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Abstract: 

The common occurrence of hammerstone percussion damage (pits, striae, notches and impact flakes) on the 

fossil limb bones of ungulates indicates that marrow extraction has been an important component of hominid 

butchery for over two million years. Beyond this level of basic inference, it would be behaviorally informative 

if three deeper aspects of marrow harvesting were understood more clearly: (1) whether inter-element patterns 

of bone fragmentation vary when processing intensity is held constant; (2) whether butcher investment in 

marrow extraction correlates positively with the number of percussion marks generated; (3) whether 

taphonomic effectors can be identified based on percussion mark morphology, frequency and placement. Some 

experimental work has been conducted previously in service of exploring these questions, but we set out here to 

address them explicitly through the analysis of a large sample of white-tailed deer (Odocoileus virginianus) 

limb elements fractured by hammerstone percussion. Our results indicate that (1) measures of bone 

fragmentation, which supposedly reflect processing intensity, are highly contingent on the research question 

being posed. This stresses the fact that researchers must be explicit in their definition of processing intensity. (2) 

In addition, hypothesized covariance between number of hammerstone blows and percussion mark frequencies 

are not met in our sample, corroborating previous conclusions of a lack of covariance between cutting strokes 

and cutmark frequencies. These results highlight the contingent nature of butchery mark production, and 

emphasize the need to investigate carcass resource exploitation by posing questions that do not rely on mark 

frequencies, but instead utilize other zooarchaeological measures. (3) Finally, our results—showing high 

incidences of impact notches and flakes created by direct anvil contact and “anvil scratches” created by direct 

hammerstone contact—suggest caution in using specific categories of percussion damage to infer their 

taphonomic effectors. 
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Article: 

1. Introduction 

Increasingly, zooarchaeologists have employed actualistic approaches to go beyond the basic inference that 

hominids have been involved in the butchery of large mammals for well over two million years [21,28], and 

have tried to understand the nature of carcass foraging adaptations more profoundly [e.g., 8,16,19,20]. Much of 

this work is focused on inferring carcass processing intensity [e.g., 1,3,36], while other approaches are 

concerned with identifying specific effectors applied to bones during butchery [e.g., 6,7,13,27,52]. Regardless 

of the specific question posed, a majority of the research is concerned with defleshing activities and thus deals 

specifically with cutmark data. However, another important component of butchery throughout prehistory has 

been the extraction of fat- and nutrient-rich marrow from the limb bones (i.e., humeri, radioulnae, femora, tibiae 

and metapodials; see [43]) of ungulates. Typically, hominids accomplished this by using unmodified cobbles, or 

hammerstones, to batter open those bones. Fortunately for the zooarchaeologist, this activity usually results in 

several classes of diagnostic taphonomic data, including percussion marks [e.g., 6,7,50,53], percussion notches 

http://libres.uncg.edu/ir/uncg/clist.aspx?id=3452
http://www.elsevier.com/


[e.g., 4,11,13,18,29], impact flakes [e.g., 13,18] and specific edge geometry of fractured bone specimens 

[2,18,46]. 

 

Recognizing the ubiquity of prehistoric marrow harvesting, we designed an experimental study to address three 

questions about this important aspect of hominid carcass foraging. First, do inter-element patterns of bone 

fragmentation vary when processing intensity is held constant? Zooarchaeologically, the assumption in most 

cases is that higher levels of fragmentation (however measured) reflect increased processing intensity [e.g., 

17,25,26,35,37-40,49]. Second, does butcher investment in marrow extraction correlate positively with the 

number of percussion marks generated? Researchers have made a similar assumption in studies of cutmark 

creation, and in so doing assume that mark frequencies (however quantified) increase with increasing levels of 

processing intensity [e.g., 1,5,23,26,36,41]. Third, can taphonomic effectors be identified based on percussion 

mark morphology, frequency and placement? Percussion marks take a variety of forms, and the functional 

terminology used to describe some of these forms (e.g., “anvil scratches” [50]) implies their creation by specific 

effectors (see below). However, we are unaware of any experimental study prior to ours that has tested these 

relationships between mark form and effectors. We believe that data we present regarding these three issues will 

usefully supplement those data on cutmarks generated previously to address comparable questions regarding 

carcass defleshing. 

