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Abstract: 
 
Objective: Postural control is frequently compromised after sub-concussive and concussive head 
trauma, and balance testing is an integral part of neuromotor assessment and management. The 
main objective of this paper is to develop a novel smartphone-based neuromotor assessment 
protocol for screening of dynamic balance decrements stemming from head trauma. Approach: 
Experiments 1 and 2 compared Android smartphone orientation detection algorithms to a 
biomechanics laboratory motion capture system using a pendulum (i.e. non-biological 
movement) and a human stepping task (i.e. biological movement). Experiment 3 examined the 
test-retest reliability of a stepping-in-place protocol in three different sensory conditions (eyes 
open, no-vision, head shake) using temporal and spatial variability metrics extracted from thigh 
orientation signal in a sample of healthy young adults. Main results: Smartphone sensors 
provided valid measurements of movement timing and amplitude variables. However, sensor 
firmware version and Android OS version significantly affected quality of measurement. High 
test-retest reliability was shown for the temporal and spatial variables of interest during the 
stepping-in-place task. Significance: Collectively, these experiments show that our smartphone 
application is a valid and reliable way to measure leg movement characteristics (mean stride time 
and its variability (CV), Peak Thigh SD, Thigh ROM, and Peak Return Velocity) during 
dynamic balance activity, which could provide an objective way to assess neuromotor function 
after head trauma and in other populations with balance dysfunction. 
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Recent work has focused on the development of portable sensor-based balance assessment 
protocols that could be used by clinicians in the field to screen for neuromotor symptoms of 
sport-related concussion to allow making evidence-based return-to-play decisions and to track 
recovery of neuromotor function (McCrory et al 2013). Rapid and objective screening in the 
field is important because only a small number of concussive incidents are clearly identifiable 
based on visual observation (e.g. loss of consciousness) and a large number of sport concussions 
have subtle effects that are difficult to identify objectively (Parker et al 2008). Moreover, sub-
concussive head trauma has received more attention in recent years because it is more prevalent 
than concussive head trauma (McKee et al 2009, Gysland et al 2012, Talavage et al 2014, 
Abbas et al 2015, Poole et al 2015). For example, male collegiate football players receive 
approximately 1000 head impacts throughout a season and only a very small number of them 
lead to a concussion, classifying the majority of head trauma as sub-concussive (Gysland et 
al 2012). Both the short-term (Rhea et al 2017) and long-term (Gavett et al 2011) negative 
consequences of sub-concussive and concussive trauma on health-related behavior have been 
identified, justifying the need to develop better ways to assess and track the effects of head 
trauma. 
 
Objective screening tools that can be implemented in the field would be beneficial to help with 
screening for neuromotor dysfunction from head trauma. Objective assessments offer the 
potential for more reliable assessment relative to subjective assessments, which are commonly 
used due to their ease of administration. To this end, there has been an increase in the number of 
sensor-based balance assessments available to the research and clinical community, fueled by 
widespread access to portable technology such as smartphones and tablets, along with an 
improvement in the quality of sensors available in these devices (Chen et al 2012). As an 
example of an instrumented portable balance test, SWAY Medical (Cleveland, OH) developed a 
comprehensive neurocognitive assessment that includes a static balance test with an iPhone 
(Apple Inc., CA) positioned around the thoracic region to record center of gravity fluctuations 
during quiet stance in different stance positions, such as feet together, single leg, and tandem 
stance (Amick et al 2015). BTracks (San Diego, CA) has developed a portable force plate 
(O'Connor et al 2016) at a fraction of the cost of research-grade systems that allows to quantify 
center of pressure variability in the field setting (Goble et al 2016). Several research groups have 
also developed sensor-instrumented versions of the BESS (Alberts et al 2015, Alsalaheen et 
al2015). 
 
One limitation of these portable balance assessment protocols is the over-reliance on testing of 
static postural control—maintenance of a fixed posture as still as possible in the absence of other 
movements. While static balance assessment is valuable, dynamic balance during activities such 
as walking or crossing over obstacles may be more sensitive to neuromotor symptoms of 
concussion (Basford et al 2003, Chou et al 2004) and is more functionally relevant, as most 
sport-related concussive injuries happen during dynamic activities performed by the athletes. 
Thus, there is a need to develop head trauma screening tools that focus on dynamic balance 
activities (Johnston et al2016). 
 
