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Managed pine plantations have been recognized as potentially suitable land for 

producing biofuel feedstocks. Intercropping biofuel feedstocks, particularly switchgrass 

(Panicum virgatum L., a native C4 grass), in existing loblolly pine (Pinus taeda) 

plantations is a potentially sustainable alternative to land conversion for feedstock 

production. However, little is known about how biofuel feedstock intercropping could 

affect biodiversity and ecosystem functioning in a managed forest system. I conducted a 

study of a common native omnivore, the white-footed mouse (Peromyscus leucopus), to 

examine if they would use planted switchgrass as a food source, or if they would use 

existing food resources associated with pine. This study was one of the first to examine 

ecological effects of forest management of biofuel feedstocks on a key forest consumer.  

Rodents were live trapped in four replicates of three different treatments planted 

with: (1) pine only, (2) pine intercropped with switchgrass and (3) switchgrass-only. I 

assessed the diet sources and trophic position of mice using stable isotopes of carbon 

(δ13C) and nitrogen (δ15N), respectively, in tissue samples collected in 2009 and 2010. I 

tested the hypothesis that switchgrass in intercropped landscapes would affect the dietary 

preference and trophic position of P. leucopus. In terms of intercropping, my main 

prediction was that diet and trophic position of mice in intercropped treatments would 

reflect a C3/C4 signal and trophic position would be lower than treatments with pine only, 

indicating a change in functional role.  



In 2009 there was no effect of treatment, but there was an effect of season on diet 

and trophic position of P. leucopus. Across both seasons, mice consumed a combined 

C3/C4-based diet. However, in the summer, diet in all treatments was slightly more C4-

influenced, whereas in the fall diet was slightly more C3-influenced. However, the 

influence was not dramatic in either season. Additionally, trophic position was higher in 

the fall and lower in the summer. In 2010, mouse diets in all treatments reflected a 

combined C3/C4-based diet. There was no effect of treatment or season on diet, but δ13C 

of mouse tissue in switchgrass only treatments was pulled slightly toward a C4 signal. In 

terms of trophic position, δ15N values indicated that mice remained functionally 

omnivorous. While these findings did not suggest an influence of switchgrass on diet or 

trophic position of P. leucopus, results are based on only the first two years of the 

intercropping study. As treatments become more established, further study should be 

conducted to ensure that ecological roles of consumers remain intact.  
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CHAPTER I 

           I.  INTRODUCTION 

Energy flow through ecosystems is an important ecological phenomenon (Golley 

1960; Lindeman 1991; Miller et al. 2008; Peterson and Fry 1987). In photosynthesis-

based trophic systems, primary producers harness sunlight and inorganic compounds and 

convert these to organic matter (Chapin et al. 2002; Smith and Smith 2008).  In turn, 

consumers derive their energy by directly by consuming plants or indirectly by 

consuming other animals. Depending on what a consumer eats defines that consumer’s 

trophic level (Chapin et al. 2002; Thompson et al. 2007). Herbivores occupy the second 

trophic level; primary and secondary consumers occupy the third and fourth trophic 

levels, and so forth. Trophic omnivores differ in that they feed from multiple trophic 

levels (Thompson et al. 2007) and are capable of shifting their diet when necessary 

(Mcshea 2000; Polis and Strong 1996; Shaner and Macko 2011; Stapp et al. 1999; 

Vander Zanden et al. 1999; Wolff 1996). These multi-trophic interactions provide the 

structure for complex food webs (Chapin et al. 2002). Rodents are a group of animals 

that contribute to this ecological complexity, as many genera have a diverse diet spanning 

many trophic levels. Many rodents consume both plants and animals (Carey and Johnson 

1995; Elkinton et al. 1996; Mittelbach and Gross 1984), and are also prey for higher 

order consumers (Carey and Johnson 1995; Hansson 2002, 1974; Roche et al. 1999). 

Thus, rodents provide an important energy link between producers and higher
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trophic consumers in terrestrial food webs (Hafner et al. 1998). 

In addition to their role in energy transfer, rodents have other important functions 

in forest ecosystems. Rodents are dispersers of seeds and fungi, they aerate and mix soil 

via burrowing, they contribute to decomposition, and they also regulate invertebrate 

populations (Carey and Harrington 2001; Carey and Johnson 1995; Elkinton et al. 1996; 

Maser et al. 1978; Ostfeld et al. 1997).  

Rodents are strongly influenced by changes in habitat structure (Davis et al. 2010; 

Loeb 1999; Mengak and Guynn 2003). Many rodents are associated with aspects of 

structural complexity such as snags, downed logs and stumps (coarse woody debris), as 

well as understory and overstory development and composition (Bowman et al. 2000; 

Carey and Harrington 2001; Carey and Johnson 1995; Loeb 1999; Mengak and Guynn 

2003). These habitat elements provide protection from predators, are used as travel 

routes, and provide foraging and nesting habitat.  

Rodents also show a strong response to resource availability, especially pulsed 

resource events (Clotfelter et al. 2007; Mccracken et al. 1999; Schmidt and Ostfeld 2008; 

Wolff et al. 1985). Oak masts which produce irregular synchronous eruptions of acorn 

crops (Kelly 1994; Silvertown 1980) are an important resource for many rodent species. 

Numerous studies have documented a positive correlation between acorn mast events and 

increased population densities in several species of rodents, especially in the genus 

Peromyscus (Clotfelter et al. 2007; Mccracken et al. 1999; Mcshea 2000; Schmidt and 

Ostfeld 2008; Wolff 1996). Annually, Peromyscus spp. are also influenced by seasonal 

availability of resources such as seeds, fruit and some arthropod larvae (Wolff et al. 
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1985). In one study, Peromyscus leucopus  (white-footed mouse) showed a strong 

response to an artificial pulse of seeds, but showed a weaker response to a natural cicada 

pulse (Shaner and Macko 2011). While a complete shift from one trophic level to another 

(e.g. omnivore shifts to herbivore) has not been documented in this generalist consumer, 

such a shift could alter food web interactions (Shaner and Macko 2011).   

There has been increasing effort to assess the sustainability of forestry practices 

on biotic and abiotic components of managed forests (Kessler et al. 1992; Sharitz et al. 

1992). Given their role in ecosystem functioning and their responsiveness to habitat 

structure and composition, rodent responses to forestry practices are often the focus of 

studies examining sustainability in managed forest landscapes (Carey and Harrington 

2001; Pearce and Venier 2005). The effects of standard silvicultural (Whitaker 1963) 

practices on rodents including clear-cut harvesting, forest thinning, site preparation, and 

herbicide treatment (Constantine et al. 2004; Fuller et al. 2004; Iglay 2010; Kaminski et 

al. 2007; Lautenschlager 1993; Sullivan et al. 2009) have been examined, as have 

practices including incorporation of streamside management zones, retention of course 

woody debris, partial harvesting, variable tree retention, and retention of corridors 

(Constantine et al. 2004; Fuller et al. 2004; Gitzen et al. 2007; Le Blanc et al. 2010; Loeb 

1999; Miller et al. 2004). General findings indicate a variety of responses to silviculture, 

depending on the level of disturbance to which a species is adapted. However, it is the 

changes in the understory that have been shown to most effect rodents (Fuller et al. 2004; 

Kaminski et al. 2007; Kirkland 1990).  
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 Recently, there have been efforts to examine the feasibility of producing biofuel 

feedstocks in managed forests. North Carolina Senate Bill 2051 is a state bill that 

mandates that 10 percent of all liquid fuels shall be grown and produced in North 

Carolina by the year 2017. In order to produce biofuels at the scale necessary to meet this 

mandate, an abundance of land is required. Production of biofuel feedstocks has been 

controversial because it typically involves conversion of arable or otherwise undisturbed 

lands (Tilman et al. 2006). However, intercropping (growing two or more crops together 

simultaneously) biofuel feedstocks between rows of trees within existing forest 

plantations may be a sustainable option for biofuel feedstock production that takes 

advantage of unused land. In the southeastern United States, approximately 13 million 

hectares are covered by managed loblolly pine (Pinus taeda) plantations (Schultz 1999; 

Smith et al. 2009; Smith et al. 1997). Loblolly pine plantations are an abundant source of 

land where biofuel intercropping could be implemented.  

Switchgrass (Panicum virgatum L.) is a promising bioenergy crop (Arnett 2000; 

Wright and Turhollow 2010) and a perennial C4 grass native to the central and eastern 

U.S. It has a wide native range and grows in a variety of habitats and climatic conditions 

(Mclaughlin and Walsh 1998; Raghu et al. 2006). Once established, the deep root system 

provides high water and nutrient holding capabilities, and increases soil stabilization 

(Mclaughlin and Walsh 1998). As a perennial, switchgrass can be harvested for several 

years, reducing the need for annual seeding and disturbance to the soil.  Overall, 

switchgrass can be grown and maintained with moderately low energy input, compared 

with other biofuel feedstocks (Schmer et al. 2008; Wright and Turhollow 2010).  
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In agricultural systems, monocropping leads to reduced biodiversity, whereas 

intercropping is more aligned with maintaining habitat heterogeneity (Mineau and 

Mclaughlin 1996), a key component of biodiversity (Carey 2003; Tews et al. 2004). 