 

2. Materials and methods 

2.1. Experimental sample and protocol 

Our sample consists of all bone fragments > 1 cm in maximum dimension generated when 36 humeri and 38 

radii of white-tailed deer (Odocoileus virginianus) were broken with hammerstones in order to extract marrow. 

We chose white-tailed deer bones for two reasons. First, they are locally abundant and were readily available to 

us courtesy of K.W. Deer Processing (Bloomington, Indiana, USA) during the Fall 2004 hunting season. 

Second, white-tailed deer are medium-sized artiodactyls (Size Class 2 in Brain‟s [10] well-known classificatory 

scheme), this being relevant because medium-sized artiodactyls predominate in many archaeofaunas worldwide. 

While we were able to generate some data on other limb bones, we were forced to concentrate on humeri and 

radii because those were the only limb bones available to us that were regularly intact after processing at K.W. 

(femora were sectioned transversely multiple times along their lengths in making round steaks, and tibiae and 

metapodials were usually broken during butchery). We do, however, believe that the limited choice of humeri 

and radii still gives us a good representative sample of a minimally fractured element (humerus) and an 

extensively fractured element (radius) (see discussion below). 

 

Metal knives were used to deflesh bones, with processors at K.W. removing the major muscle masses for their 

clients and TRP and CPE subsequently removing any flesh that still adhered to anticipated impact surfaces. 

Periosteum was never removed before hammerstone percussion. We used two hammerstone—anvil sets for our 

experiments, one a “coarse” set, the other a “smooth” set (Fig. 1). The coarse set consists of two grainy 

sandstone blocks, the hammerstone being rectangular and weighing 698.3 g. The smooth set consists of two 

heavily rolled quartzite cobbles, with completely smooth surfaces, the hammerstone being oblong and weighing 

610.8 g. None of the tool surfaces was intentionally modified. Following the methodology of Blumenschine and 

Selvaggio [7, p. 19], “Bones were broken to an extent sufficient to remove all marrow with a 12-inch 

pharmaceutical spatula.” For the humeri, this was accomplished by resting the lateral shaft of each across the 

summit of the anvil and directing the hammerstone impact at its medial midshaft [7,13]. For the radii, each of 

which was still attached to its ulna, breakage was accomplished by resting their lateral sides on the anvil “so 

that the ulna[e] could serve to steady the bone[s], and hammerstone impact occurred on the medial face[s]” [7, 

p. 22]. Blumenschine and Selvaggio [7, p. 22] continue that “[b]ecause the shafts of radii are relatively broad 

from the lateral to the medial side, greater force was required to fracture the bone than if impact occurred on the 

relatively flat anterior face”. In our experience, and in agreement with the logic of Blumenschine and Selvaggio, 

the easier method of breeching the anterior radius surface usually drives many small bone fragments into the 

marrow at the point of impact (which is undesirable from the viewpoint of a consumer) and otherwise results in 

two large epiphyseal plus shaft specimens that retain their complete original diaphyseal circumferences. 

Maintaining the complete and very narrow circumferences of Size Class 2 radii is at odds with the goal of 



efficient and complete marrow extraction. Hence, the more laborious medial impact method is preferred, and 

the dichotomy between a minimally fractured element (the humerus) and an extensively fractured element (the 

radius) is explained. 

 
 

After a bone was breeched sufficiently for marrow extraction, all resultant fragments (including those that 

adhered to the hammerstone and anvil) were collected, bagged in cheesecloth and then boiled together until 

clean. Each fragment was labeled with an experimental episode number (one per whole element) and an 

individual specimen number (e.g., IMP/072/ 3 = Impact experiment/72nd experimental episode/specimen 3). 

All specimens were then examined with 10× hand lenses under a strong oblique light source by both authors 

[9]. A consensus opinion was reached for each mark asserted to be hammerstone damage before it was recorded 

as such in the database. 

