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The accumulation of bacterial genomic datasets has created a nuanced and difficult 

challenge for computational analyses. Based on the current trend of genomes being sequenced, it 

appears that it won’t be possible to infer complex parameters such as recombination rates for 

these entire genomic datasets. We assessed the impact different sampling strategies had on 

recombination rate estimates, along with the impact of gene content and population structure on 

recombination rate estimates. Overall, we found that while our novel framework yielded 

consistent estimates of recombination rates, our sampling strategies, population structure, and 

gene content did not significantly impact recombination rate estimates.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



VARIATIONS IN RECOMBINATION RATES ACROSS ESCHERICHIA 

COLI POPULATIONS 

by 

Corey Burton 

A Thesis 

Submitted to 

the Faculty of the Graduate School at 

The University of North Carolina at Greensboro 

in Partial Fulfillment 

of the Requirements for the Degree 

Master of Science 

Greensboro 

2022 

Approved by 

Dr. Louis-Marie Bobay 

Committee Chair 



APPROVAL PAGE 

This thesis written by Corey Burton has been approved by the following committee of the 

Faculty of The Graduate School at The University of North Carolina at Greensboro. 

Committee Chair 

Dr. Bobay 

Committee Members 

Dr. Raymann 

Dr. McLean 

April 28, 2022 

Date of Acceptance by Committee 

April 28, 2022 

Date of Final Oral Examination 

ii



TABLE OF CONTENTS 

LIST OF FIGURES………………..…………………………………………….……………….iv 

CHAPTER I: INTRODUCTION……………………….....……………………..….……...……..1 

CHAPTER II: RESULTS……………………………..………………….……………..…...…....4 

Aim 1: Impact of sampling biases on recombination rate estimates……………...………5 

Aim 2: Impact of population structure on recombination rate estimates………….…...….7 

Aim 3: Impact of gene content on recombination rate estimates……………………....….8 

CHAPTER III: METHODS………………………………..………………………….....…...…10 

Aim 1: Subsampling approach…...............................................................................……10 

Aim 1: Estimation of recombination rates ........................................................................10 

Aim 2: Phylogroup analysis…...........................................................................................12 

Aim 3: Gene content analysis……....................................................................................12 

CHAPTER IV: DISCUSSION ……………………………………..……..……………..…...…13 

REFERENCES………………………………………,…..….………………………..…………16 

iii



LIST OF FIGURES 

Figure 1. ABC Framework………………………………………………………...................…..2 

Figure 2. Bayesian Output……………………………………………………...................……...3 

Figure 3. Aim 1 Output………………………………………………….………...................…..6 

Figure 4. Aim 2 Output……………………………………………………...................………...7 

Figure 5. Aim 3 Output……………………………………………………...................………...9 

iv



  1 

CHAPTER I: INTRODUCTION 

 

 

While bacteria reproduce asexually through binary fission, it is now known that their 

evolution is also driven by the exchange of various levels of genetic information (Gogarten et al., 

2002). In particular, homologous recombination is driving the transfer of short sequences of 

DNA between chromosomal regions sharing sequence homology and this process is thought to 

facilitate adaptation (Didelot et al., 2012). However, quantifying the amount of DNA transferred 

by recombination across species has proven difficult and remains a technical challenge.  

Knowledge on recombination rates is sparse, and while many studies have attempted to 

quantify this process, these estimates have been derived from various methodologies and datasets 

(Bobay et al., 2015). As a result, reported estimates of recombination rates have been highly 

inconsistent across studies, as evidenced by independent studies focusing on the same species. 

Despite technical biases inherent to the application of different methodologies and different 

datasets, biological variations may also contribute to these inconsistencies. Bacteria display 

structured populations and recombination rates can vary within and across populations (Didelot 

et al., 2012). Ecological factors may also facilitate recombination between populations living in 

the same niche relative to those living in different niches. Finally, recombination might be 

beneficial for strains sharing certain traits or phenotypes, and selection might then favor 

recombination between these populations. Therefore, one key challenge remains to disentangle 

to what extent these variations of recombination rate estimates are due to technical challenges or 

biological factors. 
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Much effort has been conducted to estimate the recombination rate of the model 

bacterium Escherichia coli. Over several decades of work E. coli has been estimated to be non-

recombining at all in some studies, to recombining at extremely high rates in other studies 

(Bobay et al., 2015). More recent studies, however, tended to infer an intermediate rate of 

recombination for this species. E. coli offers an ideal test case to test approaches aiming at 

estimating recombination rates (Touchon et al., 2009; Didelot et al., 2012). Indeed, this species 

presents a wealth of genomic data with over 20,000 complete genomes available so far. In 

addition, E. coli has a well characterized population structure and has been divided into seven 

main phylogroups: A, B1, B2, C, D, E, and F (Tenaillon et al., 2010).  Finally, E. coli’s strains 

exhibit various phenotypes and live across differing environments. For instance, it comprises 

commensal strains, uropathogenic strains, enteropathogenic strains, and Shigella strains causing 

shigellosis (Sims & Kim., 2011). 

