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Abstract:

Ever since Mary Leakey's initial excavations in the 1960s, TK (Thiongo Korongo) has been
recognized as one of Olduvai Gorge's most important Acheulean sites. The significant
concentrations of lithics and fauna reported by Mary Leakey have been augmented in recent
years by Santonja et al., who argue that human activities appear to be largely related to the
manufacture of lithic implements. In contrast, the faunal remains have been interpreted to be of
uncertain origin, and their anthropogenic nature remains in question. This paper presents new
data on the formation of the TK bone accumulation. Our results reveal a diverse list of taxa,
many of which reflect open habitats. Only limited evidence of anthropogenic activity is
documented.
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Article:
1. Introduction

At Olduvai Gorge (Tanzania), multi-taxonomic faunal sites are particularly numerous, although
their interpretation remains contentious. The large and well preserved lithic and faunal
assemblages from FLK (Frida Leakey Korongo), for instance, have generated a more-or-less
continuous debate, from Leakey's (1971) pioneering work to the recent studies of Dominguez-
Rodrigo et al. (2014a). The collection from Level 22 (the Zinjanthropus Floor, or FLK-Zinj) has
been presented as the earliest evidence for repeated hunting of small and medium-sized
ungulates (Dominguez-Rodrigo and Barba, 2006, Dominguez-Rodrigo et al., 2007, Dominguez-
Rodrigo et al., 2010, Dominguez-Rodrigo et al., 2014a), although models based on opportunistic
scavenging have also been prevalent in the literature (Blumenschine and Selvaggio,
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1988, Blumenschine, 1989, Blumenschine, 1991, Blumenschine, 1995, Capaldo and
Blumenschine, 1994, Capaldo, 1997, Pante et al., 2012).

Other Bed I occurrences such as those at FLKN and FLKNN preserve deep, multi-leveled
deposits of taxonomically diverse faunal assemblages in association with lithic artefacts (Leakey,
1971). Unlike FLK-Zinj, however, taphonomic analyses on these assemblages suggest only
limited hominin, and significant carnivore, intervention with the bone accumulations
(Dominguez-Rodrigo et al., 2007, Bunn et al., 2010). This mirrors the situation in Bed II, which
preserves numerous sites with diverse taphonomic histories.

At BK (Bell's Korongo), for example, hominins enjoined recurrent primary access to numerous
carcasses from a wide range of sizes, from about 50 kg to >5000 kg (Egeland and Dominguez-
Rodrigo, 2008, Dominguez-Rodrigo et al., 2009, Dominguez-Rodrigo et al., 2014b). Other sites
experienced more complex taphonomic histories. SHK (Sam Howard Korongo) yielded a large
lithic accumulation associated with the remains of different animals (Diez-Martin et al., 2014).
Taphonomic studies demonstrated that hominidns had access to the flesh of hippopotamids and
equids, although most of the bone accumulation is interpreted as a palimpsest of uncertain origin
(Dominguez-Rodrigo et al., 2014c). The bone accumulations from other Bed II sites such as
MNK or HWK East Levels 35 are reconstructed to be largely of carnivore origin with only very
limited human intervention (Dominguez-Rodrigo et al., 2007, Egeland, 2007, Egeland,

2008, Egeland and Dominguez-Rodrigo, 2008). Sites such as TK (Thiongo Korongo) and FC
West contain very poorly preserved faunal assemblages, which hinders definitive taphonomic
interpretations (Egeland, 2007, Egeland, 2008, Egeland and Dominguez-Rodrigo, 2008). Some
authors consider TK to be a Type A assemblage due to the contrast between the large number of
lithics and the scarcity of bone remains (Isaac and Crader, 1981, de la Torre, 2004). This paper
discusses the zooarcheology and taphonomy of the Lower Floor at TK (TKLF) based on recent
re-excavation of the site.

Our work shows that the site comprises assemblages with different depositional histories and
these reflect hominin stone tool manufacture activity with no securely identified indication of
any significant bone modification. This casts doubts on functional interpretations of lithics and
bones at sites where taphonomic studies have not been made. One of the most relevant examples
in this regard can be found in the analysis of Olduvai Bed I sites. These sites were once
interpreted as living floors (e.g., Leakey, 1971) given the discrete vertical clustering of spatially-
associated stone tools and fossils bones,and subsequent taphonomic research showed a lack of
functional association between most stone tools and bones at several of these sites (Dominguez-
Rodrigo et al., 2007). Therefore, most of these sites were palimpsests with either a lack of
hominin input or very marginal participation of hominins in the accumulation and modification
of fauna. TK is another example of a similar type of palimpsest.

2. TK (Thiongo Korongo), Olduvai Gorge, Tanzania
2.1. The site

TK is located in a lateral north-south running korongo (gully) situated on the north slope of
Olduvai's Main Gorge approximately 2 km east of the junction with the Side Gorge (Fig. 1). The



site was identified in 1931 by L. Leakey, who noted the presence of hand axe made on quartzite
slabs and correctly identified the stratigraphic position of the site within Bed II (Leakey, 1951:
85). However, excavations were not conducted until 1963 when two areas, Trench I and Trench
11, around 46.4 m? and 40.5 m? respectively, were excavated by M. Leakey (1971: 172-197).
Although materials were found scattered throughout the deposits, M. Leakey identified two main
archaeological levels, termed the Upper Floor (TKUF) and Lower Floor (TKLF), as livings
floors. Leakey (1971), as well as Isaac and Crader (1981), argued that both TKLF and TKUF
were only minimally altered during burial. Petraglia and Potts (1994), in contrast, suggested that
the site experienced prolonged exposure prior to burial, which resulted in the displacement of
small items and reorganization of the site down slope.

Fig. 1. Position of TK in a lateral korongo in Olduvai Gorge (modified from Hay, 1976) and two
pictures of the 2011 excavation.

