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BOWMAN, ANITA HILL. Ph.D. Preservice Elementary Teachers' Performance on 
Tasks Involving Building, Interpreting, and Using Linear Mathematical Models Based 
on Scientific Data as a Function of Data Collection Activities. (1993) 
Directed by Dr. George W. Bright. 214 pp. 

A modification of Janvier's "star" model of understanding mathematical 

function is proposed as a theoretical basis for framing this experimental study of the 

relationship between preservice elementary teachers' performance on tasks involving 

building, interpreting, and using linear mathematical models based on physical science 

data and whether or not the subject participated in data collection tasks. Fifty-two 

elementary education majors enrolled at a small university in the southeastern region of 

the United States participated in this experiment by completing two 2-hour workshops 

and a 50-minute, 36-item posttest. Twenty-seven subjects were randomly assigned to 

the "data collection" group and 25 to the "no data collection" group. All participants 

used TI-81 graphing calculators to analyze the relationships between four pairs of 

variables: (a) total mass of a liquid and its container (Y) versus the volume of liquid 

used (X), (b) total height from the table top to the water level in a beaker (Y) versus 

the volume of water in the beaker (X), (c) total mass of coins and the cup containing 

the coins (Y) versus the number of coins in the cup (X), and (d) the length of a spring 

(Y) versus the total mass of objects attached to the spring (X). Data analysis via TI-81 

calculators included entering data from tables, constructing scatter plots, and 

determining the least squares linear regression model. For each mathematical model 

constructed, subjects identified the slope and y-intercept, including units of measure; 

constructed a contextual interpretation of the slope and y-intercept; and solved verbal 

problems using the model to predict outcomes. 

A series of two-sample t-tests were used to analyze the results obtained on the 

posttest. Subjects who did not engage in data collection activities scored higher on the 



posttest and on all 36 individual test items than did the students who engaged in the 

data collection activities. The results indicate that data collection activities interfere 

with, rather than enhance, performance on tasks involving building, interpreting, and 

using linear mathematical models. The results are interpreted within the theoretical 

framework provided by a pentagonal modification of Janvier's "star" model for 

understanding mathematical function. 
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CHAPTER I 

INTRODUCTION 

Leinhardt, Zaslavsky, and Stein (1990) present a comprehensive research 

review in which they analyze "interpretation and construction tasks associated with 

functions and some of their representations: algebraic, tabular, and graphical" (p. 1). 

In particular, the review focuses on understandings children ages 9 to 14 have of 

functions and their graphs. One issue raised in the review is the difference in 

directionality of thinking about functions from mathematical and scientific perspectives. 

The bridge between functions and graphs is . . . interesting because the 
intellectual landscape, so to speak, looks different from each side of the bridge-­
if graphs are used to explicate functions, the sense of function (and graph) is 
quite different from what is presented the other way around. Indeed, part of the 
problem with graphing as a scientific tool resides in this issue of directionality 
of thinking about graphs and functions. The mathematical presentation is 
usually from an algebraic function rule to ordered pairs to a graph, or from a 
data table of ordered pairs to a graph. The scientific presentation, on the other 
hand, most often proceeds from observation, to data array, to ordered pairs of 
data, to selection of axis labels, to scale construction, to graph and (maybe) to 
function. Often, students who can solve graphing or function problems in 
mathematics seem to be unable to access their knowledge in science. It is only 
recently with the insights of cognitive science that we are beginning to learn 
why the truism holds: Just because learners know something in one way does 
not mean that they can make immediate use of it from a different perspective or 
in a different situation. Because of its presence and its distinctive character in 
both mathematics and sci~nce, functions and graphs provides an excellent topic 
to examine in this respect. (p. 3) 
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This research project evolved from a recognition that, in general, college 

students have difficulties transferring knowledge of mathematical function developed in 

algebra classes to data analysis tasks in a science laboratory. Differences in 

directionality between mathematical and scientific perspectives may account for part of 

this difficulty. However, another important factor may be context. Mathematically, 

the meaning of a function of two variables, expressed either in algebraic formula or 

graphical form, is generally confined to the context of the Cartesian plane. Within a 

scientific perspective, a function expresses a mathematical relationship between two 

real-world variables, and the meaning of a function is generally related to the physical 

situation from which the function is derived. 

For example, consider a linear mathematical function in the form y = mx + b: 

y = 1.13 x + 45.0. Mathematically, the interpretation of the relationship between x 

andy focuses on what the slope (m = 1.13) and they-intercept (b = 45.0) tell us 

about the graph of the function. Generally, the slope is interpreted as "the rise over the 

run" or "the change in y with change in x," and they-intercept is interpreted as "where 

the line crosses they-axis." The roles of x andy in the linear equation are rarely 

articulated. Thus, within a mathematical perspective, students typically interpret the 

function expressed by the algebraic formula y = 1.13 x + 45.0 in terms of its graph. 

The expected interpretation is something like the following: "The graph is a straight 

line which crosses the y-axis at 45.0 and goes up 1.13 units each time it goes one unit 

to the right. " 

If this same algebraic formula is considered within the context of a physical 

situation, different interpretations may result. For example, the algebraic formula 



y = 1.13 x + 45.0 may be the result of a linear regression least-squares fit on a set of 

mass versus volume data collected in a laboratory. Assume that observations were 

recorded in a data table according to the following procedure: 

1. Approximately 2.5 milliliters of antifreeze was poured into a 25-milliliter 

graduated cylinder. 

3 

2. The graduated cylinder was placed on a balance platform, and the total mass 

in grams was recorded as a y-value in a data table. The volume was read to the nearest 

0.1 milliliter and recorded as the corresponding x-value. 

3. More antifreeze was added in approximately 2.5-rnilliliter aliquots, and the 

resulting mass and volume were recorded in the data table following each addition. 

Assume further that a linear regression fit on the data pairs yielded the equation 

y = 1.13 X+ 45.0. 

Within the given physical situation context, a number of interpretive statements 

may be written: 

1. The total mass (y) is equal to the sum of the mass of the antifreeze in the 

graduated cylinder (1.13 x) and the mass of the empty graduated cylinder (45.0). 

2. The mass of the empty graduated cylinder is 45.0 grams. 

3. The total mass increases by 1.13 grams for each 1.0-milliliter increase in 

volume. 

4. One milliliter of antifreeze "weighs" 1.13 grams. 

5. The density of antifreeze is 1.13 grams per milliliter. 

Considering this function from a scientific perspective gives a different view of the 

relationship between x and y than that obtained from a mathematical perspective. 

Thus, as illustrated by this example, one prominent difference between 

interpretations of linear functions from mathematical and scientific perspectives lies in 
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the contexts in which the interpretations are framed. The context for a mathematical 

interpretation is generally the Cartesian plane. Within this graphical space, the focus of 

interpretation is on what the equation parameters, slope (m) andy-intercept (b), tell us 

about the graph of the function. Generally, the roles of the variables, x and y, are not 

emphasized. In contrast, the context for a scientific interpretation is generally the 

physical situation in which the relationship between the two variables, x and y, is 

explored. Within this situational space, the focus of interpretation is on the physical 

relationship between the two variables in question, and the values of the parameters 

serve to quantify the relationship. 

This example also serves as an illustration of the complexity of the function 

concept. Four factors contribute to this complexity. First, a number of different 

representations may be used to define a function. Possible representations include 

algebraic formulas, graphs, tables, sets of ordered pairs, mapping dia.grams, situations, 

and verbal descriptions. A given function "looks" different in each of its 

representations. Second, a wide variety of processes are involved in translating 

between pairs of representations. Each translation process may be perceived by 

students to be separate and unrelated to other translation processes. Third, the concept 

of function is further complicated because both the symbol systems and the language 

used in describing a function change according to the representational mode employed. 

Lastly, no definition of function exists separate from its representations. The concept 

of function must therefore be constructed inductively by synthesis of numerous and 

varied instantiations of function. 

While the function concept is in many ways the most difficult concept 

encountered in mathematics, it is also potentially one of the most useful. Thorpe 

(1989) suggests that we should "not just teach about functions in algebra," but rather, 



we should "make functions the centerpiece of algebra instruction" (p. 18). As an 

extension of Thorpe's suggestion, I propose it would be appropriate to make functions 

globally the centerpiece for mathematics instruction, throughout the K-14 curriculum. 

This proposition is consistent with the mathematics curriculum reform standards 

prepared by the National Council of Teachers of Mathematics (NCTM, 1989), and, 

more particularly, with the standards on function and statistics. Taken together, the 

sets of standards on function and statistics stress the importance of learning 

mathematical function from both mathematical and scientific perspectives. 

Problems associated with interrelating the aspects of function as presented 

within a mathematical perspective to the scientific perspective of relationships between 

real-world variables are due in part to the complexity of the function concept. Since 

the complex nature of mathematical function cannot be changed, it is important that 

instruction be designed so students see that the various aspects of what it means to be a 

function are part of a whole rather than isolated and unrelated ideas. That is, 

instruction should be designed to help students make connections among various facets 

of mathematical function. Specifically, for college-level students to make the 

connections required to bring the various notions of function together into a unified 

concept of function, instruction might need to be structured so that students are 

challenged to view the notion of function from both scientific and mathematical 

perspectives simultaneously. 

This study focused on a specific group of college-level students, preservice 

elementary teachers, and specific content, linear mathematical models based on data 

collected using a scientific inquiry approach. Treatment activities were designed to 

provide a rich environment for students to connect notions of linear function previously 

learned from a mathematical perspective to linear mathematical models developed in 
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scientific contexts. A modification of Janvier's (1987b) "Star" model for function 

understanding provided a theoretical framework for the study. 
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CHAPTER II 

REVIEW OF THE LITERATURE 

Several key ideas were important in framing this study: (a) various 

conceptualizations of mathematical function, (b) current mathematics and science 

curriculum reform movements, (c) mathematical function via modeling, applications, 

and links to science, (d) elementary teacher education, and (e) linear mathematical 

functions. The organization of this chapter is intended to take the reader from a broad 

view of mathematical function based on concept definitions and representations to a 

more li~ited scientific perspective view to a very narrow view of linear mathematical 

functions within a scientific perspective, while, at the same time, relating mathematical 

function to current curricular reform movements in mathematics and science and to 

associated issues in elementary teacher education. The literature reviewed in this 

chapter and the theoretical model developed in Chapter III constitute a framework for 

the study. 

The literature on teaching and learning the concept of mathematical function is 

broad. No attempt is made in this treatment to summarize the literature globally. 

Instead, this treatment is restricted to consideration of function via mathematical and 

scientific perspectives and to the implications teaching function from a scientific 

perspective has on elementary teacher education. The chapter concludes with a 

rationale for the study. 

7 
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Mathematical Function 

In this section two conceptualizations of mathematical function are discussed. 

The first is the set-theoretical definition which serves as a cornerstone for the study of 

mathematical function from a mathematical perspective. The second is a scientific 

conceptualization of mathematical function. From a scientific perspective, a function is 

viewed in terms of relationships among variables. Issues related to concept definition 

and concept image are also included. The section concludes with an introduction to 

external representations for mathematical function. 

Concept Definition and Concept Image 

The notion of mathematical function has evolved as mathematicians have 

defined new systems and discovered new relationships within these systems. Along 

with these developments, the definition of mathematical function has similarly evolved. 

In mathematics the generally accepted definition of function, called the Dirichlet­

Bourbaki concept of function (Vinner & Dreyfus, 1989), characterizes a function as a 

correspondence between two non-empty sets A and B that assigns to each element in A 

one and only one element in B. The beauty of this defmition is its inclusiveness. As 

Tall (1992) notes, "the sets involved may be sets of numbers, or points inn­

dimensional space, or geometric shapes, or matrices, or any other type of object, 

including other functions, and the method of assignment might be through a formula, 

an iterative or recursive process, a geometric transformation, a list of values, or any 

serendipitous combination one desires, provided that it satisfies the criterion of 

assigning elements uniquely" (p. 497). 

Even though the Dirichlet-Bourbaki concept definition of function may be 

considered a good definition from a mathematician's point of view, it may not be a 
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good definition for learners. Several decades ago Poincare (1914) challenged his 

readers to think about the aspects that make a definition good: "What is a good 

definition? For the philosopher or the scientist, it is a definition which applies to all 

the objects to be defined, and applies only to them; it is that which satisfies the rules of 

logic. But in education it is not that; it is the one that can be understood by the pupils" 

(p. 117). The Dirichlet-Bourbaki concept definition may be a good definition for 

mathematicians because it is succinct and all-encompassing, but it may not be helpful 

for learners because the nuances associated with the definition may not be easily seen 

and understood. For example, learners may understand this definition when applied to 

examples expressed as mappings from one set to another, but may not see that the 

definition also pertains to function examples framed within other representations, such 

as graphs and algebraic formulas. The Dirichlet-Bourbaki concept definition is rich 

with meaning, but "unpacking" the defmition to reveal a wealth of implicit meanings 

may be a difficult cognitive task for learners. 

Research has shown that students are creative in avoiding the "unpacking" 

process (Tall & Vinner, 1981; Vinner & Dreyfus, 1989). Although students' first 

encounter with the concept of function might be via function definition, they generally 

approach the task of classifying items as examples or nonexamples of function via 

concept images. A concept image may be composed of mental pictures, properties, 

mental representations, or contexts of applications. Concept images are shaped through 

everyday experiences with examples. When the scope of example types is somewhat 

restricted, students' concept images may actually distort their interpretations of the 

defmition. 

What alternatives exist to introducing mathematical function by definition, a 

practice common in traditional introductory algebra courses? Sfard (1992) suggested 
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two didactic principles related to presenting concepts in structured form: (a) "New 

concepts should not be introduced in structured terms" and (b) "A structured conception 

should not be required as long as the student can do without it" (p. 69). Perhaps a key 

to helping students develop a robust understanding of mathematical function is to 

design instruction so that students encounter a wide variety of example types before any 

attempt to define the concept formally. Then the task might become one of "packing" 

an array of images into a conceptually tight package. It seems reasonable that 

"packing" known pieces via summarizing is cognitively easier than "unpacking" 

unknown pieces. 

If this "packing" approach is employed, then how and when should instruction 

in mathematical function begin? From research on both children and Brazilian street 

people, Resnick (1992) provided what may be a somewhat extreme view that relates 

directly to this question. She concluded that pre-school children and minimally 

schooled adults seem to possess substantial amounts of mathematical knowledge. In the 

case of essentially untutored street people in northeast Brazil who scrounge a living by 

selling lottery tickets, she found what she considered to be extraordinary arithmetic 

competence in their flexibility, ability to invent new methods, and the extent to which 

their problem-solving can be shown to reflect fundamental algebraic principles, such as 

commutativity, associativity, and distributivity. Analogous results were obtained with 

children. Stripping away surface details from both groups uncovered a fundamental 

mathematics structure, the operations of which neither group could reason about nor 

abstract from. Based on this research, Resnick proposed a reasoning-based arithmetic 

program which would increase children' trust in their own mathematical abilities by 

introducing them to formal systems, such as writing mathematical equations, within 

weeks after starting school, thereby providing them with a basis from which to reason. 



11 

Her goal is to "eventually provide all students with true mathematical power--the ability 

to do algebra, to mathematize a situation, to enter a formal system and then come back 

out" (p. 43). This same goal may be applied to learning mathematical function. When 

viewed from a scientific perspective, learning the function concept involves the three 

steps Resnick identified: mathematizing a situation, entering a formal system, and then 

coming back out are precisely the steps involved in a scientific inquiry approach to 

learning science. 

Consider a conception of function which is consistent with both Resnick's view 

and a scientific inquiry approach to science. Sierpinska (1988) suggested that "the 

most fundamental conception of a function is that of a relationship between variable 

magnitudes" (p. 572). She later (1992) emphasized the importance of framing 

students' early experiences with function within the context of relationships between 

variables. 

Maybe, in teaching, functions should first appear as models of relationships. 
This is how they came into being in history. They were tools for description 
and prediction. If we assume that the meaning of a concept lies in the problems 
and questions that gave birth to it, and we wish that our students grasp the 
meaning of the notion of function, then this seems to be a quite reasonable 
claim to make. This does happen in some textbooks. But more often than not 
the order is reversed: relationships between variable magnitudes are presented 
as mere illustrations of mathematical functions and the former are so prepared, 
so idealized that they are almost identical with functions that pretend to be their 
models. And even if functions do appear as models of some relationship 
discovered by experience, the latter are idealized to the point of completely 
distorting their image in the minds of students. Not only discrete sets of data 
are joined by continuous lines but these points seem to fall exactly on the line. 
Simplification leads to absurdities such as representing the growth of a 
population of bacteria in culture by the function f(n) = 2n. This kind of 
pedagogy may make it difficult for the students to distinguish between 
relationships discovered by experience and the mathematical models of these. 
(p. 32) 



Sierpinska' s view that functions should first appear as models of relationships is 

consistent with Resnick's goal of true mathematical power for students. 

12 

It appears reasonable to suggest that the structure for beginning a study of 

mathematical function is already in place in the elementary school, specifically within 

the area of science process skills in the science curriculum. The elementary school 

science curriculum stresses both the product and the process of science. Science 

process skills are related to a scientific inquiry approach to teaching and learning 

science. One part of the scientific inquiry approach is the scientific method. DeBruin 

(1991) gave a list of typical steps featured in the scientific method: purpose, 

hypothesis, materials, procedures, collect data from trials and tests, results, and 

conclusions. In Resnick's terms, purpose, hypothesis, materials, and procedures may 

be seen as facets of a situation. Collecting data from trials and tests begins a 

mathematiza.tion of the situation. Results may be obtained by using the collected data, 

in tabular form, to graph and then to fit a .mathematical model in the form of an 

equation. This step constitutes further mathematiza.tion and entrance into formal 

systems of graphing and writing formulas. Conclusions may be obtained by translating 

the mathematical model into a verbal description of the relationship between the 

variables under consideration. This verbalization step involves coming back out of 

formal mathematical systems. Thus, the goal of scientific inquiry, to begin with a 

situation and to end with a verbal description of the relationship between variables of 

interest, may be accomplished by way of the steps identified by Resnick. The resulting 

mathematical model is an example of a fundamental conceptualization of function as 

described by Sierpinska. 
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Representational Systems for Mathematical Function 

The scientific inquiry approach just described incorporates five external 

representations of mathematical function: situation, table, graph, algebraic formula, 

and verbal description. Janvier (1987b) included these representations in his "star" 

model for function understanding. These representations and processes associated with 

translating between pairs of representations are crucial to framing this study. External 

representations for mathematical function are discussed fully in the next chapter. An 

extension of Janvier's model, presented in Chapter III, constitutes a theoretical 

framework for the study. 

Curriculum Reform 

The past decade has seen a tremendous increase in activity toward effecting 

curriculum reform in both mathematics and science. Collectively, these calls for 

reform have addressed all levels of formal education from kindergarten through post­

baccalaureate studies. In general, movements to reform mathematics curricula have 

progressed further than the corresponding movements in science. This section focuses 

on the main aspects of reform movements in both mathematics and science that relate to 

mathematical function, especially with respect to a scientific inquiry approach to 

learning. 

Mathematics Reform 

The National Council of Teachers of Mathematics (NCTM, 1989) published a 

set of curriculum and evaluation standards designed to establish a broad framework to 

guide reform in K-12 mathematics. The Standards were developed in response to a 

growing call for reform in the teaching and learning of mathematics (Conference Board 
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of the Mathematical Sciences, 1983a; Conference Board of the Mathematical Sciences, 

1983b; National Commission on Excellence in Education, 1983; National Science 

Board Commission on Precollege Education in Mathematics, Science, and Technology, 

1983; Romberg, 1984). Central to the Standards is the concept of developing 

mathematical power in all students, a theme echoed by the National Research Council 

(NRC, 1989). It is this theme to which Resnick (NSF, 1992) was referring when she 

described true mathematical power as "the ability to do algebra, to mathematize a 

situation, to enter a formal system and then come back out" (p. 43). 

Several aspects of the Standards are pertinent to this study. At the K-4 level, 

the Standards point to increased attention to "collection and organization of data" 

within the probability and statistics strand and "use of variables to express 

relationships" within the patterns and relationships strand (p. 20). Corresponding 

changes at the 5-8 level include increased attention to "representing situations verbally, 

numerically, graphically, geometrically, or symbolically" within the problem solving 

strand; "connecting mathematics to other subjects and to the world outside the 

classroom" within the connections strand; "developing and using tables, graphs, and 

rules to describe situations" and "interpreting among different mathematical 

representations" within the patterns and functions strand; "using statistical methods to 

describe, analyze, evaluate, and make decisions" within the statistics strand; and 

"creating experimental and theoretical models of situations involving probabilities" 

within the probability strand (p. 70). All of these content areas may be incorporated in 

a scientific inquiry approach to the study of functions. 

Other mathematics reform reports have implicitly supported the notion that 

instruction needs to be directed toward helping students connect the notions of function 

from a scientific perspective to the corresponding notions of function from a 



mathematical perspective. The NRC (1989), in stressing the development of 

mathematical power for all students, points to mathematics as providing tools for 

revealing hidden patterns that in tum help us understand the world around us: 

Now much more than arithmetic and geometry, mathematics today is a diverse 
discipline that deals with data, measurements, and observations from science; 
with inference, deduction, and proof; and with mathematical models of natural 
phenomena, of human behavior, and of social systems. . .. In addition to 
theorems and theories, mathematics offers distinctive modes of thought which 
are both versatile and powerful, including modeling, abstraction, optimization, 
logical analysis, inference from data, and use of symbols. Experience with 
mathematical modes of thought builds mathematical power--a capacity of mind 
of increasing value in this technological age that enables one to read critically, 
to identify fallacies, to detect bias, to assess risk, and to suggest alternatives. 
Mathematics empowers us to understand better the information-laden world in 
which we live. (pp. 31-32) 

This view of mathematics as a toolkit for understanding the world in which we live is 

strongly reflected in the curriculum standards developed by the NCTM (1989). 

Science Reform 

According to Shymansky and Kyle (1992), the common goal for reform efforts 

in science curricula is "to ensure a scientifically literate citizenry for the 21st century" 

(p. 745). The current reform movement began in response to a variety of reports 

(National Commission on Excellence in Education, 1983; National Science Board, 

1983). More recent reports (National Governors' Association Task Force on 

Education, 1990; U.S. Department of Education, 1991) have intensified the push to 

establish a new national set of science curricula. Thus far, a document paralleling the 
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Curriculum and Evaluation Standards (NCTM, 1989) has not been produced for 

guiding reform in K-12 science curricula. 
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Linn (1992) summarized the current status of the reform movement: "Those 

concerned with science education are united in calling for reform, yet divided in 

specifying the nature of this reform" (p. 821). A major concern is that students have 

difficulty applying abstract scientific principles to the complex phenomena they 

encounter in their lives. There are two schools of thought on how to help students 

overcome this difficulty. Proponents of the first school take the position that if you 

want students to know something then you must tell them what you want them to know 

(Hazen & Trefil, 1991). Proponents of the second school claim that students come to a 

better understanding of science concepts and the nature of science by grappling with 

ideas of science themselves. The research base on learning science suggests that 

instruction is more effective when students are helped to construct ideas by themselves 

(Collins, Brown, & Newman, 1989; Gabel, 1989), supporting the views of proponents 

of the second school. It is interesting that this constructivist view, which forms the 

backbone of mathematics curriculum reform, is still being debated by those working on 

science curriculum reform. 

The constructivist view, applied to science curricula, supports learning about 

both science concepts and the nature of science simultaneously by active involvement in 

scientific exploration and experimentation. The constructivists' call for involvement of 

the learner in doing science is reminiscent of the earlier science reform movement of 

the 1960s. At the elementary school level, one might identify two main differences. 

First, the current emphasis is less on having students rediscover known scientific 

principles and more on providing opportunities for students to create their own 

understandings of scientific principles by constructing meanings from their experiences. 
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That is, the emphasis of discovery learning in the 1960s was on science content, while 

the current constructivist approach focuses on cognitive processes important to learning 

science. Secondly, the availability of computers and calculators in the classroom has 

made it feasible for students to manipulate data accumulated through scientific inquiry 

without lmowledge of advanced mathematical concepts required for summarizing data 

by hand. Thus, at a young age, students might be involved in drawing valid 

conclusions from data. Participation in the scientific inquiry process also affords 

elementary school students the opportunity to experience facets of the mathematical 

function concept years before they begin a formal study of algebra. 

Modeling, Applications, and Links to Science 

This section summarizes some of Blum and Niss' (1991) major ideas about the 

state of trends and issues in mathematics instruction related to applied mathematical 

problem solving, modeling, applications, and links to other subjects. In particular, the 

issues considered within this section include (a) purposes for and organizations of 

mathematics instruction, (b) obstacles to including applied mathematical problem 

solving, modeling, applications, and links to other subjects in mathematics instruction, 

(c) approaches to including these topics in mathematics instruction, (d) the role of 

technology, and (e) implications for the elementary school. 

It may be helpful at this point to distinguish between the mathematical and 

scientific perspectives of mathematical function based on instructional objectives within 

the two disciplines. Within a scientific perspective, the goal of mathematical modeling 

is to describe the relationships that exist between real-world variables, in hopes that the 

descriptions will provide a basis for prediction and perhaps even control. Within a 

school setting, a scientific inquiry approach helps students develop a sense of the nature 
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of science and provides them with the opportunity to actively participate in creating (or 

re-creating) science content by drawing conclusions from data. Within a mathematical 

perspective, the school purpose is to develop an understanding of the processes 

involved in mathematical modeling, including processes associated with various 

representations of mathematical function. 

