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There is a small but growing body of literature that examines the role of principal 

investigators in publicly funded R&D projects. In this dissertation I discuss the literature 

on principal investigators and R&D project failure and found there is limited intersection 

between the two. I provide a theoretical model in this dissertation which explains how 

firm characteristics, including those of the principal investigator, impact the probability 

of failure. The theoretical model serves as a structural form model to motivate the 

empirical analysis which assesses the probability of failure in small technology-based 

firms that received a Phase II award from the Department of Energy’s Small Business 

Innovation Research program. Using a Probit model, I estimate a reduced form 

specification of the structural model to estimate the probability a firm will experience 

failure conditional on characteristics of the principal investigator and the firm. I found 

that prior experience of the firm with a similar technology, university faculty 

involvement, and the age of the principal investigator are negatively associated with 

project failure. I also found a positive relationship between failure and firms where the 

principal investigator was the sole founder and CEO of the firm. 
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CHAPTER I:  INTRODUCTION

Innovation is fundamental to long-term economic growth, and investments in research 

and development (R&D) are key to the perpetuation of innovation. Public support of 

innovation has occurred in the United States for over a century, but public support of 

innovation has gained more attention in recent decades. In fact, there has been a notable 

shift towards an expectation of commercialization of the output from publicly supported 

(i.e., publicly financed) R&D activities especially in universities. Boehm and Hogan 

(2014, p. 134) discuss this point, stating, “The commercialisation of scientific knowledge 

has become a primary objective for universities worldwide.” 

Innovation is defined in this dissertation as a new technology put into use or more 

specifically technology that enters the market as a product, process, or services.  

Although commercialization of technology is becoming a traditional measure of R&D 

success, especially when the R&D is publicly supported, there is a limited research 

related to the characteristics of individuals associated with commercialization success or 

failure. This dissertation contributes to that body of research in at least five ways: 

1. It presents a complete literature review on R&D project failure that spans both the 
economics and management disciplines literature. 

2. A theoretical model for research project failure is provided; there are no theoretical 
models to explain this concept to-date. It analyzes U.S. Department of Energy 
(DOE) data using the National Research Council’s (NRC’s) second round survey 
data; these data have not been described in the literature to-date.  

3. It replicates the empirical probability of failure using the NRC second round 
survey data which provides support for previous studies findings. 

4. It provides principal investigators (PIs) as a new-to-the-literature covariate with 
R&D project failure. 

 
The remainder of the dissertation is organized as follows. Chapter II discusses the history 

of DOE in an effort to provide context for the data used from that Department in the 
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empirical analysis that follows. The DOE data used in this dissertation is related to its 

Small Business Innovation Research (SBIR) program. 

Chapter III overviews the legislative history of the SBIR program along with DOE’s 

historical involvement in the program.  Also, in Chapter III is a review of the relevant 

economics literature related to the SBIR program.  One conclusion from the literature 

review is that there is a body of research that identifies covariates with the programmatic 

success of an SBIR project when measured in terms of the likelihood of project 

commercialization.  Absent from that literature is a detailed theoretical analysis of SBIR 

project failure; project failure being the focus of this dissertation. 

Chapter IV reviews the relevant literature related to R&D project failure. This multi-

disciplinary literature is limited and there is a very limited set of literature that spans the 

literature discussed in both Chapters III and IV. Perhaps an explanation for the limited set 

of literature on R&D project failure is the lack of data to support empirical research on 

research failure.  

Chapter V reviews the literature on PIs.  A conclusion of this review is that there is a 

conspicuous absence of studies that focused on research success or failure. 

Chapter VI presents a microeconomic theoretical model that describes whether a research 

project succeeds or fails.  The model is cast in terms of the success or failure of the 

search process for a commercializable technology. 

A discussion of the data used to examine the testable hypotheses from the theoretical 

model are presented in Chapter VII as well as descriptive statistics on the dependent 

variables from the DOE SBIR data. 

The findings from the initial empirical analysis are presented in Chapter VIII. 
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Chapter IX concludes the dissertation with a summary of the empirical findings and a 

suggested roadmap for future research. 
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CHAPTER II:  U.S. DEPARTMENT OF ENERGY

The U.S. Department of Energy (DOE) is a cabinet-level department with a stated 

mission “…to ensure America’s security and prosperity by addressing its energy, 

environmental and nuclear challenges through transformative science and technology 

solutions” (DOE - About Us, n.d).  It was officially created through the Department of 

Energy Organization Act of 1977 (Public Law 95-91), which was signed into law by 

President Jimmy Carter on August 4, 1977.  

Since inception, the DOE has had 14 Secretaries that served under seven Presidents (see 

Table 2.1), yet the objectives of the agency have remained largely unchanged.  With just 

over 40 years as a cabinet-level department, the DOE is still relatively new compared 

with other departments, though it has a rich history that can be traced back for several 

additional decades. 

The Early History of DOE  

Less than one year before Germany’s invasion of Poland on September 1, 1939 (which 

marked the start of World War II), two German radiochemists discovered uranium.1 Not 

long after the discovery, Germany stopped selling uranium and began researching its 

potential uses. Concerned with the possibility Germany was researching fission chain 

reactions using uranium with the goal of building an extremely powerful bomb, Albert 

                                                 

1This chapter draws largely from the DOE Office of History and Heritage (OHH) online resources as 

they provide the most complete and detailed history (https://www.osti.gov/). As such, I have 

referenced where direct quotes and/or text have been paraphrased but would like to emphasize that 

this history follows that described by the DOE OHH closely.  
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Einstein drafted a letter to President Franklin D. Roosevelt alerting him of his concerns.  

President Roosevelt received the letter on August 2, 1939 and wrote back to Einstein 

several days later explaining that in response to the letter he had assembled a committee 

of civilian and military personnel to advise on the research of uranium.  On October 21, 

1939, the Advisory Committee on Uranium, headed by Lyman J. Briggs, met for the first 

time. 

Table 2.1: Department of Energy Secretaries 

No. Name 
State of 
Residence 

Took 
office Left office Party President(s) 

1 James Schlesinger Virginia 6-Aug-77 23-Aug-79 Republican 
Jimmy Carter 

2 Charles Duncan Texas 24-Aug-79 20-Jan-81 Democratic 

3 James Edwards South Carolina 23-Jan-81 5-Nov-82 Republican 
Ronald Reagan 4 Donald Hodel Oregon 5-Nov-82 7-Feb-85 Republican 

5 John Herrington California 7-Feb-85 20-Jan-89 Republican 

6 James Watkins California 1-Mar-89 20-Jan-93 Republican George H. W. Bush 

7 Hazel O'Leary Virginia 22-Jan-93 20-Jan-97 Democratic 
William Clinton 8 Federico Peña Colorado 12-Mar-97 30-Jun-98 Democratic 

9 Bill Richardson New Mexico 18-Aug-98 20-Jan-01 Democratic 

10 Spencer Abraham Michigan 20-Jan-01 1-Feb-05 Republican 
George W. Bush 

11 Samuel Bodman Illinois 1-Feb-05 20-Jan-09 Republican 

12 Steven Chu California 20-Jan-09 22-Apr-13 Democratic 
Barack Obama 

13 Ernest Moniz Massachusetts 21-May-13 20-Jan-17 Democratic 

14 James Richard Perry Texas 2-Mar-17 Incumbent Republican Donald Trump 

Source: https://www.energy.gov/management/history/secretaries-energy  

In June 1940, President Roosevelt aligned the newly constituted Committee on Uranium 

to be under the recently created National Defense Research Committee (NDRC). 

Vannevar Bush was appointed to head of the NDRC, and he reorganized the Committee 

on Uranium into a scientific community thus ending military membership. By eliminating 

the dependence on the military for funding, the NDRC was able to gain more direct 

access to funding for uranium research. The Committee on Uranium still held 

responsibility for uranium research under the NDRC and recommended that funding 
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continue for the remainder of 1940. Bush approved the funding for the uranium research 

but also banned the publication of any research on uranium and barred foreign-born 

scientists from the committee for the sake of national security. 

During 1940, German forces experienced wartime success in Europe. This success led 

many to believe it was only a matter of time before the United States became involved in 

the war. While the U.S. Government funded uranium research in 1940, the scientific 

community worried about the pace of research was proceeding too leisurely. Ernest O. 

Lawrence, director of the Radiation Laboratory at the University of California, Berkeley 

was one of the most outspoken scientists concerned with the pace of uranium research. 

Lawrence was enthusiastic about uranium’s potential and hypothesized a method to 

separate larger and purer amounts of uranium-235 for study. Eager to speed up this 

research, Lawrence contacted Karl T. Compton and Alfred L. Loomis, both of Harvard 

University, who were also doing work for the NDRC.  Lawrence shared his views and 

hypotheses with Compton and Loomis. Sympathetic to Lawrence’s urgency to speed up 

uranium research, Compton and Alfred Loomis shared Ernest Lawrence’s agreement 

with Bush that the Committee on Uranium were moving too slowly, especially, in the 

face of Germany’s progress. 

After a meeting between Vannevar Bush and Ernest Lawrence, Bush believed Lawrence 

was on the right track and appointed him to be an advisor to Lyman Briggs. Bush also 

requested that the National Academy of Sciences, headed by Arthur Compton, review the 

uranium research program. In May 1941, Lawrence in conjunction with Karl Compton, 

released the first report from the National Academy of Sciences (Academy) on the 

uranium program. The report stated that it was possible uranium could be used for 

creating a radioactive weapon as early as 1943, in the event of war. However, the 

expected time of when a large bomb would be needed was undetermined, and it was 

thought that it would certainly not be needed before 1945. Bush was not appeased by the 

findings in the report and requested the Academy conduct a review of the first report 
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from an engineering standpoint. The second report, dated July 11, 1941, confirmed the 

results of the first report, and this was a disappointment according to Bush. 

At the time Bush received the second Academy report, he had become the director for the 

Office of Scientific Research and Development (OSRD). The Committee on Uranium, 

code-named the S-1 committee, then became the OSRD Section on Uranium. While the 

U.S. efforts weaponizing uranium were moving slowly, in July 1941 a draft of the so-

called MAUD report, codenamed for a British group of researchers, founded in 1940 to 

study uranium, was provided to Bush.  The MAUD report was one of the most influential 

reports of the time as it provided details on how to build a nuclear bomb. Recognizing the 

importance of the MAUD report, Bush decided to strengthen the S-1 committee and 

requested Compton to address technical questions related to the MAUD report. 

In October 1941, before Bush had received Compton’s latest report, he met with 

President Roosevelt and Vice President Henry Wallace to discuss the positive outlook of 

uranium research as a result of the MAUD report. Bush received permission from the 

President to engage the U.S. Army to explore construction of a bomb. The President 

instructed Bush to move quickly but to only conduct R&D; he also required Bush to seek 

additional approval to move forward with production if the situation permitted.  

Just over a month before Japan bombed Pearl Harbor (December 7, 1941), Compton’s 

committee submitted a report to Bush that confirmed the basic conclusions of the MAUD 

report. Bush shared this information with President Roosevelt who responded through a 

written note stating, “V. B. OK – returned – I think you had best keep this in your own 

safe FDR” (DOE - OHH, n.d.). 

The United States entered World War II following the attack on Pearl Harbor. This event, 

coupled with the concern Germany was progressing towards creation of an atomic 

weapon, sparked urgency in the federal government to support the U.S. avenues of 

developing its own bomb. Through the first half of 1942, Bush reorganized the overall 
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organizational structure of the effort to build an atomic bomb. This was in parallel with 

troves of new scientific information pouring in that needed to be analyzed and prioritized 

for the upcoming production phase. Throughout the year, progress was made towards 

entering the production phase of an atomic bomb. On December 9, 1942, the S-1 

committee met to discuss a report prepared by Warren K. Lewis of the Massachusetts 

Institute of Technology (MIT), and a draft was prepared for Bush to send to President 

Roosevelt with recommendations for next steps. On December 28, 1942, the President 

approved $2 billion in spending to be used to build an atomic bomb. His also gave the 

Manhattan Project approval to construct the plants and facilities needed to build the 

bomb. 

With the full support of President Roosevelt, the Manhattan Project moved forward in the 

efforts to build an atomic bomb. Across the country, multiple sites were working towards 

producing plutonium and enriched uranium. With plutonium production increasing 

significantly late in 1944, the facility in Los Alamos that focused on the actual design of 

a nuclear weapon was also making substantial progress.  

On August 6, 1945, with President Harry Truman’s approval, a 9,700-pound uranium 

bomb, nicknamed “Little-Boy” was dropped on Hiroshima, Japan with devastating 

effects. Just three days later a plutonium bomb nicknamed “Fat-Boy” was dropped on the 

city of Nagasaki, again with devastating effects. On August 10, 1945, the emperor of 

Japan forced military leaders to offer a surrender. After some reluctance by the Japanese 

military leaders, Japan officially surrendered on September 2, 1945. 

Following the end of World War II, the United States had to deal with the issue of how to 

proceed now that the world knew the forcefulness of nuclear power. Perhaps the most 

contentious point was whether the infrastructure developed through the Manhattan 

Project should be controlled by the military or by civilians. The debate was settled on 

August 1, 1946, when President Truman signed the Atomic Energy Act (Public Law 79-
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585) which went into effect January 1, 1947. The Act established the civilian lead, 

Atomic Energy Commission (AEC) intended to promote the “utilization of atomic energy 

for peaceful purposes to the maximum extent consistent with the common defense and 

security and with the health and safety of the public” (EPA, 2018, para. 1). 

For the next few years, the AEC expanded its weapon making sites as the so-called Cold 

War between the Soviet Union and the United States intensified. In August 1949, the 

Soviet Union detonated its first atomic weapon, which sparked President Truman to 

request the AEC to expedite the development of a thermonuclear weapon.  

On June 25, 1950, North Korea invaded South Korea which ignited the Korean War. The 

global turmoil lead President Truman to approve a $1.4 billion spending bill to expand 

AEC facilities to produce more uranium and plutonium for nuclear weapons. On 

November 1, 1952, the United States detonated its first thermonuclear weapon; it created 

an explosion approximately 700 times greater than the uranium bomb dropped on 

Hiroshima. 

On January 20, 1953, Dwight D. Eisenhower was inaugurated. Eight months into 

Eisenhower’s presidency the Soviet Union tested a bomb that was a precursor to a 

thermonuclear bomb. At the same time the United States had made progress on 

harnessing nuclear energy for naval propulsion; the U.S. Navy launched its first nuclear 

powered submarine in January 1954.  

On August 30, 1954 President Eisenhower signed the Atomic Energy Act of 1954 (Public 

Law 83-703), which is now one of the fundamental laws of the Nuclear Regulatory 

Commission (NRC). The law, as it pertained to the development of civilian nuclear 

power programs, stated: “the development, use, and control of atomic energy shall be 

directed so as to promote world peace, improve the general welfare, increase the standard 

of living, and strengthen free competition in private enterprise” (OGC, 2013, p. 15). 
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Although the Soviet Union continued to make advances in its nuclear program, including 

the detonation of a thermonuclear weapon in 1955, a third world war was feared but 

never occurred. In August 1958, President Eisenhower declared a moratorium on all 

nuclear weapon testing effective October 31. The moratorium was in conjunction with 

the British and Soviets, the only other nations with nuclear programs at the time. After 

three years, the Soviet Union began extensive nuclear weapon testing again, breaking the 

1958 moratorium agreement. Just days later the United States resumed nuclear weapon 

testing. Negotiations for an international agreement among the United States, the United 

Kingdom (U.K.), and the Soviet Union nuclear weapon programs continued for a couple 

years. On August 5, 1963, the three nations signed the Limited Test Ban Treaty which 

prohibited underwater, atmospheric, and outer space nuclear test, but did not ban 

underground testing. 

In December 1963, plans were announced for the first nuclear power plant to be built 

without government aid and able to compete with conventional plants. The Jersey Central 

Power and Light Company was the entrepreneurial effort behind the plans. With the need 

for energy ever increasing the, AEC focused on development of the Liquid Metal Fast 

Breeder. In a report explaining the Breeder Reactors, AEC commissioner Glen Seaborg 

stated: “The development and use of the breeder reactor will give us an even greater 

amount of power-perhaps enough for thousands of years” (Mitchel and Turner, 1971, p. 

1). The concern over producing enough reliable energy became a reality on November 9, 

1965, when the northeastern United States experienced a major power blackout. 

Following the blackout in 1965, the United States and AEC continued to work towards 

developing a Liquid Metal Fast Breeder Reactor. By 1972, the AEC was actively 

working on plans with industry partners to build a Breeder Reactor. 

In June 1973, President Richard Nixon recognized that nuclear research and development 

activities had propagated since the Manhattan Project. The energy crisis of the 1970’s 

was also underway and beginning to hit U.S. consumers. As such, the President requested 
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Dixy Lee Ray, Chairman of the AEC at the time, to conduct a review of all energy related 

research and development activities and to recommend a unified national program. Later 

that month, President Nixon established the Energy Policy Office. Within six months 

President Nixon replaced the Energy Policy Office with the Federal Energy Office 

(FEO). The new office was given responsibility for controlling the price of oil and 

gasoline and rationing petroleum supplies to refiners. Only a few month later the 

President replaced the FEO with the Federal Energy Administration through the Federal 

Administration Act of 1974 (Public Law 93-275). 

Shortly after President Gerald R. Ford took office, with the energy crisis in full swing, he 

signed the Energy Reorganization Act of 1974 (Public 93-438) which replaced the AEC 

with the NRC and the Energy Research and Development Administration (ERDA). The 

NRC was tasked with regulating civilian use of nuclear materials and the ERDA 

administered research and development programs related to the use of various energy 

sources. Also, during President Ford’s administration, construction began on the Trans-

Alaska Pipeline; this was largest private construction project in American history at the 

time. Along with the construction of the pipeline came debate over potential negative 

environmental impacts of the 800-mile pipeline. These concerns plus the desire to create 

an oil reserve prompted the enactment of the Energy Policy and Conservation Act (Public 

Law 94-163), signed into law by President Ford on December 22, 1975. 

Four months into President Carter’s presidency, in April 1977, he delivered his first 

major speech on energy. Through his speech, he unveiled a plan to establish an energy 

department. In President Carter’s address to the nation he stated: “The energy crisis has 

not yet overwhelmed us, but it will if we do not act quickly. It’s a problem that we will 

not be able to solve in the next few years, and it’s likely to get progressively worse 

through the rest of this century” (Carter, 1977). Following the President’s address, in 

August 1977, President Carter signed the Department of Energy Organization Act (Public 

Law 95-91) thus abolishing the Federal Energy Administration and the ERDA. The 
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Department of Energy was officially formed on October 1, 1977, consolidating many 

entities from several departments and agencies. In accordance with President Carter’s 

plan, the Act was intended, as stated in Public Law 95-91: “To establish a Department of 

Energy in the executive branch by the reorganization of energy functions within the 

Federal Government in order to secure effective management to assure a coordinated 

national energy policy, and for other purposes.” The DOE was also given responsibility 

over the U.S. nuclear weapons program, whose lineage can be traced back directly to the 

Manhattan Project. 

DOE is Formalized 

James R. Schlesinger was appointed to be the first Secretary of Energy. Since the DOE 

brought together several, largely independent agencies and offices, Schlesinger’s first 

task was to meld all of them into a unified department. The new department consisted of 

approximately 20,000 employees with an annual budget of $10.4 billion. The newly 

created department: “despite its diverse origins, was structured to allow for the continuity 

of programs and functions from predecessor organizations while blending their expertise 

into new management teams” (Fehner and Holl, 1994, p. 23). The Department also 

inherited, mostly from the AEC through the ERDA, many regional and field offices, 

laboratories, research centers, and university programs from predecessor agencies. Thus, 

the Department of Energy was not intended to reduce resources through consolidation but 

was formed to build on previous efforts with a more strategic structure. 

Through the end of 1977, President Carter focused on creating legislation that would 

bring his administration’s energy policies together to form a National Energy Plan. 

However, public opinion was not favorable to President Carter’s plan, and special interest 

groups opposed to the plan were successful in preventing any legislation to be enacted. 

Not creating an official National Energy plan was a big disappointment for the Carter 

Administration, so they continued to push a policy forward in the first half of 1978. On 
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November 9, 1978, President Carter was finally successful in creating a National Energy 

Plan when he signed into law the National Energy Act of 1978. The legislation was 

substantial; it consisted of five major Public Laws: 

 The National Energy Conservation Policy Act (Public Law 95-619) 
 The Powerplant and Industrial Fuel Use Act (Public Law 95-620) 
 The Public Utilities Regulatory Policy Act (Public Law 95-617) 
 The Energy Tax Act (Public Law 95-618) 
 The Natural Gas Policy Act (Public Law 95-621) 

 
The National Energy Act was considered a success for President Carter and the DOE. 

With an official National Energy Plan in place, Secretary Schlesinger and the DOE had a 

new-found charter and the funding to work towards their new goals. 

Successfully passing the National Energy Act was only a small step towards effective 

energy policies. The DOE submitted its first comprehensive budget request for the year 

1980, as opposed to an aggregation of legacy agency budget requests. With an $8.4 

billion budget and thousands of employees, the DOE was not a simple organization to 

manage. Well over a year after the agency was established, the organization was still 

trying to find its rhythm which thus created many critics of the DOE. 

As the DOE was trying to get its footing and iron out its initial start-up issues, the 

ongoing energy crisis took an unfortunate turn for the worse. In 1979, the world began to 

experience an oil shortage driven by turmoil in Iran leading to the cessation of oil exports 

from the country. As energy prices spiked, Secretary Schlesinger realized there would be 

no easy solution to the crisis. Considerations were given to voluntary conservation 

measures, however the situation continued to deteriorate. As if the energy crisis was not 

straining the relatively new DOE enough, another challenge arose with an accident at a 

nuclear power plant in Harrisburg, Pennsylvania. Failures in the system resulted in the 

release of radioactive material that cost about $1 billion to cleanup (New York Times, 
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1993). Though the world was facing oil shortages, President Carter made it clear that the 

use of nuclear power should be a last resort. 

The Energy Crisis intensified during the first half of 1979, and in some cases, violence 

broke out due to the need for rationed gasoline. President Carter addressed the nation 

explaining that not one single factor caused the crisis and that the American people must 

speak out to combat the oil companies’ special interests in high prices. The DOE created 

teams of auditors to check up on refiners and individual service stations to try and 

enforce gasoline ceiling price regulations. Congress was not behind the President’s 

methods in resolving the energy the crisis; however, President Carter persisted that 

renewable energy would help alleviate the dependence on foreign oil. Nonetheless, a 

majority of Americans at the time believed the energy crisis was artificially contrived by 

the government, oil companies, and oil-producing nations. The skepticism did not bode 

well for the DOE’s reputation. 

Secretary Schlesinger resigned his office on July 16, 1979. President Carter then selected 

Charles W Duncan, Jr. to be the second Secretary of Energy. Secretary Duncan believed 

that the business of energy belonged in the private sector and that the proper role of 

government was the effective allocation of public resources. He also suggested that the 

government should provide proper incentives to private enterprise to help transition to an 

energy-diversified economy from one dependent on oil. The DOE was still in its infancy 

when Secretary Duncan took the reins; thus, part of his task was to improve the 

management structure of the department. The original structure of the department was 

based on the evolution of technologies from research and development through 

commercialization. Secretary Duncan reorganized the department according to respective 

fuel or technology types, a more traditional structure. 

