
Follow the leader: Visual control of speed in pedestrian following 

By: Kevin W. Rio, Christopher K. Rhea, William H. Warren 

 Rio, K., Rhea, C.K., & Warren, W.H. (2014). Follow the leader: Visual control of speed in 
pedestrian following. Journal of Vision, 14(2), 4, 1-17. doi: 10.1167/14.2.4 

Made available courtesy of the Association for Research in Vision and Ophthalmology 
(ARVO): http://www.dx.doi.org/10.1167/14.2.4  
 
***© Association for Research in Vision and Ophthalmology (ARVO). Reprinted with 
permission. No further reproduction is authorized without written permission from ARVO. 
This version of the document is not the version of record. Figures and/or pictures may be 
missing from this format of the document. *** 

Abstract: 

When people walk together in groups or crowds they must coordinate their walking speed and 
direction with their neighbors. This paper investigates how a pedestrian visually controls speed 
when following a leader on a straight path (one-dimensional following). To model the behavioral 
dynamics of following, participants in Experiment 1 walked behind a confederate who randomly 
increased or decreased his walking speed. The data were used to test six models of speed control 
that used the leader's speed, distance, or combinations of both to regulate the follower's 
acceleration. To test the optical information used to control speed, participants in Experiment 2 
walked behind a virtual moving pole, whose visual angle and binocular disparity were 
independently manipulated. The results indicate the followers match the speed of the leader, and 
do so using a visual control law that primarily nulls the leader's optical expansion (change in 
visual angle), with little influence of change in disparity. This finding has direct applications to 
understanding the coordination among neighbors in human crowds. 

Keywords: visual control | locomotion | pedestrian model | crowd dynamics  

Article: 

Introduction 

Collective locomotion is observed throughout the animal kingdom in the form of flocks, herds, 
and schools. Similarly, humans often walk together in small groups and large crowds. These 
natural systems exhibit orderly and coherent patterns of motion that are believed to be self-
organized (Couzin & Krause, 2003; Helbing, Molnár, Farkas, & Bolay, 2001; Vicsek & 
Zafeiris, 2012). On this account, global patterns of behavior emerge from the dynamics of local 
interactions between individuals. The principle challenge is to determine how individuals interact 
locally with their neighbors and the environment in order to guide behavior. 
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While many theoretical models of such local interactions have been proposed (Czirók & 
Vicsek, 2000; Helbing & Molnár, 1995; Reynolds, 1987), they are often only weakly constrained 
by behavioral evidence (Sumpter, Mann, & Perna, 2012). In some cases, observational or 
experimental data have been used to fit the parameters of a candidate model (Huth & 
Wissel, 1994; Johansson, Helbing, & Shukla, 2007; Lemercier et al., 2012; Moussaïd et 
al., 2009) or to test competing models (Fajen & Warren, 2007; Ondřej, Pettré, Olivier, & 
Donikian, 2010). Recently, there have been calls for developing pedestrian models that are not 
only empirically grounded, but also cognitively plausible, in that they incorporate the perceptual 
abilities of individuals (Goldstone & Gureckis, 2009; Moussaïd, Helbing, & Theraulaz, 2011; 
Ondřej et al., 2010; Warren & Fajen, 2004). 

The steering dynamics model proposed by Fajen and Warren (2003, 2007; Warren & 
Fajen, 2008) is an empirically grounded, visually based model of human locomotor behavior. 
Based on a series of experiments on human walking in virtual reality, it consists of a set of 
ordinary differential equations that define attractors and repellers in the direction of locomotion 
(heading), and successfully describe how an individual steers to stationary goals, avoids 
stationary obstacles, intercepts moving targets, and avoids moving obstacles. These four 
components were intended as building blocks of a full pedestrian model that would characterize 
locomotion in complex settings and crowds. In a preliminary study, Bonneaud, Rio, Chevaillier, 
and Warren (2012) analyzed the trajectories of four pedestrians walking to a common goal, and, 
not surprisingly, found that they could not be reproduced by these four components alone. This 
finding justifies the pursuit of additional components to capture the complexity of collective 
behavior in human crowds. 

A likely candidate is a velocity coupling, whereby individuals coordinate their speed and align 
their heading direction with their neighbors. Theoretical studies suggest these components may 
be fundamental in producing collective patterns of motion, for self-propelled particles that align 
their directions and travel at the same speed can form stable swarms in the absence of other 
forces (Vicsek, Czirók, Ben-Jacob, Cohen, & Shochet, 1995). The simplest case of speed and 
direction coordination, which is quite common in everyday locomotion, is following another 
pedestrian. In this article we investigate speed control for following in dyads, as a bridge to 
modeling the local coupling between neighbors in a crowd. 

Following has been studied extensively in the context of vehicular traffic since the 1950s (for a 
review, see Brackstone & McDonald, 1999), including work on the optical information used by 
drivers (Anderson & Sauer, 2007; Lee & Jones, 1967; Van Winsum, 1999). While there are 
differences between pedestrian and vehicular locomotion (namely, greater speeds and a greater 
range of speeds in motor vehicles), this rich literature can be brought to bear on investigations of 
pedestrian following. Many of the models described in the next section and tested in the present 
experiments were directly inspired by research on car-following. Recently, pedestrian following 
has been studied in participants walking the perimeter of a circular arena (Jelić, Appert-Rolland, 
Lemercier, & Pettré, 2012; Lemercier et al.,2012). Here, our goal is to understand both the 



behavioral dynamics and visual control of one-dimensional following, when the leader and 
follower walk on a straight path, with the aim of deriving a speed control law that may generalize 
to pedestrian groups. 

Speed control in following 

A complete characterization of locomotor behavior includes two aspects: thebehavioral 
dynamics, a physical description of the observed behavior in terms of physical variables (i.e., 
what agents are doing), and the control laws that characterize how the behavior is regulated by 
perceptual information (i.e., how agents do it). This dual modeling approach has two advantages. 
First, modeling the behavioral dynamics simplifies the problem of identifying a control law, 
because a physical description of the behavior constrains the possible optical variables that might 
govern it. Second, the physical description is more general, because the same behavior may be 
governed by different information in different contexts. Here we introduce several candidate 
behavioral models of following and several hypotheses about the information used for visual 
control. 