Between 2010 and 2012, The Olduvai Paleoanthropological and Paleoecological Project
(TOPPP) has excavated an additional 113 m? in two zones (Fig. 2), Sector A (SA) and Sector B
(SB) (Santonja et al., 2014), immediately adjacent to M. Leakey's 1963 trenches. This new work
reveals that the materials in M. Leakey's (1971: 186) Trench II correspond stratigraphically and
topographically to TKLF and, hence, do not correspond with TKUF (see discussion in Santonja
et al., 2014: 184). This has significant consequences, as some authors have assumed that the
lithic material from Leakey's Trench II, as those from Trench I, can be ascribed to TKUF (de la
Torre, 2004: 258 ff), when they belong to TKLF.

Recent technological and paleoeconomic study of 5805 artifacts (including 3812 pieces of
shatter) from TKLF and the channel in SA show that a majority of the raw material is quartzite
that likely derives from Naibor Soit, an inselberg located a few hundred meters from the site.
Two different chaines opératoires were identified in TKLF: one based on obtaining flakes from
volcanic rocks and quartzite, and the second on the manufacture of standardized hand axe that
were produced, used, and abandoned at the site (Santonja et al., 2014). In addition to the
artifacts, numerous small cobbles between 6 and 29 g and sizes from 2 x 2 to 3 x 4 cm have been



observed. Santonja et al. (2014) argue that these materials may have been incorporated via
natural mechanisms such as fluvial transport or overland flow conditioned by a small channel.

howing the location of Trenches I and II
(excavated by M. Leakey in 1963) and the seasonal streams that drain this sector of the korongo.

2.2. Geology

From bottom to top, the volcanic and sedimentary outcrops of TK display parts of Hay's
(1976) Beds II, 111, and IV. The stratigraphic section (Fig. 3) is about 8.90 m thick, of which
7.25 m corresponds to Bed II, 1.25 m to Bed III, and 0.40 m to Bed IV (Santonja et al., 2014).

In the TK area, Bed II begins with dark gray clays (10 YR 4/1, Munsell Soil Color Charts, 1994)
and a channel facies of yellowish (10 YR 5/6) sandy clay loam. Over this level appears
alternating light brownish (10 YR 6/2) and sandy clay eroded by sandy clays with cross-
stratification that form a channel 1.5 m wide and 0.5 m deep, following a north-south direction.

The upper sequence is more complex. Light gray (2.5 Y 7/2) or pale yellow (2.5 Y 8/2) tuffs of
several textures are observed, ranging from clay loam to sandy clay, particularly towards the top.
A loamy sand channel facies is also interblended, displaying planar cross-stratification with a
NW-SE depositional direction. In the NNE-SSW transversal cut, the size of the outcrop section
is approximately 12 m in SA, with a maximum thickness of 0.40 m. This thin channel facies rests
upon and partially covers TKLF, which in turn overlies a very pale brown (10 YR 8/2) calcrete
layer some 7—8 cm thick.

TKUEF is found in a stratigraphic discontinuity about 1 m above TKLF and between two tuff
levels. It is limited by a discontinuous calcrete some 10—15 cm thick, thicker towards the east
and west.

The upper sequence of Bed Il is characterized by several brown (10 YR 5/3) or pale brown

(10 YR 6/3) clay sublevels with carbonate nodules and root casts. A very pale brown chalky
horizon (10 YR 8/2), containing up to 60% calcium carbonate, intercalates in the clay sequence.
On top of this level there is light gray tuff (10 YR 7/2)that was eroded and subsequently filled by
a pale brown (10 YR 6/3) sandy clay loam that is cross-stratified north-south. The upper part of
Bed II is a clay deposit with calcium carbonate nodules and root casts.
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Fig. 3. Stratigraphic section of TK.
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Bed III is composed of reddish brown (5 YR 5/4) clays and a coarse sand channel facies with
granules (2—4 mm) and cross-stratification. At the top of the section a 60-cm-thick ignimbrite
(Bed IV) was eroded on top by a rill saturated with gravel in a sandy clay loam matrix.

TKLF presents a stratigraphic discontinuity (Fig. 3) and a flat topography of light brownish gray
(10 YR 6/2) clay in the westernmost area, covered by a calcrete level that increases in thickness
towards the east. TKLF lies from west to east over both levels and is partially covered in the SA
central section (Fig. 3) by a loamy sand channel facies in which a lamination structure typical of
low-energy water flows can be observed. A pale yellow (2.5 Y 8/2) sandy clay tuff sits over both
the loamy sand channel facies and the artifact level found in the eastern zone of SA.

The chronology for TK is tied largely to Tuff II°, which outcrops about 0.8 km south-east of TK
at the site of JK (Leakey, 1971:16-17, Fig. 1; Hay, 1976: plate 2). Recently, a “°Ar/*’Ar date of
1.353 +£0.035 Ma was acquired for Tuff II° several kilometers from BK (Dominguez-Rodrigo
et al., 20144d).

3. Study of the fauna
3.1. Previous faunal evidence

Leakey (1971) provided the first report on the fauna of TK, which consisted of 230 fragments
from TKLF and 147 from TKUF. Their scarcity of bones, which contrasted starkly with the
abundant lithic industry, persuaded Isaac and Crader (1981) to conclude that both levels were
Type A sites. In taxonomic and ecological terms, open landscape animals dominated, with
Equidae being the most numerous group (Leakey, 1971) followed by bovids, particularly
Alcelaphinae (Gentry and Gentry, 1978). Hippotragus gigas, Pelorovis oldowayensis,
Rhinocerotidae, Suidae, Hippopotamidae and Giraffidae were identified as well.

Hill (1983) observed a hole on a fragment of a hippopotamus jaw (TK OLD 63 I/L.F. 1972
2043), which he attributed to the behaviour of Homo erectus. Similar pits are created by people
around Lake Turkana when they extract the nutritious pulp inside the large canine root. He also
identified cuts that were in positions comparable to those seen on hippopotamus jaws consumed
by the Dassanetch tribe. The absence of carnivore tooth marks or any other evidence for natural
boring led Hill (1983) to propose that the jaw fragment may have been manipulated by Homo
erectus. Although he did not specify if the bone was recovered from TKLF or TKUF, it likely
derived from the former, as he noted its association with 2000 lithic artefacts, 15 hand axes, and
an Oldowan living floor. This could fit the description for the Developed Oldowan proposed

by Leakey (1971), which incorporated the 15 bifaces identified in Trench II ascribable to the
Lower Floor, as suggested by Santonja et al. (2014).