Figure 1. ABC Framework 
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In this study, I aim to apply and test a novel method based on Approximate Bayesian 

Computation (ABC) (Figures 1 and 2) to estimate recombination rates in E. coli. Using 

subsampling approaches, I will determine to what extent this method yields consistent estimates 

of recombination rates across genomic datasets sampled from the same species. I will further 

analyze the impact of population structure, bacterial ecology, and genome content on these 

estimates. Results will establish to what extent this new method is reproducible across samples 

and how much of the variation of recombination rates are due to biological factors rather than 

technical biases. Altogether, this work will determine how to best subsample large genomic 

datasets to derive robust estimates of recombination rates. 

Figure 2. Bayesian Output 
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CHAPTER II: RESULTS 

The main objective of these analyses is to assess the robustness of recombination rate 

estimates derived from a new unpublished method based on ABC recently developed in the lab. 

The overall approach consists of simulating genome evolution with known parameters of 

recombination rates. The simulated genomes are then compared to the real dataset using three 

summary statistics which are known to be signatures of recombination. The simulations, and 

their corresponding recombination rates, which exhibit summary statistics closest to those 

inferred for the real dataset are then inferred as the most probable recombination rates based on 

ABC (see Methods). For each sampling, genomes are evolved in silico using CoreSimul, which 

is a simulator of genome evolution for prokaryotes, with parameters specific to each sampling of 

E. coli genomes such as nucleotide composition, topology of the phylogenetic tree, substitution

rates, and transition/transversion ratio (Bobay., 2020). These parameters are empirically 

estimated from the dataset. These genomes are evolved in silico with diverse rates of 

recombination. Recombination rates are expressed as the number of alleles exchanged by 

recombination relative to mutation events (r/m). The three summary statistics are then inferred 

for each simulation and for the real dataset. By conducting many simulations (n>300,000 for 

each estimate) of genome evolution with diverse recombination rates, we can compare these 

summary statistics across thousands of simulated genome datasets to the summary statistics 

estimated in the real samples of genomes. Based on these summary statistics, our ABC procedure 

allows us to estimate which simulations are the most similar to the real datasets of E. coli 

genomes, and therefore to infer which recombination rates are the most probable for these 

genomes.  
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Aim 1: Impact of sampling biases on recombination rate estimates 

The first goal of my analysis was to establish the robustness of recombination rate 

estimates to basic genome sampling biases. Like most genomic analyses, our ABC approach is 

unable to process the entirety of genomic datasets (i.e. over thousands of genomes), and 

estimates are therefore derived from smaller samples. I conducted diverse sub-samplings of the 

same dataset to measure to what extent these estimates varied from one another. I analyzed a 

previously published dataset of 400 non redundant E. coli genomes assembled in Bobay & 

Ochman 2018. This dataset represents the set of >1,000 core genes that were aligned and 

concatenated into a single alignment. Different subsamplings were conducted on this 

concatenate. First, I aimed to determine how consistent recombination rate estimates were across 

random unbiased samplings. I also measured how the presence of genomic outliers impacts my 

estimates by generating sampling biases with uneven genomic divergence. Unbiased and biased 

subsampling of genomes from four different subtrees of the whole E. coli tree were conducted, 

each with three replicates consisting of fifteen genomes each. Unbiased samplings were 

conducted by randomly selecting fifteen genomes from the same subtree of E. coli. Biased 

samplings were conducted by randomly selecting fifteen genomes from the same subtree and by 

including one more divergent genome from a different subtree. Recombination rates were then 

computed via our ABC framework across these different samples. In this analysis, I am 

estimating the effective rate of recombination (r/m) which represents the number of alleles 

exchanged by recombination relative to the number of substitutions. 