During the summer of 1979, the energy crisis began to subside. Americans were 

consuming less oil driven by an economic downturn and high gas prices. The following 
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year a presidential election took place. President Carter and republican presidential 

candidate Ronald Reagan largely avoided making the nation’s energy issues a major issue 

in their campaigns. Reagan, the victor, criticized the past administrations energy policy 

and advocated for the abolishment of the DOE. Following Reagan’s election, he 

nominated James B. Edwards as the third Secretary of Energy. Edwards and the Reagan 

Administration quickly refocused the DOE’s mission. As opposed to President Carter’s 

policies, they did not want the government involved in activities that the private sector 

and markets could manage, such as price controls and regulations that slowed domestic 

production. On February 25, 1981, Secretary Edwards announced an organizational 

structure change that would permit the DOE to focus more on research, development, and 

production. 

Only four years after the DOE was established, the agency had become to many a symbol 

of the ineffectiveness of government overreach. Secretary Edwards was in favor of 

dismantling the DOE and reorganizing a more research focused administration under the 

Department of Commerce. When the Department of Energy Organization Act was 

created, it included a clause that required the President to submit a review of the 

Department to Congress before the Department could be dismantled. Unfortunately for 

President Reagan, Congress gave the DOE sound marks in achieving its goals and would 

not permit the complete abolishment of the department. By 1982, the nation’s energy 

situation had improved, and Secretary Edward touted that free markets and little 

government intervention were behind the change. Secretary Edwards had basically 

declared the end of the energy crisis and shortly thereafter gave his resignation to 

President Reagan. 

On October 5, 1982, Donald P. Hodel was named the fourth Secretary of Energy. 

Secretary Hodel held similar a sentiment as his immediate predecessor and tried to 

reorganize the DOE under the Department of Commerce (DoC). One main sticking point 

with his plan was that Congress did not believe the nuclear weapons program, maintained 
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by the DOE, should be a program under the DoC. With the DOE remaining intact, 

Secretary Hodel largely carried out President Reagan’s objectives deregulating energy 

markets and reducing the department’s personnel. During Secretary Hodel’s tenure as 

secretary, one of the most hotly debated issues revolved around the government’s role in 

energy research and development. Secretary Hodel believed that research and 

development should lie in the private sector but that government should intervene when 

research was too expensive for the private sector to undertake but had potential for large 

benefits. 

Ten days before President Reagan was inaugurated for his second term, he appointed 

John S. Herrington as the fifth secretary of energy. Secretary Herrington’s priorities were 

roughly in line with those of his predecessor. Secretary Herrington suggested energy 

policy should consist of three objectives: energy stability, energy security, and energy 

strength. Energy stability and energy security had been the focus of the DOE since the 

energy crisis in 1973, so Secretary Herrington wanted to focus on energy strength to 

make progress towards his view of an effective energy policy. By the mid1980’s, the 

United States had become much more efficient in how it consumed energy. Energy 

conservation was no longer just a slogan, it had become an energy resource. 

Conservation, coupled with nuclear and coal energy, were the three components 

Secretary Herrington believed would help the United States achieve energy strength. 

Secretary Herrington was also a strong proponent of government funded basic research. 

In 1986 and 1987, his views were appeased when major breakthroughs in electric 

technology efficiency provided the means to achieve superconductivity (zero electrical 

resistance) at lower costs. President Reagan had become impressed with the potential for 

basic scientific research to provide life-changing innovations. Secretary Herrington 

believed this new breakthrough showcased how the president’s energy policy and the 

DOE worked at its best. The key formula was the exchange of information and ideas 

among universities, private industry, scientific laboratories and government. In fact, in a 
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press conference President Reagan suggested the Superconductivity initiative 

demonstrated the administration’s policy for, “the swift transfer of technology and 

technical information from the government to the private sector” (White House, 1987, p. 

1). 

As President Reagan’s presidency concluded, the DOE was much different from when it 

was created. President Reagan was not successful at eliminating the department but 

Secretary Herrington believed the current state was much more appealing to the 

president. The DOE was no longer focused on regulatory functions, instead was 

supporting R&D and weapons facilities. After a decade since the DOE’s inception, 

arguments over energy policy had largely subsided. 

Over the next decade two more presidents would hold the office; George H. W. Bush 

from January 20, 1989, to January 20, 1993, and William J. Clinton from January 20, 

1993, to January 20, 2001. Under President Bush, Admiral James Watkins was named the 

Secretary of Energy. Early in his tenure as secretary of energy, Secretary Watkins’s 

biggest challenge was handling environmental problems caused by nuclear waste from 

the nuclear weapons complexes. This problem was essentially solved through enactment 

of the Waste Isolation Pilot Plant Land Withdrawal Act (Public Law 102-579). The Act 

was signed into law in 1992 and designated a single location to store defense related 

waste. Apart from the issues of nuclear waste, the DOE under the Bush administration 

largely echoed the energy policy of the Reagan administration. The Bush administration 

stressed that a diversified energy portfolio, consisting of coal, nuclear power, oil and 

natural gas, renewables, alternative fuels, and conservation was needed for the nation’s 

energy security. Along these lines, President Bush presented the National Energy 

Strategy to the nation, including Congress, which was touted as a pro-production 

strategy. Secretary Watkins suggested the strategy was a first of its kind to provide 

energy security and environmental quality through de-regulation, free markets, and 

investment in research and development. Although the strategy had mixed opinion it did 
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not cause any major political waves and was largely implemented through the passage of 

the Energy Policy Act of 1992 (Public Law 102-486). 

When President Clinton took office, the Cold War had ended, thus the DOE’s defense 

related activities were giving way to environmental restoration and waste management 

activities. Energy itself had largely fallen off the radar of most Americans but how 

energy interacted with the environment had become a major concern. Early in his 

presidency, President Clinton made it clear that the secretaries of energy and commerce 

were crucial to his economic policy and the DOE would be central to the administration’s 

policy goals. According to the Clinton Administration and echoed by Hazel Rollins 

O’Leary, President Clinton’s first appointed Secretary of Energy, the DOE would be 

focused on energy policy that relied more heavily on American natural gas, conservation 

through efficiency gains, alternative fuels, and more consideration for the environment. 

Over the course of President Clinton’s first term as President, he and the DOE continued 

to push their environmental policy forward. By the start of President Clinton’s second 

term a debate on whether the DOE should focus on applied or basic research was 

underway. Secretary O’Leary pushed the department towards applied research and 

thought technology transfer from public laboratories to the private sector would be key to 

maintaining the public laboratories following the end of the Cold War. Although the 

Bush Administration also pushed for technology transfer, under Secretary O’Leary, and 

in just her first year, the number of Cooperative Research and Development Agreements 

(CRADAs) negotiated between the DOE and academia, industry, and others doubled 

those negotiated while under Secretary Watkins tenure. 

Since the Cold War had ended, and given the focus on the environment, nuclear power 

had lost major attention by the DOE except for the ongoing nuclear waste cleanup. This 

changed with the election of President George W. Bush in 2001. President Bush was a 

proponent of both nuclear power and the oil industry, so during his administration the 

DOE had a renewed focus on nuclear and oil energy. The capstone of Bush’s energy 
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policy was the Energy Policy Act of 2005 (Public Law 109-58) that provided a broad 

range of subsidies for nuclear and oil companies. 

When President Barack Obama was elected in 2008, he brought a renewed attention to 

how energy impacts the environment. Clean energy was the term coined to represent 

energy sources that have a much smaller negative impact to the environment than coal, 

oil, and nuclear. Under the Obama Administration’s energy policy, several investments 

were made in clean energy including, tax credits for the solar and wind industries, 

funding for a smart grid, and subsidies to make low-income homes more energy efficient. 

The funding for these investments were provided through the American Recovery and 

Reinvestment Act of 2009 (Public Law 111-5). As stated in the Act, the purpose of this 

policy was for: “Making supplemental appropriations for job preservation and creation, 

infrastructure investment, energy efficiency and science, assistance to the unemployed, 

and State and local fiscal stabilization, for the fiscal year ending September 30, 2009, and 

for other purposes.” 

Current Organization of the DOE 

As of late 2018, the DOE is led by Secretary James Richard Perry, the fourteenth 

Secretary of Energy. The Department is operating relatively similar to past year’s 

departments under prior administrations. The Department’s 2019 fiscal year budget 

request for $30.6 billion consists of six major programs. The National Nuclear Security 

Administration is the largest program by request amount of $15.1 billion of which $11 

billion is designated for weapons activities. The next largest funding request of $6.6 

billion is from the Environmental Management program to be used for continuing the 

cleanup of waste generated from 50 years of nuclear weapons development and public 

nuclear energy research. With a request of nearly $5.4 billion, the Office of Science uses 

funding to continue the DOE’s long history of early-stage research and development in 

an effort to stay at the forefront of scientific innovation. The fourth major category of the 



 

20 

  

budget requests comes from the Energy program. The Energy program uses its funding to 

promote technologies that will make the American energy supply more reliable, 

affordable, and efficient. The department’s budget by major organization over the past 

several years is presented in Figure 2.1 below. Additionally, Figure 2.2 presents the 

extramural research budget of the DOE over the past several years.  

 

Figure 2.1: Department of Energy Budget by Major Organization: 

Source: https://www.energy.gov/cfo/listings/budget-justification-supporting-documents 
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Figure 2.2: DOE Extramural Research Budget 

Consistent with its origins, the DOE continues to engage in innovative research. 

According to its most recently released strategic plan (DOE, 2014, p. 10): “DOE will 

continue to pursue scientific discoveries that lay the technological foundation to extend 

our understanding of nature and create new technologies that support DOE’s energy, 

environment, and security missions.”  

Seventeen DOE national laboratories are used to advance the Department’s mission and 

aid in translating basic research to innovation. The national laboratories are critical to 

scientific innovation and possess unique instruments and facilities not found anywhere 

else in the world.  The DOE, through its Office of Science, also funds user facilities that 

provide researchers from academia, industry, and the government with advanced 

scientific tools to perform new scientific research. In fiscal year 2015, over 32,000 

researchers spanning all 50 states and Washington DC utilized a user facility (DOE, 

2015).  

Furthermore, 10 of the 17 national laboratories fall under the DOE’s Office of Science. 

The Office of Science is “the lead federal agency supporting fundamental scientific 
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research for energy and the Nation’s largest supporter of basic research in the physical 

sciences”, (DOE-OS, n.d., para. 1).  The Office of Science administers eight programs, 

which includes the Small Business Innovation Research (SBIR) program; the DOE is 

currently one of 11 federal agencies that participates in the program. In addition to the 

Office of Science, seven additional DOE offices participate in the SBIR program.  

Table 2.2 shows the DOE offices that participate and links to their mission statements. 

The DOE, consistent with the other ten federal agencies that participate in the SBIR 

program is currently required to set aside 3.2 percent of its extramural research budget to 

provide funding to the SBIR program. As of 2017, the extramural research budget at the 

DOE was $6.9 billion, therefore, the amount set aside for the SBIR program was $223.7 

million.   
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Table 2.2: Department of Energy SBIR Program Participating Offices 

DOE Office Link to Mission Statement 
Office of Cybersecurity, 
Energy Security, and 
Emergency Response 

https://www.energy.gov/ceser/office-cybersecurity-energy-
security-and-emergency-response  

Office of Electricity https://www.energy.gov/oe/office-electricity  
Office of Energy Efficiency 
and Renewable Energy 

https://www.energy.gov/eere/office-energy-efficiency-
renewable-energy  

Office of Environmental 
Management 

https://www.energy.gov/em/office-environmental-
management  

Office of Fossil Energy https://www.energy.gov/fe/office-fossil-energy  
Office of Defense Nuclear 
Nonproliferation R&D 

https://www.energy.gov/nnsa/missions/nonproliferation  

Office of Nuclear Energy https://www.energy.gov/ne/office-nuclear-energy  
Office of Science https://science.energy.gov/  
Office of Advanced Scientific 
Computing Research  https://science.energy.gov/ascr/  

Office of Basic Energy 
Sciences  

https://science.energy.gov/bes/  

Office of Biological and 
Environmental Research  https://science.energy.gov/ber/  

Office of Fusion Energy 
Science  

https://science.energy.gov/fes/  

Office of High Energy Physics  https://science.energy.gov/hep/  

Office of Nuclear Physics   https://science.energy.gov/np/  
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CHAPTER III:  LEGISLATIVE HISTORY OF THE SBIR PROGRAM

The SBIR Program 

Earlier than the legislative birth of the SBIR program, Congress recognized that small 

businesses were important to economic growth, and that they may require special 

treatment to remain competitive with larger enterprises. In 1953, Congress established the 

Small Business Administration (SBA) through the Small Business Act of 1953 (Public 

Law 85-536). As stated in the legislation the intent of the Act of 1953 is to: 

… aid, counsel, assist, and protect insofar as is possible the 
interests of small-business concerns in order to preserve free 
competitive enterprise, to insure that a fair proportion of the total 
purchases and contracts for supplies and services for the 
Government be placed with small-business enterprises, and to 
maintain and strengthen the overall economy of the Nation. 
 

Over the next several years following the enactment of the Act of 1953, Congress 

provided assistance to small businesses through four primary programmatic functions: 

access to capital (e.g., direct business loans and guarantees on bank loans), education and 

counseling on the entrepreneurial process, government contracting (e.g., helping small 

business get government procurement contracts), and advocacy.  

By the late 1970s, Congress was concerned that the United States was becoming less 

competitive in the global economy. There was also growing evidence that small 

businesses were becoming more important in job creation and the innovation process 

(NRC, 2008). For example, in 1979, a report from MIT’s Neighborhood and Regional 

Change program was published that highlighted the significance of small business in the 

job creation process (Birch, 1979). Birch found that (1979, p. 29): 
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On average about 60 percent of all jobs in the U.S. are generated 
by firms with 20 or fewer employees, about 50 percent of all jobs 
are created by independent small entrepreneurs.  Large firms (those 
with over 500 employees) generate less than 15 percent of all net 
new jobs. 
 

Small business’s majority share in job creation at the time was, at least partially, driven 

by their entrepreneurial ability to adjust to the changing global economy. The early 1980s 

have been referred to as the Entrepreneurial Economy and according to Link and Scott, 

(2013, p. 14), “…smaller firms have a greater ability to be innovative, or to adopt and 

adapt others’ new technologies and ideas, and thus quickly and efficiently appropriate 

investments in new knowledge that are made externally.”  

Although Congress had long recognized small businesses as being important for 

stimulating economic growth plus the then growing evidence of their importance in job 

creation, there was growing concern that this sector was being neglected. In 1977, an 

SBIR prototype program at the National Science Foundation (NSF), designed by Roland 

Tibbetts, began. Tibbetts, who worked in the private sector for several years before 

joining the NSF, foresaw a three-phase program structure: 

… in order to foster the R&D of small, high-tech businesses and 
push them to realize their commercial potential. He believed these 
firms were instrumental in converting government R&D into 
public benefit through technological innovation and commercial 
applications, therefore stimulating aggregate economic growth. 
(SBIR-STTR, n.d., para. 3)  
 

Following the success of the prototype program, in 1982, Congress amended the 1953 

Act, with the intent: “…to strengthen the role of the small, innovative firms in federally 

funded research and development…”  In the 1982 amendment to the Act of 1953, 

Congress stated: 
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(1) technological innovation creates jobs, increases productivity, 
competition, and economic growth, and is a valuable 
counterforce to inflation and the United States balance-of-
payments deficit; 

 
(2) while small business is the principal source of significant 

innovations in the Nation, the vast majority of federally funded 
research and development is conducted by large businesses, 
universities, and Government laboratories; and  

 
(3) small businesses are among the most cost-effective performers 

of research and development and are particularly capable of 
developing research and development results into new 
products.  

 

The amendment to the Small Business Administration Act, specifically the Small 

Business Innovation Development Act of 1982 (Public Law 97-219), established the 

SBIR program. The objectives of the program are: 

1. to stimulate technological innovation, 
2. to use small business to meet federal research and development needs, 
3. to foster and encourage participation by minority and disadvantaged persons in 

technological innovation, and 
4. to increase private sector commercialization of innovations derived from federal 

research and development. 
 

To be eligible for funding from the SBIR program, a firm must meet the following 

criteria: 

1. employ fewer than 500 employees;  
2. be independently owned with at least 51 percent ownership by U.S. citizens or 

lawfully admitted permanent resident aliens; 
3. not be the dominant firm in the proposed projects field; 
4. be a for profit organization;  
5. be the primary employment of the project’s principal investigator.  

 
The proposing firm must also perform at least two-third of the R&D work in Phase I and 

at least one-half in Phase II.   
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The Amendment to the 1982 Act required that each federal agency with external research 

program budgets greater than $100 million for fiscal year 1982 and any subsequent year 

establish and fund their own SBIR programs. Regarding the amount each agency must 

reserve for the SBIR program, the Act stated each qualifying agency: 

… shall expend not less than  0.2 per centum of its extramural 
budget in fiscal year 1983 or in such subsequent fiscal year as the 
agency has such budget, not less than 0.6 per centum of such 
budget in the second fiscal year thereafter; not less than 1 per 
centum of such budget in the third fiscal year thereafter, and not 
less than 1.25 per centum of such budget in all subsequent fiscal 
years with small business concerns specifically in connection with 
a small business innovation research program which meets the 
requirements of the Small Business Innovation Development Act 
of 1982 and regulations issued thereunder. 
 

To achieve the program objectives a two-phase competitive research awards program was 

established. The Phase I awards are a relatively small amount and generally covers a six-

month period. The intent of the Phase I award is to aid domestic businesses in analyzing 

the technical merit (i.e., proof of concept) and feasibility of commercializing the 

proposed R&D effort. The Phase II award, which is based on the success of the Phase I 

research, is larger and the research typically lasts for about two years. The intent of the 

second phase is to continue the R&D efforts initiated in the first phase, ideally resulting 

in commercializable output. Only Phase I SBIR projects are eligible to apply for Phase II 

awards, but not all Phase I awarded firms receive a Phase II award. Beyond the two 

phases officially supported by the SBIR program, a third phase is defined, Phase III, 

which is unfunded by the SBIR program; it is intended to define that period of time when 

the small business pursues commercialization of the efforts from the first two phases. The 

expectation is that the funded firm will seek third-party financial support for this final 

phase. 
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The 1982 Act was not permanent therefore, it has been subject to several reauthorizations 

and a few amendments that modified the structure of the SBIR program. The first 

reauthorization was in 1986 through the Department of Defense Appropriation Act of 

1986 (Public Law 99-443), which extended the 1982 Act through 1992. In 1992, the 

Small Business Research and Development Enactment Act, (Public Law 102-564), 

reauthorized the SBIR program until 2000. The 1992 reauthorization increased the 

maximum set-aside rate from 1.25 percent to 2.50 percent, re-emphasized the goal of 

increasing private sector commercialization of SBIR funded technologies, increase Phase 

I awards to $100,000 and Phase II awards to $750,000, and broadened the third program 

objective to include women. The Small Business Reauthorization Act of 2000 (Public 

Law 106-554) reauthorized the SBIR program until September 30, 2008, without 

modifications to the required set-aside rates or award amounts.  

In 2008, Congress failed to reauthorize the SBIR program by the September 30 deadline 

date; however, Congress did extend it through March 20, 2009 through Public Law 110-

235. On March 19, 2009, Public Law 110-10 extended the program through July 31, 

2009, and it was again extended until September 30, 2009, by a Senate continuing 

resolution (S.1513). House bill (H.R. 3614) was passed on September 23, 2009, which 

extended the SBIR until October 31, 2009. On March 30, 2010, the Small Business 

Administration amended the SBIR Policy Directive. This amendment increased the 

available Phase I award amount to $150,000 and Phase II award amount to $1,000,000 as 

proposed in the failed Senate bill, S. 3029, from September 2008.  

 Senate bill, S. 1929, extended the program through April 30, 2010, and the Senate 

continued the trend with the short-term extension via S. 3253, which extended the 

program until July 31, 2010. The program was then extended again through September 

30, 2010 by the House (H.R. 5849), and then again through January 31, 2011 by the 

Senate (S. 3839). The House followed suit by extending the SBIR program until May 31, 

2011 (H.R. 366). On May 31, 2011, the Senate temporarily extended the program again 
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through September 30, 2011 (S. 1802). Two consecutive house bills extended the 

program, first to November 18 (H.R. 2608) then to December 16, 2011 (H.R. 2112). H.R. 

2112 was the last of the temporary extensions resulting from Congress’s failure to 

reauthorize the SBIR program in 2008.  

On December 31, 2011, President Obama signed the National Defense Authorization Act 

of 2012 (Public Law 112-81) which codified the reauthorization of the SBIR program 

through September 30, 2017. On December 23, 2016, President Obama signed the 

National Defense Authorization Act of 2017, which reauthorized the SBIR program 

through September 22, 2022. Table 3.1 summarizes the key legislation that has kept the 

SBIR program running since its inception.  

Currently, there are eleven agencies participating in the SBIR program, and the set-aside 

rate is now 3.2 percent through 2022. The agencies participating in the program are: 

Department of Agriculture, Department of Commerce, Department of Defense, 

Department of Education, Department of Energy, Department of Health and Human 

Services, Department of Homeland Security, Department of Transportation, 

Environmental Protection Agency, National Aeronautics and Space Administration, and 

National Science Foundation. Of the eleven participating agencies, five account for 

approximately 97 percent of all SBIR funding, with the Department of Defense 

committing the largest share. 
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Table 3.1: SBIR Program Legislation 

Legislation 
Public 
Law 

Authorization 
Period 

Small Business Innovation Development Act of 1982  97-219 1982-1986 
Department of Defense Appropriation Act of 1986  99-443 1986-1992 
Small Business Research and Development Enactment Act 
of 1992 

 102-564 1992-2000 

Small Business Reauthorization Act of 2000  106-554 2000-2008 
Short-term extensions   --- 2008-2012 
National Defense Authorization Act of 2012  112-81 2012-2017 
National Defense Authorization Act of 2017  114-328 2017-2022 

Source: Based on Link and Scott (2013) Table 5.1 with additional information. 

