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chapter 3

The use of bone surface modifications to

model hominid lifeways during the Oldowan

Charles P. Egeland

Ever since the ground-breaking taphonomic work of Bunn (1981) and Potts

(Potts and Shipman, 1981) documented cut marks on bones from early

Pleistocene deposits at Olduvai Gorge and Koobi Fora, bone surface mod-

ifications have played an increasingly prominent role in understanding the

formation of Oldowan faunal assemblages. The analysis of surface modi-

fications, which include most prominently hominid butchery (cut marks,

percussion marks) and carnivore (tooth marks) damage, can address many

important issues in Oldowan archaeology, including (1) Which carcass

resources did Oldowan hominids exploit? (2) How often did they obtain

carcasses? (3) When they did acquire carcasses, did hominids have their

choice of resources, or was the menu limited to what was available after

other carnivores had had their fill? (4) What was the nature of the inter-

action between hominids, as a relatively new member of the large car-

nivore guild, and Plio-Pleistocene carnivores? These questions, and thus

the analysis of bone surface modifications, must be integrated into any

model that seeks to shed light on the socioeconomic function of Oldowan

sites.

The role of bone surface modifications in understanding faunal
assemblage formation

The process of faunal assemblage formation can be usefully understood

in three distinct, albeit interdependent, components (Egeland et al., 2004:

345). The first is carcass acquisition. This involves gaining access to a carcass

regardless of the mode of that access (e.g., hunting or scavenging) or the

nutritional condition of the carcass (e.g., fresh or desiccated). The second

is carcass accumulation. Here, a carcass or carcass part is transported to
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The use of bone surface modifications to model hominid lifeways 81

and eventually deposited at a particular locale on the landscape. The third

component is carcass modification, which occurs when bones or parts

thereof are broken or partially/wholly destroyed. It is during this last process

that bone surface modifications are created.

Two important points must be made here. First, carcass modification,

and thus the infliction of bone surface modifications, can occur at any

stage of assemblage formation. Second, the modification component of

assemblage formation is the most directly inferred because bone surface

modifications provide one of the few unambiguous taphonomic indicators

of hominid and carnivore involvement with bones (assuming, of course, that

they can be correctly identified; see discussion later). What flows from this

is the realization that the formation of a faunal assemblage, be it Oldowan

or Neolithic, simply cannot be addressed with any rigor without the analysis

of bone surface modifications.

The role of actualism in identifying and interpreting bone
surface modifications

The perspectives offered in this chapter are all guided by actualism, which

involves “observing present-day events and their effects in order to give

meaning to the prehistoric record” (Gifford, 1981: 367; see also Simpson,

1970; Lyman, 1994: 46–69; Pobiner and Braun, 2005a). Because it provides

unambiguous linkages between traces (e.g., a mark on a bone), causal agen-

cies (e.g., a stone tool slicing a bone), effectors (e.g., a sharp-edged flake),

and actors (e.g., a hominid wielding a stone tool; terminology follows

Gifford-Gonzalez, 1991), actualism, and the uniformitarian assumptions

that accompany it, provide the critical referential framework for under-

standing past processes.

Marean (1995) has provided a useful distinction between naturalistic and

experimental actualism. Experimental studies directly control the variables

that produce the observed traces, as in studies that purposely vary tool

raw material to examine differences in cut-mark frequencies between, for

example, obsidian and flint flakes (Dewbury and Russel, 2007). Naturalistic

research observes actors and their resultant traces but does not intentionally

manipulate the variables. An excellent example of this form of actualism

is found in Blumenschine’s (1986) observations on the natural sequence

by which carnivores in the Serengeti ecosystem consume different carcass

parts. As we will see, actualistic studies, both experimental and naturalistic,

play a central role in reconstructions of hominid butchery behavior and

hominid/carnivore interactions in the Oldowan.
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82 Stone tools and fossil bones

Types and morphological features of hominid
and carnivore bone surface damage

The utility of bone surface modifications depends wholly on our ability to

link a taphonomic trace (e.g., a linear striation on a bone) to a taphonomic

actor (e.g., a hominid using a stone tool to butcher a carcass). Therefore,

identifying attributes that reliably and consistently distinguish between dif-

ferent types of taphonomic actors is of paramount importance. The best

way to become familiar with the morphological features of surface modifi-

cations is to work with actualistic assemblages; in these situations, one can

be sure that the process of mark creation was observed, and thus the tapho-

nomic actor(s) is known unambiguously. Because excellent discussions of

signature criteria for hominid and carnivore damage are already available

(Blumenschine et al., 1996; Fisher, 1995), the next two sections provide

only a brief summary of these attributes as revealed through actualistic

studies.

Hominid damage

Hominid-imparted damage includes those marks created by either sharp-

or blunt-edged stone tools (hominid tooth marks are discussed later). Stone

tool cut marks (Figure 3.1) appear as fine, linear striations with V-shaped

cross-sections that often possess parallel to subparallel microstriations both

within and on the wall of the main groove (shoulder effects; Bunn, 1981;

Potts and Shipman, 1981; Shipman and Rose, 1983). Some cut marks also

preserve barbs, which are small hooks that occur at the heads and/or tails

of cut marks that result from “small, inadvertent motions of the hand either

in initiating or in terminating a stroke” (Shipman and Rose, 1983: 66).

Percussion marks (Figure 3.2) result from the use of unmodified (sim-

ple cobbles) or modified (e.g., choppers or polyhedrons) hammerstones to

breach the medullary cavities of long bones for fat-rich marrow. Classic

percussion marks “occur as pits, grooves or isolated patches of microstria-

tions” (Blumenschine, 1995: 29). Microstriations are found within and/or

emanate from the percussion pit (Blumenschine and Selvaggio, 1988, 1991;

Turner, 1983; White, 1992). In addition to classic percussion marks (pits

with associated microstiations), analysts have also identified striae fields,

which “are composed of extremely shallow, subparallel scratches that

usually cover relatively expansive lengths of cortical surface, between 5

and >50mm” (Pickering and Egeland, 2006: 462; see also Turner, 1983;
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The use of bone surface modifications to model hominid lifeways 83

figure 3.1. Medial view of the left femur of an elk (Cervus elaphus) showing stone
tool cut marks. These cut marks were created during experimental butchery. Note the
parallel to subparallel orientation, deep, V-shaped cross-section of the marks, and in the
close-up, the multiple striations that are created within the grooves of the main marks.
All scale bars = 1cm.