A more recent faunal analysis (Egeland, 2007) studied 46 remains from TKLF and 78 from
TKUF. Bovidae was the most numerous taxonomic group in the TKLF assemblage, comprising
47.8% of the remains, followed by Equidae (45.7%), Hippopotamidae (4.3%), and Suidae
(2.2%). In the case of TKUF, Bovidae comprised 48.7% of the remains, followed by

Equidae (37.2%), Hippopotamidae (10.3%), Rhinocerotidae (2.6%), and Giraffidae (1.3%). The



skeletal profiles for most taxa were characterized by the abundance of cranial elements. Only
bovids and hippopotamus yielded appendicular elements at the site.

The surfaces of bones from the 1963 excavations were found to be poorly preserved, with only
8.8% and 5.5% of the bones from TKLF and TKUF, respectively, scored as “well preserved”
(Egeland, 2007, Egeland, 2008; see also; Leakey, 1971, Monahan, 1996). This poor preservation
may reflect an extended period of sub-aerial exposure and likely hindered the identification of
surface modifications (only three tooth marks were observed). Although numerous bones
preserved green fractures, it was unclear whether they resulted from the activities of hominins or
carnivores. Given the incomplete representation of skeletons, it was suggested that some parts of
the carcasses were transported off-site or otherwise scattered after their active accumulation
(Egeland, 2007). Nevertheless, the origin of the bulk of the TK bone assemblage remained
unknown, as no definite taphonomic evidence indicated that hominins played a substantial role in
its formation (Egeland and Dominguez-Rodrigo, 2008).

4. Materials and methods

The materials discussed here were retrieved through the 2010-2012 excavations described
by Santonja et al. (2014). A total of 1065 bone remains were recovered from TKLF.

Taxonomic identifications were based on reference material. However, in those cases when such
determination was not possible, fragments were attributed to animal weight/size classes
following Bunn (1982), where “small” refers to Bunn's (1982) sizes 1 (animals <50 kg, such as
Thompson's gazelles) and 2 (50125 kg, like impalas); “medium” to size 3a (125-250 kg, such
as topis) and 3b (250-500 kg, like zebras); and “large” to sizes 4 (>500—1000 kg, such as elands
or buffaloes), 5 (1000—4000 kg, rhinoceros) and 6 (>4000 kg, elephants).

Faunal remains were quantified by NISP, MNI, and MNE. NISP determination follows the
protocol described in Yravedra and Dominguez-Rodrigo (2009). MNI estimates considered
element side and ontogenetic age (Brain, 1969). For skeletal profiles were organized into four
anatomical regions: cranial (i.e., horn, cranium, mandible, and teeth), axial (vertebrae, ribs,
pelvis, and scapula, sensu Yravedra and Dominguez-Rodrigo, 2009); upper appendicular limbs
(humerus, radius, ulna, femur, patella, and tibia), and lower appendicular limbs (metapodial,
carpals, tarsals, phalanges and sesamoids). Long limb bones were further divided into upper
(humerus and femur), intermediate (radius and tibia), and lower (metapodial) bones
(Dominguez-Rodrigo, 1997). We are aware that pelves and scapulae have traditionally been
classified separately from axials, but given their overall similarity in bone texture and
taphonomic properties to traditional axial bones, we decided to group them with vertebrae and
ribs, as all respond exactly the same to post-depositional weathering and carnivore ravaging
processes (see Yravedra and Dominguez-Rodrigo, 2009 for explanation).

It is now well-known that MNE estimates of long limb bone MNE at Olduvai and elsewhere
often differ substantially depending on whether epiphyses or shafts were used for element
identification (Pickering et al., 2003, Cleghorn and Marean, 2004, Marean et al., 2004,
Dominguez-Rodrigo et al., 2007). The major issue with MNE estimates is to determine how best
to determine overlap between specimens. have developed Although GIS-based approaches



(Marean et al., 2001) can be very useful with extremely large assemblages where physical
overlap is difficult, for smaller assemblages such as that from TK we preferred to determine
document overlap by hand. Thus, an integrative approach was applied using the bone section
divisions proposed by Patou-Mathis, 1984, Patou-Mathis, 1985, Miinzel, 1988, and Delpech and
Villa (1993) and as described in detail by Yravedra and Dominguez-Rodrigo (2009). In this
system, shafts were divided into equal-size sectors, regardless of the area of muscular insertion.
These sectors (upper shaft, mid-shaft, lower shaft) can be easily differentiated and oriented
(cranial, caudal, lateral, medial). Yravedra and Dominguez-Rodrigo (2009) describe the criteria
used in the division of each shaft sector, taking into account the orientation of each specimen.
Long limb element identification considers Barba and Dominguez-Rodrigo's (2005) division by
shaft thickness, section shape, and medullary surface properties. Following element and shaft
sector identification, MNE is quantified by comparing all the specimens of the same element and
size group by element size, side, ontogenetic age, and biometrics (Lyman, 1994).

Several procedures were followed to reconstruct site formation processes, assess site integrity,
and evaluate the contribution of various biogenic agents to the faunal assemblage. The impact of
water activity was estimated with fragment size distributions and the presence of abrasion,
polishing, and carbonates.

