

Spiked A. keiskei extract >100 µg/mL >100 µg/mL -- 
a ƩFICs were calculated using the following equation: ƩFIC = FICA + FICB = ([A]/ MICA) + ([B]/MICB), 

where A and B are the compounds/extracts tested in combination, MICA is the minimum inhibitory 

concentration of A alone, MICB is the minimum inhibitory concentration of B alone, [A] is the MIC of A in 

the presence of B, and [B] is the MIC of B in the presence of A. 
b  values expressed for magnolol and berberine’s MIC/IC50 in combination with 100 µg/mL spiked extract.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 30. Comparison of Dose-Response Curves for Berberine (Compound 1) Alone and in 

Combination with 100 µg/mL Spiked Extract (A) and for Magnolol (Compound 2) Alone and in 

Combination with 100 µg/mL Spiked Extract (B). As indicated by the data shown here and the ƩFIC 

values in Table 1, the spiked extract antagonized the antimicrobial activity of the pure compounds.  MIC 

values of compounds alone are consistent with previous reports (132, 284). 
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IC50 of magnolol was also impacted, and increased from 4.1 µg/mL in isolation to 8.9 

µg/mL in combination with 100 µg/mL of the spiked mixture. The ƩFIC index for the 

magnolol/extract interaction was calculated to be 5, strongly indicating the presence of 

antagonists in the mixture. These results explain the mismatch in activity between our 

predicted and observed activity (Figure 27) and confirm the prediction that the mixture 

contains antagonists.  Unfortunately, due to material limitations, identification and 

isolation of antagonists in the mixture was not pursued.   

Assessing stage of fractionation and impact on assignment of bioactive constituents 

Multiple rounds of fractionation improve selectivity ratio ranking of magnolol 

Our analyses revealed that many compounds that co-varied with magnolol were 

incorrectly assigned as being bioactive. We anticipated that another round of 

fractionation and biochemometrics modeling would improve the selectivity ratio ranking 

of magnolol and eliminate some of these false positives. To this end, we separated three 

pools rich in magnolol (1-2, 2-3, and 3-5) with a second stage of chromatographic 

separation and evaluated their antimicrobial activity (Figure 31). The chromatographic 

separation of pool 1-2 yielded 11 sub-pools, pool 2-3 yielded 10 new sub-pools, and pool 

3-5 yielded 7 new sub-pools. At 50 µg/mL, four of the new sub-pools caused complete 

inhibition of S. aureus (SA1199) (238) growth (Figure 31), while at 25 µg/mL, the most 

active sub-pool exhibited 60% inhibition.   
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Figure 31. Biological Activity Data of Sub-Pools Resulting from Chromatographic Separation of 

Pools 1-2, 2-3, and 3-5, which Contained Active Concentrations of Magnolol. Growth inhibition of 

Staphylococcus aureus (SA1199) (238) relative to vehicle control was measured turbidimetrically using 

OD600 values. Data presented are the results of triplicate analyses ± SEM. The positive control 

chloramphenicol was tested at concentrations of 100 and 10 µg/mL. 

 

 

Six new selectivity ratio models (two from each of the three new sets of sub-

pools, assessed at 25 and 50 µg/mL) were produced using the sub-pool data from the 

second-stage fractionation (Appendix C, Figure S16), and these models were compared 

with the models generated from the previous round of fractionation (Appendix B, Table 

S5). The second-stage models had significantly higher selectivity ratio rankings for 

magnolol. Five of the six second stage models ranked magnolol between the 1st and 6th  

top contributors to biological activity (median ranking = 2), while their first stage 

counterparts ranked between 4th and 14th (median ranking = 13). Contrary to our 

predictions, the number of false positives were not affected by an additional round of 

fractionation.  

Although the number of false positives found in the same chromatographic pools 

as magnolol were not affected, magnolol’s contribution to the overall selectivity ratio 

models is more notable with second-stage pools. As an example, first- and second-stage 
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selectivity ratio models for the 10-pool set, analyzed at 0.1 mg/mL in the mass 

spectrometer, and assessed at 25 µg/mL are compared in Figure 32. Only the top 20 

predicted contributors to biological activity are color coded. In this figure, red bars 

represent variables that co-varied with magnolol that were falsely identified among the 

top contributors to biological activity. Green bars represent magnolol and its associated 

masses (i.e. 13C-isotopes). Blue bars are false positives that co-varied with berberine, and 

purple bars represent non-co-varying false positives. In Figure 32A, berberine and 

associated masses (yellow bars) are easily identifiable as putative active compounds, as 

are additional compounds that represent both co-varying and non-co-varying false 

positives. The green bars associated with magnolol are identified among the top twenty 

contributors to biological activity, but their relative magnitude is considerably smaller 

than many false positives. In Figure 32B the only false positives identified co-varied with 

magnolol, and magnolol’s relative contribution to the model is improved. Berberine is not 

identified in this model because it was not present in pools selected for sub-fractionation.  

Although false positives still prevail in the model predictions after additional 

rounds of fractionation, it is important to note that all the false positives in the top twenty 

contributors to activity in the second-stage model (Figure 32B) represent co-varying false 

positives. Because the impact of non-co-varying false positives is minimized by sub- 

fractionation, prioritization of pools for future chromatographic separation is more 

straightforward. Likely, an additional round of fractionation and modeling would 

improve this even further. 
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Figure 32. Models Produced using Pools 3-1 through 3-10 (32A) and 3-5-1 through 3-5-7 (32B) 

Analyzed at 0.1 mg/mL in the Mass Spectrometer and Assessed for Activity at 25 µg/mL. Features 

associated with berberine (compound 1) are marked in yellow, and represent an [M]+ ion at m/z 336.123 

and retention time (RT) 2.96 min, an [M]+ ion with an m/z of 338.127 and RT of 2.961 min (containing two 
13C isotopes), an [M]+ ion at m/z 339.129 min and RT 2.94 (containing three 13C isotopes), and an [M]+ ion 

at m/z 336.126 at RT 6.355 min (RT difference due to column retention).  Features associated with 

magnolol (compound 2) are marked in green. In both 32A and 32B bars represent the [M-H]- ion at m/z 

265.123 and 13C isotope at m/z 266.127 at an RT of 5.756 min. Two additional associated ions, the [M-H]- 

ion at m/z 265.124 with an RT of 5.72, and the [M-H]- ion containing 2 13C isotopes at m/z 267.129 with an 

RT of 5.73 are found in 32B. Co-varying false positives can be defined as compounds that were identified 

in the same pools, and with the same relative shifts in concentration, as active compounds. Non-co-varying 

false positives, on the other hand, were identified as putatively active but did not share concentration 

patterns with active compounds. In this figure, red bars correspond to variables co-varying with magnolol, 

blue bars represent false positives co-varying with berberine, and purple bars represent non-co-varying 

false positives. 

These results are consistent with a recent study conducted in our laboratory exploring the 

use of biochemometrics and its ability to identify synergists in Hydrastis canadensis (18). 

With this project, three rounds of fractionation were required to produce a reliable 

selectivity ratio model. This model successfully identified known synergists in H. 

canadensis and revealed the activity of a previously undescribed compound (18). In 
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another study using biochemometrics and molecular networking to identify important 

constituents from A. keiskei, two rounds of fractionation data were required before 

antimicrobial compounds were identified (145). Thus, it appears that, as would be 

expected, biochemometric model predictions improve upon chromatographic separation. 

With the first set of models produced using complex first-stage pools, berberine was 

consistently identified among the top contributors to biological activity while magnolol 

was not. The pool containing the highest abundance of berberine from the first stage of 

chromatographic separation contained only 212 variables above the baseline, while the 

pool containing magnolol contains nearly twice as many compounds. However, after a 

second round of fractionation, the sub-pool containing the highest amount of magnolol 

only shows 310 ions above the baseline, making statistical modeling more efficient and 

less prone to data overfitting (Appendix C, Figure S17).   

Multiple rounds of fractionation revealed an additional bioactive constituent previously 

masked by antagonists in the mixture 

For the data shown in Figure 31, we can attribute the activity of sub-pools 1-2-11, 

2-3-7, and 3-5-5 to magnolol, where magnolol was present at concentrations higher than 

its MIC (6.25 µg/mL) in sub-pools tested at 50 µg/mL (7.5 ± 1.2, 9.2 ± 0.4, and 10.5 ± 

0.3 µg/mL for sub-pools 1-2-11, 2-3-7, and 3-5-5, respectively). However, sub-pool 3-5-

2, which also inhibited growth of S. aureus (SA1199) (238) at 50 µg/mL, did not contain 

detectable levels of magnolol. Rather, this sub-pool was comprised almost entirely of 

another compound (93% purity based on LC-UV analysis, data not shown). We subjected 

this pool to an additional round of chromatographic separation, yielding randainal (5, 
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0.25 mg, 99% purity). Due to the structural similarity of randainal to magnolol, we 

propose that this compound did not originate from the A. keiskei root extract, but rather 

represented an oxidation product of magnolol. Indeed, raindainal was not detected in the 

unspiked A. keiskei extract used for these studies (data not shown).  

Randainal was predicted by one second-stage model to be the fifth top contributor 

to biological activity. Nine false positives co-varied with randainal, and six false positives 

co-varied with magnolol. Three additional false positives were identified that did not co-

vary with either of the active constituents. The discovery of randainal was illuminating, 

and highlights the importance of fractionation for identifying low-abundance 

antimicrobials that may be masked by combination effects. It appears that the presence of 

antagonists in the A. keiskei roots (Figure 30) masked the biological activity of randainal 

until it had been chromatographically separated from them. Although we were unable to 

test randainal in isolation for activity due to material limitations, its structural similarity 

to magnolol suggests that compounds present in the original A. keiskei mixture 

antagonized its activity in a similar way. Sub-pool 3-5-2 (93% randainal) was found to be 

active at 50 but not 25 µg/mL, which is likely the range of activity for randainal, although 

it is possible that minor constituents in the mixture also contributed.   

The discovery of randainal also provided additional insight into models from the 

first round of data collection. Pool 3-6 possessed partial activity that was not explained 

by the four active compounds that we spiked into the mixture; however, this pool 

contained randainal, which likely contributed to the activity witnessed. Additionally, five 

of the original models identified randainal among the top contributors to biological 
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activity (Appendix B, Table 6). These masses were originally thought to be false 

positives that co-varied with magnolol.  

Limitations and opportunities 

Mass spectrometry is the analytical technology of choice in the metabolomics 

field because of its sensitivity to structurally diverse chemicals at a wide range of 

concentrations and ionization efficiencies. While mass spectrometry provides complex 

chemical profiles with the ability to reveal valuable scientific insights into various 

biological processes, it also is fraught with challenges. Especially when exploring 

complex biological organisms for unknown compounds, the analyst must contend with 

the fact that many variables detected may not represent compounds associated with the 

sample. Additionally, differences in ionization efficiencies of analytes detected can have 

major impacts on the statistical models produced. For example, we found that models 

produced when injecting higher concentrations into the mass spectrometer (0.1 mg/mL) 

were generally more informative. Although these models were at a higher risk for 

saturating the response of highly abundant compounds, they provided a more complete 

picture of true sample components. The low concentration datasets likely resulted in 

models that were skewed by highly abundant compounds, highly ionizable compounds, 

and noise. Low concentration models were less useful for identifying active compounds, 

and were also more prone to the inclusion of non-co-varying false positives due to 

correlated noise. Interestingly, data acquisition factors tended to impact the ranking of 

compounds identified as contributing to biological activity, but the identity of these 

candidates was relatively consistent. 
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Metabolomics datasets rely not only on the data acquired, but also upon the data 

pre-treatment and data processing steps utilized. Unlike data acquisition parameters, 

which affected the order but not identity of the top fifty ions produced, data processing 

parameters had a drastic impact on both order and identity of predicted bioactive 

constituents. Using a factorial design, we evaluated the effect of data filtering, data 

transformation, and model simplification steps on selectivity ratio analysis, and found 

that most of our models produced were unable to identify known active constituents and 

contained many putatively false relationships. One of the most substantial findings of this 

work was that data transformation, though commonly employed in metabolomics studies 

(241, 291), had a negative impact on subsequent statistical analyses. These results 

suggest that data processing protocols should be chosen carefully based on the goals of 

the project at hand and that commonly employed tools for one application may be 

unnecessary, or even detrimental, for other applications. We discovered that not only are 

individual pretreatment and processing steps influential (particularly model simplification 

using a percent variance cutoff and data transformation), but their interactions also have 

major impact on models produced. Finally, strategies to remove ions that do not represent 

real sample components are important for understanding the chemistry of the sample 

under analysis. Datasets that were not filtered using protocols described in a recent 

publication (276) contained false positive peaks associated with LC-MS equipment used 

for analysis. These peaks were often putatively identified as the top contributors to 

biological activity when the filtering approach was not utilized.  
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Even if all data acquisition and data processing parameters are optimized, there 

will likely be false negatives that are not incorporated into the model and false positives 

that are. For this experiment, we spiked four active compounds into a complex mixture. 

However, only two of these active compounds were concentrated enough to show 

biological activity. Alpha-mangostin, notably, was the most potent antimicrobial 

compound that we utilized; however, its low concentration in the pools that resulted from 

chromatographic separation prevented it from being detected as an active component of 

the original mixture. Cryptotanshinone was identified only in some of the models in 

which it was present at biologically relevant concentrations. Although this was not the 

case in this study, multiple rounds of fractionation may serve to concentrate low abundant 

active compounds enough to reveal their activity.  

It is worth mentioning that the possibility of missing highly active compounds 

when they are present at low concentration is not only an inherent limitation of the 

biochemometric approach employed here, but of any bioassay guided fractionation 

experiment.  It is almost always true that the analytical approach employed to profile 

natural product extracts and pools will be more sensitive than the biological assay 

employed to evaluate their activity.  Thus, it is always possible for a detected compound 

to be falsely deemed “inactive” simply because it is present at levels too low to register a 

biological effect.  

False positives are also a problem in biologically-driven metabolomics analysis. 

There will always be compounds that happen to be present in the same pools and at the 

same relative concentrations as true active constituents, so it is no surprise that inactive 
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compounds may be predicted to be active using a biochemometric approach. By utilizing 

optimized parameters for data processing and acquisition, it is possible to influence the 

type of false positives included in the model. False positives that are found in pools 

associated with biologically active constituents are less problematic than those that are 

not, because the fractionation process is guided by the predictions of the model. We have 

also found that antagonism can mask the activity of active compounds and distort 

metabolomics models. An additional round of fractionation allowed us not only to 

improve our identification of magnolol as active, but it also revealed an additional active 

compound, randainal, which was masked by combination effects. This compound was 

previously believed to be a false positive that was simply found in the same pools as 

magnolol. This finding suggests that many of the “false positives” we have counted in 

this study may not truly be false positives at all, but may represent active compounds 

whose activities have been distorted by combination effects.  

Untargeted metabolomics is a tool for finding a needle in a haystack. For natural 

products drug discovery, the goal is often to identify bioactive “needles” in a haystack of 

thousands of metabolites. The studies described herein demonstrate that biochemometric 

approaches cannot necessarily identify the needle from the entire haystack, but rather, 

they can be applied to reduce the large haystack to a much smaller one that is likely to 

contain active compounds. Selectivity ratio analysis is an excellent tool to rank lead 

compounds in this smaller haystack and prioritize them for isolation. Effort is still 

required to purify the putative active compounds, assign their structures, and test them for 

biological activity.  The studies presented herein demonstrate that such validation is very 
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necessary, given the likelihood of identifying false positives. However, the finite quantity 

of material available for subsequent isolation poses an inherent limitation that often 

stymies such validation.   