White, 1992). Experimental data show that striae fields are more often

located on the surface of the bone in contact with the anvil (when one is

used), rather than the surface that is impacted by the hammerstone (Picker-

ing and Egeland, 2006). The microstriations so common to and diagnostic
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84 Stone tools and fossil bones

of percussion marks are produced when the grains of a hammerstone scrape

or abrade against the bone surface during impact; however, experimental

work has demonstrated that percussion marks can also manifest themselves

as pits without associated microstriations. Galán et al. (2009), for example,

report that nearly one-third of the percussion marks created by unmod-

ified hammerstones lack microstriations in their sample, and because of

this, they cannot be distinguished morphologically from carnivore tooth

marks. Overall, however, percussion pits with associated microstriations

tend to be produced in the highest frequency in experimental assemblages,

followed by striae fields and then pits without microstriations (Galán et al.,

2009).

Carnivore damage

The morphological features of carnivore damage have been described in

some detail by Binford (1981: 44–49), Blumenschine (1995: 29), Blumens-

chine and Marean (1993: 279–280), Blumenschine et al. (1996: 496), Fisher

(1995), Haynes (1980), and Shipman (1983). Although there is interanalyst

variability in terminology, four main categories of carnivore damage are

generally recognized (Figure 3.3): furrowing, punctures, pits, and scores

(Binford, 1981: 44). Furrowing is caused by sustained chewing of the soft

cancellous regions of bones and is frequently manifest as partial or total

destruction of bone portions, particularly the epiphyses of long bones.

Crenulated edges (following Pickering and Wallis, 1997: 1118) are the final

product of furrowing and can therefore be included in this category. Tooth

punctures result from the bone collapsing under the tooth and are char-

acterized by distinct holes in the cortical surface. Tooth pits are roughly

circular in plan view whereas tooth scores are elongated (typically with a

length three or more times greater than the width; Selvaggio, 1994) with

U-shaped cross-sections. Both pits and scores commonly show internal

crushing as a result of tooth-on-bone contact.

Several workers have correctly pointed out that it might not be safe to

assume that all tooth marking can be attributed to carnivores, and hominids

in particular must be considered as potential tooth-marking agents (Brain,

1967, 1969, 1981; Landt, 2007; Martı́nez, 2009; Pickering and Wallace,

1997; White and Toth, 2007). Unfortunately, there are currently no diag-

nostic criteria that appear to clearly differentiate human chewing damage

from that of carnivores (although attempts are underway; Fernández-Jalvo

and Andrews, 2011). One might expect to find more hominid chewing
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The use of bone surface modifications to model hominid lifeways 85

figure 3.2. Examples of percussion marks. Note the microstriations emanating from
the percussion pits. Photos courtesy of M. Domı́nguez-Rodrigo.

damage on smaller carcasses, as bones from larger carcasses would have

more often been processed with stone tools rather than orally. Other non-

carnivore agents that could be applicable to Oldowan sites for which

tooth mark data exist include nonhuman primates, suids, crocodiles,

and raptors (Andrews, 1990; Domı́nguez-Solera and Domı́nguez-Rodrigo,

2009; Njau and Blumenschine, 2006). Another class of bone surface

modification that is relevant is digestive damage. Bones that have either

been regurgitated after some time in the stomach or that have passed

completely through the gastrointestinal tract of a carnivore (or hominid)
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86 Stone tools and fossil bones

often show characteristic thinning and rounding (Lyman, 1994: 204–205,

210–211).

Tooth mark dimensions and identifying carnivore types

There is a growing body of research aimed at identifying species-specific

patterns of bone modification among carnivores (Andrews, 1995; Andrews

and Armour-Chelu, 1998; Andrews and Fernández-Jalvo, 1997; Delaney-

Rivera et al., 2009; Domı́nguez-Rodrigo and Piqueras, 2003; Haynes

1983; Pickering et al., 2004a; Piqueras, 2002; Pobiner, 2007; Pobiner and

Blumenschine, 2003; Selvaggio, 1994; Selvaggio and Wilder, 2001). There

are two main reasons why information on the type or types of carnivores

involved in assemblage formation is important. First, carnivores are very

diverse in their level of sociality, and one can easily imagine that a gregari-

ous species like the spotted hyena would have posed a different competitive

dilemma for Oldowan hominids than, say, a relatively solitary species like

the leopard. Second, differences in body size and dental armament furnish

carnivores with a variety of carcass modification abilities, which in turn has

an effect on the availability of carcass resources to other consumers, includ-

ing hominids. These factors are even more important given the greater

diversity of the large carnivore guild during Oldowan times relative to

today (Werdelin and Lewis, 2005).

In terms of bone surface modifications, the underlying logic is very

simple: larger carnivores have larger teeth, which in turn create larger

tooth punctures, pits, or scores. Most analyses have used digital calipers

to measure tooth mark dimensions from high-quality negative molds of

bone surfaces. As long as only well-defined tooth marks are used and the

outlines are clearly marked on the molds, this method provides reliable

results. In some cases, however, the molding material can peel off some of

the cortical surface, particularly in poorly preserved assemblages. Digital

imaging techniques can circumvent this problem, and Delany-Rivera et al.

(2009) describe a reliable method that uses digital photography and open-

source imaging software.

Unfortunately, the relatively simple theoretical relationship described

here has proved to be somewhat more complicated in practice. The most

comprehensive datasets show that there is much overlap between carni-

vore species in the dimensions of tooth marks. For example, Domı́nguez-

Rodrigo and Piqueras (2003) find that the length and breadth maxima of

tooth pits created by cheetahs, leopards, lions, spotted hyenas, large dogs,

and jackals on the dense cortical bone of limb bone diaphyses only reliably

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139149327.005
Downloaded from https://www.cambridge.org/core. University of North Carolina Greensboro, on 11 Feb 2021 at 21:07:01, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139149327.005
https://www.cambridge.org/core


figure 3.3. Medial (right) and lateral (left) views of the right humerus of a white-tailed deer (Odocoileus virginianus) showing
various types of carnivore damage. This damage was created by a captive male mountain lion (Puma concolor). All scale
bars = 1cm.8
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88 Stone tools and fossil bones

separate carnivores into two groups: those with less robust dentitions (e.g.,

cheetahs, leopards, and jackals) and those with more robust dentitions (e.g.,

large dogs, lions, and spotted hyenas). Although it is likely that the size of

tooth marks alone will not identify the species of carnivore responsible

for their creation, other taphonomic data, including carcass size, levels of

bone destruction, and the frequencies and anatomical placement of tooth

marks, can aid in more precisely identifying the carnivore(s) involved in

the formation of Oldowan assemblages.