The analysis of size distribution was carried out at three levels. First, size-sorting was examined
for all fragments. Regarding bone fragmentation indices, bones were divided into several
categories according to their length: <20 mm, 21-40 mm, 41-60 mm, 61-80 mm, 81-100 mm
and >101 mm. At a second level, only long bone fragments were considered, as cancellous axial
bones undergo different fragmentation patterns than do denser limb bones (Dominguez-Rodrigo
and Martinez-Navarro, 2012). Based on the idea that anthropogenic bone concentrations yield
greater fragmentation than those of carnivore, the amount of preserved shaft circumference is
also considered. Bunn (1982) proposes three categories for shaft circumference where (1) stands
for shaft circumference <50%; (2) covers the >50% range; and (3) the shaft circumference is
100 > 75%. At a third level, only those long bone fragments showing green breakage were
considered. This distinction is important as diagenetic (dry) breakage is relatively common in the
assemblage and thus the specimen size distribution at recovery may be quite different from the
original deposit. Here, the term “breakage” is preferred to “fragmentation” (Brugal and Fosse,
2004), following the English-speaking tradition. Although the term “fragmentation” has been
used to imply non-anthropogenic breakage, traditional studies on bone breaking processes refer
to “bone breakage by carnivores” (Bunn, 1981: 575) and “bone breakage by humans and
carnivores” (e.g., Capaldo and Blumenschine, 1994: 727). This terminology is preferred in the
present work and both breakage and fragmentation will be used as synonymous. The segregation
in the use of these terms, we believe, artificially emphasizes the distinctiveness of humans.
Taphonomy usually embodies all organisms within the same natural scale and separates
processes (i.e., breakage) from agency (dynamic or static loading by humans and other
carnivores).

Signs of polishing or abrasion were recorded as a final estimation of fluvial activities at the site.
Polishing or abrasion may be found in both transported and non-transported assemblages
exposed to moving water and sediments, such as those found in sand strata (Thompson et al.,
2011). Several bones show cracks and diagenetic breakage planes that caused further



fragmentation during excavation. Identification of breakage planes as green or dry (including
diagenetic) followed Villa and Mahieu's (1991) classification: dry breakage planes tend to be
longitudinal and/or transversal to the bone long axis, have a nearly 90° angle between the cortical
and medullary surfaces, and show an uneven breakage plane surface with micro-step fractures
and a rough texture. Green breakage planes show smoother surfaces and are more likely to be
obliquely oriented to the bone long axis. Breakage pattern analysis followed methods outlined

by Dominguez-Rodrigo et al. (2007). Weathering stages were also observed following
Behrensmeyer (1978) to estimate exposure time. A spatial analysis of bones with evidence of
abrasion-polish, carbonate encrustation, trampling-microabrasion, and biochemical marks was
carried out to evaluate if taphonomic phenomena are focused in specific areas.

Bone surface modifications such as cut, percussion, and tooth marks were systematically
examined with 10X-20X hand lenses and strong light (Blumenschine, 1988, Blumenschine,
1995). The diagnostic criteria defined by Bunn, 1982, Potts and Shipman, 1981, and Dominguez-
Rodrigo et al. (2009¢) guided the identification of cut marks, whereas tooth marks were recorded
following Binford (1981) and Blumenschine, 1988, Blumenschine, 1995. Finally, the
identification of percussion marks was based on Blumenschine and Selvaggio

(1988) and Blumenschine (1995). For comparative purposes, surface modification frequencies
(based on NISP) were calculated separately for epiphyses and shafts (Blumenschine, 1988,
Blumenschine, 1995) and quantified by element type and bone section (Dominguez-Rodrigo,
1997, Dominguez-Rodrigo and Barba, 2005) as well. The presence of tooth, percussion, and cut
marks was considered for the whole assemblage, whereas estimated percentages included only
well-preserved bone surfaces.

Taxonomic determinations were based mainly on teeth. However, in the case of Sivatherium
and Pelorovis, species determination considered the biometrics of metapodials, and for
Gazella sp. size 1 and 2, phalanx size was used due to the absence of teeth in the assemblage.

5. Results
5.1. Taxonomic profiles and skeletal patterns

A minimum of 47 individuals are represented by the skeletal remains from TKLF (Table 1). The
estimation of MNI, is based on teeth. Several of these teeth appear highly fragmented, which
implies long-term weathering and long exposure of carcasses prior to burial.

Unfortunately, carbonate concretions made species-level diagnosis difficult for most specimens.
In most cases, only genus or tribe could be reliably identified. Connochaetes sp.,

Megalotragus sp., Redunca sp., Kobus sp., Syncerus sp., and Metridiochoerus sp. A partial
dentition of a size 3a alcelaphine was tentatively identified as Parmularius sp.

Adult animals dominate the TKLF samples. The animals represent a diversity of habitats, with
open-habitat species such as antilopines, alcelaphines, suids, and equids occurring with water-
dependent fauna, crocodile and hippopotamus (Table 1). From a taxonomic point of view, equids
and alcelaphines are the most abundant animals. Overall, and despite the fact that we did not



identify elephant or Hippotragus remains, this taxonomic list is more diverse than that reported

by Leakey (1971).

Table 1. Minimum number of individuals (MNI) identified in TKLF where ad1: senile, ad2:

adult, ad3: prime adult, J: juvenile, I: infant.

Ad2

[Equus oldowayensis
[Hipparion sp.
Ceratotherium sp.
[Hippopotamus sp.
Giraffidae sp.
Sivatherium sp.
Syncerus sp.
[Pelorovis sp.
\Alcelaphini size 2
|Parmularius sp.
\Alcelaphini size 3a
\Alcelaphini size 3b
Connochatetes sp.
\Megalotragus sp.
\Antilopini size 2
\Antidorcas sp.
Gacella sp. Size 1
Gacella sp. Size 2
Gacella Thompson
Tragelaphini size 4
Redunca sp.

[Kobus sp.
(Metridiochoerus sp.
Suidae size 3
Suidae size 2

Bird

Crocodile

Total
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Of the total of 1065 specimens, only 526 (49.4%) could be attributed to carcass size (Table 2).
Medium-sized carcasses (NISP = 262) are more common than either large (NISP = 156) or small

carcasses (NISP = 108) (Table 2).

Table 2. Skeletal profiles in small (size 1-2), medium (size 3a, 3b) and large mammals (size 4—

6) in NISP and MNE at TKLF.