Mathematics Instruction: Purpose and Organization 

Blum and Niss (1991) identified two distinctly different purposes for 

mathematical instruction. 

1. To provide students with knowledge and abilities concerning mathematics as 
a subject in itself. 

2. To provide students with knowledge and abilities concerning (one or more) 
other subjects, to which mathematics is supposed to have actual or potential 
services to offer. (p. 41) 

They also defined two organizational frameworks which might be used to frame 

mathematics instruction. 

1. Mathematics may be taught as a separate subject, i.e. as an independent 
organizational unit called "mathematics" or something like that. 

2. Mathematics may be taught as a part of and integrated in (one or more) 
other subjects. (p. 41) 

They then related the purposes and organizational frameworks using a 2 x 2 matrix, 

treating integration with other subject areas, inclusively. By restricting the scope of 



integration with other subj~ts to science, their treatment reduces to that shown in 

Figure 1. 

Purpose 
Focus on Mathematics Focus on Science 

Organization 

Purpose #1 Purpose #2 
Mathematics as a Organization # 1 Organization # 1 
Separate Subject 

_(a) (b) 
Purpose #1 Purpose #2 

Mathematics Integrated Organization #2 Organization #2 
in Science 

(c) (d) 

Figure 1. Modification of Blum and Niss' Purpose versus Organization Matrix for 
Mathematics Instruction 
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The four situations of mathematics instruction represented in Figure 1 may be 

related to educational practices. Situation (a) is commonly encountered in school 

mathematics at elementary, middle, and secondary levels and in university mathematics 

courses for future mathematicians or mathematics teachers. Situation (b) is 

encountered in university mathematics courses taught as service courses for future 

scientists and engineers; mathematics courses in vocational education; and, partly, in 

school mathematics at elementary, middle, and secondary levels. Situation (c) is rarely 

found in practice. Situation (d) is encountered in mathematics courses in vocational 

education and, partly, in university mathematics courses taught as service courses for 

future scientists and engineers. A scientific inquiry approach, as used in the elementary 

school, is best described as an example of situation (d) mathematics instruction. 
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Obstacles to Including Modeling and Application in Mathematics Instruction 

Obstacles to including modeling and application in mathematics instruction may 

be classified according to point of view. From the point of view of instruction, many 

mathematics teachers, at all levels, are concerned that they do not have enough 

instructional time to deal with problem solving, modeling, and applications in addition 

to all the other mathematics content they think important to teach. Furthermore, some 

teachers contend that applications and connections to other subjects do not belong in the 

area of mathematics instruction. From the learner's point of view, problem solving, 

modeling, and applications are far more intellectually demanding than routine 

mathematical tasks such as calculations. It is particularly difficult to introduce these 

topics to older students who have already been conditioned to a more procedural 

approach to learning mathematics. Lastly, from the teacher's point of view, problem 

solving and applications make planning and implementing instruction more demanding, 

while, at the same time, requiring more attention to alternative approaches to assessing 

students' achievement levels. In addition, teachers may not feel comfortable trying to 

incorporate examples from subjects areas which they have not studied. 

Approaches to Including Modeling and Applications 

Blum and Niss (1991) classified six types of approaches to teaching problem 

solving, modeling, and applications within mathematics instruction. 

The separation approach. Instead of including modeling and applications work 
in the ordinary mathematics courses, such activities are cultivated in separate 
courses devoted to them. In this way, the "pure" mathematics courses may 
remain unaffected by the introduction of modeling and applications work in 
the program as a whole. 
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The two-compartment approach. The mathematics program is divided into two 
parts. The first part consists of a usual course in "pure" mathematics, 
whereas the second one deals with one or more "applied" items, utilizing 
mathematics established in the first part or earlier. 

The islands approach. The mathematics program is divided into several 
segments each organized according to the two-compartment approach. This 
means that a "pure" mathematics program is interrupted by "islands" of 
applicational work, drawing on mathematics developed in the preceding 
period. 

The mixing approach. Frequently in the teaching of mathematics, elements of 
applications and modeling are invoked to assist the introduction of 
mathematical concepts etc. Conversely, newly developed mathematical 
concepts, methods and results are activated towards applicational and 
modeling situations whenever possible. In this approach, the mathematics to 
be involved in applications and modeling activities is more or less given from 
the outset. 

The mathematics curriculum integrated approach. Here problems, whether 
mathematical or applicational, come first and mathematics to deal with them 
is sought and developed subsequently. In principle the only restriction is that 
the problems considered lead to mathematics which is relevant to and 
tractable in the given mathematics curriculum. 

The interdisciplinary integrated approach. This approach is largely similar to 
[the mathematics curriculum integrated approach] but differs from it in that 
this one operates with a full integration between mathematical and extra­
mathematical activities within an interdisciplinary framework where 
"mathematics" is not organized as a separate subject. (pp. 60-61) 

The approaches likely to be used in elementary mathematics instruction are the islands 

approach, the mixing approach, and the mathematics curriculum integrated approach. 

An example of the islands approach may be found in elementary mathematics textbook 

series which "tack on" applications at the end of each instructional unit. Newer 

textbook series that focus on problem solving using real-world problems use the mixing 
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approach. The mathematics curriculum integrated approach is most likely to be the one 

used in integrating science and mathematics via a scientific inquiry approach. 

The Role of Technology 

The availability of computers and calculators for drawing graphs and pictures 

and for performing numerical and algebraic calculations has opened new possibilities 

for incorporating modeling, applications, and problem solving in mathematics 

instruction at all levels. Computers and calculators aid learners in working on more 

complex applied problems using more realistic data at an earlier age than is possible 

without technology. Additionally, using technology to handle tedious but routine 

computational tasks frees the learner to concentrate on the processes of modeling, 

problem solving, and application. The use of technology potentially leads to an 

instructional deemphasis on routine computational skills and an emphasis on problem 

solving abilities such as building, applying, and interpreting models, experimenting, 

simulating, algorithmic thinking, and performing computational modeling (Blum & 

Niss, 1991). 

Implications for the Elementary School 

The adoption of a constructivistic approach to learning implies new directions 

for elementary school mathematics. From a constructivist's view, mastering 

elementary school mathematics is not equated with mastering a set of mathematical 

facts. Instead, the mastering of a set of mathematical processes, all related to problem 

solving, is viewed as crucial for concept development. Thus, within a constructivist 

approach, solving problems framed in real-world contexts should form an essential part 

of mathematics instruction in the elementary school. In particular, investigations of 
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relationships between real-world variables may provide important natural opportunities 

for developing problem-solving processes. 

Because of the current availability of computers and calculators, many processes 

related to problem solving and mathematical modeling are more accessible to 

elementary students than ever before. Data collected during investigations of 

relationships between real-world variables may be analyzed using computers or 

calculators. In particular, technology may be utilized by students to construct 

mathematical models even if students do not know all of the underlying mathematical 

processes involved in the analysis techniques. 

A crucial consideration associated with implementing an elementary 

mathematics curriculum based on problem solving, modeling, and applications is 

teacher preparation. This approach requires a dramatic shift in preservice and inservice 

elementary teacher education. Teacher education programs must equip teachers with 

knowledge, abilities, and experiences they will need to cope with the demands of 

teaching mathematics using applications, modeling, and problem solving. An even 

more difficult task for teacher education programs might be to equip teachers with 

associated attitudes toward mathematics teaching and learning. Elementary teacher 

education is the topic of the next section. 

Elementary Teacher Education 

National Reforms 

NCTM (1991) addresses issues of preservice and inservice teacher education 

and teacher support associated with implementation of earlier recommendations 

(NCTM, 1989). One of the professional standards is entitled "Knowing Mathematics 

and School Mathematics." · 
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The education of teachers of mathematics should develop their knowledge of the 
content and discourse of mathematics, including--

• mathematical concepts and procedures and the connections among them; 
• multiple representations of mathematical concepts and procedures; 
• ways to reason mathematically, solve problems, and communicate 

mathematics effectively at different levels of formality; 

and, in addition, develop their perspectives on--

• the nature of mathematics, the contributions of different cultures toward the 
development of mathematics, and the role of mathematics in culture and 
society; 

• the changes in the nature of mathematics and the way we teach, learn, and 
do mathematics resulting from the availability of technology; 

• school mathematics within the discipline of mathematics; . 
• the changing nature of school mathematics, its relationships to other school 

subjects, and its applications in society. (p. 132) 

The Mathematical Association of America (MAA) built on the base provided by 

NRC (1989) and NCTM (1989) in considering changes in teacher preparation (Lietzel, 

1991). MAA proposed four sets of standards for teacher preparation: (a) standards 

common to the preparation of mathematics teachers at all levels, (b) standards for the 

elementary (K-4) level, (c) standards for the middle grades (5-8) level, and (d) 

standards for the secondary (9-12) level. For this study only the common standards 

will be discussed. 

There are six common standards: learning mathematical ideas, connecting 

mathematical ideas, communicating mathematical ideas, building mathematical models, 

using technology, and developing perspectives. The three standards most pertinent to 

this study are as follows: 



Standard 2: Connecting Mathematical Ideas 

The mathematical preparation of teachers must provide experiences in which 
they: 
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• develop an understanding of the interrelationships within mathematics and an 
appreciation of its unity; 

• explore the connections that exist between mathematics and other disciplines; 
• apply mathematics learned in one context to the solution of problems in other 

contexts. (p. 3) 

Standard 4: Building Mathematical Models 

The mathematical preparation of teachers must include experiences that enable, 
motivate, and encourage them to analyze real-world situations through the use 
of whatever mathematical ideas or quantitative strategies are available. In 
particular, they should be able to: 
• work with a given model; 
• recognize constraints inherent in a given model; 
• construct models to analyze real-world settings and use symbols and 

reasoning in analysis; 
• convert among representations (graphical, numerical, symbolic, verbal) that 

reflect quantitative constraints in a given real-world problem. (p. 6) 

Standard 5: Using Technology 

The mathematical preparation of teachers must include experiences in which 
they use calculators and computers: 
• as tools to represent mathematical ideas and construct different 

representations of mathematical concepts; 
• to engender a broad array of mathematical modes of thinking through use of 

powerful computing tools (including function graphers, curve fitters, and 
symbolic manipulators); 

• to develop and use alternate strategies for solving problems. (p. 7) 

The three standards incorporate the essential ingredients associated with learning 

mathematical function within a scientific perspective. If teachers are to implement such 

instruction in the elementary school, then they must, in some way, develop the 
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associated content knowledge. There are four components of an elementary teacher 

education program in which students might learn to build, interpret, and use 

mathematical models based on scientific data: (a) mathematics courses, (b) science 

courses, (c) mathematics education courses, and (d) science education courses. 

Traditionally, mathematical modeling is not part of any of these courses. That is, 

mathematical modeling and mathematical function from a scientific perspective could 

be placed in all four types of courses, yet generally are omitted from all. A challenge 

for elementary teacher education programs is to establish a curriculum that incorporates 

important content on problem solving, applications, and modeling. 

Teacher Content Knowledge 

Since mathematical modeling has not generally been a part of preservice teacher 

education, the effects of teachers' limited content knowledge on instruction is an 

important consideration. Several general studies have delved into the relationship 

between teacher content knowledge and instruction. Begle (1979) concluded in a 

review of the literature that "the effects of a teacher's subject matter knowledge ... 

seem to be far less powerful than most of us had realized. . . . Our attempts to 

improve mathematics education would not profit from further studies of teachers" (pp. 

54-55). This strand of research remained essentially dormant until Shulman (1986) 

inspired further work when he identified teacher subject matter knowledge as the 

"missing paradigm" in research on teaching. More recent research in this area has been 

based on qualitative research designs. Leinhardt, et al. (1990) expressed the underlying 

concern of this research in that "limitations on subject matter knowledge might reduce 

the flexibility and creativity of the teacher as well as create a kind of authoritarianism 

toward the subject and the student that permits little or no exploration of ideas" (p. 46). 
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Stein, Baxter, and Leinhardt (1990) concluded that the few studies which have focused 

on teacher knowledge and elementary mathematics instruction suggest that, even at 

early grade levels, design and delivery of exemplary lessons demands considerable 

subject matter expertise. 

Most of the studies relating teacher content knowledge to instruction in the area 

of mathematical function are based on secondary preservice teachers as subjects (Ebert, 

1991; Even, 1989, 1990, 1993; Even & Ball, 1989). In a study of secondary 

preservice teachers, Ebert (1991) found that knowledge of functions and graphs was 

incomplete and especially fragile in some areas. From a mathematical perspective, her 

subjects performed well on tasks dealing with linear functions, but confused 

exponential and quadratic functions. From a scientific perspective, her subjects 

displayed weaknesses in attaching verbal descriptions to situational graphs. All of her 

subjects indicated a degree of uncertainty when confronted with a pair of graphs 

depicting the same situation, i.e., (a) a position versus time graph and (b) a velocity 

versus time graph. In addition, for all situations involving linear functions, her 

subjects did not identify the initial value of the dependent variable as the y-intercept on 

the graph of the function. 

Since secondary mathematics teachers are required to complete an 

undergraduate degree in mathematics and elementary teachers are generally required to 

complete no more than six to twelve semester hours of undergraduate mathematics, it is 

expected that elementary teachers would perform at a lower level than secondary 

teachers on the function and graphing tasks of Ebert's study. Based on the performance 

of secondary preservice teachers, there is sufficient reason for concern about the 

content knowledge of elementary preservice teachers. 



One research program has been aimed specifically at describing and analyzing 

the teaching of functions, graphs, and graphing in the elementary grades (Baxter, 

Leinhardt, & Stein, 1988; Leinhardt, Stein, & Baxter, 1988; Stein, Baxter, & 
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Leinhardt, 1990). For example, Stein, Baxter, and Leinhardt (1990) investigated the 

relationship between a teacher's knowledge of functions and graphs and his 

instructional practice. The single subject was an experienced fifth grade teacher who 

was recommended to the researchers as an excellent mathematics teacher. His content 

knowledge in the area of functions and graphs was assessed using a card sorting activity 

and a subject matter knowledge interview. His instructional practice was assessed 

using videotapes of 25 lessons he presented to his students on functions and graphing. 

The results indicated that the teacher's weakness in subject matter knowledge had 

definite negative effects on instructional practice. 

The results suggest that the teacher's knowledge of functions and graphing was 
missing several key mathematical ideas and that it was not organized in a 
manner to provide easily accessible, cross representational understanding of the 
domain. These limitations were found to relate to a narrowing of his instruction 
in three ways: the lack of provision of groundwork for future learning in this 
area, overemphasis of limited truths, and missed opportunities for fostering 
meaningful connections between key concepts and representations. (p. 639) 

The 25-lesson presentation of function and graphing videotaped in this study was based 

solely on mathematical function from a mathematical perspective. Applied problem 

solving, applications, and modeling were not incorporated in the unit. In fact, this 

researcher found no research specifically directed at studying elementary teachers' 

knowledge of mathematical function from a scientific perspective. 
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A related area of research may be found in the science education literature. 

Lederman (1992) reviewed research studies on teachers' conceptions of the nature of 

science. Most studies focused on secondary science teachers' views about scientific 

lmowledge (e.g., Koulaidis & Ogborn, 1989) and lmow1edge of the history and 

philosophy of science (e.g., King, 1991). These studies all indicated that teachers have 

serious misconceptions about the nature of science. Bloom's ( 1989) study of preservice 

elementary teachers' conceptions of the nature of science revealed that preservice 

teachers (a) believe science is people-centered, with its primary purpose being for the 

benefit of humankind and (b) are confused concerning the meaning and role of 

scientific theories. Noticeably absent in the science education literature are studies of 

the effects of elementary teachers' misconceptions concerning the nature of science on 

(a) teachers' science process skills and (b) teachers' performances in teaching science 

process skills to elementary students. Such studies would be expected to include 

teacher !mow ledge of procedures in scientific methods of inquiry, including drawing 

valid conclusions from scientific data via data analysis. 

Linear Mathematical Function 

This project involved treatment activities on building, interpreting, and using 

linear mathematical models based on data collected using a scientific inquiry approach. 

The resulting linear functions are idealized forms of the linear models. The distinction 

between linear models and linear functions, based on common mathematical, scienti,fic, 

and statistical presentations is the topic of this section. Also included in this section is· 

a discussion of cognitive obstacles that may inhibit students in attempts to construct 

connections among the three areas of study. 
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Mathematical. Scientific. and Statistical Presentations 

The slope-intercept form for a linear function is generally given in algebra texts 

as y = m x + b, where m is the slope and b is the y-intercept. Mathematically, a 

function expressed in algebraic formula notation is a deterministic representation. 

From a scientific perspective, a function is an idealized summary of scientific data, and 

is commonly referred to as a mathematical model rather than function in order to 

emphasize the probabilistic nature of equations derived from scientific data. 

Statisticians make a distinction between a model and the corresponding function. In 

cases where a set of two-variable data appears linear, a statistical model may be written 

in the form Yi =a+ b Xi + f1, where Y represents the dependent variable and X 

represents the independent variable. In this case t1 represents the deviation of the ith 

observation (Xi> Yi) from the idealized "best fit" equation given by Y = a + b X. 

Statisticians refer to this latter equation as the statistical function corresponding to the 

given model. The differences in definitions of model and function from the three 

perspectives tend to inhibit students' forming connections among the three subject 

areas. 

The task of connecting facets of mathematical function from mathematics, 

science, and statistics may be further complicated by differences in notation used in the 

three disciplines. Also, differences in interpretational emphasis associated with the 

notational differences may cause problems. For example, consider the linear function 

(model) discussed in Chapter I: y = 1.13 x + 45.0. This equation, as written, is in 

the usual mathematical form. Mathematically, the emphasis is on what the slope, 1.13, 

and the y-intercept, 45.0, reveal about the graph of the function in the Cartesian plane. 

The scientific emphasis is on how the slope and y-intercept are interpreted within the 

scientific context in which the equation was derived. The statistical emphasis is on the 



values 1.13 and 45.0 and what they reveal about the usefulness of x in predicting 

values of y. 
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The preferred scientific notation for this relationship would be M = 1.13 V + 

45.0, where M is the total mass of the graduated cylinder and antifreeze in grams and 

V is the volume of antifreeze in milliliters. Scientifically, the emphasis is on the 

variable relationship, as evidenced by renaming the variables y and x as M and V, 

respectively. The simple act of renaming the variables nudges the interpretation of the 

equation out of the Cartesian plane and into the physical situation. Using Leinhardt's 

(1990) term, a shift of "space" (p. 8) has occurred. 

A linear mathematical function undergoes another notational and emphasis 

transformation when moved into the realm of statistics. A linear regression fit of a data 

set using a TI-81 calculator returns two values, a and b. These values are the 

parameters of the linear function y = a + b x, an equational form commonly found in 

elementary statistics textbooks. Two notational changes are of interest here. First, a 

and b have replaced band m, respeCtively, in the mathematical form y = m x + b. 

Second, a commutative rearrangement has taken place; that is, statistically, the constant 

term precedes the variable term, while, mathematically, the variable term precedes the 

constant term. Statistically, the emphasis is on the parameters a and b and what they 

reveal about the relationship between the variables, x and y, in this case. The b-value 

is used as a measure of the functional relationship between x and y, often by testing the 

null hypothesis H0 : b=O against the alternative H 1: b:;t:O. If the null hypothesis is not 

rejected, then it is concluded that inclusion of a first order term in x in the regression 

model does not help in the prediction of y. If the alternative hypothesis is accepted, 

then it is concluded that a linear relationship does exist between x and y, and the 

equation y = a + b x provides a better prediction of y than does the equation y = a. 
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The differences in notation and emphasis among the mathematical, scientific, 

and statistical presentations are important. These differences have grown out of three 

traditions. However, in our attempts to "divide and conquer" we may have succeeded 

in simply separating rather than conquering. Surely, the greatest irony is that now we 

find ourselves emphasizing the need to make mathematical connections among areas 

which we arbitrarily divided. Data analysis provides a context for uniting the 

mathematical, scientific, and statistical perspectives. 

For the purposes of this treatment, consider a data analysis process for linear 

data that involves four steps. These four steps may be incorporated as an integral part 

in a scientific inquiry approach to learning elementary school science. 

1. Data are collected in a scientific setting in an attempt to determine and 

describe the relationship between two real-world variables. 

2. Data are analyzed using the techniques of statistics in an attempt not only to 

determine the functional relationship but also to establish a probabilistic statement about 

the appropriateness of the relationship determined. 

3. Algebra is employed to provide a simplified summary of the data in the form 

of an algebraic function expressed as an algebraic formula. The equation serves as a 

description of the relationship between the two physical variables of interest. 

4. The functional relationship, expressed as an algebraic formula, is translated 

into a verbal description of the relationship between the two variables. 

Basically, this procedure is a more specific form of the· steps Resnick (1992) 

identified: (a) mathematize a situation, (b) enter a formal system, and (c) come back 

out. A crucial key to implementing these steps in elementary classrooms, as discussed 

earlier, is teacher preparation. Research is needed to determine the extent of teacher 

knowledge in this area and to design changes in preservice education programs for the 



purpose of including a stronger component in mathematical function through 

mathematical modeling. 

Linear Function: A Case Study 
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Mathematical function, even in the relatively simple case of linear functions, 

constitutes a complex concept domain. No attempt will be made to review a 

comprehensive list of research studies. Instead, one study will be used as a illustration 

of gaps of understanding students may exhibit with linear mathematical models. 

Schoenfeld, Smith, and Arcavi (in press) documented the complexity involved in one 

student's evolving understanding of linear functions of the form y = m x +b. The 

subject was a sixteen-year-old high school honor student participating in a special 

summer calculus class at the University of California - Berkeley. Based on her 

superior record in high school mathematics classes, it was e~pected that her 

understanding of the simplest of mathematical functions, restricted to the commonly 

presented algebraic formula and graphical representations, would be robust. However, 

the researchers found serious gaps and misconceptions in her understanding of linear 

functions. In particular, the student responded to the task of constructing equations 

corresponding to linear graphs presented in a computer environment as though she 

believed that three properties are necessary and sufficient to characterize a straight line: 

slope, y-intercept, and x-intercept. She tried to use the value of the x-intercept as the 

value of x in constructing the equation corresponding to the graph. 

Initially, it seems puzzling that the student would try to incorporate the x­

intercept as well as they-intercept and slope when constructing an equation for a linear 

graph. Surely, the student was not taught to use the x-intercept in this manner! A 

common sequence of presentation in a mathematics class is to present the student with 

an equation in the standard form, Ax + By = C and instruct the student to solve for y 



34 

and graph the equation. Given the equation 4x- y = -5, the student is expected to 

rearrange the equation to obtain y = 4 x + 5, locate they-intercept ( +5) on they-axis 

and mark the point, use the slope (4) to find one or two more points, and draw the 

straight line passing through the points. But we also teach students to graph an 

equation like 4 x- y = -5 by determining and plotting the x- andy-intercepts and 

drawing the line passing through these two points. The similarities and differences in 

constructing a graph by these two methods, if internalized procedurally rather than 

conceptually by the student, might account for the observed attempt to use the x­

intercept inappropriately. Furthermore, if we consider the student's attempt to use the 

x -intercept in terms of the emphasis placed on the equation y = m x + b in 

mathematics instruction, it may be possible to attribute the student's response to over 

generalization. Mathematically, the emphasis is on the slope and the y-intercept; the 

variables x and y are largely ignored. Since the student was placed in a situation where 

she needed to write the equation rather than just determine the value of the slope andy­

intercept, she needed to create a meaning for x in the equation. 

Rationale for the Study 

Elementary school science teachers are expected to teach children science 

process skills, including the processes associated with a scientific inquiry approach. 

Traditionally, science methods courses for preservice elementary teachers have stressed 

incorporating hands-on science experiences in elementary instruction. However, 

preservice teachers are rarely asked to take the process beyond the data collection step. 

Therefore, elementary preservice programs have failed to adequately prepare teachers 

to instruct students in data analysis processes associated with a scientific inquiry 

approach. 
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NCTM (1989) stressed a need for increased emphasis on functional 

relationships, data analysis, and problem solving in the elementary curriculum. 

Instructionally, these topics may be incorporated within a scientific inquiry approach to 

teaching science. There are four advantages to integrating science and mathematics 

instruction in this manner. 

1. A major goal of school science, construction of verbal descriptions of 

relationships between real-world variables, may be facilitated through application of 

data analysis techniques involving several representations of mathematical function. 

2. A major goal of school mathematics, developing understanding of 

mathematical function and its representations and associated translation processes, may 

be facilitated by situating instruction within a scientific context. 

3. The integration of science and mathematics via a scientific inquiry/data 

analysis approach may help students develop an understanding of the nature of science. 

4. The integration of science and mathematics via a scientific inquiry/data 

analysis approach may help students appreciate the usefulness of mathematics in 

exploring our physical world. 