Conclusions 

The vast, largely unknown chemical landscape of botanicals is deeply rich, and 

although tools to understand the nature of their bioactive properties are improving, it is 

important to recognize that multivariate models are affected by a variety of biological, 

chemical, and analytical factors. Big data can be used to unveil valuable insights that are 

otherwise hidden to us. However, extracting information out of large datasets remains 

challenging. Despite this, we should not allow ourselves to be stagnated by imperfect or 

incomplete interpretations; rather, we should use our incomplete knowledge to generate 

hypotheses and strive to improve our interpretation and methods over time. This reality 

may remind us of statistician John Tukey’s statement: “Far better an approximate answer 

to the right question . . . than an exact answer to the wrong question. Data analysis must 

progress by approximate answers, at best, since knowledge of what the problem really is 

will at best be approximate” (298). Although we may not find the exact answer to the 

question at hand, the effective management of large datasets gives us the ability to find 

better questions, recognize limitations, and follow up on predictions in an informed way.  

Experimental Section 

General experimental procedures 

UPLC-MS analysis was conducted in both positive and negative modes using a 

Thermo-Fisher Q-Exactive Plus Orbitrap mass spectrometer (Thermo Fisher Scientific, 



 

158 

 

MA, USA) connected to an Acquity UPLC system (Waters Corporation, Milford, MA, 

USA). UPLC-MS analyses were completed using a reversed phase UPLC column (BEH 

C18, 1.7 µm, 2.1 × 50 mm, Waters Corporation, Milford, MA, USA).  Each sample was 

analyzed in triplicate at concentrations of 0.1 mg/mL and 0.01 mg/mL in methanol 

(expressed as mass of sample per volume of solvent) with a 3 µL injection.  

Chromatographic separation was accomplished using a gradient comprised of water with 

0.1% formic acid (solvent A) and acetonitrile with 0.1% formic acid (solvent B). The 

starting conditions were 90:10 (A:B) and held for 0.5 min. Over 0.5-8.0 min, the gradient 

was increased to 0:100 (A:B) and held at these conditions until 8.5 min. Over the next 0.5 

min, starting conditions were re-established, and the gradient was held at 90:10 (A:B) 

from 9.0-10.0 min. Mass analysis (in both positive and negative modes) was completed 

over a m/z range of 150-1500. The settings were set as follows: capillary voltage -0.7 V, 

capillary temperature 310°C, S-lens RF level 80.00, spray voltage 3.7 kV, sheath gas 

flow 50.15, and auxiliary gas flow 15.16. A data-dependent method was used, and the 

four ions with the highest signal intensity were fragmented with HCD of 35.0. 

Production of spiked botanical mixture with known antimicrobial compounds 

The goal of this project was to evaluate the effectiveness of selectivity ratio 

analysis to identify known active (antimicrobial) compounds in an otherwise inactive 

mixture. Detailed information about the plant material, extraction, and simplification of 

this mixture can be found in Appendix A (Protocol S2). To prepare the spiked extract, a 

simplified and inactive Angelica keiskei Koidzumi extract (126.4 mg) was combined with 

four known antimicrobial compounds at different concentrations yielding 167.9 mg of the 
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spiked extract: berberine (1, 24.9 mg, 15% of extract mass), magnolol (2, 11.6 mg, 7% of 

extract mass), cryptotanshinone (3, 3.3 mg, 2% of extract mass), and alpha-mangostin (4, 

1.7 mg, 1% of extract mass). This resulting mixture, containing both unknown 

compounds and known active compounds, was used as the test material for the 

experiments described herein.  

Chromatographic separation experiments 

The spiked A. keiskei root mixture was separated into three equal portions and 

reversed-phase HPLC was conducted. Each separation was conducted using the same 

gradient and column (Gemini NX reversed-phase preparative HPLC column, 5 µm C18, 

240 × 21.20 mm; Phenomenex, Torrance, CA, USA) with a flow rate of 21.4 mL/min. 

The gradient began with 30:70 ACN:H2O, after which it was increased to a ratio of 55:24 

over 8 min. The gradient was then increased to 75:25 over two min and ramped up to 

100% ACN for 28 min. The 100% organic gradient was then held for another two min to 

flush the column. 

Each fractionation yielded 90 test tubes, which were divided evenly into sets 

containing three, five, or ten pools, facilitating assessment of the impact of 

chromatography and pool complexity on biochemometric analysis. The first set of pools 

consisted of three pools of 30 tubes each, the second set was made up of five pools with 

18 tubes each, and the final set was ten pools of 9 tubes each. Each pool was dried under 

nitrogen before subsequent analysis. The three chromatographic separations of spiked A. 

keiskei root extract yielded eighteen pools, where 1-1 through 1-3 represent the samples 
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from the three-pool set, 2-1 through 2-5 represent the samples from the five-pool set, and 

3-1 through 3-10 represent the samples from the ten-pool set. 

Following the first round of biochemometric analysis, three pools were selected 

for a second round of chromatographic separation. The magnolol-rich pools, including 

the second pool from the three-pool set (pool 1-2), the third pool from the five-pool set 

(pool 2-3), and the fifth pool from the ten-pool set (pool 3-5). These pools were subjected 

to another round of reversed-phase HPLC. All pools were separated using a gradient 

comprised of acetonitrile and water through a Gemini NX reversed-phase preparative 

HPLC column (5 µm C18, 240 × 21.20 mm; Phenomenex, Torrance, CA, USA) with a 

flow rate of 21.4 mL/min. Pool 1-2 was separated using a gradient beginning with 45:55 

ACN:H2O and increasing to 60:40 ACN:H2O over 30 min after which it was flushed with 

100% acetonitrile for 10 min. Pool 2-3 was separated into ten sub-pools using a gradient 

increasing from 60:40 to 70:30 ACN:H2O over 25 min and ending with a 10 min flush of 

100% acetonitrile. Finally, pool 3-5 was separated into 7 sub-pools (3-5-1 through 3-5-7) 

with an isocratic gradient of 60:40 ACN:H2O held for 30 min before a 10 min flush of 

100% acetonitrile. Sub-pool 3-5-2, collected from 9-10 min, was subjected to a final 

round of reversed-phase HPLC through a Phenomenex Gemini-NX reversed-phase 

analytical column (5 µm; 250 × 4.6 mm) with a 35 min gradient of ACN:H2O starting at 

30:70 and increasing to 70:30 following which it was increased to 100:0 for 5 min. 

Randainal (5) was collected from 20-20.5 min (0.25 mg, 99% purity). NMR spectra were 

collected using an Agilent 700 MHz spectrometer (Agilent Technology) or a JEOL ECA-

500 MHz spectrometer (JEOL, Peabody, MA, USA). 
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Randainal (compound 5): yellow, amorphous powder; HRESIMS m/z 279.1028 

[M-H]- (calculated for C18H15O3
-, 279.1021). Fragmentation patterns matched predicted 

patterns as well as previously reported fragments from the literature (299) (Appendix C, 

Figure S18); 1H NMR (700 MHz, CD3OD) δ: 3.34 (2H, d, J=6.3 Hz, H2-7’), 4.57 (2H, s, 

OH), 5.00 (1H, ddd, J=10, 2, 1 Hz, H-9’a), 5.06 (1H, ddd, J=17, 2, 1 Hz, H-9’b), 5.98 

(1H, ddt, J=17, 10, 6.7 Hz, H-8’), 6.58 (1H, dd, J= 15.6, 8 Hz, H-8), 6.81 (1H, d, J=8.2 

Hz, H-5’), 6.86 (1H, d, J=8.4 Hz, H-5), 7.01 (1H, dd, J=8.2, 2.2 Hz, H-6’), 7.11 (1H, d, 

J=2 Hz, H-2’), 7.52 (1H, dd, J=8.5, 2.2 Hz, H-6), 7.55 (1H, d, J=2.3 Hz, H-2), 7.63 (1H, 

d, J=15.6 Hz, H-7), 9.52 (1H, d, J=7.9 Hz, H-9) (Appendix C, Figure S19). To assign 

shifts corresponding to protons in the aromatic rings, HSQC data (700 HMz, CD3OD) 

were used to identify the correlation between H-2 and C-2 (Appendix C, Figure S20) and 

HMBC data (700 HMz, CD3OD) were used to identity correlations between C-2 and H-7 

and H-6 (Appendix C, Figure S21). Previous literature reports on this compound were 

completed in acetone-d6 (300). To confirm the identity of this compound, we ran an 

additional 1H NMR (500 MHz, acetone-d6) whose chemical shifts matched literature 

values (Appendix C, Figure S22) (300). 

Antimicrobial assay 

To assess antimicrobial activity, a broth microdilution assay was completed for 

each pool using a laboratory strain of Staphylococcus aureus (SA1199) (238). Assays 

were conducted using Clinical laboratory Standards Institute (CLSI) standard protocols 

(236). Cultures were grown in Müeller-Hinton broth (MHB) from an isolated colony and 

diluted to 1.0 × 105 CFU/mL calculated using absorbance at 600 nm (OD600) values.  



 

162 

 

Because one of our goals for this project was to assess the impact of bioassay data 

format on biochemometric results, a full dose response curve was completed for each 

pool and each known antimicrobial compound. Stock solutions were prepared in DMSO 

and diluted with MHB so that final concentrations in test wells would contain 2% 

DMSO. Using these stock solutions, samples were screened in triplicate at concentrations 

ranging from 0-100 µg/mL in MHB (or 0-150 µg/mL in the case of berberine). The 28 

sub-pools produced during the second round of fractionation were screened for 

bioactivity testing at two concentrations: 50 and 25 µg/mL. Chloramphenicol was used as 

a positive control. Each well was inoculated with bacteria (at 1.0 × 105 CFU/mL) and 

incubated for 18 hours at 37 ºC. After incubation, OD600 was calculated using a Synergy 

H1 microplate reader (Biotek, Winooski, VT, USA) and used to calculate the growth 

inhibition of S. aureus by the pools and/or compounds tested.  Minimal inhibitory 

concentrations (MICs) were calculated for each of the known compounds, defined as the 

concentration at which there was no statistically significant difference in OD600 values 

between the negative control (wells containing broth and samples but no bacteria) and the 

treated sample. Dose response curves were produced using a four-parameter logistic 

model in SigmaPlot (v.13, Systat Software, San Jose, CA, USA). 

Synergy assessment 

Antimicrobial checkerboard assays using a broth microdilution method (127, 297) 

were conducted to assess the effect of the spiked extract on the antimicrobial efficacy of 

berberine and magnolol. The A. keiskei extract, spiked with berberine, magnolol, 

cryptotanshinone, and alpha-mangostin, was tested in combination with berberine or 
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magnolol, with the spiked A. keiskei extract and magnolol ranging in concentration from 

1.56-100 µg/mL, and berberine ranging from 2.34-150 µg/mL. The vehicle control was 

comprised of 2% DMSO in Müeller-Hinton broth. The fractional inhibitory concentration 

index (ƩFIC) for each combination of compounds was calculated using equation 1 (127):  

 

ƩFIC = FICA + FICB, 

Where FICA = [A]/MICA, and FICB = [B]/MICB (equation 1) 

A and B are the compounds/extracts tested in combination, MICA is the minimum 

inhibitory concentration of A alone, MICB is the minimum inhibitory concentration of B 

alone, [A] is the MIC of A in the presence of B, and [B] is the MIC of B in the presence 

of A. To minimize the risk of misinterpretation of data, which is common in interaction 

studies (9, 23, 39, 59, 301-303), we have chosen conservative values to assign 

combination effects as recommended in the review by van Vuuren and Viljoen (9). For 

the purposes of this project, synergistic effects are defined as interactions having an ƩFIC 

≤ 0.5, additive effects have an ƩFIC between 0.5 and 1.0, non-interactive effects have 

ƩFIC values between 1.0 and 4.0, and antagonistic effects have ƩFIC values ≥ 4.0.   

Quantitative analysis of known compounds and contribution to biological activity 

Concentrations of known active compounds berberine, magnolol, 

cryptotanshinone, and alpha-mangostin were determined using LC-MS. An external 

calibration curve of each standard compound (with final concentrations ranging from 0-

50 µg/mL in methanol) was produced to identify the linear range of the calibration curve. 

Each sample was re-suspended in methanol to a concentration of 0.1 mg/mL and 
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analyzed as described in General Experimental Procedures. Concentrations were 

calculated from the relevant calibration curve based on the peak area of the relevant 

selected-ion chromatogram for each compound in each sample. Antimicrobial dose-

response curves of each compound tested in isolation were used to determine which pools 

possessed biologically relevant concentrations. 

Statistical analysis 

Baseline correction/MZmine parameters 

LC-MS datasets acquired in both positive and negative modes were individually 

analyzed, aligned, and filtered using MZMine 2.21.2 software 

(http://mzmine.sourceforge.net/) (239). Raw data files (including triplicate analyses of 

each sample) were uploaded into MZMine for peak picking. Chromatograms were built 

for all m/z values having peaks lasting longer than 0.1 min. The spiked extract was 

subjected to two stages of fractionation (Appendix C, Figure S16). The first-stage models 

were produced using pools 1-1 through 3-10. Sub-pools used to produce second-stage 

models were generated by sub-fractionating pools 1-2, 2-3 and 3-5, and are labeled 1-2-1 

through 3-5-7. Modeling completed with the first set of pools were produced using the 

following peak detection parameters: noise level (absolute value) of 2.0 × 106 (positive 

mode, 0.1 mg mL-1 samples), 1.0 × 107 (positive mode, 0.01 mg mL-1 samples), and 1.0 × 

106 (negative mode, both 0.1 mg mL-1 and 0.01 mg mL-1 samples). Models produced 

using the second set of pools (1-2-1 through 3-5-7) resulting from chromatographically 

separating magnolol-rich pools (pools 1-2, 2-3, and 3-5) were assessed at 0.1 mg/mL. For 

these data, the noise level was set to 2.0 × 106 for both positive and negative modes. For 

http://mzmine.sourceforge.net/
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all modeling datasets, the m/z tolerance was set to 0.0001 Da or 5 ppm, and the intensity 

variation tolerance was set to 20%. Peaks were aligned if they were both within 5 ppm 

m/z from one another and eluted within a 0.2-min retention time window. Data consisting 

of m/z, retention time, and peak area, for both negative and positive ions was imported 

into Excel (Microsoft, Redmond, WA, USA) and combined as a single peak list. 

Biological data were added as percent inhibition of bacterial growth at 25, 50 and 100 

µg/mL. Data matrices for each sample subset (containing different pool numbers, mass 

spectral concentrations, and biological activity data) were independently imported into 

Sirius version 10.0 (Pattern Recognition Systems AS, Bergen, Norway) (240) for 

statistical analysis.  

Hierarchical cluster analysis and chromatograph visualization 

Hierarchical clustering analysis was conducted on each data subset using Sirius 

version 10.0 (Pattern Recognition Systems AS, Bergen, Norway) (240, 269). Briefly, 

samples were analyzed using an average-linkage algorithm (270) to cluster objects based 

on chemical similarity. A dataset was considered clustered effectively only when 

triplicate injections of the same sample were linked to one another before being linked to 

other samples. If triplicates did not show this expected trend, spectral variables were 

inspected for each set of triplicates. Variables showing high peak area variability within 

triplicate injections, as well as their associated isotopes, in-source fragments, and 

clusters, were removed. Datasets were also produced that did not include this filtering 

process to assess the importance of this process on subsequent selectivity ratio analysis. 