Protocol, problems, and pitfalls in the identification
of bone surface modifications

Minimally, all surface mark identification in either actualistic or archaeo-

logical contexts should be carried out with a strong light source and the aid

of at least 10× to 16× magnification under hand lenses or binocular micro-

scopes. Using this methodology, Blumenschine et al. (1996) report that

expert analysts accurately identify experimentally produced surface marks

at rates of 99%, whereas novices with less than three hours’ training with

experimental controls achieve identification rates of 86%. Some researchers

recommend the use of higher magnification (80×–750×), including scan-

ning electron microscopy (SEM), for confident identifications of surface

marks (e.g., Andrews and Cook, 1985; Olsen and Shipman, 1988). While

such magnification might be warranted for the small number of ambigu-

ous marks that invariably occur in any fossil assemblage, SEM analysis in

particular is a time-consuming and relatively costly undertaking. There-

fore, this method should be carried out only on subsamples of marks that

lack distinctive morphologies when viewed under binocular microscopes

or hand lenses.

As discussed previously, actualistic data clearly show that surface marks

possess diagnostic morphologies, and further, that these morphologies are

in most cases identifiable under relatively low magnifications. We must

now confront one of the greatest challenges for Oldowan taphonomists:

translating morphological criteria generated from actualistic assemblages

of known derivation to fossil assemblages of unknown derivation. The reality

is that, in the latter case, confident associations of surface marks with par-

ticular taphonomic actors are much less straightforward. The point here is

that a familiarity with “pristine” actualistic assemblages of butchered and/or

carnivore-ravaged bone is not enough; one must also take into account the

myriad factors that can, in the case of the Oldowan, impact bone assem-

blages over one or two (or more) million years. A configurational approach
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The use of bone surface modifications to model hominid lifeways 89

to surface mark identification therefore should be practiced, in which not

only mark morphology but also the anatomical placement of the mark and

the sedimentary context from which the specimen derives are taken into

account (as recommended by researchers like Binford [1981], Bunn [1991],

and Fisher [1995], and implemented by various researchers).

As an example of the importance of such an approach to surface mark

identification, consider the Oldowan faunas from Member 3 at Swartkrans

Cave (South Africa) and the site of DK in Bed I at Olduvai Gorge (Tan-

zania), which date to between 1.8 and 1.0 and about 1.8 million years ago,

respectively. Both faunas are relatively well preserved and were excavated

in association with stone tools. Ideally, an Oldowan taphonomist familiar

with the morphological features of stone tool cut marks (based on actualis-

tic assemblages) would identify prehistoric butchery damage on the bones

and then proceed to reconstruct hominid subsistence at the sites. The issue

is complicated, however, by the fact that the Swartkrans and DK bone

surfaces have been affected by a variety of biotic and abiotic taphonomic

processes typically not operant in modern actualistic assemblages. Man-

ganese formation, soil leaching, water action, bacterial and fungal growth,

subaerial weathering, and even glue from specimen curation are present

in one or both assemblages, all of which complicate the identification of

surface marks.

One of the more common processes at these (and other) Oldowan sites

is sediment abrasion. Such damage results from trampling and/or fluvial

transport and is known to manifest as fine, linear striations similar to stone

tool cut marks. Based on actualistic samples, several researchers have sum-

marized the morphological characteristics of sediment abrasion (Behrens-

meyer et al., 1986, 1989; Fiorillo, 1989; Oliver, 1989; Olsen and Shipman,

1988). The most recent experimental work indicates that a multivariate

approach can help to distinguish sediment abrasion from cut marks mor-

phologically. When comparing marks created by (1) stone tool butchery

and (2) pedestrian trampling generated by human subjects walking on

bones embedded in various sedimentary substrates, Domı́nguez-Rodrigo

et al. (2009) observe that only cut marks create grooves that are substantially

deeper than they are wide, have microstriations located on the wall (as

opposed to the base) of the groove, are straight (as opposed to sinuous) in

trajectory, and show microstriations that are continuous along the entire

groove. Recall, however, that a configurational approach involves other

attributes in addition to mark morphology.

At Swartkrans, the karstic colluvium that makes up the cave fill from

which the bones derive contains high frequencies of large, angular

Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781139149327.005
Downloaded from https://www.cambridge.org/core. University of North Carolina Greensboro, on 11 Feb 2021 at 21:07:01, subject to the

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781139149327.005
https://www.cambridge.org/core


90 Stone tools and fossil bones

(i.e., sharp) clasts, which hold great potential to create morphological cut

mark mimics. This, coupled with the host of other taphonomic factors

that had affected the cortical surfaces, encouraged Pickering et al. (2004b,

2007) to take a conservative approach to mark identification in their study

of the Member 3 fauna. Importantly, the corroborating opinions of three

analysts were required to accept a particular specimen as preserving cut

marks (and/or any other sort of surface mark). While it is possible that some

specimens that actually did preserve prehistoric cut marks were rejected as

such, this is preferable to incorrect identifications. On the other hand, the

DK fauna was excavated from a relatively fine-grained sedimentary matrix

(as are most of the Bed I sites at Olduvai). There, sediment abrasion pro-

duced very superficial striae that contrast markedly with the deep grooves

interpreted to have been inflicted by stone flakes. In addition, sediment

abrasion resulted in randomly oriented striae that did not cluster near mus-

cle attachments (Figure 3.4), which is different from the clusters of parallel

to subparallel cut marks in the DK assemblage (Egeland, 2007a,b).

Quantification and analysis of bone surface modifications

There are several ways to quantify bone surface modifications (for use-

ful summaries see Abe et al., 2002; Lyman, 1994: 303–306). The simplest

method calculates the proportion of the total number of identified speci-

mens (NISP) in any one category (e.g., femoral fragments, vertebral frag-

ments, fragments from large animals) that preserve surface marks. Although

probably the most commonly reported quantification method, researchers

have cautioned that NISP-based data can be affected by differential frag-

mentation. Consider a simple example. Let us say that two bones, a humerus

and a femur, were butchered by a hominid, and that all of the flesh was

removed in the process. As a result, cut marks were created in several dis-

crete clusters on the bone surfaces. Now, the still-hungry hominid decides

to crack open both bones to get at the fat-rich marrow inside. This mar-

row extraction results in the creation of two humerus fragments and ten

femur fragments. All else being equal, a NISP-based calculation will likely

result in a lower cut-mark frequency for the femur (there are simply more

fragments, the denominator) than for the humerus – even though both

bones were butchered with the same intensity (i.e., until all of the flesh

was removed). Although obviously a very simplified example, this poten-

tial shortcoming has led some researchers to suggest alternative methods

of quantification. For example, Bartram (1993) argued that surface mark

frequencies should also be counted as the proportion of complete bones
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The use of bone surface modifications to model hominid lifeways 91

figure 3.4. Tibia fragment from the site of DK in Bed I at Olduvai Gorge (ca. 1.8
million years old) showing sediment abrasion, probably caused by trampling. Note the
shallow, randomly oriented striae (contrast with the stone tool cut marks in Figure 3.1).
Scale bar = 1cm.

of any one element (as represented by the bone fragments and estimated

by the minimum number of elements [MNE] count) that preserve sur-

face marks. Others (Abe et al., 2002; Rapson, 1990) calculate surface mark

frequencies relative to the surface area of the bone or bone fragment (a

smaller bone or bone fragment is less likely to preserve a surface mark

simply because it has less surface area). Another method of quantification

that is seldom reported involves counts of individual marks on a specimen.