Elementary teachers need to experience learning science and mathematics via a 

scientific inquiry/data analysis approach before they can reasonably be expected to 

teach elementary children using this approach. The treatment sessions utilized in this 

study were designed to engage preservice elementary teachers in activities involving 

building, interpreting, and using linear mathematical models based on sets of scientific 

data. Specifically, the study was designed to assess the effectiveness of the treatment 

sessions in helping preservice teachers connect the notion of describing relationships 

between two variables based on data collected in a physical science setting to what they 



already knew about linear mathematical functions in the form y = m x + b from the 

study of algebra. 
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In addition to assessing preservice teachers I abilities to make connections among 

various representations of mathematical function, this study was designed to address 

three other issues. First, the experiment was designed to study the effect of 

instructional strategy on teacher learning. Basically, the purpose was to determine the 

effect of engagement in data collection tasks on building, interpreting, and using linear 

mathematical models. Second, the study explored preservice teachers 1 reaction to using 

TI-81 calculators for data analysis. Third, the study was designed to investigate the 

pentagonal model (described in Chapter III) as a model for framing research in 

mathematical function. 



CHAPTER III 

THEORETICAL MODEL FOR THE STUDY 
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In Chapter I two factors are identified that might explain some of the difficulties 

students have when attempting to link knowledge of mathematical function developed 

within a mathematical perspective to data analysis within a scientific perspective. 

Leinhardt, Zaslavsky, and Stein (1990) suggest that "the issue of directionality of 

thinking about graphs and functions" (p. 3) is a major factor. The context factor may 

also be an important issue. In this chapter these two factors are considered within a 

theoretical framework derived from an extension of Janvier's (1987ab) "star" model for 

understanding mathematical function. 

Representations of Function 

Janvier (1987b) suggests that a representation consists of three components, 

written symbols, real objects, and mental images, along with verbal or language 

features that serve as links between the three components. Mental images are internal 

representations, while real objects and written symbols may serve as external 

representations. Dufour-Janvier, Bednarz, and Belanger (1987) refer to external 

representations as being "all external symbolic organizations (symbol, schema, 

diagrams, etc.) that have as their objective to represent externally a certain 'reality'" 

(p. 109). Pufour-Janvier et al. cite four reasons for the use of external representations: 

1. In some cases representations are so closely related to the concept that it is 

hard to imagine how the concept can be conceived without the representation. For 



example, the function concept is highly intertwined with Cartesian graphic 

representations. 
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2. Multiple representations provide "concretizations" for the concept in hopes 

that, through extraction of common properties from diverse representations, the learner 

will develop the intended mental construct. 

3. Certain specific difficulties in learning a concept may be eliminated by the 

use of alternative representations. 

4. Varied representations tend to make mathematics more attractive and 

interesting to the learner. 

Although this research focuses on external representations of mathematical function, it 

is important to keep in mind that the role of these external representations is to help 

learners develop strong internal representations of the function concept. 

Janvier (1987b) proposes that students construct their own internal 

representation of mathematical function based on some combination of five common 

external representations: algebraic formula, table, graph, situation, and verbal 

description. These five representations are incorporated in his "star" model for 

understanding mathematical function (Figure 2). Janvier suggests that, taken 

individually, each representation conceals more about the function concept than it 

reveals, and he (1987a) further suggests that improved understanding of mathematical 

function requires focusing on the translations between representations rather than on the 

representations themselves. 

If we include "set of ordered pairs" as another form of a table representation, 

the mathematical perspective described by Leinhardt et al. (1990), viewed within 

Janvier's star model, involves algebraic function-to-table and table-to-graph 

translations. Thus, the mathematical perspective incorporates algebraic formula, table, 
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and graph representations and ignores situation and verbal description representations. 

These latter two representations are precisely the two that would surface from a 

discussion of context. Hence, context is a critical factor distinguishing mathematical 

and scientific perspectives. The scientific perspective, as described by Leinhardt et al. 

involves situation-to-table, table-to-graph, and possibly graph-to-algebraic formula 

translations. A more comprehensive view of the scientific perspective requires drawing 

valid conclusions from data. Within this comprehensive view, the algebraic formula­

to-verbal description translation should be added as the fourth translation in the list. 

Thus, the scientific perspective incorporates all five representations, and focuses on 

relating the physical situation representation of a function to the corresponding verbal 

description representation. 

Graph 

Algebraic Fonnula 

Table 

Verbal 
Description 

Figure 2: Janvier's "Star" Model for Understanding Mathematical Function 

An extension of Janvier's star model is presented in the next section. This 

extended model, referred to as the "pentagonal" model, incorporates all possible 
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translations between pairs of the five representations identified by Janvier. In addition, 

the pentagonal model provides a theoretical framework for defining translation 

processes contained within the translations. 

Translations among Representations 

A "pentagonal" model may be derived from Janvier's star model by joining 

adjacent points of the star (Figure 3). In this model the vertices of the pentagon 

correspond to the five external representations identified by Janvier, with the extension 

that the interpretation of "table" is expanded to include both mapping diagram and set 

of ordered pairs representations. The line segments forming the sides and diagonals of 

the pentagon correspond to the 20 possible one-way translations between pairs of 

representations. These 20 translations may be identified uniquely as source-to-target 

translations. For example, Swan's ( 1985) research on children's abilities to construct 

qualitative graphs would be viewed within the pentagonal model as a situation-to-graph 

translation. 

Graph 

Algebraic Formula 

Verbal 
Description 

Figure 3: Pentagonal Model of Representations and Translations for 
the Mathematical Function Concept 
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Within each source-to-target translation, one or more translation processes may 

be identified. Janvier (1987a) uses the term translation processes to mean "the 

psychological processes involved in going from one mode of representation to another" 

(p. 27). For example, a situation-to-table translation may involve the translation 

process of measuring. Although Janvier attempted to identify some translation 

processes, he expressed concern about the tentative nature of the processes he 

identified. In particular, he found it difficult to define uniquely the process(es) by 

which a particular translation is accomplished. However, such attempts at identifying 

translation processes, though incomplete and tentative, may prove useful in allowing 

for a broader, yet more detailed, view of how representations relate to the development 

of the function concept. Some translation processes for the source-to-target translations 

incorporated in the pentagonal model are listed in Figure 4. The processes shown in 

bold-faced print were identified by Janvier; the other processes are proposed as part of 

the pentagonal model. 

The mathematical and scientific perspectives described by Leinhardt, et al. 

(1990) may be viewed within the pentagonal model in terms of both the translations and 

the corresponding translation processes involved. The algebraic formula-to-table 

translation of the mathematical perspective involves instantiation via computing. The 

table-to-graph translation involves selecting axes, constructing scales, and plotting. It 

is important to note that, within a mathematical perspective, notions of measuring and 

units of measure are not emphasized when selecting axes and constructing scales. 

From the scientific perspective, as identified by Leinhardt, et al. (1990), the 

translations involved are (a) situation-to-table, (b) table-to-graph, and, perhaps, (c) 

graph-to-algebraic formula. The situation-to-table translation involves defining 

variables, establishing parameters, and measuring with appropriate measuring 
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Figure 4. Processes Associated with Translations in the Pentagonal Model 

instruments. The table-to-graph translation is similar to that given from the 

mathematical perspective in that it involves the same three translation processes. 

However, this translation within a scientific perspective differs from that within a 

mathematical perspective because selecting axes and constructing scales within a 

scientific perspective involves both the units and the magnitudes of the measurements in 



43 

selecting an appropriate viewing window for the graph. Mathematically, a graph-to­

algebraic formula translation is generally accomplished by curve recognition process, if 

at all. Scientifically, this translation is accomplished by data analysis techniques which 

may involving either hand-fitting or more sophisticated statistical techniques. 

In the next section the ideas of mathematical and scientific perspectives 

described by Leinhardt, et al. (1990) are expanded to a more encompassing view of 

mathematical and scientific perspectives of mathematical function. The expansions of 

the two perspectives have resulted from a classification of tasks typically encountered in 

teaching mathematical function. The following development is based on using the 

pentagonal model as a framework for considering how mathematical function is taught. 

Approaches to Teaching Mathematical Function 

Two distinctly different approaches are traditionally used for developing the 

function concept: (a) a theoretical approach and (b) a data analysis approach. The 

theoretical approach is employed in traditional algebra courses. The data analysis 

approach may be found in elementary, middle, and high school classrooms where data 

analysis is used as a step in data interpretation. Data analysis is also a crucial 

component of introductory college physical science courses as well as in statistics 

courses at all levels. The theoretical and data analysis approaches to teaching 

mathematical function align well with mathematical and scientific perspectives, 

respectively. By comparing these approaches within the framework of the pentagonal 

model, problems associated with connecting representations and developing a 

comprehensive understanding of the function concept may be seen as inherent in the 

ways mathematical function is taught. 
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Theoretical Approach. The theoretical approach is utilized in traditional algebra 

and calculus courses and is associated with a mathematical perspective. This approach, 

viewed within the framework of the pentagonal model, consists of six translations: (a) 

algebraic formula-to-table, (b) table-to-graph, (c) graph-to-algebraic formula, (d) 

algebraic formula-to-graph, (e) graph-to-table, and (f) table-to-algebraic formula 

(Figure 5a). The mathematical perspective defined by Leinhardt, et al., (1990) 

involves two of the six translations identified within the theoretical approach: (a) 

algebraic formula-to-table and (b) table-to-graph (Figure 5b). The six translations of 

the theoretical approach are all part of a more comprehensive view of the function 

concept from a mathematical perspective. 
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Figure 5. The Function Concept from a Mathematical Perspective. (a) Theoretical 
View, (b) Leinhardt et al. View, and (c) Applications View 

The theoretical introduction to the function concept is by function definition. 

Modern algebra textbooks typically employ a set-theoretical definition of function. For 
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example, Foster, Winters, Gell, Rath, and Gordon (1992) introduce function with this 

definition: "A function is a relation in which each element of the domain is paired with 

exactly one element of the range" (p. 374). Frequently, the function definition is first 

illustrated with a mapping representation. Subsequent representations may include 

table, algebraic formula, and graph. Viewed within the context of the pentagonal 

model, the theoretical approach involves only six of the 20 source-to-target translations 

incorporated in the model and only three of the representational modes. 

The situation and verbal description representations are noticeably missing from 

the theoretical approach. Consequently, the opportunities for developing language 

associated with the translation processes of verbalizing and symbolizing are also 

missing from the theoretical approach. As a partial remedy to this problem, algebra 

textbooks authors have incorporated a variety of applications in the form of word 

problems. Often these word problems may be solved quite algorithmically via (a) 

verbal description-to-algebraic formula, (b) algebraic formula-to-table, and (c) table-to­

verbal description translations (Figure Sc). 

As an example of an algorithmic solution to a word problem, consider the 

following example: "One season, Reggie Walker scored 9 more runs than twice the 

number of runs he batted in. He scored 117 runs that season. How many runs did he 

bat in?" (Foster, et al., 1992, p. 114). Using a traditional word problem approach the 

first step to solving this problem is to translate the verbal description into an algebraic 

formula; for example, if x = the number of runs he batted in and y = the number of 

runs he scored, the algebraic equation y = 2x + 9 may be written. The value of y is 

known to be 117. This value of y is they-value of an ordered pair (x, y) or an entry in 

the table of x, y-values for the function y = 2x + 9. By substituting y = 117 into the 

equation y = 2x + 9 and solving for x, the x-value of 54 corresponding toy= 117 in 
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the table representation is found. This substitution/solving process accomplishes the 

algebraic formula-to-table translation. The value x = 54 in the table is then translated 

into a verbal description which answers the question asked: "Reggie Walker batted in 

54 runs." 

Modem problem solving examples may involve numerous variations on the 

translations involved in this example. However, neither the theoretical approach nor 

the applications incorporated in teaching function from a mathematical perspective 

involves algebraic formula-to-verbal description translations. Thus, the mathematical 

perspective fails to emphasize what may well be a crucial process in function concept 

development: verbalizing. The verbalizing process involves a translation from 

symbolic language to verbal interpretation. A discussion of the importance of this 

process, framed within Kaput's (1987) Symbol Systems Theory, may be found in the 

Chapter VI. 

Data Analysis Approach: NCTM (1989) stresses the importance of 

incorporating data analysis at all levels within the K-12 mathematics curriculum. 

However, it is interesting to note that there is a separation of the notions of 

mathematical function from the notions of data analysis at the K-4 and 5-8 levels. A 

merging of mathematical function with data analysis is encountered, however, within 

the "Functions" section at the 9-12 level. "In grades 9-12, the mathematics curriculum 

should include the continued study of functions so that all students can model real­

world phenomena with a variety of functions" (p. 154). Implicit in this standard is the 

connection of a theoretical treatment of mathematical function incorporated in the 

mathematical perspective with a data analysis view of mathematical function 

incorporated in the scientific perspective. This connection can be accomplished via the 

process of mathematical modeling. A broader view of mathematical function than that 
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implied by NCTM is incorporated in the pentagonal model. In particular, the processes 

associated with data collection, data analysis, and data interpretation are all 

incorporated in the pentagonal model for mathematical function. 

The data analysis approach constitutes a critical portion of a scientific 

perspective of mathematical function. The data analysis approach, frequently 

associated with scientific inquiry methods, involves all five representations defined 

within the pentagonal model. However, only four of the 20 source-to-target 

translations are typically incorporated into the data analysis approach: (a) situation-to­

table, (b) table-to-graph, (c) graph-to-algebraic formula, and (d) algebraic formula to 

verbal description (Figure 6). It is important to note that the data analysis approach 

provides the opportunity for language development in the algebraic formula-to-verbal 

description translation process of verbalizing--a process missing in the study of function 

from a mathematical perspective. The scientific perspective also incorporates 

applications similar to those found within the mathematical perspective (illustrated in 

Figure 5c). 
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Figure 6. Data Analysis Approach 
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A Statement of Contrast Between the Two Awroaches. From a scientific 

perspective, the purpose of mathematical modeling is to obtain a succinct expression 

(algebraic formula and verbal description) of the relationship between two real-world 

variables. The utility of an algebraic formula derived via the process of mathematical 

modeling is determined by the accuracy of predictions made with the formula. That is, 

from a scientific perspective, data analysis is important in helping the scientist better 

understand the physical world, with underlying goals of prediction and, perhaps, 

control. 

From a mathematical perspective, the purpose of a mathematical model is 

instantiation. For example, the utility of linear functions of the form y = m x + b is 

illustrated by examples such as y = 1.13 x + 45.0 derived via mathematical modeling 

from mass versus volume data (Chapter 1). Expressed simplistically, examples of 

mathematical functions derived by data analysis procedures are used by mathematicians 

to illustrate the importance of studying mathematical theory. However, the processes 

involved in deriving mathematical models via data analysis are not generally 

incorporated within the mathematical perspective in K-12 mathematics curricula. 

Mathematical Modeling within the Pentagonal Model 

Within this treatment, a mathematical model can be defined as an algebraic 

formula expressing a functional relationship between two real-world variables. The 

equation encountered in Chapter I, y = 1.13 x + 45.0, is a model representing the 

functional relationship between the total mass of a graduated cylinder containing 

antifreeze and the volume of antifreeze in the graduated cylinder. Using this defmition 

for mathematical model, the scientific perspective may be defined in terms of 

mathematical modeling. Mathematical function, studied from the scientific 



49 

perspective, involves building mathematical models from data, interpreting 

mathematical models in terms of the original situation, and then using mathematical 

models to make predictions. The data analysis approach described above incorporates 

the three translations involved in building a mathematical model (situation-to-table, 

table-to-graph, and graph-to-algebraic formula) and the translation involved in 

interpreting a model (algebraic formula-to-verbal description). The translations 

involved in making predictions using a mathematical model are the same as those 

identified in Figure 5c. 

Students who have studied linear functions in the form y = m x + b from a 

mathematical perspective have probably developed a sufficient mathematical 

background to enable them to fit a variety of different data sets based on linear 

relationships between pairs of physical science variables. If the graph of a data set 

appears linear, then a "best" line may be drawn through the data points and the 

mathematical model determined by putting the value of the y-intercept and the value of 

the slope into the equation y = m x + b in place of b and m, respectively. If the 

graph of a data set is nonlinear, often a transformation of the data will yield a linear 

relationship. For example, the pressure versus volume graph of a gas is nonlinear; 

however, by transforming the data to pressure versus 1/volume, a linear graph may be 

obtained that can be fit to a y = m x + b equation. More precise curve fitting may be 

accomplished using computers or calculators to compute least squares regression fits. 

This study was based on data analysis involving fitting data that was best 

described by linear mathematical models. The treatment sessions were designed to help 

students connect what they already knew about linear mathematical functions from a 

mathematical perspective to the knowledge they had about mathematical function from 

a scientific perspective. 



CHAPTER IV 

METHOD 

so 

The first section of this chapter begins with a statement of the purpose for the 

study. Identification of experimental variables, statement of research questions, and a 

rationale for the study are also included in this section. The second section describes 

the pilot study. The pilot study was composed of three parts: (a) a study of the 

validity of the posttest in its original form, (b) a pilot test of the posttest in its original 

form, and (c) a pilot test of the treatment activities and the posttest in the final forms. 

Details of the main body of the study are presented in the last section. This section 

includes (a) a description of subjects, (b) details of treatment procedures for the two 

groups, and (c) details of measurement procedures. 

Overview of the Study 

Purpose 

This experiment was designed with primary and secondary purposes. The 

primary purpose, perhaps more appropriately referred to as a goal, was to test the 

usefulness of the pentagonal modification of Janvier's "star" model as a model for 

framing research on designing instruction to increase connections students make among 

various aspects of the function concept. Parts of the treatment and posttest activities 

used in the study were viewed, within the pentagonal model, as specifically-defined 

(a) representations, (b) translations between representations, and (c) translation 

processes involved in making one-way translations between representations. 
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The secondary purpose of the study was to determine if the concrete activity of 

data collection had a measurable effect on subject's performance on tasks involving 

building, interpreting, and using linear mathematical models. The treatment difference 

between the two experimental groups may be viewed within the context of the 

pentagonal model. All subjects participated in tasks in which they had to perform 

(a) table-to-graph, (b) graph-to-algebraic formula, (c) algebraic formula-to-verbal 

description, and (d) verbal description-to-algebraic formula translations. Differences in 

treatments between the two experimental groups were centered around the situation-to­

table translation. Subjects in one group (Group A) worked in a laboratory setting. 

Group A subjects made measurements, constructed data tables, analyzed data to build 

mathematical models, interpreted the resulting models, and made predictions based on 

the models. Subjects in the second group (Group B) worked in a classroom setting. 

Group B subjects were presented with data tables and began directly with data analysis, 

interpretation, and prediction tasks. The data analysis, interpretation, and prediction 

tasks were presented to all subjects in identical written formats (Session I and II 

handouts for Group A subjects may be found in Appendixes A and C, respectively; the 

corresponding Group B handouts may be found in Appendixes Band D). Thus, 

subjects in Group A engaged in situation-to-table translation processes while subjects in 

Group B did not. This difference in treatment between Group A and Group B subjects 

may be viewed within the pentagonal model as shown in Figure 7. 
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Figure 7. Treatment Difference Viewed Within the Pentagonal Model. 
(a) Group A and (b) Group B. 

Identification of Variables 

The major independent variable in this study was subject's treatment group. 

Group A subjects experienced the instructional unit on mathematical modeling of 

scientific data beginning with data collection. Group B subjects experienced the 

instructional unit beginning with data analysis. In addition there were 17 variables of 

secondary interest. 
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1. CLASS. The subjects in this study were students enrolled in one of two 

university courses. The first class was the first semester of a two-semester, freshman­

level course specifically designed for elementary education majors. This class is 

referred to as MATHl throughout this report. The second class was a one-semester, 

senior-level, mathematics methods course required for all elementary education majors. 

This class is referred to as ED4 throughout this report. The ED4 students were also 

co-registered in a one-semester, senior-level, science methods course. 

2. HSR. High school rank in class (percentile ranking). 
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3. HGPA. High school grade point average. 

4. MSAT. Score on mathematical portion of Scholastic Aptitude Test (SAT). 

5. VSAT. Score on verbal portion of SAT. 

6. TSWE. Score on Test of Standard Written English. 

7. HMHRS. Total number of credits in high school mathematics. 

8. HSHRS. Total number of credits in high school science. 

9. HMGPA. Grade point average in high school mathematics courses. 

10. HSGPA. Grade point average in high school science courses. 

11. PGPA. Predicted grade point average, as calculated by the University's 

Admissions Department. 

12. CGPA. Current college grade point average. 

13. CHRS. Total number of semester hours completed in college. 

14. CMHRS. Total number of semester hours in college mathematics courses. 

15. CSHRS. Total number of semester hours in college science courses. 

16. CMGPA. Grade point average in college mathematics courses. 

17. CSGPA. Grade point average in college science courses. 

The major dependent variable was score on the posttest (POST). The posttest 

was a 36 item test of subjects' performances on tasks involving building, interpreting, 

and using mathematical models (Appendix E). The posttest was constructed 

specifically for this study. Details on the development of this posttest are discussed in 

"The Pilot Study" section of this chapter. A subject's score on the posttest, POST, was 

the total number of points obtained on the posttest, where the score on each individual 

item was assigned as 0.0, 0.5, or 1.0 points. Thus, possible values for POST ranged 

from 0 to 36 points. Other variables considered were subscores based on subsets of 



questions on the posttest. In addition to the individual item scores (PI through P36), 

16 subscores were considered. 

1. DATASETS. Combined score on items involving building, interpreting, 

and using mathematical models given data tables (sum of item scores PI through Pl2, 

corresponding to Problems 1 and 2). These problems required translations within the 

pentagonal model analogous to those completed by both groups during treatment 

sessions. 

2. VERBAL. Combined score on items involving building, interpreting, and 

using mathematical models given verbal descriptions (sum of item scores P13 through 

P24, corresponding to Problems 3 and 4). These problems involved building models 

from verbal descriptions. The tasks involving interpreting and using the models were 

presented in the same way as given in the treatment sessions handouts. The first item 

in each problem may be viewed, within the pentagonal model, as involving a verbal 

description-to-algebraic formula translation. 

3. ALGEBRAIC. Combined score on items involving interpreting and using 

mathematical models given the models as algebraic formulas (sum of item scores P25 

through P36, corresponding to Problems 5 and 6). Within these problems, the tasks 

involving interpreting and using models were presented in the same way as was done 

during the treatment sessions . 
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. 4. BillLD 1. Combined score on items involving building mathematical models 

given data tables and the values of a and b derived from the tables using a TI-81 

calculator (P 1 + P7). 

5. BUILD2. Combined score on items involving building mathematical models 

given verbal descriptions (P13 + Pl9). 



55 

6. BUILD. Combined score on items involving building mathematical models 

(BUILD 1 + BUILD2). 

7. SLOPE!: Combined score on items involving identifying magnitudes and 

units for slopes in mathematical models (P2 + P8 + P14 + P20 + P25 + P31). 

8. INTERCEPT!. Combined score on items involving identifying magnitudes 

and units for y-intercepts in mathematical models (P4 + PlO + P16 + P22 + P27 + 

P33). 

9. SLOPE2: Combined score on items involving writing physical 

interpretations of slopes in mathematical models (P3 + P9 + P15 + P21 + P26 + 

P32). 

10. INTERCEPT2. Combined score on items involving writing physical 

interpretations of y-intercepts in mathematical models (P5 + Pll + P17 + P23 + P28 

+ P34). 

11. INTERPRET. Combined score on items involving identifying and 

interpreting slopes andy-intercepts in mathematical models (SLOPE! + INTERCEPT! 

+ SLOPE2 + INTERCEPT2). 

12. USEY. Combined score on items involving using mathematical models to 

predict values of y given values of x (P6 + P12 + P18 + P24 + P29 + P35). 

13. USEX. Combined score on items involving using mathematical models to 

predict values of x given values of y (P30 + P36). 

14. USE. Combined score on items involving using mathematical models to 

predict the value of one variable given the value of the other variable (USEY + 

USEX). 



15. FAMILIAR. Combined score on items involving building, interpreting, 

and using mathematical models based on the same physical contexts utilized during 

treatment sessions (sum of P1-P6, P13-P18, and P25-P30). 

16. UNFAMILIAR. Combined score on items involving building, 

interpreting, and using mathematical models based on physical contexts different from 

the contexts utilized during treatment sessions (sum of P7-P12, P19-P24, and P31-

P36). 
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Another set of 12 dependent variables considered in this study (S1-S12) were 

student responses on the 12 Likert-type items on the Workshop Evaluation Form 

(Appendix F). Since this scale was not central to the hypotheses, no attempt was made 

to validate this form. 

Research Questions 

1. Will the mean posttest scores (POST) for the two treatment groups differ? 

2. Will treatment group mean scores differ on posttest items involving 

building, interpreting, and using mathematical models given data tables (DATASETS)? 

3. Will treatment group mean scores differ on posttest items involving 

building, interpreting, and using mathematical models given verbal descriptions 

(VERBAL)? 

4. Will treatment group mean scores differ on posttest items involving 

interpreting and using mathematical models given the models as algebraic formulas 

(ALGEBRAIC)? 

5. Will treatment group mean scores differ on posttest items involving building 

mathematical models (BUILD and subsets BUILD! and BUILD2)? 
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6. Will treatment group mean scores differ on posttest items involving 

interpreting mathematical models (INTERPRET and subsets SLOPEl, INTERCEPT!, 

SLOPE2, and INTERCEPT2)? 

7. Will treatment group mean scores differ on posttest items involving using 

mathematical models (USE and subsets USEY and USEX)? 