 



2.2. Processing intensity and butcher investment 

In a general sense, zooarchaeologists expect increased processing intensity to be reflected by (1) the utilization 

of lower-ranking carcass parts; and (2) the extraction of multiple carcass tissues (e.g., butchering a carcass or 

carcass part not only for meat but also for marrow and grease) and/or increased investment in the removal of 

one particular carcass tissue (e.g., filleting a carcass or carcass part not only for large muscle masses but also for 

small flesh scraps). In this study, we attempted to isolate the variables responsible for patterns of bone 

fragmentation by holding processing intensity constant. Thus, differential fragmentation cannot be attributed to 

(1) the processing of multiple carcass resources, as all elements were processed solely for marrow; and (2) the 

extent to which each element was processed, as all elements were processed to the minimum extent required to 

breach the medullary cavity for complete marrow extraction. The number of impact blows required to expose 

the medullary cavity is used here as a proxy of butcher investment in marrow extraction. 

 
2.3. Terminology and attributes of investigation 

We investigated several variables in our experimental sample relevant to understanding marrow harvesting by 

early hominids. Before discussing these, however, we define several important terms: 

 



(1) Impact event refers to a single contact between a hammer-stone and a bone resting on an anvil. In some 

cases, a bone was each breeched under a single impact event, while other bones required multiple impact events 

to open. 

 

(2) Anvil side refers to that surface of a limb bone rested against an anvil during a hammerstone impact event. 

 

(3) Hammerstone side refers to that surface of a limb bone contacted by a hammerstone during an impact 

event. 

 

(4) Percussion marks refer to “pits and striae, which are sometimes but not always associated with percussion 

notches [see below]. Diagnostic morphology and configuration of percussion pits and striae are described and 

illustrated by Turner [50] and Blumenschine and Selvaggio [6,7]. Pits are often closely associated with and/or 

have emanating from the patches of striae that result from slippage of stone against bone during impact events” 

([44, p. 215]; adapted from [6]) (Fig. 2). 

 

We follow White [53] in dividing percussion marks into two major classes based on their morphologies: striae 

fields (called “anvil scratches” by Turner [50]) and pits. Like White [53, p. 151], our “analysis keeps these 

[damage types] separate, with the recognition that they are part of the same phenomenon and may overlap on 

the bone”. 

 

(5) Percussion notches refer to “semicircular- to arcuate-shaped indentations on fracture edges with 

corresponding negative flake scars on medullary surfaces [of limb bones]” [18, p. 724] (Fig. 3). 

 

(6) Epiphyseal specimens refer to hammerstone fractured limb bone specimens that retain part or all of a single 

epiphysis and some length of attached shaft. These specimens usually, but not always, retain their complete 

original diaphyseal circumferences. In some instances complete bones were of subadult status and therefore had 

one or two epiphyses that were not yet fused at the time of the animal‟s death. These naturally detached 

epiphyses are distinguished from epiphyseal specimens as defined here and were removed from our analyses. 

Here, a subadult epiphyseal specimen is a proximal or distal length of shaft that retains an epiphyseal plate in-

stead of a fused epiphysis. 

 

(7) Shaft cylinders refer to diaphyseal fragments that lack epiphyses but retain 100% of their original 

circumferences (see also [4, p. 171]). 

 

(8) Shaft splinters refer to shaft fragments > 1 cm in maximum dimension that are produced by hammerstone 

percussion. They lack any attached epiphyseal portion. They also lack the technical attributes of impact flakes 

(as described below), and retain < 100% of their original diaphyseal circumferences (see also, [53, p. 132]). 

 

(9) Impact flakes refer to shaft fragments produced by hammerstone percussion that “display the same basic 

technical attributes of percussion as occur on flakes...of knapped fine-grained stone: (1) flakes possess a 

platform at the impact point and a bulb of percussion below the platform; [and] (2) they sometimes show 

„ripple‟ marks and/or hackle (stress) marks originating at or near the platform or bulb...” [24, p. 21] (Fig. 4). 

Impact flakes lack any attached epiphyseal portions and their complete original diaphyseal circumferences. 

 

(10) Fracture angle refers to that “angle formed by the fracture surface and the bone cortical surface” [51, p. 34]. 