NISP lower MNE lower
Element Medium Small Medium Large
Horn 2
Skull
Mandible 1 1 1
Teeth 16 110 39




NISP lower MNE lower
Element Small Medium Large Small Medium Large
Vertebrae 5 8 1 2 2 1
Ribs 7 11 2 2 5 1
Scapulae 1 2 1 2
Pelvis
Humerus Prox. ep.
Shaft 1 1
Dist. ep. 1 1
Femur Prox. ep.
Shaft 1 4 1 2
Dist. ep. 1 1
Hum.-fem. indet. Epiph. 1
Shaft 4 14 8
Radius-ulna Prox. ep.
Shaft 2 1
Dist. ep. 1 1 1 1
Tibiae Prox. ep. 1 1
Shaft 5 11 6 2 7 3
Dist. ep. 1 1
Rad.-tib. Indet. Epiph.
Shaft 1 2
Metacarpal Prox. ep. 2 2 2 2
Shaft 2 2 2 1
Dist. ep. 2 1 2 1
Metatarsal Prox. ep. 1 1
Shaft 3 3 2 4 3 2
Dist. ep. 1 2 1 2 1 1
Complete 1 1
Metapodial Epiph 3 1
Shaft 1 6
Carpal 2 3 4 2 3 4
Tarsal 1 2 1 2
Phalanges 3 2 1 3 2 1
Sesamoid 1 1 1 1
Indeterminate 49 76 71
Total 108 262 156 43 147 64
%NISP %MNE
Cranial 3.7 0.4 0.6 7.0 0.7 1.6
Tooth 14.8 42.0 25.0 37.2 74.8 60.9
Axial bones 11.1 7.6 3.2 9.3 54 6.3
Upper limbs 5.6 7.3 6.4 4.7 2.0 1.6
Medial limbs 6.5 5.7 5.8 7.0 6.1 7.8
Lower limbs 7.4 53 9.0 20.9 6.1 10.9
Compact bones 5.6 2.7 4.5 14.0 4.8 10.9
Indeteminate 45.4 29.0 45.5 0.0 0.0 0.0

The TKLF skeletal profiles are composed mainly of dense bone parts (Table 2). Cancellous
bones such as axial elements (scapulae, pelves, ribs and vertebrae), compact bones (carpals,




tarsals and phalanges), and long bone epiphyses are underrepresented in MNE counts. Although
most taxonomic identifications were based on dental material, they are still underrepresented
relative to MNL

All animal sizes follow a similar pattern of skeletal part representation; namely, under-
representation of axial bones. The MNE for this skeletal section is less than 10% of all elements.
Ribs and vertebrae are only marginally represented and no pelvis has been identified in the
assemblage. Compact bones are also scarce and appendicular specimens show a dominance of
denser elements such as metapodials or tibial shafts, whereas humeri and femora are virtually
nonexistent (Table 2).

Based on the MNE:MNI ratio, it is clear that most of the skeletons are incompletely represented.
Many elements are only marginally present, which suggests a strong taphonomic bias in their
preservation and/or deposition due to post-depositional carnivore ravaging, hydraulic
disturbance, and/or prolonged exposure to subaerial weathering or a combination of all these
processes.

5.2. Bone fragmentation and breakage

The TKLF faunal assemblage is highly fragmented, as 35% of specimens are smaller than

40 mm from large size carcasses (Fig. 4) and 60% from small and intermediate size carcasses
(Fig. 5, Fig. 6). Bone fragments between 21 and 40 mm are the most abundant when considering
all bone types (Fig. 4, Fig. 5, Fig. 6). The pattern is slightly different for long bone fragments and
green broken limb fragments. In this case, a majority of the pieces are between 40 and 60 mm
and there is a clear under-representation of specimens smaller than 20 mm (Fig. 4, Fig. 5, Fig. 6).
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Fig. 4. Distribution of frequencies of bone specimens of Large size carcasses (size 4—6

after Bunn, 1982) from TKLF for the complete sample as well as for limb bones, green broken
limbs and dry broken specimens. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 5. Distribution of frequencies of bone specimens of Intermediate size carcasses (size 3a-3b
after Bunn, 1982) from TKLF for the complete sample as well as for limb bones, green broken
limbs and dry broken specimens. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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Fig. 6. Distribution of frequencies of bone specimens of Small size carcasses (size 1-2

after Bunn, 1982) from TKLF for the complete sample as well as for limb bones, green broken
limbs and dry broken specimens. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

A significant degree of fragmentation is also reflected in the circumference index of long bones.
There is a dominance of shafts with less than 50% of the original circumference. Only the more
dense elements, such as metapodials, preserve larger circumferences. The analysis of 335 long
bone shafts, including both identifiable and non-identifiable fragments, resulted in 87% of
indeterminate shafts with circumferences smaller than 50% (Fig. 7). The high fragmentation of
elements affect teeth as well, many of which are crushed into small fragments, making the
estimation of species in 133 tooth specimens (57%) and of animal size in 165 teeth (70.8%)
impossible.
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Fig. 7. Distribution (%NISP) of Bunn's (1982) long bone shaft circumference types in TKLF for
ULB (Upper Limbs Bones, Humerus and Femur), ILB (Intermedial Limbs Bones, Tibia and
Radius), LLB (Lower Limbs Bones, Metapodials) and all long bone shafts.

Table 3. Alterations on bones with poor cortical preservation at TKLF.

NISP TKLF %
INISP Total included determinable and non determinable 1065 100.0
Bones with poor cortical preservation 722 67.8
Bones with carbonate concretion 539 50.6
Bones with abrasion and polishing 407 38.2

Bones with poor cortical preservation
INISP 722 100.0
Bones with carbonate concretion 461 63.9
Bones with abrasion and polishing 288 39.9

Table 4. Bones with well-preserved surfaces and different alterations at TKLF.

NISP %
Bones good cortical preservation, excluding teeth 248 100
Microabrasion or trampling 58 23.4
Total bones with weathering 26 10.5
Total bones with weathering stage 1 11 4.4
Total bones with weathering stage 2 8 3.2
Total bones with weathering stage 3 7 2.8
Bones with biochemical alteration 35 14.1
Bones with teeth marks 4 1.6
Bones with percussion marks 1 0.4
Bones with cut marks 0 0.0
Bones with green fracture 99 39.9
Bones with dry fracture 149 60.1

The intense fragmentation documented here contrasts with the data provided by Leakey (1971),
who did not mention bone specimens smaller than 40 mm. This suggests that the 1963 collection
probably reflects selective retention of materials.