For a more detailed description of this approach, see Caesar et al. 2018 (276). 
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Selectivity ratio analysis 

Selectivity ratios were generated with Sirius version 10.0 statistical software 

(Pattern Recognition Systems AS, Bergen, Norway) (240, 269). As part of the goals of 

this project, we sought to assess the impact of various data transformation and filtering 

approaches on the resulting biochemometric analysis. Before analysis, peak area data 

were transformed using a fourth-root transformation to reduce heteroscedastic noise 

(241). Additional data subsets were produced in which the data were not transformed. 

Each subset was subjected to internally cross-validated PLS analysis using 100 iterations 

and a significance level of 0.05. Algorithms internal to the Sirius statistical software were 

computed, resulting in selectivity ratio plots that identified candidate compounds 

associated with biological activity. As a final filtering step, each variable within each 

dataset was assessed, and those showing lower than 1% peak area variance across 

samples were assigned a selectivity ratio of 0 in order to reduce the effect of correlated 

noise from the datasets. This resulted in more simplified selectivity ratio plots which 

were compared to plots that did not include this filtering step. 

Statistical comparison of protocols 

Partial least squares regression followed by target projection (269) and calculation 

of selectivity ratios (149) was used for calculating all models predicting biological 

activity from mass spectral profiles. Double cross validation (288) was used to determine 

the number of PLS components for each model. 

For assessing the impact of data acquisition protocols (pool number, bioassay 

concentration, and mass spectral concentration) on the ranking of the bioactive 
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candidates, we did PLS regression with these variables and their interactions as 

explanatory variables in models predicting ranking of berberine and magnolol, and the 

number of false positives identified in the models. Similarly, the effects of 4th root 

transformation, data filtering, 1% variance cutoff and their 2-factor interactions on the 

ability to reveal and rank bioactive compounds in the mass spectral data was assessed by 

calculating regression models with these variables and their interactions as explanatory 

variables.  
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CHAPTER VI 

SIMPLIFY: AN INTEGRATED METABOLOMICS APPROACH TO IDENTIFY 

ADDITIVES AND SYNERGISTS FROM COMPLEX MIXTURES 

 

This chapter has been submitted to the journal Proceedings of the National 

Academy of Sciences and is presented in that style. Caesar, L.K., Nogo, S., 

Naphen, C.N., Cech, N.B.  
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Introduction 

Analysis of complex mixtures is an important topic of scientific research, 

providing insight into many biological processes and interactions. A complex mixture 

under study, whether it be an environmental pollutant such as cigarette smoke, a 

microbial community collected from the deep ocean, or a botanical medicine, is 

frequently reduced to the contributions of its individual constituents (14, 18, 304, 305). 

Very often, however, the activity of one constituent may be affected by the presence of 

other compounds in the mixture (8, 14, 18, 127, 304, 305). While it is true that individual 

constituents of a complex mixture may contribute to their biological activity, our 

understanding of the mixture’s activity as a whole often remains incomplete.   
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Natural products have evolved complex biosynthetic pathways to develop 

chemical defenses against pathogens, and as such, the diverse combinations of 

compounds produced could be harnessed as antibacterial therapeutics (221, 222, 224-

227). Particularly because pathogenesis of antimicrobial-resistant infections is often 

achieved through multi-factorial mechanisms (306), phytotherapies that owe their activity 

to the combined action of multiple constituents may offer important treatment 

opportunities (8). These combination effects can result from mixtures possessing 

synergistic, additive, or antagonistic activity (9, 15, 16). The specific types of interactions 

possible within a complex botanical extract are numerous, and may involve the defense 

of an active substance from enzymatic degradation (61, 307, 308), inhibition of multi-

drug resistance mechanisms (15, 127), modification of transport across cell membranes 

(61), and improvement of bioavailability (309). The presence of combination effects such 

as these may lead to the loss of biological activity when the mixture is reduced to its 

individual constituents in isolation (10, 14, 17, 310).  

Most natural product discovery efforts are geared towards identifying single 

active constituents as leads for drug development (220). While this approach has been 

undeniably useful in identifying important pharmaceutical drugs such as taxol and 

camptothecin (311), combination effects are often overlooked with isolation-based 

approaches (14, 18). This is a problem because many natural products are used 

therapeutically as mixtures; thus, it is of interest to know how such mixtures act in their 

complex form.  Furthermore, if the combination of compounds responsible for the 

activity of a mixture is known, it is possible to rationally design more effective mixtures 
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that may be therapeutically useful.  Several methodologies have been reported for 

identifying combinations of compounds contributing to the bioactivity of natural product 

mixtures (131, 240, 247, 312). One such approach, termed synergy-directed fractionation, 

tests fractions of a mixture in combination with a known antimicrobial (14). Synergy-

directed fractionation avoids the problem of overlooking compounds that potentiate 

activity but are inactive in isolation. However, like traditional bioactivity-guided 

approaches, synergy-directed fractionation is predisposed towards compounds that are 

most easily isolated (18). Consequently, the synergists identified may only represent a 

portion of the actual constituents involved in the biological effect under study.  

Recently, effective bioinformatics tools have been developed that can integrate 

biological and chemical datasets to predict which constituents of a mixture possess 

biological activity (18, 132).  Several reports have been published illustrating the 

applications of biologically-guided metabolomics studies (so-called “biochemometrics” 

approaches) to identify putative active compounds and synergists from natural product 

mixtures (18, 131, 132, 145). Until this point, however, these approaches cannot predict 

whether mixture components are interacting synergistically, additively, or 

antagonistically without purifying compounds and testing them in isolation. Additionally, 

existing assays capable of disentangling synergy from additivity are time consuming and 

require considerable quantities of material (14, 18).  Thus, new tools are needed to enable 

the efficient identification of constituents that interact to achieve biological activity.   

The goal of this work was to develop a predictive approach to prioritize the 

isolation of mixture constituents that interact synergistically, additively, or 
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antagonistically.  As a case study, we utilized the botanical Salvia miltiorrhiza (Chinese 

red sage or danshen). This botanical has been employed for medicinal purposes for over 

2000 years in China (313-318) and remains one of the most popular traditional medicines 

in use today (313, 316, 317). Over 70 unique constituents have been identified in S. 

miltiorrhiza, making it an excellent model system for developing improved analytical 

methodologies. One of the most abundant constituents of S. miltiorrhiza is 

cryptotanshinone, a compound that demonstrates antibacterial activity against a broad 

range of bacteria, both alone (313, 314, 317) and in combination with existing antibiotics 

(313, 314).  While the activity of S. miltiorrhiza constituents have been tested in 

isolation, little is known about the activity of S. miltiorrhiza extracts as a whole (317). 

With this study, we demonstrate the effectiveness of Simplify, an approach combining 

biological activity studies with metabolomics models towards the identification of 

synergists and additives that interact to exert combined effects.  A unique strength of the 

approach we develop is the ability to characterize the nature of the interactions that occur 

prior to isolation. The Simplify approach is relevant beyond the field of natural products 

and could prove useful to researchers investigating the biological activity of mixtures in 

fields ranging from toxicology to pharmacology to drug discovery. 

Results 

The Simplify approach reveals a mismatch between predicted and observed activity 

and enables prediction of mixture constituents responsible for combination effects 

The general concept for the Simplify approach to identify synergists, antagonists, 

or additives is outlined in Figure 33.  With this approach, the mixture is 
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chromatographically separated into a series of fractions, and the activity of these fractions 

is predicted based on the quantity of a known active constituent, which is either naturally 

present or spiked into the mixture. An activity index (equation 1) is then calculated for 

each fraction as follows: 

Activity Index = (Actual Activity / Predicted Activity) × 100  (equation 1) 

which provides a quantitative metric to explain how much each fraction enhances or 

suppresses the activity of the known constituent. Because the activity index represents the 

percent enhancement when actual activity is ratioed to predicted activity, fractions with 

an activity index >100 have a potential to contain either synergists or additives, while 

fractions with an activity index of <100 may contain antagonists.  However, it is not 

possible using the activity index alone to distinguish between synergy and additivity.  To 

make this distinction, fractions with sufficient material showing larger than a 10% 

mismatch between predicted and actual activity are subjected to checkerboard assays 

(127), where specific combination effects can be identified based on the calculation of a 

fractional inhibitory concentration (ƩFIC). The ƩFIC is calculated using equation 2 (127): 

ƩFIC = FICA + FICB, 

Where FICA = [A]/IC50A, and FICB = [B]/IC50B (equation 2) 

In this equation, A and B are the samples tested in combination, IC50A represents 

the IC50 of A in isolation (calculated using a four-parameter logistic model), IC50B 

represents the IC50 of B in isolation, [A] is the IC50 of A in the presence of B, and [B] is 
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the IC50 of B in the presence of A (127). Several review papers have been published on 

the use and interpretation of isobolograms and ƩFICs for evaluating combination effects 

(8-10, 17, 61). In short, an isobologram is a plot where each x,y data pair corresponds to a 

combination of concentrations at which a desired activity is achieved (e.g. 50% inhibition 

of bacterial growth). The shape of the isobologram indicates whether the interaction is 

synergistic, additive, or antagonistic. The ƩFIC index (equation 2) is a quantitative 

measure that can be calculated using the same data (127). For the purposes of this study, 

an ƩFIC cutoff < 0.5 is indicative of synergy, an ƩFIC between 0.5 and 1.0 is indicative 

of additivity, an ƩFIC between 1.0 and 4.0 indicates indifference or no interaction, and an 

ƩFIC > 4.0 indicates antagonism. 

Once ƩFICs have been calculated, the ƩFIC values are used to sort fractions by 

the type of combination effect they exhibit.  As a final step, activity indices (equation 1) 

are used to guide biochemometric analyses and identify specific mixture constituents that 

contribute to the activity of the mixture. This application of the activity index is what 

makes the Simplify process unique as compared to other approaches.  The 

biochemometric analysis of data enables identification (based on detected m/z and 

retention time) of specific mixture constituents that are expected to exhibit interactions.  

These compounds can then be prioritized for isolation and structure elucidation (using 

classical MS and NMR based approaches) and tested in combination to confirm the 

predicted activities.   
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Figure 33. Workflow for the Simplify Approach. First, a known active compound is quantified in each 

complex mixture. The predicted activity based on the concentration of the known compound is then 

compared to the actual activity of each fraction, and an activity index is calculated to identify which 

fractions enhance/suppress the activity of the known active compound. Fractions showing a mismatch 

greater than 10% are prioritized for follow up testing, where additivity is disentangled from synergy. 

Activity indices (equation 1) are then used to produce selectivity ratio models predicting which constituents 

within the complex mixtures are responsible for additive or synergistic effects. Variables with high 

selectivity ratios are predicted to contribute to combination effects. Predicted active compounds are 

prioritized for isolation, following which predicted activities are confirmed.   

The activity of cryptotanshinone is enhanced by both additives and synergists in 

complex S. miltiorrhiza mixtures  

The first four steps of the Simplify approach (Figure 33) were employed at each 

stage of the fractionation process (Appendix C, Figure S23). With this approach, S. 

miltiorrhiza was extracted and fractionated with column chromatography, and a known 

antimicrobial compound cryptotanshinone (compound 1, Figure 34) was quantified in 

each fraction. The predicted activity, based on the dose-response curve for pure 

cryptotanshinone, was compared with the observed biological activity to identify 

fractions that possessed less or more antimicrobial activity than could be explained based 
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on the measured concentration of cryptotanshinone. These fractions were prioritized for 

full checkerboard assays where specific combination effects could be identified.  

 

 

 

 

 

 

 

Figure 34. Compounds Identified from S. miltiorrhiza Utilized for this Study. Compounds 1-5 

correspond to cryptotanshinone, dihydrotanshinone I, tanshinone IIA, 1-oxocryptotanshinone, and sugiol, 

respectively. 

The first round of fractionation yielded eight fractions (SM-1 through SM-8), 

three of which possessed enhanced antimicrobial activity that was not explained by 

cryptotanshinone (fractions SM-1, SM-3, and SM-5, Figure 35A). To determine whether 

this enhancement in activity was synergistic or additive, checkerboard assays (127, 297) 

were conducted, in which a series of cryptotanshinone dose-response curves were 

collected in the presence of varying concentrations of the fraction under study. Using the 

data from these assays, isobolograms were plotted and fractional inhibitory concentration 

(ƩFIC) indices were calculated (Figure 35B-35D). Both SM-1 and SM-3 had ƩFIC values 

< 0.5, indicating that synergists were present in these mixtures (Figure 35B and 35C). 

Fraction SM-5 had an ƩFIC of 0.75, illustrating that additives rather than synergists 

contributed to the mismatch witnessed using this approach.  
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Figure 35.  Comparison of Predicted to Actual Activity. (A), where black bars represent the 

antimicrobial activity of each fraction due to cryptotanshinone (predicted using peak are of 

cryptotanshinone and dose response curves of cryptotanshinone alone) and gray bars represent the actual 

activity of the fraction measured at 10 µg/mL (mass of extract per assay volume). Cryptotanshinone was 

used as a positive control, and its MIC (25 µg/mL) is consistent with previous reports (285). Fractions SM-

1, SM-3, and SM-5 showed a mismatch between predicted and observed biological activity and were 

prioritized for synergy testing in combination with cryptotanshinone. The resulting isobologram of SM-1 

shows synergy with an ƩFIC of 0.38 (B). SM-3 is synergistic with an ƩFIC of 0.19 (C), and the 

isobologram of SM-5 shows additivity with an ƩFIC of 0.75 (D). 

ƩFICs were calculated using equation 2: [A]/IC50A + [B]/IC50B = ƩFIC, where IC50A is the IC50 of 

cryptotanshinone alone, IC50B is the IC50 of the fraction alone, [A] is the IC50 of cryptotanshinone in 

combination with fraction, and [B] is the IC50 of fraction in combination with cryptotanshinone.  Synergy ≡ 

ƩFIC < 0.5, additivity ≡ 0.5 < ƩFIC < 1.0, Indifference ≡ 1.0 < ƩFIC < 4.0,  Antagonism ≡ ƩFIC > 4.0. 

Of the eight fractions tested, SM-3 inhibited bacterial growth most strongly, and 

was prioritized for chromatographic fractionation, yielding 4 simplified fractions (SM-3-

1 through SM-3-4). The first fraction, SM-3-1, possessed antimicrobial activity, while the 

other fractions did not (Appendix C, Figure S24A). We expected that synergists had been 

separated from cryptotanshinone during the chromatographic separation process and 

tested the inactive fractions (SM-3-2 through SM-3-4) for synergy. Isobolograms and 

ƩFIC values for each of these fractions (Appendix C, Figures S24B-S24D) revealed that 

all three fractions had synergistic activity, with ƩFIC values ranging from 0.14-0.40. 

Fractions SM-3-2, SM-3-3, and SM-3-4 were chromatographically separated into 21 
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simplified fractions. Because cryptotanshinone was no longer present at biologically 

relevant concentrations, it was spiked at sub-lethal concentrations (3 µg/mL) into samples 

for biological testing so that combination effects could be observed (Figure 33). This 

approach revealed several fractions with greater than predicted activity (Figure 36A). A  

subset of fractions was prioritized for synergy testing, revealing fractions that had 

additive activity and others that had synergistic activity (Table 10). 