This angle was measured at its midpoint using a goniometer for each longitudinal, transverse and oblique (with 

reference to the specimen long axis) fracture plane (following [2,46] ). 

 

For each fractured element, we recorded the following information (many, but not all, of these variables are 

adapted from Bunn [13] and Blumenschine and Selvaggio [7]): 

 

 



       
 

(1) Number of blows required to expose the medullary cavity for complete marrow extraction with the 12-inch 

pharmaceutical spatula (see above). 

 

(2) Number of epiphyseal specimens produced. 

 

(3) Number of cylinders produced. 

 

(4) Number of shaft splinters produced. 

 

(5) Number of impact flakes produced. 

 

(6) Types (pits versus striae fields), frequency and distribution of percussion marks per specimen type (2-5 

above). As the name suggests, striae fields [53] are more diffuse in their morphology than are percussion pits, 

with variable widths and lengths, but we determined individual incidences by a minimum 5 mm break between 

individual striae that comprise each field (Fig. 2b). 

 

(7) Number and distribution of percussion notches per specimen type (2-5 above). 

 

(8) Length and width maxima of each epiphyseal specimen, cylinder, shaft splinter and impact flake produced. 

 

(9) Remaining diaphyseal circumference of each specimen produced. Following Bunn [12], we assigned a 

value of 100%, < 100% but > 50%, or <50% (see [46,47]). 

 

(10) Fracture angle for each measurable fracture plane on each specimen. 

 

3. Results and discussion 

3.1. General characteristics of the assemblage 

Table 1 summarizes basic characteristics of our experimentally produced assemblage of hammerstone fractured 

bones. 



 
The predominant type of specimen we generated is the shaft splinter, with a mean average length of 29.6 mm 

(Fig. 5). The distribution of diaphyseal completeness in our sample agrees with a pattern documented by 

Marean et al. [34] in experimental and archaeological assemblages that received full recovery and analytical 

attention, with a vast majority of specimens retaining <50% of their original circumferences (Fig. 6). 

    
 

Notchless splinters predominate, followed in frequency by notchless epiphyseal specimens, impact flakes, 

notched splinters, notched epiphyseal specimens and cylinders. The disparity in frequencies of total impact 

flakes (n = 74) and notched specimens (n = 27) demands explanation since, in theory, every impact flake should 

have a corresponding notch from which it was detached. We suspect the discrepancy in frequencies exists for at 

least two reasons. First, a notch generated early in a series of impact events can be obliterated by subsequent 

blows needed to completely breech a bone. In contrast, detached flakes are usually not destroyed in such a case, 

resulting in a higher number of flakes and fewer notches. Second, many specimens preserve features that 

Capaldo and Blumenschine [18] term “pseudo-notches”. These features are actually notches, in that we are 

absolutely positive they resulted from dynamic impact imparted by a hammerstone, but they do not possess the 

classic or “normal” morphology (as defined by Capaldo and Blumenschine [18]) that we demand when 

assigning a notch in a zooarchaeological sample to the hammerstone-generated category (Fig. 7). This is 



because all zooarchaeological specimens are, by definition, of unknown origin and it is our task to infer those 

origins as accurately as possible, but we are maximally conservative in our assignments of bone damage. 

 
Most of the “pseudo-notches” in our sample occur on radius specimens. We suspect that this has to do with the 

fact that our hammerstone blows landed on the sharp-edged medial border of each radius and the force 

generated was absorbed across its sharp-edged lateral border that rested on the anvil. The multiple blows that 

were incurred by radii in this fashion resulted in many fragments that possessed unexpected morphologies. Of 

the 996 fracture angles we measured on radius specimens, 167 (16.8%) were right or near-right angles (i.e., 85-

95°), types of breaks usually associated with dry bone fracture. In contrast, specimens deriving from the more 

easily fractured and tubular-shaped humeri possess a greater proportion of measured angles that conform to that 

expected on fresh broken bone. Only 66 (10.6%) of 621 angles we measured on humerus specimens were 

between 85° and 95°, a difference with the radius sample that is statistically significant (x
2
 = 16.229, 1 d.f., P < 