This intense fragmentation likely resulted from diagenetic processes, as the distribution of green-
broken limb specimens is unlike the distribution found for the sum total of specimens, whereas
the representation of dry-broken bones is identical (Fig. 4). Furthermore, nearly 87% of the 335
long bone shaft fragments experienced dry fragmentation. Conversely, only 67 (20%) of the
fragmented shafts show green fractures. No notches were observed and the evidence of
percussion marks or tooth marks is limited (Table 4). Thirty-one percent and 61%, respectively,
of axial and long bone epiphysis fragments show dry fractures. This all suggests that biotic
agents were not responsible for most of the bone breaking.

5.3. Bone surface modification

Leakey, 1971, Hill, 1983, Monahan, 1996, and Egeland, 2007, Egeland, 2008 all noted the poor
preservation of the bones found at TK. Our sample shows a similar pattern, with poor
preservation of cortical surfaces documented on 67.8% (NISP = 722) of the total number of
specimens. This poor preservation may be conditioned by a series of phenomena. The most
frequent process is post-depositional (and frequently diagenetic) alterations, such as concretions
and carbonates, which affect 539 fragments (50.6% of the total sample) (Table 3). The severity
of encrustation prevents the identification of many remains: 403 fragments (68.4% of the total
sample with carbonates) are indeterminate specimens. Abrasion and polishing also affect bone
surface preservation. In this case, 40% (NISP = 288) of the bones with poor cortical preservation
show this kind of modification (Table 3).

Several specimens show modifications that indicate exposure to water, humidity, or other
physical processes. Of those specimens with well-preserved surfaces, 149 (60.1% of well-
preserved sample) exhibit diagenetic fractures. A total of 407 (38.2% of the total sample)
specimens show abrasion or polishing (Table 3), and 262 of these (64.4% of the bones with
abrasion or polishing) are smaller than 40 mm, which suggests that water could have been an
important taphonomic agent. Biochemical modifications produced by fungi or plants were
documented on 35 specimens (14.1% of the bones with good preservation surfaces), which
suggests prolonged exposure to humidity. Furthermore, microabrasion and trampling was
observed on 58 specimens (23.4% of the bones with well-preserved surfaces, excluding teeth)
indicates that abiotic agents had modified cortical surfaces.

The distribution of weathering stages suggests that bones experienced some exposure, although
the rarity of specimens in stages 2—3 of Behrensmeyer's (1978) classification indicates that
subaerial weathering was not intense in the preserved sample (15 specimens, or 6% of bones
with well-preserved surfaces; Table 4). On the other hand, the intense fragmentation of teeth and
the skeletal bias of many remains relative to the MNI are typical of an extended period of pre-
depositional exposure.

Similarly, the large percentage of bones with dry breakage and the incidence of polishing and
abrasion, as well as biochemical modification, trampling, and microabrasion suggest some
degree of exposure, and water activity is a likely source of disturbance. The small channel that
contacts TKLF could have been responsible for the limited movement of small bones. Hydraulic
flows have been shown to result in an under representation of several elements such as axial and
compact bones (i.e. ribs, vertebrae, scapulae, phalanges, pelvis, carpals, or tarsals). These all fall



within Voorhies's (1969) easily transported Group 1 elements. Water action is thus a plausible
explanation for the severe bias in the skeletal profiles. While carnivore ravaging could also
explain such a pattern, only four specimens show tooth marks, representing only 1.6% of the
bones with well-preserved surfaces (Table 4). These tooth marks are located on an indeterminate
intermediate shaft of a medium-size animal (size 3 sensu Bunn, 1982), on the metatarsal of a
small animal (size 1-2), and on two indeterminate specimens (one axial and shaft fragment).
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Fig. 8. Spatial distribution of the different alteration processes such as carbonate and water,

preservation of bone surface, bones with abrasion and polishing, weathering stages (according
to Behrensmeyer, 1978) and trampling-microabrasion.



Despite evidence for hydraulic flows, many of the bones present in TKLF certainly have an
autochthonous origin. The presence of some bones with well-preserved surfaces, the absence of
rounded bones larger than 40 mm, and the presence of green fractures on 39.9% of the sample
suggests they were originally deposited and broken on-site (Table 4). Water alterations observed
on the longer bones could have been produced by normal water flow, which can slowly abrade
autochthonous bones without misplacing them, and can also produce polished surfaces (as
discussed in Thompson et al., 2011).

The spatial distribution of the different bone modifications shows no patterning, as all types of
bone, regardless of modification, are in close association (Fig. 8). Hominin intervention on the
assemblage is difficult to determine. No cut marks were identified and only one percussion mark
was observed, on a tibial shaft from a medium-sized animal. Green fractures across long bones
are recorded on 37 shafts. Fracture angles were measured on 31 shaft fracture planes with
oblique and longitudinal breakage. The variation reflected in fracture angles overlaps with both
anthropogenic and carnivore breakage.

6. Discussion: interpretation of the fauna in TKLF

Among Olduvai Gorge's Bed II sites, TKLF preserves the highest concentration of lithic artifacts
(Leakey, 1971, Santonja et al., 2014). The contrast between the large amount of lithics and the
few faunal remains led some scholars to consider TKLF to be a Type A site; that is, a site with
lithic artefacts exclusively as the result of hominin activities (Isaac and Crader, 1981, de la Torre,
2004). This kind of site is frequent in the African Lower Paleolithic, exemplified by the
Acheulean sites at Olorgesailie or Peninj (Isaac, 1977, Dominguez Rodrigo et al., 2009b).
However, we have shown unequivocally that TKLF also preserves a large bone assemblage
represented by several individuals from various species.