8. Will treatment group mean scores differ on posttest items involving 

building, interpreting, and using mathematical models based on the same physical 

contexts utilized during treatment sessions (FAMILIAR)? 

9. Will treatment group mean scores differ on posttest items involving 

building, interpreting, and using mathematical models based on physical contexts 

different from the contexts utilized during treatment sessions (UNFAMILIAR)? 

Rationale for the Study 

During treatment sessions, subjects in Group B began the exploration of each 

x,y relationship with a data table and proceeded with tasks involving building, 

interpreting, and using a mathematical model derived from the data. Subjects in Group 

A began each exploration by collecting data and constructing a data table. Once the 

data table had been constructed, Group A subjects proceeded with tasks involving 

building, interpreting, and using a mathematical model derived from the data. 

Basically, the question of interest in this study was "Do collecting data and constructing 

a data table affect subjects' performances on tasks involving building, interpreting, and 

using mathematical models?" 

The tasks involving building, interpreting, and using mathematical models were 

presented to all subjects in exactly the same written form. However, subjects in the 

two treatment groups completed the tasks in different learning environments. Group B 



subjects worked in pairs within a classroom setting. Following a filler activity, they 

began the modeling tasks by building a mathematical model from a given set of data. 

During the first session, the flller activity was viewing a video on the importance of 

measurement in chemistry. In the second session Group B subjects worked with their 

partners to create a list of pairs of real-world variables appropriate for elementary 

school children to use in exploring relationships. Group A subjects were in a 

laboratory setting. They worked in pairs to make measurements using rulers, 

electronic balances, and graduated cylinders. 

Group A subjects might be expected to have benefited from data collection 

activities in two major ways: 
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1. The data collection activities provided situational experiences in the 

scientific context that might have been internalized in the form of mental images. If 

so, the mental images may have been retrieved by Group A subjects while they were 

engaged in tasks involving building, interpreting, and using mathematical models based 

on the data they collected. Further, the mental images also may have been retrieved by 

Group A subjects during the posttest. 

2. Discussions between partners during the data collection phase might have 

contributed to each subject's development of language associated with the scientific 

situation. If so, language development during the data collection phase might have 

facilitated interpretation and prediction tasks during treatment sessions and on the 

posttest. 

If Group A subjects did form mental images and develop situation-specific 

language during the data collection phase, it would be expected that the two groups 

might perform differently on tasks involving building, interpreting, and using 

mathematical models. If differences in group mean scores on the posttest and other 



subscores of the posttest specified in the research questions exist, then it would be 

important to address how the development of strong mental images and situational 

language affect performance on tasks involving building, interpreting, and using 

mathematical models. 

The tasks completed by subjects may be considered within the context of the 

pentagonal model. The tasks for subjects in the two treatment groups may be 

characterized by the translations that are involved in completing the tasks. One 

possible set of translations for the two treatment groups is given in Figure 8. In this 

figure the translations are identical except Group B subjects did not participate in data 

collection tasks. 
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If participation in the situation-to-table translation had no effect on the processes 

involved in completing the other six translations shown in Figure 8, then the group 

mean performances of the two groups on building, interpreting, and using mathematical 

models would be expected to be approximately the same. That is, equivalent group 

performances on the posttest and subtests of the posttest would provide evidence that 

the translations, and corresponding translation processes, used by the two groups in 

building, interpreting, and predicting tasks could be the same. 

If the situation-to-table translation has an effect on the processes involved in 

completing the other six translations, then the performance of the two groups on 

building, interpreting, and using mathematical models will likely be different. As 

suggested earlier, any differences in group performance would be consistent with the 

hypothesis of differences in mental image and situational language development within 

the two groups during treatment sessions. Differences in group performance, if they 

exist, might indicate one of two situations. The more moderate interpretation would be 

that the two groups completed the tasks via the same translations, but with some 
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variation in translation processes. That is, the tasks might have been completed by the 

two groups using the same representations and translations between representations, in 

the same order, but involving some variation in translation processes. 

Tasks Translations: Group A Translations: Group B 

Data Collection Situation-to-Table N/A 

Building a Model Table-to-Graph Table-to-Graph 

Graph-to-Algebraic Formula Graph-to-Algebraic Formula 

Interpreting a Model Algebraic Formula-to-Verbal Algebraic Formula-to-Verbal 
Description Description 

Using a Model Verbal Description-to- Verbal Description-to-
Algebraic Formula Algebraic Formula 

Algebraic Formula-to-Table Algebraic Formula-to-Table 

Table-to-Verbal Description Table-to-Verbal Description 

Figure 8. Set of Possible Translation Processes Used by Groups A and B 

A more extreme interpretation of group differences that might occur on the 

posttests and subsets of the posttest involves a variation in the translations used by the 

two groups. For example, subjects in Group A might be expected to incorporate 

another sequence of translations in the prediction tasks due, perhaps, to mental images 

and situational language development. That is, for Group A subjects, the prediction 
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tasks may proceed through (a) verbal description-to-situation, (b) situation-to-algebraic 

formula, (c) algebraic formula-to-table, and (d) table-to-verbal description translations. 

This example is only one of several that might be proposed. 

This discussion serves as an indication of the complexity involved in a study of 

the effects of just one planned translation difference between the two groups. The 

study was designed to answer the major "first" question: Do the two groups perform 

differently on the posttest? If the answer to this question is yes, however, deeper 

analysis of the posttest results by subscores might provide some indication of the nature 

of these differences. 

The Pilot Study 

Validation of the Posttest 

A panel of nine mathematicians, scientists, and mathematics educators provided 

input on the validity of the posttest. Each person who agreed to participate in the 

validation process received an envelope containing a copy of the original 45-item 

posttest (Appendix G), and the TI-81 key stroke reference sheet (Appendix H). The 

validators commented on (a) how well the posttest content paralleled the objectives in 

content and process and (b) how balanced the posttest and treatment activities were in 

concepts and procedures. The comments of the nine validators were used to refine both 

the posttest and the treatment activity sheets. 

Pilot Testing of the Original Posttest 

Initially, a 9-problem, 45-item posttest was constructed to be administered 

during a 2-hour time period. A copy of the original posttest is given in Appendix G. 



This posttest was administered to 17 students enrolled in a sophomore-level, Natural 

Science class at the same university attended by subjects in the experimental study. 

It was difficult to find a group of students reasonably similar to the subjects in 

the study to use in piloting the posttest, because students who had a sufficient 

background in doing data analysis with a TI-81 calculator were not readily available. 

The closest matching group found was the Natural Science class. The students in this 

class were elementary education majors, most of whom were sophomores who had 

completed MATH! as freshmen. In order to prepare the Natural Science students to 

take the posttest, a 60-minute workshop was conducted on (a) using TI-81 calculators 

to build linear mathematical models, (b) writing situational interpretations of the 

models built, and (c) using the models built to make predictions. 
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One week before the workshop was conducted in this class, the Natural Science 

students had completed a laboratory assignment in which they placed a centimeter ruler 

beside an inch ruler and recorded a set of corresponding values off each scale. 

Initially, they began by aligning the zeros on each scale. Then they repeated the 

experiment, this time aligning the zero on the inch ruler with the 4.0 em mark on the 

centimeter ruler. They graphed, by hand, each set of data on the same set of axes. In 

the final portion of the laboratory they identified the slope and y-intercept and 

interpreted the meaning of each. The slope they obtained was approximately 2.5 

centimeters per inch, which the students recognized as the conversion factor for 

changing length in inches to length in centimeters. They found that the y-intercept in 

the first case was approximately 0 centimeters and in the second case was 

approximately 4.0 centimeters. 

During their morning class one week later, I began the workshop with a set of 

data analogous to the data they had obtained and analyzed in the laboratory the previous 
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week. This example was used to introduce the students to data analysis using the TI-81 

calculator. I then lead them through building mathematical models for two other sets 

of data: (a) number of pennies versus mass of cup and pennies and (b) mass versus 

volume of liquid. Students then completed tasks involving identifying the slope and y­

intercept in each model, including the units of each, and interpreting each within its 

specific scientific context. The same afternoon the students completed the posttest as a 

laboratory exercise during their regularly scheduled two-hour laboratory period. This 

constituted the first pilot test of the posttest. 

Pilot of Treatment Activities and Final Form of Posttest 

A class of ten Physics students were used to pilot both the Group A treatment 

materials (Appendixes A and C) and the posttest in its final form (Appendix E). 

During a regularly scheduled 3-hour laboratory period, each student worked alone to 

collect all sets of data as described in the two sets of activity sheets. Five days later the 

final form of the posttest was administered to the students during their regularly 

scheduled 50-minute class period. Observations made during the laboratory session and 

posttest results were used to evaluate the treatment and posttest materials. 

The Experimental Study 

Subjects 

Students at a small church-affiliated university in the southeastern region of the 

United States participated in this study. The subjects in the experimental treatment 

portion of this study were elementary education majors enrolled in one of two required 

courses. One course, MATH!, is the first of two 3-semester-hour courses in 

mathematics designed for and restricted to elementary education majors. The second 
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course, ED4, is a senior-level, 3-semester-hour, elementary mathematics methods 

course. All 28 students enrolled in ED4 participated in the study as a required course 

activity. Project participation for MATHl students was on a volunteer basis, with each 

participant receiving extra credit in the course for participating. Twenty-seven of the 

38 students enrolled in MATH1 participated fully in the project. Of the remaining 11 

students, (a) one did not sign up to participate due to scheduling problems, (b) one had 

already participated as part of the pilot testing of the posttest instrument, (c) one was 

not attending class, (d) five attended the first session but failed to show up at the 

second session, citing car problems and changes in work schedules as the reasons, and 

(e) three originally signed up to participate but failed to show at either session, 

providing no reasons for this. Three MATHl subjects who participated fully in the 

project were not included in the analyses because they worked without a partner during 

the second session. In all, a total of 55 subjects participated fully in the project, and 52 

subjects were included in the analyses. 

ED4 students participated during regularly scheduled class time. These students 

were randomly assigned to treatment groups. The 14 students assigned to each 

treatment group were then randomly paired to form seven experimental pairs in each 

group. Each pair was treated as an experimental unit throughout the experiment. 

Because students in MATHl had to participate in the project outside of 

regularly scheduled class time, adjustments in the randomization procedure had to be 

made to accommodate individual schedules. Initially, students were asked to check one 

or more of three time slots when they could attend sessions, or, if none of the times 

would work, to suggest other times. One of the three proposed time slots was dropped 

because no students chose it as the only time when they could participate. Students 

who checked only one time slot were automatically assigned to that period. Students 
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who checked both were randomly assigned to one of the periods. Some adjustments 

were made to provide some balance to the number of subjects assigned to each group. 

A new time slot was created to accommodate students who could not attend one of the 

proposed times. One student, who could not attend at a time corresponding to that for 

any other student, was dropped from the subject list. Within each time slot students 

were randomly paired. Then a treatment group label was randomly assigned to each 

time slot. Initially, this process resulted in 21 students being assigned to Treatment 

Group A and 16 students to Treatment Group B. In the end, a total of 27 of these 

students fully participated, 16 in Treatment Group A and 11 in Treatment Group B. In 

the final analysis these subjects were treated as 6 experimental "pairs" in Treatment 

Group A and 5 experimental "pairs" in Treatment Group B. The "pairs" referred to for 

MATH1 students, in the final analysis, were actually composed of 9 pairs and 2 triples 

(Treatment Group A: 1 triple, 5 pairs; Treatment Group B: 1 triple, 4 pairs). 

Overall, of the 52 subjects included in the analysis portion of the study, 13 

experimental pairs were assigned to Treatment Group A and 12 experimental pairs were 

assigned to Treatment Group B. Seven experimental pairs in each treatment group 

were ED4 students. The majority of subjects from the MA TH1 class were traditional 

first-semester freshmen, while those in the ED4 class were mostly seniors, scheduled to 

complete student teaching the following semester, graduating immediately thereafter. 

In all, 48 females and 4 males who participated in this treatment portion of this project 

were included in the analysis phase. 

A note on statistical power: A priori power calculations were conducted. 

These calculations were based on the overall posttest score (POST) using standard 

deviations of 5.0 for groups A and B, a Type I error rate of .05, a Type II error rate of 

.20, and an assumption of equal numbers of experimental units in Groups A and B. It 
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was determined that a statistical power of .80 would result if (1) the posttest mean 

group difference was 5 points and 17 experimental pairs were in each group, (2) the 

posttest mean group difference was 7 points and 9 experimental pairs were in each 

group, or (3) the posttest mean group difference was 9 points and 6 experimental pairs 

were in each group. Based on these calculations it appeared reasonable to proceed with 

the study using the group sizes discussed above. Final analysis of experimental results 

determined that the standard deviations for the groups were between 

4.6 and 5.7 and the difference in sample group means was 7.1 points. Thus the actual 

statistical power exceeds . 80. 

Procedure 

The experiments chosen for the treatment sessions were carefully constructed to 

involve (a) simple measurements, using common measuring instruments, which 

elementary school children could make, and (b) linear mathematical models, with little 

error variation, where both the slope and y-intercept have simple and clearly­

recognizable physical interpretations. Time spent on data analysis, interpretation, and 

prediction activities was controlled to be the same for subjects in each treatment 

groups. Since subjects were randomly assigned to the two treatment groups, the major 

difference in the two groups was that subjects in Group A collected data before 

analysis, whereas Group B subjects worked on, presumably, non-interfering activities 

for a time period equivalent to the time Group A subjects spent collecting data. During 

the first session, the filler activity was viewing a video on the importance of 

measurement in chemistry. In the second session Group B subjects worked with their 

partners to create a list of pairs of real-world variables appropriate for elementary 

school children to use in exploring relationships. 
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Each subject participated in two 2-hour treatment sessions. Both treatment 

groups of ED4 subjects were scheduled to treatment sessions during the same time slots 

on a Friday and the following Monday. The posttest and workshop evaluation was 

administered to all ED4 students on the following Wednesday. Thus, for ED4 

students, their involvement in the experimental portion of the project spanned five 

days. 

MA THI students participated in the treatment sessions outside of regularly 

scheduled class time, but all MA THl students completed the posttest and workshop 

evaluation during a regularly schedule MATH1 period. Since students had to 

participate in treatment sessions "on their own time," treatment sessions were scheduled 

a week apart with the posttest and workshop evaluation scheduled the following week. 

For MATH1 students, their involvement in the experimental portion of the project 

spanned between 13 and 16 days. 

Treatment Session I. At the beginning of the first session, subjects in both 

groups received the same 25-minute introduction to the project. An outline of this 

introduction may be found in Appendix I. During this introduction, subjects agreed to 

participate in the project by signing a consent form (Appendix J). Following the 

introduction, subjects in Group A participated in a 25-minute key-punching lesson on 

using the TI-81 calculator to analyze the antifreeze data given in the first data table on 

the activity sheet (Appendix A). They then spent the next 25 minutes collecting 

mass/volume and height/volume data as described on the activity sheets for Session I. 

During the corresponding 50 minutes, Group B subjects viewed a 25 minute video 

entitled "Measurement: The Foundation of Chemistry" and then participated in the 

same lesson on using the TI-81 calculator for data analysis. The video presents a 

general overview of the role of measurement in science but does not include details o~ 
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measuring techniques or specific examples of making measurements utilizing the 

measuring instruments used by Group A subjects during the treatment sessions. Both 

treatment groups then spent the remaining 45 minutes of the session analyzing the other 

two sets of data. A copy of the activity sheets for Group B, Session I may be found in 

Appendix B. 

During this first session, the first two sets of data focused on the relationship 

between the volume of liquid in a graduated cylinder and the total mass of the 

graduated cylinder and its contents. The third set of data focused on the relationship 

between the volume of water in a beaker and the height of the water surface from the 

table top. 

In the initial experiment subjects determined the relationship between the 

volume of a liquid in a 25-milliliter graduated cylinder (X) and the total mass of liquid 

plus graduated cylinder (Y). A table of data derived by using antifreeze as the liquid 

was given to subjects in both treatment groups. This data set was used during an 

introductory lesson on data analysis using a TI-81 calculator. A reference sheet 

{Appendix H) that summarizes the key strokes needed to do data analysis on the TI-81 

was distributed to subjects. Based on the data analysis of the antifreeze data, students 

arrived at the mathematical model y = 1.13 x + 45.0. They concluded that the slope 

( 1.13 grams per milliliter) corresponds to the density of antifreeze and the y-intercept 

(45.0 grams) corresponds to the mass of the empty graduated cylinder. Subjects in 

both groups then worked in their experimental pairs to analyze a second, analogous set 

of data based on rubbing alcohol. During this experiment, subjects in Group A 

determined the volume of rubbing alcohol by reading the scale on a 25-milliliter 

graduated cylinder. The corresponding mass of the graduated cylinder and rubbing 

alcohol contained within it was determined by reading the digital output of an electronic 
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balance which had been tared with nothing on the balance pan. They-intercept in this 

case is the mass of the empty graduated cylinder. The slope is the density of the 

rubbing alcohol in units of grams per milliliter. 

The relationship between mass and volume of a liquid was chosen as the initial 

relationship because it is perhaps the most fundamental of relationships encountered in 

elementary physical science. Physical science is defined to be the study of matter. 

Matter is defined to be anything that has mass and volume. Therefore, the most 

fundamental relationship of matter is that of mass and volume, and, experimentally, the 

easiest group of mass/volume relationships to investigate is that of liquids. Typically, 

students are taught this relationship by definition rather than exploration. That is, 

students are instructed that "density is mass per unit volume" or "density is the mass of 

an object divided by the volume of the object" or "D = m/V." By including this 

experiment, preservice teachers had the opportunity to explore a way of helping 

elementary school students develop the density concept concretely, thereby avoiding the 

memorizing of definitions and formulas. 

The second experiment included during the first treatment session focused on 

the relationship between the volume of water poured into a 500-milliliter (X) beaker 

and the height of the water surface from the table top (Y). In this case the 

measurements done by Group A subjects involved reading the scale on a 50-milliliter 

graduated cylinder to determine the volume added each time and then measuring the 

distance from the table top to the water surface using a centimeter ruler with 

millimeters as the smallest graduation. Because a beaker is cylindrical in shape, the 

rate of change of height with volume is constant. Therefore, the resulting mathematical 

model is linear. The slope in this model defines how the height from table top to water 

surface is dependent upon the amount of water added to the beaker and is expressed in 



units of centimeters per milliliter. They-intercept corresponds to the thickness of the 

glass forming the bottom of the beaker. 
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Treatment Session II. It was anticipated that the first session might be 

confusing to the subjects because (a) the use of a TI-81 calculator for data analysis was 

unfamiliar to them, (b) they had a limited understanding of linear mathematical 

functions, (c) they had had little opportunity, if any, to build mathematical models 

from data sets, (d) their experiences with interpreting slopes andy-intercepts had been 

limited to mathematical interpretations, and (e) their experiences with science concepts 

had been based more on the products of science than on the processes of scientific 

inquiry. Therefore, the second session began with a 20-minute review of the scientific 

inquiry process, linear functions from a mathematical perspective, and interpretation 

and prediction based on the linear model determined by the analysis of the antifreeze 

data during the first session. An outline of the Session II introduction may be found in 

Appendix K. 

Following the introduction, subjects in Group A then spent the next 20 minutes 

collecting total mass/number of pennies, total mass/number of nickels, and length/mass 

data as described in Session II activity sheets (Appendix C). They then spent 60 

minutes building, interpreting, and using linear mathematical models derived from the 

three data sets just collected. During the remaining 20 minutes, the subjects went back 

over their activity sheets from Session I, completing and correcting parts, as necessary, 

and discussing, within the experimental pairs, how all four experiments were related 

mathematically. Immediately after the review session, Group B students spent the next 

60 minutes building, interpreting, and using the linear mathematical models derived 

from the three data sets given to them in the activity sheets (Appendix D). For the next 

20 minutes, the Group B subjects went back over their activity sheets from Session I, 
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as described above for Group A. During the remaining 20 minutes, Group B students 

worked together, as randomly paired, to list as many pairs of science variables as they 

could think of which would be possible for elementary school children to study by a 

scientific inquiry method. 

The first experiment in Session II was based on the relationship between the 

number of pennies placed in a plastic cup (X) and the total mass of the pennies and the 

cup (Y). In this case the slope corresponds to the average mass of a penny and the y­

intercept gives the value for the mass of the empty plastic cup. Subjects then built, 

interpreted, and used a second linear model based on analogous data obtained from an 

experiment involving nickels instead of pennies. 

The final experiment of the treatment sessions involved a simple, yet important 

physical concept: the elongation of a spring. This experiment, as typically conducted 

in physics classes, involves the determination of the characteristic spring constant for 

the given spring, where the spring constant is expressed in units of Newtons per 

centimeter and is represented by the variable kin the Hooke's Law equation F = kx. 

In the Hooke's Law equation F represents the force attached to the spring and x 

represents the change in length of the spring due to the force exerted on the spring. 

Conceptually, it is rather difficult to study spring elongation in the Hooke's law form 

because (a) it involves a mass to force conversion, (b) change in length rather than total 

length of the spring is considered, and (c) determining the force (dependent variable) as 

a function of the elongation (independent variable) is experimentally more difficult than 

determining the length of the spring as a function of the attached mass. By treating the 

total length of the spring (X) as the dependent variable and the mass of the objects 

attached to the spring (Y) as the independent variable, the experiment becomes 

conceptually simple and appropriate for upper elementary school children to conduct. 
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The length of the spring was determined by Group A subjects by reading the scale 

value, corresponding to the last coil of the spring, on the meter stick that had been 

mounted behind the spring such that the 0.0 centimeter level lined up with the first coil 

of the spring. Since the known mass was engraved on each object, the mass of the 

attached objects was obtained by adding the individual masses of the hanger and the 

weights. The resulting slope is expressed in units of centimeters per gram. The slope 

corresponds to the increase in total length of the spring which is due to an increase of 

one gram in the total mass attached to the spring. They-intercept corresponds to the 

length of the spring, expressed in units of centimeters, when no objects are attached. 

Measures 

Posttest and Workshop Evaluation. The posttest was administered to each 

subject during a regularly scheduled class period for ED4 or MATHl. Individually, 

subjects completed the posttest (Appendix E) and workshop evaluation form (Appendix 

F) during the 50-minute time period. No student was allowed to leave early. Each 

student was given a TI-81 calculator to use while completing the posttest. 

The workshop evaluation form was designed to ascertain subjects' perceptions 

of the project. In particular, the workshop evaluation was conducted to determine if 

there was an overall difference in the way subjects in the two treatment groups 

perceived the project with respect to importance of content, usefulness to preservice 

teachers, and level to which they enjoyed participation in the project. 

Scores on the posttest were obtained by a blind, double grading procedure. 

This scoring technique was used because the open-ended nature of the posttest items 

made scoring results dependent on graders' interpretations of subjects' responses. The 

two graders worked from a common set of criteria for scoring the posttest items 
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holistically. A score of 1.0, 0.5, or 0.0 was assigned for each item. The posttest score 

was the sum of all 36 item scores. Thus, the maximum score was 36 points. 

Responses on the project evaluation form were tallied and group means and standard 

deviations were calculated. 

Background Information from Student Records. After the faculty members 

teaching MATHI and ED4 had agreed to have their students participate in the project 

and their respective department heads had approved the project, the Academic Dean of 

the University granted permission to access student records. Following an initial 

discussion, a letter was submitted to the Dean defining the complete details of the 

study. A copy ofthis letter, with all identifying information omitted, may be found in 

Appendix L. The Dean granted permission to access student records according to the 

guidelines outlined in the letter. 

Subjects signed the "Consent to Act as a Human Subject" forms (Appendix J) 

immediately after the introduction portion of the first treatment session, thereby, 

granting me permission to access their academic records. The consent forms were then 

delivered to the Office of the Registrar where they were filed in each subject's 

academic folder as the background information was obtained from the folder and 

recorded on a Student Background Information Sheet (Appendix M). Transcript 

information was obtained directly from the computerized database. 

Post-Treatment Interviews. Six subjects were selected from the ED4 class to 

participate in the interview phase of this project. One subject selected was a Group A 

subject who scored very low on the posttest. Two other Group A subjects were 

interviewed: (a) one who scored approximately at the mean Group A posttest score and 

(b) one who scored very high on the posttest. The three subjects from Group B who 

were interviewed were selected in the same manner. The interviews were conducted 
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seven to eight weeks after the posttest was administered. These interviews were 

conducted to provide additional insights into differences in group responses to treatment 

sessions and the posttest. The six subjects were each paid ten dollars for participating 

in an individual 30-minute interview. 

Statistical Measures. Two-sample t-tests were conducted on the overall posttest 

score, each individual item score (P1 through P36), and on 16 subscores of the posttest 

(as defmed earlier in this chapter). In a similar manner, two-sample t-tests were 

conducted for the 16 background variables and 12 evaluation form responses. A 

measure of the reliability of the posttest was obtained by determining Cronbach 

coefficient alpha values for the posttest and for five subsets of the posttest: 

DATASETS, VERBAL, ALGEBRAIC, FAMILIAR, and UNFAMILIAR. Several 

repeated-measures MANOV As were run on sets of subscores. 