The goal here is to count each spatially discrete mark that could have

resulted from a single action (e.g., a cutting stroke, single hammerstone

or anvil impact, and/or a tooth cusp coming into contact with a bone).

Ideally, each cut-mark striation can be counted, although this is easier said

than done when the striations are tightly clustered (Egeland, 2003). For

percussion marks, each pit and its accompanying microstriae should be

counted individually. Striae fields tend to be more diffuse and difficult to

count, but Pickering and Egeland (2006) suggest that striae fields >5mm
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92 Stone tools and fossil bones

apart should be considered distinct. Each discernable tooth pit, score, or

puncture should be counted separately, although again this can be difficult

or impossible on specimens with intense chewing damage.

The anatomical placement of surface modifications also provides vital

information on carcass utilization by both hominids and carnivores. For

example, cut marks on the midshafts of limb bones have been shown to

reflect flesh removal, whereas those clustering near the epiphyses are most

likely to be the result of dismemberment (Binford, 1981; Nilssen, 2000).

Composite diagrams of surface marks (particularly cut marks) overlain on

paper templates with multiple views of bones has been common practice

among taphonomists for decades. It is now relatively easy to do this digitally

with any number of image analysis software programs. For example, Adobe

Photoshop (and other similar programs) allows users to create “layers,” each

of which could represent, for instance, the location of surface marks for a

particular bone fragment. These layers can then be viewed and analyzed in

any number of combinations depending on the analyst’s needs. Abe et al.

(2002) have developed a GIS-based add-on in ArcView that not only records

digital drawings of surface marks but also performs several quantification

functions as well. The one drawback of templates (digital or otherwise)

is that the only fragments that can be included are (1) those that can be

identified to skeletal element and (2) those that can be accurately oriented

anatomically.

One method of tallying surface marks that circumvents the identifiabil-

ity problem, at least for limb bones, is Blumenschine’s (1988: 467) bone

segment approach. In this system, limb bone fragments are divided into

three categories: (1) epiphyseal specimens, which bear “all or a portion

of the proximal or distal articular surface”; (2) near-epiphyseal specimens,

which lack “any articular surfaces, but preserving cancellous tissue on the

medullary surface that is indicative of proximity to an epiphysis”; and (3)

midshaft specimens, which lack “articular surfaces and cancellous bone.”

Although Blumenschine’s (1988) system is extremely successful at deter-

mining the order of carnivore access to carcasses (more on this later) its

implementation has one potential shortcoming; namely its insensitivity to

the actual location of a particular surface mark. For example, because

most epiphyseal specimens as defined by Blumenschine (1988) include an

attached portion of shaft, it is impossible to tell if a marked epiphyseal frag-

ment actually bears marks on the articular surface or if the marks in fact

occur on the attached shaft. Therefore, high frequencies of marked epiphy-

seal fragments could give the false impression that marks cluster near the

joints when most actually occur on midshaft sections.
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Bunn (2001: 209–210) and Domı́nguez-Rodrigo (1997: 674) therefore take

a slightly different approach by tallying surface marks by bone sections.

In this case, limb bones and limb bone fragments are divided into three

anatomical sections: (1) proximal and distal epiphysis; (2) proximal and

distal shaft; and (3) midshaft (note, however, that fragments must be iden-

tified as coming from, for example, the distal epiphysis of a particular

limb bone). Therefore, a single specimen in Blumenschine’s segment

system might include one or more sections in the Bunn/Domı́nguez-

Rodrigo system. Here, surface mark analysis tracks the actual location

of marks, which can aid in determining the order of hominid access to

carcasses and identifying the type(s) of carnivore responsible for carcass

modification.

Actualistic samples and the timing of hominid
and carnivore access to carcasses

The preceding has prepared us for an in-depth examination of a growing

body of actualistic studies that provide data on the frequency and anatomical

location of surface marks. The goal of these studies is to aid reconstructions

of hominid butchery practices and to assess the timing of hominid and

carnivore access to carcasses. Because limb bones tend to survive at high

frequencies relative to other skeletal elements such as vertebrae and com-

pact bones, actualistic studies have tended to focus on these bone types.

Blumenschine’s (1988) pioneering work in particular has fostered several

studies that provide surface mark data on limb bone specimens. Three gen-

eral scenarios are modeled by these studies. The first involves carcasses that

are processed completely and exclusively by human experimenters (i.e.,

human- or hominid-only). In these experiments, bones are stripped of flesh

with metal or stone knives and then cracked open to expose the marrow

cavity. This produces limb bone assemblages with either cut marks or per-

cussion marks, but obviously no carnivore tooth marks. The second scenario

involves the defleshing of limb bones by various mammalian carnivores,

followed by the fragmentation of the bones, mainly by hyenas (carnivore-

only). The final scenario models the sequential utilization of carcasses in

so-called dual- or multipatterned models (Blumenschine and Marean, 1993;

Capaldo, 1995). The basic premise of dual-patterned studies is that a carcass

processed by previous consumers “offers a carnivore [or hominid] a short-

ened menu of parts and a reduced nutrient yield compared to that available

on a whole carcass” (Blumenschine and Marean, 1993: 275). These experi-

mental actualistic data have been supplemented with ethnoarchaeological
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94 Stone tools and fossil bones

studies of bone modification carried out among modern foraging groups

such as the Hadza of Tanzania (Lupo and O’Connell, 2002).