Behavioral dynamics 

The aim of behavioral dynamics is to formally model the behavior of the agent–environment 
system in terms of physical variables and how they change over time, which can be thought of as 
a behavioral strategy for a given task. There are a number of hypothetical strategies that could, in 
principle, be used to coordinate speed in following. 

Speed 

One simple strategy that has been proposed in car-following is for the follower to match the 
speed of the leader (Lee & Jones, 1967). The follower should accelerate if they are traveling 
slower than the leader and decelerate if they are traveling faster than the leader. Formally, the 
follower's acceleration is given by:

 

where ẋl is the leader's speed, ẋf is the follower's speed, and c is a free parameter. This can be 
equivalently stated in terms of the relative speed Δẋ, which is the difference in speed between the 
leader and follower, or the speed of the leader in the follower's reference frame:

 

Thus, acceleration goes to zero as the follower's speed approaches the leader's speed; that is, as 
the relative speed between them goes to zero. One advantage of this speed-matching strategy is 
that it does not assume a fixed distance between leader and follower; this is an advantage both 



for the follower (who does not need to store a reference value) and for the model (which does not 
require an additional parameter). 

Distance 

Another simple strategy is for the follower to maintain a fixed distance behind the leader, as 
proposed for car-following by Kometani and Sasaki (1958). When the distance between leader 
and follower is above a reference value, the follower should accelerate; when it is below that 
value, the follower should decelerate. Formally, the follower's acceleration ẍf at each time step is 
given by: 

 

where Δx is the current distance (difference in position) between the leader and follower, Δx0 is 
the fixed reference distance, and c is a free parameter. Thus, the follower's acceleration goes to 
zero as the current distance approaches the reference distance. From a modeling perspective, the 
reference distance might be chosen in several ways: it can be derived from observational data, 
such as the initial distance between leader and follower (we refer to this as the initial distance 
model), or it can be a free parameter that represents the “preferred” distance (the free parameter 
distance model). 

Velocity-based distance 

A related strategy involves maintaining a distance that depends on the current velocity, rather 
than the constant distance described above. This strategy was proposed in the car-following 
literature by Pipes (1953) and Herman, Montroll, Potts, and Rothery (1959), and is the basis for 
the “one-car length for every 10 mph” rule of thumb taught in driving schools. It can 
beformalized by the expression: 

 

where ẋf is the follower's speed, Δx is the current distance between leader and follower, and α, β, 
and c are free parameters. Acceleration goes to zero as the distance between leader and follower 
approaches the desired velocity-based distance determined by α and β. 

Time-to-contact 

The notion of “time to contact” (or “time to collision”) has proven fruitful in research on the 
visual control of braking (e.g., Lee, 1976). Time to contact, TC, provides an estimate of the time 
before one collides with an object (or vice versa), given the distance to the object and one's 
speed, assuming a constant velocity. For following, it provides an estimate of the time before a 



follower collides with a leader, given the distance between them, Δx, and their relative speed, Δẋ:

 

A negative value of TC specifies that the follower will collide with the leader at some time in the 
future, and thus is gaining ground; a positive value implies that the leader is getting away from 
the follower and, if both maintain their current speeds, the two will not collide. Thus, followers 
might maintain a value of TC that is neither positive nor negative, to avoid either colliding with 
the leader or letting him get away. If Δx is zero then TC will be zero, but that means a collision 
has occurred. Alternatively, if Δẋ is zero then TC will be undefined, but this applies regardless of 
the value of Δx and is thus a reformulation of the speed-matching strategy, which aims to bring 
Δẋ to zero (Equation 2). Therefore, a time to contact strategy will not be considered further, but 
the next strategy is based upon its inverse, the “immanence” of collision. 

Ratio 

The Gazis-Herman-Rothery (GHR) model (Gazis, Herman, & Rothery, 1961) is “perhaps the 
most well-known model” of car-following, according to Brackstone and McDonald (1999), Such 
a model was used by Lemercier et al. (2012) in their study of pedestrians walking the perimeter 
of a circular arena. We tested a simplified version, based on the inverse of time-to-contact, that 
we call the ratio model: 

 

where ẋf is the follower's speed, Δẋ and Δx are the relative speed and distance, respectively, 
between leader and follower, and c, M, and L are free parameters. Like the speed-matching 
strategy, acceleration will go to zero as the relative speed between leader and follower goes to 
zero, but it is modulated by both the follower's current speed and the relative distance between 
leader and follower. 

Linear 

A linear combination of the speed and distance models was proposed for car-following by Helly 
(1959). Again we use a simplified version, which we call the linear model, given by:

 

where Δẋ and Δx are the relative speed and distance, respectively, between leader and 
follower, ẋf is the follower's speed, and c1, c2, α, β, and c are free parameters. In general, 



acceleration goes to zero when the relative speed is zero (i.e., speed is matched), and the 
difference between the current distance and the velocity-based reference distance is zero (i.e., 
distance is maintained). 

Experiment 1 was designed to test these six dynamical models of following behavior. 

Optical information 

The behavioral models described above are written in terms of physical variables, like speed and 
distance. Of course, observers do not have direct access to these variables, but are coupled to the 
physical environment by optical information. Followers could potentially use a number of 
sources of information about the leader's distance, including motion parallax and declination 
angle; here we focus on visual angle and binocular disparity (Gray & Regan, 1997; Heuer, 1993; 
Regan & Beverley, 1979; Rushton & Wann, 1999), because they permit direct online control, 
without an intermediate computation of distance or speed. Moreover, there is evidence from the 
driving literature that visual angle is sufficient to regulate car-following (Anderson & 
Sauer, 2007). 