Intercropping biofuel feedstock crops in managed forests is a potentially sustainable 

option for meeting state energy mandates. However, the ecological effects of biofuel 

feedstock intercropping are poorly understood. Although research on the ecological 

effects of forest management is prevalent, few studies have examined if or how biofuel 

feedstock intercropping could affect biodiversity in a managed forest system. Ecological 

effects of monocropping biofuel feedstock crops of switchgrass, miscanthus (Miscanthus 

giganteus) and reed canary-grass (Phalaris arundinacea) have been examined to some 

extent. For example, Robertson et al. (2011) did not detect a difference in avian species 

richness and abundance when comparing switchgrass monocrop and mixed-grass prairie 

biofuel feedstock patches. In another study, full (100%) and partial (60%) harvesting of 

switchgrass monocrops had greater avian species abundance when compared to corn and 

soybean monocrops, and un-harvested plots of switchgrass (Murray et al. 2003). Also, in 

a comparison of miscanthus and reed canary-grass biomass monocrops, small mammals 

were more abundant along plot edges (ranging from 1.3 to 7 ha.) versus the interior of 

these crops (Semere and Slater 2007).  

In contrast, only one study that I am aware of has examined ecological effects of 

intercropping a biofuel feedstock crop in a managed forest. Marshall et al. (in Review) 

examined rodent responses (community diversity and abundance, and population 

demographics) to several pine and switchgrass intercropping treatments, and woody 
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debris removal. Marshall et al. (in Review) found no difference in rodent community 

diversity among treatments. However, there were changes in species relative abundance 

associated with switchgrass intercropping. Invasive house mice (Mus musculus) were 

more abundant, whereas native white-footed mice (Peromyscus leucopus) were less 

abundant, in treatments that contained switchgrass.  

Changes in rodent population abundance associated with switchgrass 

intercropping (Marshall et al. in Review) could affect food web dynamics. The observed 

decline of P. leucopus (white-footed mouse), one of the most common native rodents in 

the southeastern U.S. (Wolff 1996), in treatments with switchgrass may be associated 

with a decline in food resources. Although P. leucopus is an omnivore, consuming a 

variety of fruits, nuts, seeds, green foliage, fungi, and insects (Lackey et al. 1985; Shaner 

et al. 2007; Wolff et al. 1985), they may not have exploited the introduced basal food 

resource, switchgrass. Laboratory and field experiments have demonstrated that P. 

leucopus have specific energy and protein requirements, and make dietary choices based 

upon the nutritional content of foods (Lewis et al. 2001). If switchgrass does not fulfill 

these requirements, the pattern of declining abundances of P. leucopus may continue. In 

terms of energy flow, this could have cascading effects on higher trophic consumers that 

interact with P. leucopus, and have implications for forest food webs.  

Dietary and trophic responses to switchgrass intercropping can be traced using 

stable isotopes. Stapp et al. (1999) used stable isotopes to show how the diet of an insular 

deer mouse (Peromyscus maniculatus) population shifted from a marine-derived diet in 

dry years, when terrestrial productivity was low to a terrestrial-based diet during wet El 
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Niño years, when terrestrial productivity was high. This study revealed the importance of 

marine-derived resources in subsidizing insular P. maniculatus when terrestrial resources 

were reduced. Based on the observed changes in abundance of P. leucopus in response to 

switchgrass intercropping, their broad dietary preferences, and their widespread 

abundance in the southeast, P. leucopus is an excellent species to examine diet and 

trophic responses to switchgrass intercropping. 

Physical properties of naturally-occurring stable isotopes make them useful tools 

in ecological studies. Different stable forms of chemical elements, referred to as stable 

isotopes, have a heavy and light mass such as the stable isotopes of carbon, 13C and 12C, 

respectively. Biological, chemical, and physical processes can change the ratios of the 

heavy to light isotopes (fractionation) in a very predictable manner (Crawford et al. 2008; 

Peterson and Fry 1987). These ratios can be measured in animal tissues relative to 

standards. Differences in abundances of heavy and light isotopes are typically expressed 

in delta notation (δ) as parts per thousand (‰) change from a standard, as follows: δHX = 

[(Rsample/Rstandard)-1] * 1000, where X is the element, H is the heavy isotope, and R is the 

ratio of the heavy and light isotope. Pee dee belemnite limestone is the standard for δ 13C 

and atmospheric nitrogen is the standard for δ 15N (Peterson and Fry 1987).  

Carbon and nitrogen stable isotopes (SI) are particularly useful in tracing a 

consumer’s diet and trophic position because these isotopes exhibit unique patterns of 

enrichment relative to the diet of the consumer (Kelly 2000; Peterson and Fry 1987). 

Carbon SI (δ13C) signatures of consumers are enriched by about 1‰ (parts per thousand) 

relative to the diet. Thus, inferences can be made about what a consumer is eating based 
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on stable isotope estimates of carbon. Similarly, nitrogen SI (δ15N) signatures of 

consumers are generally enriched 3–5 ‰ with each trophic level (Kelly 2000; Peterson 

and Fry 1987). Thus, if the δ15N of the base of the food web is known, the trophic level of 

a consumer can be inferred.   

Differential photosynthetic pathways of terrestrial C3 plants versus C4 plants 

increase the utility of SI analysis. C3 and C4 plants have distinct δ13C signatures as a 

result of differential carbon fixation by these plant types (Ehleringer et al. 1992; Whelan 

et al. 1973). Switchgrass, like many other warm season grasses, use the C4 photosynthetic 

pathway (Osborne and Freckleton 2009). However, most trees, shrubs, herbaceous plants 

and cool season grasses use the C3 photosynthetic pathway  (Cerling et al. 1993). C3 

plants typically have carbon SI (δ13C) values that range from -35 to -21‰, whereas C4 

plants typically have higher δ13C values that range from -14 to -10‰ (Boutton et al. 

1991; Ehleringer 1991). Negative values of both plant types indicate they are depleted in 

δ13C relative to the standard for δ13C, Pee dee belemnite limestone. Given that stable 

isotopes are integrated into body tissues from the diet, SI analysis can be used to 

determine if an animal is subsisting on a C3 (e.g., pine) or C4 (e.g., switchgrass) based 

diet.  

 Metabolically inert tissues such as fur and skin are excellent tracers of long-term 

feeding patterns because the stable isotope signature of these tissues reflects the diet at 

the time of tissue growth (Crawford et al. 2008; Miller et al. 2008). Once tissue growth 

ceases, the stable isotope signature remains fixed until growth resumes (Baugh et al. 

2004). In adult rodents, stable isotopes are incorporated in the fur at times of pelage 
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formation, including when juveniles first form their sub-adult to adult pelage and when 

adults undergo a seasonal molt (Miller et al. 2008). In northern temperate climates adults 

typically undergo a winter molt in the fall (Wichman and Lynch 1991). However, molt 

may be less dramatic in southern temperate climates, including the North Carolina coastal 

plain. Few studies have examined isotope turnover in mammal skin. However, in nectar 

feeding bats, wing membrane isotope turnover ranged from three to four months (Voigt et 

al. 2003). Thus, skin has similar benefits for long-term diet analysis, as turnover of stable 

isotopes in skin occurs fairly slowly. 

 Using stable isotopes, I examined how the diet and trophic position of a native 

omnivore, P. leucopus, changed in response to management of biofuel feedstocks in a 

managed forest. Specifically, I focused on dietary and trophic shifts in response to several 

biofuel feedstock intercropping treatments. Changes in diet and trophic position have 

been described as an indicator of food web responses to ecosystem perturbations, 

including non-native species invasions, resource pulses, and seasonal climatic 

disturbances  (Mcshea 2000; Polis and Strong 1996; Shaner and Macko 2011; Stapp et al. 

1999; Vander Zanden et al. 1999; Wolff 1996). Assessing ecological implications of new 

management approaches is an important consideration for forest managers. Along with 

traditional timber management, forest managers must ensure sustainable management 

activities that conserve biodiversity and ecosystem functioning (Kaminski et al. 2007). 

This study is one of the first to evaluate effects of forest management of intercropped 

biofuel feedstocks on a key forest consumer.  
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Objectives, Hypothesis and Predictions 

The objective of my study was to examine if diet and trophic position of a native 

omnivore (P. leucopus) changed in response to intercropping switchgrass in a managed 

loblolly pine forest using stable isotope analysis. I examined diet and trophic position 

changes in mice inhabiting three intercropping treatments including 1) pine with residual 

woody debris removed (pine biomass -; PB-), (2) pine and switchgrass intercropped with 

residual woody debris removed (pine x switchgrass, biomass -; P x SB-), and (3) 

switchgrass only with residual woody debris removed (S). Hereafter, I will refer to these 

treatments as “PB-”, “P x SB-”, and “S”. The “PB-” treatment most closely represents 

typical forest management. The Removal of residual woody debris from these treatments 

simulated a biomass harvest. “S” treatments differed most from typical forest 

management.  

Hypothesis 1. Switchgrass in intercropped landscapes affects dietary preference of P. 

leucopus.  