 

 

Figure 3.1: SBIR Program Funding by Major Department 

Source: 2016 SBIR AND STTR ANNUAL REPORT 
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The Empirical Literature on the SBIR Program 

As part of the SBIR Reauthorization Act of 2000 (S. 493, Sec 307), the National 

Research Council (NRC)2 received a mandate to report on assessments of the SBIR 

program, to each funding agency, and required updates every four years. The intent of the 

assessments is to understand the economic benefits of the program. Prior to the 2000 

mandate, there was a relatively limited body of literature that assessed the program 

(National Academies, 2016), especially given the size of the program. Since the first 

round of mandated assessments the literature has grown substantially. Today, there is a 

significant literature that has studied many facets of the SBIR program. Areas that have 

been studied include general policy evaluations (e.g.,  Link and Scott, 2009; Gicheva and 

Link, 2013), the SBIR programs association with employment growth (e.g., Link and 

Scott, 2012a; Link and Scott, 2012b), although creating employment opportunities is not 

part of the programs stated mission, spillover benefits (e.g., Audretsch et al., 2002; Allen 

et al., 2012), and the mechanism of the award system itself (e.g., Bhattacharya, 2018). In 

a recent assessment of the SBIR program at the DOE, the National Academies, (2020) 

expanded the focus of its assessment relative to the 2016 review (Academy, 2016). The 

recent review stated the objectives of the review were to examine 

 A range of economic impacts including, to the extent practicable, the 
number of jobs created by these programs; 
 

 The role of SBIR/STTR programs in stimulating technological innovation 
and contributing to DOE’s research and development needs; 
 

 Collaborations created between small businesses and research institutions on 
account of the programs; 

                                                 

2 NRC refers to the National Research Council from this point forward as opposed to the National 

Regulatory Commission, unless otherwise noted.  
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 The effectiveness of DOE’s SBIR/STTR award-selection process and 
commercialization assistance; and 
 

 Ways to improve outreach efforts to SBIR/STTR applicants, particularly to 
increase applications from small businesses that are (1) new to the 
programs, (2) from underrepresented states, (3) woman-owned, or (4) 
minority-owned. (Academy, 2020, p. 22) 

 
As it relates to this dissertation, two areas of the empirical literature are focused on: the 

commercialization success or failure of funded projects and spillover benefits from the 

SBIR program. 

 Government intervention in markets should, theoretically, be designed to overcome or 

ameliorate a market failure. The market failure in the case of small firm technology 

development and commercialization is that there is an underinvestment in private R&D.  

Invoking market failure as the justification for the SBIR program suggests that the net 

social benefits associated with the program are positive. If public funding for private 

R&D increases private benefits to be at least equal to private costs, then society will be 

able to realize the social benefit, otherwise the R&D effort should not be undertaken.  

Concerned with estimating the social rate of return from the SBIR program, Audretsch et 

al. (2002) analyzed data from interviews conducted by Link and Scott (2000) of DoD 

SBIR award recipients for 44 projects in 43 companies. Audretsch et al. (2002) found 

that, on average, across the 44 projects for which they had data, the expected private rate 

of return without SBIR funding was 25 percent while the lower bound of the expected 

social rate of return was 84 percent. The gap between the private return and social return 

is driven by a lower social required rate of return (hurdle rate) and difficulties 

appropriating the return on investment of the R&D. The private hurdle rate is higher than 

the social hurdle rate, therefore, the social return will always be greater than the private 

return for R&D projects. Allen et al. (2012) also performed an analysis to estimate the 
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social benefit from the SBIR program. Using data from the top five government agency 

SBIR program participants, Allen et al. (2012) estimated the producer and consumer 

surplus from the population of Phase II funded awards between 1992 and 2001. They 

assumed the firm bringing a new technology to market would enjoy monopoly power for 

some time until others enter the market. Using these surplus estimates the authors found 

the demand elasticities associated with a cost-benefit ratio of unity for the projects. All 

five agencies had elastic demands at a cost-benefit ratio equal to 1, and the DOE’s 

elasticity was estimated to be 1.518. Allen et al., (2012) state that there is no known 

elasticity of demand however, it is likely the actual demand elasticity is lower than 1.518 

due to the firm enjoying monopolistic power for some time. This implies a social benefit-

cost ratio greater than 1, hence a positive spillover from the SBIR program.  

While Audretsch el al. (2002) and Allen et al. (2012) were concerned with identifying the 

presence and measure of social benefit from the SBIR program, Link and Ruhm (2009a) 

discuss the source of the societal spillover by analyzing the vocational background of 

entrepreneur’s who received SBIR funding from the NIH. Link and Ruhm (2009a) 

explained that human capital from R&D projects can add to societies benefit through two 

competing channels; one public (research publications) and one private (patents). They 

found that entrepreneurs with business backgrounds have a 9.5 percentage point decrease 

in the probability that the intellectual capital will be disseminated through publications 

only. They also found that when an entrepreneur partners with a university there is an 

11.3 percentage point increase in the probability that publication is the only source to 

propagate intellectual capital.  

In a study using data from the NIH SBIR program, Toole and Czarnitzki (2009) analyze 

the association between the human capital of scientists with a biomedical academic 

background and firm performance. The authors found, “that academic scientific 

knowledge has an institutional specificity that limits its transferability or applicability to a 

commercialization environment…” (Toole and Czarnitzki, 2009, p.112). This result is 
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consistent with Link and Ruhm (2009a) and further points to the idea that the source of 

the knowledge spillover is more likely to be from publications than from patents. Toole 

and Czarnitzki (2009) further explain that the former result is most prevalent when the 

principal investigator is more adept at basic research or idea generation as opposed to 

applied research.  

Commercialization is only one of the objectives of the SBIR program; however, 

discussions about the success of the program often cite commercialization activity as the 

success metric. Phase III, albeit a phase without official support from the SBIR program, 

is when commercialization is supposed to occur. The program does not award funds past 

Phase II so any additional capital needed to bring the R&D to market must come from 

alternative sources than the SBIR program. Therefore, it is quite possible that a small 

business will be awarded both Phase I and II awards but fail to bring their efforts to 

market.  

In a study using data from NIH SBIR Phase II funded projects, Link and Ruhm (2009b) 

estimated the probability a project will commercialize as a function of receiving 

additional funding plus other control variables. The dependent variable was a binary 

indicator equal to one if the firm commercialized their research. The authors found that if 

a firm received additional funding above the Phase I and II awards, then the probability 

of commercializing was approximately 35 percentage points higher than without. Link 

and Ruhm (2009b) also found that when a university is involved with the project, the 

probability of commercializing increases by 12 percentage points over those that did not 

have university involvement.  

In a similar study, Siegel and Wessner (2012) were concerned with how university 

involvement is associated with the commercialization success of SBIR award recipients. 

Instead of a binary indicator of success as mentioned previously, Siegel and Wessner 

(2012) define seven measures related to aspects of commercialization: (1) actual sales, 
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(2) expected sales, (3) new employees, (4) patents applied for, (5) copyrights applied for, 

(6) trademarks applied for, and (7) licensing agreements consummated. The authors 

regressed each of the seven metrics separately onto several factors including an indicator 

for university involvement and a variable for the amount of additional funding other than 

from the SBIR. In all seven models the parameter estimate on the university involvement 

indicator was positive and relatively large in magnitude. However, the estimates were not 

statistically significant in the models for new employees or trademarks applied for. None 

of the models had a significant parameter estimate on the additional funding variable and 

the signs of the estimates were not consistent.  

Link and Scott (2010), provided further evidence to the discussion surrounding successful 

commercialization of SBIR funded projects. Link and Scott evaluated the probability of 

commercialization at the five largest SBIR participating agencies using a binary 

dependent variable of sales. The binary indicator registers a value of one if there had been 

some sort of commercialization such as sales of products, processes, services, rights to 

technology, or spin off companies. They found that the average of the predicted 

probabilities of commercialization, by the firms sampled, at each agency, were all 

slightly less than 50 percent.  

The SBIR program, which was initially passed in 1982 and renewed several times, 

provides an opportunity for small businesses to conduct R&D projects that they would 

not be able to take on without the funding. Small businesses are crucial in bringing 

innovative technologies to market, however, often lack the funding required to do so. The 

SBIR program makes it possible for many small businesses to pursue R&D projects that 

result in a new technology that generates social benefit. In total, the social benefit 

generated from the SBIR program is much greater than the cost. The importance of the 

SBIR program in stimulating R&D among small businesses is confirmed through the 

continued renewal of the program. Much of the literature examining the SBIR program 

has largely focused on defining and measuring the success of the SBIR program as it 
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relates to outcomes of the programs stated objectives. However, there is a very limited 

body of research that examines the factors associated with publicly funded project failure; 

this dissertation begins to fill that gap. 
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CHAPTER IV:  R&D PROJECT FAILURE

Failure is often defined in terms of the lack of success of an undertaking. By this 

definition, the definition of failure is not independent of the definition of success. There 

may be varying degrees of failure coupled with varying degrees of success. This situation 

may arise in many ways especially ifn the undertaking is able to be measured for 

completeness at distinct intervals or by independent project components/ goals. However, 

failure can also be thought of as a binary descriptor to describe the situation when the 

initial undertaking was not fully successful in terms of the original plan. Therefore, 

measures of success or failure can be thought of in multiple ways and often the data 

available to analyze these metrics determine how the success or failure metric is defined. 

The metrics for success that have been studied have generally focused on the purposeful 

output or outcome of a business or project; and from an empirical perspective success has 

been modeled to be a function of project and firm characteristics. Only a few researchers 

have considered how key individuals contributed to success.  

As an example of a study of how key individuals contributed to success, Mansfield and 

Wagner (1975) collected detailed data on three firms in the industrial R&D sector and 

defined three measures of the probability of success. They classified the projects in their 

sample as either technology push or demand-pull projects3 and they found that 

technology-push projects are likely riskier and less likely to succeed than demand-pull 

projects. Using semi-structured interviews of key personnel collected from a two-phase 

sampling of 103 projects from six firms from 1969-1973, Rubenstein, Chakrabarti, 

                                                 

3 Technology push projects typically do not have a current market demand whereas demand pull projects 

are typically initiated in response to a current market demand.  
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O'Keefe, Souder, and Young (1976) defined several measures of success. The study 

elaborates that measures of success are specific to each project and factors associated 

with success encompass human, social, and communication factors. The authors stated 

that success cannot be achieved by the organization as a whole, but in an overwhelming 

number of cases a key individual was critical to the project’s success.  

Siegel and Wessner (2012) used data from the NRC database of Phase II SBIR funded 

projects to define seven output measures of success and study factors associated with 

each measure. Two of their defined measures of success were expected sales and actual 

sales, which were shown to be positively related to the age of the project, entrepreneurial 

experience of the founder, and size of the award. In a study looking to understand how 

behaviors of key individuals, namely project managers, shape the success of a project, 

Nixon et al. (2012, p. 210) found that “…research, leadership style and personal traits 

have also been identified as a critical success factor, determining either the success or 

failure of a project.” 

As mentioned above, understanding factors associated with a particular key individual 

involved with the success of a project or business has been recognized by only a few 

researchers thus is an area of research that should be further developed. Similarly, 

understanding how individuals may contribute to the failure of a project should be further 

developed, and such studies are even more limited than studies of project success.  

Project failure could be thought of as a perfect complement of success; however, that 

logic may not always hold.  Using survey data of 97 project managers to explain why 

projects fail, Pinto and Manuel (1990) suggested that failure is not a binary outcome; it 

can vary across projects as well as in various phases of the project. They suggested that 

there are three distinct benchmarks to measure project performance: the implementation 

process itself; the perceived value of the project; and client satisfaction with the delivered 

project.  
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Shepherd and Wiklund (2006) reviewed literature aimed at answering why businesses 

fail. They discussed that failure is hard to define, should be studied as a process as 

opposed to an instantaneous event, and that economic reasons should define a business 

failure. They defined three causes of business failure: liability of newness, 

overconfidence, and lack of human capital including experience. In this sense, failure is 

defined as a binary outcome as opposed to a more fluid measure.  

 Liability of newness can be associated with the business itself. Gicheva and Link (2016) 

consider such liability in a study designed to estimate the probability of an SBIR project 

resulting in commercialization conditional on not failing. They used data from the NRC 

database on Phase II funded SBIR projects to derive their estimates and found that 

nascent firms were 20 percent more likely to fail than a non-nascent firm.  

Overconfidence and lack of human capital are factors that link human characteristics to 

failure but not necessarily a specific individual trait, given groups of people, such as a 

management team, can exert similar traits. For example, using data on 18 R&D projects 

that failed from the Israeli bio-medics electronic sector, Spiller and Teubal (1993) 

examine behaviors that are associated with firms’ failed R&D projects. They found that 

project failure can be brought on by inappropriate firm behavior or because of uncertainty 

or both. Their study elaborated that choice of program and faulty program execution are 

examples of inappropriate firm behavior, both of which are likely undertaken by some 

form of management or project team. Similarly, Sauser, Reilly, and Shenhar (2009) 

analyzed information from the National Aeronautics and Space Administration’s 

(NASA’s) Mars Climate Orbiter project with a particular focus on managerial decisions 

impact on project failure. They found that in many cases it is not technical details, 

mishaps, or poor designs that lead to project failure; it often results from managerial 

ineffectiveness. 
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As suggested by Rubenstein et al. (1976), a key individual may possess certain 

characteristics that ultimately determine the failure or success of a project. Link and 

Wright (2015) conducted a study to understand what drivers lead to SBIR project failure. 

One of their explanatory variables was gender of the principal investigator assigned to the 

project. They found that if the principal investigator was a woman, there was a reduction 

in the probability of project failure. One explanation of this result may be that women 

have inherent characteristics, such as higher risk aversion compared to their male 

counterparts, which results in them failing less often on average. In a similar study, 

Andersen et al. (2017) considered why SBIR projects fail. They used data from a sample 

of 461 projects funded by the NIH SBIR program and found gender to be a significant 

factor, too. Specifically, they found a negative correlation between project failure and if 

the founder of the small business was a woman. They also found a negative correlation 

between project failure and if the business founders had a background in business.  

The literature around project failure has often suggested that the reasoning for failure 

cannot be defined universally across all projects. Failure can be both a perfect 

complement to success or failure can be accompanied with partial success. However, the 

majority of the studies related to project failure have examined the reasons for project 

failure at the firm, managerial, or project level and have not explicitly focused on more 

micro-level dynamics within each project. Although each project may be unique in many 

facets, common across the majority of R&D projects is the presence of a principal 

investigator. For this reason, it follows that an understanding of the role PIs play in 

projects and various factors associated with them may provide further insight into 

understanding failure of projects. The literature on PIs is relatively small, though growing 

as the importance of PIs is becoming known; the performance of PIs may provide insight 

into understanding how likely it is that a project will fail. In the next chapter, I review the 

literature on PIs, which confirms there is a lack of research that examines key 

individual’s association with project failure.  
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CHAPTER V:  PRINCIPAL INVESTIGATORS

PIs play a critical role in the scientific community as lead scientists and more recently as 

effective managers. They are the leaders of R&D projects and, therefore, are critical 

individuals in the R&D process. It is important to deepen our understanding of PIs 

involvement in the innovation process since they are the people leading R&D projects 

that can bring new technologies to market that provide a large social benefit. 

Understanding PIs role in publicly funded R&D projects should shed light on how 

characteristics of them are associated with project failure. The remainder of this chapter 

reviews the relatively small but growing body of literature on PIs, which has a central 

focus of the importance and multifaceted responsibilities of PIs. 

In a recent report by the Joint Research Centre (JRC), the authors highlight the 

dichotomous role of PIs being scientist and managers stating, “The PC [PI] has primary 

responsibility for creation of the project concept in almost 60% of projects surveyed. The 

PC [PI] also has the primary responsibility for selection of project partners and planning 

timelines and budgets in a majority of projects” (Cunningham, O’Reilly, Hooper, 

Nepelski, Roy, 2020, p.3). The behavioral importance of PIs, especially publicly funded 

PIs, has been growing as the institutional landscape evolves. Cunningham et al. (2016a), 

using survey data based on semi-structured interviews of the population of publicly 

funded PIs in Ireland over the years 2009-2014, examined the roles and activities of the 

scientists who are publicly funded principal investigators. They found that the roles of the 

principal investigator include being a project manager, an administrator, a science broker, 

and more recently as a boundary spanner (i.e., ability to bridge different areas and 

domains such as the academic sector and the private sector).  

For publicly funded PIs acting as scientist, it is standard practice to share their research 

outcomes through the traditional channels such as scientific papers and conference 
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presentations (Baglieri and Lorenzoni, 2014). However, PIs now face additional 

requirements outside those a traditional scientist would encounter. Public programs, 

especially those that are technology-focused, also expect the PI or the PI’s funded 

organization to commercialize from their research. This paradigm has augmented the role 

and responsibilities of the traditional PI. Cunningham et al. (2016a, p. 67) discuss the 

growing importance of PIs stating that, “publicly funded PIs are key assets and the 

combination of their novel efforts and their capability to meet the expanding PI role 

means they are a core and critical actor in transforming scientific, economic and societal 

environments.”  

PIs have generally been referred to as knowledge brokers (e.g., Kidwell, 2013), and they 

are key actors in bringing their innovations to market. Using data from a survey of 135 

universities, Thursby et al. (2001) found that 71 percent of early stage inventions required 

the inventor’s cooperation to successfully commercialize their invention. They found that 

industry partners required the specialized knowledge only the inventor possessed to be 

able to move the innovation from early stage development to a product able to be 

commercialized. With reference to Mangematin, O’Reilly and Cunningham (2014) and 

Cunningham et al. (2016b), the latter (p. 779) sum up the importance of publicly funded 

PIs, stating that “…publicly funded principal investigators are the linchpin of knowledge 

transformation through articulation of research programmes, the shaping of research 

avenues and the bridging of academia and industry.” Further, in a paper that examined 

the social origins of innovation failure, Pedraza (2017, p. 441) discussed the importance 

of building teams stating, “…bridging large cognitive distances—often a prerequisite for 

breakthrough innovation—requires the frequent, face-to-face interaction of members 

from the relevant distant communities.” While the author does not specifically discuss 

PIs, as discussed previously, PIs are the team members who carry this responsibility. 

Therefore, Pedraza’s finding further supports the notion that PIs are critical participants 

in the innovation process. 
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 Because PIs are the scientists who generate the ideas for innovations and are in large part 

responsible for the success of their R&D projects, public funding agencies are   de facto 

choosing to fund specific PIs. In fact, according to the SBIR program:  

Every SBIR … proposal must designate a single individual who 
will serve as the principal investigator on the proposed project. The 
PI has overall responsibility for the project, and therefore must be 
credible in terms of his/her education, work and project 
management experience (SBIR-STTR, 2018b, p. 1).  
 

Having overall responsibility of a research project requires the PI to oversee the day to 

day operations of the project, provide updates to stake holders, manage staff, sign off on 

budgets and financial plans, ensure deadlines are met, and submit technical 

documentation (Cunningham et al., 2016a). When a funding agency allocates resources to 

an R&D project, it is de facto trusting the PI to accomplish the mission of the project 

successfully.  

The designation of PI may be viewed as an accomplishment that recognizes a scientist as 

reaching a certain level or milestone in their career. Being a PI conveys status within the 

academic community and with that accreditation, additional resources may be allocated 

to the PI to assist in endeavors that add both economic and non-economic value to the 

research (Cunningham et al., 2017). Because becoming a PI does not happen by chance, 

and given their high rank in the scientific community, it is useful to understand how or 

why a person is elevated to PI. In a case study of thirty projects in Ireland’s science, 

engineering, and technology sector from 2009-2014, Cunningham et al. (2016b) found 

that scientists tended to become PIs because of either a pull factor or a push factor. The 

three pull factors identified were control over the project, motivation or career 

advancement, and ambition/ personal drive. The two push factors identified were lack of 

other options or project dependencies and institutional pressures.  
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No matter the reason or reasons that a person becomes or is designated as a PI, being a PI 

results in additional responsibility beyond that of a research scientist. As stated above, the 

PI has the overall responsibility for an R&D project and therefore must be multifaceted in 

their abilities.  Using survey data based on semi-structured interviews of the population 

of publicly funded PIs in Ireland over the years 2009-2014, Cunningham et al. (2016a), 

found that PIs must act as project managers, administrators, science brokers, and have the 

ability to bridge the gap between multiple domains such as the private and academic 

sectors. Kidwell (2013) echoed the notion of PIs being boundary spanners through a case 

study of four PIs, involved in nanotechnology research funded by the SBIR program, that 

have successfully commercialized their research. Similarly, Boehm and Hogan (2014) 

collected data from semi-structured interviews of 82 stakeholders involved in 17 

collaborative research projects in German and Irish universities, 25 of the interviews 

were with PIs. Using these data, they found PIs must take on multiple roles such as 

project manager, negotiator, resource acquirer as well as the traditional academic. 

PIs, as boundary spanners, play an important role in commercialization-related activities 

associated with R&D projects. PIs are at the center of the entrepreneurial network system 

that includes funding agencies, venture capitalists, banks, entrepreneurs, and high growth 

small and medium enterprises (SMEs) (Cunningham et al., 2017). Each participant in the 

entrepreneurial process seeks to maximize their return on investment, albeit a monetary 

or non-monetary investment. The PI’s role becomes even more challenging when 

participants in the process have competing interests. Cunningham et al. (2014) discussed 

the inhibiting factors associated with PIs leading publicly funded research programs. 

They found a key tension between the entrepreneurial and scientific outcomes. The PIs 

employer and other stake-holders may pressure the PI to commercialize their research, 

but as a scientist the PI may be less interested in capitalizing on the research and more 

interested in moving the science forward (these objectives may not be mutually 

exclusive). 
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Commercialization of the firm’s output requires the PI to engage in entrepreneurial 

activities. The push by the PI’s employer and other stakeholders to commercialize their 

research does not necessarily translate to the PI having a strong desire to be a successful 

entrepreneur. PIs, as project lead, have some autonomy when it comes to how they 

allocate their time across the various boundary spanning tasks. Del et al. (2017) used data 

from the Eurobarometer survey and a questionnaire to PIs in Europe to understand what 

factors are associated with PIs preferences towards entrepreneurial activities and their 

performance. They found that PIs still lean toward research over entrepreneurial activities 

but that a country’s culture towards entrepreneurship may influence a PI to have a greater 

preference towards entrepreneurial activities. PIs may prefer research activities over 

entrepreneurial activities; however, the ability to acquire external funding is increasingly 

being viewed as a core competency (Geuna and Nesta, 2006).  Further, since PIs are at 

the center of the entrepreneurial ecosystem, they are by default key actors in transferring 

knowledge and commercialization activities (Cunningham et al., 2016; Menter, 2016; 

O’Kane, 2016). For these reasons, commercialization is an activity growing in 

importance that PIs may have to embrace. 

When forming a research proposal, the PI must have an agenda for the project including 

whether to attempt to commercialize the research. With any innovative work there will be 

risk, uncertainty, or both associated with achieving the project’s goals. The presence of 

either risk or uncertainty should not alter a projects goals or deter the project itself from 

being undertaken as long as the risk or uncertainty are not prohibitive. O’Kane et al. 

(2017) discuss particular risk factors associated with commercialization of publicly 

funded R&D projects. Using data from semi-structured interviews with 24 funded health 

science PIs in New Zealand, the authors found four factors that inhibit PIs from 

incorporating or completing commercialization as a part of their research plan. The 

factors are (2017, p. 216):  
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(1) PI-funding body trust; (2) disconnects between universities and 
funding bodies expectations; (3) deficiencies in TTO 
[technology transfer office] resourcing; and (4) levels of 
conflict/ complementarity between publication and 
commercialization activities in funded science.  
 