In the third round of chromatographic separation, fractions were identified that had lower 

than predicted activity, several of which had sufficient material for biological testing 

(fractions SM-3-2-7, SM-3-3-2, SM-3-4-1, and SM-3-4-2) (Figure 36A). However, when 

they were tested for antagonism in a checkerboard assay (127), they had ƩFIC values of 

1.25 (SM-3-2-7) or 2.0 (SM-3-3-2, SM-3-4-1, and SM-3-4-2) which we have classified as 

“noninteractive” (Table 10). There is some inconsistency in the field in determining the 

ranges for antagonism, and several researchers have considered ƩFIC indices ≥ 2.0 to be 

indicative of antagonism (319-321). However, we have adopted a more conservative 

approach, as recommended by Odds (59) and van Vuuren and Viljoen (9), in which 

antagonistic interactions are defined as having ƩFIC values greater than 4.0. This range 

takes into account the variability of in vitro antimicrobial susceptibility testing, in which 

a minimum inhibitory concentration can be placed within a three-dilution range (the MIC 

± 1 dilution) (59). As such, the more conservative approach enables better interpretation 

of pharmacological interactions and avoids reproducibility errors when compared to less 

conservative approaches.  It is also important to recognize that interaction between 

mixtures may differ with different concentrations of compounds/fractions, and 
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experiments using a single fixed ratio cannot reveal the nature of interactions between 

mixtures. While the activity index provides a subset of fractions to prioritize for follow 

up testing, completion of checkerboard assays is critical to define the nature of 

interactions between samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36. Predicted and Actual Activities of Third Stage Fractions Resulting from Chromatographic 

Separation of the Salvia miltiorrhiza Fractions SM-3-2, SM-3-3, and SM-3-4 (see Fractionation 

Scheme in Appendix C, Figure S23) where Black Bars Represent the Antimicrobial Activity of Each 

Fraction due to Cryptotanshinone (Predicted using Peak Area of Cryptotanshinone and Dose 

Response Curves of Cryptotanshinone Alone) and Gray Bars Represent the Actual Activity of the 

Fraction at 100 µg/mL. Cryptotanshinone served as a positive control, and its MIC (25 µg/mL) is 

consistent with previous reports (285). B. Activity indices of fractions SM-3-2-1 through SM-3-4-5, where 

bars represent the extent to which each fraction enhances or suppresses the activity of cryptotanshinone. C. 

Selected dose response curves of cryptotanshinone with (black) and without (gray) 100 µg/mL of 

synergistic (left), indifferent (middle), and additive (right) fractions. Selected fractions correspond with 

symbols in panel B.  

Activity indices were calculated using equation 1: activity index = actual activity/predicted activity × 100.  
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Selectivity ratio analysis guided by the activity index predicts compounds 

contributing to activity and characterizes the nature of their interactions 

The first steps of the Simplify approach enabled the prioritization of a subset of S. 

miltiorrhiza fractions whose activity was not explained by the presence of 

cryptotanshinone alone. While this was helpful for identifying additive and synergistic 

mixtures, it was still unclear which compounds contained in the mixtures were 

responsible for the observed mismatch between predicted and observed activity. To 

identify putative active constituents, partial least squares (PLS) analysis was conducted. 

Rather than use raw biological activity data to guide the analysis, as has been done in 

previous studies (18, 132, 145), we used the activity index (equation 1) as a measure of 

the extent to which each fraction enhanced or suppressed the activity of 

cryptotanshinone.  

Using the activity index to guide identification of putative active compounds, two 

PLS models were produced and visualized with selectivity ratio plots. In these plots, each 

variable (unique m/z – retention time pair) is plotted on the x-axis, and the selectivity 

ratio is plotted on the y-axis. The selectivity ratio represents the extent to which each 

variable is associated with biological  activity, and is a ratio of the explained to residual 

variance (149). Because fractions with activity indices > 110 possessed additive or 

synergistic activity (Figure 36, Table 10), variables possessing high selectivity ratios are 

most likely be synergists and additives. 
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Table 10. IC50, MIC, ƩFIC Indices, and Activity Indices (AI) of S. miltiorrhiza Extracts in 

Combination with Cryptotanshinone. IC50 and MIC values represent concentrations to inhibit bacterial 

growth (strain USA300 LAC AH1263) (234) by 50 or 100%, respectively, and represent values of the 

extract alone, while ƩFIC values indicate the degree of interaction between extracts and cryptotanshinone.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
* ± standard error 
† ƩFICs were calculated using equation 2.  Synergy ≡ ƩFIC < 0.5, additivity ≡ 0.5 < ƩFIC < 1.0, 

Indifference ≡ 1.0 < ƩFIC < 4.0, Antagonism ≡ ƩFIC > 4.0. 
‡ Activity indices were calculated for third stage fractions only, which were used to produce SR models.  
§ the highest concentration tested was 100 µg/mL, which did not achieve 50% inhibition. To achieve a 

conservative estimate of activity, however, 100 µg/mL was chosen as the IC50 of SM-3-4-4 to calculate the 

ƩFIC using equation 2 and yielded a result of 1.0. However, since the actual IC50 of SM-3-4-4 is higher 

than 100, the ƩFIC is lower than 1.0, and can be categorized as additive.  

The first selectivity ratio model was built using mass spectral data and activity 

indices from additive and indifferent fractions SM-3-4-1 through SM-3-4-5 (Appendix C, 

Figure S23) containing 1263 individually detected ions. This internally cross-validated 

model, used to predict additive compounds, generated 3 components that accounted for 

97.1% of the independent (mass spectral) and 89.9% of the dependent (activity indices) 

variation. The first selectivity ratio plot was generated to visualize ions that corresponded 

to increased activity indices due to additivity (Figure 37A). Of the 1263 ions included in 

 IC50 (µg/mL)* MIC 

(µg/mL) 

ƩFIC † AI ‡ 

SM-1 12.9 ± 1.7 ≤ 25 0.38, synergy -- 

SM-3 9.8 ± 1.5 ≤ 25 0.19, synergy -- 

SM-5 11.4 ± 1.5 ≤ 25 0.75, additivity -- 

SM-3-2 > 100 > 100 0.26, synergy -- 

SM-3-3 > 100 > 100 0.40, synergy -- 

SM-3-4 46.0 ± 7.2 ≤ 100 0.14, synergy -- 

SM-3-2-1 > 100 > 100 0.31, synergy 153 

SM-3-2-7 > 100 > 100 1.25, indifference 42 

SM-3-2-8 > 100 > 100 0.38, synergy 128 

SM-3-2-9 > 100 > 100 0.38, synergy 151 

SM-3-3-2 > 100 > 100 2.0, indifference 70 

SM-3-4-1 > 100 > 100 2.0, indifference 67 

SM-3-4-2 > 100 > 100 2.0, indifference 71 

SM-3-4-3 > 100 > 100 0.75, additivity 113 

SM-3-4-4 > 100 > 100 < 1.0, additivity § 127 

SM-3-4-5 12.3 ± 6.3 ≤ 25 0.60, additivity 153 
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the model, only 117 were assigned a selectivity ratio greater than 0. The top ten predicted 

additives are listed in Table 11. 

  

 

 

 

 

 

 

 

Figure 37. Selectivity Ratio Models Guided by Activity Indices used to Predict Ions Contributing to 

Additivity and Synergy. Higher selectivity ratios correspond with variables (m/z -  retention time pairs) 

that are more likely to contribute to activity. The top ten contributors to activity have been colored green or 

blue in each model. Importantly, each chemical compound can result in more than one m/z-retention time 

pair because of the numerous isotopes and adducts detected using MS. This provides an additional level of 

confirmation for the efficacy of analysis, particularly when multiple variables representing a single 

compound (i.e. compound 4), are identified as putatively active. Putatively active compounds that have 

been confirmed by NMR or MS-MS fragmentation patterns have been colored in green, ions corresponding 

with cryptotanshinone (compound 1) have been marked in red, and unidentified variables have been 

marked in blue. Cryptotanshinone (compound 1) is not correlated with activity in either model because it 

was spiked in equal concentrations to all fractions under analysis and does not change with changes in 

bioactivity. A. Selectivity ratio plot predicting additive compounds built using data from fractions SM-3-4-

1 through SM-3-4-5. Dihydrotanshinone 1 (compound 2), tanshinone IIA (compound 3), and 1-

oxocryptotanshinone (compound 4) were identified among the top ten contributors to additive activity. B. 

Selectivity ratio plot predicting synergistic compounds built using data from fractions SM-3-2-1 through 

SM-3-2-9. Sugiol (compound 5) was identified as the fifth top contributor to synergistic antimicrobial 

activity.  

The second selectivity ratio model was built using synergistic and indifferent 

fractions SM-3-2-1 through SM-3-2-9 (Appendix C, Figure S23) using activity indices 
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and peak area data of 1263 individually detected ions. An internally cross-validated 

model was produced to predict synergistic compounds and consisted of 3 components 

utilizing 51.8% of the variability in the mass spectral data to explain 91.4% of activity 

index variation across fractions. 127 ions were assigned a selectivity ratio greater than 0. 

This selectivity ratio plot was used to identify the top ten predicted synergists (Figure 

37B, Table 11).  

Model predictions correctly identified additive and synergistic compounds 

contributing to the overall antimicrobial activity of S. miltiorrhiza 

Selectivity ratio models guided by activity indices enabled the prioritization of 

several compounds likely to possess additive or synergistic activity (Figure 37, Table 11). 

Two selectivity ratio models were produced, guided by the activity index, enabling the 

prediction of putative additive compounds in one model (Figure 37A) and synergistic 

compounds in another (Figure 37B). Using the selectivity ratios of individual 

constituents, we were able to identify a subset of 20 putatively active compounds from 

the 1263 ions detected. From the selectivity ratio plots, the dominant marker ions were 

identified and prioritized for follow up testing. Two of the top ten predicted additives, 

dihydrotanshinone I (compound 2) and tanshinone IIA (compound 3) were identified by 

comparison of mass spectral fragmentation patterns of standard compounds with 

compounds detected in S. miltiorrhiza fractions (Appendix C, Figures S25 and S26). 

Purified dihydrotanshinone I and tanshinone IIA were tested in combination with 

cryptotanshinone as previously described (127, 297) to confirm predictions of additivity. 
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Table 11. Top Ten Ions Predicted from Both Additive and Synergistic Selectivity Ratio Models. 

Notably, several of the model predictions were not available as standards and were not present at high 

enough concentration to isolate and confirm identities. As such, the activity of S. miltiorrhiza is likely more 

complex than represented by the compounds we could identify. 

 

m/z Retention 

time 

Ionization 

mode 

Compound identity Selectivity 

ratio 

Predicted 

activity 

245.117 4.586 +  0.561 Synergistic 

275.129 5.438 +  0.71 Synergistic 

279.103 5.217 + Dihydrotanshinone I* 1.66 Additive † 

287.164 6.102 +  0.686 Synergistic 

292.155 5.456 +  0.574 Synergistic 

295.135 6.529 + Tanshinone IIA * 0.300 Additive † 

295.136 5.523 +  0.573 Synergistic 

299.201 5.828 - Sugiol ‡ 0.627 Synergistic † 

301.085 5.239 +  1.97 Additive 

309.113 5.172 +  0.607 Additive 

311.129 4.484 + 1-oxocryptotanshinone ‡ 1.82 Additive 

311.129 4.885 -  0.584 Synergistic 

312.131 4.475 + 1-oxocryptotanshinone ‡ 1.97 Additive 

315.159 3.761 +  1.79 Additive 

315.196 5.625 +  0.598 Synergistic 

327.160 5.314 +  0.268 Additive 

332.185 5.621 +  0.834 Synergistic 

355.152 3.793 +  1.35 Additive 

393.287 4.809 +  1.78 Additive 

460.196 5.459 +  0.776 Synergistic 

* compound identity confirmed by comparing MS-MS patterns of a pure standard 
† activity confirmed by running full checkerboard assays 
‡ compound identity confirmed by NMR  

Dihydrotanshinone I and tanshinone IIA had ƩFIC values of 0.68 and 0.61, respectively, 

confirming the predictions from the selectivity ratio analysis (Table 12). They were also 

each antimicrobial in isolation, with MIC values ≤ 6.25 and 25 µg/mL and IC50 values of 

2.2 ± 0.4 and 15.0 ± 8.4 (for dihydrotanshinone I and tanshinone IIA, respectively). An 

additional predicted additive compound, with an [M+H]+ of 311.1277, representing the 

top contributor to activity, was prioritized for isolation. This compound, 1-

oxocryptotanshinone (compound 4) was isolated following 2 stages of normal-phase flash 

chromatography and 2 stages of reversed-phase chromatography. This compound has not 

previously been isolated from S. miltiorrhiza. Unfortunately, compound 4 was not present 
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in sufficient quantity for additivity predictions to be confirmed. However, given the 

structural similarity of compound 1 and compound 4, it is likely that compound 4 

contributes to the overall activity of the extract. Dose-response curves for all tested 

compounds are provided as supporting information (Appendix C, Figure S27). 

Table 12. IC50, MIC, and ƩFICs of Pure Compounds from S. miltiorrhiza in Combination with 

Cryptotanshinone. IC50 and MIC values represent single compound concentrations to inhibit bacterial 

growth (strain USA300 LAC AH1263) (234) by 50 or 100%, respectively, while ƩFIC values indicate the 

interactions between pure compounds and cryptotanshinone. IC50 values were calculated using a 4-

parameter logistic curve. 

 

 IC50 (µg/mL) * MIC (µg/mL) ƩFIC † 

Cryptotanshinone  5.9 ± 2.2 ≤ 25 -- 

Dihydrotanshinone I 2.2 ± 0.4 ≤ 6.25 0.68, additivity 

Tanshinone IIA 15.0 ± 8.4 ≤ 25 0.61, additivity 

Sugiol > 100 > 100 0.28, synergy 

* ± standard error 
† ƩFICs were calculated using equation 2. 

Numerous compounds were identified as potentially contributing to the 

synergistic activity of S. miltiorrhiza fractions. One predicted synergist, sugiol, was 

isolated using a combination of normal- and reversed-phase chromatography and its 

structure confirmed by NMR (Appendix C, Figures S28 – S33, Appendix B, Table S8) 

(322). Sugiol (compound 5), the 5th top contributor to synergy according to model 

predictions (Figure 37), was tested in combination with cryptotanshinone to confirm 

synergistic activity. Indeed, sugiol possessed an ƩFIC value of 0.28 in combination with 

cryptotanshinone, confirming its activity as a synergist. Alone, sugiol did not possess 

antimicrobial activity, with IC50 and MIC values >100 µg/mL. Despite its lack of activity 

in isolation, when combined with cryptotanshinone, sugiol induced nearly a four-fold 

drop in cryptotanshinone’s IC50, lowering it from from 5.89 to 1.56 µg/mL, (Figure 38).  
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Figure 38. Dose-Response Curves of Cryptotanshinone Alone, Cryptotanshinone in Combination 

with Sugiol (Fixed Concentration of 50 µg/mL Sugiol), and Sugiol Alone. Error bars represent standard 

error (not visible for some data points because they are smaller than the point size). Notably, sugiol did not 

have any antimicrobial effect when tested individually at concentrations ≤ 100 µg/mL. However, in 

combination with cryptotanshinone, it causes a four-fold drop in cryptotanshinone’s IC50 (increased 

potency), illustrating that sugiol has synergistic effects.  