In this study, we developed a smartphone app to track thigh and trunk motion during a dynamic 
balance test that consists of stepping-in-place in three sensory-probing conditions (eyes open, no-
vision, and head shake) to evaluate neuromotor control of dynamic balance in the field setting 



using minimal space. The rationale for the sensory manipulations was to emphasize 
proprioceptive and vestibular perturbations to the postural control system, as previous studies 
have indicated presence of visual and vestibular sensory deficits in individuals after a concussion 
(Alsalaheen et al 2010, Gottshall and Hoffer 2010, Ellis et al 2015, Wright et al 2017). The task 
is similar to the Fukuda test, except we do not focus on trunk rotation and positional 
displacement, as these variables have been shown to be invalid for the assessment of peripheral 
vestibular dysfunction (Honaker et al 2009). Our focus is on characterizing temporal and 
kinematic variability of the leg and trunk movement during the dynamic balance task because 
motor variability (both magnitude and structure) is a commonly-used marker of neurological 
dysfunction (Newell and James 2008). To measure movement variability during this dynamic 
balance task, we developed a smartphone application (AccWalker) that quantifies thigh and 
trunk orientation. 
 
The aim of this paper is to validate the AccWalker in comparison to laboratory motion capture 
equipment (Experiments 1 and 2) and to report test-retest reliability of the testing protocol in a 
sample of healthy young adults (Experiment 3). Specifically, experiment 1 evaluated 
AccWalker's performance to detect phone orientation in comparison to a research-grade motion 
capture system using pendulum movement, similar to previously used methods (Godfrey et 
al 2007).Two different versions of Android OS (4.4.4 and 5.1) were tested to check for any 
alterations in orientation estimation as a function of OS. We hypothesized that the AccWalker 
would produce valid measurement of the pendulum angle with respect to motion capture and that 
the two versions of Android OS would provide equivalent measurements. Experiment 2 
examined validity of the AccWalker to measure temporal and spatial variables of thigh and trunk 
motion in the context of the stepping-in-place task. We hypothesized that AccWalker and 3D 
motion capture would provide similar estimates of thigh and trunk motion and used the Bland–
Altman limits of agreement test (Bland and Altman 1999) and ICC(3,k) to test this hypothesis. In 
addition, we evaluated the effects of placing the phone away from its ideal reference position on 
the thigh on the measurements provided by the app. We also examined the ability of the phone to 
detect stride time variability during treadmill walking because temporal metrics are of primary 
interest for our future neuromotor assessments of individuals with concussion. Experiment 3 
evaluated test-retest reliability of AccWalker metrics, with the hypothesis that the stepping-in-
place protocol would show minimal practice effects with high test-retest reliability within each 
condition. 
 
Method 
 
Experiment 1: Android orientation sensor validation 
 
A physical pendulum was constructed from a square poplar wood plank (L  =  95 cm, m  =  57 g) 
attached to a wheel bearing at the pivot point (figure 1(A)). Motion capture markers (5 g) were 
placed on the pendulum's arm and the pivot point. The phone (Motorola Moto X2 XT1095, 
144 g) was placed at the end of the pendulum arm. The pendulum was released from an angle of 
30° and the resulting oscillation was recorded for 60 s. Motion capture data were used to 
calculate pendulum angle, θ, with respect to the vertical as 
 



 
 
where A is the vertical 2D vector starting at the pivot and pointing straight down and B is the 
vector pointing from the pivot to the marker on the pendulum's arm. 
 

 
Figure 1. Testing of the AccWalker to detect pendulum angle in comparison to Qualisys motion 
capture system. 
 
Phone orientation was estimated using the Rotation Vector function from Android SDK 4.4 W.2 
API 19. The AccWalker app was installed on Motorola X2 XT1095 (Schaumburg, IL) because it 



was relatively inexpensive and has sensors required by the Rotation Vector function: a 3-axis 
accelerometer, a 3-axis gyroscope (InvenSense Inc., MPU-6515 MEMS, San Jose, CA), and a 3-
axis magnetometer (Asahi Kasei Corp, AK8963, Tokyo, Japan). Our primary consideration for 
selecting the phone was that the accelerometer had a dynamic range of  ±8 g and 
gyroscope  ±1000 ° s−1. Details of orientation estimation and the JAVA code to implement it are 
provided in supplementary material (stacks.iop.org/PM/39/02NT01/mmedia). 
 
3D motion capture system (Qualisys, Gothenburg, Sweden) data were sampled at 100 Hz, while 
the AccWalker data were sampled at approximately 100.86 Hz due to asynchronies inherent to 
the Android sensor framework. AccWalker recordings were interpolated and resampled at 100 
Hz using cubic spline interp1.m in Matlab 2016b (Mathworks, Natick, MA). Both signals were 
filtered using the 4th-order 5 Hz low-pass Butterworth filter and angular velocity was calculated 
using the 3-point formula. Motion capture and phone recordings were time-synchronized using 
velocity spike resulting from a finger tap on the phone prior to trial onset. 
 
Three trials of pendulum oscillation were used to compare the performance of the AccWalker 
app running on Android 4.4.4 and 3D motion capture. Stock KitKat 4.4.4 OS was downloaded 
from the XDA Developers forum and installed on the phone using TWRP software. Three 
additional trials were performed using the same phone after updating the OS and sensor 
framework to Android 5.1. 
 