Predictions 

When switchgrass seeds are available (late summer/early fall), I predict the 

following, based on the opportunistic foraging behavior of P. leucopus: In “S” 

treatments, I predict that P. leucopus will consume switchgrass seeds, and will thus have 

enriched δ13C tissue values that reflect a C4-based diet (seed pulse response). In “PB-” 

treatments I predict that mice will primarily consume C3 plant matter and invertebrates. 

Relative to mice in “S”, mice in “PB-” treatments will have depleted δ13C tissue values 

that reflect a C3-based diet. In “P x SB-” treatments I predict that mice will consume C3 
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and C4 plant matter (planted switchgrass) and invertebrates. Because intercropped 

treatments will support a mixture of C3 plants and planted switchgrass, I predict that mice 

will have δ13C tissue values that reflect a combined C3/C4 signal that is intermediate to 

“S” and “PB-”.  

Hypothesis 2. Switchgrass in intercropped landscapes affects the trophic position of P. 

leucopus. 

Predictions 

When switchgrass seeds are available (late summer/early fall), I predict the 

following based on the opportunistic foraging behavior of P. leucopus: In the “S” 

treatment I predict that P. leucopus’ trophic position will be low, compared to mice in 

“PB-”, because they will also respond to the pulsed switchgrass seed resource, consuming 

more plant matter and less invertebrate prey. In the “PB-” treatment I predict that P. 

leucopus will occupy a higher trophic position, relative to “S”, because they will 

consume a mixture of invertebrate prey and plant matter, thus they will have enriched 

δ15N values. In the “P x SB-” treatment I predict that P. leucopus’ trophic position will be 

low, compared to mice in “PB-”, because they will also respond to the pulsed switchgrass 

seed resource, consuming more plant matter and less invertebrate prey.
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CHAPTER II 
 

                                                         II.  METHODS 

The Lenoir 1 Sustainability Study Site is located in Lenoir County, North 

Carolina, USA (Figure 1) on a loblolly pine plantation owned and managed by 

Weyerhaeuser NR Company. The sustainability study is part of joint venture between 

Weyerhaeuser Co. and Chevron (Catchlight Energy LLC), who established and 

maintained the pine/switchgrass intercropping sites in eastern North Carolina. The 109 ha 

study site was originally planted in 1974 as a loblolly pine plantation, with a site index of 

70 (based on site potential, trees are approximately 70 feet in height after 25 years). 

Water levels are maintained via linear ditches that run along forest edges and parallel 

each other through forest interiors. The surrounding region is rural and consists of sandy 

bottomland forest with a mosaic of agricultural and managed pine forest patches. Within 

the study site, a 33.4 ha study area was designated for long-term multi-disciplinary 

examination of the ecological effects of biofuels production on sustainability.  

In 2008, the 33.4 ha study area was clear-cut harvested, and mechanically (V-

shearing and bedding) and chemically (herbicide treatment) site prepared. The study area 

was divided into four blocks (Figure 1) with each block divided into 7 to 8 plots (2-ha, 

referred to hereafter as treatment plot). Each plot was randomly assigned a different 

treatment within a block. I examined four replicates of three treatments including (1) 

“PB-”, (2) “P x SB-”, and (3) “S”.
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In December 2008 loblolly pine seedlings were planted in “PB-” and “P x SB-” 

treatment plots with approximately 6.1 m between rows. In early June 2009, switchgrass 

seeds were machine planted across the entirety of “S” plots and between rows of pine 

trees in the “P x SB-” treatment plots. With exception of the pine plantings and broadcast 

switchgrass seeds, all treatment plots were sparsely vegetated in early summer 2009. By 

the fall of 2009, switchgrass was established and set seed. In the summer of 2010 

switchgrass seed broadcasting was not required, as switchgrass plants were established 

and are perennial. Therefore, in contrast with early summer 2009, switchgrass seeds were 

not present on the ground in summer 2010. All treatments continued to become more 

established and switchgrass set seed again in the fall of 2010 (Marshall et al. in Review).  

Vegetation sampling was conducted bi-monthly between April and October 2010 

(Marshall et al. in Review) to examine treatment plot vegetation composition. Treatments 

were effective in changing the composition of plants in each treatment plot. By October 

2010 percent cover (%) of total area and height (m) was as follows: “S” plots were 

composed of switchgrass (95.58 ± 1.57% and 1.45 ± 0.11 m) and forbs (0.54 ± 0.54% 

and 0.28 ± 0.28 m); “P x SB-” were composed of loblolly pine (9.25 ± 1.55% and 1.85 ± 

0.11 m), grass (75.17 ± 2.73% and 1.06 ± 0.11 m), forbs (9.75 ± 2.90% and 1.14 ± 0.18 

m), and woody debris (2.63 ± 1.0% and 0.24 ± 0.08 m); and “PB-” plots were composed 

of loblolly pine (13.67 ± 7.06% and 1.19 ± 0.23 m), grasses (64.83 ± 4.14% and 0.90 ± 

0.08 m), forbs (14.0± 4.3% and 1.10 ± 0.18 m) and woody debris (4.17 ± 1.35% and 0.15 

± 0.07 m) (Marshall et al. in Review).  
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To determine if diet and trophic position of P. leucopus were influenced by 

treatment, I collected fur and skin samples from mice. I conducted live trapping between 

July 15 – December 9, 2009 and July 19 – November 14, 2010 in all treatment plots. 

Trapping grids (10-m arrays) measuring 30m x 60m were established within each 

treatment plot, approximately 20 m from the edge of each plot. Each trap line was located 

parallel to each pine row and was composed of one randomly placed Longworth and six 

Sherman live traps. Traps were baited with oat seeds in the summer and a combination of 

oats and sunflower seeds in the fall. Traps were set at sunset (1700-2030 pm) and 

checked the following morning at sunrise (0600-0830).  

Standard data collected for each capture included trap location, species, sex, 

reproductive condition, and mass. Each individual was marked with a unique number ear-

tag (Monel Numeric, size 1005-1). Upon capture, juveniles were distinguished from 

adults based on pelage color. Juveniles have overall grey pelage, whereas adults have 

dorsal rufous brown pelage and ventral white pelage. When molting into adult pelage, 

rufous fur on adults initially grows laterally, progressing up the dorsum and is visibly 

distinct from the juvenile pelage (Golley et al. 1966; Miller et al. 2008). 

To interpret stable isotope signatures of P. leucopus tissues, I collected invertebrates from 

three functional groups: herbivores, omnivores, and predators. I did this to obtain 

representative stable isotope values with which to compare diet and trophic position with 

P. leucopus, a functional omnivore. Therefore, collection of invertebrates was not meant 

to establish exactly what P. leucopus was consuming but rather to establish how P. 

leucopus compared with other consumers in the treatment plots. I also collected samples 
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of loblolly pine and switchgrass from each of the three treatment plots to provide a basal 

stable isotope source of comparison. 

Tissue Collection and Processing 

Mouse Tissue Collection 

 
Tissue samples were collected from adult male and female P. leucopus in all 

treatment plots. Skin samples were collected from the ear using a biopsy punch only 

during 2009 and fur samples were trimmed from the dorsum during the second year of 

sampling. Most skin samples were too small to meet minimum weight requirements for 

isotope analysis, so that I changed methods to collect fur samples from individuals. 

Collection of fur is less invasive and larger samples can be collected to meet minimum 

weight requirements for analyses. To determine if fractionation between the diet and skin 

or fur were similar, I also collected skin samples from some of the mice that I sampled 

for fur samples in 2010. Fur samples were stored dry in micro-centrifuge tubes. Skin 

samples were stored in 95% ethanol in micro-centrifuge tubes. All samples were stored at 

-20° C within three hours of collection. All animal handling and tissue collection were 

conducted according to Sikes et al.(2011), NCWRC collecting protocol (09SC00162, 

10SC00162), and IACUC (10-04, 09-09). 

Terrestrial Invertebrate Tissue Collection 

 

To compare SI values of P. leucopus with that of potential invertebrate prey 

items, I conducted invertebrate sampling within each treatment plot during the 2010 field 
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season. I collected invertebrates using a combination of branch beating and hand picking. 

Invertebrate sampling was conducted twice per month between June 22, 2010 and 

November 20, 2010, from approximately 1600-1930. The time that sampling was 

conducted was based on other field scheduling needs. Each sampling session consisted of 

sampling at four randomly selected mouse live-trap stations in each treatment plot. At 

each of the four mouse live-trap stations within each treatment plot, four plants were 

sampled for invertebrates by branch beating for one minute each. Ground-dwelling 

invertebrates were also collected by hand picking for an additional minute at each of the 

four mouse live trap stations. Thus, each treatment plot was sampled for a total of sixteen 

minutes for branch beating and four minutes for hand picking for each sampling event. 

Invertebrates were placed in vials with 95 percent ethanol and stored at room temperature 

until identification.  I identified most invertebrates to family level and classified each 

family by general feeding guild (e.g., herbivore, omnivore, and predator) using Marshall 

(2006) and Arnett (2000). A few taxonomic groups were classified as decomposers. 

Unidentified spiders (Araneae) and butterfly/moth larvae (Lepidoptera) were treated as 

predator and herbivore functional groups, respectively. Millipedes (Diplopoda) were only 

identified to class. 