Leakey, 1971, Monahan, 1996 and Egeland, 2007, Egeland, 2008 were unable to assign
authorship to the bone accumulation at TK due largely to poorly preserved bone surfaces.
Despite the larger sample size considered here, we have also found that poor preservation is a
notable characteristic of the faunal assemblage. Calcareous concretions and postsedimentary
carbonation are largely responsible for the poor preservation, and it is likely that water flows and
protracted sub-aerial exposure resulted in the deletion or removal of axial elements and compact
bones.

Many of the fragments smaller than 40 mm are rounded, 67% of the remains excluding teeth
have water-produced alterations, and 64% show dry fractures. It is possible that many of the
smaller pieces were introduced by weak water currents from a channel, as suggested by Petraglia
and Potts (1994) without the benefit of detailed stratigraphic studies. Larger elements, it seems,
were deposited and buried at the site. After deposition, several lines of evidence suggest that the
bones were exposed for long time periods, as indicated by the presence of microabrasion,
trampling, weathering, biochemical alterations, and dry fractures.

The impact of carnivores appears to have been rather marginal. While some specimens were
certainly broken by carnivores, only four fragments yielded tooth marks. No individual bone



preserved more than five tooth marks, all of which were pits and scores smaller than 3 mm and
thus unsuitable for the identification of the specific type of carnivore. Such limited evidence for
carnivore involvement argues against this agent being the cause of the anatomical bias in axial
and compact bones or epiphyses.

There is virtually no direct evidence for hominin manipulation of carcasses, as only a single
percussion mark was identified. The bone specimens at TKLF thus show that both hominins and
carnivores intervened in the modification of the fauna at the site, albeit in very limited roles.
Hence, TKLF, as with so many other Lower Pleistocene sites, represents a palimpsest
(Gaudzinski-Windheuser, 2005, Dominguez-Rodrigo et al., 2007, Dominguez-Rodrigo et al.,
2014c). The lithic and bone assemblages at TK may thus have resulted as the circumstantial
succession of several independent events, some of which involved the manufacture of lithic
implements in areas where faunal remains were naturally accumulated and deposited.

Table 5. MNE/MNI ratio in TKLF compared to the actualistic samples for the Serengeti and
Ngorongoro, in Tanzania (Blumenschine, 1989), and the Galana and Kulalu reserves, in Kenia
(Dominguez-Rodrigo, 1996). MNE values in TKLF only include the anatomical elements
described in the actualistic samples, excluding teeth and sesamoidals, as well as the MNI for
birds and reptiles.

Site Characteristics MNE MNI Ratio MNE/MNI
Galana and Kulalu Bushy Plains 233 16 14.6
Galana and Kulalu Lali Hils 119 3 39.7
Galana and Kulalu Open Grassland 246 16 15.4
Galana and Kulalu Riparian Woodland 388 26 14.9
Galana and Kulalu Total 1461 95 15.4
Gnorongoro Grass Plains 250 57 4.4
Serengeti Grass Plains 377 62 6.1
Serengeti Acacia Woodland 201 23 8.7
Serengeti Riparian woodland 408 23 17.7
Serengeti Total 986 108 9.1
TKLF Total 74 47 1.6
Galana and Kulalu Small 215 18 11.9
Galana and Kulalu Medium 343 26 13.2
Galana and Kulalu Lartge 428 15 28.5
Galana and Kulalu Total 598 35 17.1
Serenget & Gnorongoro Small 92 19 4.8
Serenget & Gnorongoro Medium 747 122 6.1
Serenget & Gnorongoro Lartge 297 24 12.4
Serenget & Gnorongoro Total 2088 214 9.8
TKLF Small 22 11 2.0
TKLF Medium 31 26 1.2
TKLF Large 21 8 2.6
TKLF Total 74 45 1.6

There are, however, a number of peculiar aspects to the TK faunal assemblage. The most
conspicuous is its high taxonomic diversity (>20 species). Comparisons of the TKLF assemblage
with landscape taphonomic studies by Blumenschine (1989) and Dominguez-Rodrigo (1996),
who present data on natural accumulations in various habitats in the modern Serengeti and



Ngorongoro ecosystems and Galana and Kulalu in Kenya, indicate that TK shows] extremely
low MNE/MNI values (1.6 elements/individual). This is significantly lower than the ratio for the
Serengeti, Ngorongoro, Galana and Kulalu (Table 5). Only the Grass Plains in Ngorongoro and
the Serengeti display a lower MNE/MNI ratio, largely a consequence of the higher bone
destruction produced by the carnivores living in those areas.

Regarding the skeletal profiles in Table 6, the situation at TK also differs from natural
accumulations in Tanzania and Kenya. Excluding teeth from the skeletal profiles, the cranial
section is much less well represented relative to modern habitats. If, however, teeth are included,
then the cranial section predominates. As shown in Table 2, this section for medium and large
sized animals exceeds 60% of total MNE.

Table 6. Skeletal Profiles observed in natural assemblages from Serengeti, Ngorongoro
(Blumenschine, 1989), Galana and Kulalu (Dominguez-Rodrigo, 1996), where GP: Grass Plains,
AW: Accacia Woodland, RW: Riparian Woodland, BP: Bushhy Plains, LH: Lali Hills, OG:
Open Grassland. Cr: Craneal (cranium, mandible), Ax: Axial (Vertebrae, rib, scapula, pelvis),
Up. Ap.: Upper appendicular limbs (humerus, femur, radius, tibia), Lw. Ap.: Lower appendicular
limbs (metapodial, tarsal, carpal). Teeth have been excluded in TK.