Experiment 2: concurrent validity of AccWalker and 3D motion capture during stepping-in-place 
and treadmill walking 
 
Participants 
 
A convenience sample of nine healthy young adults (mean age 25.12  ±  2.86 yrs; eight men) 
took part in the study after signing an IRB-approved consent form at the University of North 
Carolina at Greensboro. 
 
Materials 
 
Two identical smartphones (Motorola Moto X2; Android OS 4.4.4) were used to measure 
orientation of the right thigh and upper trunk (figure 3). The leg phone measured absolute thigh 
segment angle with respect to the vertical in the anterior–posterior (AP) plane. The trunk phone 
measured orientation of the upper trunk with respect to the vertical in the medial-lateral (ML) 
plane. The leg phone was secured using a phone strap (Belkin, Playa Vista, CA) and the trunk 
phone was secured using a chest mount (Velocity Clip, Richmond, CA). Phone orientation 
methods and data processing were the same as in Experiment 1. 
 
Motion capture markers were placed on the skin over greater trochanter, knee, lateral malleolus, 
L4, and T12. Absolute thigh segment angle was calculated using equation (1), where A was a 2D 
vector in the sagittal plane starting at the greater trochanter marker and ending at a point straight 
down from the trochanter marker (this point was determined by offsetting the z-coordinate of the 
trochanter marker by 0.1 m) and B was a vector starting at the greater trochanter marker and 
ending at the knee marker. The ML trunk angle was defined as the angle between the 2D vector 
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in the coronal plane connecting L4 to T12 and the vertical vector staring at L4 and pointing up. 
Simultaneous recordings from the motion capture and phone were time-synchronized based on 
the first thigh flexion peak during the trial. 
 
Procedures 
 
Each participant performed two stepping-in-place trials with the instruction to synchronize each 
step to an auditory metronome (period  =  0.575 s) for the first 10 s and continue stepping at the 
same pace for 60 s. Participants were asked to use comfortable range of motion (ROM) at the hip 
and knee, to lift the foot fully off the ground, and to maintain visual fixation on the target located 
1.5 m in front of them at the eye level. An additional stepping-in-place trial was performed with 
the phone shifted anteriorly on the thigh (~4–5 cm) to simulate the effects of improper phone 
placement on the calculation of temporal and kinematic variables of the leg movement 
(figure 3(C)). Participants were also recorded walking on a treadmill at 1.34 m s−1. Each trial was 
performed immediately after the previous one. 
 
Dependent measures 
 
While there are a number of metrics that could be derived from the time series recorded by the 
smartphone, we purposefully chose a set of metrics based on previous postural control and gait 
research. Due to the recognition that neuromotor dysfunction can resonate in both the temporal 
and spatial domains (Grabiner et al 2001), we included both types of metrics in our approach. 
Temporal metrics have a vast literature that suggests gait timing can be used as an indicator of 
neuromotor dysfunction (Hausdorff 2007, Verghese et al 2009, Stergiou and Decker 2011, Rhea 
and Kiefer 2014). Spatial metrics that are commonly examined are step length, step width, and 
center-of-mass movement. Due to the constraint of having a single phone on the thigh and the 
structure of the dynamic balance task, we were not able to derive these commonly used spatial 
metrics. We did, however, include a number of other potentially useful spatial metrics, such as 
the ROM, which decreases with age (Kang and Dingwell 2008), and standard deviation of the 
ROM, which increased after traumatic brain injury (TBI) (Buster et al 2013). 
 
Temporal metrics 
 
Stride time was identified based on maximal thigh flexion. Average stride time was used to 
characterize how well the participants maintained metronome pace throughout the trial (target 
stride time was 1.15 s). Drift in the stride time throughout the trial (Pace Drift) was quantified as 
the absolute difference of the average stride time during the first and last 5 s of the trial. 
Coefficient of variation (CV) and autocorrelation at lag 1 (ACF1) were used to characterize the 
magnitude and structure of stride time variability, respectively. 
 
Spatial metrics 
 
Spatial variability was characterized using the standard deviation of (1) phone angle at the peak 
thigh flexion (Peak Thigh SD), (2) peak velocity during leg lift (Lift Velocity SD), and (3) peak 
velocity during leg return (Return Velocity SD). Thigh range of motion (Thigh ROM) was 



quantified as the difference between the average phone angle during stance and the average 
phone angle at maximum thigh flexion. 
 
Trunk movement 
 
Variability of trunk orientation in the ML plane was quantified using standard deviation of the 
phone angle and velocity. 
 