Using ten case studies of PIs from Irish universities, O’Reilly and Cunningham (2017), 

examined the barriers and enablers to successful technology transfer to SMEs from 

university research and the role university plays in the success. They found asset scarcity 

as a barrier to successful technology transfer with SMEs. Also considered was the 

geographic proximity of the SME to the PI but this was not referenced as barrier to 

commercialization. However, social and cultural proximities were deemed significant. 

Further, an SME’s perceptions of bureaucracy within university TTOs was cited as a 

barrier, and in some cases SME research relationships were undervalued because of the 

expectation of low financial returns. 

When a PI oversees an R&D project that has received outside funding, the funding party 

expects the PI to deliver a successful project. If a PI fails to deliver a successful project, 

the funding party may begin losing trust in the PIs capabilities. The commercialization 

success of a research project has been studied as a barometer for measuring PIs 

successfulness. Recognizing success can have many different faces, Del et al. (2017) 

identified four key performance indicators (KPI) to measure PIs entrepreneurial 

intentions and performance in a cross-country comparison. The KPI’s are, networking 

and resources acquired, innovations realized, technology transfer activities, and new spin-

offs and start-ups. Kidwell (2013) analyzed the characteristics associated with PIs 

involved in nanotechnology who successfully commercialized their research. Kidwell 

found that prior success in commercializing their research has a strong correlation with 

future success. Further, successful PIs build trust with stakeholders by presenting 

solutions to a problem even when the industry is not initially aware of the problem. They 

build trust by anticipating the future and managing issues or conflicts. Essentially, 



 

47 

  

successful PIs find potential industry partners and build a good relationship with them. 

Further, highlighting the importance of PIs reputation or track record of success, Boehm 

and Hogan (2014) found that industry partners may favor a specific PI regardless of the 

university that employs them.  

The literature to-date on PIs has largely been focused on identifying their role and 

responsibilities in publicly funded R&D projects. PIs have been shown to be critical to 

the process and are generally required to perform a variety of duties in their role. In some 

sense, they are the gate keepers of new technology to market, which implies they have a 

large responsibility for delivering social benefit. As shown above, there is limited 

research on how characteristics of PIs are associated with project failure. Further, there 

has not been a theoretical formulation provided in the literature to explain how 

characteristics of PIs are associated with project failure. In the next chapter, I begin 

closing that gap by providing a microeconomic theoretical model to explain how 

characteristics of PIs may associate with R&D project failure. 
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CHAPTER VI:  A THEORETICAL MODEL OF R&D PROJECT SUCCESS / 

FAILURE

In the following chapter, I propose a theoretical framework for thinking about how 

characteristics of a key individual, in a firm, involved in the R&D process may be 

associated with project failure; such construct is new to the literature. The model 

considers success and failure to be perfect complements and PIs are defined as the key 

individual within the firm.  

When a firm, along with the PI, undertakes an R&D project, there is uncertainty about the 

success of the project as well as about any potential revenues if the project leads to a 

commercialized technology that enters the market as an innovation. Uncertainty results 

from many factors; in this chapter, the focus is on a particular factor, namely the ability 

of the project PI.  The firm’s PI is the one, within the R&D process, that has the ultimate 

decision-making power to drive the direction of the project. I posit that experience, E, of 

the PI is related to the success or failure of an R&D project—more experience is 

associated with a greater likelihood of success and less experience is thus associated with 

a greater likelihood of failure.  

The PI, in concert with the firm, forms a team, and ultimately a technology is chosen to 

pursue (Leyden and Link, 2015); these actions—the formation of the team and the choice 

of a technology to pursue—define the R&D project. The experience of the PI is thus 

reflected in the selection of the team and the project to pursue, and thus the experience of 

the PI, along with available resources from the firm, is ultimately the factor that will be 

related to the success of the project pursued. Given the resources from the firm that are 

available for the selected R&D project, a PI with greater experience should tend to 

influence the selection of a portfolio of inputs that result in a project with higher 

likelihood of success relative to a lesser experienced PI.  
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Choosing the members of the R&D team is one of the most important decisions the PI 

makes. Without a team, or with a team that has insufficient ability, the PI may not have 

the necessary human capital to perform the required R&D successfully and/or to bring 

any resulting technology to market. PIs with more experience may have a larger and 

more relevant network—an internal to the firm network and an external network—of 

available team members; a larger network provides the PI with a greater potential supply 

of human capital to choose from. This point was emphasized by Schott and Sedaghat 

(2014, p. 472): “…that the size of the network around entrepreneurs positively affects 

innovation…” and “The more an entrepreneur networks, overall, the more innovative the 

entrepreneur is likely to be…”   

Thus, the overall resource base available to the PI may be thought of as input to the R&D 

process; let Q represent a measure of quantity of the R&D-related inputs available to the 

project. With Q as a measure of input quantity, 𝑝(𝑄, 𝐸) thus represents the probability of 

a new marketable technology brought to market. A success is defined as new marketable 

technology with positive expected profits. I assume that the 𝑝(𝑄, 𝐸) function is a positive 

concave function that exhibits diminishing returns, therefore, 
డ௣

డொ
> 0,  

డమ௣

డொమ
< 0, 

డ௣

డா
> 0, 

and 
డమ௣

డாమ
< 0. 4  

Let 𝑅(𝑞) represent a concave function that represents a mapping of quality of the 

resulting commercializable technology, that is the quality of the resulting innovation (i.e., 

the technology brought to market), 𝑞, to the revenues received by the firm that are 

generated from the sale of the innovation. 𝑅(𝑞) exhibits diminishing marginal returns, 

                                                 

4  It is possible that eventually Q could become too large, therefore reducing p at the margin, that is 

∂p/∂Q<0, although this set of Q is not relevant under the assumption that the PI would never construct a 

project at that input quantity. 
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therefore, 
డோ

డ௤
> 0 and  

డమோ

డ௤మ
< 0. The quality of the resulting innovation is assumed to be a 

concave function of the quantity of the R&D inputs and PI input to the project, 

𝑞(𝑄, 𝐸), such that 
డ௤

డொ
> 0 and  

డ௤

డா
> 0. 

The quality of the innovation is a measure of how much consumer surplus the innovation 

provides those who purchase it. For example, an innovation that cost less relative to a 

substitute product has a higher quality (q) than that of the substitute, since consumers 

would prefer to pay less when choosing between comparable products. Likewise, a 

product that has superior features that provides greater utility, sufficiently high to 

compensate for a possible higher price, is another example of higher quality. Thus, the 

expected revenues, 𝑅௘ , from the innovation will be:  

𝑅௘ = 𝑝(𝑄, 𝐸) ∗ 𝑅(𝑞(𝑄, 𝐸)), (6.1) 

and expected marginal revenues, with respect to either Q or E, will be 

𝑀𝑅௘ = 𝑝ᇱ(𝑄, 𝐸) ∗ 𝑅(𝑞(𝑄, 𝐸)) + 𝑝(𝑄, 𝐸) ∗ 𝑅′(𝑞(𝑄, 𝐸)) ∗ 𝑞′(𝑄, 𝐸). (6.2) 

Naturally, there is cost associated with the R&D process. Leyden and Link, (2015) 

describe the entrepreneurial process as a two-step iterative process that incurs cost at each 

step. They posit that costs are funded by both personal endowments and capital markets 

depending on the phase of the process. Following Audretsch, Leyden, and Link, (2012), 

costs may be intellectual or physical and are both fixed and variable. In this construct, 

greater Q increases total cost, at an increasing rate, thus cost is a function of inputs. The 

cost function can be written as: 

𝑐 = 𝑐(𝑄) ∋ 𝑐(0) > 0, 𝑐ᇱ(𝑄) > 0, 𝑐ᇱᇱ(𝑄) > 0. (6.3) 
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The firm looking to maximize profits will choose an optimal combination of inputs, Q*, 

such that it maximizes expected profit: 

𝜋௘(𝑄, 𝐸) = 𝑝(𝑄, 𝐸) ∗ 𝑅(𝑞(𝑄, 𝐸)) − 𝑐(𝑄). (6.4) 

The optimal quantity of inputs conditional on the experience of the PI, Q*, is achieved by 

equating expected marginal revenue, 𝑀𝑅௘, to marginal cost, MC, of the R&D project 

(Figure 6.1): 

𝑝(𝑄, 𝐸) ∗ 𝑅ᇱ(𝑞(𝑄, 𝐸)) ∗ 𝑞′(𝑄, 𝐸) + 𝑝ᇱ(𝑄, 𝐸) ∗ 𝑅(𝑞(𝑄, 𝐸)) = 𝑐′(𝑄). (6.5) 

 

Figure 6.1: Profit Maximizing Choice of Experience 

As mentioned previously, at the onset of an R&D project there is uncertainty around the 

ultimate success of the project. The PI’s experience determines the ability of the quantity 

of inputs, Q, to generate a given quality, q, of the innovation, and ultimately the 

maximum expected profit. To illustrate this point, Figure 6.2 presents the expected profit 
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curves as a function of project quality for two alternative projects, and Figure 6.3 presents 

the densities of the projects expected profits. From the two figures it is clear that the 

project with PI experience 𝐸ଶ, (project 2) has profits 𝜋ଶ
௘(𝑄, 𝐸ଶ) that are negative even at 

the profit maximizing choice of quality. The project with expected profits 𝜋ଵ
௘(𝑄, 𝐸ଵ) 

(project 1) has positive expected profits at the optimal quality level.  

 

Figure 6.2: Profit Maximization Success and Failure 

Q

$

0
Q1*

Q2*

𝜋ଶ
௘ (Q2*, E2)

𝜋ଵ
௘ (Q1*, E1)
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௘ (Q,E2)

𝜋ଵ
௘(Q,E1)
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Figure 6.3: Expected Profit Distributions 

Project 2 has negative expected profits because the quantity of inputs, Q*, that the PI is 

able to transform into a marketable product can only be sold at a price less than the 

average cost. Defining negative expected profits as the indicator of failure, 𝜋௘(𝑄∗, 𝐸) ≥

0, must hold true for the project to be categorized as a success. Therefore, project 1 

would be one worth pursuing and project 2 would not. 

From this conclusion it can be inferred, ceteris paribus, that the PI associated with project 

1 has greater experience than the PI associated with project 2. Thus, my model suggests 

that the experience base of the R&D project’s PI is positively related to project success.  

It follows then that the experience base of the R&D project’s PI is negatively related to 

project failure. 

p(𝜋௘ )

𝜋ଵ
௘ (Q1∗,E1)𝜋ଶ

௘ (Q2∗,E2)
0 𝜋
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CHAPTER VII:  DOE SBIR DATA

Small businesses contribute substantially to the U.S. economy. As of 2014 (the most 

recent year complete data are available), small business5 share of private nonfarm gross 

domestic product was approximately 43.5 percent of the total, and as of 2014 contributed 

to just under half of the total number of employees in the U.S. in terms of nonfarm 

payrolls (Kobe and Schwinn, 2018). Of this important sector in the economy, the “Small 

Business Innovation Research (SBIR) program remains the nation’s largest innovation 

program for small business” (National Academies, 2016, p.1). Hence, the data used in 

this dissertation are information gathered from recipients of a Phase II SBIR award. 

Specifically, the data are a random sample of 225 Phase II projects (referred to later as 

the full sample) funded by the DOE’s SBIR program in the years 2001 through 2010.  

The data were collected in 2014 through a survey (second-round survey) conducted by 

the Academy. The Academy is a “private, nonprofit institutions that provide expert 

advice on some of the most pressing challenges facing the nation and the world” 

(Academy, n.d.). As a result of legislation written in the SBIR reauthorization of 2000 

(Public Law 106-554) and further emphasized by the 2011 SBIR program reauthorization 

(S. 493), the Academy was tasked with conducting an evaluation of the SBIR program. 

The reauthorization that occurred in 2000 states that,  

… each Federal agency with a budget of more than $50 million for 
its SBIR Program for FY 1999 to enter into an agreement with the 
National Academy of Sciences for the National Research Council 

                                                 

5 Small business in this case is defined as having fewer than 500 employees. According to the Small 

Business Administration size standard most small businesses qualify as small businesses under this 

rule. See https://www.sba.gov/sites/default/files/files/Size_Standards_Table.pdf. 
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to: (1) conduct a study of the value and benefits achieved by the 
Program; and (2) make appropriate recommendations for Program 
improvement (Sec 108). 
 

The research conducted as a result of the reauthorization of 2000, which included a 

similar survey (first-round) as the second-round survey, led to a series of Academies 

reports published from 2004-2009. These reports focused on the SBIR program at the 

largest five agencies (based on SBIR budgets), which included the DOE (Academy, 

2016). 

When the Senate reauthorized the SBIR program in 2011, the legislation reemphasized 

the requirement to evaluate the program by amending,  

… the Small Business Reauthorization Act of 2000 to continue 
NAS [National Academies of Sciences] evaluation of the SBIR 
program, as well as reports on such evaluation from the National 
Research Council to participating agency heads and the small 
business committees (Sec. 307). 
 

 Therefore, the Academies conducted a second-round assessment which included a 

survey in 2014 that was, “…sent to every PI who received a Phase II award from DOE, 

FY 2001-2010” (National Academies, 2016, p.3). This dissertation draws on a random 

sample of 225 responses, of which 170 were from a PI, to the second-round survey to 

explore the role PIs play in project failure.  

In this dissertation, two separate binary measures of failure are defined. As mentioned 

previously, failure may not always be binary, however, the data used for this dissertation 

provides the opportunity to look at failure as a binary measure as opposed to others. The 

first measure captures a general measure of failure and is defined as a Phase II funded 

project that was discontinued with no sales from the developed technology or any 

additional funding (Failure). Failure may occur due to any of the following issues: 
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1. the level of technical risk was too high 
2. the principal investigator left 
3. technical failure or difficulties 
4. market demand was too small 
5. the firm shifted priorities 
6. or inadequate sales capability. 

 
Of the 225 DOE Phase II funded projects studied here, 45 failed in this dimension, which 

translates to a 20 percent failure rate. A similar measure of failure was used by Link and 

Wright (2015) who used a random sample of 1,878 Phase II projects, across five 

agencies, from the first-round survey to estimate the probability an SBIR funded project 

fails. Of the 1,878 Phase II projects studied by Link and Wright (2015), 624 failed, 

representing a 33 percent failure rate.6  Likewise, Andersen et al. (2017) define a similar 

measure of failure and used a random sample of 461 SBIR projects funded by the NIH, 

from 1992 through 2001, to estimate the probability a project fails. The failure rate of the 

461 NIH funded projects was found to be 21.5 percent. Thus, the failure rate identified in 

the data for this dissertation is not out of line with two of the studies that are most 

relevant to the scope of the dissertation and the analysis that follows. 

The second dependent variable is a narrower measure of failure, namely failure for 

technical reasons (TechFailure). Specifically, ones that failed for technical reasons or 

because technical risk was too high are defined as failing for technical reasons. This more 

specific measure of project failure is considered in this dissertation because having a 

narrower understanding of reasons that a project may fail can help policy makers develop 

more pointed policy that may be more effective for guiding firms that are susceptible to a 

specific type of failure. Of the 45 projects that failed for any reason, 14 or 31 percent of 

                                                 

6 There are 154 DOE Phase II projects in the 1,878 sample. Although the failure rate by agency is not 

provided in Link and Wright (2015), if available it would have allowed a comparison to the DOE 

sample studied here.  
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those failed for technical reasons. This dissertation is the first study known to analyze 

covariates with SBIR project technical failure. 

Further, it is assumed that reducing the probability of failure is an objective of the SBIR 

program. The SBIR program has limited funds to allocate, therefore should want to 

allocate as efficiently as possible to maximize the programs social return on investment. 

When appropriating funds to a firm, the SBIR expects the firm to succeed and generate 

some social benefit else the award would not be given. Nonetheless, this is not a strong 

assumption since it is clear the SBIR program would certainly prefer a positive social 

return on the awards granted over the alternative. 

Table 7.1: Dependent Variables Descriptive Statistics (n = 225) 

Variable Mean StdDev Range 

Failure 0.200 0.401 0/1 

TechFailure 0.062 0.242 0/1 
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CHAPTER VIII:  INITIAL EMPIRICAL FINDINGS

Initial Probit Model 

According to the structural model laid out in Chapter VI, the experience, E, of the PI 

impacts the probability of bringing a new technology to market, the expected revenues a 

firm can earn as a function of q (quality of the innovation), and the cost associated with 

the project. However, due to the data available, a reduced form specification is used 

where project failure is a binary outcome as opposed to the continuous formulation using 

expected profits as the measure of failure. Thus, R&D inputs, Q, and experience, E, are 

used to estimate the probability of project failure as a binary model. Given the earlier 

work by Link and Wright (2015) and Andersen et al. (2017), and the similarities in the 

data they used with those used in this dissertation, the first model presented looks to those 

studies to identify variables in the data that represent Q and E and may be associated with 

project failure. That is, a simple probability model of failure is employed to identify sets 

of covariates that are associated with SBIR project failure. The model is defined as  

𝑓𝑎𝑖𝑙𝑒𝑑 = 𝐼(𝑿௜𝛽 + 𝜖௜ > 0), (8.1) 

where failed (𝐹𝑎𝑖𝑙𝑢𝑟𝑒, 𝑇𝑒𝑐ℎ𝐹𝑎𝑖𝑙𝑢𝑟𝑒) is a binary variable, I is an indicator function, X is 

a vector of firm and project characteristics, and 𝜖~𝑁(0,1). Multiple constructs of X are 

also used to analyze the associations among different firm and project characteristics with 

Failure and TechFailure. 

 Three independent variables that were used in Link and Wright (2015) are 

available in the DOE dataset used in this dissertation. In addition, three of the 

independent variables used in Andersen et al. (2017) are also used in this dissertation. 
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These variables are defined in Table 8.1 below, along with the definition of Failure (and 

technical failure, TechFailure, which is again discussed below). 

Table 8.1: Variable Definitions 

Variable Definition 

Failure 
= 1 if project was discontinued with no sales or additional funding 
received; 0 otherwise 

TechFailure 
= 1 if Failure = 1 and the reason for failure was of a technical nature; 
0 otherwise 

FemalePI = 1 if the principal investigator is a female; 0 otherwise 
FemaleOwner = 1 if the owner of the firm is a female; 0 otherwise 

Employees 
Number of employees in the firm the time the Phase II award was 
received 

SimAwardsDummy 
= 1 if received Phase II award for a similar technology previously; 0 
otherwise 

ProfInvolved = 1 if university faculty worked on the project; 0 otherwise 
DEE = 1 if project was in the energy or environmental sector only 
DEng = 1 if project was in the engineering sector only 
Other = 1 if project was in only one sector and not in DEE or DEng 
DMT = 1 if project was in multiple sectors 

 

The first variable considered, FemalePI¸ is hypothesized, based on the literature, to have 

a negative relationship with Failure. If a firm has a female PI, then it is expected that the 

project is less likely to fail, on average, than a firm with a male PI; this relationship has 

been shown to be statistically significant in Link and Wright (2015). Inherent differences 

in the nature of males versus females, such as a female PI tending to be, “more innovative 

and critical thinking in problem solving” (Link and Wright 2015, p. 445) may provide 

context to this result. Similarly, Andersen et al. (2017) considered the gender of the 

owner as opposed to the gender of the PI in their study and found a statistically 

significant relationship between SBIR project failure and female ownership. They also 

found this relationship to be statistically significant even when controlling for possible 

endogeneity of the variable. Given the findings from Andersen et al. (2017), 
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FemaleOwner is used as an alternative measure to FemalePI in conjunction with the 

other covariates specified below. Thus, based on the literature, the hypothesized 

relationship of FemaleOwner with Failure is negative. 

No hypothesis is offered for the variable Employees, which is a proxy for firm size. On 

the one hand, larger firms might take on more complex projects. As a project becomes 

more complex, the probability it will fail might increase. On the other hand, larger firms 

might have more resources to draw on in the event that unexpected events occur during 

the Phase II research. Thus, in this case, the probability that a project will fail decreases 

with firm size. 

SimAwardsDummy is a binary variable that indicates whether any prior similar awards 

have been received and is expected to have a negative relationship with Failure, as 

shown in prior studies. SimAwardsDummy is a proxy for research experience, 

specifically, experience in researching a related technology. Having at least some past 

research experience is expected, on average, to reduce the likelihood that the firm’s 

project would fail.  

ProfInvolved is a binary indicator for whether university faculty were involved in the 

project. This variable is used as an additional measure of human capital. Having 

university faculty involved in the project, likely brings some level of expertise or 

experience that should increase the level of human capital involved in the project. Greater 

human capital, ceterus paribus, should reduce the probability of project failure. Thus, 

ProfInvolved is hypothesized, based on the literature, to have a negative relationship with 

Failure. 

Moving beyond the variables suggested by the literature, fixed effect controls for the 

SBIR projects technology sector are also considered. The data indicate that for some 

firms sampled, the technology currently being funded falls into multiple technology 

sectors; these projects are captured by a dummy variable DMT for projects in multiple 
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technology sectors. Thus, as a measure of project complexity, DMT, is hypothesized, 

ceteris paribus, to be positively associated with SBIR project failure. 

Further, the relationship between each of the previously mentioned variables and failure 

is expected to have the same directional relationship with both Failure and TechFailure, 

with the exception of Employees. Since no hypothesis is proposed for Employees, I do not 

speculate as to whether the relationship between Employees and Failure, and, Employees 

and TechFailure, should be the same.  

DESCRIPTIVE STATISTICS 

Descriptive statistics for the variables used in equation (8.1) are presented in Table 8.2 

below. The number of observations used is 169 of the 225 Phase II projects due to some 

firm’s non-response to one or more of the survey questions used to calculate the 

independent variables. The mean value of Failure in this sample is 0.213 compared to 

0.20 in the full sample of 225 projects (see Table 7.1). Thus, 21.3 percent of the projects 

in the sample failed. The mean value of TechFailure in this sample is 0.071 compared to 

0.062 in the full sample (see Table 7.1), thus 7.1 percent of the projects in the sample 

failed for technical reasons. The mean number of projects with a FemalePI is 5.3 percent, 

and the mean number of projects with a FemaleOwner is 5.9 percent. The number of 

Employees within a firm at the time the Phase II project was received is, on average, just 

over 36. The share of firms that had at least one past award in a similar technology, 

SimAwardsDummy, is 60.4 percent. The mean number of projects with a ProfInvolved is 

0.29. The energy and environment sector (DEE) accounts for 20.7 percent of the projects 

in the sample, the share of projects in the engineering sector (DEng) is 14.2 percent, 

projects in one sector other than energy and environment or engineering (Other) account 

for 16.6 percent, and projects in multiple technology sectors (DMT) represent 48.5 

percent of the sample.   
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Table 8.2: Descriptive Statistics on Variables Used in Equation (8.1)  

Variable Mean StdDev Range 

Failure 0.213 0.411 0/1 

TechFailure 0.071 0.258 0/1 

FemalePI 0.053 0.225 0/1 

FemaleOwner 0.059 0.237 0/1 

Employees 36.124 49.106 1-300 

SimAwardsDummy 0.604 0.491 0/1 

ProfInvolved 0.290 0.455 0/1 

DEE 0.207 0.406 0/1 

DEng 0.142 0.350 0/1 

Other 0.166 0.373 0/1 

DMT 0.485 0.501 0/1 

 

To explore the relationship among the independent variables and Failure using the model 

in equation (8.1), I examined descriptive statistics on the variables being considered.  I 

segmented the 169 Phase II projects into those that failed (n=33) and those that did not 

fail (n=133) based on the variable Failure. As shown in Table 8.3, 2.8 percent of the 

projects that failed had a female PI compared to 6 percent of the projects that did not fail. 