Vegetation Tissue Collection 

 

To compare SI values of P. leucopus with that of potential plant food items, I 

collected vegetation samples within each treatment plot during the 2010 field season. 

Because I was interested in determining if P. leucopus shifted from a primarily C3-based 
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diet to a C4-based diet (switchgrass), and because pine and switchgrass were the 

dominant plant forms, I only collected pine (C3) and switchgrass (C4). I conducted 

vegetation sampling once in the summer and once in the fall for all treatment plots 

between June 2010 and November 2010. Samples of switchgrass seeds and loblolly pine 

leaves were randomly collected within each treatment plot. Pine needles were collected in 

lieu of pine seeds, because seeds were not available when sampling was conducted. 

While I did not anticipate P. leucopus would consume pine needles, I collected needles to 

obtain δ13C isotopic signals from the dominant C4 plant in the study area. Plant material 

collected from an individual plant was defined as one sample. All plant material was 

placed in clean freezer bags, and stored at - 20°C. 

Tissue Processing for Isotope Analysis 

 

In preparation for SI analysis, I rinsed fur and skin tissue samples in 2:1 

chloroform:methanol solution to remove surface oils. I air-dried fur and skin samples for 

48 hours under a fume hood. I rinsed invertebrate and plant samples with deionized water 

and dried each sample at 60°C for 48 hours. Once dry, I ground invertebrate and plant 

samples to a fine powder with a mortar and pestle. All samples were weighed (mice and 

invertebrates: 0.20 – 1.0 mg and plants: 1.0 – 6.0 mg) in tin foil capsules on a 

microbalance. Weighed samples were crushed into a small ball and placed in a 96-well 

plate. Skin samples collected via biopsy punch were often too small for minimum weight 

requirements (0.20 mg) for isotope analysis. When skin samples were too small they 

were pooled with a second skin sample, by treatment and proximity of date collected 
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(average = 3.5 days). Stable isotope analysis for 2009 samples was performed in a single 

batch at the Woods Hole Stable Isotope Laboratory. Stable isotope analysis for 2010 

samples was performed in four separate batches at the U.C. Santa Cruz Stable Isotope 

Laboratory. Both δ13C and δ15N were analyzed from each sample simultaneously. 

Statistical Analysis 

I evaluated all data for normality and homogeneity of variances using Shapiro-

Wilk and Levene’s tests, respectively. When Shapiro-Wilk and Levene’s tests were not 

significant (P>0.05), I conducted parametric statistical analyses. When normality and/or 

homogeneity of variance assumptions were violated, I removed outliers and re-checked 

assumptions. If assumptions were still violated, I then transformed the data using log10, 

square-root-transformations. However, in most cases removal of outliers and 

transformations often did not alleviate assumption violations. Therefore, I conducted non-

parametric analyses on rank-transformed data (Conover and Iman 1981). All data are 

shown as mean ± 1 SE. Statistical significance was accepted at p ≤ 0.05. All statistical 

analyses were performed using SPSS Version 16.0.  

To capture isotope signals before and after fall molt of P. leucopus and before and 

after switchgrass seeds were available on the ground, I grouped samples by season: 

summer (July- September) and fall (October - November). I made statistical comparisons 

of stable isotope values of mouse tissue (δ13C and δ15N) between the two seasons 

(summer and fall) and among the three different treatments (PB -, P x SB-, and S). I also 

examined the interaction of season x treatment.  
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Because I had skin samples for 2009, and skin and fur samples for 2010, I treated 

these data sets differently. For 2009 data, I conducted a two-factor Analysis of Variance 

(ANOVA) to determine if there was an effect of season and treatment on δ13C and δ15N 

values of skin. Because there was an effect of season on δ13C and δ15N values, I 

conducted a post-hoc one-way ANOVA to examine where the differences lie. For 2010, I 

conducted a paired t-test for the subset of mice for which I had skin and fur samples to 

determine if both tissues incorporate δ13C and δ15N values in a similar manner. I did this 

to ensure that there were not major discrepancies between conclusions in 2009 and 2010. 

However, since I was not comparing 2009 and 2010, nor was I comparing skin and fur 

from individuals in 2010, small differences would not affect interpretation of results. I 

then conducted a two-factor ANOVA to examine effects of treatment and season 

(independent variables) on δ13C and δ15N values (dependent variables) with P. leucopus 

fur from 2010. 

Additionally, I conducted a separate two-factor ANOVA, using treatment as the 

only independent variable and δ13C and δ15N values of source tissues (P. leucopus fur, 

and herbivorous, omnivorous and predatory invertebrates) as the dependent variables. I 

did not include season as a factor because there was no effect of season on stable isotope 

values of P. leucopus fur in 2010 (see results). I conducted this separate analysis to 

determine if P. leucopus’ diet and trophic position changed similarly or differently to 

invertebrates, as further support for any treatment effects. When the interaction term of 

source x treatment was significant, I conducted a test of simple main effects. I conducted 
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all post hoc analysis using Least Significant Difference (LSD) and adjusted α to 0.02, as 

more conservative adjustments (e.g. Bonferroni) (Perneger 1998) failed to detect obvious 

significant mean differences. 

To examine potential invertebrate prey availability in 2010, I statistically 

analyzed mean abundances of invertebrates by family and functional group (herbivore, 

omnivore, and predator) collected among the three treatments using one-way ANOVAs. 

For family analyses, I pooled the data from the two methods of collection (branch beating 

and hand picking) because there was no difference in statistical findings when the data 

were not pooled. I grouped Coleoptera that could not be identified to family as “other”, 

but only included Coleoptera in the family statistical analysis because functional groups 

could not be assigned. I excluded invertebrate families or functional groups whose total 

abundances were less than 10 individuals and that were not collected in all treatments. I 

also excluded decomposers from statistical analyses by functional group because 

decomposers were not collected in all treatments. Therefore, I statistically compared the 

mean abundance of ten families and three orders (Table 4), and three invertebrate 

functional groups (Table 5), among each of the three treatments. For analysis of mean 

abundances of invertebrates by family among treatments, I adjusted the level of 

significance with a Bonferroni correction of 0.005.   

I did not statistically compare potential plant food items (loblolly pine and planted 

switchgrass) among treatments, as my primary interest was in obtaining δ13C and δ15N 

basal reference values. This was required to infer the source of carbon in the diet and 

trophic position of P. leucopus. Thus, I only made qualitative comparisons of δ13C and 
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δ15N values of P. leucopus and basal resources in the treatment plots. I grouped means ± 

1 SE of δ13C and δ15N values for plants only by treatment. 
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CHAPTER III 
 

                                                          III. RESULTS 

In 2009, trapping was conducted between 15 July and 9 December on 61 nights 

(8,064 trap nights). In 2009, 153 unique individual P. leucopus were captured.  In 2010, 

trapping was conducted between 19 July and 14 November on 45 nights (6,048 trap 

nights). In 2010, 160 unique individual P. leucopus were captured. In 2009, out of 153 

individuals sampled for tissue, 55 samples were selected for SI analysis based on age, 

plot and season. Out of the 55 samples, 31 samples met the minimum weight 

requirements (0.20mg) for SI analysis, but 24 samples did not. Out of the 24 samples that 

did not meet minimum weight requirements, twelve pairs of samples were pooled based 

on age, plot and season. Therefore, a total of 43 skin samples (“PB-” = 17, “P x SB” = 

12, “S” = 14) were submitted for SI analysis in 2009. In 2010, out of 112 individuals 

sampled for tissue, 75 fur samples were submitted for SI analysis based on age, plot and 

season. Of these 75 individuals, 28 paired skin samples were also selected for SI analysis 

to compare differences in skin and fur. Following analysis of isotope data for 2010, three 

pairs of extreme outliers were removed from the data set and were not used for any 

further analyses. Therefore, 72 fur (“PB-” = 36, “P x SB” = 26, “S” = 10) and 25 skin 

samples (“PB-” = 13, “P x SB” = 11, “S” = 1) were analyzed for 2010.
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In 2010, I conducted invertebrate sampling between June 22 and November 20 

(30 sampling occasions). During branch beating I collected a total of 752 individuals 

from “PB-”, 864 individuals from “P x SB-”, and 767 individuals from “S”, representing 

eight orders and 36 families (Table 1). During hand picking, I collected 32 individuals 

from PB-”, 48 individuals from P x SB-”, and 41 individuals from “S”, representing one 

class, seven orders, and 14 families (Table 2). Of the total number of invertebrates that 

were collected by branch beating and hand picking combined, I collected representatives 

from four functional groups including herbivores, omnivores, predators, and decomposers 

(Table 3).  Out of the total number of invertebrates collected by branch beating and hand 

picking, 146 individuals were selected based on functional group, plot, and season, and 

submitted for stable isotope analyses. In terms of invertebrate abundance, there was no 

difference between treatments in the mean abundance of invertebrates by family (Table 

4). Of these invertebrates, Acrididae (grasshoppers), Cicadellidae (leafhoppers), 

Pentatomidae (stink bugs), Araneae (spiders), and Tettigoniidae (katydids) were among 

the most abundant invertebrates found overall, at least by branch beating (Table 1). 