Statistical analysis 
 
Bland–Altman LOA was used to provide a descriptive estimate of the magnitude of estimates 
provided by the AccWalker and 3D motion capture for each of the dependent variables. Standard 
deviation of LOA (SD LOA) and 95% LOA were estimated using the algorithm for repeated 
measures designs implemented in R using the BA.est function from the MethComp library 
(Carstensen et al2015). Difference scores between the methods for each subject were evaluated 
for normality and heteroscedasity. Bias of the AccWalker measurements was evaluated using 
repeated-measures t-test, with an alpha level 0.05. Effect sizes of the bias were calculated using 
pooled variance Cohen's d. 
 
The criterion for validating the AccWalker against motion capture was based on ICC(3,k). This 
version of ICC was selected because the results are expected to generalize only to the 
measurement methods used in this study, and they were based on k  =  2 trials per subject. 
Relevant terms for calculating ICC were extracted from one-way repeated measures ANOVA 
with Method (Mocap versus AccWalker) and Subjects as factors. ICC values greater than 0.9 
were considered adequate to substitute motion capture for AccWalker measurement to allow 
individual decision-making based on AccWalker metrics (Portney and Watkins 2000). 
 
Experiment 3: test-retest reliability 
 
Participants 
 
Thirty-two healthy young adults (14 men and 18 women; mean age 24.66  ±  4.73 yrs) from the 
Department of Kinesiology at the University of North Carolina at Greensboro and the 
Department of Physical Therapy at Temple University took part in the study. All study 
procedures were approved by the IRBs at both universities. 
 
Procedures 
 
Eyes open (EO), no-vision (NV), and head shake (HS) stepping-in-place trials were performed in 
the order listed, with three trials per condition (figure 4(A)). The procedures and the instruction 
for the EO condition were the same as in Experiment 2. In the NV condition, participants wore a 
taped-over ski mask and did not remove it between trials. This served to ensure that they were 
not aware of any change in their heading or position that occurred during the NV trials and did 
not attempt to deliberately correct for it in the subsequent trial. In the HS condition, participants 
were instructed to move their head side-to-side (about 20°) while mainintaining visual fixation 
on the target in front of them. They were instructed to couple their head movement to the leg 



movement and to keep moving their head continuously throughout the trial. Each trial was 
performed immediately after the previous one in the EO and EC conditions. In the HS condition, 
participants took short brakes (up to 30–45 s) in between trials to minimize dizziness. The 
participants completed all of the EO, EC, and HS trials in each of two sessions separated by 
approximately a week (7.31  ±  1.2 d on average). 
 
Materials 
 
Phone specifications and placement were identical to Experiment 2. Head yaw angle was 
measured using the XSens inertial measurement unit (MTw Development Kit, Enschede, 
Netherlands) during the HS condition. 
 
Statistical analysis 
 
One-way repeated-measures analysis of variance (ANOVA) with Session (1 versus 2) was 
performed separately for each experimental condition (EO, EC, HS) and dependent variable. 
Performance on the three trials per condition were averaged for the analysis. ANOVA results 
were used to calculate the intra-class correlation coefficient ICC(2,k) and the standard error of 
the mean (Shrout and Fleiss 1979, Weir 2005). ICC(2,k) was utilized to estimate test-retest 
reliability because this ICC type incorporates both systematic and random error (Weir 2005). 
SEM was included as a measure of absolute reliability. It was calculated as a square root of mean 
square of the error term in the ANOVA in order to minimize the effect of systematic variability 
on this metric and to minimize its dependence on the exact version of ICC (Weir 2005). Based 
on the suggestion from Koo and Li (2016), ICC values can be interpreted as the following: less 
than 0.50 (poor reliability), 0.50–0.75 (moderate reliability), 0.75–0.90 (good reliability), and 
greater than 0.90 (excellent reliability). Such an interpretation was adopted for this manuscript. 
 
To determine if there were performance differences between the conditions and to determine if 
there were practice effects, we used a Condition×Session repeated-measures ANOVA, followed 
up with post-hoc t-tests. Head ROM and velocity in the horizontal plane were also evaluated for 
practice effects. The alpha level for the main effect of session was set at 0.1 to provide a more 
liberal detection of practice effects (Fleiss 1999). 
 
Results 
 
Experiment 1: Android orientation sensor validation 
 
Pendulum movement pattern recorded by the motion capture and the AccWalker were visually 
similar (figure 1(B)). The mean absolute difference between the maxima of the two recordings 
was 0.35° (SD  =  0.14°). The average timing difference between the maxima was 0.009 s. Mean 
absolute difference was 1.0° (SD  =  0.17°), and the timing difference was 0.01 s for the minima. 
 
The angular trajectory of AccWalker differed slightly from the motion capture in the initial 5–6 
oscillations (figure 1(C)), primarily due to an asymmetric velocity profile near peak velocities 
(figure 1(E)). However, AccWalker-estimated velocity became more symmetrical and similar to 
motion capture over time (figure 1(D)) when the maximum velocities were around 50 ° 



s−1 (figure 1(F)). In addition, both signals were plotted in phase space to simultaneously visualize 
the angle and angular velocity of the pendulum illustrating this observation 
(figures 1(G) and (H)). 
 