 6 

Estimates of the recombination rate varied from r/m = 0.96 to r/m = 4.48 for the unbiased 

samplings and r/m = 1.66 to r/m = 3.09 for the biased samplings. (Figures 3) 

The introduction of an outlier had a weak impact on r/m estimates, (P < 0.05, Kruskal-Wallis 

test) but the origin of the sampled subtree had a more pronounced effect on the estimates (P < 10-

15, Kruskal-Wallis test). Interestingly, the introduction of a more divergent genome did not 

systemically decrease r/m estimates, indicating that recombination rates are not systematically 

lower among more distantly related strains. Overall, recombination rate estimates appear to be 

modestly impacted by sampling biases. Although sampling strategies should be designed to 

minimize biases by including genomes that are representative of the overall genomic diversity of 

the species, our results show that the inclusion of outliers did not substantially impact r/m 

estimates. However, significant variations were found based on the origin of the sampling on the 

tree, which suggests that variations in recombination rates may be driven by population structure. 

Figure 3. Aim 1 Output 
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Aim 2: Impact of population structure on recombination rate estimates 

Although many works have attempted to estimate the recombination rate of a given 

species, it has been suggested that recombination rates may vary across populations within the 

same species (Didelot & Maiden., 2010). Indeed, populations are strongly structured in bacteria 

and this might lead to preferential patterns of recombination within and between the population 

of each species (Touchon et al., 2020). The previously published phylogenetic tree of the 400 E. 

coli genomes was used to classify each genome into their respective phylogroups using previous 

classifications (Beghain et al., 2018; Diamant et al., 2004; Sims & Kim, 2011). Most of the 

genomes in the tree could be assigned to one of the five main phylogroups of  E. coli (A, B1, B2, 

D, E) by randomly sampling 15 genomes within each phylogroup, this analysis was repeated five 

times per phylogroup and each sample of 15 genomes was used to estimate recombination rates 

with our ABC approach as in Aim 1. 

. 

Results show that recombination rate estimates were significantly different across several 

phylogroups (Figure 4). Phylogroups B1 and E presented recombination rate estimates that were 

systemically significantly different from all other phylogroups and from one another (P<0.05, 

Wilcoxon test with Bonferroni correction). The last three phylogroups A, B2, and D did not 

display significantly different estimates of recombination rates from one another(P>0.05, 

Figure 4. Aim 2 Output 
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Wilcoxon test with Bonferroni correction). Thus, this confirms that population structure does 

play some role in shaping recombination rates. However, variations in recombination rates, albeit 

significant, were relatively modest when compared to the possible range of recombination rates 

that were reported across different species (Vos., 2008). Indeed, our estimates varied from a 

minimum of r/m = 1.41 to a maximum of r/m = 3.76, while variations across species have been 

reported to vary from r/m = 0 to r/m = 60 (Vos., 2008). Moreover, we observed that r/m 

estimates were highly consistent across samplings obtained from phylogroups B1, D, and E. In 

contrast, r/m estimates were much more variable across samplings conducted within phylogroups 

A and B2.  

These results indicate that, although recombination rates appear to vary significantly 

across some E. coli phylogroups, they can also vary substantially vary within each phylogroup 

(Figure 4). The fact that r/m estimates can vary widely within the same phylogroup suggests that 

other factors may be driving the variations of recombination rates within E. coli’s genomes 

Previous studies have reported that Phylogroup A is primarily composed of commensal strains, 

and that phylogroup D is mostly composed of enteropathogenic strains (Touchon et al., 2020). It 

is therefore possible that the observed variations in recombination rate estimates across 

phylogroups may in fact reflect the heterogeneity of their ecological niches and lifestyles. 

Although the ecology of a particular strain is difficult to predict, studies have suggested that 

strains sharing similar ecological niches tend to share similar gene contents (Touchon et al., 

2020). 

Aim 3: Impact of gene content on recombination rate estimates 

I am therefore hypothesizing that strains sharing more similar gene contents are more 

likely to display higher recombination rates than strains that share less similar gene contents. To 
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test this hypothesis, I compared the gene content of all the analyzed genomes in my dataset. I 

defined the set of orthologous genes for each pair of genomes 

by best reciprocal hit (see Methods) and from this, I estimated the average number of 

orthologous genes shared within each sampling. The strains from the different samplings shared 

from 3827 to 4299 genes on average. Some phylogroups displayed higher levels of gene content 

similarity; for instance, phylogroup E showed higher average gene content similarity and this 

group is primarily composed of enteropathogenic strains with similar phenotypes and infectious 

strategies (Denamur et al,. 2021). Overall, I did not observe any significant correlation between 

gene content and recombination rate (Figure 5, rho=-0.19,P=0.26), indicating that strains with 

more similar gene content are not likely to engage in recombination more frequently.   