0.001) (Fig. 8). It seems that sharp angles on edges of D-shaped radii acted mechanically to truncate the 

complete carry-through of notches with smooth, readily apparent release surfaces. Again, this was not generally 

the case with the more circular and thinner-walled humeri, which yielded many more spirally shaped fragments, 

associated stereotypically with green bone breakage. The greater disparity between total impact flakes and total 

notched specimens for radii (40 versus 7, respectively) compared to the difference for humeri (34 versus 20, 

respectively) provides support for this hypothesis. Based on anatomical considerations of whole bones, we 

predict that large samples of hammerstone broken femora and tibiae should conform, respectively, to the 

humerus and radius pattern documented here. 

 

3.2. Bone fragmentation and processing intensity 

Three standard measures of bone breakage indicate that the radii are more highly fragmented than are the 

humeri. First, there is a significant difference between the humerus and radius samples in the proportion of 

epiphyseal (humerus n = 74; radius n = 91) to non-epiphyseal specimens (humerus n = 401; radius n = 720) in 

each (x
2
 = 5.097, 1 d.f., P < 0.01). Second, fragmentation ratios (NISP:MNE)

1
 also indicate greater 

comminution of radii (humeri = 13.1; radii = 21.3). Finally, the distribution of fragment sizes indicates higher 

fragmentation for radii (Fig. 9). These patterns are unexpected given that processing intensitydas defined by the 

minimum effort required to breach the medullary cavity for complete marrow extraction was held constant. The 

only variable that can explain the differential fragmentation is that more effort was required to process radii. It 

required a total of 226 blows (mean per individual radius = 6, range 2e15) to expose the medullary cavities of 

the thick-walled radii, while only 73 total blows (mean per individual humerus = 2, range 1e4) were required to 

accomplish the same result with a similar number of the larger-chambered humeri. 

 

 

 



 
 

 
 



 
3.3. Percussion mark types, distributions and frequencies by tool sets 

Percussion marks occur on every type of specimen in our experimental sample. As summarized in Table 2, the 

most common type of percussion mark is pitting (79.2%). Of the 346 percussion marks that could be assigned to 

either the hammerstone or anvil side of a specimen, 235 (67.9%) are preserved on the anvil side. There is a 

higher frequency of striae field marks on bone surfaces that were rested against anvils (n = 57) than on surfaces 

directly impacted by hammer-stones (n = 16) (x
2
 = 4.364, 1 d.f., P < 0.05). However, it is important to note that 

hammerstone contact was still responsible for a sizeable proportion of striae field marks, accounting for 22% of 

them. This observation lessens the diagnostic value of striae fields for discerning positional information of 

bones during episodes of hominid marrow harvesting. Thus, zooarchaeologists should be cautious about the use 

of Turner‟s [50] functional term “anvil scratches” to describe this type of damage. Similarly, against 

conventional expectations, our data show concurrence between the frequency of notches and impact flakes 

generated by direct contact with both hammer-stones and anvils during impact events. For those notches that 

could be identified as deriving from the hammerstone-receiving or anvil-resting side of a bone, 17 occur on the 

former surfaces and 16 occur on the latter. 

 

In addition, although there is a statistically significant difference in mean percussion mark frequency per 

marked specimen imparted by smooth (mean = 2.8 marks) and coarse (mean = 6.4 marks) tool sets (Mann-

Whitney U = 203.0, Z = —3.11, P = 0.002; Table 3), it is difficult to envisage actual archaeological situations in 

which this information might be usefully applied. It is true that among the world‟s earliest archaeological traces 

there are at least two occurrences, at Bouri (Ethiopia) [28] and at some sites on the Koobi Fora Ridge (Kenya) 

[14], which preserve butchered bones without stratigraphically associated lithics. However, these assemblages 

are too small to dichotomize the percussed specimens in each into moderately and intensely marked categories, 

and then apply our results to infer the broad types of hammer-stone raw materials employed by hominids there. 