Visual angle 

The leader's visual angle, α, is a function of the distance between leader and follower, Δx, and 
the leader's size, w. Assuming the latter is fixed, visual angle depends only on the distance 
between leader and follower, so maintaining a constant distance behind the leader (the distance 
strategy) can be achieved by maintaining a constant visual angle of the leader. The change in 
visual angle, or optical expansion, α̇, is a function of the relative speed and distance between the 
leader and follower, but a constant relative speed (the speed-matching strategy) can be achieved 
by cancelling changes in the leader's visual angle (i.e., nulling optical expansion). Anderson and 
Sauer (2007) proposed that drivers use a weighted sum of these two variables to follow a lead 
vehicle, which is similar to the linear strategy (Equation 7). 

Binocular disparity and vergence 

These behavioral strategies might also be based on binocular disparity and vergence. Absolute 
(or retinal) disparity refers to the difference between the left and right retinal locations of the 
projected images of a point in the scene, and is related to the distance of the point (Neri, Bridge, 
& Heeger, 2004). However, the absolute disparities of points in a static 3D scene depend on the 
vergence angle of the two eyes, so the retinal disparities vary with the fixation distance. 
Vergence itself provides information about the fixation distance up to several meters (Cutting & 
Vishton, 1995), and is used to scale perceived distance from the disparities. During following, 
we will assume that the follower fixates the leader directly in front of them. A change in the 
leader's distance produces a corresponding change in the leader's disparity, which elicits a rapid 
adjustment in vergence angle to refixate the leader (Busettini, Fitzgibbon, & Miles, 2001). Thus, 



vergence indicates leader distance, and the combined change in disparity and vergence specify a 
change in leader distance (relative speed). 

Alternatively, followers might use relative disparity, which is the difference between absolute 
disparities of two points at different distances. This requires a stationary visual surround, so that 
relative disparity is defined between the leader and the background (Regan, Erkelens, & 
Collewijn, 1986). However, during following, the depth difference between the leader and the 
background is necessarily large (or else the former would run into the latter); this creates a large 
disparity difference that exceeds Panum's fusional area, making relative disparity difficult to 
detect. It is thus likely that absolute disparity and vergence are more useful to control following 
than relative disparity. In sum, followers could maintain a constant distance by holding the 
disparity and vergence of the leader constant, and maintain relative speed at zero by nulling 
changes in disparity and vergence. For convenience, we will refer to this combination of absolute 
disparity and vergence as “disparity.” 

There is some reason to suspect that disparity might be more effective in pedestrian following 
than car-following. It has been reported that optical expansion plays a greater role with large 
objects like cars (Anderson & Sauer,2007), which subsume large visual angles, while disparity 
plays a greater role small objects like cricket-balls (Regan & Beverley, 1979). The human body 
is somewhere in between cars and cricket-balls, and typically subsumes intermediate visual 
angles during following, so either variable might dominate, or they could be combined. Rushton 
and Wann (1999) reported that subjects used both optical expansion and binocular disparity in a 
one-handed catching task, relying on whichever cue specified the earliest time of arrival. 

When the leader speeds up relative to the follower, the leader's uncrossed disparity increases 
(eliciting a decrease in vergence angle) and its visual angle decreases (optical contraction), and 
vice versa when the leader slows down. These variables are thus normally coupled, but they can 
be dissociated in virtual reality. We manipulated disparity and visual angle independently by 
systematically expanding or shrinking a virtual lead object as it moved in depth relative to the 
walking participant. If followers rely on only one of these optical variables, they should speed up 
when it specifies an increase in leader speed (and vice versa), but they should be unaffected by 
changes in the other variable. On the other hand, if followers rely on both variables, their 
behavior should be sensitive to changes in both. 

In sum, there are several candidate models of following behavior, and several hypotheses about 
the optical information used to control that behavior. Experiment 1 was designed to test the six 
following models, including (a) initial distance, (b) free parameter distance, (c) velocity-based 
distance, (d) speed, (e) ratio of speed and distance, and (f) linear combination of speed and 
distance. 



Experiment 2 was then designed to test whether the visual control law is predominantly based on 
(a) change in visual angle, (b) change in binocular disparity and vergence, or (c) some 
combination of the two. 

Experiment 1: Behavioral dynamics of following 

Experiment 1 investigated the behavioral dynamics of following, with the aim of deriving a 
physical model of following behavior. Data were collected from leader–follower dyads in which 
the leader was a confederate, and follower acceleration was simulated using six candidate 
models. 

Methods 

Participants 

Ten undergraduate and graduate students, six female and four male, participated as followers 
in Experiment 1. None reported having any visual or motor impairment. They were paid for their 
participation. The study was conducted in accordance with the Declaration of Helsinki. 

Apparatus 

The experiment was conducted in the Virtual Environment Navigation Laboratory (VENLab) at 
Brown University. Leader and follower walked in a 12 × 12 m room, while wearing head-
trackers affixed to bicycle helmets. Their head position and orientation were recorded at a 
sampling rate of 60 Hz by a hybrid inertial-ultrasonic tracking system (IS-900, Intersense, 
Billerica, MA). Note that virtual displays were not present in this experiment. 

Procedure 

A confederate acted as the “leader,” and the participant acted as the “follower.” The participant 
was instructed to follow the leader at a constant distance. At the beginning of each trial, they 
positioned themselves on marks on the floor with an initial distance of either 1 m or 4 m. To 
initiate each trial, an experimenter gave a verbal “go” command to both walkers, and the leader 
began walking at a self-selected comfortable speed in a straight line. After a random number of 
steps (two, three, or four steps), the leader would change speed (increase, decrease, or remain 
constant) for three steps, and then return to his initial speed. The leader read the number of steps 
and speed change for each trial from a set of index cards they carried with them. Conditions were 
randomized before the experiment and presented in that order. 

Design 

Experiment 1 had a 2 × 3 × 3 (initial distance × speed change × steps) factorial design, with three 
trials per condition, for a total of 54 trials per participant. All factors were within-subject. 