Because the shaft portions of limb bones are more structurally dense

than other parts (Lam et al., 1999), they tend to best survive the rigors of an

assemblage’s taphonomic history, particularly carnivore ravaging (Pickering

et al., 2003). Therefore, midshaft fragments (sensu Blumenschine, 1988; see

earlier) should provide the least-biased sample from which to calculate bone

surface modifications. When carnivores have sole access to complete limb

bones, they strip them of flesh and break them open to access marrow and

grease, which results in well over 50% of midshaft fragments displaying

tooth marks (Blumenschine, 1988, 1995; Capaldo, 1995, 1997; Selvaggio,

1998). In dual-patterned assemblages, in which hammerstone breakage

and marrow extraction by humans is followed by carnivore (mainly hyena)

ravaging, midshaft fragments are tooth marked at rates much lower than

50% (usually less than 20%; Blumenschine, 1988, 1995; Blumenschine and

Marean, 1993; Capaldo, 1995, 1997). The explanation for this is very simple:

hammerstone-broken midshafts no longer encase the nutrient-rich marrow

cavity, which leaves scavenging carnivores little or no reason to tooth mark

them. In dual-patterned assemblages where humans remove the flesh but

leave the marrow cavities intact, midshaft tooth-mark frequencies remain

high. The critical observation from these actualistic studies is that tooth-

mark frequencies on midshafts provide a useful measure of the timing of

carnivore access to within-bone nutrients; that is, did they get there before

or after hominids broke the bones open for marrow?

As informative as tooth marks are in determining carnivore access to

carcasses, they provide only indirect evidence on the carcass processing

behavior of hominids. For direct evidence we must turn to butchery marks.

Actualistic and ethnoarchaeological datasets indicate that when humans

break open all bones in an assemblage to access marrow, percussion mark

frequencies range from about 10% to 35% of midshaft NISP (Blumenschine

and Selvaggio, 1988, 1991; Pickering and Egeland, 2006). When humans

have primary access to flesh, cut-mark frequencies cluster around 5% to

40% of midshaft NISP (Bunn, 1982; Domı́nguez-Rodrigo, 1997, 1999b;

Domı́nguez-Rodrigo and Barba, 2005; Lupo and O’Connell, 2002). Cut-

mark frequencies in situations in which humans have secondary access to

carcasses (removing scraps of flesh after carnivore consumption) are typi-

cally less than 10% of midshaft NISP (Domı́nguez-Rodrigo, 1997; Selvaggio,

1998). Other studies show, however, that there is no consistent relationship

between the amount of flesh that is removed and cut-mark frequencies

(Egeland, 2003; Pobiner and Braun, 2005b). The considerable variation
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in and overlap of butchery mark values is due to several factors, includ-

ing the size and taxon of the carcass, the intensity with which carcasses

are butchered, tool raw material, and experimental protocols (Domı́nguez-

Rodrigo, 2008; Domı́nguez-Rodrigo and Yravedra, 2008; Galán et al., 2009).

Oldowan taphonomists have attempted to solve this conundrum in sev-

eral ways. Some have suggested that rather than lump all limb bone frag-

ments together in the analysis, one should analyze them in a way that is

sensitive to the amount of nutrients that they can provide to a potential

consumer. Upper limb bones (femur/humerus) have substantial amounts

of flesh and encase large reservoirs of marrow, whereas intermediate

(tibia/radio-ulna) and lower limb bones (metapodials) have progressively

less resources associated with them. Carnivores are also aware of this and in

fact broadly follow this pattern in their consumption sequences (Blumens-

chine, 1986). It would logically follow, therefore, that when gaining access

to carcasses before carnivores, hominids would butcher (and thus impart

butchery marks on) those bones with the highest nutrient yields. Actualistic

research does suggest that upper limb bones are cut marked at higher rates

than are intermediate and lower limb bones when humans gain primary

access to carcasses (Domı́nguez-Rodrigo, 1997; Domı́nguez-Rodrigo and

Barba, 2005).

Actualistic work indicates further that the mere presence of cut marks on

midshaft fragments may be meaningful in terms of hominid access. The

argument goes like this: carnivores typically remove flesh from carcasses in

a predictable sequence (Blumenschine, 1986), and if allowed to take their

time, will usually leave little or no adhering flesh on midshaft sections of

limb bones (Domı́nguez-Rodrigo, 1999a). So, if hominids were relegated

to passively scavenging from picked-over carnivore kills, there would be no

reason for them to impart cut marks on defleshed midshaft sections. Cut

marks on limb bone midshafts (or any body part that is usually consumed

early on by carnivores; for instance, rump flesh around the pelvis or viscera

under the ribs) therefore would mean that a substantial amount of flesh

was present when hominids butchered the carcass. Domı́nguez-Rodrigo

and Barba (2007b) have taken this a step further by mapping the exact

anatomical location of flesh scraps in a sample of twenty-eight carcasses

consumed by lions in Kenya’s Maasai Mara National Reserve. Those areas

on limb bones that never preserved any flesh scraps were referred to as

hot zones by these researchers (Domı́nguez-Rodrigo and Barba, 2007b:

90). They argue that if cut marks appear on hot zones, it is very unlikely

that hominids accessed carcasses after they had been fully defleshed by

felids (or other large carnivores). Other studies indicate that the amount of
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96 Stone tools and fossil bones

flesh that remains after large carnivore consumption can vary considerably

(Blumenschine, 1986; Pobiner, 2007; Selvaggio, 1994), which, as Pobiner

(2008: 473) points out, is likely due to differences in ecological context. For

example, all else being equal, one would expect that consumed carcasses

found in areas with low carnivore density would retain more flesh than

those found in areas with high carnivore density. Regardless, it has become

clear that the anatomical placement of bone surface modifications is as

important, if not more so, than the frequency of their occurrence (Pickering

and Egeland, 2009).

Comparing surface mark frequencies between fossil
and actualistic assemblages

The researchers who have conducted these actualistic studies have cor-

rectly stressed the importance of comparability between modern datasets

and fossil assemblages (Blumenschine, 1995: 28, 33–39; Capaldo, 1997:

556–557; 1998: 312–314; Marean, 1991; Selvaggio, 1994: 194). There are two

major issues here, the first of which concerns breakage. This is important

because the amount of breakage controls how many fragments are created,

and the number of fragments is the denominator in NISP-based counts

of surface mark frequencies. Any process that creates additional fragments

in fossil but not in actualistic assemblages therefore can artificially depress

surface mark frequencies in the former relative to the latter. In fact, fossil

assemblages are often exposed to just such processes. For example, while

actualistic controls experience breakage related only to the extraction of

carcass nutrients by humans and/or carnivores (referred to as green break-

age), fossil assemblages can undergo additional breakage due to ancient

diagenetic processes such as weathering or sediment compaction and/or

recent breakage from excavation or curation damage. (Although a detailed

discussion is beyond the scope of this chapter, there are established meth-

ods to determine when and how a bone was broken.) Of course, the only

way to eliminate such bias completely would be to refit all the diageneti-

cally and/or recently broken specimens. For various reasons, not the least of

which is time constraints, this is rarely possible. Therefore, the most straight-

forward way of maximizing comparability is to exclude from comparative

analyses the fossil specimens that show diagenetic and/or recent breakage,

even if they preserve prehistoric surface marks. Pickering et al. (2007, 2008)

offer an alternative method that allows the inclusion of specimens with

diagenetic and/or recent breakage without the need for extensive refitting.