Even in the common situation of a Stone Age site with samples of unmodified or minimally modified cobbles of 

unknown prehistoric function, it seems unlikely that the associated percussion marked bone samples will be 



sufficient to detect a statistically significant difference in mark frequencies that could be attributable to 

differences in cobble raw materials (e.g., of > 20,000 limb bone shaft fragments we have examined in depth 

from Swartkrans Cave, South Africa, less than 70 preserve percussion marks [44e48]). 

 
3.4.Overall frequencies of percussion marks and butcher investment 

Taken as a whole, there is a statistically significant negative correlation between number of hammerstone blows 

and percussion mark frequency (rs = —0.234, P = 0.045) (Fig. 10). This finding contradicts a prediction of 

positive co-variation between those variables, and agrees with Egeland‟s [22] findings on a sample of bones 

butchered experimentally with stone flakes. Analysis of that sample also failed to result in the expected 

correlation between frequency of cutting strokes and frequency of cutmarks. There are several uninvestigated 

factors that could be responsible for the unexpected results in the current study, including the variable amounts 

and thicknesses of adhering soft tissues on individual whole bones. For example, 34.2% (n = 13) of the total 



radius MNE preserve no percussion marks at all, while only 11.1% (n = 4) of the total humerus MNE show no 

percussion marks. We observed a difference in our sample with markedly thicker periosteum on the radii than 

on the humeri. Periosteum and residual musculature not only had the potential to cushion bones from receiving 

percussion marks under direct blows, but they also caused significant slippage of specimens during some impact 

events. In such cases, many of the recorded blows were glancing or deflected rather than concentrated 

incidences of impact, unlikely to impart marks. Such observations stress the contingent and fortuitous nature of 

butchery mark production [33]. This does not mean that butchering marks, whether cutmarks or percussion 

marks, are inexplicable; rather it means that they are an incidental byproduct of hominid behaviors that are 

unintended. It also means that we need to search much deeper for correlations between mark frequencies and 

potential causal variables [33]. 

 
Given the preceding, it is of note that percussion mark frequencies mirror closely in some ways Egeland‟s [22] 

data on cutmark frequencies. Of the total MNE of 74 in our sample, 57 (77.0%) display at least one percussion 

mark. Similarly, Egeland [22] found that 87% of the total MNE in his sample of defleshed limb bones preserves 

at least one cutmark. Egeland‟s [22] sample is composed of larger, Size Classes 3 and 4, ungulates than ours—

but we feel fairly comfortable in suggesting that zooarchaeologists might expect that 75-85% of the total limb 

bone MNE to display surficial butchery marks in an archaeofauna composed of medium to large sized ungulates 

and processed completely by humans. This measure is a very general assessment of a very complicated 

occurrence. We are simply suggesting a baseline that needs to be corroborated or contradicted case-by-case 

using multiple lines of independent zooarchaeological and taphonomic inquiry. 

 

4. Conclusions 

Our results confirm a growing awareness that an array of confounding variables, impossible to control over time 

and geography or to measure archaeologically, hold the potential to obscure meaningful linkages between 

butchering intensity and bone surface damage [30,32,33]. This is an important insight that will hopefully 

prompt researchers to adjust the questions they ask of the zooarchaeological record to those that might be more 

productively explored. For example, we remain convinced that anatomical placement of cutmarks on archaeo-

faunal specimens is useful for inferring the timing of hominid access to animal carcasses [15,19,20,42]. The 

results presented here, however, caution against the blanket assumption that even anatomical placement of 

butchery marks will always be behaviorally informative. These realizations highlight the obvious but oft-

violated maxim that zooarchaeological results of any profundity must proceed from well conceived and 

carefully articulated research questions. The current project explored the linkages propounded to exist between 



intensity of prehistoric carcass processing and zooarchaeological measures, but this is just one example of 

problems that might be revealed with additional experimental work on this general issue. 

 

Notes: 

1 “The number of identified specimens (NISP) is a simple count of the number of observed specimens within a 

category of taxon and skeletal element. The MNE (minimum number of elements) is an estimate of the number 

of [whole] skeletal elements necessary to account for a given number of fragments” [34, p. 75; see also, 4,31]. 
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