Data analysis 



The time series of the leader's and the follower's head position in three dimensions were 
recorded, but only data in the horizontal x,y plane were analyzed. Each time series was filtered, 
using a forward and backward fourth-order low-pass Butterworth filter with a cutoff frequency 
of 1 Hz, to reduce error due to the position tracker and attenuate anterior–posterior accelerations 
due to the step cycle. To eliminate edge effects from filtering at the end of the trial (endpoint 
error), the position time series were extended by 2 s using linear extrapolation based on the last 
0.5 s of data (Howarth & Callaghan, 2009; Vint & Hinrichs, 1996). The extrapolated data were 
only used to extend the time series during filtering, and were not used for any subsequent 
analysis. The filtered position data were differentiated to produce a time series of speed, and 
differentiated again, to produce a time series of acceleration. Due to tracking errors, 78 trials 
(14%) were excluded from further analysis. 

Model fitting 

The first 1.5 s of each time series was truncated to eliminate the large initial acceleration 
associated with the stand-to-walk transition. Leader and follower accelerations were highly 
correlated during this transient, likely due to the simultaneous “go” command rather than the 
visual coupling. The overall pattern of results is similar with or without truncation. 

To compare the six hypothetical models, each was fit to all time series of follower acceleration. 
Each trial was simulated by taking as inputs the time series of leader speed (for the speed, 
velocity-based distance, ratio, and linear models), the time series of leader position (for the initial 
distance, free parameter distance, velocity-based distance, ratio, and linear models), and/or the 
initial distance between leader and follower (for the initial distance, velocity-based distance, 
ratio, and linear models). Performance was evaluated on each trial by computing the correlation 
coefficient (Pearson's r) between the simulated follower acceleration produced by each model 
with the observed follower acceleration. The Broyden–Fletcher–Goldfarb–Shanno 
(Shanno, 1985) method for numerical optimization was used to find the set of parameter values 
that maximized the mean value of r for each model across all trials using a least-squares 
criterion. The same parameter values were used for all participants to avoid overfitting and to 
yield a model that generalizes to novel (untested) pedestrians. For statistical comparisons, 
mean rvalues for each participant were computed using Fisher's z′ transform to correct for 
nonnormality (Martin & Bateson, 1986); the mean z′ values were transformed back into the 
mean r values reported below. The root-mean-squared-error (RMSE) between the two time 
series was also analyzed. 

Results 

Human data 

The untruncated time series of leader and follower speed, and leader and follower acceleration, 
are shown for a representative trial in Figure 1. Notice that in this trial the leader first accelerates 



quickly (to 1.5 m/s), then decelerates briefly (to 1.1 m/s), and finally returns to a roughly 
constant speed (1.5 m/s). 

 

Figure 1 (a) Time series of leader and follower speeds for a representative trial (participant 3, 
trial 54). (b) Time series of leader and follower accelerations for the same trial. 

Figure 2 presents the time series of leader speed for every trial, with the analyzed portion in blue. 
Note that blue traces show three distinct clusters, which correspond to trials in which the leader 
increased, decreased, or remained at the same speed, indicating that the confederate successfully 
produced distinct patterns of velocity change. 

 

Figure 2. Time series of leader speed for all trials. Truncated time series (blue) begins 1.5 s after 
trial onset, and does not include initial acceleration from standstill (gray). 

As a measure of the temporal coordination between follower and leader, we computed the cross-
correlation between the two time series of acceleration for each trial, varying the time delay from 



−2000 ms to +2000 ms (positive delays imply that the follower time series lags behind the leader 
time series). The mean optimal delay in speed-up and slow-down trials did not differ, t(303) = 
6.11, p > 0.05, so they were combined; histograms for the resulting speed change condition and 
the constant speed condition appear in Figure 3. 

 

Figure 3. Histograms of (a) cross-correlation values and (b) optimal delays between leader and 
follower data, for speed change (blue) and constant speed (grey) trials. 

The cross-correlations were quite high in the speed change condition (mean r = 0.68, median r = 
0.67) and slightly lower in the constant speed condition (mean r= 0.53, median r = 0.50), 
indicating a strong temporal coupling between follower and leader. The mean optimal delay in 
the speed change condition (M = 420 ms,Mdn = 417 ms, SD = 373 ms) was significantly greater 
than that in the constant speed condition (M = 25 ms, Mdn = 0 ms, SD = 530 ms), t(435) = 
8.87, p < 0.001, which in turn was not significantly different from zero, t(131) = 0.557. By 
design, there was little variation in leader speed during constant speed trials, yielding lower 
correlations and poorer estimates of the delay. Therefore, we take the mean optimal delay of 420 
ms in the speed change condition as an estimate of the follower's visual–motor delay. This value 
is similar to estimates from other locomotor tasks (e.g., Benguigui, Baurés, & Le Runigo, 2008; 
Cinelli & Warren,2012; Le Runigo, Benguigui, & Bardy, 2010). In sum, the leader produced 
marked changes in speed, and the follower responded with closely coordinated speed changes 
after a short delay. 

Model evaluation 

Figure 4 presents a plot of the simulated and observed follower acceleration (both in red), 
together with the observed leader acceleration (in blue) for each of the six models for the same 
sample trial. The main results for each model are listed in Table 1. 



 

Figure 4. Time series of leader (blue) and follower (red) acceleration for a representative trial 
(participant 3, trial 54), compared with the predicted acceleration (dashed red) for each of the six 
models using the best-fit parameters. RMSE and r values indicate goodness of fit between each 
model and follower data. 

Table 1 Mean correlation coefficients (r), root mean squared error, and parameters for the six 
behavioral models, for key models with added damping and with delay, and for the optical 
expansion control law. R values are from the inverse of Fisher's z′ transform. Duncan grouping 
indicates significance at p = 0.05; models with the same letter are not significantly different. 