CHAPTER V 

RESULTS 
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There were three distinct phases in this study. During the first phase, the 

posttest was validated, both the original and final forms of the posttest were pilot 

tested, and the treatment activities were piloted. The second phase was the treatment 

and posttest phase. All treatment sessions and measures used for analysis were 

incorporated in this phase. During the last phase, six subjects, three from each 

treatment group were interviewed in an attempt to obtain a clearer picture of subjects' 

thought processes during the treatment and posttest phase. The results of each phase of 

the study are summarized within this chapter. 

The Pilot Study 

Validity of the Posttest 

In general, members of the validation team reported a high degree of validity in 

the posttest. All nine agreed that the test content strongly paralleled the objectives in 

both content and process. In response to the question "Do the test and the treatment 

activities emphasize the same concepts and procedures in approximately the same 

proportions?" five validators commented on minor problems with lack of parallelism 

between the treatment activity sheets and the posttest. 

Most of these concerns were addressed by revising the treatment activity sheets. 

Three members of the validation team were concerned that the last problem on the test 

required that subjects deal with a concept not presented in the treatment sessions: the 



y-intercept lies outside the domain of the model and therefore has no physical 

interpretation. This question was omitted from the final posttest. 

Pilot Testing of Posttest: Original Form 
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The mean score on the posttest obtained by the 17 Natural Science students who 

piloted the initial form of the posttest was 16.53 (52% correct), based on only the 32 

items common to both the initial and final forms of the posttest. The 13 items on the 

original posttest which did not appear on the final form of the posttest were not 

considered in this analysis. During this first pilot study, students were allowed two 

hours to complete the posttest. Students were asked to record their starting and 

stopping times. The mean required time was 82 minutes with a standard deviation of 

14 minutes. This information was used to revise the posttest so that subjects in the 

experimental groups could complete the test in 50 minutes. Three complete problems 

and a total of 13 items were omitted from the initial posttest. In addition, the initial 

posttest contained three items that required the use of the TI-81 calculator to fit the 

model. The final posttest did not require any data analysis directly using the TI-81 

calculator. The four new items on the final form of the posttest were added to increase 

the number of items requiring predictions using mathematical models. The raw data 

and detailed mean posttest results for this pilot study may be found in Appendix N. 

Pilot of Treatment Activities and Final Form of the Posttest 

The Group A treatment activities and the posttest in final form were piloted by 

10 Physics students. Students in this group were given the activity sheets and asked to 

follow the directions and answer the questions. The students completed the activities 

with no difficulties. The mean score on the posttest for this group was 30.9 (86%). 



The raw data and detailed mean posttest results for this pilot study may be found in 

Appendix 0. 
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This second pilot study was used mainly to gauge the time required for students 

to complete the revised form of the posttest. During the regularly scheduled 3-hour 

laboratory period, the Physics students completed the activities planned for subjects in 

Treatment Group A, Sessions I and ll. Five days later, during a 50-minute class 

period, the students completed the posttest. The time required for the students to 

complete the test was between 15 and 40 minutes, with a mean time of 26 minutes. 

This result indicated that the 50-minute time interval for administering the posttest to 

the experimental groups should be adequate. 

The Experimental Study 

The major results of interest are those related to the nine research questions. 

However, analysis of the background data provides a check of the effectiveness of the 

randomization procedures used to assign subjects to treatment groups. In addition, 

analysis of responses on the workshop evaluation form provides a check of perceptional 

and attitudinal differences between subjects in the two treatment groups. The 

background and evaluation form analyses are important for eliminating the possibility 

that any observed group differences on the posttest were due to background and 

perceptional and attitudinal differences within the two groups. 

Interrater Reliability 

The posttests were blind scored. Each posttest was scored by two raters. 

Differences in item score assignments by the two raters are detailed in Appendix P. 

Each rater assigned scores for 1872 items (52 subjects x 36 items per subject). Of the 
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1872 items scored, the raters agreed on 1803 items. This corresponds to an interrater 

reliability of 96.3%. Forty-four discrepancies (2.2%) were accounted for by 

misapplication of established scoring criteria. These changes were made during 

discussions between the raters. Only 30 items (1.5%) were scored differently because 

of rater interpretation differences. Scores on these 30 items were adjusted by mutual 

agreement of the raters. 

Reliability of the Posttest 

A measure of the reliability of the posttest was obtained by analysis of the 

posttest results. Scores for all subjects who participated in the experimental portion of 

this study were pooled for this analysis. Cronbach coefficient alpha values were 

determined for the posttest and for five subsets of the posttest, corresponding to the 

subscores DATASETS, VERBAL, ALGEBRAIC, FAMILIAR, and UNFAMILIAR. 

The Cronbach coefficient alpha values for the posttest and each subset are given in 

Table 1. These values indicate that the internal consistency reliabilities for the posttest 

and the subsets of the posttest are very high. 

Table 1 

Cronbach Coefficient Alpha Values for the Posttest and Five Subsets of the Posttest 

Items 

POST 
DATASETS 
VERBAL 
ALGEBRAIC 
FAMILIAR 
UNFAMILIAR 

Cronbach Coefficient Alpha 

.964 

.885 

.940 

.915 

.948 

.919 
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Background and Workshop Evaluation Form Analyses 

Background Analyses. Analyses of background variables by group, based on 

the 13 experimental pairs in Treatment Group A and the 12 experimental pairs in 

Treatment Group B, were conducted on 16 background variables. The variables 

analyzed were high school rank (HSR), high school grade point average (HGPA), score 

on the mathematical portion of the SAT (MSAT), score on the verbal portion of the 

SAT (VSAT), score on the Test of Standard Written English (TSWE), total number of 

course credits in high school mathemati~s (HMHRS), total number of course credits in 

high school science (HSHRS), grade point average in high school mathematics courses 

(HMGPA), grade point average in high school science courses (HSGPA), college 

predicted grade point average (PGPA), current college grade point average (CGPA), 

total number of semester hours completed in college (CHRS), total number of semester 

hours completed in college mathematics courses (CMHRS), total number of semester 

hours completed in college science courses (CSHRS), grade point average in college 

mathematics courses (CMGPA), and grade point average in college science courses 

(CSGPA). The group means, two-sample t-statistics, and corresponding p-values are 

given in Appendix Q. The means are slightly higher for Group A than for Group Bon 

four background variables: (a) total number of course credits in high school 

mathematics, (b) current college grade point average, (c) total number of semester 

hours completed in college science courses, and (d) grade point average in college 

science courses. Group B means are slightly higher on the remaining 12 background 

variables. However, the 16 p-values range from .36 to .98, indicating that all 

differences between the groups were not significant. 

Workshop Evaluation Form Analyses. Response analyses by group, based on 

the 16 experimental pairs in Treatment Group A and the 12 experimental pairs in 
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Treatment Group B, were conducted on the 12 response items presented on the 

workshop evaluation form (Appendix F). The group means, two-sample t-statistics, 

and corresponding p-values are given in Appendix R. The means are higher for Group 

A than for Group B on four items and higher for Group B on the remaining eight 

items. The item p-values range from .12 to .96, indicating that differences between the 

groups were not significant. 

Based on the results of the background and the workshop evaluation form 

analyses, the groups appear to be comparable. That is, the analyses indicate that 

differences in group mean scores on the posttest and various subsets of the posttest are 

not due to differences in subjects 1 academic backgrounds or subjects I perceptional and 

attitudinal differences. Therefore, it is reasonable to consider differences in group 

mean scores as being due to treatment effects. 

Posttest Analyses 

The raw data by individual subjects may be found in Appendix S, and the raw 

data by experimental pairs may be found in Appendix T. The posttest results are 

summarized in Table 2 and Table 3. Two-sample t-tests by treatment group were 

conducted on the posttest, on 16 subsets of the posttest, and on each individual test 

item. The variable definitions for the subscores corresponding to the subsets of the 

posttest considered are given in Chapter IV. 

Research Question #1. Will the mean scores for the two treatment groups on 

the posttest (POST) differ? Result: As noted in Table 3, the data support the 

conclusion that Group B scored significantly higher than Group A on the overall 

posttest (p = .0023). 
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Table 2 

Posttest Results b~ Item: Groun Means, t-Statistics, and n-Values 

Item Group A Mean SDA Group B Mean SDB t-Value p-Value 

Pl .820 .240 .958 .144 -1.72 .0989 
P2 .506 .265 .736 .181 -2.51 .0194 
P3 .269 .260 .451 .356 -1.47 .1550 
P4 .532 .282 .771 .225 -2.33 .0290 
PS .455 .346 .590 .212 -1.17 .2560 
P6 .340 .265 .556 .228 -2.17 .0402 
P7 .782 .249 .917 .195 -1.50 .1479 
P8 .391 .191 .646 .129 -3.88 .0008 
P9 .186 .181 .479 .310 -2.92 .0077 
P10 .558 .291 .729 .198 -1.71 .1017 
Pll .077 .188 .125 .226 -.58 .5674 
P12 .442 .423 .694 .407 -1.52 .1431 
P13 .436 .351 .653 .261 -1.74 .0947 
P14 .391 .260 .625 .272 -2.20 .0381 
P15 .410 .237 .694 .274 -2.78 .0106 
P16 .532 .242 .764 .200 -2.60 .0161 
P17 .494 .222 .611 .239 -1.28 .2150 
P18 .455 .315 .764 .273 -2.61 .0156 
P19 .218 .249 .417 .289 -1.85 .0776 
P20 .321 .240 .535 .267 -2.11 .0458 
P21 .353 .330 .563 .264 -1.75 .0940 
P22 .365 .300 .479 .291 -.96 .3462 
P23 .295 .304 .375 .225 -.74 .4649 
P24 .237 .347 .472 .316 ~1.77 .0908 
P25 .429 .183 .625 .199 -2.56 .0176 
P26 .154 .217 .438 .304 -2.70 .0128 
P27 .500 .306 .688 .241 -1.69 .0144 
P28 .237 .240 .444 .237 -2.17 .0405 
P29 .333 .373 .660 .220 -2.64 .0148 
P30 .218 .249 .576 .265 -3.49 .0020 
P31 .372 .217 .583 .163 -2.74 .0117 
P32 .077 .188 .229 .249 -1.73 .0962 
P33 .442 .208 .465 .202 -.28 .7824 
P34 .077 .188 .083 .195 -.08 .9339 
P35 .256 .251 .472 285 -2.01 .0560 
P36 .218 .227 .410 .260 -1.97 .0611 



82 

Table 3 

Posttest Results b~ Selected Subtests: Grouu Means, t-Statistics, and u-Values 
(df = 23) 

Subtest Group A Mean SDA GroupB Mean SOB t-value p-value 
(#Items) (% Correct) (% Correct) 

POST (36) 13.18 (36.61) 5.65 20.28 (57.33) 4.63 -3.42 .0023 
DATASETS (12) 5.36 (44.66) 2.05 7.65 (63.77) 1.65 -3.06 .0055 
VERBAL(12) 4.51 (37.55) 2.39 6.95 (57.93) 2.18 -2.66 .0140 
ALGEBRAIC (12) 3.31 (27.62) 1.98 5.67 (47.28) 1.57 -3.28 .0033 
BUILD1 (2) 1.60 (80.13) .42 1.88 (93.75) .31 -1.82 .0813 
BUILD2 (2) .65 (32.69) .51 1.07 (53.47) .44 -2.16 .0417 
BUILD (4) 2.26 (56.41) .80 2.94 (73.61) .63 -2.36 .0269 
SLOPE1 (6) 2.41 (40.17) 1.00 3.75 (62.50) .87 -3.56 .0017 
INTERCEPT! (6) 2.93 (48.82) 1.24 3.90 (64.93) 1.06 -2.09 .0482 
SLOPE2 (6) 1.45 (24.15) .92 2.85 (47.57) 1.27 -3.19 .0041 
INTERCEPT2 (6) 1.63 (27 .24) .87 2.23 (37 .15) .74 -1.83 .0801 
INTERPRET (24) 8.42 (35.10) 3.33 12.73 (53.04) 3.51 -3.14 .0045 
USEY (6) 2.06 (34.40) 1.54 3.62 (60.30) 1.02 -2.94 .0073 
USEX (2) .44 (21.79) .44 .99 (49.31) .26 -3.75 .0010 
USE (8) 2.50 (31.25) 1.91 4.60 (57 .55) 1.30 -3.31 .0031 
FAMILIAR (18) 7.51 (41. 74) 3.19 11.60 (64.47) 2.38 -3.61 .0015 
UNFAMILIAR (18) 5.67 (31.48) 2.59 8.67 (48.19) 2.68 -2.85 .0091 

Research Question #2. Will treatment group mean scores differ on posttest 

items involving building, interpreting, and using mathematical models given data tables 

(DATASETS)? Result: As noted in Table 3, the data support the conclusion that 

Group B scored significantly higher than Group A on this subtest (p = .0055). 

Research Question #3. Will treatment group mean scores differ on posttest 

items involving building, interpreting, and using mathematical models given verbal 

descriptions (VERBAL)? Result: As noted in Table 3, the data support the conclusion 

that Group B scored significantly higher than Group A on this subtest (p = .0140). 
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Research Question #4. Will treatment group mean scores differ on posttest 

items involving interpreting and using mathematical models given the models as 

algebraic formulas (ALGEBRAIC)? Result: As noted in Table 3, the data support the 

conclusion that Group B scored significantly higher than Group A on this subtest 

(p = .0033). 

Research Question #5. Will treatment group mean scores differ on posttest 

items involving building mathematical models (BUILD)? Results: As noted in Table 

3, the data support the conclusion that Group B scored significantly higher than Group 

A on this sub test (p = . 0269). 

In order to provide further detail, this score was separated into two subscores: 

(a) BUILD!, the score on items involving building mathematical models given data 

tables and the values of a and b derived from the tables using a TI-81 calculator and 

(b) BUILD2, the score on items involving building mathematical models from verbal 

descriptions. The t-test results for BUILD! (p = .0813) and BUILD2 (p = .0417) 

indicate that the two groups scored similarly on tasks involving building mathematical 

models given data tables while Group B scored significantly higher than Group A on 

items involving building mathematical models from verbal descriptions. 

Research Question #6. Will treatment group mean scores differ on posttest 

items involving interpreting mathematical models (INTERPRET)? Results: As noted 

in Table 3, the data support the conclusion that Group B scored significantly higher 

than Group A on this subtest (p = .0045). 

In order to·provide further detail, this score was separated into four subscores: 

(a) SLOPE!, the score on items involving identifying magnitudes and units for slopes 

in mathematical models, (b) SLQPE2, the score on items involving writing physical 

interpretations of slopes in mathematical models, (c) INTERCEPT!, the score on items 
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involving identifying magnitudes and units for y-intercepts in mathematical models, and 

(d) INTERCEPT2, the score on items involving writing physical interpretations of y­

intercepts in mathematical models. The t-test results for SLOPE! (p = .0017), 

SLOPE2 (p = .0041), INTERCEPT! (p = .0482), and INTERCEPT2 (p = .0801) 

indicate that Group B scored significantly higher than Group A on three of the four 

types of model interpretation items. The two groups scored similarly on items 

involving writing physical interpretations of y-intercepts in mathematical models. The 

difference between group performance was greater for tasks involving identifying and 

interpreting slopes than for tasks involving identifying and interpreting y-intercepts. 

Research Question #7. Will treatment group mean scores differ on posttest 

items involving using mathematical models (USE)? Results: As noted in Table 3, the 

data support the conclusion that Group B scored significantly higher than Group A on 

this subtest (p = . 0031). 

In order to provide further detail, this score was separated into two subscores: 

(a) USEY, the score on items involving using mathematical models to predict values of 

y given values of x and (b) USEX, the score on items involving using mathematical 

models to predict values of x given values of y. The t-test results for USEY 

(p = .0073) and USEX (p = .0010) indicate that Group B scored significantly higher 

than Group A on both types of prediction items. The difference between group 

performances was greater for tasks involving predicting x values given y than for tasks 

involving predicting y values given x. 

Research Question #8. Will treatment group mean scores differ on posttest 

items involving building, interpreting, and using mathematical models based on the 

same physical contexts utilized during treatment sessions (FAMILIAR)? Result: As 



noted in Table 3, the data support the conclusion that Group B scored significantly 

higher than Group A on this subtest (p = .0015). 

Research Question #9. Will treatment group mean scores differ on posttest 

items involving building, interpreting, and using mathematical models based on 

physical contexts different from the contexts utilized during treatment sessions 

(UNFAMILIAR)? Result: As noted in Table 3, the data support the conclusion that 

Group B scored significantly higher than Group A on this subtest (p = .0091). 

Additional Comments. The individual item mean scores displayed in Table 2 

show that Group B scored higher than Group A on each of the 36 test items. The 

difference between group means is significant at an a. = .05 level on 17 of the 36 

items. The item-by-item comparison of group means is represented graphically in 

Figure 9. 

Figure 10 displays the mean differences between groups in terms of percent of 

correctly answered items when posttest items are grouped into three sets of items: 

(a) items involving building, interpreting, and using mathematicil models given data 

sets (DATASETS), (b) items involving building, interpreting, and using mathematical 

models given verbal descriptions (VERBAL), and (c) items involving interpreting and 

using mathematical models given the models as algebraic formulas (ALGEBRAIC). 

The differences between group means on these subscores (DATASETS, 19.1 %; 

VERBAL, 20.4%; ALGEBRAIC, 19.7%) are essentially equal. Both groups scored 

better on tasks that began with data sets than on tasks that began with verbal 

descriptions. Both groups scored lowest on tasks that began with models expressed as 

algebraic formulas. A Wilks' lambda value of .99 (F = .046; df = 2, 22; p = .96) 

for testing two-way interactions was obtained when a repeated measures MANOV A 

was run. There is no indication of group-by-subscore interaction. 
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Figure 11 displays the mean differences between groups in terms of percent of 

correctly answered items when posttest items are grouped by task type into building 

(BUILD), interpreting (INTERPRET), and predicting (USE) tasks. The differences 

between group means in building models (17.2%) and interpreting models (17.9%) are 

essentially equal. The group mean differences are notably higher (26.3%) for making 

predictions based on models. Group A scored higher on building tasks (56.4%) than 

on interpreting and predicting tasks. Group A scored approximately the same on 

interpreting (35 .1 %) and predicting (31. 3%) tasks. The results were similar for Group 

B. Group B scored higher on building tasks (73.6%) than on interpreting and 

predicting tasks. Group B scored approximately the same on interpreting (53.0%) and 

predicting (57.6%) tasks. However, Group A scored better on interpreting tasks than 

on predicting tasks (3. 8%), while Group B scored better on predicting tasks than on 

interpreting tasks (4.5%). A Wilks' lambda value of .92 (F = .963; df = 2, 22; 

p = .40) for testing two-way interactions was obtained when a repeated measures 

MANOVA was run. There is no indication of group-by-subscore interaction. 

Three additional MANOV As were run on sub scores of BUILD, INTERPRET, 

and USE, respectively. Figure 12 displays the mean differences between groups in 

terms of percent of correctly answered items when BUILD items are grouped by task 

type into BUILD 1 and BUILD2 tasks. Both groups scored higher on tasks involving 

building mathematical models from data tables (BUILD!: Group A, 80.1 %; Group B, 

93.8%) than on tasks involving building mathematical models from verbal descriptions 

(BUILD2: Group A, 32.7; Group B, 53.5%). The within-group difference on the two 

types of building tasks was greater for Group A (47.4%) than for Group B (40.2%). A 

Wilks' lambda value of .97 (F = .600; df = 1, 22; p = .45) for testing 
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two-way interactions was obtained when a repeated measures MANOV A was run. 

There is no indication of the presence of a BillLDl *BillLD2 interaction. 
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Figure 13 displays the mean differences between groups in terms of percent of 

correctly answered items when INTERPRET items are grouped by task type into 

SLOPE!, INTERCEPT!, SLOPE2, and INTERCEPT2 tasks. The four sub scores of 

were grouped into identification (SLOPE! and INTERCEPT!) and interpretation 

(SLOPE2 and INTERCEPT2) tasks. Three Wilks' lambda values of interest were 

obtained by the repeated measures MANOVA analysis. A Wilks' lambda value of .99 

(F = .27; df = 1, 23; p = .61) for testing the two-way interactions between SLOPE! 

and INTERCEPT! was obtained. This result indicated the absence of a 

SLOPE! *INTERCEPT! interaction effect. A Wilks' lambda value of .80 (F = 5.60; 

df = 1, 23; p = .03) for testing the two-way interactions between SLOPE2 and 

INTERCEPT2 was obtained. This result indicates the presence of a 

SLOPE2*INTERCEPT2 interaction effect. A Wilks' lambda value of .95 (F = 1.26; 

df = 1, 23; p = .27) for testing the two-way interactions between identification tasks 

(SLOPEl and INTERCEPT!) and interpretations tasks (SLOPE2 and INTERCEPT2) 

was obtained. This result indicated the absence of two-way interaction effects between 

identification and interpretation tasks. 

Figure 14 displays the mean differences between groups in terms of percent of 

correctly answered items when USE items are grouped by task type into USEY and 

USEX tasks. Both groups scored higher on tasks involving using mathematical models 

to predict values of y given values of x (USEY: Group A, 34.4%; Group B, 60.3%) 

than on tasks involving using mathematical models to predict values of x given values 

of y (USEX: Group A, 21.8%; Group B, 49.3%). The within-group difference on the 

two types of predicting tasks was slightly greater for Group A (12.6%) than for 
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Group B (11.0%). A Wilks' lambda value of .99 (F = .058; df = 1, 23; p = .81) for 

testing two-interactions was obtained when a repeated measures MANOV A was run. 

There is no indication of the presence of a USEY*USEX interaction. 

Figure 15 displays the mean differences between groups in terms of percent of 

correctly answered items when posttest items are grouped by task type into (a) items 

involving building, interpreting, and using mathematical models based on the same 

physical contexts utilized during treatment sessions (FAMILIAR) and (b) items 

involving building, interpreting, and using models based on physical contexts different 

from the contexts utilized during treatment sessions (UNFAMILIAR). Both groups 

scored higher on the set of items in familiar contexts than on the set in unfamiliar 

contexts. The differences between group means on these two sub scores (FAMILIAR, 

22.7%; UNFAMILIAR, 16.7%) are moderately different. That is, while Group B 

scored higher than Group A on both sets of items, the difference between group scores 

was less for unfamiliar contexts than for familiar contexts. A Wilks' lambda value of 

.90 (F = 2.43; df = 1, 23; p = .13) was obtained when a repeated measures 

MANOV A was run. There is no indication of a group-by-subscore interaction. 

Summazy. Group B scored higher than Group A (a. = .05) on (a) the overall 

posttest (POST); (b) items involving building, interpreting, and using mathematical 

models given data tables (DATASETS); (c) items involving building, interpreting, and 

using mathematical models given verbal descriptions (VERBAL); (d) items involving 

interpreting and using mathematical models given the models as algebraic formulas 

(ALQEBRAIC); (e) items involving building mathematical models (BUILD); (f) items 

involving interpreting mathematical models (INTERPRET); (g) items involving using 

mathematical models (USE); (h) items involving the same physical contexts utilized 

during treatment sessions (FAMILIAR); (i) items involving physical contexts different 



~ 
(J 
w 
a: 
a: 
0 
(.) 

?fl. 

70 

60 - - - ...... - ........... -

50 

40 

30 .............. - .. - ... - - . - - .... - - - . - . - - .. - - - - .. - . - - - . - - - - - . - . - - - . - . - . - - - .. - - - - - - - .. - . - - - ... - - -

20 - - - ... - .. - - .• - - ... - . - - - - •• - .• - .. - - - . - • - - - . - . - - - .. - - . - - - .. - - . - . - . - - •. - - - . - . - . - • - - .. - . - - .. - - ... 

10 

0 

FAMILIAR 

--o-- GROUP A 

_,.__ GROUP B • • • • • - • - • - • • - • • - - - • - • - • - • • • • • • • - - - • - • - • - • • • • • • • • - - • • • • • - • • • • • • • • - • • • 

SUBSCORE 

Figure 15. Group-by-Subscore Interaction Plot. Subscores: familiar contexts (FAMILIAR) 
and unfamiliar contexts (UNFAMILIAR). 

UNFAMILIAR 



96 

from the contexts utilized during treatment sessions (UNFAMILIAR); and (j) 17 of the 

36 individual posttest items (Pl through P36). Both groups scored higher on tasks that 

began with data sets than on tasks that began with verbal descriptions or algebraic 

formulas, and both groups scored higher on items framed in the same physical contexts 

utilized during treatment sessions than on items framed in physical contexts different 

from the contexts utilized during treatment sessions. The only interaction effect 

indicated is a group interaction effect between interpreting they-intercept and 

interpreting the slope. 

The Individual Interviews 

Individual interviews of six subjects were conducted in an attempt to gain some 

insight into factors that might explain why, overall, subjects in Group B outscored 

subjects in Group A on all 36 posttest items. Interview questions were geared toward 

pinpointing differences in thinking between subjects in the two treatment groups. In 

particular, the key element of interest from the interviews centered around the 

differences in internal and external representations used by the subjects during building, 

interpreting, and using mathematical models activities, as revealed by the subjects 

themselves. In this section the six subjects interviewed are identified as (a) LOW-A, a 

Group A subject who scored low on the posttest, (b) LOW-B, a Group B subject who 

scored low on the posttest, (c) MEAN-A, a Group A subject whose posttest score was 

near the Group A mean, (d) MEAN-B, a Group B subject whose posttest score was 

near the Group B mean, (e) HI-A, a Group A subject who scored high on the posttest, 

and (f) HI-B, a Group B subject who scored high on the posttest. 