Discussion 

The research described herein represents the first example of a bioinformatics 

approach being used to predict compounds contributing to combination effects within 

complex mixtures and to characterize the nature of their interactions prior to their 

isolation. Using S. miltiorrhiza as a model organism, the Simplify approach enabled the 

identification and differentiation of three additive compounds and one synergistic 

compound. The Simplify approach is compatible with existing bioassay-directed 

fractionation workflows and minimizes the time required to go from the discovery of 

combination effects within a mixture to lead molecules contributing to synergy and 

additivity. While we did not observe antagonist effects in this study, it follows that the 

approach described herein could also be utilized to identify constituents that mask 
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biological activity in cases where a suppression in activity was observed as a result of 

antagonism. 

Using the second selectivity ratio plot designed to predict synergists (Figure 37B), 

sugiol (compound 5) was correctly predicted to synergize with cryptotanshinone. 

Although this compound has been identified from S. miltiorrhiza previously (323), this is 

the first report of its ability to synergize the antimicrobial activity of cryptotanshinone. 

Using traditional bioassay-guided fractionation approaches, this compound would have 

been missed due to its inactivity in isolation. However, using the Simplify approach, this 

compound was not only identified as active, but its activity as a synergist was predicted 

prior to its isolation. 

Interestingly, the fractions used to produce the selectivity ratio plot for predicting 

additive compounds (Figure 37A), which all possessed additive rather than synergistic 

activity, came from the separation of fraction SM-3-4, which itself was synergistic. This 

observation illustrates the complexity of botanical samples and the interactions present 

within them. It is possible that synergistic compounds were lost during the 

chromatographic separation process due to irreversible binding to the column, or that 

multiple constituents were required for the observed synergistic effect of fraction SM-3-

4.  Thus, while the results we provide herein give a more comprehensive picture of the 

constituents that contribute to the activity of the S. miltiorrhiza mixture than was possible 

using other approaches, it is still only part of the story.  Furthermore, due to material 

limitations, it was not possible to isolate the additional compounds predicted to possess 

additive or synergistic activity in Figure 37B, again pointing to the possibility of more 
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compounds contributing to the activity of S. miltiorrhiza. This demonstrates an inherent 

limitation to the Simplify approach; while it may be possible to identify multiple 

putatively active constituents, material limitations remain a central challenge in natural 

product discovery efforts.  However, the advantage of the Simplify approach is that 

isolation efforts were guided towards compounds likely to be active (from among the 

more than 1200 ions detected). Notably, several predictions generated with this approach 

were validated; all compounds tested based on the predictions possessed the expected 

antimicrobial or synergistic activity.   

Increasing numbers of studies demonstrate that individual mixture constituents 

often behave very differently in isolation than they do within a complex mixture (18, 144, 

324-326). Environmental exposures, for example, occur as complex mixtures which may 

include additive and synergistic effects (324). Too often, it is assumed that the behavior 

of a mixture can be described by the presence of just a few known constituents. Indeed, 

each biological system relies on diverse chemical interactions; not only do organisms 

themselves represent complex mixtures, but they interact with a vast array of organic and 

inorganic chemicals for survival. Currently, there is a gap in the way that we understand 

complex mixtures, whether they be natural product extracts, environmental contaminants, 

or human microbiota, because these mixtures do not exert biological effects equal to the 

sum of their individual constituents. With this study, we illustrate the ability of Simplify 

to provide a more comprehensive picture of combination effects present within complex 

mixtures than is possible with more reductionist approaches. We expect that this tool will 
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be applicable within and outside of the field of natural products drug discovery to 

illuminate chemical interactions that occur within complex mixtures.  

Methods 

General experimental procedures 

UPLC-MS analysis was conducted using a Thermo-Fisher Q-Exactive Plus 

Orbitrap mass spectrometer (Thermo Fisher Scientific, MA, USA) coupled to an Acquity 

UPLC system (Waters Corporation, Milford, MA, USA). UPLC separations were 

achieved using a reversed-phase column (BEH C18, 1.7 µm, 2.1 × 50 mm, Waters 

Corporation, Milford, MA, USA). Each sample was analyzed in triplicate at a 

concentration of 0.1 mg/mL in methanol with a 3µL injection. A gradient of water 

(solvent A) and acetonitrile (solvent B), each containing 0.1% formic acid, was 

employed. The gradient began at 90:10 (A:B) and was held for 0.5 min. From 0.5-8.0 

min, the ratio was increased to 0:100 (A:B) and held until 8.5 min. From 8.5-9.0 min, the 

starting conditions were re-established, after which the gradient was held at 90:10 (A:B) 

until 10.0 min. Mass analysis was conducted in both positive and negative ion modes 

with scan range of 150-1500, capillary temperature of 256°C, S-lens RF level of 50.00, 

spray voltage of 3.50 kV, sheath gas flow 47.50, and auxiliary gas flow of 11.25. A data-

dependent method was used in which the four ions with the highest signal intensity 

within each scan were fragmented using an HCD of 35.0.  

Plant material and extraction 

Fresh roots of Salvia miltiorrhiza were collected on November 8, 2016 at the 

Chicago Ashram (Batch #CRS1016F1, 41W501 Keslinger Rd, Elburn, IL 60119). Plant 
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identification was conducted by Richard A. Cech at Strictly Medicinal Seeds, and a 

voucher specimen grown from the same seed line was collected September 3, 2017 and 

deposited at the herbarium of the University of North Carolina at Chapel Hill 

(NCU652634).  

Fresh S. miltiorrhiza roots were dug, washed, and chopped fresh and airdried, 

yielding 500 g of dried material. The dried roots were ground using a Wiley Mill 

Standard Model No. 3 (Arthur Thomas Company) and extracted in MeOH at 160 g/L for 

24 hours prior to filtering. This process was repeated with the same root material every 

24 hours for 72 hours. The final MeOH extract was concentrated in vacuo and the residue 

was partitioned between 10% aqueous MeOH and hexane (1:1) for defatting. The 

aqueous MeOH layer was then partitioned using 4:5:1 EtOAc:MeOH:H2O. Finally, the 

EtOAc layer was washed with a 1% NaCl solution (1:1) to remove hydrosoluble tannins. 

The resulting EtOAc extract was dried under nitrogen yielding 18.32 g of material.   

Chromatographic separation and isolation 

The isolation scheme is provided as Supporting Information (Appendix C, Figure 

S23). See SI Appendix A, Supplementary Protocols (Protocol S3) for details on 

chromatographic separation of complex fractions, and isolation of compounds 1 

(cryptotanshinone), 4 (1-oxocryptotanshinone), and 5 (sugiol). 

Sugiol (5): white amphorphous powder; HRESIMS m/z 301.2159 [M+H]+ 

(calculated for C20H29O2
+, 301.2167, -2.6 ppm). MS/MS data of the isolated compound 

match fragmentation patterns of the compound found within S. miltiorrhiza extract 

(Appendix C, Figure S28). NMR data from the literature are inconsistent and incomplete 
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(322, 327-332), and improved spectra are provided as Supporting Information (Appendix 

B, Table S8, Appendix C, Figures S29-S33). 1H NMR (500 MHz, CDCl3) δ 0.92 (3H, s, 

H-18), 0.98 (3H, s, H-19), 1.21 (3H, s, H-20), 1.24 (3H, d, J=6.9 Hz, H=16), 1.25 (1H, m, 

H-3α), 1.26 (3H, d, J=6.9 Hz, H-17), 1.53 (1H, m, H-1α), 1.53 (1H, m, H-3β), 1.67 (1H, 

m, H-2α), 1.76 (1H, tt, J=13.6, 3.3 Hz, H-2β), 1.85 (1H, dd, J=13.7, 4.0 Hz, H-5), 2.23 

(1H, dt, J=11.9, 2.8 Hz, H-1β), 2.58 (1H, dd, J=18.1, 13.8 Hz, H-6β), 2.68 (1H, dd, 

J=18.1, 4.0 Hz, H-6α), 3.12 (1H, hept, J=6.9 Hz, H-15), 6.68 (1H, s, H-11), 7.90 (1H, s, 

H-14) (Appendix C, Figure S29). 13C NMR (125 MHz, CDCl3) δ 18.97 (CH2, C-2), 21.45 

(CH3, C-19), 22.42 (CH3, C17), 22.55 (CH3, C-16), 23.33 (CH3, C-20), 26.88 (CH, C-

15), 32.65 (CH3, C-18), 33.36 (C, C-4), 36.13 (CH2, C-6), 37.95 (C, C-10), 37.97 (CH2, 

C-1), 41.42 (CH2, C-3), 49.53 (CH, C-5), 110.03 (CH, C-11), 124.78 (C, C-8), 126.63 

(CH, C-14), 132.63 (C, C-13), 156.52 (C, C-9), 158.15 (C-OH, C-12), 198.68 (ketone, C-

7) (Appendix C, Figure S30). HSQC experiments (500 MHz, CDCl3) were used to assign 

overlapping peaks (Appendix C, Figure S31). HMBC (500 MHz, CDCl3) data are also 

provided (Appendix C, Figure S32). A previous report was conducted in DMSO-d6 (322), 

and for further confirmation on the identity of this compound, we ran an additional 1H 

NMR (500 MHz, DMSO-d6), which matched literature values (Appendix C, Figure S33) 

(322).  

Cryptotanshinone (1): red crystalline solid; HRESIMS m/z 297.1487 [M+H]+ 

(calculated for C19H21O3
+, 297.1490, 1.01 ppm); 1H NMR (500 MHz, CDCl3) and 13C 

NMR (125 MHz, CDCl3) are consistent with previous reports (333), and are provided as 
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supporting information (Appendix C, Figures S35 and S35), and MS/MS data of isolated 

cryptotanshinone match those of the purchased standard (Appendix C, Figure S36). 

1-oxo-cryptotanshinone (4): orange amorphous powder; HRESIMS m/z 311.1277 

[M+H]+ (calculated for C19H19O4
+, 1.93 ppm); 1H NMR (500 MHz, CDCl3) are 

consistent with previous reports (334), and is provided as supporting information 

(Appendix C, Figure S37). Compound degradation occurred before additional spectra 

could be obtained.  

Antimicrobial assays 

To evaluate antimicrobial activity, a broth microdilution assay was conducted on 

each sample using a clinically relevant strain of methicillin-resistant Staphylococcus 

aureus (strain USA300 LAC AH1263) (234). Cells, diluted to 1.0 × 105 colony forming 

units (CFU) per milliliter calculated using absorbance at 600 nm (OD600) values with a 

Synergy H1 microplate reader (Biotek, Winooski, VT, USA), were inoculated into 

Müeller-Hinton broth (MHB) with or without S. miltiorrhiza extract or purified 

compounds. Assays were completed in triplicate using standard protocols from the 

Clinical Laboratory Standards Institute (CLSI) (236). Stock solutions of pure compounds 

and complex extracts were prepared in DMSO and diluted with MHB for a final 

concentration in test wells of 2% DMSO and a sample concentration ranging from 0-100 

µg/mL. Full dose-response curves of cryptotanshinone (compound 1) were conducted 

during each screening, and served as positive control (313, 314, 317). Minimum 

inhibitory concentrations (MIC) were calculated for each pure compound, defined as the 

concentration at which no statistically significant differences in OD600 were found 
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between wells containing samples but no bacteria and the treated samples. Dose-response 

curves were produced using SigmaPlot (v.13, Systat Software, San Jose, CA, USA) and 

plotted with a four-parameter logistic model.  

Activity prediction and production of activity index 

To identify a subset of S. miltiorrhiza fractions for synergy testing, the Simplify 

workflow was employed (Figure 33). S. miltiorrhiza extract and resulting 

chromatographic fractions were subjected to UPLC-MS as described in General 

experimental procedures. In tandem, an external calibration curve of cryptotanshinone 

(ranging from 0-50 µg/mL) was produced (Appendix C, Figure S38). Using the linear 

range of the calibration curve, concentrations of cryptotanshinone within each sample 

were calculated. After two rounds of fractionation, synergists had been separated from 

cryptotanshinone during chromatographic separation. To avoid mis-identifying these 

fractions as inactive, a sub-lethal concentration of cryptotanshinone (3 µg/mL) was 

spiked into each sample prior to both antimicrobial activity assessment and liquid 

chromatography - mass spectrometry analysis. Antimicrobial dose-response curves of 

cryptotanshinone were used to predict activity of fractions based on their concentration of 

cryptotanshinone. The predicted and observed biological activities of fractions were 

compared, and those illustrating a mismatch in activity greater than 10% were prioritized 

for checkerboard assays to disentangle combination effects provided that they also 

contained sufficient material for follow up testing.  
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Synergy assessment 

Broth microdilution checkerboard assays (127) were utilized to pinpoint the type 

of combination effects present in S. miltiorrhiza fractions and their impact on the 

biological activity of cryptotanshinone. A subset of S. miltiorrhiza fractions (Table 10) 

and pure compounds (compounds 2, 3, and 5) were tested in combination with 

cryptotanshinone, with fraction concentrations ranging from 0-100 µg/mL and 

cryptotanshinone ranging from 0-25 µg/mL. The vehicle control consisted of 2% DMSO 

in MHB. Fractional inhibitory concentration indices (ƩFICs) were calculated using 

equation 2. Because the IC50 values often fall between tested concentrations, the IC50 

values for A and B in combination were identified as the lowest tested concentrations that 

led to ≥ 50% growth inhibition. Conservative values were chosen to assign combination 

effects to avoid data misinterpretation, as recommended by van Vuuren and Viljoen (9). 

Synergistic effects are defined as interactions having ƩFIC ≤ 0.5, additive effects range 

from 0.5 to 1.0, non-interactive effects range from 1.0 to 4.0, and antagonistic effects 

have an ƩFIC ≥ 4.0 (9).  

Metabolomics data analysis 

Baseline correction/MZmine parameters 

Datasets acquired in positive and negative modes were analyzed, aligned, and 

filtered using MZMine 2.21.2 (http://mzmine.sourceforge.net/) (239). Raw data files of 

each sample, as well as its triplicate injections, were uploaded into MZMine for peak 

picking. Chromatograms were built for all m/z values that were detected for longer than 

0.1 min. Modeling was completed with the third set of fractions (See fractionation 

http://mzmine.sourceforge.net/
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scheme, Appendix C, Figure S23) using a noise level (absolute value) of 7.0 × 106 for 

negative mode and 2.0 × 106 for positive mode. The m/z tolerance was 5ppm (or 0.0001 

Da), and the intensity variation tolerance was 20%. Peaks were aligned into a single peak 

if they eluted within 0.2 min from one another and had less than 5 ppm difference in m/z 

values. Data consisting of retention time, m/z values, and peak area for both negative and 

positive ions was imported into Excel (Microsoft, Redmond, WA, USA) and combined as 

a single peak list. Dataset reduction was completed in Excel before statistical analysis. 

First, all m/z- retention time pairs that had peak areas above 1.0 x 107 in the methanol 

blank were removed from analysis. Compounds containing an m/z ratio below 200 or 

above 900 were also removed, as were compounds eluting before 1.5 or after 9 min. 

Following dataset reduction, biological data were added in the form of activity indices 

calculated using percent inhibition data at 100 µg/mL. The results of the checkerboard 

assays of the prioritized subset of fractions were used to divide samples into two groups. 