Model Meanr Mean RMSE 
(m/s2) 

Number of 
parameters 

Parameter 
values 

Duncan 
grouping 

Speed-matching 0.67 0.21 1 c = 1.87 a, d 

Initial distance 0.37 0.61 1 c = 3.49 b, e 

Free parameter 
distance 

0.40 0.82 3 c = 2.69 b 

Δx0,1m = 1.32 

Δx0,4m = 3.93 

Velocity-based 
distance 

0.52 0.80 3 c = 2.44 c 

α = 0.35 

β = 0.75 

Ratio 0.67 0.21 3 c = 2.09 a 



M = 0.004 

L = 0.16 

Linear 0.67 0.21 4 c1 = 2.11 a 

c2 = 0.02 

α = 23.31 

β = −16.91 

Speed + damping 0.68 0.21 2 c = 1.93 d 

d = −0.15 

Distance + damping 0.37 0.66 2 c = 3.35 e 

d = −0.07 

Speed + delay 0.68 0.21 1 c = 1.83 d 

Optical expansion 0.62 0.23 1 c = 13.00 f 

 

Statistical tests were performed on the participant means of the z-transformed rvalues for each 
model, using the overall best fit parameters for that model. A one-way repeated measures 
analysis of variance showed significant differences between the models, F(5,45) = 156.96, p < 
0.001. Post hoc comparisons for all pairwise combinations were conducted using Bonferroni 
adjusted alpha levels of 0.0033 (0.05/15). Results indicated that the mean r values for the speed 
(M = 0.672, SD = 0.111), ratio (M = 0.673, SD = 0.111), and linear (M = 0.673, SD = 0.110) 
models were not significantly different from one another, p > 0.05, and were all significantly 
greater than those for the initial distance (M = 0.372, SD = 0.080), free parameter distance (M = 
0.398, SD = 0.069), and velocity-based distance (M = 0.518, SD = 0.081) models, p < 0.001. 
Mean r was significantly greater for the velocity-based distance model than the initial distance 
and free parameter distance models (p < 0.01), which did not differ from one another (p = 1.00). 
Thus the follower data were fit significantly more closely by models that contain a relative speed 
term than by the distance-based models. 

We note that the correlations between the time series of speed are generally higher than those for 
acceleration, but reveal a similar pattern. When using the same best-fit parameter values, the 
mean r values are 0.87, 0.87, 0.87, 0.56, 0.47, and 0.45, for the speed, ratio, linear, initial 
distance, free parameter distance, and velocity-based distance models, respectively. 

A similar pattern of results holds for statistical tests on RMSE in acceleration, again using the 
same parameters (see Table 1). A one-way repeated measures analysis of variance showed 



significant differences in mean RMSE between the models, F(5, 45) = 164.16, p < 0.001. 
Bonferroni-adjusted post hoc comparisons indicated that the mean RMSE values for the speed 
(M = 0.210 m/s2, SD = 0.055 m/s2), ratio (M = 0.210 m/s2, SD = 0.054 m/s2), and linear (M = 
0.212 m/s2, SD = 0.054 m/s2) models were not significantly different from one another, p = 1.00, 
but were all significantly lower than those for the initial distance (M = 0.611 m/s2, SD = 0.092 
m/s2), free parameter distance (M = 0.825 m/s2, SD = 0.195 m/s2), and velocity-based distance 
(M = 0.79 8 m/s2, SD = 0.086 m/s2) models, p < 0.001. Mean RMSE was significantly lower for 
the initial distance model than the free parameter and velocity-based distance models (p < 0.01), 
but they did not significantly differ from one another, p = 1.00. 

In sum, by all of these measures, following behavior was best described by the simple speed-
matching model; the ratio and linear models (which also contain a relative speed term) do not 
improve upon it, despite having more free parameters (Table 1). 

Damping 

Many models of human locomotor behavior (Fajen & Warren, 2003, 2007; Garcia, Kuo, Peattie, 
Wang, & Full, 2000) include a damping term, which reflects resistance to change and acts to 
reduce oscillations. However, damping is often absent from models of following, both in cars 
(Anderson & Sauer, 2007; Gazis, Herman, & Rothery, 1961; Helly, 1959; Lee & Jones, 1967) 
and in pedestrians (Lemercier et al., 2012). 

We tested whether adding damping to the speed and initial distance models would better match 
the human data by modifying Equations 1 and 3 to include a term inversely proportional to the 
follower's speed, with an additional free parameter d:

 

Mean r was slightly higher for the speed-matching model with damping (M = 0.678, SD = 
0.106, c = 1.93, d = −0.15) than without (M = 0.672, SD = 0.111, c= 1.87), but this difference 
was not significant, t(9) = 2.14, p > 0.05 (paired sample t test). Likewise, mean r was slightly but 
not significantly greater for the initial distance model with damping (M = 0.374, SD = 0.081, c = 
3.35, d = −0.068) than without (M = 0.372, SD = 0.080, c = 3.49), but not significantly, t(9) = 
1.28, p > 0.05. Furthermore, the best fit for parameter d was very near zero. Taken together, 
these results indicate that adding a damping term does not improve performance over the simpler 
speed and initial distance models. 

Visual–motor delay 



By definition, following involves a unidirectional coupling, because the follower is outside the 
leader's field of view; thus, followers respond to leaders with a visual–motor delay of about 420 
ms, but not vice versa. At first glance, this result suggests that an explicit delay term should be 
added to the speed-matching model (Equation 2). Such terms are found in many models of 
following (e.g., Chandler, Herman, & Montroll, 1958; Lemercier et al., 2012), but not all (e.g., 
Anderson & Sauer, 2007). At present, Equation 4 uses the difference in speed between leader 
and follower at time t to govern the follower's acceleration at the same instant t. But 
parameter c in Equations 1 and 2 modulates the follower's rate of response to a given speed 
difference, implicitly introducing delay into the model. To analyze the empirical adequacy of this 
solution, we computed the cross-correlation between time series of follower acceleration for the 
model and the data on each trial As shown in Figure 5, for both speed change (M = 71 ms,Mdn = 
0 ms, SD = 217 ms) and no speed change conditions (M = −0.45 ms, Mdn= 0 ms, SD = 247 ms), 
the optimal delays are sharply peaked around zero, indicating that the speed-matching model 
implicitly accounts for visual–motor delay. 

 

Figure 5. Histogram of optimal delays from the cross-correlation of follower data and follower 
model, for (a) speed change trials and (b) constant speed trials. 