A comparison of interview comments by LOW-A and LOW-B indicate that 

these two subjects had essentially no understanding of mathematical modeling and little 



sense of the purpose of the workshop. Both subjects assumed the role of spectator 

while their partners did the activities. However, there appeared to be an important 

difference in the thinking expressed by the two. LOW-A was trying to make sense of 

the workshop content and felt that if the workshop had lasted longer, she would have 

understood the content. 
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[Interpreting the slope andy-intercept] were equally hard, probably because I 
just didn't have enough time to sit and think about it. . . . I was kind of lost 
from the beginning ... everything [was] occurring at a pace that I thought was 
fast for something of this nature. . . . [I was] nervous about just not knowing 
what was going on at certain points. I was sitting there wondering "is 
everybody getting this or is it just me." As [my partner] was doing [the 
activity], there were certain things that I understood--that made sense. At some 
later point in time I would enjoy going back ... to see exactly what it was that 
we were doing, or that I should have been doing; what are the points that I 
missed that I could key in on and make it all make sense. (LOW-A) 

LOW-B seemed to be concerned only with finishing the workshop activities and the 

posttest; making sense out of the experience did not seem to concern her. She also 

expressed no concerns about needing more time to learn the material. 

[The workshop] was worthwhile but I was kind of bored. It was interesting the 
way the calculator worked .... I didn't like the rest of it. I didn't really want 
to be there taking the posttest, and I didn't want to be in the project. The first 
page [of the posttest] was easy. On the second page I didn't know if I thought 
it was easy because I knew how to do it or because I didn't know how to do it. 
I finished [the posttest] in a short amount of time. If I didn't know the answer I 
was just writing it down so I didn't know if I was putting down right or wrong 
answers. Problem #5 was hard .... Before [in the workshop] we had the data 
and we just put in the numbers in the calculator and got the equation. In this 
problem we were just given the equation. I just didn't know where to start the 
problem. In the problems I didn't know what to do except just try to match it 
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up but I didn't lmow what x was or what y was, so I really didn't lmow how to 
match it up. (LOW-B) 

MEAN-A and MEAN-B seemed to understand more about the mathematical 

modeling content in the workshop. MEAN-A seemed to struggle hard to develop a 

conceptual understanding of mathematical modeling. She kept reflecting on what she 

had done, trying to figure out why she had done it that way. She also referred back to 

the data tables when making predictions, and she found that having a partner to discuss 

answers with was helpful. 

A lot of times I would be doing the experiment and not actually thinking about 
what I was doing. And after I had done it, I went back and thought "Why did I 
do this?" That's what seemed difficult to me. [I had trouble interpreting 
models because] I really wasn't thinking back to what I did when collecting the 
data when I was trying to interpret the models. I wasn't going back and saying 
"Well, this is why I did it and how it would go into the model." I think it was 
hard to pull that together. Actually doing something was easy, but trying to 
figure out why you did it and what would go here, I thought that was hard. If I 
had not collected the data, I think it would have been harder to go back to the 
table and figure out what the actual answer was. By coming up with the table 
ourselves, . . . I thought it seemed easy to go back and lmow how to plug 
values into the problem .... A lot of times we went back to the table instead 
of the equation [when solving a problem] .... [My partner and I] talked about 
[the questions] a lot and then we came to a conclusion of what we thought [the 
answers] would be. I would suggest something and she would suggest 
something, and then we would just decide which one we thought was right. It 
was definitely helpful to talk with each other. (MEAN-A) 

MEAN-B seemed especially concerned about her need for mental images of the 

situations being modeled. She also seemed to focus on the procedural patterns. In 

particular, she solved the prediction problems using the models, without considering 

values in the data tables. 
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Using the calculator was fine because we had the [reference] sheet you gave us . 
. . . We talked about [the interpretations and problems]. There were areas I 
remembered what went where and what it meant and there were areas [my 
partner] remembered. The important thing was seeing a pattern .... The 
second session was easier. I don't know if it was [easier] because it was coins 
and I could see it in my mind or maybe the little introduction you gave us. And 
I can understand about the length of the spring. I can see the spring length 
increasing as the weight increases. I think that made it easier. Even though I 
didn't get to see it physically, I could see it in my head. [On the posttest] I 
remember problem #4--I remember reading it but I don't think I even attempted 
it. I remember the rate of three inches per minute and trying to make sense. I 
remember thinking about it and trying to see in my head how [the water level] 
would rise three inches. (MEAN-B) 

The issues of mental imaging, language development, and procedural versus 

conceptual understanding were even more prominent in the HI-A and HI-B interviews. 

During the interview, HI-A focused on "making sense" of the activities and how data 

collection helped her "see" the relationships clearly~ Apparently, HI-A and her partner 

did not work collaboratively on the activities. 

I thought [interpreting the models] was easy because it made sense. . . . One 
unit over the other unit makes sense once you look at the graph. I've been 
through calculus in high school and calculus in college. I am very comfortable 
withy = m x +b. I had never thought about slope andy-intercept in terms of 
a physical interpretation. I had only thought about what they mean in terms of 
the Cartesian plane. I guess I kind of knew [about physical interpretations] all 
along but never said it like that. . . . Gathering the data helped me. I need a 
picture. I need something I can see before I can actually use it. . .. 
Interpreting the model was also easier because I had collected the data. 
Working with the units I think that made it easier. It made sense. . .. 
Looking at a graph now that I have not had any experience with, I think I could 
interpret what the points mean in a real setting. . . ; [On the posttest] I went 
through and did the ones I was familiar with first and saved the unfamiliar ones 
to last. I did them in the order 1, 3, 5, 2, 6, and 4. With #4 I had trouble 
creating a mental picture. I had to have a picture. I had trouble drawing it on 
the test. Building the model was the problem. The rest of it didn't give me any 
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problems. . .. I think that working in pairs, one partner has the tendency to 
let the other partner do everything. I think that's why I feel comfortable doing 
this--because I did all the work. I didn't mind. I am an independent person. 
But I think [my partner] probably didn't benefit from that at all. She told me 
"I'm glad you are my partner or I wouldn't be able to do this." I benefited but 
she was at a loss. (HI-A) 

HI-B's comments indicated that she was focusing on procedures rather than concepts. 

She stressed both her need for mental images and her problems with putting 

relationships into words. 

When I was doing [the activities] I kept wondering if I was doing it correctly. 
Is this right? Is this what we are supposed to get? I remember thinking as I 
went out the door [at the end of the first session] that I really wasn't certain that 
I had done the correct procedures. I was still having problems in the second 
session--! was working with procedures I was still uncertain about. I had 
trouble especially with the spring problems. I had a problem with inserting the 
information into the equation. I switched [the variables] around. Now as I look 
back on the activities we did in the workshop, it looks fairly easy. I am more 
familiar with the processes I need to do. . .. [On the posttest] the fish tank 
problem, #4, gave me the most difficulty. I remember having a question about 
the distance, the level. I had problems visualizing the problem. The problem 
was with building the model. . . . The problem with the physical interpretation 
wasn't that I didn't know what it meant. I just didn't know how to put it down 
in my own words. (HI-B) 

Collectively, the interviews pointed to the importance of several representations 

involved in building, interpreting, and using mathematical models. Constructing a 

mental image (internal representation) of the associated situation seemed crucial to 

interpreting data. Language development also seemed important. HI-B's comment 

about knowing what the slope and y-intercept meant in the physical situation but not 

knowing how to put it down in her own words especially pointed to the importance of 

- - ·--·------ ----
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language development. The external representations of table, graph, and model 

(equation) also seemed important. Group B subjects had problems plugging into the 

model--they were not sure whether to put the given value in the place of x or y in the 

model. This indicated a procedural approach to solving word problems. Group A 

subjects tended to refer back to the data table that they had constructed to determine an 

approximate answer and to reflect on the variables and their units before using the 

model to calculate an answer. Then they looked back at the tables and see if their 

answers were reasonable. Graphical representations of the functional relationships 

were especially helpful to the subjects when they were trying to identify slopes and y­

intercepts and the corresponding units. 
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Fifty-two preservice elementary teachers completed two, 2-hour workshop 

sessions designed to help them connect mathematical and scientific perspectives of 

linear mathematical function using a scientific inquiry approach. The subjects were 

assigned to one of 25 experimental pairs. Subjects in 13 pairs (Group A) collected data 

in a laboratory setting before beginning tasks involving building, interpreting, and 

using mathematical models. Subjects in 12 pairs (Group B) were given data sets, 

analogous to those collected by the Group A subjects, and used the data sets to 

complete the same set of data analysis, interpretation, and prediction tasks as Group A. 

All subjects completed a 50-minute, 36-item posttest and a 12-item workshop 

evaluation form. Values of 16 background variables for each subject were collected 

from university records. 

During the workshop sessions, four relationships between pairs of variables 

were studied: (a) total mass of a liquid and its container versus volume of liquid in the 

container, (b) total height from the table top to the water level in a beaker versus the 

volume of water in the beaker, (c) total mass of coins and cup versus the number of 

coins in the cup, and (d) the length of a spring versus the total mass of objects attached 

to the spring. Eighteen posttest items were based on relationships studied in the 



workshop sessions. The remaining posttest items were based on different, but 

analogous, relationships. 
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For each pair, responses on each posttest and workshop evaluation form item 

were averaged and used as an experimental pair response value. Pair values on each of 

the background variables were obtained similarly. Pair responses on each posttest and 

workshop evaluation form item were averaged by treatment group to obtain Group A 

and Group B means for each item. Group A and Group B means on background 

variables were obtained similarly. Two-sample t-tests by experimental group were 

conducted, individually, for posttest and workshop evaluation form items and 

background variables. 

Analyses of background variables and workshop evaluation form responses were 

used to determine if group differences on posttest items could be attributed either to 

group differences in academic background or to group differences in perceptions and 

attitudes pertaining to the workshop, respectively. The posttest responses were further 

analyzed by grouping posttest items into overall posttest and subtests. Overall posttest 

group means (POST) and 16 subscore group means (DATASETS, VERBAL, 

ALGEBRAIC, BUILD!, BUILD2, BUILD, SLOPE!, INTERCEPT!, SLOPE2, 

INTERCEPT2, INTERPRET, USEY, USEX, USE, FAMILIAR, UNFAMILIAR) 

were analyzed. 

Results 

Group mean responses on the 12 workshop evaluation form items did not differ 

significantly (p-values ranged from .12 to .96). Similarly, group mean values on the 

16 background variables were not significantly different (p-values ranged from .36 to 

.98). The analyses of workshop evaluation form responses and background variables 
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indicated that posttest differences could not be accounted for by differences in academic 

preparation, attitudes toward the project, or perceptions of the project. 

Collectively, Group B subjects scored higher than Group A subjects on the 

posttest, on all 16 subsets of the posttest considered in this analysis, and on all36 

individual test items. Inferentially, these differences in group means were significant, 

at an a = .05 level, on the posttest, on 14 of the 16 subsets of the posttest considered 

in this analysis, and on 17 of the 36 individual posttest items. In terms of the research 

questions, the mean posttest scores for Group B were significantly higher than the mean 

scores for Group A on each of the following: 

1. the overall posttest (POST; p = .0023); 

2. items involving building, interpreting, and using mathematical models given 

data tables (DATASETS; p = .0055); 

3. items involving building, interpreting, and using mathematical models given 

verbal descriptions (VERBAL; p = .0140); 

4. items involving interpreting and using mathematical models given models as 

algebraic formulas (ALGEBRAIC; p = .0033); 

5. items involving building mathematical models (BUILD; p = .0269); 

6. items involving interpreting mathematical models (INTERPRET; 

p = .0045); 

7. items involving using mathematical models (USE; p = .0031); 

8. items involving building, interpreting, and using mathematical models based 

on the same physical contexts utilized during treatment sessions (FAMILIAR; 

p = .0015); and 
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9. items involving building, interpreting, and using mathematical models based 

on physical contexts different from the contexts utilized during treatment sessions 

(UNFAMILIAR; p = .0091). 

Group-by-subscore interactions were investigated using the technique of 

repeated measures MANOV A, based on percentage scores, for the subscore groupings 

(a) DATASETS, VERBAL, and ALGEBRAIC; (b) BUILD, INTERPRET, and USE; 

and (c) FAMILIAR AND UNFAMILIAR. A Wilks' lambda value of .99 (F = .046; 

df = 2, 22; p = .9552) indicated that there was not a significant group-by-subscore 

interaction for the subscores DATASETS, VERBAL, and ALGEBRAIC. A Wilks' 

lambda value of .92 (F = .96; df = 2, 22; p = .3971) indicated that there was not a 

significant group-by-subscore interaction for the subscores BUILD, INTERPRET, and 

USE. A Wilks' lambda value of .90 (F = 2.43; df = 1, 23; p = .1326) indicated that 

there was not a significant group-by-subscore interaction for the subscores FAMILIAR 

and UNFAMILIAR. 

Additional repeated measures MANOV A analyses were run on subscores of 

BUILD, INTERPRET, and USE. For the two subscores of BUILD, a Wilks' lambda 

value of .97 (F = .60; df = 1, 22; p = .4464) indicated that there was not a 

significant group-by subscore interaction for the subscores BUILD I and BUILD2. For 

the four sub scores of INTERPRET, 

(1) a Wilks' lambda value of .99 (F = .27; df = 1, 23; p = .6073) for testing 

the two-way interactions between SLOPE1 and INTERCEPT! indicated that there was 

not a significant group-by-subscore interaction for the subscores SLOPE1 and 

INTERCEPT I; 

(2) a Wilks' lambda value of .80 (F = 5.60; df = 1, 23; p = .0268) for testing 

the two-way interactions between SLOPE2 and INTERCEPT2 indicated that there was 



a significant group-by-subscore interaction for the subscores SLOPE2 and 

INTERCEPT2; and 
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(3) a Wilks' lambda value of .95 (F = 1.26; df = 1, 23; p = .2737) for testing 

the two-way interactions between identification tasks (SLOPE! and INTERCEPT!) and 

interpretation tasks (SLOPE2 and INTERCEPT2) indicated the absence of two-way 

group-by-subscore interaction effects between identification and interpretation tasks. 

For the two subscores of USE, a Wilks' lambda value of .99 (F = .06; df = 1, 23; 

p = .8116) indicated that there was not a significant group-by subscore interaction for 

the subscores USEY and USEX. 

Discussion 

The primary goal of this study was to test the usefulness of the pentagonal 

modification of Janvier's "star" model as a model for framing research focusing on the 

relationship between instructional modes and connections students make among various 

aspects of the function concept. The two instructional modes employed in this study 

involved (a) hands-on data collection followed by data analysis and (b) data analysis 

only. Viewed within the context of the pentagonal model, Group A participated in 

tasks associated with direct situation-to-table translations while Group B subjects were 

not involved in tasks requiring this translation. Other than situation-to-table 

translations associated with data collection tasks, both groups were involved in the 

same tasks requiring building mathematical models from data sets (table-to-algebraic 

formula translations), identifying and interpreting slopes andy-intercepts based on 

mathematical models expressed as algebraic formulas (algebraic formula-to-verbal 

description translations), and using mathematical models to make predictions (verbal 

description-to-algebraic formula, algebraic formula-to-table, and table-to-verbal 
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description translations). Figure 16 illustrates the direct translation difference between 

experimental groups, framed within the pentagonal model. 
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Figure 16: Direct Translations for (a) Group A and (b) Group B. 

Basically, this study was designed to address one fundamental question: Does 

participation in the processes involved in collecting scientific data affect elementary 

preservice teachers' performance on tasks involving building, interpreting, and using 

mathematical models based on the data? The results of this study support a conclusion 

that performance on these tasks is affected by instructional mode. In particular, the 

results indicate that, under the conditions employed in this study, involvement in data 

collection tasks adversely affects performance on tasks involving building, interpreting, 

and using mathematical models. This conclusion is supported by group mean score 

differences on the overall posttest and all 16 subsets of the posttest analyzed in this 

study. The absence of interaction effects in all, but one, subscore comparisons 

indicates that the performance differences by group are not different for different types 



of tasks. Thus, the results of this study support the conclusion that performance on 

tasks involving building, interpreting, and using linear mathematical models is 

dependent on instructional mode, where subjects less involved with the situation 

representation and situation-to-table translations (Group B) exhibit a higher 

performance on mathematical modeling tasks than those who are more involved with 

these representations and translations (Group A). Subscore analyses of group main 

effect support analogous conclusions. 

In the next three sections subscore main effects, treatment group main effects, 

and group-by-subscore interactions are considered separately. First, subscore main 

effects are considered within the framework of the pentagonal model and Kaput's 

(1987) Symbol Theory. Second, an explanation of group differences based on 

conceptual versus procedural learning and treatment time limitations is proposed. 

Lastly, the one group-by-subscore interaction effect revealed by repeated measures 

MANOV A analysis is used to consider possible group differences in completing 

interpretation tasks. 

Subscore Main Effects 
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When subscores DATASETS, VERBAL, and ALGEBRAIC were analyzed, it 

was found that Group B outscored Group A on all three subscores (see Figure 10, page 

87). For both treatment groups, the mean scores were higher for problems that began 

with building mathematical models from data sets (table-to-algebraic formula 

translation) than for problems that began with building mathematical models from 

verbal descriptions (verbal description-to-algebraic formula translations). The lowest 

scores in this set resulted on problems that began with the mathematical model given as 

an algebraic formula. In this latter case no data were available to subjects for reference 
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and no verbal description of the model was provided. An illustration detailing the 

differences in starting points among the three problem sets, framed within the 

pentagonal model, is given in Figure 17. 
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Figure 17. Subscore Differences. (a) Building Mathematical Models from Data Sets; 
(b) Building Mathematical Models from Verbal Descriptions; (c) Given 
Mathematical Models as Algebraic Formulas 

An explanation of the within-group differences in performance on these three 

sets of tasks might be based on Kaput's Symbol Theory. Kaput (1987) identified two 

types of symbol use in mathematics: (a) reading and encoding and (b) elaboration. 

Elaboration is classified into two forms: syntactic and semantic. Kaput associates 

syntactic elaboration with procedural knowledge because both procedural knowledge 

and syntactic elaboration are based on direct manipulation of immediate symbolic 

representations. In contrast, semantic elaboration involves using the features of the 

reference field of the symbol system rather than using its symbol scheme syntax. For 
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the tasks corresponding to the ALGEBRAIC subscore, the reference field is expected to 

be the algebraic formula. Without reference to the corresponding situation and verbal 

description, the subject might be forced to rely on syntactic elaboration within an 

abstract reference field. During the treatment sessions, all mathematical models were 

built from data sets. Thus, subjects in both treatment groups had been taught to answer 

questions using mathematical models where the physical situation or data table served 

as the reference field. The VERBAL sub score was based on students' building of 

mathematical models from verbal descriptions. Since the language used in the verbal 

descriptions might serve to conjure up mental images of the situation, subjects might be 

expected to use the actual situation as the reference field, although perhaps not as 

effectively as they were able to do from the data sets. Thus, viewed within Kaput's 

Symbol Theory, the subscore order, DATASETS >VERBAL> ALGEBRAIC, 

appears reasonable. However, this explanation of within-group differences does not 

shed light on the between-group differences measured in this experiment. 

Similar group results were obtained for the subscores BUILD, INTERPRET, 

and USE. Subjects in both treatment groups were expect to have had few experiences, 

if any, with building and interpreting mathematical models prior to participating in the 

experimental sessions. However, since using mathematical models to make predictions 

is a component of most algebra and physical science classes, all subjects were expected 

to have experiences performing prediction tasks. Although Group B outscored Group 

A on all three of these subscores, both groups scored higher on BUILD than on either 

INTERPRET or USE tasks. Performance on both INTERPRET and USE tasks were 

approximately the same within both treatment groups (Figure 11, page 89). The results 

seem reasonable when the associated tasks are viewed within the pentagonal model. 

Building mathematical models is expected to involve only a single table-to-algebraic 
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formula translation, as illustrated in Figure 17a, or a verbal description-to-algebraic 

formula translation (with perhaps some mental reference to the situation), as illustrated 

in Figure 17b. Interpreting mathematical models is expected to be more complicated. 

The associated direct translation is an algebraic formula-to-verbal description 

translation. However, it is expected that the physical situation provides the reference 

field for the symbols of the algebraic formula. Thus, interpretation tasks might be 

expected to involve algebraic formula-to-situation and situation-to-verbal description 

translations (Figure 18a). Tasks within the subscore USE, though more familiar to 

students at the beginning of the sessions, proved to be more difficult than the building 

and comparable in difficulty to interpretation tasks. This result seems reasonable when 

prediction tasks are viewed within the pentagonal model. Prediction tasks are expected 

to involve the physical situation reference field. Thus, it is expected that subjects 

might complete prediction tasks by way of a series of translations: (a) verbal 

description-to-situation, (b) situation-to-algebraic formula, (c) algebraic formula-to­

table, and (d) table-to-situation, and (e) situation-to-verbal description (Figure 18b). 

The complexity of prediction tasks would indicate that students would not perform as 

well on these tasks as on building tasks. 

A comparison of the USEY and USEX subscores revealed that students did not 

perform as well on tasks involving predicting an x value given the y value as they did 

on tasks involving predicting a y value given the x value (Figure 14, page 93). 

Differences in these two tasks involve processes within the algebraic formula 

representation. In order to predict a y value given the x value, the subject is expected 

to substitute the value of x in place of x in the algebraic formula and compute the 

corresponding y value directly. However, in order to predict an x value given they 

value, the subject is expected to algebraically rearrange the equation in addition to 



substituting the value of y in place of y in the algebraic formula. The additional 

rearrangement of the algebraic formula required in USEX tasks is expected to make 

USEX tasks more difficult than the USEY tasks, especially for students with weaker 

algebra skills. 

Algebraic Formula Algebraic Formula 

/ 

Graph "f--·,, 
Table 

~~..-o~ .. " Verbal 
Situation Description 

a 

Figure 18. Translations Involved in (a) Interpretation Tasks and 
(b) Prediction Tasks. 
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The within-group differences on subscores FAMILIAR and UNFAMILIAR 

(Figure 15, page 95) are consistent with research findings in a huge body of transfer of 

learning studies within the discipline of cognitive science. Basically, this research 

documents limitations in human abilities to transfer knowledge learned in one context 

to new contexts. Thus, in terms of this study, subjects are expected to perform better 

on tasks in a familiar context than on analogous tasks in new contexts. 
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Subscore main effects, viewed within the pentagonal model and related to 

Kaput's Symbol Theory, were discussed in this section. Although this consideration of 

subscore main effects details possible translations and translation processes involved in 

the mathematical modeling tasks of this study, the subscore main effects do not shed 

light upon observed group differences on the various tasks. Treatment group main 

effects is the subject of the next section. 

Group Main Effect 

In terms of the research questions presented in Chapter IV, the most important 

results of this study to consider are the group main effects on the posttest and all 

subscores of the posttest. The importance of hands-on experiences in developing 

understandings of mathematical and scientific concepts forms the backbone of 

constructivists' calls for mathematics and science curricula reforms. Yet, on first 

examination, the results of this study might be interpreted as providing evidence that 

hands-on experiences might actually inhibit learning. Should it be concluded, based on 

the results of this study, that hands-on experiences are not important in understanding 

mathematical function in the context of relationships between real-world variables? Or 

might alternative explanations account for the group performance differences observed 

in this study? 

A plausible explanation for the observed group differences might involve a 

combination of group differences in type of learning involved during treatment sessions 

and treatment time limitations. That is, if Group A subjects were learning conceptually 

and Group B subjects were learning procedurally, the measured differences might be 

accounted for by differences associated with conceptual verses procedural learning. 



The proposition that subjects in the two groups were learning differently is supported 

by comments made by subjects during the interviews. 

Group A: 
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LOW-A: There were certain things that I understood--that made sense. 
MEAN-A: I think it was hard to pull [what we did in the experiment 

and why we did it] together. . .. 
HI-A: I thought [interpreting the models] was easy because it made 

sense .... Working with the units ... made it easier. It made sense. 

GroupB: 
LOW-B: [On the posttest] I didn't know if I was putting down right or 

wrong answers. . .. [In the workshop] we had the data and we just put in the 
numbers in the calculator and got the equation. . . . [On the posttest when we 
were given the equation], I just didn't know where to start the problem. [In the 
application problems] I didn't know what to do except just try to match it up but 
I didn't know what x was or what y was, so I really didn't know how to match 
it up. 

MEAN-B: Using the calculator was fine because we had the [reference] 
sheet you gave us. . . . The important thing was seeing a pattern. 

HI-B: When I was doing [the activities] I kept wondering if I was doing 
it correctly. Is this right? Is this what we were are supposed to get? I 
remember thinking as I went out the door [at the end of the first session] that I 
really wasn't certain that I had done the right procedures. I was still having 
problems in the second session--! was working with procedures I was still 
uncertain about. . . . Now as I look back on the activities we did in the 
workshop, it looks fairly easy. I am more familiar with the processes I need to 
do. 