Performance of the AccWalker significantly degraded after upgrading to Android OS 5.1 
(figure 2). Figure 2 shows AccWalker recordings of the pendulum oscillation (orange) and 
corresponding phase space (blue) when running Android 4.4.4 and Android 5.1. The AccWalker 
showed substantial drift in the estimated pendulum angle after OS upgrade. 
 

 
Figure 2. Performance of the AccWalker when running on Android OS 4.4.4 versus Android 
5.1. Panels (C) and (D) show the time series of the pendulum angle measured by the same phone 
while running these two different operating systems. Drift is clearly evident in the angle 
measurement provided by Android 5.1. Corresponding position-velocity phase spaces are shown 
in Panels (A) and (B)—an ideal pendulum oscillation measurement should show circular 
trajectories. 
 
Experiment 2: concurrent validity of AccWalker and 3D motion capture during stepping-in-place 
and treadmill walking 
 
Stepping-in-place 
 
Time series of thigh angle and angular velocity closely corresponded between the measurement 
systems when the phone was properly placed on the thigh (i.e. screen perpendicular to thigh 
motion in AP plane; figure 3(A)). Placing the phone anteriorly biased AccWalker's ROM 
measurement (figure 3(C)), but did not affect peak thigh flexion timing. ML trunk velocity 
corresponded to 3D motion capture measurement more closely than the ML trunk angle 
(figure 3(D)). 
 



 
Figure 3. Examples of thigh angle and velocity time series recorded from AccWalker (orange 
lines) and motion capture (blue lines). Panels (A) and (B) depict the conditions with proper 
phone placement of the phone on the thigh during the stepping-in-place task and treadmill 
walking, respectively. Panel (C) indicates an anterior shift in the phone's placement on the thigh 
and the corresponding thigh angle and velocity time series during stepping in place to the right of 
the panel. Panel (D) shows the phone placed on the trunk and the corresponding ML angle and 
velocity time series during stepping-in-place. 
 
Table 1 presents the LOA and ICC results for each dependent variable. Results showed that all 
temporal metrics were reliably detected by AccWalker (ICC values  >  0.9), without 
measurement bias. Spatial metrics calculated based on AccWalker were also reliable (ICC 
values  >  0.9), but showed bias in the estimates compared to motion capture. For example, ROM 
was about 2.65° larger according to AccWalker as compared to 3D motion capture. However, the 
effect sizes of these biases were small to medium (Cohen's ranging from 0.15 to 0.39). 
Measurements of trunk ML variability were not reliably detected by the AccWalker compared to 
motion capture as indicated by ICC values  <  0.9. 
 
Effect of anterior shift of phone placement 
 
Shifting the phone anteriorly on the thigh worsened AccWalker thigh movement amplitude 
measurement (figure 3(C)). However, Mean Stride Time, CV Stride Time, Pace Drift, Peak thigh 
SD, and Peak Return Velocity SD remained reliable as indicated by ICC values greater than 0.9 
(table 2). On the other hand, ACF1, Thigh ROM and Peak Lift Velocity SD became unreliable 
and showed greater measurement bias. Most clearly, shifting the phone affected thigh ROM 
estimation by the AccWalker, which was 11.47° smaller than the ROM detected by the motion 
capture, making this measurement not robust to phone misplacement. 
 



Table 1. Thigh and trunk metrics calculated from 3D motion capture and AccWalker during 
stepping in place when the phone was properly placed on the thigh (see figure 3(A)). 

  Unit 

Motion capture AccWalker Bland–Altman LOA  

Mean  SD Mean SD Bias 
Bias p-
value 

Bias 
Effect 
Size SD 

Lower 
95% CI 

Upper 
95% CI 

ICC 
(3,k) 

Temporal metrics 
Mean stride time s 1.14 0.04 1.14 0.04 0.000 0.18 0.00 0.001 −0.001 0.001 1.00 
CV stride time % 2.06 0.32 2.07 0.32 0.01 0.31 −0.04 0.07 −0.11 0.15 1.00 
ACF1 a.u. 0.31 0.16 0.30 0.15 −0.01 0.57 0.04 0.06 −0.13 0.11 0.98 
Pace drift s 0.04 0.02 0.04 0.02 0.00 0.48 0.01 0.00 0.00 0.00 1.00  
Spatial metrics 
Peak thigh SD deg 1.99 0.57 2.11 0.55 0.12 0.00 −0.15 0.08 −0.05 0.28 1.00 
Thigh ROM deg 44.03 8.54 46.63 8.57 2.65 <.001 −0.22 1.36 −0.07 5.37 0.99 
Peak lift vel SD deg/s 11.90 2.95 10.91 2.30 −0.99 0.02 0.27 1.21 −3.41 1.43 0.96 
Peak return vel SD deg/s 12.23 2.69 13.98 3.63 1.76 0.00 −0.39 1.32 −0.88 4.39 0.96  
Trunk 
ML SD deg 1.41 0.43 1.61 0.50 0.20 0.14 −0.30 0.39 −0.57 0.97 0.83 
ML velocity SD deg/s 8.24 2.53 9.88 2.57 1.64 0.03 −0.46 1.93 −2.20 5.48 0.85 
Note. SD—standard deviation, bias—average difference between the 3D motion capture and AccWalker, SD 
LOA—standard deviation of the difference between the 3D motion capture and AccWalker, bias p-value—t-test 
comparison of the AccWalker to motion capture. Effect size was calculated using Cohen's pooled variance formula. 
 