Anatomical elements profiles
Gnorongoro Serengeti Galna and Kulalu
GP AW & GP RW RW BP LH oG TKLF
Cranial 40 44 11 10 7 3 5 2
Mandible 32 27 9 8 8 3 10 3
Vertebrae 64 84 43 145 92 43 67 5
Rib 5 14 13 62 63 47 81 8
Pelvis 4 32 9 12 6 3 3 0
Scapule 12 25 9 21 7 5 3 3
Humerus 11 12 2 21 8 5 12 2
Rad-Ulna 7 11 1 13 10 3 11 3
Carpal 0 0 1 4 0 0 1 9
Femur 6 13 2 24 10 2 12 3
Tibia 7 17 6 17 8 2 10 12
Tarsar 2 4 2 12 4 2 0 3
Metapodial 7 21 4 13 8 1 13 15
Phalange 0 1 0 26 2 0 18 6
Total 197 305 112 388 233 119 246 74
% Element Distribution according section
Cr 36.5 233 17.9 4.6 6.4 5.0 6.1 6.8
AX 43.1 50.8 66.1 61.9 72.1 82.4 62.6 21.6
Up Ap 15.7 17.4 9.8 19.3 15.5 10.1 18.3 27.0
Lw Ap 4.6 8.5 6.3 14.2 6.0 2.5 13.0 44.6

In the case of the other anatomical parts, axial bones in TKLF are less frequent than in modern
savannas. Carcasses with ribs and vertebrae were recorded in the Galana, Kulalu, Ngorongoro,
and Serengeti faunas. In the case of TKLF, however, several circumstances such as hydrological
flows or the intervention of carnivores may have prevented their preservation. In contrast, lower
appendicular elements, which are more resistant to these processes, yield a higher representation.



A number of circumstances such as the high overall MNI, the low MNE/MNI ratio, and the
biased skeletal profiles in TKLF indicate that the faunal accumulation at TK is rather poorly
preserved, and in all likelihood an important part of the original assemblage has been destroyed
or otherwise removed from the site. Other phenomena such as the abundance of bones with dry
fracture (40%) among thewell-preserved bone sample, as well as the poor state of bone surfaces
(which limited observations in 68% of the total sample), suggest that the site is a palimpsest
where hominins may have played an incidental role reflected by a single percussion mark.

7. Conclusions

TK remains one of the most well-known sites in Bed II. Previous studies, based on the premise
that faunal remains were scarce, classified it as a Type A site (sensu Isaac and Crader

(1981) and de la Torre (2004). Our results show that TKLF contains both lithic artifacts and the
remains of several species of animals. According to Leakey (1971), Equidae is the best-
represented animal at the site, and Alcelaphinae dominates the bovid assemblage (Gentry and
Gentry, 1978). Our results confirm this, as Equidae is the most common taxon in our sample,
and Alcelaphinae is the most common bovid. Age patterns show that adults dominate the
demographic profiles (Table 1). Regarding skeletal representation, teeth are the most important
anatomical element.

In both paleoecological and paleoenvironmental terms, our analysis confirms Gentry and
Gentry's (1978) conclusions. The TKLF fauna is characteristic of open areas. The dominance
of Equidae and Alcelaphini, as well as Suidae and Antilopini, are typical of the open savannas
and arid environments of Bed II. The presence of other animals such as tragelaphines, bovines,
reduncines, hippopotamus, and crocodile can be explained by the fluvial contexts near the site.
Hippopotamus, bovines, and crocodile indicate water-dependent habitats that would have
favored small woodland habitats for tragelaphines and reduncines.

Previous works on the fauna failed to find cut marks on the TK fauna, and the poor preservation
of bone surfaces did not allow the identification of the agent involved in the bone accumulation
with any certainty (Egeland, 2007). Only one altered hippopotamus jaw has been interpreted

by Hill (1983) as an example of human intervention. Our analysis identified green fractures and a
single percussion mark on the long bone sub-assemblage. This, in addition to a few tooth marks,
indicate the presence of both hominin and carnivore activity, although the agent most responsible
remains unclear. We therefore suggest that TKLF should be viewed as a palimpsest similar to
other Lower Pleistocene sites such as SHK at Olduvai or Ubeidiya in the Levant (Gaudzinski-
Windheuser, 2005, Dominguez-Rodrigo et al., 2014c).

In addition to the documented anthropogenic and carnivore action, a number of additional
depositional and post-depositional processes altered the original skeletal representation. The
large number of bones smaller than 40 mm demonstrates that Leakey's (1971) excavations only
retained a selection of bones. This analysis has also shown that many of these bones show
rounding, which indicates that they may have come from elsewhere, perhaps via water flow. This
process may have caused an osteological bias against axial and compact bones, as they float
rather easily according to Voorhies (1969). Some bones were also directly deposited at TK, as
evidenced by green fractures and the absence of rounding. Polishing and abrasion are also a



consequence of water flow and the bones with these modifications may have been altered
without significant spatial displacement (Thompson et al., 2011). The considerable carbonation
and concretion on many bones is a consequence of post-depositional processes.

The bulk of the faunal remains accumulated at the site seem to correspond to background
scatters, typical of assemblages formed in riverine settings, with and without intervention by
carnivores. This cumulative palimpsest probably represents a vast time span. Most of the
taxonomic diversity is represented at the site by teeth, suggesting the disappearance of the
postcranial remains probably due to the combined action of weathering and carnivore ravaging.
Teeth are also highly fragmented, probably due to prolonged exposure and to diagenetic
processes. This work on the newly excavated material further elaborates on Egeland,

2007, Egeland, 2008 study of the Leakey's collection. This taphonomic study also shows that a
large taxonomic diversity can be represented (albeit marginally, by teeth) due to natural
processes in assemblages where the main anthropogenic input is tool manufacture.

Sites in Bed II show the complexity and variability of Homo erectus behavior. This involves a
high and intense manipulation of a significant number of animals in BK, including very large
specimens such as elephants, hippopotamus, Sivatherium and Pelorovis. Also, a more limited
exploitation of large and medium-sized animals in SHK (Dominguez-Rodrigo et al., 2014¢) and
TK, where lithic activities are more important. This may imply a high competition with
carnivores, as suggested by their activities in these three sites and in other locations such as
HWK East and MNK, where they were the main agent for bone accumulations. However,
taphonomic evidence from BK shows that by this time hominins may have outcompeted other
carnivores and that functional differences in H. erectus behavior are the most likely explanation
for the diversity of sites and palimpsests represented during this consolidation of the Acheulian.
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