One group had high activity indices due to synergy and the other group consisted of 

fractions that had high activity indices due to additivity. Fractions that did not have a 

mismatch, or had a lower than predicted activity, were included in both models after 

checkerboard assays revealed them to be non-interactive.  Data matrices for these two 

sample subsets were imported into Sirius version 10.0 (Pattern Recognition Systems AS, 

Bergen, Norway) (240) for statistical analysis.  

Selectivity ratio analysis 

Sirius version 10.0 statistical software (240) was used to filter contaminants and 

to generate selectivity ratio models to predict additives and synergists in S. miltiorrhiza 
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samples. Prior to selectivity ratio analysis, triplicate injections of samples were subjected 

to hierarchical cluster analysis and filtering of interferents as described in a recent 

publication (276). If triplicate injections did not cluster, spectral variables were inspected, 

and variables illustrating high peak area variability (above 1.5 × 108) within triplicate 

injections were removed, as were their associated in-source fragments, mass spectral 

adducts, and isotopes (Appendix B, Table S8). Following the removal of chemical 

interferents, two selectivity ratio models were produced, one using a subset of synergistic 

and indifferent fractions (SM-3-2-1 through SM-3-2-9), and one using a subset of 

additive and indifferent fractions (SM-3-4-1 through SM-3-4-5). Each subset underwent 

an internally cross-validated PLS analysis using 100 iterations and a significance level of 

0.05. Activity indices at the 100 µg/mL level were used as the dependent variable guiding 

separation between groups. Internal algorithms of the Sirius program were computed, 

resulting in selectivity ratio plots that identified putative additive compounds (additivity 

model) and synergistic compounds (synergy model). To simplify model interpretation 

and remove possible correlated noise from model datasets, a final filtering step, in which 

variables showing less than 10% peak area variance across samples were given a 

selectivity ratio of 0, was conducted (144).  
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CHAPTER VII 

CONCLUDING REMARKS

The studies described here demonstrate the efficacy of mass spectrometry-based 

tools for understanding the vast chemical landscape of botanical medicines. These tools 

can aid in the identification of active constituents within complex mixtures by integrating 

chemical profiles with biological activity profiles, enabling the targeting of active, rather 

than abundant, constituents. Chapter III described the utilization of bioassay-guided 

fractionation, biochemometric analysis, and molecular networking to predict putative 

active constituents from Angelica keiskei. These predictions were confirmed, and a new 

activity for a compound previously believed to be inactive was discovered.  

Chapter IV described the development of a data filtering tool using hierarchical 

cluster analysis (HCA) of technical replicates to remove chemical interferents from 

metabolomics datasets. Using this process, 128 contaminant ions were identified that 

likely originated from the UPLC-MS system, enabling improved metabolomics analysis 

and highlighting the importance of technical replicates for metabolomics studies. These 

results also challenged the assumption that contamination is consistent across samples. 

The project outlined in Chapter V took a closer look at how data acquisition and data 

processing parameters affect biochemometric analysis by using a mixture of known 

composition and comparing numerous selectivity ratio models subjected to a variety of 

data processing and data acquisition techniques. This project highlighted the variety of 



 

198 

 

biological, chemical, and analytical factors that can complicate metabolomics analysis 

and provides guidelines for future studies.   

Chapter VI outlines the development and application of a novel approach, 

Simplify, which identifies the extent to which a given mixture enhances or reduces the 

activity of a known antimicrobial. Using this information, the Simplify approach builds 

selectivity ratio plots capable not only of predicting directly active components, but also 

enables the identification of components that contribute indirectly to activity through 

synergistic and antagonistic mechanisms. This is the first documented example in which 

synergistic compounds have been predicted as synergists prior to their isolation and 

illustrates the efficacy of this approach for understanding how mixtures work in concert. 

This approach is expected to be valuable beyond the field of natural products, applicable 

to any field aiming to identify how complex mixtures work in concert and is expected to 

serve as a launching point for the comprehensive evaluation of mixtures in future studies. 

Overall, these studies, combining microbiology, metabolomics analysis, and 

analytical chemistry, emphasize the advantages that mass spectrometry provides for 

understanding medicinal natural products. The volume of data that mass spectrometry 

provides is both a blessing and a curse, and care must be taken, particularly when 

processing and interpreting models built on these massive datasets, to extract meaningful 

information and identify the biological patterns contained within them. Based upon this 

work, continued improvement of biological measurements, data filtering protocols, and 

development and interpretation of multivariate models is likely to provide an important 

avenue for natural product drug discovery. 
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APPENDIX A 

SUPPLEMENTARY PROTOCOLS 

 

Protocol S1: Detailed Sample Preparation Procedure to Produce Samples for 

Hierarchical Cluster Analysis 

 

Protocol S2: Plant Extraction and Simplification of Angelica keiskei fraction 

 

Protocol S3: Chromatographic Separation and Isolation of Salvia miltiorrhiza 
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Protocol S1. Detailed Sample Preparation Procedure to Produce Samples for 

Hierarchical Cluster Analysis 

Dried Angelica keiskei Koidzumi root material was acquired from Strictly 

Medicinal Seeds® in Williams, Oregon, and a voucher specimen was deposited at the 

UNC Herbarium at Chapel Hill (NCU627665).  Fresh Angelica keiskei Koidzumi roots 

were dried in a single-wall transite oven (Blue M Electric Company, Blue Island, IL, 

USA) at 40°C for 24 hours, producing 138.90 g of dry material. This material was ground 

using a Wiley Mill Standard Model No. 3 (Arthur Thomas Co., Philadelphia, PA, USA) 

and submerged in MeOH for 24 hours at 160 g/L. Plant material was filtered from extract 

and resuspended in equal volume of methanol. This process was repeated over three days. 

The resulting MeOH extract was concentrated in vacuo and subjected to liquid-liquid 

partitioning. First, defatting was completed by partitioning 10% aqueous MeOH and 

hexane (1:1). The aqueous MeOH layer was partitioned again between 4:5:1 

EtOAc/MeOH/H2O. Finally, to remove hydrosoluble tannins, the EtOAc layer was 

washed with a 1% NaCl aqueous solution (1:1). The resulting EtOAc extract (3,650.32 

mg) was dried under nitrogen before further experimentation.  

The EtOAc crude extract was subjected to a 40 minute round of flash 

chromatography using a Combiflash RF instrument (Teledyne ISCO, Lincoln, NE, USA). 

The gradient was held at 100% hexane for 3 min, ramped up to 100% chloroform over 20 

min, and held at 100% chloroform for 9 min. Over the next three min, the gradient was 

increased to 20% methanol and 80% chloroform and held for five min, following which it 

was increased to 100% methanol over two min. Finally, the gradient was held at 100% 
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methanol for one minute. The extract was divided into nine pools. The ninth pool was 

collected from 20 to 100% methanol, and is the subject of the remaining experimentation. 

The ninth pool (126.4 mg) was combined with four known compounds: alpha-

mangostin (1.66 mg, 1% total mass), cryptotanshinone (3.32 mg, 2% total mass), 

magnolol (11.63 mg, 7% total mass), and berberine (24.92 mg, 15% of pool mass). These 

compounds were added to the mixture to enable evaluation of the effectiveness of our 

filtering approach and subsequent statistical analyses using a mixture of known and 

unknown compounds at varying concentrations.  
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Protocol S2: Plant Extraction and Simplification of Angelica keiskei Fraction 

Plant material and extraction 

Fresh Angelica keiskei roots were collected on November 14, 2015 in Williams, 

Oregon from Strictly Medicinal Seeds ® (Sample # 12444, N 42°12’17.211”, W 

123°19’34.60”). The identity of the sample was confirmed by Richard A. Cech and a 

voucher specimen was deposited at the University of North Carolina Chapel Hill 

Herbarium (NCU627665). Fresh root material was dried at 40°C for 24 hours in a single-

wall transite oven (Blue M Electric Company, Blue Island, IL, USA), yielding 138.9 g of 

dried root material. Roots were then ground to a powder using a Wiley Mill Standard 

Model No. 3 (Arthur Thomas Col, Philadelphia, PA, USA). Powdered root was 

submerged in MeOH at 160 g/L for 24 hours, then filtered from the solvent. This process 

was repeated using the same root material every 24 hours for 72 hours. The resulting 

methanol extract was then subjected to liquid-liquid partitioning. Fats were separated 

from the mixture by partitioning 10% aqueous methanol and hexane 1:1). The 

aqueous/methanol layer was partitioned again using EtOAc/MeOH/H2O (4:5:1). Lastly, 

hydrosoluble tannins were separated from the EtOAc layer by washing it with a 1% NaCl 

aqueous solution (1:1). The resulting EtOAc extract was dried under nitrogen, yielding 

3,650.32 mg of material.  

Production of simplified A. keiskei fraction 

The EtOAc extract was separated using a 40 min normal-phase gradient 

conducted on a Combiflash RF instrument (Teledyne ISCO, Lincoln, NE, USA). The 

gradient began with a 3 min hold at 100% hexane, after which it was increased to 100% 
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chloroform over the next 20 min. It was then held at 100% chloroform for 9 min, after 

which the gradient was increased to 20:80 MeOH:CHCl3 over 3 min.  These conditions 

were held for five min, after which it was increased to 100% methanol over two min. The 

gradient was held at 100% methanol for one min. The resulting tubes were separated into 

nine fractions and subjected to biological activity testing. The ninth fraction was 

collected from 20-100% methanol, and was used for the remainder of the experimental 

procedures, due to its lack of antimicrobial activity (<15% inhibition at 100 µg/mL 

against a laboratory strain of Staphylococcus aureus, SA1199).  
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Protocol S3: Chromatographic Separation and Isolation of Salvia miltiorrhiza 

 

The first-stage separations of the EtOAc extract (SM) were conducted on an 

aliquot of 8.6 g of the extract using normal-stage flash chromatography (120-g silica 

column) at an 85 mL/min flow rate with a 45-min hexane/CH3Cl/MeOH gradient. Two 

fractions, SM-1 and SM-3, were selected for further chromatographic separation. The 

first fraction (SM-1, 185.72 mg) was subjected to reversed-phase preparative HPLC 

injected onto a Gemini preparatory column (5 µm C18, 250 x 21.20 mm; Phenomenex) at 

a flow rate of 21.4 mL/min with a 45-min gradient. The gradient began at 65:35 

CH3CN:H2O and increased to 90:10 over 35 min, following which the column was held 

at 100:0 for 10 min, yielding 8 fractions. Fraction 5 (SM-1-5, 36.51 mg) was subjected to 

a final round of reversed-phase preparative HPLC injected onto a Gemini preparatory 

column (5 µm C18, 250 x 21.20 mm; Phenomenex). The 30 min run began at 70:30 

CH3CN:H2O and was increased to 100:0 over 30 min. Compound 5 (SM-1-5-5) eluted 

from 12-14 min (1.39 mg, 98% purity, 0.0003% yield). Fraction SM-3 (1058.67 mg) was 

subjected to a second round of normal-phase flash chromatography (40-g silica solumn) 

at a flow rate of 40 mL/min and a 55 min hexane/CH3Cl/MeOH gradient, yielding four 

fractions. Fraction one (SM-3-1, 844.33 mg) eluted from 6-9 min, and was subjected to 

an additional round of reversed-phase flash chromatography using an 86g C18 reversed-

phase RediSep Rf column with a 60 mL/min flow rate. A 60-min gradient of CH3CN was 

used ranging from 45-100% CH3CN. Compound 1 eluted at 25 min (580.01 mg, 95.0% 

purity, 0.1% yield). 
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Compound 4 was isolated using the remaining 9.7 g of the EtOAc extract (SM). 

First, normal-stage flash chromatography (80-g silica column) was conducted with a 40-

min hexane/CH3Cl/MeOH gradient and a 60 mL/min flow rate, yielding 8 fractions (SM-

9 through SM-16). The fourth fraction, SM-12 (391.90 mg), was subjected to a second 

round of flash chromatography (12-g silica column, 30 mL/min) separated using a 45 

gradient of hexane/EtOAc/MeOH. Of the seven resulting fractions (SM-12-1 through 

SM-12-7), the fourth fraction, SM-12-4 (108.01 mg), was fractionated using reversed-

phase HPLC. The sample was injected onto a Gemini preparatory column (5 µm C18, 

250 x 21.20 mm; Phenomenex) at a flow rate of 21.4 mL/min with a 45-min gradient. 

The gradient began at 40:60 CH3CN:H2O and increased to 50:50 over 35 min, after 

which the column was increased to 100:0 and held for 10 min, yielding 7 fractions (SM-

12-4-1 through SM-12-4-7). Fraction SM-12-4-5 (3.19 mg) was purified with a final 

round of reversed-phase chromatography using a Gemini semi-preparatory column (5 µm 

C18, 250 x 10.00 mm; Phenomenex) at a flow rate of 4.7 mL/min and a 45-min gradient 

ranging from 43-48% CH3CN. Compound 4 eluted at 18 min (0.5 mg, 93% purity, 

0.0001% yield).  
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APPENDIX B 

SUPPLEMENTARY TABLES 

 

Table S1. Complete List of Chemical Contaminants Removed from Analysis using 

Hierarchical Cluster Analysis Coupled to Spectral Variable Inspection of Triplicate 

Injections.  

 

Table S2. Effect of Data Acquisition Protocols on Selectivity Ratio Analyses. 

 

Table S3. False Positives and their Distribution in Selectivity Ratio Models.  

 

Table S4. Effect of Data Processing Protocols on Selectivity Ratio Analyses.  

 

Table S5. Effect of Round of Fractionation on Selectivity Ratio Analyses. 

 

Table S6. Comparison of Stage-One Models and their Identification of Randainal 

among the Top Contributors to Biological Activity. 

 

Table S7. Complete List of Chemical Contaminants Removed from Analysis using 

Hierarchical Cluster Analysis Coupled to Spectral Variable Inspection of Triplicate 

Injections from S. miltiorrhiza Extracts. 

 

Table S8. NMR Data for Sugiol (Compound 5) in CDCl3. 
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Table S1. Complete List of Chemical Contaminants Removed from Analysis using Hierarchical 

Cluster Analysis Coupled to Spectral Variable Inspection of Triplicate Injections. Chemical 

contaminants were consistent across samples. 

 

Accurate 

Mass 

Retention 

Time 

(min) 

Tentative 

Identification* 

Ion type Found in 

MeOH 

Blank? 