Table 2. Average thigh and trunk metrics calculated from 3D motion capture and AccWalker, 
and the results of Bland–Altman LOA test when the phone was placed more anteriorly on the leg 
(see figure 3(C)). 

 Unit 

Motion capture AccWalker Bland–Altman LOA  

Mean SD Mean SD Bias 
Bias 

p-value 
Bias 

effect size SD 
Lower 
95% CI 

Upper 
95% CI ICC (3,1) 

Temporal metrics 
Mean stride 
time s 1.13 0.04 1.13 0.04 0.000 0.56 −0.002 0.001 −0.001 0.001 1.00 
CV stride time % 1.88 0.30 1.98 0.33 0.10 0.05 −0.23 0.13 −0.16 0.37 0.91 
ACF1 a.u. 0.18 0.14 0.11 0.11 −0.07 0.08 0.37 0.10 −0.26 0.13 0.71 
Pace drift s 0.02 0.01 0.02 0.01 0.00 0.34 0.02 0.00 0.00 0.00 1.00  
Spatial metrics 
Peak thigh SD deg 1.98 0.57 1.91 0.60 −0.08 0.31 0.09 0.21 −0.49 0.33 0.94 
Thigh ROM deg 40.56 6.85 29.09 7.15 −11.47 0.00 1.16 4.68 −20.64 −2.30 0.78 
Peak lift vel SD deg/s 12.52 3.19 10.78 2.53 −1.74 0.01 0.43 1.66 −5.00 1.52 0.83 
Peak return vel 
SD deg/s 11.31 3.49 11.27 4.48 −0.04 0.93 0.01 1.44 −2.86 2.78 0.94 
Note. SD—standard deviation, bias—average difference between the 3D motion capture and AccWalker, SD 
LOA—standard deviation of the difference between the 3D motion capture and AccWalker, SD LOA/SD—ratio of 
the SD LOA to SD of the 3D motion capture (expressed as percentage). 
 
Treadmill walking 
 
AccWalker provided valid measurements of stride time and its CV, ACF1, and drift during 
treadmill walking, with some additional statistically significant biases in the AccWalker 
measurements. The effect sizes of the biases were small, apart from ACF1 (see table I in 
supplementary materials). 
 



 
Figure 4. (A) Experimental conditions, (B) study design, (C) changes in the dependent measures 
for each sensory condition and session. 
 
Table 3. ICC(2,k) and SEM values for each variable and condition. 

  Unit 
ICC(2,k) SEM 
Eyes open No-vision Head shake Eyes open No-vision Head shake 

Temporal metrics 
Mean stride time s 0.80a 0.80 0.81 0.02 0.02 0.03 
CV stride time % 0.77 0.82 0.81a 0.34 0.27 0.31 
ACF1 a.u. 0.49a 0.78 0.44 0.16 0.10 0.15 
Pace drift s 0.23 0.47 0.54 0.02 0.02 0.02  
Spatial metrics 
Peak thigh SD deg 0.82 0.73a 0.89a 0.32 0.46 0.36 
Thigh ROM deg 0.90 0.92 0.94 4.10 3.82 3.23 
Peak lift vel SD deg/s 0.82 0.77a 0.88a 1.39 1.97 1.78 
Peak return vel SD deg/s 0.90 0.85a 0.89a 1.64 2.27 2.23  
Trunk: spatial metrics 
ML SD deg 0.59 0.89 0.94a 0.33 0.17 0.16 
ML velocity SD deg/s 0.64 0.90 0.96a 1.74 0.94 0.86 
aSignifies presence of a practice effect. 
 
Experiment 3: test-retest reliability 
 
The ICC(2,k) and SEM values for all dependent measures are presented in table 3. Mean stride 
time, stride time CV, peak thigh flexion SD, thigh ROM, and thigh velocity maxima had good 
test-retest reliability (ICC  >  0.75) in each of the sensory conditions and Trunk ML SD and 
velocity were reliable in the no-vision and head shake conditions. However, there were practice 
effects for stride time CV in the head shake condition (Cohen's d  =  0.24), for peak thigh SD in 



the no-vision (d  =  0.45) and head shake (d  =  0.39), and for trunk ML Velocity SD in the head 
shake condition (d  =  0.17) as illustrated in figure 4(C). The ICC values for ACF1 and pacing 
drift were generally lower than 0.75, indicating low test-retest reliability of these variables. 
 