Figure 5. Aim 3 Output 
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CHAPTER III: METHODS 

Aim 1: Subsampling approach 

Subsampling analyses were conducted from the core genome alignments of 400 non-

redundant stains of E. coli assembled in Bobay & Ochman 2018. The phylogenetic tree was built 

with RAxML using a GTR + Gamma model. Several subtrees of the phylogeny were randomly 

selected to conduct the samplings, which were done via the random library in Python. To 

generate the unbiased sampling, multiple random samplings of 15 genomes were conducted from 

different subtrees. The biased samplings were generated by randomly selecting 15 genomes from 

a subtree and adding a randomly selected genome from a different subtree. For each of the 

generated samplings, the core genome alignments were extracted from the main alignment and a 

maximum likelihood phylogeny was generated for each alignment using RAxML with a GTR + 

Gamma model. From the phylogenetic tree and core genome alignments of each sampling, 

additional statistics were inferred: nucleotide composition, transition/transversion ratio, and 

polymorphisms across codon positions.  

Aim 1: Estimation of recombination rates  

Our ABC framework consists of simulating genomes under various recombination rates 

and to compare several summary statistics that represent signatures of recombination between 

the simulated and real genomes. The underlying idea is that simulations that were evolved with 

the right rate of recombination should give rise to genomic signatures that are similar to those 

observed in the real dataset. For each sampling, recombination rates were estimated with our 

ABC approach independently. To obtain r/m estimates, genomes were evolved 300,000 times 

using CoreSimul with various recombination rates (from rho/theta = 0 to 20) following a Poisson 

distribution and different average recombination tract length (from delta = 10 to 1,000) following 
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a geometric distribution. Rho/Theta represents the rate of DNA fragments exchanged by 

recombination relative to the number of substitutions. In contrast, r/m represents the effective 

rate of recombination which represents the number of alleles exchanged by recombination 

relative to the number of substitutions. All sites in the genome had equal probabilities of 

recombination and all branches existing at the same time t in the tree had equal chances of 

recombining. For each recombination event, the amount of transferred alleles nu was recorded. 

For these parameters, the effective rate of recombination was defined as: 

 
𝑟

𝑚
=  𝛿 × 𝜈 ×

𝜌

𝜃
 

 

 (Didelot & Wilson., 2015). Each simulation was initiated by generating a random sequence with 

the length of the sampling alignment and the same nucleotide composition. The sequence was 

evolved along the tree of its corresponding sampling with a substitution rate estimated from the 

branches of the tree. Substitution rates followed a K2P model using the transition/transversion 

ratio empirically inferred for each sampling as explained above. Substitution rates were also 

varied across the three codon positions, whose relative rate was defined for each sampling as 

described above. Each simulated alignment was then analyzed to infer three summary statistics 

that were compared to the three summary statistics inferred from the real genomes of each 

sampling.  Our first summary statistic, the homoplasy ratio (h/m) represents the ratio of 

homoplasic alleles to non-homoplasic alleles. Recombination is known to increase the number of 

homoplasic alleles i.e. alleles that are not consistent with the vertical inheritance from a single 

common ancestor. The second summary statistic is Linkage Disequilibrium (LD), which 

measures the co-inheritance between pairs of alleles located at two loci on the chromosome, 

recombination decreases LD as a function of the distance between loci. Finally, nucleotide 

diversity (), is used as the third summary statistic. Nucleotide diversity is the average number of 
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nucleotide differences in a sample of genomes. This metric is known to be strongly correlated 

with recombination rates, since r/m measures the effective number of alleles exchanged by 

recombination. This metric ensures that the simulations have been conducted using realistic 

mutation and recombination rates. For each sampling, the three summary statistics were 

compared between the 300,000 simulations and the real datasets with the R package abc. The 

most probable simulations and the median of these values were used as the effective 

recombination rate for each sampling.  

Aim 2: Phylogroup analysis 

 Using the same dataset as Aim 1, I identified the five main phylogroups, A, B1, B2, D, E 

using the phylogenetic tree. I used the published datasets of (Beghain, et al., 2018: Sims & Kim., 

2011: Diamant et al., 2004) to classify the strains shared with my dataset and to infer the 

phylogroups in the tree. I then selected 15 genomes from each phylogroup (three times) to 

conduct the unbiased samplings and I selected 15 genomes from each phylogroup and one 

genome from another phylogroup to generate biased samplings. I then used the same ABC 

pipeline to estimate recombination rates for each sampling independently. 