Found with 

quantitative 

filter? a 

215.094 3.837   Y Y 

217.049 6.534   N Y 

265.147 7.021   Y Y 

265.149 7.192   Y Y 

281.048 8.472   Y β Y 

297.154 6.95   Y Y 

355.07 7.795   Y Y 

445.121 7.116   Y Y 

503.108 8.477 Polysiloxane, 

[C2H6SiO]7
 

[M+H-CH4]+ Y Y 

504.105 8.473 Polysiloxane, 

[C2H6SiO]7 

[M+H-CH4]+ , 13C 

isotope 

Y Y 

504.11 δ 8.493   Y Y 

505.106 8.477 Polysiloxane, 

[C2H6SiO]7 

[M+H-CH4]+ , 2 ×  
13C isotope 

Y Y 

519.139 8.474 Polysiloxane, 

[C2H6SiO]7
 

[M+H]+ Y β Y 

520.139 8.473 Polysiloxane, 

[C2H6SiO]7 

[M+H]+, 13C isotope Y Y 

521.118 8.583   Y N 

521.136 8.474 Polysiloxane, 

[C2H6SiO]7 

[M+H]+, 2 × 13C 

isotope 

Y β Y 

522.136 δ 8.487   Y β N 

522.147 δ 7.647   Y β Y 

522.153 δ 7.629   Y β Y 

523.115 δ 8.589   Y N 

523.15 δ 7.634   Y β Y 

524.115 δ 8.585   Y Y 

524.127 δ 8.501   Y N 

524.144 δ 7.636   Y β Y 

524.15 δ 7.636   Y β Y 

525.147 δ 7.634   Y Y 

536.166 6.688 Polysiloxane, 

[C2H6SiO]7 

[M+NH4]+ Y Y 

536.166 8.472 Polysiloxane, 

[C2H6SiO]7 

[M+NH4]+ Y Y 

537.163 8.469 Polysiloxane, 

[C2H6SiO]7 

[M+NH4]+, 13C 

isotope 

Y Y 

537.168 8.496 Polysiloxane, 

[C2H6SiO]7 

[M+NH4]+, 13C 

isotope 

Y Y 

538.144 δ 8.488   N Y 

538.162 8.479 Polysiloxane, 

[C2H6SiO]7 

[M+NH4]+, 2 × 13C 

isotope 

Y Y 
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538.168 8.525 Polysiloxane, 

[C2H6SiO]7 

[M+NH4]+, 2 × 13C 

isotope 

Y Y 

539.145 δ 8.486   Y Y 

539.164 δ 8.472   Y Y 

540.144 δ 8.494   Y Y 

540.162 δ 8.472   Y Y 

541.116 δ 8.473   Y β N 

541.122 δ 8.476   Y N 

541.157 δ 8.468   Y Y 

541.163 δ 8.469   Y Y 

542.12 δ 8.472   Y N 

542.156 δ 8.471   Y β N 

542.162 δ 8.472   Y N 

550.182 8.475   Y Y 

557.094 8.472   Y Y 

564.195 8.473   Y Y 

582.151 8.776   Y Y 

610.186 7.161 Polysiloxane, 

[C2H6SiO]8 

[M+NH4]+ Y Y 

611.181 7.437 Polysiloxane, 

[C2H6SiO]8 

[M+NH4]+, 13C 

isotope 

Y Y 

611.188 7.154 Polysiloxane, 

[C2H6SiO]8 

[M+NH4]+, 13C 

isotope 

Y Y 

611.188 7.83 Polysiloxane, 

[C2H6SiO]8 

[M+NH4]+, 13C 

isotope 

Y Y 

612.185 7.158 Polysiloxane, 

[C2H6SiO]8 

[M+NH4]+, 2 × 13C 

isotope 

Y Y 

612.186 7.171 Polysiloxane, 

[C2H6SiO]8 

[M+NH4]+, 2 × 13C 

isotope 

Y Y 

613.185 δ 7.158   Y Y 

613.185 δ 7.714   Y N 

614.18 δ 7.16   Y β Y 

670.185  8.997   Y Y 

671.189 8.997   Y Y 

684.198 δ 8.247   N Y 

684.206 8.03 Polysiloxane, 

[C2H6SiO]9 

[M+NH4]+ Y Y 

684.206 8.63 Polysiloxane, 

[C2H6SiO]9 

[M+NH4]+ Y N 

685.2 8.024 Polysiloxane, 

[C2H6SiO]9 

[M+NH4]+, 13C 

isotope 

Y Y 

685.208 8.029 Polysiloxane, 

[C2H6SiO]9 

[M+NH4]+, 13C 

isotope 

Y Y 

686.179 δ 7.827   Y β Y 

686.187 δ 7.778   Y Y 

686.197 δ 7.866   Y β Y 

686.197 δ 8.155   Y β Y 

686.205 8.018 Polysiloxane, 

[C2H6SiO]9 

[M+NH4]+, 2 × 13C 

isotope 

Y β Y 

686.214 δ 8.659   Y N 

686.222 δ 8.67   Y β N 

687.195 δ 7.885   Y β Y 
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687.203 δ 8.013   Y Y 

688.195 δ 7.901   Y β Y 

688.203 δ 8.653   Y Y 

744.201 8.67   Y β Y 

744.211 8.695   Y β Y 

745.204 8.69   Y Y 

746.188 8.663   Y β N 

746.198 8.668   Y N 

746.208 8.678   Y β N 

747.185 8.666   Y β N 

747.194 8.67   Y N 

747.204 8.671   Y β N 

748.183 8.66   Y N 

748.193 8.664   Y β N 

748.203 8.671   Y β N 

749.184 8.661   Y N 

758.221 8.378 Polysiloxane, 

[C2H6SiO]10 

[M+NH4]+ Y Y 

759.222 8.377 Polysiloxane, 

[C2H6SiO]10 

[M+NH4]+, 13C 

isotope 

Y Y 

760.204 δ 8.936   Y Y 

760.215 δ 8.394   Y β Y 

760.225 8.369 Polysiloxane, 

[C2H6SiO]10 

[M+NH4]+, 2 × 13C 

isotope 

Y Y 

760.235 δ 8.372   Y β Y 

761.199 δ 8.947   Y Y 

761.22 δ 8.379   Y Y 

761.23 δ 8.373   Y β Y 

761.24 δ 8.368   Y β Y 

762.197 δ 8.955   Y Y 

762.207 δ 8.962   Y Y 

762.217 δ 8.377   Y Y 

762.227 δ 8.371   Y Y 

762.237 δ 8.372   Y β N 

763.216 δ 8.374   Y β Y 

795.167 5.398   N N 

818.222 8.592   Y Y 

819.222 8.62   Y N 

834.215 8.964   Y β Y 

834.224 8.957   Y Y 

834.236 8.987   Y Y 

834.246 8.989   N Y 

835.218 8.965   Y β Y 

835.23 8.962   Y Y 

835.241 8.995   Y β Y 

836.215 8.964   Y β N 

836.226 8.964   Y β Y 

836.238 8.973   Y β Y 

836.25 8.955   N N 

837.214 8.964   Y N 

837.225 8.963   Y N 

837.238 8.969   Y β N 
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838.214 8.912   Y N 

906.263 8.948   Y β Y 

907.26 8.939   Y β Y 

907.261 8.597   Y Y 

908.246 8.407   Y β Y 

908.259 8.981   Y β Y 

909.26 8.998   Y Y 

* Tentative identifications accomplished using Interferences and Contaminants Encountered in Modern 

Mass Spectrometry, Keller et al. (271) 
a Spectral variables receiving a “Y” in this category had an average variance/mean peak area within 

triplicate injections greater than 1.0 × 107 if found using a low-concentration dataset, or 4.1 × 107 if using a 

high-concentration dataset. Those receiving an “N” in this category were only identified using visual 

inspection of chromatograms 

β These m/z retention time pairs were found in some, but not all, of the blank injections 
δ These masses represent peaks we believe to be associated with polysiloxane isotopes (containing more 

than 2 × 13C) and/or mass spectral artefacts. They were too low abundant to be fragmented using the LC-

MS data analysis method, so they could not be confirmed to be the same as tentatively identified 

polysiloxanes. Instead, we have tentatively identified them by their similarity in accurate mass/retention 

time to putatively identified polysiloxanes from Keller et al. (271)  
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Table S2. Effect of Data Acquisition Protocols on Selectivity Ratio Analyses. We assessed the impact of 

pool number, bioassay concentration, and mass spectral concentration on final biochemometric results by 

evaluating changes in the selectivity ratio ranking of berberine and magnolol, as well as the impact on false 

postives identified in the models.  
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1a 3 100 0.1 870 Y 4 99.99, 

99.92 

1 20 2 16 1 

2 3 50 0.1 870 N N/A N/A N/A N/A N/A N/A N/A 

3 3 25 0.1 870 Y 5 99.99, 

99.95 

N/A 14 0 17 0 

4 5 100 0.1 870 Y 2 99.38, 

84.98 

1 14 1 15 0 

5 5 50 0.1 870 Y 2 99.37, 

86.40 

1 12 1 15 0 

6 5 25 0.1 870 Y 2 99.38, 

84.82 

1 14 1 15 0 

7 10 100 0.1 870 Y 5 99.79, 

98.55 

1 8 2 22 0 

8 10 50 0.1 870 Y 5 99.79, 

82.00 

22 4 0 22 0 

9 10 25 0.1 870 Y 5 99.81, 

88.07 

1 13 2 25 8 

10 3 100 0.01 370 Y 5 99.98, 

100 

7 27 0 18 7 

11 3 50 0.01 370 N N/A N/A N/A N/A N/A N/A N/A 

12 3 25 0.01 370 N N/A N/A N/A N/A N/A N/A N/A 

13 5 100 0.01 370 Y 4 99.71, 

99.83 

7 20 0 19 4 

14 5 50 0.01 370 Y 3 99.57, 

99.76 

20 16 0 19 4 

15 5 25 0.01 370 Y 3 99.57, 

99.73 

1 20 0 19 4 

16 10 100 0.01 370 N N/A N/A N/A N/A N/A N/A N/A 

17 10 50 0.01 370 Y 2 94.96, 

49.17 

33 18 0 30 11 

18 10 25 0.01 370 Y 3 62.28, 

79.11 

1 36 0 28 28 

aCryptotanshinone correctly identified as contributing to activity (19th). Cryptotanshinone only contributed 

to activity in 3 pool set. 
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Table S3. False Positives and their Distribution in Selectivity Ratio Models.  
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3 100 0.1 870 26 (3%) 27% 69% 4%  

3 50 0.1 -- -- -- -- -- 

3 25 0.1 870 20 (2%) 15% 85% 0% 

5 100 0.1 870 22 (3%) 28% 72% 0% 

5 50 0.1 870 22 (3%) 28% 72% 0% 

5 25 0.1 870 22 (3%) 28% 72% 0% 

10 100 0.1 870 30 (3%) 20% 80% 0% 

10 50 0.1 870 28 (3%) 21% 79% 0% 

10 25 0.1 870 41 (5%) 34% 66% 0% 

3 100 0.01 370 33 (9%) 25% 55% 20% 

3 50 0.01 -- -- -- -- -- 

3 25 0.01 -- -- -- -- -- 

5 100 0.01 370 32 (9%) 28% 59% 13% 

5 50 0.01 370 32 (9%) 28% 59% 13% 

5 25 0.01 370 32 (9%) 28% 59% 13% 

10 100 0.01 -- -- -- -- -- 

10 50 0.01 370 50 (14%) 18% 60% 22% 

10 25 0.01 370 65 (18%) 14% 43% 43% 
a representing unique m/z / RT pairs 
b expressed as a percentage of the total number of ions included in model 

c expressed as a percentage of the total number of ions with selectivity ratio > 0. 
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Table S4. Effect of Data Processing Protocols on Selectivity Ratio Analyses. All models contained 870 

unique mass/retention time pairs and were produced using data acquired from the 10-pool set analyzed at 

100 µg/mL in both the biological assay and during mass spectral analysis.  
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N N N 5 99.77, 

98.71 

23 120  13 0 4 27 

N N Y 5 99.77, 

98.71 

2 9 3 21 1c 0 

N Y N 5 99.79, 

98.55 

17 110 20 1 N/A 25 

N Y Y 5 99.79, 

98.55 

1 8 2 22 N/A 0 

Y N N 5 79.90, 

99.77 

17 213 17 3 2 21 

Y N Y 5 79.90, 

99.77 

17 205 17 3 2 21 

Y Y N 5 81.10,

99.75 

19 200 18 3 N/A 22 

Y Y Y 5 81.10,

99.75 

19 192 19 3 N/A 21 

a Only top 50 ions were included in this summary 
b These contaminants were identified and removed using dendrogram filtering, so models that went through 

dendrogram filtering will not have this type of contaminant in the model 
c polysiloxane contaminant peak identified as top contributor to bioactivity 
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a only top twenty contributors were considered for this metric 
b in this case, an unexpected active compound (randainal) was identified as the fifth top contributor to 

activity. Likely, the activity of this compound was masked by antagonists until this round of fractionation. 

Nine of the 12 “non-co-varying false positives” actually co-varied with randainal, and only 3 represented 

actual false positives that did not co-vary with an active compound. 

 

 

 

 

 

 

 

 

 

 

 

Table S5. Effect of Round of Fractionation on Selectivity Ratio Analyses.  

 
R

o
u

n
d

 o
f 

F
ra

ct
io

n
a

ti
o

n
 

#
 F

ra
ct

io
n

s 

C
o

n
ce

n
tr

a
ti

o
n

 t
es

te
d

 i
n

 

b
io

a
ss

a
y

 (
u

g
/m

L
) 

M
o

d
el

 P
ro

d
u

ce
d

?
 (

Y
/N

) 

N
u

m
b

er
 o

f 
m

o
d

el
 

co
m

p
o

n
en

ts
 

%
 i

n
d

ep
e
n

d
en

t,
 

%
 d

ep
en

d
en

t 

S
R

 r
a

n
k

in
g

 m
a

g
n

o
lo

l 

#
 f

a
ls

e 
p

o
si

ti
v

es
 c

o
-

v
a

ry
in

g
 w

it
h

 m
a

g
n

o
lo

l 
a
 

N
u

m
b

er
 o

f 
fa

ls
e 

p
o

si
ti

v
e 

n
o

t 
co

-v
a

ry
in

g
 a

 

1 3 50 N N/A N/A N/A N/A N/A 

2 11 50 Y 1 32.62, 

86.52 

1 18 0 

1 3 25 Y 5 99.99, 

99.95 

14 17 0 

2 11 25 Y 1 31.39, 

88.97 

6 18 0 

1 5 50 Y 2 99.37, 

86.40 

12 13 0 

2 10 50 Y 1 43.68, 

91.27 

1 15 1 

1 5 25 Y 2 99.38, 

84.82 

14 13 0 

2 10 25 Y 1 42.97, 

72.03 

2 16 1 

1 10 50 Y 5 99.79, 

82.00 

4 18 0 

2 7 50 Y 2 61.92, 

94.10 

N/A 6 12 b 

1 10 25 Y 5 99.81, 

88.07 

13 10 2 

2 7 25 Y 1 36.95, 

76.91 

4 16 0 
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Table S6. Comparison of Stage-One Models and their Identification of Randainal among the Top 

Contributors to Biological Activity.  
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1 1 3 100 0.1 Y 4 99.99, 99.92 Y 23 

2 1 3 50 0.1 N N/A N/A N/A N/A 

3 1 3 25 0.1 Y 5 99.99, 99.95 Y 17 

4 1 5 100 0.1 Y 2 99.38, 84.98 N N/A 

5 1 5 50 0.1 Y 2 99.37, 86.40 N N/A 

6 1 5 25 0.1 Y 2 99.38, 84.82 N N/A 

7 1 10 100 0.1 Y 5 99.79, 98.55 Y 19 

8 1 10 50 0.1 Y 5 99.79, 82.00 Y 14 

9 1 10 25 0.1 Y 5 99.81, 88.07 Y 25 

10 1 3 100 0.01 Y 5 99.98, 100 N N/A 

11 1 3 50 0.01 N N/A N/A N/A N/A 

12 1 3 25 0.01 N N/A N/A N/A N/A 

13 1 5 100 0.01 Y 4 99.71, 99.83 N N/A 

14 1 5 50 0.01 Y 3 99.57, 99.76 N N/A 

15 1 5 25 0.01 Y 3 99.57, 99.73 N N/A 

16 1 10 100 0.01 N N/A N/A N/A N/A 

17 1 10 50 0.01 Y 2 94.96, 49.17 N N/A 

18 1 10 25 0.01 Y 3 62.28, 79.11 N N/A 

19 2 11 50 0.1 Y 1 32.62, 86.52 Y 50 

20 2 11 25 0.1 Y 1 31.39, 88.97 Y 49 

21 2 10 50 0.1 Y 1 43.68, 91.27 N N/A 

22 2 10 25 0.1 Y 1 42.97, 72.03 N N/A 

23 2 7 50 0.1 Y 2 61.92, 94.10 Y 5 

24 2 7 25 0.1 Y 2 62.68, 86.41 N N/A 
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Table S7. Complete List of Chemical Contaminants Removed from Analysis using Hierarchical 

Cluster Analysis Coupled to Spectral Variable Inspection of Triplicate Injections in S. miltiorrhiza 

Samples. Chemical contaminants were consistent across samples.  