Stride time CV was greater in the no-vision and head shake conditions compared to the eye open 
condition (both p's  <  .01; figure 4(C)). Thigh ROM was lower in the no-vision and head shake 
conditions compared to eyes open condition (p  =  .01 and p  <  .001, respectively). Trunk ML 
Velocity SD was greater in the head shake condition compared to no-vision and eyes open 
conditions (both p's  <  .01). 
 
Horizontal range of head motion adopted by participants in the head shake condition was 62.69° 
(SD  =  14.03°) and 61.18° (SD  =  11.81°) in session 1 and 2, respectively, p  =  .23. Peak head 
velocity was 179.50 °s–1 (43.31) and 177.78 ° s−1 (35.58) in session 1 and 2, p  =  .30. However, 
variability of peak head velocity decreased from session 1 (M  =  22.43, SD  =  5.97) to session 2 
(19.82, SD  =  4.66), p  <  0.01. 
 
Discussion 
 
Experiment 1: Android orientation sensor validation 
 
Experiment 1 showed that the smartphone orientation sensor provides an accurate measurement 
of pendulum angle kinematics in comparison to research-grade motion capture system when 
running on Android OS 4.4.4, but not on 5.1. When running 4.4.4, the angle measurements 
provided by the phone differed from motion capture by only 0.35° to 1.0°, which is consistent 
with previously reported values for inertial measurement units (Umek and Kos 2016). However, 
using the same app on Android 5.1 led to a substantial drift in the estimated angle in early 
segment of the trial. 
 
This result suggests that the sensor fusion algorithm implemented by InvenSense (San Jose, CA) 
on a Motorola Moto X2 running on Android 4.4.4 is of sufficient quality for orientation 
measurement of human motion. The phone may have performed sub-optimally on Android 5.1 
because the MPU-6515 sensor (the accelerometer and gyroscope unit) has internal fusion 
algorithms that were specifically optimized for inertial orientation tracking in smartphones 
running Android 4.4.4 as described in manufacturer's specifications for the sensor (six-axis 
MEMS MotionTracking Device, 2017). The degree to which other smartphones would be 
susceptible to the same issues with OS upgrades needs to be tested for each phone independently 
prior to using them for human motion analysis applications. Similar issues were identified in 
different versions of iPad for reaction time measurements (Schatz et al 2015). 
 
Two other issues became apparent. First, the phone must be oriented parallel to the plane of 
motion to detect pendulum angle accurately (i.e. phone's screen should be perpendicular to the 
plane of pendulum oscillation). As we describe in Experiment 2, tilting the phone with respect to 
the dominant plane of motion reduces accuracy of angle amplitude estimation. Second, magnetic 
field sources affect orientation measurements and prevent the Rotation Vector sensor from 
initiating. In our experience, the sensor stopped working when the strength of the field was 



greater than 130 µT. The solution is to remove the source of magnetic field and re-calibrate the 
phone by performing figure-8 calibration. 
 
Information provided in this experiment is relevant for understanding the limitations of internal 
Android functions for orientation estimation prior to using smartphones to quantify human 
movement kinematics in the field setting. Change in the Android OS versions influences the 
quality of measurement provided by the sensors. It is impossible to know a priori how changes 
in the sensor components and/or software may affect the quality of orientation detection in 
commercial smartphones. The simple pendulum setup can be used in future validation studies of 
smartphone orientation detection algorithms. Such validation is crucial when adopting 
commercial smartphones for clinical measurement of balance function. 
 
Experiment 2: concurrent validity of AccWalker and 3D motion capture during stepping-in-place 
and treadmill walking 
 
Experiment 2 showed that thigh orientation detection implemented in the AccWalker app 
running on Android 4.4.4 provides valid measures of temporal and spatial characteristics of thigh 
movement during stepping-in-place compared to laboratory-grade motion capture when the 
phone is positioned perpendicularly to the plane of hip flexion. Mean stride time and its 
variability (CV), Pace Drift, Peak Thigh SD, and Peak Return Velocity SD during leg return to 
stance were robust to shifts of phone position on the thigh. Stride time and its variability were 
also reliably detected by the AccWalker during treadmill walking. Measurements of ML trunk 
orientation however were not reliably detected by the phone compared to motion capture, 
suggesting that they measure slightly different aspects of trunk movement. The AccWalker 
measured the ML tilt of the upper trunk because the phone was placed on that segment of the 
trunk. For the motion capture, the definition of ML trunk tilt was based on the angle between the 
vector connecting lumbar and cervical markers and the vertical—such measure is less sensitive 
to upper trunk movement than the AccWalker, which may explain lower convergence between 
the for characterizing trunk movement. 
 