The procedural versus conceptual learning argument is also consistent with the 

limitations of time involved in this study. If, as the interviews indicated, Group B 

subjects were concerned with learning the correct procedures which in turn would lead 

them to the correct answers, while Group A subjects were trying to understand what 

they were doing and why they were doing it, a plausible explanation of the results 
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might be that it simply takes longer to develop an understanding of concepts than it 

does to develop skill in carrying out procedures. Assimilation of new ideas and 

approaches is expected to involve the establishment of an equilibrium between existing 

internal knowledge structures and the new information. This process might simply 

require a longer adjustment period than afforded by the time-frame of the study. In 

addition, unlike the Group B subjects, Group A subjects participated in a whole set of 

data collection activities. Thus, Group A subjects might have faced a more difficult 

assimilation task due to the additional number of pieces that they had to fit together 

mentally. If this explanation is correct, then increasing treatment time might be 

expected to result in Group A outscoring Group B. 

Group-by-Subscore Interactions 

The one group-by-subscore interaction effect suggested by the MANOV A 

analyses was for subscores SLOPE2 and INTERCEPT2. These subscores are 

associated with constructing interpretations of slopes and y-intercepts within the 

physical context (situation) of the relationship being explored. Viewed within the 

pentagonal model, these interpretations involve direct algebraic formula-to-verbal 

description translations. Considering the number of comparisons involved in analyzing 

posttest and subscore results, all at a testwise Type I error rate of a = . 05, it is entirely 

possible that this one group-by-subscore interaction detected during the MANOV A 

analysis was obtained by chance rather than being due to real group differences. 

However, if the result is indicative of real group differences, what explanation might 

be proposed to account for these observed differences? 

First, consider the observed group differences. Group B scored higher on 

interpreting slopes (SLOPE2) than on interpreting y-intercepts (INTERCEPT2), and 



Group A scored higher on interpreting y-intercepts than on interpreting slopes. 

Alternatively, the group mean difference was less for tasks involving interpreting y­

intercepts than for tasks involving interpreting slopes (Figure 13, page 92). 
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Next, consider differences in the two types of interpretation tasks. The 

interpretation of y-intercepts in mathematical models might be considered to be a more 

straight-forward task, conceptually, than interpretation of slopes. In order to interpret 

a y-intercept it is necessary to consider what is known about the y value of the 

mathematical model when the x value is 0. For example, consider the experiment 

discussed in Chapter I. In that experiment the relationship between the total mass of a 

graduated cylinder containing antifreeze and the volume of antifreeze in the graduated 

cylinder was determined. The relationship was represented with the mathematical 

model y = 1.13 x + 45.0. They-intercept, 45.0 grams, corresponds to the total mass 

of graduated cylinder and antifreeze when 0 milliliters of antifreeze is in the graduated 

cylinder. Alternatively, they-intercept corresponds to the mass of the empty graduated 

cylinder. The interpretation of slope is, conceptually, more complicated than the 

interpretation of y-intercept because slope is a ratio that focuses directly on the 

relationship between the two physical variables being investigated. In the case of the 

mass versus volume experiment the slope, 1.13 grams per milliliter, expresses the ratio 

between the mass of antifreeze in the graduated cylinder and the volume of antifreeze 

in the graduated cylinder. 

Lastly, consider what explanation might account for the observed group 

differences. Since Group A subjects completed data collection tasks, which involved 

completing processes within the situation representation and the situation-to-table 

translation, and interpretation tasks are expected to rely on the situation reference field, 

it might be expected that Group A subjects would perform better than Group B subjects 
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on both types of interpretation tasks. This is clearly not the case. This group main 

effect was considered in the previous section. For now, consider just the interaction 

effect. Since the group mean difference is less for interpreting y-intercepts than for 

interpreting slopes, it might be proposed that Group A and Group B are approaching 

the same skill level on this interpretation task. The larger group mean difference for 

tasks involving interpreting slopes than tasks involving interpreting y-intercepts might 

be accounted for by Group B approaching the tasks in a procedural way and Group A 

approaching the tasks in a conceptual way. An important consideration in this 

argument is the higher performance of Group B subjects on slope interpretation tasks 

than on y-intercept interpretation tasks. Although interpreting y-intercepts is 

conceptually easier than interpreting slopes, interpreting slopes might be procedurally 

easier than interpreting y-intercepts since slopes may be interpreted procedually using 

the word template: They-variable increases/decreases (a given number of) units for 

each 1 unit increase in the x-variable. Thus, the group-by-subscore interaction effect 

for the subscores SLOPE2 and INTERCEPT2 appear to provide additional support for 

the conjecture that group main effects observed in this study are due to group 

differences in type of learning, conceptual for Group A versus procedural for Group B. 

Concluding Remarks 

The results of this study indicate that learning is different when subjects 

participate in data collection prior to completing tasks involving building, interpreting, 

and using mathematical models than when subjects complete data analysis tasks without 

data collection. This difference was reflected uniformly in the overall posttest and in 

all16 subscores considered. At this point, it seems reasonable to propose that the 

group differences noted in this study might be related to differences in type of 

-····· ~--···-~~--~· -----------
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understanding being developed: more conceptual for Group A and more procedural for 

Group B. 

The primary goal of this study was to test the usefulness of the pentagonal 

modification of Janvier's "star" model as a model for framing research on designing 

instruction to increase connections students make among various aspects of the function 

concept. This study serves as an example of designing and interpreting research within 

the framework of the pentagonal model. The concept of mathematical function is a 

complex concept that might be viewed differently in (a) each of its representations and 

(b) each task involving translations between representations. Viewing representations, 

translations, and translation processes within the framework of the pentagonal model 

provides a way to connect various aspects of the mathematical function concept. 

Making such connections seems crucial, not only for the student, but for teachers, 

curriculum specialists, and researchers. Making connections among so many, 

apparently diverse, ideas is not an easy task. Therefore, it seems important that 

instruction be specifically designed to increase the probability that students will develop 

multiple connections. The pentagonal model has proved helpful in detailing possible 

paths of translations between representations associated with the posttest items. It 

appears that the pentagonal model is helpful in identifying the "thought paths of the 

mind." This study indicates that the pentagonal model provides a framework for 

mapping the internal thought processes associated with learning the concept of 

mathematical function. 

Implications for Educators 

Data analysis is an important subset of the probability and statistics strand 

described in the K-12 Standards (NCTM, 1989). A!l important goal of data analysis is 
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the construction of verbal descriptions of relationships between real-world variables, 

especially when integrating mathematics with other subject matter areas. The results of 

this study indicate that a data analysis approach to teaching mathematical function 

might result in conceptual learning if students are involved in hands-on activities of 

data collection. Since the data collection component is often omitted within 

mathematics classes on data analysis, students might fail to develop a conceptual 

understanding of mathematical function unless current instructional practices are 

changed. 

Conceptual learning is expected to take longer than procedural learning. 

Instruction focused at fully developing all five representations and 20 associated 

translations within a given example and a given context might prove more helpful in 

developing student understanding of mathematical function than a piecemeal exposure 

to parts of a large number of examples in many contexts. In fact, development of 

conceptual knowledge as flexibility-in-translating-non algorithmically-between­

representations might be expected to lead to an abstraction of the function concept from 

its multiple representations. 

Recommendations for Further Research 

The next question which needs to be answered is "Will the overall posttest 

results for the two treatment groups reverse if the treatment time is increased?" In 

particular, it.would be interesting to study, quantitatively, the effects of doubling, 

tripling, and quadrupling the treatment time. A large group-by-time interaction term 

would lend strong support to the conceptual versus procedural learning argument 

proposed in the discussion section. 
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In addition, a more detailed view of group differences might be obtained via a 

qualitative study. During the treatment sessions, an experimental pair might be asked 

to complete the same set of activities used in this study. As the pair works together on 

the tasks involving building, interpreting, and using linear mathematical models, the 

conversations could be audio taped. An interviewer could be present to probe thought 

processes of the pair. Analysis of the audio tapes within the pentagonal model might 

provide a detailed picture of group learning differences, somewhat akin to the 

microgenetic analysis conducted by Schoenfeld et al. (in press). 
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Appendix A 

Activiur Sheets: Treatment Group A. Session I 



Team: 

PART I: 

BUILDING AND USING MAmEMATICAL MODELS 
Session I 

The Relationship between Mass and Volume of a Liquid 

A. Materials: 100-mL beaker, 25-mL graduated cylinder, medicine dropper, 
laboratory balance, rubbing alcohol, and a TI-81 graphing calculator 

B. Procedure 
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1. Add approximately 2.5 mL of rubbing alcohol to a clean, dry 25-mL graduated 
cylinder using a clean medicine dropper. 

2. Read the actual volume to nearest 0.1 mL and record the measurement in the 
first data table. 

3. Zero the balance. 

4. Place the graduated cylinder containing rubbing alcohol on the balance platform. 

5. Determine the mass of the graduated cylinder and contents, and record the 
measurement in the first data table. 

6. Without removing the graduated cylinder from the balance platform, add 
another approximately 2.5 mL rubbing alcohol to the graduated cylinder. There 
will now be approximately .5 mL of liquid in the graduated cylinder. 

7. Measure and record the total volume and total mass in the table. 

8. Add another approximately 2.5 mL of rubbing alcohol to the graduated 
cylinder. Measure and record volume and mass values. 

9. Repeat step 8 until the total volume reaches approximately 25 mL. 

NOTE: A similar experiment has been done for you using antifreeze as the liquid. 
The resulting measurements are given in the second table. 
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C. Data Tables 

Rubbing Alcohol Data Antifreeze Data 

Volume of Total Mass, Volume of Total Mass, 
Rubbing Graduated Antifreeze Graduated 
Alcohol Cylinder+ (milliliters) Cylinder+ 

(milliliters) Liquid (grams) Liquid (grams) 

2.4 47.7 
5.2 50.9 
7.6 53.6 
10.0 56.4 
12.2 58.7 
15.2 62.1 
18.0 65.4 
19.8 67.4 
22.4 70.3 
24.7 73.0 

D. Modeling 

1. Using your TI-81 calculator to fit the rubbing alcohol data to an equation, 
determine the linear mathematical model describing how the total mass is 
dependent on the volume of the liquid. Be sure to identify the variables in 
the equation. 

a= __ 
b= __ 
r= --

2. What is the value of the slope? [Include units!] 



3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of the y-intercept. 

6. Using your TI-81 calculator to fit the antifreeze data to an equation, 
determine the linear mathematical model describing how the total mass is 
dependent on the volume of the liquid. Be sure to identify the variables in 
the equation. 

a= __ _ 
b= __ 
r= __ _ 

7. What is the value of the slope? [Include units!] 

129 



130 

8. In your own words, give a physical interpretation of the slope. 

9. What is the value of they-intercept? [Include units!] 

10. In your own words, give a physical interpretation of the y-intercept. 

E. Using the Models 

1. What is the mass of 16.2 mL of rubbing alcohol? 

2. What is the volume of 35.7 grams of antifreeze? 
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PART II: The Relationship between Height of Liquid in a Cylindrical Container and 
Volume of Liquid Added 

A. Materials: 500-mL beaker, 1.0-L beaker, 100 mL graduated cylinder, ruler, 
and a TI -81 graphing calculator 

B. Procedure 

1. Add tap water to a 1.0-L beaker until the beaker is approximately two-thirds 
full. 

2. Pour approximately 50 mL of water from the 1.0-L beaker into a clean, dry 
100-mL graduated cylinder. 

3. Read the actual volume of water in the graduated cylinder to the nearest 0.5 
mL, and record the measurement in the data table under the Volume Added 
column. · 

4. Pour the water from the graduated cylinder into a clean, dry 500-mL beaker. 
Measure the height of water in the 500-mL beaker from the table-top. Record 
this value in the Height column of the data table. 

5. Add another approximately 50-mL portion of water to the graduated cylinder, 
record the actual volume in the data table, and add this water to the 500-mL 
beaker. Measure and record this new value for water height in the data table. 

6. Repeat step 5 until you have eight data points in the table. 

7. Fill in the Total Volume column of the data table. 



C. Data Tables 

Height versus Volume Data 

Volume Total Volume Height 
Added (milliliters (centimeters) 

(milliliters) 

D. 'Modeling 

1. Using your TI-81 calculator to fit the volume versus height data to an 
equation, determine the linear mathematical model describing how the 
height of water in the beaker is dependent on the total volume of water in 
the beaker. Be sure to identify the variables in the equation. 

a= __ _ 
b= __ _ 
r= __ _ 

2. What is the value of the slope? [Include units!] 

132 



133 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 

E. Using the Model 

1. What would be the height of water in the beaker if a total volume of 365 mL 
of water were added to the beaker? 

2. What total volume would correspond to a height of 8.50 em? 
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Appendix B 

Activity Sheets: Treatment Group B. Session I 



Team: 

BUILDING AND USING MAmEMATICAL MODELS 
Session I 
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PART 1: The Relationship between Mass and Volume of a Liquid 

A. Situation 

Four fifth-grade students worked together in a cooperative group to make mass 
and volume measurements on two different liquids. The values for the 
measurements they made are listed in the following two tables. 

Rubbing Alcohol Data Antifreeze Data 

Volume of Total Mass, Volume of Total Mass, 
Rubbing Graduated Antifreeze Graduated 
Alcohol Cylinder+ (milliliters) Cylinder+ 

(milliliters) Liquid (grams) Liquid (grams) 

2.6 46.9 2.4 47.7 
4.9 49.0 5.2 50.9 
7.7 51.5 7.6 53.6 
9.8 53.4 10.0 56.4 
12.5 55.8 12.2 58.7 
15.1 58.0 15.2 62.1 
17.5 60.2 18.0 65.4 
20.1 62.4 19.8 67.4 
22.4 64.5 22.4 70.3 
24.9 66.7 24.7 73.0 
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B. Modeling 

1. Using your TI-81 calculator to fit the rubbing alcohol data to an equation, 
determine the linear mathematical model describing how the total mass is 
dependent on the volume of the liquid. Be sure to identify the variables in 
the equation. 

a= __ _ 
b= __ 
r= __ _ 

2. What is the value of the slope? [Include units!] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 
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6. Using your TI-81 calculator to fit the antifreeze data to an equation, 
determine the linear mathematical model describing how the total mass is 
dependent on the volume of the liquid. Be sure to identify the variables in 
the equation. 

a= __ _ 
b= __ 
r= __ _ 

7. What is the value of the slope? [Include units!] 

8. In your own words, give a physical interpretation of the slope. 

9. What is the value of the y-intercept? [Include units!] 

10. In your own words, give a physical interpretation of they-intercept. 



C. Using the Models 

1. What is the mass of 16.2 mL of rubbing alcohol? 

2. What is the volume of 35.7 grams of antifreeze? 

PART II: The Relationship between Height of Liquid in a Cylindrical Container and 
Volume of Liquid Added 

A. Situation 
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Another group of four fifth-grade students worked together in a cooperative 
group to make measurements in an investigation of the relationship between 
the height of water in a beaker and the volume of water added. The values 
for the measurements they made are listed in the following table. 

Height versus Volume Data 

Volume Total Volume Height 
Added (milliliters (centimeters) 

{milliliters) 

50.0 1.35 
54.5 2.95 
48.0 4.10 
51.5 5.45 
50.0 6.60 
54.0 7.95 
49.0 9.15 
49.0 10.30 



B. Modeling 

1. Using your TI-81 calculator to fit the volume versus height data to an 
equation, determine the linear mathematical model describing how the 
height of water in the beaker is dependent on the total volume of water in 
the beaker. Be sure to identify the variables in the equation. 

a= __ _ 
b= __ _ 
r= __ _ 

2. What is the value of the slope? [Include units!] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 
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C. Using the Model 

1. What would be the height of water in the beaker if a total volume of 365 mL 
of water were added to the beaker? 

2. What total volume would correspond to a height of 8.50 em? 
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Appendix C 

Activity Sheets: Treatment Group A. Session II 



Team: 

BUILDING AND USING MATHEMATICAL MODELS 
Session D 

PART I: The Relationship between Mass and Number of Coins 

A. Materials: plastic cup, 20 pennies, 20 nickels, balance, and TI-81 graphing 
calculator 

B. Procedure 

1. Zero the balance. 

2. Place two pennies in the plastic cup. 

3. Place the plastic cup containing the two pennies on the balance platform. 
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4. Determine the mass of the cup and contents, and record the measurement in 
the first data table. 

5. Add two more pennies to the cup and determine the mass of the cup and 
contents. Record the mass in the data table. 

6. Repeat step 5 until there are a total of twenty pennies in the plastic cup. 

7. Repeat the entire procedure using nickels instead of pennies. Record the 
data in the second table. 
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C. Data Tables 

Pennies Nickels 

Number of Total Mass Number of Total Mass 
Pennies in (grams) Nickels in (grams) 

the Cup the Cup 

2 2 
4 4 
6 6 
8 8 
10 10 
12 12 
14 14 
16 16 
18 18 
20 20 

D. Modeling 

1. Using your TI-81 calculator to fit the pennies data to an equation, determine 
the linear mathematical model describing how the total mass is dependent on 
the number of pennies in the cup. Be sure to identify the variables in the 
equation. 

a= __ 
b= __ 
r= __ 

2. What is the value of the slope? [Include units!] 

--------- ------------------------
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3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 

6. Using your TI-81 calculator to fit the nickels data to an equation, determine 
the linear mathematical model describing how the total mass is dependent on 
the number of nickels in the cup. Be sure to identify the variables in the 
equation. 

a= __ _ 
b= __ _ 
r= __ _ 

7. What is the value of the slope? [Include units!] 
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8. In your own words, give a physical interpretation of the slope. 

9. What is the value of they-intercept? [Include units!] 

10. In your own words, give a physical interpretation of the y-intercept. 

E. Using the Models 

1. What is the mass of 15 pennies? 

2. What is the mass of the cup plus 19 nickels? 
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PART TI: The Relationship between Length of a Spring and Attached Mass 

A. Materials: 1 -harmonic oscillator spring, clamps, meter stick, 1 -50 gram 
hanger, 1- 50 gram disk, 4- 100 gram disks, and a TI-81 graphing calculator. 

B. Procedure 

1. The apparatus for this set of measurements has been set-up for you. To begin 
with the measurements attach the 50-gram hanger to the loop at the bottom of 
the spring. 

2. Read the length of the spring as the reading on the meter stick corresponding to 
the bottom coil of the spring. Record this length, to the nearest 0.1 em, in the 
table on the next page next to 50 grams total mass. 

3. Place the 50-gram disk on the hanger. At this point you have attached a total of 
100 grams to the spring. Record the length of the spring now. 

4. Replace the 50-gram disk on the hanger with a 100-gram disk. At this point 
you have attached a total of 150 grams to the spring. Record the length of the 
spring. 

5. Continue increasing the mass attached to the spring by 50 grams each time until 
you have attached a total mass of 500 grams, recording the length of the spring 
after each 50-gram increase. 



C. Data Tables 

Length versus Mass Data 

Total Mass Length of Spring 
Attached to Spring (centimeters) 

(grams) 

50 
100 
150 
200 
250 
300 
350 
400 
450 
500 

D. Modeling 

1. Using your TI-81 calculator to fit the length versus mass data to an 
equation, determine the linear mathematical model describing how the 
length of the spring is dependent on the total mass attached to the spring. 
Be sure to identify the variables in the equation. 

a= __ _ 
b= __ 
r= __ 

2. What is the value of the slope? [Include units!] 
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3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 

E. Using the Model 

1. What would be the length of the spring if a total mass of 280 grams was 
attached to the spring? 

2. What total mass would need to be attached to the spring in order to stretch 
the spring to a total length of 60.0 centimeters? 
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Appendix D 

Activity Sheets: Treatment Group B. Session II 



Team: 

BUILDING AND USING MATHEMATICAL MODELS 
Session ll 
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PART I: The Relationship between Mass and Number of Coins 

A. Situation 

Four third-grade students worked together in a cooperative group to measure the 
mass of differing numbers of pennies and nickels. They began by placing two 
pennies in a cup, putting the cup on a balance platform, and recording the mass. 
They then added two more pennies to the cup and recorded the new mass. This 
process of adding two more pennies and recording the mass was continued until 
20 pennies were in the cup. The students then followed the same procedure 
with nickels. The data they collected is given in the following two tables. 

Pennies Nickels 

Number of Total Mass Number of Total Mass 
Pennies in (grams) Nickels in (grams) 
the Cup the CtJQ 

2 12.968 2 17.963 
4 17.980 4 27.805 
6 23.066 6 37.808 
8 28.131 8 47.72 
10 33.710 10 57.75 
12 38.709 12 67.67 
14 43.76 14 77.69 
16 49.27 16 87.70 
18 54.26 18 97.74 
20 59.86 20 107.86 
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B. Modeling 

1. Using your Tl-81 calculator to fit the pennies data to an equation, determine 
the linear mathematical model describing how the total mass is dependent on 
the number of pennies in the cup. Be sure to identify the variables in the 
equation. 

a= __ _ 
b= __ _ 
r= __ _ 

2. What is the value of the slope? [Include units!] 

.3. In your own words, give a physical interpretation of the slope. 

4. What is the value of they-intercept? [Include units!] 

5. In your own words, give a physical interpretation of the y-intercept. 
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6. Using your TI-81 calculator to fit the nickels data to an equation, determine 
the linear mathematical model describing how the total mass is dependent on 
the number of nickels in the cup. Be sure to identify the variables in the 
equation. 

a= __ _ 
b= __ _ 
r= __ _ 

7. What is the value of the slope? [Include units!] 

8. In your own words, give a physical interpretation of the slope. 

9. What is the value of they-intercept? [Include units!] 

10. In your own words, give a physical interpretation of the y-intercept. 
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C. Using the Models 

1. What is the mass of 15 pennies? 

2. What is the mass of the cup plus 19 nickels? 

PART IT: The Relationship between Length of a Spring and Attached Mass 

A. Situation 

Another 4-member cooperative group of third graders worked together to 
investigate how the length of a spring depends on the mass attached to the 
spring. The values for the measurements they made are listed in the following 
table. 



Length versus Mass Data 

Total Mass Length of Spring 
Attached to Spring (centimeters) 

(grams) 

50 33.5 
100 38.8 
150 43.8 
200 48.2 
250 53.4 
300 58.7 
350 64.0 
400 69.1 
450 74.3 
500 79.5 

B. Modeling 

1. Using your TI-81 calculator to fit the length versus mass data to an 
equation, determine the linear mathematical model describing how the 
length of the spring is dependent on the total mass attached to the spring. 
Be sure to identify the variables in the equation. 

a= __ 
b= __ 
r= __ 

2. What is the value of the slope? [Include units!] 
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3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 

C. Using the Model 

1. What would be the length of the spring if a total mass of 280 grams was 
attached to the spring? 

2. What total mass would need to be attached to the spring in order to stretch 
the spring to a total length of 60.0 centimeters? 
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Appendix E 

Posttest: Final Form 
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PROBLEM 1 

A group of fourth grade students conducted an experiment to determine how the mass 
of a liquid is dependent on the volume of the liquid. They poured some of an 
unknown liquid into an empty graduated cylinder and then placed the cylinder on 
the balance platform. They recorded the volume of the liquid and the total mass. 
They continued to add more of the liquid, recording volume and total mass after 
each addition, until they obtained the following data table. 

I Volume of the Liquid Total Mass 
(mL) (grams) 

5.1 49.1 
9.7 51.8 

14.9 55.2 
20.1 59.2 
24.8 61.7 

1. Using a TI-81 calculator to fit the model, the values obtained were a = 45.6 and 
b = 0.655. The variables were identified as: 

X = volume of the liquid (in mL) 
Y = total mass (in grams) 

Write the mathematical model (equation): 

2. What is the value of the slope? [Include units!] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of they-intercept? [Include units!] 

5. In your own words, give a physical interpretation of the y-intercept. 



6. Use the mathematical model you determined in #1 of this problem to answer the 
following question: What is the mass or 17.9 mL or the unknown liquid? 

PROBLEM2 
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A group of sixth-grade students conducted an experiment to determine how the volume 
a gas occupies depends on the temperature of the gas. The pressure on the gas was 
constant throughout the experiment. They obtained the following data table. 

Temperature (OC) Volume of the Gas {mL) 

51.5 58.1 
68.9 60.1 
80.1 62.1 
87.9 64.1 
93.1 66.0 

1. Using a Tl-81 calculator to fit the model, the values obtained were a = 48.0 and 
b = 0.184. The variables were identified as: 

X = the temperature of the gas (in oq 
Y = the volume of the gas (in mL) 

Write the mathematical model (equation): 

2. What is the value of the slope? [Include units] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 



5. In your own words, give a physical interpretation of they-intercept. 

6. Use the mathematical model you determined in #1 of this problem to answer the 
following question: What is the volume of the gas at 750C? 

PROBLEM3 
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A group of third-grade students were learning how to make mass measurements. They 
conducted a very simple experiment. They put a cup on the balance and 
determined the mass. The value of this first measurement was 15.8 grams. Then 
they placed a quarter into the cup and recorded the mass. They continued placing 
more quarters into the cup and recording the total mass. They discovered that the 
total mass increased by an average of 12.6 grams each time they put in another 
quarter. 

1. Write a mathematical model (equation) to describe how the total mass is dependent 
on the number of quarters in the cup. Identify the variables as: 

X = number of quarters in the cup (in quarters) 
Y = total mass (in grams) 

Write the mathematical model (equation): 

2. What is the value of the slope? [Include units!} 

3. In your own words, give a physical interpretation of the slope. 



4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 

6. Use the mathematical model you determined in #1 of the problem to answer the 
following question: What is the mass of the cup plus 25 quarters? 