They reason that because at least two fragments will be produced when a

single specimen is broken, the number of diagenetically and/or recently
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broken specimens can be divided by two and the resulting value added to

the number of green-broken specimens. Although this does not completely

eliminate the bias introduced by differential breakage, it can help make

fossil assemblages more comparable with actualistic control samples.

The second issue involves cortical surface preservation. In actualistic

assemblages, all bone cortices are more or less pristine, and therefore any

analyst who knows what to look for should be able to identify all the marked

specimens accurately. As one might well expect, this is not always the case

in fossil assemblages: poor cortical surface preservation results from myriad

factors and can obscure prehistoric surface marks. To realistically compare

fossil bone modification data with those of actualistic controls, one would

need to calculate surface mark percentages based only on that portion of

the assemblage that displays cortical surfaces that are well preserved enough

to maintain identifiable prehistoric marks. Of course, what constitutes well

preserved is another matter. In his study of faunas from Bed II at Olduvai

Gorge (dated to between about 1.7 and 1.2 million years ago), Monahan

(1996) assesses the “readability” of bone surfaces in quartiles, where a speci-

men whose entire cortex is in pristine condition is coded as 100% readable;

less well-preserved specimens are coded as 75% to 99%, 50% to 74%, and

so forth. He then creates adjusted surface mark frequencies by multiplying

the number of marked specimens by the percentage of specimens with

>50% readability. Monahan (1996) and others (Egeland et al., 2004) used

these adjusted values to make comparisons between the Bed II data and

actualistic assemblages. Pobiner et al. (2008) use a similar scheme in their

analysis of faunas from Okote Member sites at Koobi Fora, Kenya (dated to

about 1.5 million years ago) but consider specimens >75% readable as well

preserved. The upside of this approach is that it is very explicit about how

specimens are chosen for comparative analysis. The problem is that surface

marks often appear in isolated or very restricted areas of bone fragments, and

so even a specimen that is 75% readable might have once had tooth marks

on what is now the remaining 25% unreadable surface. In other words, we

are assuming here that the readable surface of a fragment is representative of

the entire cortical surface, which might or might not be the case. Pickering

et al. (2007, 2008: 33) take a more qualitative approach by assigning a score

of poor, moderate, or good to specimens from Swartkrans, which is meant

to indicate “the relative ‘fidelity’ of current bone surfaces for continuing

to preserve prehistoric bone surface modifications.” In this system, only

specimens with good preservation are included in comparative analyses.

The drawback here, as Pickering et al. (2008: 33) admit, is the subjective

nature of the scoring system: the analyst must make the call as to which

specimens are deemed well preserved enough to merit an assessment of
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98 Stone tools and fossil bones

good and thus inclusion in comparative analyses (see Thompson [2005] for

a useful methodology in a non-Oldowan context).

Apart from these two major concerns, there is one, final considera-

tion when making comparisons between fossil and actualistic assemblages.

Many of the actualistic studies do not consider bone specimens that are

<2 cm in maximum dimension. These specimens must therefore also be

removed from the fossil sample, even if they preserve prehistoric surface

modifications.

What have bone surface modifications taught
us about the Oldowan?

The point of this chapter is to convey the importance of bone surface

modifications to understanding the lifeways of Oldowan hominids. So, let

us examine what we think we know with a good degree of certainty:

Hominids were using Oldowan stone tools to butcher animals for food.

This is the most secure and will probably be the most lasting contribution of

bone surface modifications to our understanding of the Oldowan. Although

it was long assumed that the mere presence of stone tools was enough

to demonstrate that the associated fossil bones were the remains of early

hominid meals (e.g., Clark and Haynes, 1970; Leakey, 1971), it was not until

the discovery of cut marks at Oldowan sites (Bunn, 1981; Bunn et al., 1980;

Potts and Shipman, 1981) that this relationship was confirmed beyond any

doubt. Percussion marks and other fracture features show that early artifacts

were used as marrow-processing implements as well (Blumenschine, 1995;

Bunn, 1981; Oliver, 1994). In fact, the site that boasts some of the earliest

evidence in the world for the use of stone tools as butchery implements,

Bouri in Ethiopia at about 2.5 million years ago, lacks stone tools entirely:

confirmation of carcass processing comes solely from the butchery marks on

the bones (de Heinzelin et al., 1999). Butchered bones have been discovered

in association with the very earliest evidence for stone tool manufacture

2.6 million years ago at the site of Gona, also in Ethiopia (Domı́nguez-

Rodrigo et al., 2005), which indicates that from its very inception, Oldowan

technology was used, at least in part (see below), for processing carcasses.

Hominids were also using Oldowan stone tools for activities unrelated

to carcass butchery. Bone surface modifications, or, in this case the lack

thereof, also reveal that at many Oldowan sites stone tools were not being

used to butcher the fossil bones that co-occur with them. This pattern is

particularly pervasive in Bed I at Olduvai Gorge, where only the fauna from

the 1.8 million-year-old Level 22 at the FLK locality (the Zinjanthropus Floor
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or FLK Zinj) is demonstrably anthropogenic, even though stone tools occur

at many of the other Bed I sites (Bunn et al., 2010; Domı́nguez-Rodrigo et al.,

2007a, 2010b). For what then were the stone tools at these sites being used?

Given the undeniable importance of plant foods in early hominid diets

(Peters, 1987; Sept 1992), it is likely that resources like nuts and roots would

have dictated when and where hominids chose to concentrate their tool-

using activities at Olduvai (Peters and Blumenschine, 1995) and beyond

(Sept, 2001). Recent analyses of the Bed I lithics support this contention

(Dı́ez-Martı́n et al., 2010; Mora and de la Torre, 2005).