Similarly, 2.8 percent of the projects that failed had a female owner compared to 6.8 

percent of the projects that did not fail. The mean number of employees in projects that 

failed is 40, which is relatively close to the mean number of employees in the projects 

that did not fail, namely 35. Considering the binary indicator of having received a past 

similar award in a related technology field, SimAwardsDummy, about 31 percent of the 

projects that failed had at least one previous award compared to about 68 percent of the 

projects that did not fail. Further, of the projects that experienced Failure, approximately 
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11 percent had university faculty involved, compared to nearly 34 percent of firms with 

ProfInvolved that did not experience Failure. These initial findings are consistent with 

my original hypotheses. 

Moving to technology sector fixed effects, projects that failed and that are categorized 

into a single sector, the DEE, DEng, and Other account for 3.0, 3.6 and, 5.9 percent of 

the sampled projects, respectively. For the projects that did not fail, the DEE, DEng, and 

Other represent 17.8, 10.6, and 10.6 percent of the sample, respectively. Projects that are 

classified in multiple sectors and failed represent 8.9 percent of the projects sampled and 

those that did not fail account for 39.6 percent. Thus, the share of projects classified into 

multiple technology sectors that did not fail is much greater than its share of projects that 

did fail which does not support the original hypothesis of this variable’s expected 

association with Failure.  

To explore the relationship among the independent variables and TechFailure using the 

model in equation (8.1), I segmented the 169 Phase II projects into those that failed for a 

technical reason (n=12) and those that did not fail (n=157). As shown in Table 8.4, none 

of the projects that failed for technical reasons had a female PI compared to 5.7 percent 

of the projects that did not fail for technical reasons. Similarly, none of the projects that 

failed for technical reasons had a female owner, while 6.4 percent of the projects that did 

not fail for technical reasons had a female owner. This finding is consistent with the 

earlier findings for the FemalePI and FemaleOwner indicators grouped by Failure.  
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Table 8.3: Independent Variables Grouped by Failure 

Variable Mean StdDev Range 

Failure: 1 (n=36) 

TechFailure 0.333 0.478 0/1 

FemalePI 0.028 0.167 0/1 

FemaleOwner 0.028 0.167 0/1 

Employees 40.083 60.259 1-300 

SimAwardsDummy 0.306 0.467 0/1 

ProfInvolved 0.111 0.319 0/1 

DEE* 0.030 0.351 0/1 

DEng* 0.036 0.378 0/1 

Other* 0.059 0.454 0/1 

DMT* 0.089 0.500 0/1 

Failure: 0 (n = 133) 

TechFailure 0.000 0.000 0-0 

FemalePI 0.060 0.239 0/1 

FemaleOwner 0.068 0.252 0/1 

Employees 35.053 45.835 1-224 

SimAwardsDummy 0.684 0.467 0/1 

ProfInvolved 0.338 0.475 0/1 

DEE* 0.178 0.419 0/1 

DEng* 0.106 0.343 0/1 

Other* 0.106 0.343 0/1 

DMT* 0.396 0.502 0/1 
*Since these are fixed effects controls, n = 169 so that the means represent the share of each sector in each 

group relative to the total sample as opposed to the within group share. 
 

The mean number of employees in projects that failed for technical reasons is just greater 

than 26, compared with the mean number of employees in the projects that did not fail for 
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technical reasons of nearly 37. Therefore, there are 11 less Employees, on average, that 

worked on a project that experienced TechFailure than those that did not. This 

association is opposite of the relationship between Employees and Failure, which resulted 

in about 5 more Employees, on average, that experienced Failure than not. This result, 

perhaps, implies a non-linear relationship between Employees and projects that fail, for 

any reason as will be discussed below. 

Considering past experience, as measured by SimAwardsDummy, 25 percent of projects 

that failed for technical reasons received a past award while approximately 63 percent of 

projects that did not fail for technical reasons received a past award. These finding are 

consistent with the earlier findings of SimAwards segmented by Failure. 

Of the firms that experienced TechFailure, approximately 8 percent had university 

faculty working on the project, compared to nearly 31 percent of firms with ProfInvolved 

that did not experience TechFailure. These findings are consistent with the earlier 

findings of ProfInvolved segmented by Failure. 

Moving to technology sector fixed effects, projects that failed for technical reasons and 

are categorized into a single sector, the DEE, DEng, and Other groups, account for 1.2, 

0.0 and, 3.0 percent of the sampled projects, respectively. For the projects that did not fail 

for technical reasons, the DEE, DEng, and Other groups, represent 19.5, 14.2, and 13.6 

percent of the sample, respectively. Further, projects that were classified in multiple 

sectors and experienced TechFailure represent 3.0 percent of the projects sampled and 

those that did not fail for technical reasons account for 45.6 percent. Thus, the share of 

projects classified into multiple technology sectors that did not experience technical 

failure is much greater than its share of projects that did experience technical failure, 

similar to the DMT results when grouped by Failure.  
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Table 8.4: Independent Variables Grouped by TechFailure 

Variable Mean StdDev Range 

TechFailure: 1 (n=12) 

FemalePI 0.000 0.000 0/1 

FemaleOwner 0.000 0.000 0/1 

Employees 26.083 14.286 5-56 

SimAwardsDummy 0.250 0.452 0/1 

ProfInvolved 0.083 0.289 0/1 

DEE* 0.012 0.389 0/1 

DEng* 0.000 0.000 0-0 

Other* 0.030 0.515 0/1 

DMT* 0.030 0.515 0/1 

TechFailure: 0 (n=157) 

FemalePI 0.057 0.233 0/1 

FemaleOwner 0.064 0.245 0/1 

Employees 36.892 50.736 1-300 

SimAwardsDummy 0.631 0.484 0/1 

ProfInvolved 0.306 0.462 0/1 

DEE* 0.195 0.409 0/1 

DEng* 0.142 0.361 0/1 

Other* 0.136 0.355 0/1 

DMT* 0.456 0.501 0/1 
*Since these are fixed effects controls, n = 169 so that the means represent the share of each sector in each 

group relative to the total sample as opposed to the within group share.  
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INITIAL PROBIT MODEL RESULTS 

Parameter estimates and marginal effects from the estimation of equation (8.1) using 

different project and firm characteristics are shown in Tables 8.5-8.11 below. Each of the 

table’s present findings from three separate models; two models with Failure as the 

response and one model with TechFailure as the response. The two models for Failure 

have the same specifications except either FemalePI or FemaleOwner is used in the 

estimation. Further, the random sample size for all models presented here forward is 169.  

The variables used in the first estimations of equation (8.1), shown in Table 8.5, are those 

that are suggested by the literature. Focusing first on the models of Failure, as shown in 

Table 8.5, both FemalePI and FemaleOwner parameter estimates support their 

hypothesized relationships with Failure. That is, both FemalePI and FemaleOwner 

parameter estimates are negative and the two estimates have similar values. However, 

these estimates are not statistically significant. The coefficients on Employees are positive 

in the two Failure models and when FemalePI is included the coefficient is slightly 

greater than when FemaleOwner is used the model. Due to the potential non-linear 

association between Failure and Employees, a relationship was not hypothesized, thus, 

these estimates support the notion that marginally, larger firms are more likely to 

experience project failure. However, neither of the estimates of Employees are 

statistically significant. The SimAwardsDummy variable is used to analyze whether 

having received any past awards in a related technology is associated with SBIR project 

failure. The coefficient on SimAwardsDummy is negative in the two Failure models and 

both are significant at the 0.001-level. The marginal effects of SimAwardsDummy on 

Failure are significant at the 0.001-level. The marginal effect of SimAwardsDummy in 

the FemalePI specification is -0.242 and when FemaleOwner is in the model is -0.241. 

These results infer a reduction of 24 percentage points in the probability of Failure if at 

least one similar award was received. 
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Table 8.5: Set One Probit Results from Equation (8.1)  

  (1) (2) (3) 

  
Failure 

Marginal 
Effects 

Failure 
Marginal 
Effects 

TechFailure 
Marginal 
Effects 

       
FemalePI -0.569 -0.120   --† --† 

 (0.568) (0.0931)     
       
FemaleOwner   -0.585 -0.123 --† --† 

   (0.554) (0.0899)   
       
Employees 0.00137 0.000357 0.00123 0.000318 -0.00389 -0.000485 

 (0.00226) (0.000585) (0.00229) (0.000592) (0.00219) (0.000315) 
       
SimAwardsDummy -0.932*** -0.242*** -0.928*** -0.241*** -0.797* -0.0994* 

 (0.229) (0.0525) (0.229) (0.0526) (0.313) (0.0419) 
       
Intercept -0.342  -0.336  -0.984***  
 (0.178)  (0.180)  (0.200)  
         
Wald χ2 17.92**   18.19**   15.49***   
Likelihood Ratio 18.15***   18.24***   7.512*   

Robust standard errors in parentheses     
*p<0.05 ** p<0.01 *** p<0.001     
† FemalePI and FemaleOwner are not used in the model due to lack of variation.  
 

Moving to the model of TechFailure, as also shown in Table 8.5, neither FemalePI or 

FemaleOwner are included in the estimation due to lack of variation; there are no projects 

that experienced TechFailure and had a female PI or a female owner. The coefficient for 

Employees in the TechFailure model is negative, the opposite sign of its estimates in the 

Failure regressions. Although this parameter is not statistically significant, Employees 

negative relationship with TechFailure suggests that increasing the size of the firm by 

adding employees reduces the probability of TechFailure. The coefficient on 

SimAwardsDummy in the TechFailure specification is negative and statistically 

significant at the 0.05-level. The marginal effect of SimAwardsDummy on TechFailure of 

-0.0994 implies a nearly 10 percentage point reduction in the probability of TechFailure 
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if any similar award was received as opposed to when zero similar awards were received. 

The marginal effect of SimAwardsDummy in the Failure model, discussed above, is more 

than twice the size of the marginal effect of SimAwardsDummy in the TechFailure model. 

Having received any past awards may have a greater impact on Failure than on 

TechFailure since Failure is a broader measure. The experience gained through the 

award process and resulting R&D work may provide experience such as budgeting or 

project management skills that reduce the likelihood of Failure but are not able to reduce 

the likelihood of TechFailure.  

The next set of models augments the first set of estimations of equation (8.1) by including 

another project characteristic variable used as an additional measure of human capital, 

namely ProfInvolved. The results from including this additional measure of human 

capital are provided in Table 8.6. The parameter estimates for both Failure models are 

statistically significant at the 0.05-level and are negative. The marginal effect of 

ProfInvolved in the FemalePI specification is -0.171, and similarly in the FemaleOwner 

model is -0.170. These results suggest that having university faculty working on the 

project reduces the probability of Failure by 17 percentage points. The marginal effects 

of SimAwardsDummy in both Failure models are larger than the ProfInvolved marginal 

effects, implying that receiving at least 1 previous Phase II award translates to a larger 

reduction in the probability of Failure than having university faculty working on the 

project. The parameter estimate of ProfInvolved in the TechFailure regression is 

negative, however, is not statistically significant.  
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Table 8.6: Set Two Probit Results from Equation (8.1) 

  (1) (2) (3) 

  
Failure 

Marginal 
Effects 

Failure 
Marginal 
Effects 

TechFailure 
Marginal 
Effects 

       
FemalePI -0.599 -0.123   --† --† 

 (0.565) (0.0896)            
FemaleOwner   -0.609 -0.125 --† --† 

   (0.544) (0.0860)          
Employees 0.00224 0.000565 0.00205 0.000516 -0.00394 -0.000485 

 (0.00241) (0.000599) (0.00244) (0.000607) (0.00268) (0.000368) 
       
SimAwardsDummy -0.847*** -0.213*** -0.843*** -0.212*** -0.709* -0.0873* 

 (0.232) (0.0522) (0.232) (0.0523) (0.301) (0.0387) 
       
ProfInvolved -0.678* -0.171* -0.676* -0.170* -0.507 -0.0625 

 (0.322) (0.0778) (0.320) (0.0772) (0.453) (0.0552) 
       
Intercept -0.267  -0.261  -0.925***  
  (0.181)   (0.182)   (0.211)   

Wald χ2 19.22***  19.75***  13.40**  
Likelihood Ratio 23.45***  23.53***   8.93*   

Robust standard errors in parentheses     
* p<0.05 ** p<0.01 *** p<0.001     
† FemalePI and FemaleOwner are not used in the model due to lack of variation.  
 

To introduce another measure of project complexity into the analysis, the former set of 

models are each augmented with DMT, a fixed effect control variable that indicates when 

the technology being developed by each project should be classified into multiple 

technology sectors. Table 8.7 provides the model results with DMT as an additional 

regressor to the specifications shown in Table 8.6. The parameter estimates for DMT in 

both Failure specifications are negative, however, not statistically significant. The 

hypothesized relationship between DMT and Failure was positive, based on the notion 

that a technology that falls in more than one technology sector could be more complex 
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than one classified in a single sector, thus these estimates do not support the original 

hypothesis.  

As shown in Table 8.7, the coefficient on DMT in the TechFailure model is positive, 

opposite that found in the Failure specifications, though not statistically significant. This 

result is in line with the hypothesis that projects classified into multiple technology 

sectors are more complex on average, and ceteris paribus, have higher failure rates. 
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Table 8.7: Set Three Probit Results from Equation (8.1) 

  (1) (2) (3) 

  
Failure 

Marginal 
Effects 

Failure 
Marginal 
Effects 

TechFailure 
Marginal 
Effects 

       

FemalePI -0.601 -0.123   --† --† 

 (0.559) (0.0885)            

FemaleOwner   -0.601 -0.123 --† --† 

   (0.541) (0.0867)          
Employees 0.00231 0.000582 0.00208 0.000524 -0.00397 -0.000489 

 (0.00245) (0.000607) (0.00248) (0.000616) (0.00280) (0.000382) 
       
SimAwardsDummy -0.839*** -0.211*** -0.839*** -0.211*** -0.711* -0.0875* 

 (0.226) (0.0514) (0.227) (0.0516) (0.296) (0.0385) 
       
ProfInvolved -0.673* -0.170* -0.673* -0.169* -0.511 -0.0628 

 (0.322) (0.0779) (0.319) (0.0773) (0.441) (0.0539) 
       
DMT -0.0588 -0.0148 -0.0260 -0.00654 0.0210 0.00259 

 (0.233) (0.0584) (0.234) (0.0587) (0.306) (0.0378) 
       
Intercept -0.247  -0.252  -0.932***  
 (0.199)  (0.200)  (0.246)         

Wald χ2 19.75**   21.03***   13.80**   
Likelihood Ratio 23.51***   23.54***   8.93   

Robust standard errors in parentheses     
* p<0.05 ** p<0.01 *** p<0.001     
† FemalePI and FemaleOwner are not used in the model due to lack of variation.  
 

Finally, variance inflation factors (VIF) for the group of firm and project characteristics 

that were used in the prior 3 sets of estimations of equation (8.1) (Tables 8.5-8.7) are 

shown in Table 8.8. As shown in Table 8.8, the VIF on each variable is only slightly 

greater than 1; this suggests that there is little concern for multicollinearity between these 

variables. Since these sets of variables encompass all the variables used in the 3 sets of 
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estimations of equation (8.1), then multicollinearity is not a concern for any of the prior 

estimations of equation (8.1). 

Table 8.8: Variance Inflation Factors 

  VIF 

FemalePI 1.002   

FemaleOwner  1.013 

Employees 1.044 1.050 

SimAwardsDummy 1.049 1.049 

ProfInvolved 1.066 1.067 

DMT 1.057 1.063 
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CHAPTER IX:  PRINCIPAL INVESTIGATOR EMPIRICAL FINDINGS

Many of the studies related to project failure have examined the reasons for project 

failure at the firm, managerial, or project level and have not explicitly focused on more 

micro-level dynamics within each project. Thus, there is a notable absence of literature 

that examines characteristics of PIs and their association with research failure. This 

dissertation contributes to the literature by analyzing disaggregated demographic factors 

of the PI’s, beyond gender, who are involved in the random sample of 169 SBIR Phase II 

funded projects as discussed in prior chapters.  

Equation (8.1) is employed once again to estimate the relationship between each measure 

of SBIR project failure (Failure and TechFailure) and the firm and project characteristics 

discussed in Chapter VIII augmented with additional measures of PI experience. 

Therefore, X, from equation (8.1), represents a vector of firm and project characteristics 

plus measures of the PI’s experience as drawn from the random sample. The X vector 

used in the reduced form specifications of the structural model (laid out in Chapter VI) 

contains elements of both Q (R&D inputs) and E (experience of the PI and/or firm). The 

models used in the following chapter build on those examined in Chapter VIII by 

providing a richer formulation of E through additional measures of PI experience.   

The following chapter examines three additional dimensions to measure PI experience; 

demographic factors, PIs role as firm leaders and chief executives, and the homophilic 

relationship between PIs and firm owners. Four types of demographic variables are 

available in the data; gender, ethnicity, age, and immigration status or nationality. 

Considering firm leadership characteristics, the data provide information from which it 

can be determined if the PI was also the CEO, a firm founder, or both CEO and a 

founder. Additional information about founders is available, such as the number of 

founders with a business or academic background. Further, as discussed in Chapter VIII, 
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the data provide information on the gender of both the owner and PI which is used to 

analyze the homophilic relationship between firm owners and PIs. Table 9.1 provides 

definitions of the PI experience variables.  

As discussed previously, gender has been identified in prior studies as having significant 

explanatory power of project failure. Although the results of the initial probit estimations 

(Tables 8.5-8.7) for the variable FemalePI are not statistically significant at conventional 

levels, the negative association with project failure is directionally consistent with prior 

studies. Therefore, it is expected for the inverse relationship between project and failure 

and FemalePI to remain unchanged after including additional experience measures. 

Table 9.1: PI Variable Definitions 

Variable Definition 
FemalePI = 1 if the principal investigator is a female; 0 otherwise 
MinorityPI = 1 if the principal investigator is a minority; 0 otherwise 

Age30DecilePI 
= 1 if the principal investigator is between 30 and 39 years old; 0 
otherwise 

Age40DecilePI 
= 1 if the principal investigator is between 40 and 49 years old; 0 
otherwise 

Age50DecilePI 
= 1 if the principal investigator is between 50 and 59 years old; 0 
otherwise 

AmerPI 
= 1 if the principal investigator is an American-born U.S. citizen; 0 
otherwise 

PICEO = 1 if the principal investigator is the CEO of the firm; 0 otherwise 

PIFounder = 1 if the principal investigator is a founder of the firm; 0 otherwise 

PIFounderCEO 
= 1 the principal investigator is a founder and the CEO of the firm; 0 
otherwise 

PIOneFounder 
= 1 if the principal investigator is the only founder of the firm; 0 
otherwise 

PIOneFounderCEO 
= 1 if the principal investigator is the only founder and the CEO of 
the firm; 0 otherwise 

BizBackground Number of founders with a background in business 

AcademicBackground Number of founders with an academic background 
 



 

76 

  

The relationship between ethnicity of the PI and project failure has not been established 

in the literature. The factors that distinguish ethnicities do not intuitively suggest a 

differing relationship among ethnicities and project failure. Therefore, no assumption is 

offered in this dissertation about the association between ethnicity and failure.  

The relationship between age of the PI and failure has not been established in the 

literature. Age, often used as a proxy for experience, does not have a clear linear 

relationship with project failure. It is possible that older PIs have more experience and 

through this experience tend to fail less often than their younger counterparts. However, 

at some point it is possible that being too old, or having too much experience, results in a 

greater likelihood of project failure. This may come to fruition due to increased risk 

taking by older more experienced PIs that have had significant success in the past. 

Therefore, no assumption is offered in this dissertation about the association between 

ethnicity and age of the PI. 

Similar to ethnicity of the PI, immigration status of the PI has not been established in the 

literature. It is not obvious whether a certain immigration status of the PI should increase 

the likelihood of project failure compared to another. Hence, no assumption is offered 

about the association between immigration status of the PI and project failure.  

The relationship between project failure and whether the PI was also the CEO or a firm 

founder has not been established in the literature. However, using similar data as those 

used in this dissertation, Bednar et al. (2019), control for the situation when the PI was 

also the CEO when estimating the probability of commercialization. They found a 

statistically significant negative relationship between the probability of 

commercialization and if the PI was also the CEO. This relationship loosely implies a 

positive relationship between firms with a PI CEO and project failure. Therefore, based 

on this implication, I expect a positive relationship between PICEO and Failure. 

Similarly, I expect PIFounder to also have a positive relationship with failure. One 
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explanation for this hypothesis is that intuitively, PIs may be more likely to hold multiple 

leadership roles in smaller firms where resources are less abundant, and the demands of 

multiple top leadership positions do not allow the PI to succeed as either a scientist or 

firm founder. Firms where the PI is performing triple duty, that is PI, founder, and CEO, 

are also hypothesized to have a positive relationship with Failure due to the previous 

expectations of PICEO and PIFounder. The rationale behind these hypotheses suggests 

firms with a PIFounderCEO should have a greater probability of Failure than either 

those with a PICEO or PIFounder. Similarly, firms that were founded solely by the PI, 

PIOneFounder, are expected to be positively associated with Failure and have a greater 

probability of Failure than those with a PIFounder. Finally, firms with a 

PIOneFounderCEO are expected to have the highest probability of Failure in accordance 

with the hypotheses discussed above.  

Data are available on the background of the firm founders; either business or academic. 

Andersen et al. (2017), using similar data, considered the business background of firm 

owners when estimating the probability of SBIR project failure and found a statistically 

significant inverse relationship with failure. However, this dissertation uses a slightly 

different measure of vocational experience. Because the focus of this dissertation is on 

the PI’s role in project failure and not necessarily a founder or CEO, founders that were 

also the PI (as well as PI CEO’s) are used in the experience vector as opposed to firm 

founders unconditional on being a PI. Nonetheless, given the closeness in measures 

between Andersen et al (2017) and those used in this dissertation, I expect a negative 

relationship between PI founders with a business background and project failure. I expect 

firms with PI founders that have an academic background to be inversely related with 

failure given the significant negative relationship estimated between Failure and 

university faculty involvement in the project (see Table 8.6).  

Additionally, Bednar et al. (2019) examined the homophilic relationship between firm 

owners and PIs, and found that females PIs tend to perform better as measured by the 
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probability of commercializing when the firm owner is also female; this association will 

also be explored in this chapter however, the measure of concern is project failure. 

Hence, I expect the relationship among homophilic firms (measured by owner and PI) 

and project failure to be directionally consistent with the relationship found in Bednar et 

al. (2019).  