Similarly, when compared by functional group, there was no difference in mean 

abundance of herbivores, omnivores, or predators among each of the treatments (Table 

5).In 2010, I conducted plant sampling between Sept. 2 - 14 and November 18 – 20 (8 

sampling days). I collected a total of 84 plant samples including 50 loblolly pine and 34 

switchgrass samples. A total of 44 loblolly pine and 34 switchgrass samples were 

selected based on plot and season, and submitted for stable isotope analyses.  
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2009 Stable Isotopes 

In 2009, there was no effect of treatment (F2,37 = 2.40, p = 0.11) on rank-

transformed mean δ13C values of P. leucopus. There was an effect of season (F1, 37 = 

14.43, p = 0.001) on rank-transformed mean δ13C values of P. leucopus (Figure 2 and 

3a). Treatment did not vary by season, in terms of rank-transformed mean δ13C values of 

P. leucopus (F2, 37 = 0.26, p = 0.77). The effect of season was significant in “PB-” 

treatments (F1,15 = 5.54, p = 0.03) and in “P x SB-” treatments (F1,10 = 8.41, p = 0.02), 

whereby mean δ13C values of P. leucopus were 1.6‰ and 2.3‰ more enriched in the 

summer than in the fall, respectively (Figure 3a). There was no effect of season in “S” 

treatments (F1,12 = 2.36, p = 0.15; Figure 3a). Regardless of seasonal differences within 

treatments, mean δ13C values among treatments were intermediate between δ13C of 

loblolly pine and switchgrass (Figure2).  

In 2009, there was no effect of treatment (F2, 37 = 0.46, p = 0.63) on mean δ15N 

values of P. leucopus (Figure 2 and 3b). There was an effect of season on mean δ15N 

values of P. leucopus (F1, 37 = 17.03, p < 0.001) (Figure 3b). The effect of season on 

mean δ15N values was significant in “PB-” treatments (F1,15 = 12.99, p = 0.003; Figure 

3b) and marginally significant in “S” (F1,12 = 4.19, p = 0.06), whereby mean δ15N values 

were 1.66‰ (PB-) and 1.35‰ (S) more enriched in the fall than in the summer (Figure 

3b). The effect of season on mean δ15N values of P. leucopus was not significant in “P x 

SB-” (F1,10 = 3.34, p = 0.10; Figure 3b). The interaction of treatment x season on mean 

δ15N values of P. leucopus was not significant (F2, 37 = 0.47, p = 0.63).  
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2010 Stable Isotopes  

In 2010, I tested if stable isotope values differed depending on tissue type (skin 

and fur) used. Carbon isotope values of skin and fur differed (t = -3.83, df = 24 p = 0.001) 

(Figure 4a). On average, skin was 0.28‰ more enriched in mean δ13C than fur. Nitrogen 

isotope values of skin and fur did not differ (t = 1.00, 24 df = 24, p = 0.33) (Figure 4b). 

Because I was not comparing results across years, this small difference did not affect my 

conclusions. Furthermore, I only utilized stable isotope data that was derived from hair 

samples for 2010. Had I made yearly comparisons or utilized a combination of tissue 

types from different individuals in 2010, the difference between skin and fur would have 

required a correction factor to account for the discrepancy. However, since these were not 

the kind of comparisons I made, 2010 analysis hereafter is based only on fur. 

In 2010, I tested if treatment or season affected stable isotope values of P. 

leucopus fur. There was no effect of season on rank-transformed mean δ13C values of P. 

leucopus fur (F1, 66 = 1.37, p = 0.25). There was an effect of treatment on rank-

transformed mean δ13C values of P. leucopus (F2, 66 = 5.31, p = 0.01; Figure 5 and 6a). 

Switchgrass only treatments differed from “PB-” (p = 0.004) and “P x SB-” (p = 0.04), 

whereby mean δ13C values of P. leucopus in “S” plots were 0.77‰ more enriched than 

“P x SB-” and 0.87‰ more enriched than “PB-” treatments (Figure 6a). The interaction 

of treatment x season on mean δ13C values of P. leucopus was not significant (F2, 66 = 

1.41, p = 0.25).  In general, δ13C values across treatments were intermediate between 

δ13C for loblolly pine and switchgrass (Figure 5). In 2010 there was no effect of season 
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(F1, 66 = 1.88, p = 0.18) or treatment (F2, 66 = 0.08, p = 0.93) on rank-transformed mean 

δ15N values of P. leucopus (Figure 6b). The interaction of treatment x season on mean 

δ15N values of P. leucopus was not significant (F2, 66 = 0.25, p = 0.78).  

As further support for treatment effects on P. leucopus, I followed the two-factor 

ANOVA with a separate two-factor ANOVA to determine how P. leucopus’ diet and 

trophic position compared with the diet and trophic position of herbivorous, omnivorous, 

and predatory invertebrates (i.e., sources). There was an effect of treatment (F2,203 = 

10.07, p < 0.001), source (F3,203 = 5.70 p = 0.001), and an interaction of treatment x 

source (F6,203 = 2.21, p = 0.04) on rank-transformed mean δ13C values (Figure 6 and 7a). 

Within treatments, sources differed in “PB-” (F3,203 = 4.89, p = 0.003) and “P x SB-” 

treatments (F3,203 = 6.96, p < 0.001), but did not differ in “S” treatments (F3,203 = 0.94 p = 

0.42). In “PB-” treatments, rank-transformed mean δ13C values for P. leucopus did not 

differ from omnivorous or predatory invertebrates, but did differ from herbivorous 

invertebrates, whereby mean δ13C values of P. leucopus were 1.24‰ more enriched than 

herbivores (Figure 7a). In “P x SB-” treatments rank-transformed mean δ13C values of P. 

leucopus did not statistically differ from herbivores, omnivores, or predators (Figure 7a). 

However, in “P x SB-”, p-values for pairwise comparisons between P. leucopus and 

herbivores (p = 0.023) and predators (p = 0.025), barely exceeded the rejection criteria 

(α=0.02). Although sources did not differ statistically in “S”, P. leucopus and omnivorous 

invertebrates had lower rank-transformed mean δ13C values than herbivores and 

predators. Within treatments, the most consistent pattern was that P. leucopus and 
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omnivorous invertebrates did not differ from one another. Among treatments, rank-

transformed mean δ13C values of P. leucopus, as well as omnivorous invertebrates, did 

not differ. However, P. leucopus did have a tendency for gradual increase in rank-

transformed values from “PB-” to “P x SB-” to “S”. In comparison, rank-transformed 

mean δ13C values of herbivorous and predatory invertebrates did differ among treatments. 

In general, δ13C values of P. leucopus and invertebrates were intermediate between δ13C 

for loblolly pine and switchgrass across all treatments (Figure 5). However, herbivorous 

and predatory invertebrate δ13C values showed a marked shift toward a C4 signal in “S”.  

  There was no difference in rank-transformed mean δ15N values of sources 

among treatments (F2,203 = 1.68, p = 0.19; Figure 5 and 7b). There was a difference of 

sources within treatments (F3,203 = 37.73, p < 0.001) (Figure 5 and 7b). In “PB-” 

treatments rank-transformed mean δ15N values of P. leucopus did not differ from 

predators, but did differ from herbivores and omnivores. Although statistically similar to 

predators, P. leucopus had the highest rank-transformed mean δ15N values in “PB-” 

treatments (Figure 7b). In “P x SB-” treatments rank-transformed mean δ15N values of P. 

leucopus differed from all sources, whereby P. leucopus had the highest values (Figure 

7b). In “S” treatments, rank-transformed mean δ15N values of P. leucopus did not differ 

from omnivores and predators, but did differ from herbivores (Figure 7b). Although 

statistically similar to omnivores and predators, P. leucopus had the highest rank-

transformed mean δ15N values in “S” treatments (Figure 7b). The interaction of treatment 
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x source on rank-transformed mean δ15N values was not significant (F6,203 = 1.63, p = 

0.14).
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CHAPTER IV 
 

                                                      IV. DISCUSSION 

While intercropping biofuels within a managed pine forest is a potentially 

sustainable option for meeting energy demands, ecological effects are poorly understood. 

My study was one of the first to examine how the functional role of a native omnivore 

changes in response to intercropping switchgrass in a loblolly pine plantation. I examined 

changes in the functional role of P. leucopus with stable isotope analysis of mouse tissue 

and potential food sources during the first two years of a biofuel feedstock intercropping 

experiment.  

In year 1 of my study, there was not a treatment response on the diet or trophic 

position of P. leucopus but there was a seasonal response. This seasonal response was 

likely an artifact of mechanical site preparation, rather than a response to switchgrass 

intercropping. With the exception of pine seedlings and/or switchgrass seeds that were 

broadcast on the ground, all treatments in year 1 had sparse vegetation and associated 

food resources at the beginning of the study in the summer because site preparation 

occurred in the summer of year 1. Thus, enriched 13C values and lowered trophic 

response of P. leucopus in the summer was probably a result of availability of 

switchgrass seed that was broadcast on the ground. Since there were few plant resources, 

and potentially few invertebrate resources in all treatment plots at the beginning of the
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 study, it is plausible that P. leucopus consumed switchgrass seeds that were present on 

the ground. In the summer mice in “P x SB-” and “S” treatments likely foraged on the 

broadcast seeds that were available in these respective treatments. In the summer, mice in 

“PB-” treatments, were likely subsidized by switchgrass seed in neighboring switchgrass-

associated treatments. A similar dietary shift to an abundant resource was observed in a 

congener, Peromyscus maniculatus (deer mouse), whom shifted from a terrestrial diet to 

a marine diet during a year of lowered terrestrial productivity (Stapp et al. 1999). 