The menu of Oldowan hominids was relatively diverse. Butchery marks

have been documented on animals that range in size from hedgehogs to

elephants. This demonstrates that Oldowan hominids were willing and

able to acquire carcasses of animals that were in some cases significantly

larger than themselves and certainly larger than those procured by any

modern nonhuman primate (Boesch and Boesch, 1989; Stanford et al.,

1994; Uehara, 1997; Uehara et al., 1992; Watts and Mitani, 2002). Butchery

marks are also found on animals that have habitat preferences ranging from

open grassland to dense woodland (Blumenschine and Pobiner, 2007). This

indicates that Oldowan hominids exploited animals from a wide variety of

habitats, a pattern that also contrasts markedly with what is seen among

nonhuman primates.

Carnivores were involved, in some form or another, in the formation of

nearly every Oldowan site. Although it is often overlooked that early pioneers

of paleoanthropology in Africa acknowledged that carnivores might have

played some role in the accumulation and/or dispersal of faunal remains

at early archaeological sites (e.g., Leakey, 1971; Isaac, 1971), a fuller appre-

ciation of this was gained only with the formal integration of taphonomy

into paleoanthropology through the work of researchers like Brain (1967,

1969, 1981). The near ubiquity of carnivore involvement in the formation

of Oldowan faunas is attested by the presence of carnivore tooth marks (in

addition to other lines of evidence) at nearly every early site with decent

bone preservation (granting, of course, that some of the tooth marks might

have come from the hominids themselves). Therefore, the question in

many cases is not “Did carnivores contribute to this bone assemblage?” but

rather “How did carnivores contribute to this bone assemblage?”

Hominids and carnivores overlapped in their use of space and, in some

cases, overlapped in their use of individual carcasses. The co-occurrence of

stone tools and/or butchered bones with fossils that bear carnivore tooth

marks shows that hominids and carnivores used the same areas on the land-

scape during Oldowan times. The temporal dimension of this association
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100 Stone tools and fossil bones

is less clear, however: that is to say, were hominids and carnivores on site at

the same time, or was the overlap in space separated by months, years, or

even decades? The answer for both questions seems to be yes. For example,

there are sites such as FLK North in Bed I Olduvai (approximately 1.7 mil-

lion years old) where hominid tool-using activities and carnivore carcass

consumption appear to have been carried out in largely independent and

unrelated episodes, separated by at least months if not longer (Bunn et al.,

2010; Domı́nguez-Rodrigo and Barba, 2007a; Domı́nguez-Rodrigo et al.,

2010a). At this and other Oldowan sites, however, there are examples of

the co-occurrence of hominid and carnivore surface modifications on the

same bone specimen. Because soft tissue remains nutritionally attractive

for only a limited amount of time, this strongly suggests the sequential use

of the same individual carcasses by hominids and carnivores likely within

days (or less) of each other. This of course does not necessarily mean that

hominids and carnivores were vying with each other for control of carcasses

in dramatic competitive interactions (although this might have occurred

sometimes). For instance, Isaac (1983: 9; see also Binford, 1983; Isaac and

Crader, 1981), in his “common amenity” model, suggested that water, food,

and other amenities probably drew hominids and carnivores to the same

locations, in many cases independently, over many years.

In many cases, hominids enjoyed early access to carcasses. Perhaps no

debate has sparked as much controversy as that over the carcass acquisi-

tion strategies of Oldowan hominids. Were they active hunters that could

monopolize carcasses or timid scavengers relegated to picked-over carni-

vore kills? As with most debates, such a dichotomy grossly oversimplifies

the complexity of the topic. Nevertheless, let us briefly dichotomize here

before returning to a more realistic interpretation in a later section. Bunn

(1981, 1982, 2001, 2007; Bunn and Ezzo, 1993; Bunn and Kroll, 1986) has

argued consistently over the years that the frequency and anatomical loca-

tion of cutmarks clearly indicate that Oldowan hominids were butchering

fully fleshed carcasses. This implies that hominids were getting to car-

casses before carnivores could consume them. Blumenschine (1995) and

others (Capaldo, 1997; Selvaggio, 1998), based mainly on tooth mark and

percussion mark data, contend that hominids scavenged felid-killed prey

that they subsequently harvested for the remaining flesh scraps, bone mar-

row, and brain. Binford (1981; Binford et al., 1988) went even further and

suggested that hominids were limited solely to heavily ravaged carcasses

that provided nothing more than some marrow and perhaps bits of flesh.

It is of note that Oldowan taphonomists have roundly rejected Binford’s

claims because he paid little heed to the bone surface modification data,
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which has since contradicted his marginal scavenger hypothesis. Although

the previously mentioned arguments have been based mainly (although

not exclusively) on the evidence from the large and well-preserved FLK

Zinj assemblage, steadily accumulating evidence from other Oldowan sites

over the past 25 years or so has largely confirmed Bunn’s original argument

(Domı́nguez-Rodrigo, 2002; Domı́nguez-Rodrigo et al., 2002, 2007a; Ege-

land and Domı́nguez-Rodrigo, 2008; Ferraro, 2007; Pickering et al., 2004b,

2007, 2008; Pobiner et al., 2008). The general pattern that is emerging

involves (1) cut marks on the midshafts of long bones, and more specifi-

cally on hot zones; and (2) low tooth-mark frequencies and high percussion

mark frequencies on midshaft fragments. These two factors indicate that

hominids were gaining access to and butchering fully fleshed carcasses and

then breaking open long bones to access marrow. In most cases, carnivores

later scavenged the bone refuse.

Where do we go from here?

Now let us examine some issues that need to be worked out: OK, Oldowan

hominids were eating large animals, but how important were meat and other

animal products in their diets? There is no question that Oldowan hominids

exploited animals in ways unknown among other members of the Primate

order, and it is probably not a coincidence that the earliest evidence for this

exploitation coincides with the earliest stone tool technologies. To gauge

how significant this dietary shift was for hominid biology and behavior,

however, we must be able to say not only that hominids were getting ahold

of carcasses but how often they were doing so. If Oldowan hominids were

accessing carcasses on a regular basis, it is possible that a higher-quality diet

based on easy-to-digest animal protein and fat could have fueled changes

in brain size, modifications to life history, and expansions in range size

(Aiello and Wells, 2002; Antón et al., 2002; Kaplan et al., 2000; Leonard

et al., 2007). If so, Bunn’s (2007) assertion that “meat made us human” may

not be far off the mark.