PI Demographics 

DESCRIPTIVE STATISTICS 

The distributions of PIs conditional on each of the four demographic categories from the 

random sample of 169 SBIR Phase II funded projects are presented in Table 9.2. Female 

PIs comprise 5.3 percent of the sample and minority PIs make up 10.1 percent of the 

sample. The remaining 85 percent of projects had non-female, non-minority PIs.  

Considering a further disaggregation of the minority binary variable, PIs of the Asian-

Indian ethnicity represent 7.1 percent of the 169 randomly sampled projects and 70.6 

percent of the minority PIs. PIs of the Asian-Pacific ethnicity comprise 2.4 percent of the 

random sample and 23.5 percent of the minority PIs. The remaining proportion of 

minority PIs are Hispanic, making up less than 1 percent of the random sample and 5.9 

percent of the minority PIs. There are no PIs in the sample that fall into the Black, Native 

American, or Other ethnicities.  

There are 10 age brackets for PIs; the youngest category being less than 25 years of age 

and the oldest greater than 65. There are no PIs in the sample that were less than 25 years 

old at the time of the survey and less than 1 percent of PIs were between 25-29 years old. 

PIs that were between 30-34 years old represent 4.1 percent of the random sample and 

PIs between 35-39 make up 16.6 percent of the sample. PIs between the ages of 40-44 are 

the most frequent in the sample, representing 18.9 percent and PIs between 45-49 years 
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old make up 14.8 percent of the sample. The age group 50-54 comprises 14.2 percent of 

the sample and PIs between 55-59 years old comprise 18.3 percent of the random sample, 

the second most frequent age range of PIs. PIs between the ages of 60-64 represent 6.5 

percent of the sample and PIs ages 65 and older comprise 5.9 percent of the random 

sample. 

The most frequent immigration status of PIs in the random sample is that of American-

born U.S. citizens: these PIs represent 62.1 percent of the sample. PIs that were 

naturalized U.S. citizens made up 20.1 percent of the sample and those that held a green 

card comprised 16.0 percent. Finally, PIs that held an H1 visa make up 1.8 percent of the 

sample and there were no PIs that had an immigration status other than those mentioned 

above.  
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Table 9.2: Descriptive Statistics of PI Demographic Variables 

Characteristic Number Percent of Sample (n=169) 

Gender/Ethnicity of PI   
     Female PI 9 5.3254 
     Minority PI 17 10.0592 
     Neither Female nor Minority PI 144 85.2071 
Ethnicity of Minority PI   
     Asian-Indian 12 7.1006 
     Asian-Pacific 4 2.3669 
     Black 0 0 
     Hispanic 1 0.5917 
     Native American 0 0 
     Other 0 0 
Age of PI   
     <25 0 0 
     25-29 1 0.5917 
     30-34 7 4.1420 
     35-39 28 16.5680 
     40-44 32 18.9349 
     45-49 25 14.7929 
     50-54 24 14.2012 
     55-59 31 18.3432 
     60-64 11 6.5089 
     65+ 10 5.9172 
Immigration Status of PI   
     American-born U.S. citizen 105 62.1302 
     Naturalized U.S. citizen 34 20.1183 
     U.S. Green card 27 15.9763 
     H1 visa 3 1.7751 
     Other 0 0 

 

To begin to explore the relationship among PI demographic variables and Failure I’ve 

segmented the random sample of 169 Phase II funded projects by those that failed (n=36) 

and those that did not (n=133). As shown in Table 9.3, less than 1 percent of firms with a 

female PI experienced Failure, the smallest percent of Failure among the gender/ 
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ethnicity dimension. Further, conditional on a firm having a female PI (n =9), 11 percent 

experienced Failure.  Firms with a minority PI (n=17) and that experienced Failure 

comprise 2.96 percent of all firms in the sample, while 29 percent of firms that had a 

minority PI experienced Failure. Firms with a non-female, non-minority PI (n =144), and 

experienced Failure comprise 17.6 percent of the random sample and experienced a 21 

percent Failure rate within the sub-sample of firms that had a non-female, non-minority 

PI.  

Moving to the age groups of the PI, there is not a firm within the random sample that had 

a PI in the age range of 30-34 (n=7) and that experienced Failure, though PIs in this age 

bracket account for about 4 percent of the total random sample. Firms with a PI in the 35-

39 age range (n=28) and that encountered Failure comprise nearly 3 percent of the 

sample though almost 18 percent of PIs within the 35-39 age bracket experienced 

Failure. Firms with a PI that was between 40 and 44 years old (n=32) and that met 

Failure account for 5.3 percent of the total sample, the largest share of Failure by age 

indicator. Further, 28 percent of PIs 40-44 years old experienced Failure, which is the 

third highest failure rate within an age cohort. Firms with a PI age 45-49 (n=25) and that 

encountered Failure comprise 4.7 percent of all firms in the sample, the second largest 

share of firms that failed conditional on age of the PI. The Failure rate of 32 percent 

among PIs 45-49 years old is the second highest rate across all age cohorts. Firms with a 

PI between 50-54 years old (n=24) and that experienced Failure represent 1.2 percent of 

the total sample. Within this age range, less than 1 percent of PIs failed which is the 

second lowest Failure rate within an age cohort. Firms with a PI between 55-59 years old 

(n=31) and that experienced Failure make up almost 3 percent of the random sample, 

though conditional on firms with a PI in this age bracket 16 percent of them failed. The 

second to the oldest age cohort of PIs, those between 60-64 years old (n=11) and that 

encountered Failure, were PIs for 2.4 percent of all firms in the sample and experienced 

the highest failure rate within an age cohort; 36 percent of PIs ages 60-64 experienced 
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Failure. The oldest cohort of PIs, ages 65 years and older (n=10) and that witnessed 

Failure represent 1.2 percent of all PIs in the sample which translates to a 20 percent 

Failure rate among the oldest PIs in the sample. 

The last demographic variable considered in this dissertation is the immigration status of 

the PI. Again, as shown in Table 9.3, PIs that are American-born U.S. citizens (n=105) 

and whose firms experienced Failure, represent 10.6 percent of the total sample, the 

largest share of PIs conditional on immigration status. Within the American-born U.S. 

citizen PIs, 17 percent of their projects failed. PIs that are naturalized U.S. citizens (n=34) 

and that experienced Failure, account for 5.3 percent of all PIs in the sample and have a 

Failure rate among this immigration cohort of 26.5 percent. PIs that held a U.S. Green 

card (n=27) and encountered Failure, represent 5.3 percent of PIs in the full sample, 

while they have a within cohort Failure rate of 33.3 percent. Finally, PIs that held an H1 

visa (n=3) did not have any cases of Failure.  
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Table 9.3: Distribution of PI Demographics by Failure 

Characteristic 
Failure 

1 0 1 0 1/ (0,1) 

Count Percent (n=169) Rate 

Gender/Ethnicity of PI      

     Female PI 1 8 0.6% 4.7% 11.1% 
     Minority PI 5 12 3.0% 7.1% 29.4% 
     Neither Female nor Minority PI 30 114 17.8% 67.5% 20.8% 

Ethnicity of Minority PI      

     Asian-Indian 2 10 1.2% 5.9% 16.7% 
     Asian-Pacific 3 1 1.8% 0.6% 75.0% 
     Black 0 0 0.0% 0.0% 0.0% 
     Hispanic 0 1 0.0% 0.6% 0.0% 
     Native American 0 0 0.0% 0.0% 0.0% 
     Other 0 0 0.0% 0.0% 0.0% 

Age of PI      

     <25 0 0 0.0% 0.0% 0.0% 
     25-29 1 0 0.6% 0.0% 100.0% 
     30-34 0 7 0.0% 4.1% 0.0% 
     35-39 5 23 3.0% 13.6% 17.9% 
     40-44 9 23 5.3% 13.6% 28.1% 
     45-49 8 17 4.7% 10.1% 32.0% 
     50-54 2 22 1.2% 13.0% 8.3% 
     55-59 5 26 3.0% 15.4% 16.1% 
     60-64 4 7 2.4% 4.1% 36.4% 
     65+ 2 8 1.2% 4.7% 20.0% 

Immigration Status of PI      

     American-born U.S. citizen 18 87 10.7% 51.5% 17.1% 
     Naturalized U.S. citizen 9 25 5.3% 14.8% 26.5% 
     U.S. Green card 9 18 5.3% 10.7% 33.3% 
     H1 visa 0 3 0.0% 1.8% 0.0% 
     Other 0 0 0.0% 0.0% 0.0% 
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Considering the relationship among PI demographic variables and TechFailure, I’ve also 

segmented the random sample of 169 Phase II funded projects by those that failed for 

technical reasons (n=12) and those that did not (n=157). As shown in Table 9.4, no firms 

with a female PI experienced TechFailure. Firms with a minority PI (n=17) and that 

experienced TechFailure represent 1.8 percent of the random sample while 17 percent of 

minority PIs failed for technical reasons. Firms with a non-female, non-minority PI (n 

=144), and that experienced TechFailure comprise 5.3 percent of the random sample and 

had a TechFailure rate of 6.5 percent among non-female, non-minority PIs.  

Moving to the age bins of the PI, there was no firm that had a PI less than 35 years old 

and experienced TechFailure. Firms that had a PI in any one of the age buckets 35-39, 

40-44, or 45-49 and that experienced TechFailure, each comprised 1.8 percent of the full 

sample. In terms of TechFailure prevalence, 10.7 percent of 35-39-year-old PIs, 9.4 of 

the 40-44-year-old PIs, and 12 percent of the 45-49-year-old PIs failed for technical 

reasons. There were no firms with a PI between 50-54 years old and that experienced 

TechFailure. Firms with a PI between 55-59 years old and that experienced TechFailure 

make up less than 1 percent of the full sample, though conditional on firms with a PI in 

this age bracket, 3.2 percent of them failed for technical reasons. PIs between 60-64 years 

old and that encountered TechFailure, make up 1.2 percent of all PIs which translates to 

an 18.2 percent TechFailure rate among this age cohort. The oldest cohort of PIs, ages 65 

years and older did not have any cases of failure for technical reasons. 
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 Table 9.4: Distribution of PI Demographics by TechFailure 

Characteristic 

TechFailure 
1 0 1 0 1 / (0, 1) 

Count 
Percent (n = 

169) 
Rate 

Gender/Ethnicity of PI  
 

 
  

     Female PI 0 9 0.0% 5.3% 0.0% 
     Minority PI 3 14 1.8% 8.3% 17.6% 
     Neither Female nor 

Minority PI 
9 135 5.3% 79.9% 6.3% 

Ethnicity of Minority PI      

     Asian-Indian 1 11 0.6% 6.5% 8.3% 
     Asian-Pacific 2 2 1.2% 1.2% 50.0% 
     Black 0 0 0.0% 0.0% 0.0% 
     Hispanic 0 1 0.0% 0.6% 0.0% 
     Native American 0 1 0.0% 0.6% 0.0% 
     Other 0 0 0.0% 0.0% 0.0% 
Age of PI      

     <25 0 0 0.0% 0.0% 0.0% 
     25-29 0 1 0.0% 0.6% 0.0% 
     30-34 0 7 0.0% 4.1% 0.0% 
     35-39 3 25 1.8% 14.8% 10.7% 
     40-44 3 29 1.8% 17.2% 9.4% 
     45-49 3 22 1.8% 13.0% 12.0% 
     50-54 0 24 0.0% 14.2% 0.0% 
     55-59 1 30 0.6% 17.8% 3.2% 
     60-64 2 9 1.2% 5.3% 18.2% 
     65+ 0 10 0.0% 5.9% 0.0% 
Immigration Status of PI      

     American-born U.S. citizen 5 100 3.0% 59.2% 4.8% 
     Naturalized U.S. citizen 2 32 1.2% 18.9% 5.9% 
     U.S. Green card 5 22 3.0% 13.0% 18.5% 
     H1 visa 0 3 0.0% 1.8% 0.0% 
     Other 0 0 0.0% 0.0% 0.0% 
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Finally, considering the immigration status of the PI segmented by TechFailure, as 

shown in Table 9.4, PIs that are American-born U.S. citizens and whose firms 

experienced TechFailure represent almost 3 percent of the full sample. Within the 

American-born U.S. citizen PIs, 5 percent of their projects failed for technical reasons. 

PIs that are naturalized U.S. citizens and that experienced TechFailure, account for 1.2 

percent of all PIs in the sample and have a TechFailure rate among this immigration 

cohort of 5.9 percent. PIs that held a U.S. Green card and encountered TechFailure, 

represent almost 3 percent of PIs in the full sample, while they have a within cohort 

TechFailure rate of 18.5 percent. Finally, PIs that held an H1 visa did not have any cases 

of TechFailure. 

MODEL RESULTS 

Leveraging the reduced form model from Chapter VIII, equation (8.1), the following 

estimations include additional factors of PI experience. In terms of the structural form of 

this model, as presented in Chapter VI, the additional variables represent a richer 

experience vector, E, through the addition of demographic type information. The 

additional information on PIs experience provides more evidence in understanding how 

variations in PIs experience are associated with project failure. Further, the focus of the 

following discussion is on demographic variables of PIs, therefore discussion of 

estimation results for other variables will be limited unless the there is a meaningful 

change in a variables’ output from previous results. 

The first additional PI variable examined is the minority status of the PI. This variable is 

used to augment the model results presented in Table 8.7. Results from the estimation for 

both Failure and TechFailure measures including the MinorityPI measure are provided in 

Table 9.5. The estimated parameters for MinorityPI in both the Failure and TechFailure 

regressions are not statistically significant nor are the estimated marginal effects. These 
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results are in-line with the hypothesis that variation between PIs based on ethnicity do not 

have a significant relationship with SBIR project failure.  

Continuing to build on the experience vector, model results from the inclusion of age 

indicators of the PI are provided in Table 9.6. As shown in Table 9.2, the survey data 

used in this dissertation provide age indicators in approximately five-year intervals. To 

use in the model, the age brackets were collapsed into decile bins so that there was a 

meaningful mass of observations within each bin. The reference age bucket represents 

PIs that were age 60 and greater. As shown in Table 9.6, the three age indicators all have 

a negative parameter in the Failure estimation, indicating that they are less likely to 

experience Failure relative to PIs at least 60 years old (the oldest cohort), however, only 

Age30DecilePI is statistically significant at conventional levels (0.05-level). 

Age50DecilePI has a p-value of 0.052 which is marginally outside the threshold of 

reported significance in this dissertation, however, is suggestive of a significant 

relationship. Further, none of the age parameters are statistically significant in the 

TechFailure specification.  
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Table 9.5: PI Probit with MinorityPI 

 (1) (2) 

  
Failure 

Marginal 
Effects 

TechFailure Marginal 
Effects 

     
FemalePI -0.700 -0.137 --† --† 

 (0.578) (0.0830)        
MinorityPI 0.559 0.158 0.829 0.143 

 (0.357) (0.107) (0.429) (0.0926)      
Employees 0.00219 0.000545 -0.00407 -0.000484 

 (0.00236) (0.000575) (0.00255) (0.000354)      
SimAwardsDummy -0.903*** -0.246*** -0.832* -0.102* 

 (0.232) (0.0631) (0.333) (0.0409)      
ProfInvolved -0.641* -0.144* -0.476 -0.0471 

 (0.320) (0.0604) (0.470) (0.0364)      
DMT -0.0592 -0.0147 0.0171 0.00203 

 (0.235) (0.0581) (0.312) (0.0372) 
     

Intercept -0.272  -1.008***  
 (0.200)  (0.261)  

          

Wald χ2 20.29**  18.54**  
Likelihood Ratio 25.57***   12.35*   
Robust standard errors in parentheses   
*p<0.05 ** p<0.01 *** p<0.001    
† FemalePI is not used in the model due to lack of variation.   

 

The Age30DecilePI marginal effect of -0.179 in the Failure specification is significant at 

the 0.01-level and suggests that PIs that are in their thirties are expected to experience a 

probability of Failure 17.9 percentage points less relative to the oldest cohort. Similarly, 

PIs that fall into Age50DecilePI have a probability of Failure that is 16.1 percentage 
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points less relative to PIs that are at least 60 years old as shown by the estimated marginal 

effect. The marginal effect of Age50DecilePI is significant at the 0.05 level. 

Age is a traditional proxy for experience since often one acquires experience over time. 

Therefore, it is straightforward that younger PIs are likely less experienced than older PIs 

as they’ve had less time to have accumulated human capital. With less experience, the 

typical projects that younger PIs work on may be inherently less risky than those more 

experienced PIs would be involved with. Further, younger PIs with less experience 

should have a higher marginal rate of human capital accumulation than their older 

cohorts due to diminishing marginal returns on experience. The higher marginal rate of 

human capital accumulation of younger PIs may can translate to a form of motivation in 

the PI that results in higher productivity. Simonton (1988) and Simonton (1991) found 

that scientific productivity peaks at an age just shy of 40 years old then begins to 

gradually decline. The decline in productivity may also coincide with human capital 

depreciation in the oldest cohort of PIs. While the oldest cohort of PIs may have achieved 

success in their earlier years, being toward the end of their career could lessen the 

motivation to maintain their skills up-to the level required for continued success. 

Additionally, the projects the most experienced cohort of PIs are typically involved with 

may be riskier than those of younger PIs. Thus, in summary, younger PIs may have 

higher levels of motivation while working on less risky projects than the oldest cohort 

which helps explains why the younger cohorts of PIs with less experience have lower 

probabilities of Failure relative to the oldest cohort.  

The age decile indicator parameters are not statistically significant in the TechFailure 

regression, nor their marginal effects. Given the nature of TechFailure, it is reasonable 

that the typical experience gained that is attributable to the age of the PI does not 

necessarily translate to experience that helps reduce the likelihood of TechFailure.  
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Moving forward, the last demographic variable considered here to augment the 

experience vector is the nationality of the PI. Table 9.7 below presents the model results 

with AmerPI as an additional regressor to those presented in Table 9.6. As expected, the 

parameter estimate for the nationality of the PI is not statistically significant nor is the 

marginal effect in either the Failure or TechFailure specifications. Although, Del et al. 

(2017) found that a country’s culture can influence a PI to have a greater preference 

towards entrepreneurial activities, the country a PI comes from does not necessarily equip 

a PI with the experience needed to reduce the probability of failure.  
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Table 9.6: PI Probit with Age Decile Indicators 

 (1) (2) 

  
Failure 

Marginal 
Effects 

TechFailure 
Marginal 
Effects 

     
FemalePI -0.856 -0.149* --† --† 

 (0.616) (0.0746)        
MinorityPI 0.671 0.177 0.714 0.112 

 (0.378) (0.108) (0.428) (0.0812)      
Age30DecilePI -0.948* -0.179** -0.201 -0.0217 

 (0.422) (0.0632) (0.500) (0.0506)      
Age40DecilePI -0.0603 -0.0137 0.0391 0.00450 

 (0.374) (0.0846) (0.456) (0.0527)      
Age50DecilePI -0.756 -0.161* -0.751 -0.0697 

 (0.390) (0.0756) (0.578) (0.0427)      
Employees 0.00186 0.000427 -0.00512 -0.000586 

 (0.00234) (0.000526) (0.00281) (0.000393)      
SimAwardsDummy -1.027*** -0.258*** -0.785* -0.0931* 

 (0.245) (0.0623) (0.330) (0.0372)      
ProfInvolved -0.749* -0.172* -0.544 -0.0622 

 (0.340) (0.0740) (0.449) (0.0512)      
DMT 0.0689 0.0158 0.0810 0.00932 

 (0.256) (0.0586) (0.304) (0.0352)      
Intercept 0.165  -0.800  

 (0.342)  (0.458)  
          
Wald χ2 33.38***  18.65*  
Likelihood Ratio 35.94***   15.64*   
Robust standard errors in parentheses  
*p<0.05 ** p<0.01 *** p<0.001    
† FemalePI is not used in the model due to lack of variation.  
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Table 9.7: PI Probit with Nationality Indicator 

 (1) (2) 

  
Failure 

Marginal 
Effects 

TechFailure 
Marginal 
Effects 

FemalePI -0.855 -0.147 --† --† 
 (0.651) (0.0779)        

MinorityPI 0.428 0.106 0.538 0.0777 
 (0.396) (0.106) (0.436) (0.0753)      

Age30DecilePI -1.077* -0.195** -0.296 -0.0311 
 (0.427) (0.0595) (0.479) (0.0461)      

Age40DecilePI -0.0867 -0.0194 0.00284 0.000324 
 (0.382) (0.0846) (0.457) (0.0521)      

Age50DecilePI -0.824* -0.171* -0.817 -0.0749 
 (0.398) (0.0740) (0.605) (0.0434)      

AmerPI -0.421 -0.0991 -0.305 -0.0359 
 (0.263) (0.0631) (0.304) (0.0356)      

Employees 0.00143 0.000323 -0.00586* -0.000669 
 (0.00233) (0.000519) (0.00291) (0.000405)      

SimAwardsDummy -0.964*** -0.238*** -0.741* -0.0866* 
 (0.242) (0.0587) (0.321) (0.0350)      

ProfInvolved -0.753* -0.170* -0.537 -0.0612 
 (0.339) (0.0727) (0.454) (0.0514)      

DMT 0.0466 0.0105 0.0599 0.00687 
 (0.255) (0.0576) (0.301) (0.0346)      

Intercept 0.488  -0.544  
 (0.414)  (0.493)  

Wald χ2 30.91***  16.36  
Likelihood Ratio 38.22***  16.27  
Robust standard errors in parentheses   
*p<0.05 ** p<0.01 *** p<0.001    
† FemalePI is not used in the model due to lack of variation.   
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PIs as CEO’s/ Firm Founders 

DESCRIPTIVE STATISTICS 

Summary statistics for PIs that are also a firm leader are provided in Table 9.8 below. As 

shown, PIs that are also the CEO, PICEO, represent 22.5 percent of the random sample 

of Phase II funded SBIR projects used in this dissertation. PIs that were also a founder, 

and not necessarily the only founder, make up 29.6 percent of the sample. PIs that were 

the CEO and a firm founder, PIFounderCEO, comprise 21.3 percent of the sample. 

Summary statistics are also provided for a subsample of PIFounder, specifically, PIs that 

were the sole founder of the firm, PIOneFounder. PIs that were the sole firm founder 

represent 13.6 percent of the sample. Similarly, PIs that were the CEO and the sole firm 

founder, PIOneFounderCEO, represent 11.2 percent of the sample. 