Peromyscus leucopus’ trophic response in the summer is consistent with this 

interpretation since lower δ 15N values indicate more plant matter in the diet and depleted 

δ 13C values suggest some influence of switchgrass. By the fall of year 1, loblolly pine 

and switchgrass had become established, and early seral plant species likely colonized the 

treatment plots. The shift toward depleted δ 13C values combined with enriched δ 15N 

values in the fall is consistent with the re-colonization of plant resources, as more 

established plots likely provided more food resources, including invertebrate prey. 

Despite this shift, δ 13C values still reflected a combination of C3 and C4 resources in the 

diet, but the C4 influence was weaker than the summer. Ultimately, results from year 1 

did not specifically address my research question. However, these results provide 

evidence that changes in functional role of P. leucopus can be detected using stable 

isotopes. The remainder of my discussion focuses on my results from year 2 (2010), as 

these results relate directly to my hypotheses. That δ 13C values overall were intermediate 

between loblolly pine and switchgrass, indicates there was a combined influence of both 

C3 and C4 resources over both seasons, but the C4 influence was strongest in the summer.  



31 

In year 2, skin and fur were statistically different in δ13C. This difference, 

although small, may be the result of different stable isotope turnover rates and/or 

different fractionation effects of skin and fur. As with other tissues, skin and fur 

incorporate stable isotopes when the tissue is being generated (Crawford et al. 2008; 

Miller et al. 2008). In wild Peromyscus spp., fur is generated only at a few discrete times 

throughout the year (i.e., seasonal molt or development of adult pelage) (Miller et al. 

2008; Wichman and Lynch 1991), and so provides an indication of diet before and during 

hair growth (long-term diet). However, in lab mice, skin cell production occurred 

continually, up to 60% at any one time (Potten 1974). Thus, the stable isotope signal of 

skin should reflect a mixture of both long term and recent diet. While I am unaware of 

any comparisons of fractionation rates in skin and fur in rodents, bat tissues have shown 

minimal fractionation differentiation. For example, Sullivan et al. (2006) found variation 

(approx. 1‰ for δ13C and δ15N) in skin and fur in bats among different sampling sites, 

but skin was generally more enriched than fur. Voigt and Kelm (2006) found similar 

differentiation in δ13C and δ15N, except fur was more enriched. Regardless of the 

difference that I found in skin and fur, I only used fur in my 2010 analysis. Thus, any 

tissue differences have no impact on my conclusions.  

In year 2 of my study, while a treatment effect on the diet of P. leucopus was 

detected in “S” treatments, this effect was not detected when invertebrate sources were 

included in the model. Nonetheless, the trend toward enrichment of δ13C values of P. 

leucopus in “S” compared with “PB-” and “P x SB-” was unchanging, regardless of the 
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ANOVA model used. Despite this trend, mean δ13C values of P. leucopus in all 

treatments were not strongly C3 or C4 biased, even in “S” treatments. This is consistent 

with my prediction for “P x SB-”, but inconsistent with my predictions for “PB-” and “S” 

treatments. What this suggests is that mice consumed a variety of resources, both C3 and 

C4-based in nature, even in “S". The composition of vegetation within each of these 

treatments may explain the intermediate signal. Vegetation sampling conducted in 

October in year 2, showed that “PB-” and “P x SB-” treatments were largely composed of 

grass, pine, and forbs (Marshall et al. in Review). However, grasses accounted for over 

half the total cover of these treatments. Even with switchgrass as the dominant grass in 

intercropped treatments, both “P x SB-” and “PB-” also likely supported a combination of 

native C3 and C4 plants, which could account for the intermediate δ13C signal. 

Alternatively, vegetation sampling showed that “S” treatments were largely composed 

(>90%) of grasses and these grasses were predominantly switchgrass (Marshall et al. in 

Review). This abundance of C4 grasses likely explains the shift of δ13C toward a C4 

signal. However, given the shift was not as dramatic as I had expected suggests that mice 

subsidized their diets from other resources, perhaps along the perimeter of the “S” 

treatments.  

It should be mentioned that loblolly pine needles and switchgrass seed are not 

analogous food resources. Thus, my interpretation could be slightly inaccurate. However, 

δ13C reported for slash pine (Pinus elliottii) seeds, another southeastern pine species, 

ranged from are -29.02‰ to -27.98‰ and switchgrass leaves were -12.8‰, (Jahren 2004; 

Still et al. 2003). Using these values to compare pine needle to switchgrass leaf or pine 
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seed to switchgrass seed, I still maintain that mice incorporated a combination of C3 and 

C4 resources into their diet.  

While δ13C values indicated a combined C3/C4 carbon source in the diet, mean 

δ15N values of P. leucopus indicated they likely consumed a variety of plant and animal 

matter (omnivory). In “PB-”, mice were < 3‰ more enriched in 15N than predatory and 

herbivorous invertebrates and in “S” mice were < 3‰ more enriched in 15N than 

omnivorous invertebrates. In contrast, 15N values for mice in “P x SB-” were ≥ 3‰ more 

enriched than herbivorous invertebrates. While this might indicate “P x SB-” mice were 

more predatory, I conclude that these mice are also maintaining omnivory, as their 

trophic position did not differ from mice in “PB-” and “S”. What this indicates is that 

both plants and lower-level consumers (invertebrates) had similar influence over P. 

leucopus’ isotopic signature across treatments. This is consistent with the work of Shaner 

et al. (2007), who found that P. leucopus preferred habitat patches with a mixture of 

foods (seeds and mealworms) in contrast to patches with fewer options (seeds only or 

mealworms only). Other studies have also showed that P. leucopus consume a variety of 

invertebrate and plant resources (Wolff et al. 1985). Given that switchgrass was the 

dominant plant in the “S” treatment, it was not surprising that mean δ13C of these mice 

was slightly more enriched. However, since the δ15N values of mice in “S” treatments 

were not statistically different than mice in “PB-” and “P x SB-” indicates there was not a 

dramatic change in functional role in “S”, as I had expected. Again, δ13C and δ15N or P. 

leucopus in “PB-” and “P x SB-” were nearly identical, indicating that mice in the 

intercropped treatments function no differently that they do in the monocropped pine 
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treatments. This is important because the monocropped pine treatment most closely 

represents typical forest management. Thus, regardless of treatment, P. leucopus 

maintained their role as functional omnivores.  

In contrast to P. leucopus, there was a strong response to treatment for 

herbivorous and predatory invertebrates at lower trophic levels. This response was most 

notable in the “S” treatment. Specifically, enriched 13C values (Figure 7a) combined with 

the lower trophic position (Figure 7b) of herbivorous invertebrates in “S” treatments 

reflected a response to the switchgrass in the “S” treatment. Similarly, the shift of 

predatory invertebrates’ δ13C values toward a C4 signal in “S” treatments suggests that 

the response of the primary consumer progressed up the invertebrate food web (Figure 7a 

and 7b). Interestingly, in “S” treatments, omnivorous invertebrates were depleted in 13C 

compared with predatory invertebrates. This indicates that omnivorous invertebrates did 

not interact with herbivorous or predatory invertebrates. Instead, omnivorous 

invertebrates were likely subsidized by other resources within “S”, or along the perimeter 

of the plots.  

Among the different families of invertebrates, those families and functional 

groups that were represented within each of the treatments did not differ in total 

abundance among the treatments in 2010 (Table 4 and 5). Given that potential prey was 

equally available among treatments, it was not surprising that P. leucopus’ diet did not 

change among treatments in 2010. 

There are several possible explanations as to why a stronger C4 signal in 

monocropped switchgrass or intercropped treatments, was not detected in P. leucopus’ 
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tissue. One possible explanation is that P. leucopus consumed fewer switchgrass seeds, 

than I expected, because the seeds were too small. Optimal foraging theory predicts that a 

consumer should maximize the amount of energy gained per unit of handling time of a 

prey item (Emlen 1966; Macarthur and Pianka 1966). Several studies have shown that 

when offered seeds of differing sizes, Peromyscus spp. tend to prefer large seeds over 

smaller seeds (Kantak 1983; Mittelbach and Gross 1984). Given the relatively small size 

of switchgrass seed (~0.57 mg (Howe and Brown 1999), it may have been more 

profitable for P. leucopus to  consume other resources that were  available in this system.  

Likewise, P. leucopus may have consumed fewer switchgrass seeds, than I 

expected, because they did not provide adequate energy or nutrient content to meet P. 

leucopus’ metabolic requirements. Studies have shown that P. leucopus and P. 

maniculatus choose energy-rich food over protein-rich food, or high-energy food that is 

low in protein (Lewis et al. 2001; Vickery et al. 1994). This preference has also been 

documented in other small mammals (Kerley and Erasmus 1991). However, to my 

knowledge energy and nutrient content in switchgrass seeds has not been examined. 