To determine whether performance would be improved with an explicit delay term, we added a 
constant visual–motor delay to the speed-matching model. We modified Equation 1 so that the 
follower's acceleration at time t is a function of the speed difference at a previous time in the 
past, t – td, where td = 420 ms:

 

As before, we fit Equation 8 using numerical optimization to maximize the mean value 
of r across all trials. A paired-sample t test revealed that this model (M = 0.633, SD = 0.101, c = 
1.52, td = 301 ms) failed to perform as well as the simpler model without a delay term (M = 
0.672, SD = 0.111, c = 1.87); t(9) = 2.49, p < 0.05. Thus, including an explicit visual–motor 
delay does not improve the performance of the speed-matching model, at least over the observed 
range of speed differences. 

Discussion 



The simple speed-matching model performs just as well as the more complicated ratio and linear 
models, and significantly better than any of the distance-based models. Moreover, adding a 
damping term or an explicit delay term does not improve its performance. Taken together, these 
results support the hypothesis that pedestrian following is best described by a simple physical 
model in which the follower matches the leader's speed, regardless of distance. 

It is surprising that participants were not influenced by the leader's distance, despite being 
instructed to follow at a constant distance. Distance has been found to increase with velocity in 
car-following (Filzek & Breuer, 2001), and Lemercier et al. (2012) included a distance term 
when modeling pedestrians walking the perimeter of a circular arena, although they did not did 
not report the degree to which this improved performance over a simple speed-matching model. 
Here, we find no evidence of a preferred interpersonal distance; rather, followers match the 
leader's speed independent of distance over a range of 1–4 m. This principle is inconsistent with 
distance-based models of collective behavior, in which individuals are attracted to distant 
neighbors and repelled from nearby neighbors, yielding a preferred equilibrium distance (Huth & 
Wissel, 1994; Reynolds, 1987). In contrast, it is consistent with velocity-based models in which 
individuals match the speed and direction of their neighbors (Ondřej et al., 2010; Vicsek & 
Zafeiris,2012). The advantage of such a strategy is that it yields reliable following and coherent 
swarms that are robust to variations in density. 

We should point out several constraints in Experiment 1 that may limit the generality of this 
conclusion. First, trials were fairly short, in both distance (12 m) and duration (8 s). It is possible 
that a preferred distance might only be revealed over longer periods of following. Second, we 
tested a limited range of initial leader–follower distances (1 and 4 m); although this is fairly 
typical of pedestrian groups, distance may play a role in speed control at larger distances. 
Finally, walking speeds were in the range of 1–2 m/s and speed changes were limited to a range 
of ±0.5 m/s (Figure 2). It is possible that greater variation in speed might reveal a velocity-
dependent distance effect. Nevertheless, we find that the speed-matching model performs well in 
conditions relevant to everyday locomotion, namely following another pedestrian within a few 
meters at typical walking speeds. This raises the question of the optical information that is used 
to achieve speed-matching, to which we turn in Experiment 2. 

Experiment 2: Visual control of following 

Experiment 2 was designed to investigate the optical information used to control walking speed 
in pedestrian following. Data were collected from participants following a moving object in 
virtual reality, while the visual angle and binocular disparity of the object were orthogonally 
manipulated. This allowed us to determine the optical information followers use to match the 
leader's speed, and to derive a visual control law for one-dimensional following. 

It has been observed that when viewing a virtual environment in a head-mounted display 
(HMD), distances greater than a few meters tend to be underestimated by about 50% (Loomis & 



Knapp, 2003; Thompson et al., 2004). This underestimation may be attributed in part to the fact 
that while vergence varies normally in an HMD, accommodation is constant due to the fixed 
focal length of the HMD lens (the virtual image is typically at 1–2 m). This 
vergence/accommodation mismatch could result in an underscaling of distance from binocular 
disparity for distances beyond a few meters. However, it has been shown that after 5–10 min of 
walking with visual feedback in virtual reality, distance is rescaled and the underestimation is 
eliminated (Mohler, Creem-Regehr, & Thompson, 2006; Richardson & Waller,2007). In the 
present experiment, the virtual “leader” appeared at a distance of only 3 m and participants were 
given 5 min of familiarization (including five practice trials in which the virtual “leader” moved 
at a constant speed) in the virtual environment prior to testing, which was sufficient to rescale 
any underestimation. The results should thus be unaffected by the fact that displays were viewed 
in an HMD. 

Methods 

Participants 

Twelve undergraduate and graduate students, six male and six female, participated in Experiment 
2. None reported having any visual or motor impairment. They were paid $8 for their 
participation, plus $5 to cover travel expenses. The study was conducted in accordance with the 
Declaration of Helsinki. 

Apparatus 

Experiment 2 was conducted in the Virtual Environment Navigation Laboratory (VENLab) at 
Brown University. Participants walked freely in a 12 × 12 m room while viewing a virtual 
environment through a head-mounted display (SR-80A, Rockwell Collins, Cedar Rapids, IA). 
The HMD provided stereoscopic viewing with a 63° × 53° (horizontal × vertical) field of view, 
resolution of 1280 × 1024 pixels in each eye and complete binocular overlap. Displays were 
generated on a Dell XPS workstation (Round Rock, TX) at a frame rate of 60 fps, using the 
Vizard software package (WorldViz, Santa Monica, CA). Head position and orientation were 
recorded as in Experiment 1. Head coordinates from the tracker were used to update the display 
with a latency of approximately 50 ms (three frames). 

Displays 

The virtual environment (see Figure 6) included a visual surround consisting of a distant, large 
vertical cylindrical surface (radius 500 m) mapped with a grayscale granite texture, but no 
ground plane or horizon. A blue home pole (radius 0.3 m, height 1.6 m) with a granite texture 
appeared at the center of the environment, and a red target pole (radius 0.3 m, height 1.6 m) 
appeared in front of the participant, at an initial distance of 3 m. 



 

Figure 6. (a) First-person view of the virtual display used in Experiment 2. The blue pole is the 
“home” pole, which participants walk to before turning to face the red “target” pole. (b) First-
person view of the target pole during following. The target pole turns green and begins moving 
after a button press by the participant. 