Although there are several lines of evidence that can and should be

used to examine this idea, butchery marks are the most critical because

they alone document unambiguously the processing of carcasses by early

hominids. We already know from butchery mark data that hominids in

many cases were able to gain early access to carcasses, although this does

not necessarily mean that animal products were integral components of

their diets. What about the number of Oldowan sites that show evidence

of butchery? Of the seventy-nine Oldowan assemblages from Africa that
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have preserved faunal material, thirty-one, or about 39% of them, preserve

butchery marks of some sort (Pobiner, 2007: tables 8.1 and 8.2).1 Given that

the faunas from some of those sites that lack butchery evidence suffer from

poor cortical preservation, it is likely that this number is actually higher.

Butchery evidence is rare at Oldowan sites outside of Africa, although this

is likely to change as the sample of sites of this age increases (e.g., Martı́nez

et al., 2010). This suggests that carnivory was a temporally and spatially

widespread behavior, at least among Oldowan populations in Africa.

Another way to look at this problem is to determine the actual number

of mammal carcasses that were butchered by hominids at Oldowan sites.

Data on the minimum number of individuals (MNI) that were butchered

are available from only a few sites. Two of the Olduvai sites show rela-

tively high frequencies of butchered animals: FLK Zinj has the most, with

a butchered MNI of eighteen (Domı́nguez-Rodrigo and Barba, 2007b),

whereas at BK there is evidence of at least eleven butchered carcasses

(Egeland and Domı́nguez-Rodrigo, 2008), although new excavations at the

site will raise this total (Domı́nguez-Rodrigo et al., 2009). Pobiner (2007)

reports butchered mammal MNIs of between nine and eleven at three

1.5-million-year-old Okote Member sites from Koobi Fora. These numbers

actually compare quite favorably to those observed among modern hunter-

gatherer camps (Bartram, 1993; Bunn et al., 1988; O’Connell et al., 1988a).

However, we know that modern camp refuse represents usually less than a

year of occupation, whereas the formation times of the Oldowan sites must

be inferred. One can see, for example, how different the carcass acquisition

rates at FLK Zinj would be if the assemblage formed over the course of no

more than three years, as Bunn and Kroll (1987) have argued, relative to

what they would be it had taken a decade or more to accumulate (Potts,

1986). The same issue must be worked out at other Oldowan sites as well.

OK, Oldowan hominids were gaining early access to carcasses in most

cases, but were they actually hunting? The hunting prowess of Oldowan

hominids really hits at the core of their humanity, because many think

that proficient hunting of larger mammals (i.e., weighing more than about

twenty or thirty pounds) indicates a more human-like adaptation. To discern

active hunting from other forms of early carcass access such as mass deaths

(e.g., mass drowning; Capaldo and Peters, 1995, 1996; but see Domı́nguez-

Rodrigo et al., 2010b) or power scavenging (i.e., aggressively driving

1 Pobiner (2007) lists 77 assemblages with 29 preserving butchery marks. Subsequent to her
summary, butchery marks have been identified at two additional sites/levels: FLK North
Level 4 (Domı́nguez-Rodrigo et al., 2007b) and Swartkrans Members 1 and 2 (Pickering
et al., 2008) for a total of 79 total assemblages with 31 preserving butchery marks.
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carnivores off kills; sensu Bunn, 1996: 322) is extremely difficult to do with

bone surface modifications. To demonstrate this unequivocally with surface

mark data, one would need to identify impact marks created by projectiles

(Letourneux and Petillon, 2008; Smith et al., 2007). Without this sort of

evidence, which is currently lacking for the Oldowan, we are forced to

speculate a bit. Bunn (e.g., 2007: 198) favors hunting for the acquisition

of smaller animals, because lions and hyenas can consume such carcasses

very quickly, and advocates power scavenging as the most likely acquisition

strategy for medium-sized animals. Domı́nguez-Rodrigo and Barba (2006)

point out that the ability of modern hunter-gatherers like the Hadza to

drive predators off kills is based largely on their use of heavy bows (which

are effective up to 40 meters). Given the lack of bow technology during

the Oldowan, they therefore argue that confrontational scavenging would

have been too dangerous an undertaking. This, in their opinion, leaves

active hunting as the most likely alternative. Although no unambiguous

hunting implements are preserved at Oldowan sites, Domı́nguez-Rodrigo

et al. (2001: 298) have suggested that evidence for woodworking at Peninj,

a 1.5 million-year-old site in Tanzania, might indicate the production of

rudimentary spears. Is this all to say that Oldowan hominids never passively

scavenged carcasses? Of course not; they certainly did when the opportu-

nity presented itself, and in fact modern hunter-gatherers are always on the

look-out for scavengeable carcasses (O’Connell et al., 1988b). Bunn and

Ezzo (1993: 388) probably put it best when they state that hominids used a

“flexible and sophisticated strategy of carcass acquisition that involved as the

dominant methods active, confrontational scavenging to acquire large ani-

mals and both active scavenging and opportunistic hunting to acquire small

animals. As part of this flexible, broadly based strategy, passive scavenging

probably did occur, but not enough for it to be reflected as a significant,

dominant factor in the known archaeological record.”

Conclusion

The take-home messages from this chapter should be

1. As long as we can identify them correctly, bone surface modi-

fications represent an unambiguous link between a carcass and

whatever interacted with that carcass (in our case, hominids and

carnivores).

2. Bone surface modifications are absolutely critical to any discussion

of the formation of a bone assemblage, and thus to any broader

discussion of Oldowan hominid behavior.
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3. Familiarity with the diagnostic features of surface marks should be

gained through the study of actualistic assemblages of known deriva-

tion. These morphological features cannot be applied uncritically

to fossil assemblages that have experienced complex taphonomic

histories, however. Therefore, a configurational approach to mark

identification should always be practiced.

4. Fossil samples must be corrected to account for poor surface preser-

vation and/or differential breakage before they are compared with

modern actualistic assemblages.

5. Both the frequency occurrence and anatomical patterning of surface

modifications are important factors to consider in determinations of

hominid and carnivore access to carcasses.

6. Surface marks have taught us quite a bit about the lifeways of

Oldowan hominids. We now know, for example, that (1) hominids

used Oldowan tools both to butcher animals and, most likely, to

process plant resources; (2) hominids exploited a greater diversity of

mammalian prey than any nonhuman primate; (3) carnivores were

active in the creation of nearly every Oldowan bone assemblage; (4)

hominids and carnivores used the same places on the landscape, and

in some cases fed from exactly the same carcasses; and (5) hominids

were capable of gaining early access to fully fleshed carcasses.

7. Other issues are a bit cloudier when it comes to the use of surface

modification data. For instance, we cannot be sure just how important

animal resources were in the diets of Oldowan hominids based solely

on surface marks. As it currently stands, the issue of active hunting

is also an open question (although conclusive evidence of such is

potentially attainable through bone surface modifications).
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