There have been studies that examine how birds metabolize and assimilate energy from 

seeds including switchgrass. In these studies, switchgrass seed rated low in potential 

energy for greater prairie chicken and scaled quail (Heffron and Parrish Jr. 2005; 

Saunders and Parrish 1987). Feeding trials, in the field, could elucidate how the physical 

and chemical properties of switchgrass seed compare with other potential seed resources 

at my study site, and whether this could explain the lack treatment response on the diet 

and trophic position of P. leucopus.  
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Marshall et al. (in Review) found that more P. leucopus were found in plots 

without switchgrass, whereas more M. musculus were found in monoculture switchgrass 

plots. Based on these findings, Marshall et al. (in Review) suggested that either M. 

musculus outcompete P. leucopus in monoculture switchgrass plots, or that switchgrass 

does not provide suitable resources for P. leucopus. If the resource suitability hypothesis 

is correct, this could also explain why P. leucopus did not have a stronger response to 

switchgrass in “S” treatments. Marshall et al. (in Review) suggested that switchgrass-

dominated understories in plots with switchgrass might not have provided sufficient 

resources (food and cover) to support P. leucopus. Based on vegetation sampling 

conducted in October 2010, “S” treatments were less diverse in vegetation structure and 

composition, compared with “PB-” and “P x SB-” (Marshall et al. in Review). Based on 

invertebrate prey sampling, prey availability was the same across all treatments (Table 4 

and 5). That P. leucopus responded marginally, but not as strongly as anticipated in “S”, 

indicated that vegetation composition and structure, not prey availability, likely was the 

main reason for lack a stronger response. This is consistent with studies have 

demonstrated that P. leucopus prefer structurally diverse microhabitat features (i.e., 

course woody debris, understory complexity) versus less structural diversity for nesting 

and protection from predators (Greenberg 2002; Kaufman et al. 1983; Kirkland 1990; 

Menzel et al. 1999).  

Regardless of how P. leucopus responded in “S”, mice in intercropped treatments 

did respond as I had expected. Thus, the important result was that in “P x SB-” P. 

leucopus maintained their functional role, as it did not differ from mice in “PB-” 
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treatments. This suggests that, at least in this early stage of research, food web 

interactions and ecosystem services linked to P. leucopus would not be affected by 

intercropping switchgrass in a loblolly pine plantation.  

There are two caveats to my conclusions. First, P. leucopus’ weak response to 

switchgrass may be related to the timing of the experiment. My study took place during 

the first two years following site preparation. Although switchgrass was well established 

by the second year of the study, it was a novel resource. Peromyscus leucopus may not 

have responded as strongly to switchgrass, as expected, because they did not yet learn of 

its’ availability. Because P. leucopus is not known as a strong climber of grasses, the 

window of time that they could access seeds was only when seeds fell to the ground at 

the end of growing season. Once established, seed was available when switchgrass plants 

dropped seeds in the late summer/early fall of 2009 and 2010. In mammals, finding food 

may occur by trial and error, but more often it is the result of social learning from the 

parents (Rymer et al. 2008). In African striped mice (Rhabdomys pumilio), it is often the 

mother who demonstrates palatability of novel foods to her offspring, through olfactory 

or other sensory cues (Rymer et al. 2008). It has also been suggested that rodent fathers 

play a role in transmitting information about food and foraging to their offspring (Rymer 

et al. 2008; Schug et al. 1992). Thus, long-lived adults (up to 2 yrs. (Schug et al. 1991) 

who have lived through a few seed events have a better chance of learning about 

switchgrass and passing that information to their offspring. Therefore, the probability of 

finding mice that have learned about this pulsed resource should increase after several 

years of establishment. Revisiting this research question several years into the experiment 
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could provide more insight on P. leucopus’ response when the novelty of this resource 

diminishes.  

Second, the scale of this study was small. Trapping grids measured approximately 

1,800 m2, which is smaller than the documented home ranges of some male P. leucopus 

(Schug et al. 1991; Wolff et al. 1985). Thus, some individuals were not necessarily 

confined to one treatment plot. However, during my study, very few individuals were 

captured in more than one treatment plot and these individuals were not used in my 

analysis. Replicating this study on larger spatial scale would account for intraspecific 

variation in home range sizes of P. leucopus.  

This intercropping experiment was one of the first of its kind to address land 

conversion and food security concerns associated with biofuel feedstock production. My 

study was one of the first to assess potential ecological effects of intercropping biofuels 

in a managed southeastern pine forest. My results suggest that this potentially new forest 

management approach would not impact food web interactions and ecosystem services 

associated with P. leucopus. However, future work should be considered to assess effects 

of biofuel intercropping on other consumers in this system. 
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APPENDIX A.  

TABLES 
 
 
Table 1. Total Number of Invertebrates by Family Collected by Branch Beating at The 
Lenoir 1 Sustainability Study Site, Lenoir Co., NC. 
 
Invertebrates were collected in pine with residual woody debris removed (PB-), pine 
intercropped with switchgrass and residual woody debris removed (P x SB-), and 
switchgrass only (S) treatments in 2010. 
 

Order Family Functional Group PB- PxSB- S Total 
Orthoptera Acrididae herbivore 145 161 115 421 
Hemiptera Cicadellidae herbivore 89 80 183 352 
Hemiptera Pentatomidae herbivore 63 91 127 281 
Araneae unidentified predator 101 104 68 273 
Orthoptera Tettigoniidae herbivore 21 58 64 143 
Lepidoptera Geometridae herbivore 62 79 0 141 
Hemiptera Coreidae herbivore 70 37 3 110 
Lepidoptera unidentified larvae herbivore 22 34 23 79 
Hemiptera Reduviidae predator 14 24 40 78 
Hemiptera Nabidae predator 13 18 46 77 
Hymenoptera Formicidae omnivore 26 35 6 67 
Orthoptera Gryllidae omnivore 16 34 15 65 
Hemiptera Cercopidae herbivore 6 25 26 57 
Coleoptera unidentified NA 25 12 11 48 
Coleoptera Chrysomelidae herbivore 15 20 5 40 
Coleoptera Coccinellidae predator 8 6 2 16 
Coleoptera Elateridae omnivore 4 11 1 16 
Coleoptera Curculionidae herbivore 7 5 1 13 
Coleoptera Phalacridae herbivore 11 0 2 13 
Coleoptera Melolothinae herbivore 11 0 0 11 
Coleoptera Staphylinidae predator 0 0 11 11 
Coleoptera Carabidae omnivore 1 2 7 10 
Coleoptera Cicinidelidae predator 2 2 4 8 
Coleoptera Anthicidae omnivore 0 1 5 6 
Orthoptera Tetrigidae herbivore 2 4 0 6 
Coleoptera Lycidae herbivore 0 5 0 5 
Coleoptera Cetoniinae herbivore 1 3 0 4 
Mantodea Mantidae predator 1 3 0 4 
Coleoptera Aphodiinae decomposer 3 0 0 3 
Coleoptera Cantharidae omnivore 1 1 1 3 
Hemiptera Cicadidae herbivore 2 1 0 3 
Hemiptera Largidae herbivore 3 0 0 3 
Hemiptera Lygaeidae herbivore 2 1 0 3 
Hemiptera Miridae omnivore 2 1 0 3 
Coleoptera Mordellidae herbivore 0 2 0 2 
Hemiptera Berytidae omnivore 1 0 1 2 
Hemiptera Membracidae herbivore 1 1 0 2 
Blattodea Blattellidae omnivore 0 1 0 1 
Coleoptera Lampyridae omnivore 0 1 0 1 
Hemiptera Issidae herbivore 1 0 0 1 
Hemiptera Phymatidae predator 0 1 0 1 
    Total 752 864 767 2383 
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Table 2. Total Number of Invertebrates by Family Collected in 2010 by Hand Picking at 
The Lenoir 1 Sustainability Study Site, Lenoir Co., NC.  
 
Invertebrates were collected in pine with residual woody debris removed (PB-), pine 
intercropped with switchgrass and residual woody debris removed (P x SB-), and 
switchgrass only (S) treatments. 
 
 

Order/class Family Group PB- PxSB- S Total 

Coleoptera Carabidae omnivore 9 8 19 36 
Orthoptera Gryllidae omnivore 6 9 10 25 
Araneae unidentified predator 3 7 6 16 
Hymenoptera Formicidae omnivore 0 9 0 9 
Diplopoda (class) unidentified decomposer 4 0 3 7 
Orthoptera Acrididae herbivore 2 5 0 7 
Coleoptera Tenebrionidae omnivore 1 2 0 3 
Hemiptera Cercopidae herbivore 0 2 1 3 
Lepidoptera larvae unidentified herbivore 2 0 1 3 
Coleoptera Silphidae decomposer 2 0 0 2 
Hemiptera Cicadellidae herbivore 1 1 0 2 
Hemiptera Reduviidae predator 0 2 0 2 
Lepidoptera Geometridae herbivore 0 2 0 2 
Blattodea Blattellidae omnivore 1 0 0 1 
Coleoptera Coccinellidae predator 1 0 0 1 
Hemiptera Pentatomidae herbivore 0 0 1 1 
Orthoptera Tettigoniidae herbivore 0 1 0 1 

    Total 32 48 41 121 
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Table 3. Total Number of Invertebrates by Functional Group Collected by Branch 
Beating and Hand Picking in 2010 at The Lenoir 1 Sustainability Study Site, Lenoir Co., 
NC. 
 