Procedure 

To begin each trial, participants stood at the blue home pole, faced the red target pole, and 
pushed a button on a handheld mouse, which caused the target pole to turn green. A sound effect 
(“boing!”) provided feedback that the button press was successful. After 1 s, the green target 
pole began moving on a straight path away from the participant in depth. During the first 0.5 s of 
the trial, the pole's velocity increased linearly from 0 to 0.8 m/s. Its speed then remained constant 
for a variable amount of time (M = 2.5 s, SD = 1 s) until a “manipulation” changed the target 
speed specified by binocular disparity (the “disparity-specified speed”) or by visual angle (the 
“expansion-specified speed”) for 3 s (see Table 2). 

Table 2. Matrix of visual manipulation conditions in Experiment 2. The target pole's initial 
speed is 0.8 m/s, so a speed of 0.4 m/s specifies a slow down while 1.2 m/s specifies a speed up. 
Shaded cells signify conditions in which both sources of information are congruent (specify the 
same speed); unshaded cells signify that the sources are incongruent (specify different speeds). 

 



Binocular disparity was manipulated by instantaneously increasing the pole's speed (from 0.8 
m/s to 1.2 m/s), decreasing it (from 0.8 to 0.4 m/s), or holding it constant (at 0.8 m/s); the pole 
remained at the new speed for 3 s, and then instantaneously returned to its original speed (0.8 
m/s). Visual angle was manipulated by growing or shrinking the target pole so that its visual 
angle was consistent with a pole increasing or decreasing its speed for 3 s (from 0.8 to 0.4 or 1.2 
m/s). This was accomplished by simulating an invisible “canonical” pole of the same size 
moving at the desired speed, and uniformly growing or shrinking the actual target pole so that its 
visual angle matched that of the canonical pole at every time step. Thus, a change in disparity-
specified speed (−0.4, 0.0, or +0.4 m/s) was isolated by simultaneously decreasing the target's 
speed and size (or increasing them), while a change in expansion-specified speed (−0.4, 0.0, or 
+0.4 m/s) was isolated by increasing the target's size only (or decreasing it). The three levels of 
each optical variable were fully crossed, for a total of nine conditions (Table 2). 

Participants were instructed to follow behind the pole as it moved across the room, “as if you 
were following a friend down the street.” No further instructions were provided, and in particular 
no instructions were given regarding distance or speed. 

Design 

Experiment 2 had a 3 × 3 (disparity change × expansion) factorial design, with eight trials per 
condition, for a total of 72 trials per participant. All variables were within-subject, and trials were 
presented in a random order. 

Data Analysis 

The time series of head position were processed as in Experiment 1, to yield a time series of 
leader and follower speed for each trial. The change in walking speed (ΔSpeed) during the 3 s 
visual manipulation on each trial was computed by subtracting the mean speed in the last 1 s of 
the visual manipulation from the mean speed in the 1 s prior to the manipulation. Thus, a positive 
value of ΔSpeed indicates that the participant sped up during the manipulation, while a negative 
value indicates that a participant slowed down. The mean of these ΔSpeed values was computed 
for each participant and each condition, and used as a measure of followers' behavioral response 
to each visual manipulation. 

Results and discussion 

The observed changes in walking speed produced by visually specified changes in target speed 
of ±0.4 m/s are presented in Figure 7. On average, an expansion-specified speed decrease elicited 
a comparable decrease in walking speed (ΔSpeed = −0.30 m/s), a constant visual angle yielded 
no change in walking speed (ΔSpeed = −0.020 m/s), and an expansion-specified increase in 
target speed elicited a moderate increase in walking speed (ΔSpeed = 0.14 m/s), In contrast, 
disparity-specified changes in target speed of ±0.4 m/s elicited very little response. On average, 
all disparity-specified speed produced a small decrease in walking speed, including a disparity-



specified speed decrease (ΔSpeed = −0.031 m/s), constant disparity (ΔSpeed = −0.060 m/s), and, 
surprisingly, a disparity-specified speed increase (ΔSpeed = −0.093 m/s). 

 

Figure 7. Mean changes in speed for the nine visual manipulation conditions, averaged across 
trials and participants. Positive values specify an increase in walking speed as a result of the 
manipulation; negative values specify a decrease in speed. Error bars represent standard error of 
the mean. 

This pattern of results—a large effect of expansion and a minimal effect of change in disparity—
was observed in all nine conditions, regardless of whether the optical variables were congruent 
or in conflict (Figure 7). A two-way analysis of variance confirms a significant main effect of 
expansion, F(2, 144) = 221.58, p < 0.001, a marginally significant effect of disparity, F(2, 144) = 
3.149, p = 0.046, and no interaction, F(4, 142) = 0.151, p > 0.05. Measures of effect size indicate 
that optical expansion (ω2 = 0.690) explained a far greater proportion of the variance in follower 
speed than changes in disparity (ω2 = 0.007). 

We also noted an asymmetry in the follower's response to a decrease compared to an increase in 
leader speed, indicating a greater influence of optical expansion than optical contraction on 
walking speed. The magnitude of ΔSpeed for expansion (M = 0.31 m/s, SD = 0.13 m/s) was 
twice that for contraction (M = 0.14 m/s, SD = 0.13 m/s), t(100) = 6.30, p < 0.001. This may 
reflect a fundamental asymmetry in following behavior—for example, followers may prioritize 
deceleration to avoid collisions in response to optical expansion (emergency braking) over 
acceleration in response to optical contraction. 

To further analyze the relative influence of these optical variables on walking speed, we 
performed a stepwise multiple linear regression. Both expansion (β = 0.85, p < 0.001) and 
disparity (β = 0.10, p = 0.015) were significant predictors of ΔSpeed (adjusted R2 = 0.737), but 
the expansion weight was 8.5 times the disparity weight. A model that included expansion alone 
accounted for 73% of the variance (adjusted R2 = 0.728); thus adding disparity to the model 



explained only an additional 1% of the variance. These results indicate that followers are 
sensitive to information from both optical expansion and binocular disparity, but rely primarily 
on expansion. 