 As mentioned previously, the second-round survey also provides information on firm 

founders’ background, specifically the number of founders with a business or academic 

background. As shown in Table 9.8, the mean number of firm founders with a 

background in business is slightly less than one, at 0.7574. The standard deviation is 

slightly greater than 1 founder and within the sample the number of founders with a 

business background ranged between 0 and 5. The mean number of founders with an 

academic background is slightly more than one at 1.0592 founders, with a standard 

deviation of 1.3615. The number of founders with an academic background ranged 

between 0 and 10 founders within the random sample of firms.  
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Table 9.8: Descriptive Statistics of PIs as Firm Leaders  

Indicator Mean StdDev Range 

PICEO 0.2249 0.4187 0/1 

PIFounder 0.2959 0.4578 0/1 

PICEOFounder 0.213 0.4107 0/1 

PIOneFounder 0.1361 0.3439 0/1 

PIOneFounderCEO 0.1124 0.3168 0/1 

BizBackground 0.7574 1.0552 0-5 

AcademicBackground 1.0592 1.3615 0-10 

 

To begin exploring the relationship between the firm leadership experience variables and 

Failure, descriptive statistics of the firm leadership variables are segmented by those that 

experienced project failure (Failure = 1) and those that did not (Failure = 0). As shown 

in Table 9.9 below, 5.9 percent of the sample were a PICEO that experienced Failure, 

while PICEO that did not fail made up 16.6 percent of the sample. Therefore, firms with 

a PICEO had a failure rate of 26.3 percent. Firms with a PIFounder and that experienced 

Failure, comprise 5.9 percent of the sample, while their counterparts that did not 

experience Failure comprise 23.7 percent of the firms sampled. Firms with a PIFounder 

have a Failure rate of 20.0 percent, the lowest rate of failure among the firm leadership 

experience variables. Firms with a PIFounderCEO and that experienced Failure also 

make up 5.9 percent of the sample, although PIFounderCEO firms that did not fail hold 

15.4 percent of the sample. This translates to a 27.8 percent Failure rate for 

PIFounderCEO firms. PIOneFounder firms that had Failure comprise 4.7 percent of the 

random sample and those that did not, 8.9 percent. Thus, PIOneFounder firms had a 

Failure rate of 34.8 percent, which is 14.8 percentage points greater than PIFounder 

firms. Firms that were founded and managed by the PI, PIOneFounderCEO, and that 

experienced Failure comprise 4.7 percent of the sample and those that did not fail 
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comprise 6.5 percent, which translates to the highest Failure rate among the various firm 

leadership experience types of 42.1 percent. These statistics are suggestive with my 

hypothesis that the more concentrated the leadership experience is within a firm, the more 

likely they are to experience Failure.   

The mean number of firm founders with a business background, BizBackground, 

conditional on having experienced Failure is 0.6389 which is less than the mean 

BizBackground of the firms that did not fail of 0.7895. This is consistent with my 

hypothesis that BizBackground is negatively associated with Failure. Similarly, the mean 

AcademicBackground for firms that failed is 0.8611 which is less than those that did not 

fail of 1.1128. This also is consistent with my hypothesis that AcademicBackground is 

negatively associated with Failure.  
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Table 9.9: Descriptive Statistics of PIs as Firm Leaders Grouped by Failure 
(standard deviations in parenthesis) 

Indicator 

Failure 

1 0 1 0 
1 / 

 (0, 1) 
Count Percent (n = 169)  Rate 

PICEO 10 28 5.9% 16.6% 26.3% 
PIFounder 10 40 5.9% 23.7% 20.0% 

PIFounderCEO 10 26 5.9% 15.4% 27.8% 
PIOneFounder 8 15 4.7% 8.9% 34.8% 

PIOneFounderCEO 8 11 4.7% 6.5% 42.1% 

      n = 36 n = 133   

BizBackground* -- -- 
0.6389  

(0.8669) 
0.7895 

(1.1013) 
-- 

AcademicBackground* -- -- 
0.8611 

(1.3342) 
1.1128 

(1.3688) 
-- 

*Values are means of the variable  

 

To begin exploring the relationship between the firm leadership experience variables and 

TechFailure, descriptive statistics of the firm leadership variables are also segmented by 

those that experienced project failure for technical reasons (TechFailure = 1) and those 

that did not (TechFailure = 0). As shown in Table 9.10 below, 1.2 percent of the sample 

were a PICEO that experienced TechFailure, while PICEO firms that did not fail made 

up 21.3 percent of the sample. Therefore, firms with a PICEO had a failure for technical 

reasons rate of 5.3 percent. Firms with a PIFounder and that experienced TechFailure, 

comprise 1.2 percent of the sample, while their counterparts that did not experience 

TechFailure comprise 28.4 percent of the firms sampled. Firms with a PIFounder have a 

TechFailure rate of 4.0 percent, the lowest rate of TechFailure among the firm leadership 

experience variables. Firms with a PIFounderCEO and that experienced TechFailure also 

make up 1.2 percent of the sample, while PIFounderCEO firms that did not fail hold 20.1 

percent of the sample. This translates to a 5.6 percent TechFailure rate for 
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PIFounderCEO firms. PIOneFounder firms that had TechFailure comprise 1.2 percent of 

the random sample and those that did not, 12.4 percent. Thus, PIOneFounder firms had a 

TechFailure rate of 8.7 percent, which is more than twice the rate of firms with a 

PIFounder. Firms that were founded and managed by the PI, PIOneFounderCEO, and 

that experienced TechFailure also comprise 1.2 percent of the sample and those that did 

not fail comprise 10.1 percent, which translates to the highest TechFailure rate among the 

various firm leadership experience types of 10.5 percent. These results are consistent with 

my hypothesis: less variability of the human capital in key leadership roles for the firm 

results in a greater likelihood that the firm will experience project failure.  

The mean number of firm founders with a business background conditional on having 

experienced TechFailure is 0.75 which is marginally less than the mean BizBackground 

of the firms that did not fail of 0.758. Given the lack of variation between these two 

means, it is not clear whether BizBackground has a meaningful association with 

TechFailure. The mean AcademicBackground for firms that failed for technical reasons is 

0.6667 which is less than those that did not fail of 1.0892. This also is consistent with my 

hypothesis that AcademicBackground is negatively associated with TechFailure. 
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Table 9.10: Descriptive Statistics of PIs as Firm Leaders Grouped by TechFailure 
(standard deviations in parenthesis) 

Indicator 

TechFailure 

1 0 1 0 
1 / 

 (0, 1) 
Count Percent (n = 169)  Rate 

PICEO 2 36 1.2% 21.3% 5.3% 
PIFounder 2 48 1.2% 28.4% 4.0% 

PICEOFounder 2 34 1.2% 20.1% 5.6% 
PIOneFounder 2 21 1.2% 12.4% 8.7% 

PIOneFounderCEO 2 17 1.2% 10.1% 10.5% 

      n = 12 n = 157   

BizBackground* -- -- 
0.75  

(0.866) 
0.758 

(1.0706) 
-- 

AcademicBackground* -- -- 
0.6667 

(0.8876) 
1.0892 

(1.3885) 
-- 

*Values are means of the variable  
 

MODEL RESULTS 

The following set of models continues to build on the reduced form specification 

discussed previously by augmenting the model with the PI firm leadership measures of 

experience. In terms of the structural formulation discussed in Chapter VI, adding the 

information about leadership of the firm represents experience of both the firm and the 

PI. This final set of models that incorporates the firm’s leadership experience provides 

the richest experience vector to understand covariates of project failure. Further, the focus 

of the following discussion is on the firm leadership variables, therefore discussion of 

estimation results for other variables will be limited unless the there is a meaningful 

change in a variable’s output from previous results.  

Table 9.11 presents the model results of three estimations of Failure with additional 

regressors to those presented in Table 9.7. The first specification includes PIFounder 
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which has a positive coefficient though the parameter nor the marginal effect are 

statistically significant at conventional levels.  

The second model results shown in Table 9.11 adds BizBackground to the estimation. 

The parameter of BizBackground is not statistically significant, but the estimate is 

directionally consistent with my hypothesis of a negative relationship with Failure. The 

marginal effect of BizBackground is not statistically significant at the reported levels with 

a p-value of 0.088, which is outside the bounds of statistical significance used in this 

dissertation. An interaction term between PIFounder and BizBackground was also 

included. The coefficient on the interaction term has a p-value of 0.051, marginally 

outside the reported significance levels, and has a negative relationship with Failure. The 

interaction term does not provide a direct link to the background of the PI since there may 

be co-founders, however, the term still provides useful information. It suggests that when 

a firm has a PIFounder, having founders with a background in business at least partially 

offsets the positive effect on Failure from having a PIFounder. 

The third model results shown in Table 9.11 includes AcademicBackground and its 

interaction with PIFounder, however, neither the interaction term nor 

AcademicBackground parameter estimates are statistically significant. The marginal 

effect of AcademicBackground has a p-value of 0.064 which is marginally outside the 

bounds of the reported significance levels in this dissertation, though may be suggestive 

of a significant relationship. Nonetheless, the marginal effect of AcademicBackground on 

Failure of -0.0501 suggests a 5.0 percentage point reduction in the probability of Failure 

for each additional firm founder that had an academic background, ceteris paribus.   

The next two model specifications consider a subset of the PIFounder variable using a 

dichotomous indicator, PIOneFounder, to indicate when the PI was the sole founder of 

the firm. Model results from the inclusion of PIOneFounder are shown in Table 9.12. 

The parameter estimate for PIOneFounder is positive as expected and though not 
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statistically significant at the reported levels, has a p-value of 0.058. The marginal effect 

of PIOneFounder has a p-value of 0.080, again outside the thresholds of reported 

statistical significance in this dissertation. Although the statistical significance of the 

marginal effect of PIOneFounder is outside the threshold for reporting, the effect is 

relatively large. Firms which the PI is the sole founder have a 17.4 percentage points 

increase in the probability of Failure compared to firms that do not have a 

PIOneFounder.  

The second model shown in Table 9.12 includes AcademicBackground as an additional 

measure as well as the interaction between PIOneFounder and AcademicBackground. 

Because PIOneFounder indicates the sole founder was also the PI, the interaction term 

provides a direct link to the PI’s background. However, the parameter estimates for 

PIOneFounder, AcademicBackground, and the interaction term between the two are not 

statistically significant.  
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Table 9.11: PI as Founder Failure Probit 

 (1) (2) (3) 

  
Failure 

Marginal 
Effects 

Failure 
Marginal 
Effects 

Failure 
Marginal 
Effects 

PIFounder 0.112 0.0256 0.394 0.00950 0.425 0.0165 
 (0.295) (0.0679) (0.367) (0.0653) (0.361) (0.0663)        

BizBackground   -0.0443 -0.0506   
   (0.137) (0.0297)          

PIFounder x 
BizBackground 

  -0.692    
  (0.355)           

AcademicBackground     -0.107 -0.0501 
     (0.149) (0.0271)        

PIFounder x 
AcademicBackground 

    -0.433  
    (0.271)         

FemalePI -0.857 -0.148 -0.707 -0.125 -1.014 -0.161* 
 (0.658) (0.0785) (0.653) (0.0877) (0.733) (0.0746)        

MinorityPI 0.426 0.106 0.384 0.0904 0.505 0.122 
 (0.392) (0.105) (0.388) (0.0974) (0.418) (0.108)        

Age30DecilePI -1.069* -0.194** -1.157** -0.203*** -1.159** -0.202*** 
 (0.430) (0.0602) (0.438) (0.0586) (0.423) (0.0561)        

Age40DecilePI -0.0831 -0.0186 -0.114 -0.0245 -0.113 -0.0243 
 (0.384) (0.0850) (0.401) (0.0850) (0.370) (0.0786)        

Age50DecilePI -0.838* -0.174* -0.924* -0.181** -0.989* -0.195** 
 (0.393) (0.0728) (0.410) (0.0701) (0.389) (0.0682)        

AmerPI -0.417 -0.0982 -0.420 -0.0949 -0.368 -0.0831 
 (0.263) (0.0626) (0.268) (0.0612) (0.263) (0.0602)        

Employees 0.00170 0.000386 0.00203 0.000441 0.00229 0.000499 
 (0.00246) (0.000546) (0.00246) (0.000525) (0.00264) (0.000563)        

SimAwardsDummy -0.980*** -0.241*** -0.956*** -0.225*** -0.991*** -0.234*** 
 (0.247) (0.0594) (0.252) (0.0581) (0.255) (0.0579)        

ProfInvolved -0.765* -0.173* -0.748* -0.163* -0.773* -0.169* 
 (0.348) (0.0744) (0.356) (0.0728) (0.357) (0.0730)        

DMT 0.0731 0.0165 0.0800 0.0174 0.105 0.0228 
 (0.258) (0.0581) (0.270) (0.0585) (0.265) (0.0575)        

Intercept 0.440  0.492  0.545  
  (0.430)   (0.452)   (0.423)   
Wald χ2 30.42**  38.35***  36.31***  
Likelihood Ratio 38.37***   42.81***   43.23***   
Robust standard errors in parentheses     
*p<0.05 ** p<0.01 *** p<0.001  
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Table 9.12: PI as Single Founder Failure Probit 

 (1) (2) 

  
Failure 

Marginal 
Effects 

Failure 
Marginal 
Effects 

PIOneFounder 0.700 0.174 0.461 0.208 

 (0.369) (0.0997) (0.489) (0.154) 
     

AcademicBackground   -0.177 -0.0244 

   (0.139) (0.0369) 
     

PIOneFounder x 
AcademicBackground 

  0.354  
  (0.679)       

FemalePI -0.713 -0.126 -0.827 -0.139 

 (0.653) (0.0870) (0.708) (0.0844) 
     

MinorityPI 0.434 0.104 0.574 0.139 

 (0.386) (0.0994) (0.397) (0.102) 
     

Age30DecilePI -1.087* -0.192** -1.281** -0.215*** 

 (0.437) (0.0598) (0.418) (0.0521) 
     

Age40DecilePI -0.0816 -0.0177 -0.192 -0.0407 

 (0.395) (0.0849) (0.371) (0.0772) 
     

Age50DecilePI -0.963* -0.188** -1.103** -0.209** 

 (0.412) (0.0702) (0.396) (0.0646) 
     

AmerPI -0.390 -0.0884 -0.352 -0.0787 

 (0.267) (0.0612) (0.266) (0.0599) 
     

Employees 0.00251 0.000550 0.00304 0.000659 

 (0.00231) (0.000492) (0.00255) (0.000534) 
     

SimAwardsDummy -1.026*** -0.243*** -1.033*** -0.240*** 

 (0.252) (0.0574) (0.261) (0.0565) 
     

ProfInvolved -0.731* -0.160* -0.716* -0.155* 

 (0.345) (0.0709) (0.361) (0.0729) 
     

DMT 0.115 0.0251 0.118 0.0256 

 (0.265) (0.0576) (0.265) (0.0571) 
     

Intercept 0.324  0.569  
  (0.413)   (0.407)   

Wald χ2 30.13**  28.73**  
Likelihood Ratio 42.40***   44.77***   
Robust standard errors in parentheses  
*p<0.05 ** p<0.01 *** p<0.001  
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In Table 9.13 model results are shown for four separate estimations that consider the case 

where the PI was also the CEO. Also included in this set of models is the case where the 

PI was the CEO and at least one of the firm founders. The first model results shown in 

Table 9.13 include PICEO which has a positive parameter estimate though is not 

statistically significant at conventional levels with a p-value of 0.082. The marginal effect 

of PICEO on Failure is not statistically significant.  

The second estimation results in Table 9.13 include PIFounderCEO as an additional 

measure of experience. The estimate for PIFounderCEO suggests a positive association 

with Failure and parameter estimate is significant at the 0.05-level. The marginal effect 

of 0.151 is not statistically significant at conventional levels, though has a p-value of 

0.056. The marginal effect of PIFounderCEO suggests firms with a PIFounderCEO have 

a 15.1 percentage point increase in the probability of Failure over firms that do not. 
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Table 9.13: PI as CEO and PI as Founder and CEO Failure Probit 

 (1) (2) (3) (4) 

  
Failure 

Marginal 
Effects 

Failure 
Marginal 
Effects 

Failure 
Marginal 
Effects 

Failure 
Marginal 
Effects 

PICEO 0.540 0.128       
 (0.310) (0.0757)                

PIFounderCEO   0.629* 0.151 0.945* 0.123 0.848* 0.126 
   (0.320) (0.0789) (0.397) (0.0729) (0.373) (0.0788)          

BizBackground     -0.0425 -0.0459   
     (0.136) (0.0286)            

PIFounderCEO x 
BizBackground 

    -0.751    
    (0.392)             

AcademicBackground       -0.141 -0.0479 
       (0.149) (0.0273)          

PIFounderCEO x 
AcademicBackground 

      -0.340  
      (0.330)           

FemalePI -0.856 -0.146 -0.861 -0.146 -0.718 -0.125 -1.026 -0.160* 
 (0.694) (0.0822) (0.705) (0.0828) (0.674) (0.0890) (0.799) (0.0789)          

MinorityPI 0.423 0.103 0.418 0.101 0.424 0.0982 0.500 0.118 
 (0.389) (0.101) (0.390) (0.100) (0.392) (0.0967) (0.421) (0.106)          

Age30DecilePI -1.089* -0.195*** -1.123** -0.198*** -1.227** -0.207*** -1.273** -0.213*** 
 (0.426) (0.0590) (0.428) (0.0579) (0.442) (0.0555) (0.414) (0.0521)          

Age40DecilePI -0.114 -0.0250 -0.145 -0.0314 -0.207 -0.0431 -0.208 -0.0437 
 (0.388) (0.0842) (0.390) (0.0833) (0.396) (0.0807) (0.370) (0.0759)          

Age50DecilePI -0.962* -0.192** -1.002* -0.197** -1.099** -0.203** -1.178** -0.221*** 
 (0.395) (0.0690) (0.399) (0.0682) (0.414) (0.0639) (0.379) (0.0619)          

AmerPI -0.390 -0.0897 -0.392 -0.0895 -0.362 -0.0795 -0.349 -0.0774 
 (0.264) (0.0610) (0.265) (0.0608) (0.275) (0.0606) (0.264) (0.0589) 
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Table 9.13 Continued         
 
Employees 0.00280 0.000624 0.00290 0.000640 0.00304 0.000647 0.00341 0.000732 

 (0.00243) (0.000522) (0.00239) (0.000509) (0.00239) (0.000491) (0.00263) (0.000540)          
SimAwardsDummy -1.052*** -0.252*** -1.069*** -0.255*** -1.052*** -0.240*** -1.063*** -0.245*** 

 (0.254) (0.0574) (0.258) (0.0576) (0.261) (0.0559) (0.261) (0.0566)          
ProfInvolved -0.786* -0.175* -0.779* -0.172* -0.778* -0.166* -0.791* -0.170* 

 (0.352) (0.0730) (0.348) (0.0718) (0.359) (0.0711) (0.352) (0.0699)          
DMT 0.146 0.0324 0.181 0.0397 0.189 0.0400 0.232 0.0492 

 (0.258) (0.0570) (0.265) (0.0579) (0.281) (0.0591) (0.265) (0.0560)          
Intercept 0.332  0.333  0.389  0.493  
  (0.417)   (0.413)   (0.440)   (0.407)   
Wald χ2 30.44**  30.51**  33.64**  40.20***  
Likelihood Ratio 41.1***   41.96***   46.36***   45.59***   
Robust standard errors in parentheses       
*p<0.05 ** p<0.01 *** p<0.001       
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The third model results shown in Table 9.13 augment the second model with the 

inclusion of BizBackground and its interaction with PIFounderCEO. The coefficient on 

PIFounderCEO is positive, as expected, and statistically significant at the 0.05-level. The 

coefficients on BizBackground and the interaction of PIFounderCEO and BizBackground 

are both negative, and the p-value on the interaction term is 0.055, which is suggestive of 

a significant relationship with Failure. However, the marginal effect of BizBackground 

on Failure is not statistically significant at reported levels. These results indicate that 

firms with a less diverse leadership structure, as measured by the multiple roles of a 

single person, will have a positive impact on Failure. Further, the experience gained from 

having an additional firm founder with a business background can offset (not necessarily 

completely) the positive impact on Failure from a concentrated leadership structure.  

The last model results shown in Table 9.13 include AcademicBackground as opposed to 

BizBackground as in the prior estimation discussed. The coefficient on PIFounderCEO is 

positive and significant at the 0.05 level. The coefficients for AcademicBackground and 

the interaction term are not statistically significant.  

The final firm leadership experience variable used within a model in this dissertation is 

PIOneFounderCEO. Firms with a PI as the sole founder and also the CEO represent the 

most concentrated firm leadership experience available within these data. As shown in 

the first model results in Table 9.14, the parameter estimate for PIOneFounderCEO is 

significant at the 0.05-level and has a positive relationship with Failure. The marginal 

effect of PIOneFounderCEO on Failure is also significant at the 0.05-level and is 

relatively large at 0.261. This indicates that firms with a PIOneFounderCEO have a 26.1 

percentage point increase in the probability of Failure over firms that do not. This result 

is consistent with my hypothesis that the more concentrated the experience of the firm 

leadership, i.e. the more roles a single person plays, the more likely the firm will 

experience Failure. The second estimation results shown in Table 9.14 augment the first 

with the inclusion of AcademicBackground as well as its interaction with 
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PIOneFounderCEO. After controlling for AcademicBackground, the parameter estimate 

for PIOneFounderCEO is no longer significant at the 0.05-level. However, with a p-

value of 0.063 the estimate is suggestive of a significant relationship. The marginal effect 

of PIOneFounderCEO is also no longer significant at the 0.05-level. The parameter 

estimates for AcademicBackground and the interaction term are not statistically 

significant at a reasonable confidence level.   
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Table 9.14: PI as Sole Founder and CEO Failure Probit 

 (1) (2) 

  
Failure 

Marginal 
Effects 

Failure 
Marginal 
Effects 

PIOneFounderCEO 1.018* 0.261* 0.863 0.276 
 (0.397) (0.109) (0.465) (0.183)      

AcademicBackground   -0.173 -0.0290 
   (0.140) (0.0356)      

PIOneFounderCEO x 
AcademicBackground 

  0.220  
  (0.735)       

FemalePI -0.657 -0.116 -0.761 -0.129 
 (0.649) (0.0900) (0.701) (0.0883)      

MinorityPI 0.424 0.0990 0.564 0.132 
 (0.389) (0.0974) (0.401) (0.101)      

Age30DecilePI -1.171** -0.200*** -1.350** -0.219*** 
 (0.431) (0.0562) (0.413) (0.0501)      

Age40DecilePI -0.130 -0.0275 -0.227 -0.0469 
 (0.388) (0.0806) (0.369) (0.0750)      

Age50DecilePI -1.072** -0.200** -1.215** -0.219*** 
 (0.401) (0.0644) (0.375) (0.0590)      

AmerPI -0.360 -0.0796 -0.321 -0.0697 
 (0.271) (0.0604) (0.269) (0.0590)      

Employees 0.00301 0.000643 0.00362 0.000766 
 (0.00231) (0.000477) (0.00256) (0.000517)      

SimAwardsDummy -1.050*** -0.241*** -1.055*** -0.238*** 
 (0.254) (0.0557) (0.258) (0.0544)      

ProfInvolved -0.771* -0.165* -0.765* -0.162* 
 (0.352) (0.0699) (0.367) (0.0717)      

DMT 0.170 0.0360 0.183 0.0383 
 (0.268) (0.0567) (0.262) (0.0548)      

Intercept 0.307  0.526  
  (0.412)   (0.405)   
Wald χ2 31.60***  33.92**  
Likelihood Ratio 45.78***   47.94***   
Robust standard errors in parentheses    
*p<0.05 ** p<0.01 *** p<0.001   
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The next sets of model results use TechFailure as the dependent variable. Table 9.15 

presents estimation results of two models; the first includes PIFounder and the second 

PIOneFounder. As shown in the first specification results presented in Table 9.15, 

neither the parameter estimate nor the marginal effect for PIFounder are statistically 

significant. However, after controlling for this type of leadership experience, the 

coefficient for Employees is negative and statistically significant at the 0.05-level, 

whereas in the initial estimates it was not significant at the reported alpha levels (see 

Table 8.7). The marginal effect is not significant at the 0.05-level, however, has a p-value 

of 0.065 which may be suggestive a significant relationship. The marginal effect of 

Employees on TechFailure is relatively small at -0.000850. This indicates that for each 

additional employee the probability of TechFailure is reduced by 0.0850 percentage 

points. While the marginal effect of Employees on TechFailure is relatively small after 

controlling for PIFounder, it is directionally intuitive. For the case when firm leadership 

experience is less varied, the experience gained from adding additional human capital to 

the firm offsets the lack of variation in experience of the firm leaders. 