Aim 3: Analysis of gene content 

 The goal of this analysis was to estimate the average number of orthologous genes shared 

by the genomes selected in each sampling. First, the 400 genomes of E. coli were compared 

against each other using Blastn. For each genome pair, orthologous genes were defined as the 

best reciprocal hits (gene A in genome 1 is most similar to gene B in genome 2 and vice versa) 

with a nucleotide sequence identity threshold of 95%. For each sampling the number of shared 

genes was reported with the mean, median, min and max values.  
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CHAPTER IV: DISCUSSION 

 

 

Recombination rate is a key parameter in evolution and as such, various methods and 

approaches have been generated to estimate r/m in bacteria. However, estimating accurate 

recombination rates in bacteria has proven methodologically challenging and estimates of the 

same species have been largely inconsistent across studies. Here we conducted various 

samplings to test the robustness of a new approach based on an ABC framework and we further 

tested how population structure and bacterial gene content may impact or relate to recombination 

rates.  

 Our recombination rate estimates of E. coli varied from r/m = 1.34 to r/m = 3.76 across 

samplings and the average estimates across all the conducted samplings are yielding an estimate 

of r/m = 2.54 for E. coli as a species. Although previous studies have yielded highly variable 

estimates of recombination rates for E. coli, most recent studies have inferred a recombination 

rate around r/m = 1. The fact that this estimate is substantially lower than the estimates generated 

by our ABC approach is not surprising. Indeed, other methods developed to infer recombination 

rates are unlikely to catch all recombination events since these methods are theoretically 

incapable of inferring events that don’t leave a direct signal of recombination. For instance, some 

alleles may be exchanged by recombination without being homoplasic (i.e. without being 

incongruent with the overall phylogeny of the species) and those cannot be inferred as 

recombinant by these methods. In contrast, because our ABC framework is based on simulations, 

such events can be accounted for as recombination events in our approach.  

 Our results revealed that conducting random samplings across 400 genomes of E. coli 

yielded rather consistent recombination rate estimates. We found that biased sampling strategies, 

where a more distant genome was introduced, did substantially impact recombination rate 
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estimates. This result shows that recombination rate does not systematically decrease when more 

divergent genomes are added to a sample. This result has further implications for the sampling 

strategies, which appear to be robust to biased samplings. Significant variations to our r/m 

estimates were observed across phylogroups, suggesting that population structure may shape 

recombination rates. However, this result should be contrasted by the fact that some of the most 

extreme variations in recombination rates were observed within the same phylogroup rather than 

between phylogroups.  

 Strains from the same phylogroup often display different phenotypes and frequently 

occupy different niches (Touchon et al., 2020). Strain phenotypes are frequently dictated by the 

presence of accessory genes that tend to be specific to groups of strains living in the same 

environment. Because these genes tend to be frequently exchanged via horizontal gene transfer, 

their distribution is usually not limited to a specific phylogroup. I therefore expected that strains 

sharing more similar gene content would present higher recombination rates. Results did not 

reveal a significant correlation between gene content and r/m. This pattern could be due to the 

fact that homologous recombination may not be directly correlated to the frequency of horizontal 

gene transfers (HGT events do not necessarily rely on homologous recombination). 

Alternatively, the assumption that genes sharing more similar gene content are more likely to 

present similar phenotypes and live in the same environment may be an over-simplification. The 

gain and loss of a single or several accessory gene(s) can be responsible for drastic phenotypic 

and ecological modifications in bacteria (Iranzo et al., 2019). Conversely, many accessory genes 

in bacteria are attributable to mobile elements (Bobay MBE., 2013), and these elements are not 

always associated with a clear phenotype or environmental specialization. Therefore, the link 

between ecological lifestyle and recombination rate would be better investigated by sampling 
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and sequencing strains from clearly defined environments. Unfortunately, characterizing basic 

attributes of the habitat and the niche of a given bacterial strain remains very challenging.  

 The fast accumulation of bacterial genomic datasets is generating new challenges for 

computational analyses. For example, E. coli currently has >20,000 complete genomes available 

for analyses, and more genomes are being sequenced every month. Based on this trend, it 

appears that it won’t be possible to infer complex parameters such as recombination rates from 

entire genomic datasets of bacteria. As a result, subsampling strategies are, or will be, required to 

generate such parameters for all bacterial species in the near future. Although the accumulation 

of genomic data has helped to establish some links between population structure and 

recombination rate, other questions remain difficult to infer from genomic data alone. In 

particular, the link between bacterial ecology and recombination is a complex question to address 

due to the scarcity of high-quality data on bacterial ecology. The development of metagenomic 

approaches coupled with the accurate analysis of the sampled environment may soon provide 

novel insights into these questions. 
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