In sum, the results of Experiment 2 indicate that optical expansion, rather than change in 
binocular disparity and vergence, is the primary optical information used to control speed in 
human following. Walking speed varied significantly in response to an optical expansion and 
contraction, while corresponding changes in disparity elicited only marginal changes in speed. 

General discussion 

The results of Experiment 1 show that followers match the speed of the leader, rather than 
maintaining a constant distance or using a combination of speed and distance, at least over 
distances of 1 to 4 m. The results of Experiment 2 show that followers primarily rely on optical 
expansion to regulate their walking speed. Synthesizing these two results allows us to formulate 
a visual control law for speed control in pedestrian following that can account for the observed 
behavior. 

Visual control law for following 

The simplest speed control law of this form would be one in which the follower nulls the optical 
expansion of the leader; that is, the follower accelerates if the leader's visual angle is decreasing, 
decelerates if it is increasing, and maintains the current speed if visual angle is constant. 
Formally, this control law for following by optical expansion can be simply stated as:

 

where b is a constant and α̇ is the rate of optical expansion of the leader. It can be shown that this 
control law is mathematically related to the speed-matching model (Equation 2) for a leader of 
constant size; a derivation is provided in Appendix A. 

To test this control law, we fit Equation 9 to the data from Experiment 1 as before, using 
numerical optimization to maximize the mean value of z′-transformed rover all trials. The only 
input to the model was the rate of change of the leader's visual angle computed from the data, 
and the output was the follower's predicted acceleration. Figure 8 presents a simulation of the 
same sample trial as in Figure 3. A paired-sample t test on the mean z′-transformed r values 
showed that the speed-matching model (M = 0.672, SD = 0.111) provided a slightly better fit to 
than the optical expansion control law (M = 0.624, SD = 0.086, c = 13.00), t(9) = 7.81, p < 0.001. 
This result suggests that followers rely primarily, but perhaps not entirely, on optical expansion 
to regulate their speed, consistent with the results of Experiment 2. Binocular disparity may 
provide additional information necessary to perceive relative speed. 

 



 

Figure 8. Follower acceleration for the representative trial in Figure 2 (participant 3, trial 54), as 
observed and as predicted by the optical expansion model. RMSE and r values indicate goodness 
of fit. 

Further questions 

Armed with an understanding of speed control in one-dimensional following, we can pursue 
further questions about visually guided pedestrian interactions. The first question is whether the 
speed-matching model generalizes from following, with a unidirectional coupling, to dyads 
walking side-by-side, with a bidirectional coupling. Results from Page and Warren (2012, 2013) 
indicate that the answer is yes: the speed-matching model again best accounts for side-by-side 
walking, and offers a general description of the behavioral dynamics of coordinating walking 
speed with one's neighbors. This is somewhat surprising, because it shows that dyads do not 
actually prefer to walk side-by-side. 

The second question involves generalizing from one dimension to the case of two-dimensional 
following. In this situation, the follower must now regulate not only speed, but also heading 
direction, essentially matching the leader's velocity. A simple approach would be to do so by 
controlling speed and heading independently, combining the speed-matching model (Equation 2) 
with a direction-matching or heading alignment model (Bonneaud & Warren, 2013; Vicsek et 
al., 1995), in which the difference in heading direction is nulled. One visual control law for 
heading alignment might be the constant bearing (CB) strategy, which provides a good 
description of how pedestrians intercept a moving target (Fajen & Warren, 2007): steer to null 
change in the target's bearing direction. When the pedestrian and the target move at 
approximately the same speed, the CB strategy yields parallel heading directions. In a 
preliminary analysis, Rhea, Cohen, and Warren (2009) found that the CB model reproduced the 
follower's path when the follower's speed was greater than or equal to the leader's speed. 



However, when the follower's speed was lower than the leader's, the model often generated a 
mirror image of the observed path, because this solution also maintains the leader at a constant 
bearing. We are currently pursuing this problem experimentally. 

A third question is whether the following model can be scaled up from dyads to account for the 
collective behavior of pedestrian groups. It is possible that local speed-matching and heading 
alignment provide the basic coupling between neighbors that yields coherent crowd behaviors. 
For example, can speed-matching explain how individuals in a group adopt a common walking 
speed? In a preliminary analysis of groups of four pedestrians walking to a goal, Rio, Bonneaud, 
and Warren (2012) showed that the speed-matching model (Equation 2) predicts the acceleration 
of the two rear pedestrians based on the speed of the two front pedestrians. Further experiments 
are in progress to determine whether the speed-matching strategy extends to larger crowds. 

Finally, a model for following based on speed-matching or optical expansion may have 
applications to pedestrian models for animation and simulation, assistive technology for 
mobility, and social and swarm robotics (Gockley, Forlizzi, & Simmons, 2007; Monteiro & 
Bicho, 2010). 

Conclusion 

Pedestrian following is an important locomotor behavior, both because it is common in our 
everyday experience and because it forms a basis for the more complex behavior of small groups 
and large crowds. Here we have characterized the behavioral dynamics of one-dimensional 
following using a speed-matching model, which can be implemented by a visual control law 
based on nulling optical expansion. This model provides a basis for understanding following in 
two dimensions and coordination among neighbors in a crowd. In addition to the elementary 
behaviors of steering, obstacle avoidance, and interception, new components for speed-matching 
and heading alignment are key steps toward a full model of pedestrian and crowd behavior 
(Bonneaud & Warren, 2013; Warren & Fajen, 2008). 
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Appendix A 

The visual angle control law (Equation 9) is:

 

where α is the visual angle that the leader subtends at the follower's eye. We can rewrite visual 
angle in terms of real-world variables:

 

where w is the width of the leader and Δx is the distance between leader and follower. 
Substituting this formula into Equation A1 yields:

 

Taking the derivative in Equation A3, using the chain rule, yields:

 

Simplifying and combining terms in Equation A5 yields:

 

Thus, the expansion model (Equation A6) resembles the speed-matching model (Equation 2), 
except that the coefficient for the expansion model (in parentheses) is a nonlinear function of 
leader size w and distance Δx.  
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