Experiment 3: test-retest reliability 
 
Results of Experiment 3 indicate that all AccWalker measures other than lag 1 autocorrelation 
(ACF1) and drift of stride time pacing had good test-retest reliability on the dynamic balance 
test. Good reliability of stride time CV and kinematic variability metrics (Peak Thigh SD, thigh 
ROM, SD of thigh velocity) was observed for group comparisons as indicated by ICC values 
greater than 0.75 in all sensory conditions of the stepping-in-place protocol. However, these 
metrics (except thigh ROM) are also subject to practice effects primarily in the NV and HS 
conditions, second session being generally less variable. 
 
Practice effects are problematic for screening neuromotor sequelae of head trauma because they 
add an additional factor affecting motor variability above and beyond any changes in the 
neuromotor status due to the trauma, making it difficult to interpret minimum detectable change 
scores from the baseline. However, other balance tests such as the SOT and BESS have also been 
reported to have practice effects as well (McLeod et al 2004, Wrisley et al 2007). The effect 
sizes of the practice effects in the in eyes closed and head shake conditions of stepping in place 



test were smaller compared to the previously reported practice-related changes of the SOT 
composite scores (SOT Cohen's d  =  1 compared to a maximum d  =  0.44 in our study) 
(Wrisley et al 2007). The ICC values were higher for our protocol than for the SOT scores in the 
individual conditions and composite scores Wrisley et al(2007). Total BESS scores also decrease 
over repeated administrations with an effect size d  =  0.74, but show high inter-test reliability 
(McLeod et al 2004). 
 
Despite the presence of practice effects, our dynamic balance task may be more taxing for 
individuals after head trauma than static balance testing and their performance may still show 
deterioration regardless of any practice effects. The next step would be to perform discriminant 
validity study to test the hypothesis that this dynamic balance protocol successfully detects 
variability alterations after head trauma. In our previous work using repeated neuromotor 
assessments with a similar smartphone app and dynamic balance protocol, we could successfully 
identify stride time CV changes after sub-concussive head trauma due to low-level blast 
exposure (Rhea et al 2017). 
 
Differences between the sensory conditions followed the expected pattern, as the visual and 
vestibular perturbations generally increased movement variability (Wuehr et al 2013). The 
reduction of the ROM in the no-vision and head shake conditions is consistent with previous 
studies documenting decreased gait velocity while walking without visual input (Hallemans et 
al 2009) and may be related to an attempt to reduce the risk of falling by lifting the foot less. 
Trunk velocity was highest in the head shake condition, which may be related to the increased 
trunk movement and to the destabilizing vestibular effect on the function of the horizontal semi-
circular canals. The VOR was activated by the head movements because peak head velocity was 
greater than the minimally required peak velocity to activate the vestibular-ocular reflex (40 ° 
s−1) (Peterka et al 1990). 
 
Conclusion 
 
This study introduces a new portable field-based protocol to test dynamic balance function based 
on a stepping-in-place task. We performed validity and reliability testing of the orientation 
sensor on an Android smartphone placed on the thigh and upper trunk compared to motion 
capture. Experiment 1 identified differences in orientation detection between different versions 
of Android OS and established accuracy of pendulum angle measurement using the phone. 
Experiment 2 showed that all temporal and spatial variability are reliable when the phone is 
placed perpendicular to the plane of thigh flexion and identified variables that are robust to 
phone misplacement. Experiment 3 additionally identified several variables that are reliable over 
time. Overall, the results indicate that mean stride time and its variability (CV), Peak Thigh SD, 
Thigh ROM, and Peak Return Velocity calculated based on the smartphone orientation sensor 
could be reliably used to assess characteristics of thigh movement during stepping-in-place. A 
limitation of the data presented here is that the experiment was laboratory-based in a controlled 
environment. However, the motivation for developing an objective dynamic balance test with a 
smartphone app is the potential for portable assessment in many different environments, such as 
sideline assessment. Prior to adoption to help with clinical care, a series of 'real-world' 
experiments with our smartphone app and dynamic balance protocol should be carried out, 
including examining how different surfaces, footwear, and worn sports equipment influences the 



variables presented in this paper. Nevertheless, this manuscript is the necessary first step toward 
more ecologically valid assessment by describing the validity and reliability of our app and 
dynamic balance protocol in a controlled setting. Once normative data for a variety of 
populations/environments are developed, the app could be modified to provide the administrator 
with a simple red/yellow/green light indicating whether the athlete is outside/borderline/within 
normative performance on the dynamic balance test, providing a fast screening method to assist 
in clinical care. Such a device would be useful to quantify dynamic balance in a variety of 
populations with neurological dysfunction, such as chronic ankle instability, older adults, and 
populations with sub-concussive or concussive head trauma. 
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