The second estimation results shown in Table 9.15 include PIOneFounder as the measure 

of firm leadership experience. In this specification neither the parameter estimate nor the 

marginal effect of PIOneFounder are statistically significant. The parameter estimate for 

Employees is negative and has a p-value of 0.058, which may suggest a significant 

relationship with TechFailure, however, the marginal effect of Employees on 

TechFailure in this model is not statistically significant.  
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Table 9.15: PI as Founder and as Sole Founder TechFailure Probit 

 (1) (2) 

  
TechFailure 

Marginal 
Effects 

TechFailure 
Marginal 
Effects 

PIFounder -0.338 -0.0353   
 (0.343) (0.0323)        

PIOneFounder   0.327 0.0422 

   (0.391) (0.0587) 
     

MinorityPI 0.528 0.0755 0.566 0.0817 

 (0.435) (0.0742) (0.442) (0.0771) 
     

Age30DecilePI -0.286 -0.0299 -0.307 -0.0319 

 (0.477) (0.0459) (0.482) (0.0461) 
     

Age40DecilePI 0.0321 0.00365 -0.00563 -0.000636 

 (0.459) (0.0524) (0.457) (0.0516) 
     

Age50DecilePI -0.740 -0.0687 -0.901 -0.0801* 

 (0.568) (0.0415) (0.562) (0.0406) 
     

AmerPI -0.302 -0.0354 -0.304 -0.0354 

 (0.303) (0.0353) (0.307) (0.0357) 
     

Employees -0.00751* -0.000850 -0.00491 -0.000555 

 (0.00329) (0.000461) (0.00259) (0.000342) 
     

SimAwardsDummy -0.689* -0.0798* -0.781* -0.0904** 

 (0.309) (0.0338) (0.317) (0.0348) 
     

ProfInvolved -0.539 -0.0610 -0.491 -0.0555 

 (0.453) (0.0514) (0.442) (0.0488) 
     

DMT -0.0119 -0.00135 0.0795 0.00904 

 (0.277) (0.0314) (0.294) (0.0337) 
     

Intercept -0.429  -0.609  
  (0.514)   (0.516)   

Wald χ2 17.02  17.82  
Likelihood Ratio 16.91   16.75   
Robust standard errors in parentheses    
*p<0.05 ** p<0.01 *** p<0.001   
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The final set of estimation results are presented in Table 9.16 and augment those 

presented in Table 9.15 with the further conditioning on PIs that were also CEO. As 

shown in the first set of results in Table 9.16, the parameter estimate for PICEO and its 

marginal effect are not statistically significant. However, similar to the results in Table 

9.15, the parameter estimate for Employees is negative and significant at the 0.05-level. 

The marginal effect is -0.000714 and has a p-value of 0.079 suggesting a small effect on 

TechFailure. 

The second estimation results shown in Table 9.16 include an even more concentrated 

firm leadership structure with the use of PIFounderCEO. Although, PIFounderCEO is 

not a statistically significant estimator of TechFailure, after controlling for this variable, 

the coefficient on Employees is significant at the 0.05 level. The p-value of the marginal 

effect of Employees on TechFailure is 0.078. This marginal effect indicates an additional 

employee reduces the probability of TechFailure by 0.0692 percentage points.  

The last model estimation results presented in Table 9.16 include the most concentrated 

firm leadership experience variable, PIOneFounderCEO. Similar to the prior two 

specifications, the coefficient and marginal effect for PIOneFounderCEO are not 

statistically significant.   
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Table 9.16: PI CEO and CEO Founder TechFailure Probit 

 (1) (2) (2) 

  
TechFailure 

Marginal 
Effects 

TechFailure 
Marginal 
Effects 

TechFailure 
Marginal 
Effects 

PICEO -0.0868 -0.00964     
 (0.357) (0.0382)            

PIFounderCEO   -0.0478 -0.00537   
   (0.361) (0.0397)          

PIOneFounderCEO     0.483 0.0662 
     (0.407) (0.0694) 
       

MinorityPI 0.535 0.0772 0.536 0.0775 0.579 0.0832 
 (0.434) (0.0749) (0.434) (0.0751) (0.449) (0.0780) 
       

Age30DecilePI -0.291 -0.0306 -0.291 -0.0306 -0.349 -0.0356 
 (0.474) (0.0458) (0.471) (0.0455) (0.478) (0.0447) 
       

Age40DecilePI 0.0139 0.00158 0.0107 0.00123 -0.0355 -0.00397 
 (0.454) (0.0520) (0.455) (0.0521) (0.452) (0.0503) 
       

Age50DecilePI -0.792 -0.0730 -0.802 -0.0738 -0.973 -0.0843* 
 (0.559) (0.0409) (0.557) (0.0408) (0.562) (0.0398) 
       

AmerPI -0.306 -0.0360 -0.305 -0.0359 -0.292 -0.0338 
 (0.304) (0.0357) (0.304) (0.0356) (0.312) (0.0362) 
       

Employees -0.00626* -0.000714 -0.00607* -0.000692 -0.00454 -0.000510 
 (0.00296) (0.000406) (0.00287) (0.000393) (0.00254) (0.000329) 
       

SimAwardsDummy -0.725* -0.0847* -0.732* -0.0856* -0.801* -0.0918** 
 (0.314) (0.0347) (0.314) (0.0348) (0.324) (0.0351) 
       

ProfInvolved -0.546 -0.0623 -0.543 -0.0619 -0.486 -0.0546 
 (0.442) (0.0499) (0.441) (0.0497) (0.444) (0.0487) 
       

DMT 0.0466 0.00534 0.0515 0.00590 0.102 0.0116 
 (0.280) (0.0322) (0.279) (0.0321) (0.289) (0.0332) 
       

Intercept -0.523  -0.534  -0.615  
  (0.507)   (0.504)   (0.506)   
Wald χ2 16.73  16.61  18.15  
Likelihood Ratio 16.3   16.28   17.22   
Robust standard errors in parentheses     
*p<0.05 ** p<0.01 *** p<0.001     
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In summary, the findings of the analysis of firm leadership experience on project failure 

suggests that the more concentrated the human capital within the firm leadership, the 

more likely the project will fail. Further, the vocational background of the firm’s leaders 

may have an impact on the probability of Failure. The human capital gained by firm 

leaders from having a business background or working in academia may translate to 

experience useful in reducing Failure. The concentration of firm leadership experience 

does not have a meaningful impact on failure for technical reasons. However, after 

considering the concentration of human capital of firm leaders, having more employees is 

a suggestive indicator for a reduction in the probability of TechFailure. By increasing the 

number of employees, the experience base of human capital is increased which may help 

with preventing issues that lead to technical failures. 

Finally, variance inflation factors (VIF) for the group of firm and project characteristics 

that were used in the prior sets of estimations of equation (8.1) (Tables 9.5-9.7 and 9.11-

9.16) are shown in Table 9.17. As shown in Table 9.18, the VIF on each variable is less 

than 2 except for the age decile indicators which are less than 3; this suggests that there is 

little concern for multicollinearity between these variables. Since these sets of variables 

encompass all the variables used in the models described in this chapter, then 

multicollinearity is not a concern for any of the prior estimations of equation (8.1). 
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Table 9.17: Variance Inflation Factors 

  Table.Model_Number 
  9.11.2 9.11.3 9.12.2 9.13.1 9.13.3 9.13.4 9.14.2 
PIFounder 1.7982 1.8035      
PIOneFounder   1.7744     
PICEO    1.1734    
PIFounderCEO     1.7245 1.6681  
PIOneFounderCEO       1.7222 
Bizbackground 1.5276    1.4272   
AcademicBackground  1.4098 1.1312   1.2963 1.1187 
FemalePI 1.0584 1.0610 1.0756 1.0473 1.0539 1.0611 1.0737 
MinorityPI 1.3229 1.3297 1.3233 1.3177 1.3216 1.3407 1.3230 
Age30DecilePI 2.3070 2.2995 2.2382 2.2027 2.2669 2.2446 2.2368 
Age40DecilePI 2.5942 2.4972 2.4717 2.4744 2.6151 2.5170 2.4838 
Age50DecilePI 2.4676 2.4484 2.4651 2.4390 2.5152 2.4863 2.4914 
AmerPI 1.3351 1.3212 1.3187 1.3205 1.3376 1.3208 1.3250 
Employees 1.1635 1.1803 1.1233 1.1601 1.1588 1.1738 1.1269 
SimAwardsDummy 1.1200 1.1206 1.1143 1.1111 1.1172 1.1235 1.1099 
ProfInvolved 1.0889 1.0814 1.1084 1.0770 1.0855 1.0792 1.0997 
DMT 1.1516 1.1319 1.1035 1.0992 1.1290 1.1156 1.1103 

 

Homophilic Gender Composition 

The final PI and firm relationship considered here is the case when both the PI and firm 

owner are of the same gender. Bednar et al., (2019) found a statistically significant 

positive relationship between the probability of commercializing a technology and if the 

firm owner and PI were both female. In this light, the homophilic relationship between 

owner and PI is analyzed here using the data from the random sample of 169 Phase II 

funded projects discussed previously. Due to lack of variation in the data, i.e. no female 

owner/ female PI firms experienced Failure, I am not able to leverage the reduced form 

model described in Chapter VIII. However, I do offer insights drawn from the data. Table 
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9.18 below presents summary statistics of the project team and project outcomes by 

gender composition of the project team.  

Table 9.18: Mean Values by Gender Composition  
(standard deviations in parenthesis) 

Variable 
Project 

Composition 
      

 

Female PI/ 
Female Owner 

Female PI/ 
Male Owner 

Male PI/  
Female Owner 

Male PI/  
Male Owner 

Failure 0 0.17 0.14 0.22 

TechFailure 0 0 0 0.08 

SimAwards 0.67 0.50 0.86 1.22 

 (0.58) (0.55) (0.90) (1.82) 

Employees 9.67 53.17 27.71 36.36 

 (5.77) (57.13) (49.79) (49.31) 

n 3 6 7 153 
 

As shown in the table, female owned firms experienced Failure at a lower mean rate, 

than their male counterparts. Firms with a female PI and a female owner (n = 3) did not 

have any Failure, while the firms with a female PI and a male owner (n = 6) had mean 

Failure of 0.17. Using the count of similar awards for each firm, SimAwards, the female 

PI/ female owned firms received slightly more SimAwards, at the mean, 0.67, than female 

PI/ male owner firms, which received a mean of 0.5 SimAwards. Female PI/ female 

owner firms were much smaller, at the mean, with close to 10 employees, than female PI/ 

male owner firms, which had the largest number of employees on average with a mean of 

about 53 Employees. Using SimAwards as a measure of experience and Employees as a 

measure of project complexity, the female PI/ female owner firms were slightly more 

experienced than the female PI/ male owner firms, however, the female PI/ female owner 

firms are much smaller which may indicate the projects pursued by the female PI/ female 

owner firms were less complex than the female PI/ male owner projects. From these 
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results it may be inferred that female PI/ female owner firms are more likely to take on 

small, perhaps less riskier projects than female PI/ male owner firms.  It is commonly 

accepted that females tend to be more risk averse than their male counterparts, on 

average. Therefore, the homophilic female PI/ female owner relationship experiences 

Failure at a much lower rate than the female PI/ male owner firms but the projects are 

also likely less risky.  

Further, male PI/male owner firms (n = 153) experienced Failure at the highest rate 

(0.22) among the four gender combinations. Male PI/ male owner firms had the largest 

mean SimAwards of 1.22, indicating that firms with this gender composition tend to have 

more experience than others, however, also tend to experience Failure more often. The 

mean number of Employees of the male PI/male owner firms is about 36, the second 

largest average firm size. Again, using firm size as a measure of project complexity, male 

PI/male owner firms typically engage in projects riskier than those of female owners with 

either male or female PI, but less risky than female PI/ male owner firms. Thus, female 

PI/ male owner firms may tend to undertake larger, riskier projects as measured by 

Employees and on average have less experience as measured by SimAwards than male 

PI/male owner firms however male PI/ male owner firms still have a higher mean 

Failure.  

Male PI/female owner firms (n = 7) experience Failure at a mean rate of 0.14 which is 

just 3 percentage points lower than firms with a female PI/ male owner composition. 

Male PI/ female owner firms received a mean of 0.86 SimAwards compared to a mean of 

0.5 SimAwards received by female PI/ male owner firms. Male PI/female owner firms 

had mean firm size of almost 28 employees, which is most similar to male PI/ male 

owner firms. Therefore, male PI/female owner firms may have a similar failure rate as 

female PI/male owner firms as these firms are typically smaller and slightly more 

experienced.  
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As shown, both homophilic compositions of firms hold the two boundaries of Failure. 

Female PI/female owner firms have the lowest mean rate of Failure while male PI/male 

owner firms have the highest mean rate of Failure. Although the female homophilic firm 

is typically less experienced than their male counterparts, they tend to have smaller firms 

indicating the lower Failure rate can at least be partially explained by risk aversion. 

Further, conditional on firms with female owners, firms with a female PI are less 

experienced, have smaller firm sizes, and have lower rates of Failure on average. 

Conditioning on firms with male owners, firms with a female PI are typically less 

experienced but have larger firm sizes, however, a lower mean rate of Failure, compared 

to firms with a male PI. All this together provides further evidence of a negative 

association between FemalePI and Failure, and evidence that the homophilic relationship 

of FemalePI/ Female Owner firms tend to experience lower rates of Failure than any 

other gender combination of firm owner and PI.  
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CHAPTER X:  CONCLUDING DISCUSSION 

Discussion 

The DOE has a long-standing history of using technological innovation to achieve its 

goals. As discussed in this dissertation, the DOE descended from one of the best-known 

projects that involved public-private partnerships resulting in a new technology coming 

to fruition. Given the current size, and therefore budget of the DOE, the agency is one of 

the top contributors to the SBIR program. The SBIR program is the main source of public 

funding in the U.S. for small firms conducting innovative research with the goal of 

commercializing new technologies. Each firm that is funded through the SBIR program 

should have a principal investigator acting as the lead scientist for the project. As 

discussed previously, the role of the PI is critical in small innovative firms. Although a PI 

may be the lead scientist for an R&D project, PI’s responsibilities can span beyond the 

typical day-to-day responsibilities of a research scientist and encompass duty’s akin to 

those of a manager or leader of the firm. Given the relative importance of PIs in the 

innovation process it is important to understand what characteristics of PIs, if any, are 

associated with a greater likelihood of project failure. 

 The literature examining the determinants of SBIR project failure is limited and there are 

no studies that examine the breadth of characteristics of PIs and their association with 

failure as is done in this dissertation. As such, this dissertation provides several important 

contributions to the literature.  

A complete literature review on R&D project failure that spans both the economics and 

management disciplines literature was conducted to understand past research that could 

be used as a steppingstone for the analysis in this dissertation. There is a notable lack of 

research that considers PIs or more generally an R&D project leader as a source of 
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project failure. Further, there is not a theoretical model for research project failure in the 

literature. Therefore, this dissertation provides a new-to-the-literature theory that uses a 

structural form model to explain how firm and project characteristics, such as PIs 

experience, may impact the likelihood of R&D project failure.  

Using the DOE SBIR data from the NRC second round survey, which has not been 

described in the literature outside of this dissertation, a set of initial models were 

estimated using a reduced form specification of the structural model. The results of these 

estimations provide support for previous studies findings. Given the results from 

Andersen et al., (2017) and Link and Wright, (2015) I had an a priori expectation that 

having received a previous award would be negatively associated with project failure. 

Having received previous awards is a measure of experience and that experience is 

beneficial for reducing the probability of project failure.   

From the initial set of models, I found that having university faculty involved in the R&D 

project translated to a relatively large reduction in the probability a project failed. This 

result was in-line with my original expectation which was motivated by the findings in 

Gicheva and Link, (2016).  Having university faculty involved in the project is a measure 

of human capital and given the nature of their work, university faculty provide research 

expertise that tends to reduce the probability of project failure. Knowing the effect of 

having university faculty involved in a Phase II funded SBIR project has on the 

likelihood of project failure is relevant information to program applicants. In terms of 

policy, SBIR program administrators could use this information to educate applicants and 

encourage or potentially incentivize applicants to involve university faculty in their 

project.  

After confirming results found in previous studies (Link and Wright, 2015, Gicheva and 

Link, 2016 and Andersen et al., 2017), additional PI experience variables were added to 

the initial model’s specification. Three general measures to describe PIs experience were 
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analyzed: demographic characteristics, PIs as firm leaders, and the homophilic 

relationship between firm owners and PIs. From the demographic characteristics of PIs, 

using age decile bins, I found that younger PIs, those younger than the oldest cohort (PIs 

at least 60 years old), tend to have a lower probability of Failure than the oldest PIs in the 

random sample. This result may be because younger PIs take on less-complex projects 

that naturally are less likely to fail and because of higher levels of motivation driven by 

higher rates of marginal human capital accumulation. On the other hand, the oldest cohort 

of PIs may be less risk averse than their younger counterparts but also experience 

depreciating rates of human capital. The oldest PIs may have enjoyed past success and 

are willing to take on riskier projects because their opportunity cost of failing is lower 

than their younger counterparts.  

Cunningham et al. (2016a) found that PIs take on multiple roles such as project manager, 

administrator, science broker, and boundary spanner (i.e., ability to bridge different areas 

and domains such as the academic sector and the private sector). I found that in addition 

to these roles, PIs may also be a founder of the firm and/ or CEO. When PIs are founders 

and/or CEO’s of the firm, the leadership structure is more concentrated and the 

responsibilities of the PI are greater. I found that in general the more concentrated the 

leadership the greater the probability a project will fail. The case when the PI was the 

sole founder and the CEO had the largest marginal effect on the probability a firm will 

fail. This suggests that although PIs may have the ability to take on many responsibilities, 

there is a limit to number of roles a PI can assume and still have a project that does not 

fail. These results are more information that could be used to inform policy of the SBIR 

program. SBIR program administrators could inform award recipients, especially those 

that have a concentrated leadership structure, to consider creating a greater span of 

control by employing a CEO other than the PI.  

I also found that the vocational background of PIs that were a founder or both a founder 

and the CEO have an impact on the probability of project failure. For the firms where the 
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PI was a founder and not the only founder, having founders with either a business 

background or academic background resulted in having a lower probability of project 

failure. Founders having a business or academic background also had a negative effect on 

project failure for firms that had a PI that was both a founder and the CEO. However, for 

the firms with the most concentrated leadership structure, the case when the PI was the 

sole founder and the CEO of the firm, the vocational background of the PI did not have a 

significant impact on failure.  

Limitations 

As with all studies this dissertation has limitations. While the data used in this 

dissertation are a random sample of Phase II funded SBIR projects from the DOE’s SBIR 

program, it would be useful to have a larger sample size. Additionally, the data are from a 

single department’s SBIR program, so the results may not be generalizable across all 

SBIR participating agencies. There is a notable lack of information on the Phase II award 

amount each firm received which has been shown to be a highly significant covariate 

with project failure (Link and Wright, 2015). Further, R&D projects progress through 

time across different phases, however, the data do not provide information about the 

timing of the failure of the projects in the random sample. This information would be 

useful to further understand and define a measure of failure and perhaps reasons that led 

to it. Finally, I was not able to produce an estimate of the probability of failure with the 

female homophilic relationship between owner and PI as a covariate due to the lack of 

representation of this type of relationship in the random sample. 

Future Research 

The analysis performed in this dissertation as well as the limitations associated with it 

gives rise to several avenues for future research. First, to test the robustness of the results 
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found in this dissertation, future research may consider using additional data from other 

departments to conduct similar analyses to those performed here. This dissertation 

considered two measures of failure. However, framing failure across different measures 

would be interesting. For example, failure could be defined as not receiving a patent, not 

generating spinoffs, or not increasing employment over the duration of the project. 

Looking at different objectives of the firm may help uncover useful information or 

covariates that are beneficial for reducing failure across several objectives or perhaps 

covariates unique to a specific measure of failure.  

Future research may look at the specific time or phase within the R&D projects life cycle 

that the project failed and this concept could potentially be incorporated to advance the 

theoretical model. With this information policy makers could inform program 

participants of the pitfalls associated with various phases of an R&D project and perhaps 

channel resources to help generate an overall lower probability of failure. Further, 

another expansion to the theoretical model could be to incorporate an additional measure 

for cost of the experience of the principal investigator. On average, the better the 

experience a principal investigator has accumulated, the more that principal investigator 

would cost since better experience should, at least partially, reduce the risk of failure.  

Additionally, understanding or formulating a measure of risk associated with SBIR 

projects would provide another useful dimension to understand why projects fail or even 

a method for categorizing SBIR projects. Knowing the variation in risk between projects 

may also provide further insights into characteristics of principal investigators that may 

be associated with projects that bare certain risk profiles. One measure, as discussed in 

the Section 10.2, that could help in defining the risk of a project is the SBIR award 

amount. Since awards are given to help further the innovation, it is not known whether 

the project will succeed or fail when the award is given. Therefore, the amount of the 

award could be considered as a measure of risk, whereas the greater the monetary value 

of the award translates to greater potentially losses, hence greater risk. 
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Conclusion 

In conclusion, in this dissertation I have provided a complete literature review on R&D 

project failure that spans both the economics and management disciplines literature. This 

review uncovered a notable lack of literature related to PIs and their association with 

project failure as well no theoretical model of research failure. Therefore, I provided a 

theoretical model for research project failure to help fill the void, which is used in its 

structural form to guide the empirical analysis conducted. Further, in this dissertation I 

have analyzed DOE data using NRC second round survey data and used these data to 

replicate the empirical probability of failure providing support for previous studies 

findings. I have presented PIs as a new-to-the-literature covariate with R&D project 

failure and found that certain characteristics of PIs lead to a lower probability of failure. 

Specifically, younger PIs have a lower probability of failure than the oldest cohort and 

PIs that are the sole founder of the firm and are also the CEO have a significantly higher 

probability of failure compared to PIs who are strictly PIs. As such, this dissertation 

contributes to a small but growing body of literature that considers the role PIs have in 

the failure of R&D projects.
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