 

Accurate Mass  Ionization 

Mode 

Retention 

Time (min) 

Tentative 

Identification* 

Ion Type 

279.159 Positive 8.661 Dibutylphthalate [M+H]+ 

336.636 Positive 5.879     

357.133 Negative 3.873     

357.133 Positive 4.04     

357.134 Negative 4.295     

357.134 Positive 4.696     

367.117 Positive 4.383     

536.166 Positive 8.548 Polysiloxane, [C2H6SiO]7 [M+NH4]+ 

537.166 Positive 8.553 Polysiloxane, [C2H6SiO]7 [M+NH4]+, 13C isotope 

537.147† Positive 8.558     

538.165 Positive 8.558 Polysiloxane, [C2H6SiO]7 [M+NH4]+, 2 × 13C isotope 

539.149 † Positive 8.558     

539.165 † Positive 8.551     

539.208  Positive 7.308     

540.161 † Positive 8.551     

541.161 † Positive 8.549     

837.216 Positive 8.97     

837.224 Positive 8.57     

* Tentative identifications accomplished using Interferences and Contaminants Encountered in Modern 

Mass Spectrometry, Keller et al. (271)  

† These masses represent peaks we believe to be associated with polysiloxane isotopes (containing more 

than 2 × 13C) and/or mass spectral artefacts. They were too low abundant to be fragmented using the LC-

MS data analysis method, so they could not be confirmed to be the same as tentatively identified 

polysiloxanes. Instead, we have tentatively identified them by their similarity in accurate mass/retention 

time to putatively identified polysiloxanes from Keller et al. (271) 
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Table S8. NMR Data for Sugiol (Compound 5) in CDCl3. 1H, HMBC, and HSQC data collected at 500 

MHz, and 13C data collected at 125 MHz 

 

Position 13C 1H HMBC 

1α 

1β 

37.97* 1.53 m* 

2.23  dt (J=11.9, 2.8) 

  

2α 

2β 

18.97 1.67 m 

1.76 tt (J=13.6, 3.3) 

  

3α 

3β 

41.42 1.25 m* 

1.53 m* 

  

4 33.37     

5 49.53 1.85 dd (J=13.7, 4.0) 9 

6α 

6β 

36.13 2.68 dd (J=18.1, 4.0) 

2.58 dd (J=18.1, 13.8) 

5 

7 198.68     

8 124.78     

9 156.52     

10 37.95*     

11 110.03 6.68 s 10, 8, 13, 12  

12 158.15     

13 132.63     

14 126.63 7.90 s 15, 9, 12, 7 

15 26.88 3.12 hept (J=6.9)   

16 22.55 1.24 d (J=6.9) 13, 15, 17 

17 22.42 1.26 d (J=6.9) 13, 16, 15 

18 32.65 0.92 s 19, 3, 5 

19 21.45 0.98 s 18, 3, 5 

20 23.33 1.21 s 1, 5, 9 

* overlapping assignments based on HSQC experiments. 
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APPENDIX C 

SUPPLEMENTARY FIGURES 

 

 

Figure S1. Fractionation Scheme: Angelica keiskei Molecular Networking and 

Biochemometrics 

 

Figure S2. Scale-Up Fractionation Scheme: Angelica keiskei  

 

Figure S3. Analytical Workflow for Integrated Analysis 

 

Figure S4. 1H NMR Spectrum (500 MHz, CDCl3) of 4-hydroxyderricin  

 

Figure S5: 13C NMR Spectrum (125 MHz, CDCl3) of 4-hydroxyderricin 

 

Figure S6: 1H NMR Spectrum (500 MHz, CDCl3) of Xanthoangelol  

 

Figure S7: 13C NMR Spectrum (125 MHz, CDCl3) of Xanthoangelol 

 

Figure S8: 1H NMR Spectrum (500 MHz, C2D6OS) of Xanthoangelol E  

 

Figure S9: 13C NMR Spectrum (125 MHz, C2D6OS) of Xanthoangelol E 

 

Figure S10: 1H NMR Spectrum (500 MHz, CDCl3) of Xanthoangelol K  

 

Figure S11: 13C NMR spectrum (125 MHz, CDCl3) of xanthoangelol K 

 

Figure S12: HMBC Spectrum (400 MHz, CDCl3) of Xanthoangelol K 

 

Figure S13: Dose Response Curves for 4-hydroxyderricin (A), Xanthoangelol (B), 

Xanthoangelol E (C), and Xanthoangelol K (D) Isolated from A. keiskei against 

MRSA USA 300 LAC Strain AH1263 

 

Figure S14: Calibration Curves of Standard Compounds of Berberine (A), 

Magnolol (B), Cryptotanshinone (C), and Alpha-mangostin (D) 

 

Figure S15: Dose Response Curves of Berberine (A), Magnolol (B), 

Cryptotanshinone (C), and Alpha-mangostin (D) against S. aureus SA1199 

 

Figure S16: Fractionation Scheme 
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Figure S17: Example Chromatograms of Active Fractions from First- and Second-

Stages of Fractionation 

 

Figure S18: MS2 Spectrum (Negative Mode) of Randainal 

 

Figure S19: 1H NMR Spectrum (700 MHz, CD3OD) of Randainal 

 

Figure S20: HSQC Spectrum (700 MHz, CD3OD) of Randainal 

 

Figure S21: HMBC Spectrum (700 MHz, CD3OD) of Randainal 

 

Figure S22: 1H NMR Spectrum (500 MHz, Acetone-d6) of Randainal 

 

Figure S23: Fractionation Scheme for Simplify Development with S. miltiorrhiza  

 

Figure S24: Predicted versus Actual Activities of Sub-fractions Simplified from 

Synergistic Fraction SM-3 

 

Figure S25: Fragmentation Patterns of Dihydrotanshinone I (HCD = 65) 

 

Figure S26: Fragmentation Patterns of Tanshinone IIA (HCD = 30) 

 

Figure S27: Dose Response Curves for Cryptotanshinone, Tanshinone IIA, 

Dihydrotanshinone I, and Sugiol. 

 

Figure S28: Fragmentation Patterns of Sugiol (HCD = 30) 

 

Figure S29: 1H NMR Data for Sugiol (500 MHz, CDCl3) 

 

Figure S30: 13C NMR Data for Sugiol (125 MHz, CDCl3) 

 

Figure S31: HSQC Data for Sugiol (500 MHz, CDCl3) 

 

Figure S32: HMBC Data for Sugiol (500 MHz, CDCl3) 

 

Figure S33: 1H NMR Data for Sugiol (500 MHz, DMSO-d6) 

 

Figure S34: 1H NMR Data for Cryptotanshinone (500 MHz, CDCl3) 

 

Figure S35: 13C NMR Data for Cryptotanshinoe (125 MHz, CDCl3) 

 

Figure S36: Fragmentation Patterns of Cryptotanshinone (HCD = 30) 
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Figure S37: 1H NMR Data for 1-oxocryptotanshinone (500 MHz, CDCl3) 

 

Figure S38. Calibration Curve of Cryptotanshinone used to Quantify 

Cryptotanshinone in each S. milttiorhiza Fraction.  
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Figure S1. Fractionation Scheme: Angelica keiskei Molecular Networking and Biochemometrics.  
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Figure S2. Scale-up Fractionation Scheme: Angelica keiskei. 
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Figure S3. Analytical Workflow for Integrated Analysis. 
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Figure S4. 1H NMR Spectrum of (500 MHz, CDCl3) 4-hydroxyderricin.  
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Figure S5. 13C NMR Spectrum (125 MHz, CDCl3) of 4-hydroxyderricin. 
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Figure S6. 1H NMR Spectrum (500 MHz, CDCl3) of Xanthoangelol. 
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Figure S7. 13C NMR Spectrum (125 MHz, CDCl3) of Xanthoangelol. 

 

  

Figure S6. 1H NMR spectrum (500 MHz, CDCl3) of xanthoangelol (2) 
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Figure S8. 1H NMR Spectrum (500 MHz, DMSO-d6) of Xanthoangelol E. 
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Figure S9. 13C NMR Spectrum (125 MHz, DMSO-d6) of Xanthoangelol E. 
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Figure S10. 1H NMR Spectrum (500 MHz, CDCl3) of Xanthoangelol K. 
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Figure S11. 13C NMR Spectrum (125 MHz, CDCl3) of Xanthoangelol K.  
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Figure S12. HMBC Spectrum (400 MHz, CDCl3) of Xanthoangelol K. 
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Figure S13. Dose Response Curves for 4-hydroxyderricin (A), Xanthoangelol (B), Xanthoangelol E 

(C), and Xanthoangelol K (D) Isolated from A. keiskei against MRSA USA300 LAC Strain AH1263 

(234). Turbidimetric data were obtained by comparing OD600 values of test wells relative to vehicle control 

after 24 hours of incubation at 37 °C. Models were constructed using untransformed triplicate data and fit 

using four-parameter logistic curves, represented as the mean ± SEM.   
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Figure S14. Calibration Curves of Standard Compounds of Berberine (A), Magnolol (B), 

Cryptotanshinone (C), and Alpha-mangostin (D). Curves were produced using a Thermo-Fisher Q-

Exactive Plus Orbitrap mass spectrometer (Thermo Fisher Scientific, MA, USA) connected to an Acquity 

UPLC system (Waters Corporation, Milford, MA, USA). Separations were completed by using a reversed 

phase UPLC column (BEH C18, 1.7 µm, 2.1 x 50 mm, Waters Corporation, Milford, MA, USA).  
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Figure S15. Dose-Response Curves of Berberine (A), Magnolol (B), Cryptotanshinone (C), and 

Alpha-mangostin (D) against S. aureus SA1199. Turbidimetric data were obtained by comparing OD600 

values of test wells relative to vehicle control following 18 hours of incubation at 37 °C. Models were 

constructed using untransformed triplicate data and fit using four-parameter logistic curves, represented as 

the mean ± SEM. 
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Figure S16. Fractionation Scheme. Pools used to produce first- and second-stage models have been 

identified in brackets.  
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Figure S17. Example Chromatograms of Active Fractions from First- and Second-Stages of 

Fractionation. Data produced using both positive- and negative-mode data of selected active pools 

belonging to the 5-pool set analyzed at 0.1 mg/mL in the mass spectrometer. For first-stage pools, baseline 

cutoffs were set to 2.0 × 106 for positive mode and 1.0 × 106 for negative mode. For second-stage pools, 

baseline cutoffs were set to 2.0 × 106 for both positive mode and negative mode. S4A. Berberine-rich pool 

from the first round of chromatographic separation. S4B. Magnolol-rich pool from first round of 

chromatographic separation. S4C. Magnolol-rich pool from second round of chromatographic separation. 
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Figure S18. MS2 Spectrum (Negative Mode) of Randainal. Peaks have been labeled with molecular 

formulas if they match fragment predictions and/or fragments previously reported in the literature (299). 

  



 

266 

 

 
 

Figure S19. 1H NMR Spectrum (700 MHz, CD3OD) of Randainal.  
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Figure S20. HSQC Spectrum (700 MHz, CD3OD) of Randainal. 
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Figure S21. HMBC Spectrum (700 MHz, CD3OD) of Randainal. 
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Figure S22. 1H NMR Spectrum (500 MHz, Acetone-d6) of Randainal. Spectra match those previously 

reported in the literature (299).  
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Figure S23. Fractionation Scheme for Simplify Development with S. miltiorrhiza. 
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Figure S24A. Predicted versus Actual Activities of Sub-fractions Simplified from Synergistic 

Fraction SM-3. Although predicted and actual did not show a mismatch, we predicted that synergistic 

compounds were separated from cryptotanshinone which was used to calculate predicted activity. 

Cryptotanshinone was used as a positive control, and its MIC (25 µg/mL) is consistent with previous 

reports (285). Indeed, when isobolograms were generated for synergy testing, isobolograms of SM-3-2 (B), 

SM-3-3 (C), and SM-3-4 (D) all possessed synergy with FIC values of 0.26, 0.40, and 0.14 respectively.  

ƩFICs were calculated using the following equation: [A]/IC50A + [B]/IC50B = ƩFIC, where IC50A is the 

IC50 of cryptotanshinone alone, IC50B is the IC50 of the fraction alone, [A] is the IC50 of cryptotanshinone in 

combination with fraction, and [B] is the IC50 of fraction in combination with cryptotanshinone.  Synergy ≡ 

ƩFIC < 0.5, additivity ≡ 0.5 < ƩFIC < 1.0, Indifference ≡ 1.0 < ƩFIC < 4.0, Antagonism ≡ ƩFIC > 4.0 
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Figure S25. Fragmentation Patterns of Dihydrotanshinone I (HCD = 65). Fragmentation patterns of the 

pure standard compound (top) match fragmentation patterns of the compound found within the S. 

miltiorrhiza mixture (bottom).  



 

273 

 

 
 

Figure S26. Fragmentation Patterns of Tanshinone IIA (HCD = 30). Fragmentation patterns of the pure 

standard compound (top) match fragmentation patterns of the compound found within the S. miltiorrhiza 

mixture (bottom). 
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Figure S27. Dose Response Curves for Cryptotanshinone, Tanshinone IIA, Dihydrotanshinone I, and 

Sugiol. Curves were fit using a four-parameter logistic model. 
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Figure S28. Fragmentation Patterns of Sugiol (HCD = 30). Fragmentation patterns of the purified 

compound (top) match fragmentation patterns of the compound found within the S. miltiorrhiza mixture 

(bottom). 
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Figure S29. 1H NMR Data for Sugiol (500 MHz, CDCl3). 
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Figure S30. 13C NMR Data for Sugiol (125 MHz, CDCl3). 
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Figure S31. HSQC Data for Sugiol (500 MHz, CDCl3).  
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Figure S32. HMBC Data for Sugiol (500 MHz, CDCl3).  
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Figure S33. 1H NMR Data for Sugiol (500 MHz, DMSO-d6). Data are consistent with previous reports 

(322).   
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Figure S34. 1H NMR Data for Cryptotanshinone (500 MHz, CDCl3). 
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Figure S35. 13C NMR Data for Cryptotanshinone (125 MHz, CDCl3). Traces are consistent with 

previous reports (333). 
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Figure S36. Fragmentation Patterns of Cryptotanshinone (HCD = 30). Fragmentation patterns of the 

pure standard compound (top) match fragmentation patterns of the compound isolated from the S. 

miltiorrhiza mixture (bottom). 
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Figure S37. 1H NMR Data for 1-oxocryptotanshinone (500 MHz, CDCl3). 
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Figure S38. Calibration Curve of Cryptotanshinone used to Quantify Cryptotanshinone in each S. 

miltiorrhiza Fraction. 

 