Invertebrates were collected in pine with residual woody debris removed (PB-), pine 
intercropped with switchgrass and residual woody debris removed (P x SB-), and 
switchgrass only (S) treatments. 
 
 

Functional Group PB- P x SB- S 

Herbivore 539 619 552 
Omnivore 68 114 65 
Predator 143 167 177 
Decomposer 9 0 3 
 Total 759 900 797 
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Table 4. Mean Total Abundance (± 1SE)/Treatment of Invertebrates by Family Collected 
by Branch Beating and Hand Picking in 2010 at The Lenoir 1 Sustainability Study Site, 
Lenoir Co., NC.  
 
Data are from invertebrates collected in pine with residual woody debris removed (PB-), 
pine intercropped with switchgrass and residual woody debris removed (P x SB-), and 
switchgrass only (S) treatments in 2010. Invertebrate families whose total abundance was 
less than 10 individuals and that were not present in all three treatments were excluded 
from this analysis. P values are from one-way ANOVA. The level of significance was 
adjusted with a Bonferroni correction, P value = 0.005. *Only keyed to order. 
 
 

Family PB- n PxSB- n S n P value 

Acrididae 36.75 ± 8.20 147 41.50 ± 8.50 163 28.75 ± 3.0 115 0.50 

Araneae (unidentified)* 26.0 ± 6.80 104 27.80 ± 6.14 111 18.50 ± 1.5 74 0.50 

Carabidae 2.50 ± 0.87 10 3.33 ± 0.67 10 6.50 ± 1.70 26 0.11 

Coleoptera (unidentified)* 6.25 ± 2.40 25 4.33 ± 1.20 12 3.67 ± 1.80 11 0.65 

Cercopidae 3.0 ± 2.0 6 6.75 ± 1.44 27 6.75 ± 2.43 27 0.50 

Chrysomelidae 3.75 ± 1.03 15 6.67 ± 1.20 20 1.67 ± 0.33 5 0.03 

Cicadellidae 22.50 ± 3.23 90 20.25 ± 3.0 81 45.75 ± 18.41 183 0.24 

Gryllidae 5.50 ± 2.60 22 10.75 ± 4.33 43 6.25 ± 2.02 25 0.47 

Lepidoptera larvae (unidentified)* 6.0 ± 1.23 24 8.50 ± 1.20 34 6.0 ± 2.30 24 0.50 

Nabidae 3.25 ± 1.03 13 4.50 ± 1.20 18 11.50 ± 2.22 46 0.01 

Pentatomidae 15.75 ± 4.33 63 22.75 ± 1.40 91 32.0 ± 4.42 128 0.04 

Reduviidae 4.67 ±1.33 14 6.50 ± 1.32 26 10.0 ± 1.80 40 0.11 

Tettigoniidae 5.25 ± 1.32 21 14.75 ± 3.15 59 16.0 ± 3.0 64 0.03 
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Table 5. Mean Total Abundance (± 1SE) of Invertebrates by Functional Group Collected 
by Branch Beating and Hand Picking in 2010 at The Lenoir 1 Sustainability Study Site, 
Lenoir Co., NC. 
 
Data are from invertebrates collected in pine with residual woody debris removed (PB-), 
pine intercropped with switchgrass and residual woody debris removed (P x SB-), and 
switchgrass only (S) treatments. Decomposers were excluded from this analysis because 
they were not present in all three treatments. P values are from one-way ANOVA. 
 
 

Functional 
Group PB- n PxSB- n S n P value 

Herbivore 77.0 ± 27.76 534 103.17 ±  31.23 607 92.0 ±  31.22 549 0.82 
Omnivore 8.50 ±  2.75 51 16.30 ±  4.82 87 8.13 ±  1.42 36 0.15 
Predator 28.60 ±  7.15  139 23.86 ±  7.82 158 29.50 ±  9.01 171 0.86 
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APPENDIX B.  

FIGURES 
 
 

Figure 1. Map of Weyerhaeuser NR Company's Lenoir 1 Sustainability Study Located in 
Lenoir County, NC.  
 
Treatments examined include: (1) pine with residual woody debris removed (PB -), (2) 
pine and switchgrass intercropped with residual woody debris removed (P x SB -), and 
(3) switchgrass only (S). Additional treatments existed within each of the four blocks. 
However, these additional treatments were not part of my study and are not shown. Map 
created by J. Homyack.  
B: FIGURES 
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Figure 2. Bi-Plot of Mean ± 1 SE δ13C and δ15N Values for P. Leucopus Skin Samples in 
Summer and Fall 2009.  
 
Skin was collected from P. leucopus in (1) pine with residual woody debris removed 
(PB-), (2) pine and switchgrass intercropped with residual woody debris removed (P x 
SB-), and (3) switchgrass only (S). Treatments are represented as follows: grey (PB-), 
stripes (P x SB-), and white (S). The δ13C of mice in “PB-” and “P x SB-” in the summer 
(squares) was statistically different from mice in these treatments in fall (circles). Mean ± 
1 SE δ13C and δ15N values for loblolly pine and switchgrass (triangles) collected during 
the 2010 field season are shown for comparison. The δ15N of mice in “PB-” and “S” in 
the summer was statistically different from mice in these treatments in the fall. Data are 
from sampling conducted at the Weyerhaeuser NR Company Lenoir 1 Sustainability 
study site, Lenoir Co., NC. 
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Figure 3. Mean ± 1 SE in (a) δ13C and (b) δ15N Values for P. Leucopus Skin Collected in 
Summer and Fall 2009.  
 
Skin was collected from P. leucopus in (1) pine with residual woody debris removed 
(PB-), (2) pine and switchgrass intercropped with residual woody debris removed (P x 
SB-), and (3) switchgrass only (S). Different letters indicate statistically significant 
differences. Data are from live trapping conducted in summer and fall 2009 at the 
Weyerhaeuser NR Company Lenoir 1 Sustainability study site, Lenoir Co., NC. 
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Figure 4. Mean ± 1 SE in (a) δ13C and (b) δ15N Values Between Skin and Fur Collected 
From P. leucopus in 2010.  
 
Samples were pooled across all treatments including (1) pine with residual woody debris 
removed, (2) pine and switchgrass intercropped with residual woody debris removed, and 
(3) switchgrass only. Different letters indicate statistically significant differences. Data 
are from live trapping conducted in 2010 at The Weyerhaeuser NR Company Lenoir 1 
Sustainability Study Site, Lenoir Co., NC. 
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Figure 5. Mean ± 1 SE δ13C and δ15N Values for P. leucopus Fur Samples in 2010. 
 
Peromyscus leucopus fur (○), whole invertebrates (□), loblolly pine needles (▲), and 
switchgrass seed (Δ) were collected in (1) pine with residual woody debris removed (PB-
), (2) pine and switchgrass intercropped with residual woody debris removed (P x SB-), 
and (3) switchgrass only (S). Treatments are represented as follows: PB- (gray), P x SB- 
(stripes), and S (white). Invertebrates are grouped by trophic feeding guild (Herb: 
herbivores, Omni: omnivores, and Pred: predators) for each treatment. Data are from 
sampling conducted at the Weyerhaeuser NR Company Lenoir 1 Sustainability study site, 
Lenoir Co., NC. Sample sizes in PB- are PELE (n = 38), Herb (n = 31), Omni (n = 5), 
Pred (n = 16); P x SB-: PELE (n = 25), Herb (n = 34), Omni (n = 9), Pred (n = 20), and S: 
PELE (n = 10), Herb (n = 17), Omni (n = 3), and Pred (n = 10). 
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Figure 6. Mean ± 1 SE in (a) δ13C and (b) δ 15N Values of P. leucopus Fur Samples 
Collected in 2010. 
 
Tissue was collected from P. leucopus in (1) pine with residual woody debris removed 
(PB-), (2) pine and switchgrass intercropped with residual woody debris removed (P x 
SB-), and (3) switchgrass only (S) treatments. Different letters indicate statistically 
significant differences. Data are from live trapping conducted in 2010 at the 
Weyerhaeuser NR Company Lenoir 1 Sustainability study site, Lenoir Co., NC. 
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Figure 7. Mean ± 1 SE δ13C and δ15N Values for P. leucopus Skin and Fur Tissue 
Samples in 2010. 
 
Peromyscus leucopus fur (circles), herbivore (diamonds), omnivore (squares), and 
predator (triangles) invertebrate tissue samples were collected from (1) pine with residual 
woody debris removed (PB-), (2) pine and switchgrass intercropped with residual woody 
debris removed (P x SB-), and (3) switchgrass only (S) treatments in 2010. Sample sizes 
in PB- are Pele (n = 36), Herb (n = 29), Omni (n = 5), Pred (n = 16); P x SB-: Pele (n = 
26), Herb (n = 28), Omni (n = 15), Pred (n = 20), and S: Pele (n = 10), Herb (n = 15), 
Omni (n = 5), and Pred (n = 10). Data are from sampling conducted at the Weyerhaeuser 
NR Company Lenoir 1 Sustainability study site, Lenoir Co., NC. 
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