PROBLEM4 

160 

A rectangular fish tank is setting on a 27-inch-high stand. The tank is 36 inches tall 
and is being filled with water. The water is rising in the tank at a rate of 3 inches 
per minute. 

1. Write a mathematical model (equation) to describe how the total distance from floor 
to water level in the tank is dependent on the number of minutes water has been 
flowing into the tank. Identify the variables as: 

X = time water has been flowing into the tank (in minutes) 
Y = total distance from the floor to water level in the tank (in inches) 

Write the mathematical model (equation): 

2. What is the value of the slope? [Include units] 

3. In your own words, give a physical interpretation of the slope. 
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4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 

6. Use the mathematical model you determined in #1 of this problem to answer the 
following question: What is the total distance from floor to water level in the 
tank when water has flowed into the tank for 2.75 minutes? 

PROBLEMS 

When a group of sixth-grade students analyzed data they obtained by measuring the 
length of a spring when various masses were attached, they obtained the 
mathematical model: 

where 
Y = 0.107 X + 15.2 

X = mass attached to the spring (in grams) 
Y = length of the spring (in em) 

1. What is the value of the slope? [Include units!] 

2. In your own words, give a physical interpretation of the slope. 

3. What is the value of they-intercept? [Include units!] 
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4. In your own words, give a physical interpretation of the y-intercept. 

5. Use the mathematical model to answer the following question: What is the length 
of the spring when a mass of 43 grams is attached? 

6. Use the mathematical model to answer the following question: What mass must 
be attached to the spring for the length of the spring to be 19.3 em long? 

PROBLEM6 

The mathematical model expressing the relationship between the Kelvin (OK) and 
Fahrenheit (Of) temperature scales is 

where 
Y = 1.80 X- 459.4 

X = the temperature of the object being measured (in OK) 
Y = the temperature of the object being measured (in Of) 

1. What is the value of the slope? [Include units!] 

2. In your own words, give a physical interpretation of the slope. 
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3. What is the value of they-intercept? [Include units!] 

4. In your own words, give a physical interpretation of the y-intercept. 

5. Use the mathematical model to determine the Fahrenheit temperature equivalent to 
3000K. 

6. The normal body temperature for humans is considered to be 98.60F. Determine 
normal human body temperature on the Kelvin scale. 



Appendix F 

Workshop Evaluation Form 

164 



DATA ANALYSIS USING TilE TI-81 CALCULATOR 
Workshop Evaluation 

As a elementary school teacher you will participate regularly in inservice 
workshops similar to the preservice workshop you have just completed. At the 
conclusion of each workshop you will be asked to evaluate the workshop. This 
instrument has been developed to determine the value of this workshop from your 
perspective. Please circle the number to the right of each item which best describes 
your level of agreement or disagreement with the given statement. 

Scale: 
1 - Strongly disagree 
2- Disagree 
3 - Neutral (neither agree nor disagree) 
4- Agree 
5 - Strongly agree 

This workshop helped me develop a stronger understanding 
of how to interpret scientific data. 1 2 3 4 5 

This workshop helped me develop a stronger understanding 
of how to help elementary school children interpret 
scientific data. 1 2 3 4 5 

This workshop helped me develop more confidence in 
exploring relationships between pairs of variables using a 
scientific inquiry approach. 1 2 3 4 5 

This workshop helped me develop more confidence in 
helping elementary school children explore relationships 
between pairs of variables using a scientific inquiry 
approach. 1 2 3 4 5 

It is important for elementary school teachers who teach 
science and mathematics to know how to use a TI -81 
calculator to interpret data collected in experiments. 1 2 3 4 5 
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It is important for elementary school teachers to know how 
to use computers and calculators in teaching mathematics 
and science. 1 2 3 4 5 

It is important for elementary school teachers to know how 
to build mathematical models from scientific data. 1 2 3 4 5 

It is important for elementary school teachers to know how 
to use mathematical models which have been derived from 
scientific data. 1 2 3 4 5 

It is important to integrate language with science and 
mathematics in order to develop an understanding of 
science concepts. 1 2 3 4 5 

It is important for preservice elementary teachers to 
analyze data tables which they develop by making 
measurements. 1 2 3 4 5 

This workshop was worthwhile. 1 2 3 4 5 

I enjoyed participating in this workshop. 1 2 3 4 5 
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Please make any additional comments which might help me improve this workshop for 
future participants. 

THANK YOU FOR PARTICIPATING IN THIS WORKSHOP AND COMPLETING 
THIS EVALUATION SHEET 



Appendix G 

Posttest: Original Form 
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PROBLEM! 

A group of fourth grade students conducted an experiment to determine how the 
mass of a liquid is dependent on the volume of the liquid. They placed an 
empty graduated cylinder on a balance pan and added some of the liquid. 
Then they recorded the volume of the liquid and the total mass. They 
continued to add more of the liquid, recording volume and total mass after 
each addition, until they obtained the following data table. 

Volume of the Liquid Total Mass 
(mL) (grams) 

5.1 49.1 
9.7 51.8 
14.9 55.2 
20.1 59.2 
24.8 61.7 

1. Using your TI-81 calculator to fit the data to an equation, determine the 
linear mathematical model describing how the total mass is dependent on the 
volume of the liquid. Be sure to identify the variables in the equation. 

a= __ _ 
b= ---
r= 

2. What is the value of the slope? [Include units!] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of the y-intercept. 
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PROBLEM2 

A group of sixth-grade students conducted an experiment to determine how the 
volume a gas occupies depends on the temperature of the gas. The pressure 
on the gas was constant throughout the experiment. They obtained the 
following data table. 

I Temperature (OC} I Volume of the Gas (mL} I 
51.5 58.1 
68.9 60.1 
80.1 62.1 
87.9 64.1 
93.1 66.0 

1. Using your Tl-81 calculator to fit the data to an equation, determine the 
linear mathematical model describing how the volume the gas occupies is 
dependent on the temperature of the gas. Be sure to identify the variables in 
the equation. 

a= __ _ 
b= __ 
r= __ _ 

2. What is the value of the slope? [Include units] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 



PROBLEM3 

Wind-chill factor is a combination of the actual temperature and wind speed. 
The wind makes it feel colder that it really is. Below are the wind-chill 
Fahrenheit temperatures when the wind speed is 10 miles per hour. 

Actual Temperature Wind-Chill Temperature 
(OF) at 10 mph (OF) 

40 28 
30 16 
20 3 
10 -9 
0 -22 

-10 -34 
-20 -46 
-30 -58 

1. Using your TI-81 calculator to fit the data to an equation, determine the 
linear mathematical model describing how the wind-chill temperature at 
10 mph is dependent on the actual temperature. Be sure to identify the 
variables in the equation. 

a= __ _ 
b= __ _ 

r= 

2. What is the value of the slope? [Include units] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of the y-intercept. 
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PROBLEM4 

A group of third-grade students were learning how to make mass measurements. 
They conducted a very simple experiment. They put a cup on the balance 
and determined the mass. The value of this first measurement was 15.8 
grams. Then they placed a quarter into the cup and recorded the mass. 
They continued placing more quarters into the cup and recording the total 
mass. They discovered that the total mass increased by an average of 12.6 
grams each time they put in another quarter. 

1. Write an algebraic formula to describe how the total mass is dependent on 
the number of quarters in the cup. Be sure to identify the variables. 

2. What is the value of the slope? [Include units!] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 
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PROBLEMS 

A rectangular fish.tank is setting on a 27-inch-high stand. The tank is 36 inches 
tall and is being filled with water. The water is rising in the tank at a rate of 
3 inches per minute. 

1. Draw a diagram illustrating this situation. Write an algebraic formula to 
describe how the total distance from floor to water level in the tank is 
dependent on the number of minutes water has been added to the tank. 

2. What is the value of the slope? [Include units] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of the y-intercept? [Include units!] 

5. In your own words, give a physical interpretation of the y-intercept. 
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PROBLEM6 

Stapleton International Airport is located in Denver, approximately 12 miles 
from Mile High Stadium. Assume that the elevation above sea level is the 
same for the airport as for the stadium--- 5,280 feet. An airplane taking off 
from the airport is ascending at the rate of 1500 feet per minute. Assume 
that the plane continues at the same rate of ascent until it reaches an 
elevation of 20,000 feet above sea level. 

1. Write an algebraic formula to describe how the plane's elevation above sea 
level is dependent on the number of minutes it has been ascending. Be sure 
to identify the variables. 

2. What is the value of the slope? [Include units!] 

3. In your own words, give a physical interpretation of the slope. 

4. What is the value of they-intercept? [Include units!] 

5. In your own words, give a physical interpretation of they-intercept. 



PROBLEM7 

When a group of fourth-grade students analyzed data they obtained by 
measuring the length of a spring when various masses were attached, they 
obtained the mathematical formula: 

L = 0.107 M + 15.2 
where L = length of the spring in centimeters and M = mass attached to the 

spring in grams. 

1. What is the value of the slope? [Include units!] 

2. In your own words, give a physical interpretation of the slope. 

3. What is the value of they-intercept? [Include units!] 

4. In your own words, give a physical interpretation of they-intercept. 

5. Use the mathematical model to determine the length of the spring when a 
mass of 43 grams is attached. 
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6. What mass must be attached for the length of the spring to be 19.3 em long? 



PROBLEMS 

The mathematical model, expressed as an algebraic formula, for converting 
Kelvin (OK) to Fahrenheit (OF) temperature is 

F = (9/5) K- 459.4 

1. What is the value of the slope? [Include units!] 

2. In your own words, give a physical interpretation of the slope. 

3. What is the value of the y-intercept? [Include units!] 

4. In your own words, give a physical interpretation of the y-intercept. 

5. Use the mathematical model to determine the Fahrenheit temperature 
equivalent to 30QOK. 

6. The normal body temperature for humans is considered to be 98.60F. 
Determine normal body temperature on the Kelvin scale. 
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PROBLEM9 

During the summer, as the temperature gets over 800F, the chickens on a 
chicken farm drink more water. This behavior is modeled by the equation 

W = 25 T - 1250 
where W = number of gallons of water drunk per hour and T = Fahrenheit 
temperature (T ~ 800). 

1. What is the value of the slope? [Include units!] 

2. In your own words, give a physical interpretation of the slope. 

3. What is the value of the y-intercept? [Include units!] 

4. In your own words, give a physical interpretation of the y-intercept. 

5. How many gallons of water are used in an hour when the temperature is 
llOOF? 
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6. According to this model, what is the minimum amount of water the chickens 
will drink? 
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Appendix H 

Reference Sheet: Key Stroke Summazy for Data Analysis Using a TI-81 Calculator 
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DATA ANALYSIS USING TI-81 CALCULATORS 

1. Clearing the memory: 2nd, RESET 
2:Reset 

2. Making the screen lighter: 2nd, Hold down "down arrow" until light 

3. Entering data: 2nd, STAT, DATA, l:Edit, enter all data pairs 

4. Setting the range: RANGE, enter appropriate min and max for x 
andy 

5. Plotting the Scatterplot: 2nd, STAT, DRAW, 2:Scatter, ENTER 

4. Linear regression analysis: 2nd, STAT, CALC, 2:LinReg, ENTER 

5. 

Note: Three equations appear; for example: a = 5, b = 2, and r = 0.95. 
Interpretation: Y = bX + a is the linear equation and the correlation 
coefficient is r=0.95. 

Plotting the "best fit" 
equation with the scatter 
plot: 

Y =, at : Y 1 = press V ARS, choose LR, 
choose 4:RegEQ, 2nd, STAT, DRAW, 
2:Scatter, ENTER 

Note: How close are the data points obtained to the best-fit line? 

Extra Information: 

1. To delete a data point: 

2. To insert a data point: 

2nd, STAT, DATA, l:Edit 
Place cursor on = at x value for point to delete 
DEL 

2nd, STAT, DATA, l:Edit 
Place cursor on = at x value after insert point 
INS, Enter x and y value for new point 

3. To plot a second set of data 2nd, STAT, DATA, 2:CirStat, 2nd, STAT, 
without erasing first graph: DATA, l:Edit, enter data, 2nd, STAT, CALC, 

· 2:LinReg, ENTER, Y=, at :Y2= press VARS, 
choose LR, choose 4:RegEQ, GRAPH 



Appendix I 

Outline: Session I Introduction 

I. Operational Definitions 

A. Mathematics - set of tools for understanding our world 
B. Science - study of our world for understanding and prediction 

II. Example of where science and mathematics come together: 

Scientific Inquiry Method 
A. Purpose 
B. Hypotheses 
C. Materials 
D. Procedures 
E. Collect Data from Trials and Tests* 
F. Results* 
G. Conclusions* 

m. Science is a process "Doing" (as well as Content "Knowledge" 
and Attitudes "Feelings and Values") Process Skills: 

A. Observing 
B. Classifying 
C. Using space/time relations 
D. Using numbers 
E. Communicating* 
F. Measuring~ 
G. Inferring 
H. Predicting* 
I. Interpretating data* 
J. Controlling variables 
K. Defining operationally 
L. Formulating hypotheses 
M. Experimenting* 
N. Formulating models* 
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IV. What will we be doing in the two sessions? 

A. Collecting simple data to study the relationship between two 
real-world variables 

B. Session I 
1. "Matter is anything which has mass and volume" 

What is the relationship between M and V? 
2. What is the relationship between height and 

volume? 
3. Using TI-81 graphing calculators to analyze data and fit models 
4. Using models to make predictions 

C. Session II: Two more similar experiments 

V. Research Component 

A. How to structure elementary education major so that it best prepares 
students to teach elementary science and mathematics 

B. Standards for all teachers of mathematics (MAA)- formulating 
models and using technology - refer to important documents 

C. Procedures 
1. Work with assigned partner each time. 
2. Do not discuss with any other person or pair. 
3. Focus on communicating (connecting science+ math + 

language)- convince each other 
4. Sign consent form 

VI. Review of linear mathematical functions 

A. Equation: y = mx + b (Example: y = 2x + 5) 

B. Graph 

C. Slope: Rise/run; (change in y)/(change in x) 

D. y-intercept: value of y when x=O 
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Appendix J 

Form: Consent to Act as a Human Subject 
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CONSENT TO ACT AS A HUMAN SUBJECT 

PARTICIPANT'S NAME-----------------

DATE OF CONSENT _________________ _ 

PROJECT TITLE: 
Data Analysis in Physical Science using TI-81 Graphing Calculators 

DESCRIPTION AND EXPLANATION OF PROCEDURES: 
As a participant in this study, you will participate in two 2-hour workshop 

sessions. During each session you will work with a partner. The task in each session will 
be to analyze sets of scientific data using a Tl-81 calculator. Emphasis will be placed on 
drawing valid conclusions from data. You will take a test during a third 1-hour session. 
The purpose of the test is to assess the effectiveness of the workshop. In order to consider 
the effects of differences in students' scientific and mathematical backgrounds, I will need 
to access the following information from your file in the Office of the Registrar: list of 
high school and college mathematics and science courses taken (including grades), SAT 
scores, high school and college GPA, and high school class rank. 

POTENTIAL BENEFITS: 
The biggest benefit to you, as a participant in this study, is the experience of 

analyzing data using technology. By this experience of drawing valid conclusions from 
scientific data, you will be better prepared to guide elementary school students in 
conducting class and individual science experiments. 

COMPENSATION/TREATMENT FOR INJURY: None 

CONSENT: I have been satisfactorily informed about the procedures described above and the 
possible risks and benefits of the project, and I agree to participate in this project. Any 
questions that I have about the procedures have been answered. I understand that this project 
and this consent form follow federal regulations guaranteeing my right to privacy. If I have 
any questions about this, I will call the Office of the Registrar. 

I understand that I am free to withdraw my consent to participate in the project at any 
time without penalty or prejudice. In addition, I will not be identified by name as a participant 
in this project. 

Any new information that might develop during the project will be provided to me if 
that information might affect my willingness to participate in the project. 

Subject's Signature Witness to Signature 



Appendix K 

Outline: Session II Review 

I. Scientific Inquiry Method- Focusing particularly on last three steps 

A. Data Tables from Measurements 

B. Results based on Data 

C. Conclusions based on Results 

II. Algebra: Linear Equations in Slope-Intercept Form 

A. Equation: y = mx + b (Example: y = 3x - 5) 

B. Graph 

C. Slope: Meaning? 

D. y-Intercept: Meaning 

III. Science: Linear Mathematical Model in Slope-Intercept Form 

A. General Equation: Y = bX +a (TI-81: a is y-intercept; b is slope) 

B. Specific Equation for Antifreeze Data: Y = 1.13 X+ 45.0 
Variables: 

1. Y = total mass of antifreeze and graduated cylinder (grams) 
2. X =volume of antifreeze added (mL) 

C. Graph (sketch; label axes) 
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D. Slope 

1. Identification: b = 1.13 grams per milliliter 
2. Interpretation: "The total mass of the graduated cylinder with 

contents increases 1.13 grams for each one milliliter of antifreeze 
added; "one milliliter of antifreeze has a mass of 1.13 grams;" 
"the density of antifreeze is 1.13 g/mL." 

E. y-Intercept 

1. Identification: a = 45.0 grams 
2. Interpretation: "The mass of the empty graduated cylinder is 45.0 

grams." 

F. Predictions based on the model 

1. Meaning of terms in the model 

a. "1.13 X" represents the mass of the antifreeze in the 
graduated cylinder 

b. "45.0" represents the mass of the antifreeze; dependent 
on amount of antifreeze poured into the graduated 
cylinder 

c. "Y" represents the total mass; sum of the mass of antifreeze 
and the mass of the graduated cylinder 

2. Reduced model: 

a. What is the mass of 16.2 mL of rubbing alcohol? 
Y = 1.13 X (find Y) 

b. What is the volume of 35.7 grams of antifreeze? 
Y = 1.13 X (fmd X) 

3. Full model: 

If 21.2 mL of antifreeze were added to the graduated cylinder, 
what would the total mass be? 
Y = 1.13 X + 45.0 (find Y) 
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Appendix L 

Letter: Request for Administrative Permission to Access Subjects' Academic Records 
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Dear<>: 

On Monday and Wednesday of this week I spoke with < > , < >, < >, and 
< > about offering a workshop for < > elementary education majors on formulating 
mathematical models, using TI-81 graphing calculators to analyze science data. They 
have expressed interest in having students currently enrolled in MATHl and ED4 
participate in such a workshop. We are currently in the process of scheduling 
workshop sessions for these students. 

This workshop has been designed specifically to help preservice elementary 
education teachers connect the concept of mathematical function with the scientific 
inquiry method. Currently this area generally "falls through the cracks" among 
mathematics, science, mathematics methods, and science methods courses required in 
the elementary education major. Ideas developed during the workshop are based on 
recent calls for educational reform from a variety of national organizations: National 
Science Teachers Association (NSTA), National Research Council (NRC), National 
Council of Teachers of Mathematics (NCTM), and Mathematical Association of 
America (MAA). 

This workshop sequence has been designed as part of an experimental research 
project to be completed in partial fulfillment of my Ph.D. degree in Mathematics 
Education. Basically, participating students will be assigned to one of two treatment 
groups. Treatment Group A will build and use mathematical models based on data that 
they collect. Treatment Group B will build and use mathematical models based on data 
that is provided to them. The research project is designed to investigate the importance 
of data collection to the data analysis process for understanding relationships between 
real world variables. Students who complete the two 2-hour treatment sessions will 
take a posttest. Posttest results will be analyzed to determine if there is a difference in 
mean scores for Treatment Group A and Treatment Group B. 

I would also like to analyze the posttest results on several background variables: 
SAT scores, high school class rank, high school GPA, college GPA, high school 
mathematics courses taken and grades, high school science courses taken and grades, 
college mathematics courses taken and grades, and college science courses taken and 
grades. I hereby request that I be allowed to gather this data under the supervision of 
the Registrar within the following guidelines: 

(1) Individual students participating in this project will not be identified in my 
dissertation, papers presented for publication resulting from this research, or 
in any other written documents or oral presentations. Once data has been 
collected, all identifying marks (name and social security number) will be 



permanently removed from project files. At the end of this study all files 
will be destroyed. 
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(2) The institution will not be identified in my dissertation, papers presented for 
publication resulting from this research, or in any other written documents 
or oral presentations. 

(3) A student's records will not be accessed without the written consent of the 
student. All participating students will sign a form granting me permission 
to use specified information from their academic file. A copy of the signed 
"Consent to Act as a Human Subject" form will be placed in my individual 
participant's file and the original form will be given to the Registrar, to be 
filed as the Registrar deems appropriate. 

(4) The Registrar will verify that all aspects of Public Law 93-380, titled 
Family Education Rights and Privacy Act (1974), and all university 
guidelines on the release of student records have been complied with in 
releasing student records for the purpose of this research project. 

(5) All data collection from students' files will done via procedures established 
by the Registrar and under his supervision. Data collection will be done at 
times that will not interfere with the regular operational functions of the 
Office of the Registrar. 

Thank you for your consideration of this request. I have attached a document 
providing more information about the experimental project. If you should require 
additional information, please call me at < > . 

Sincerely, 

<> 



Project Title: Data Analysis Involving Linear Mathematical Models of Physical 
Science Phenomena as a Means of Strengthening Function Knowledge of 
Preservice Elementary Teachers 
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Project Goal: The goal of this project is to determine the effect completing data 
collection tasks based on physical science variables has on subjects' abilities to 
perform data interpretation tasks. The data interpretation tasks to be measured 
are (a) building linear mathematical models, (b) interpreting mathematical 
models, and (c) making predictions from mathematical models of physical 
phenomena. 

Procedures: Subjects will be randomly assigned to one of two treatment groups. 
Subjects in Group A will complete two physical science workshop assignments 
which involve collecting data. They will then use the data they have collected 
to complete data interpretation tasks: (a) building linear mathematical models, 
(b) interpreting mathematical models, and (c) making predictions from 
mathematical models. For subjects in Group B, activities related to the 
scientific inquiry method and teaching children using a scientific inquiry method 
will be substituted in place of the data collection portion of Group A's 
treatment. Group B subjects will be given data sets analogous to the ones 
collected by the Group A subjects, and Group B subjects will complete data 
interpretation tasks identical to those done by Group A subjects. All subjects 
will then complete a posttest. In order to consider the effects of differences in 
student's scientific and mathematical backgrounds, I will need to access the 
following information from student's academic folders: list of high school and 
college mathematics and science courses taken (including grades), high school 
and college GPA, high school rank, and SAT scores. 

Data Gathering Tool: The data gathering tool is a researcher-constructed test of 
content knowledge. The test is designed to assess subjects' abilities to build and 
interpret mathematical models beginning with a set of data, build and interpret 
mathematical models beginning with a verbal description, and interpret 
mathematical models and make predictions beginning with an algebraic formula. 

Number of Subjects:_ The experimental design calls for 64 subjects, with 32 in each of 
the two treatment groups. Twenty-eight potential subjects are currently enrolled 
in ED4. Thirty-six potential subjects are currently enrolled in MATH!. 



How long will the procedures take? Each subject will participate in two 2-hour 
treatment sessions and one 50-minute testing session. 
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Benefits: The elementary preservice teachers involved in this study will learn data 
analysis in a form consistent with teaching children via a scientific inquiry 
method. This will prepare them for helping children bridge the gap between the 
concrete experiences of observation and data collection in science and the more 
abstract experiences of drawing conclusions from data, which in tum may lead 
children to a better understanding of science. Early positive experiences with 
science might result in more students pursuing scientific careers to fill ever­
increasing needs in our technological society. 

Confidentially of Data: Confidentially of data will be maintained by assigning each 
subject a reference code number. As soon as all data is gathered for a particular 
subject, the subject's name and other identifying information will be removed 
from the subject's file folder. From that point on the only file identification 
will be the reference code number. All files will be kept by the researcher in a 
secured area. No one will have access to the files except the researcher. As 
soon as the data is no longer needed the files will be destroyed. 
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Appendix M 

Fonn: Student Background Infonnation Sheet 



Name: 

STUDENT BACKGROUND INFORMATION SHEET 
Research Project: Mathematical Modeling in Physical Science 

SSN: 

Participant Code: 
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************************************************************************ 
Information from High School Records: 

SAT Scores: ____ Verbal ____ Mathematical 

High School GPA: 

High School Class Rank: _________ of ________ _ 

Mathematics and Science Courses Completed and Course Grades: 

Mathematics Science G 

************************************************************************ 
Information from College Records (including Transfer Credits): 

Most recent College GPA: 

Mathematics and Science Courses Completed and Course Grades: 

I Mathematics I Grade I I Science I Grade I 
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Appendix N 

Pilot Test #1: Posttest Item Data and Posttest Item Means 

Table N-1 
Posttest Item Data for Natural Science Students 

Code PI P2 P3 P4 PS P7 pg P9 PIO Pll 

NSI 0.5 1.0 0.0 1.0 0.0 0.5 1.0 1.0 0.5 0.0 
NS2 1.0 1.0 0.0 0.5 0.0 1.0 1.0 0.0 0.5 0.0 
NS3 1.0 1.0 1.0 1.0 1.0 0.5 0.5 1.0 1.0 0.0 
NS4 0.5 0.5 0.0 0.5 0.0 0.5 0.5 0.5 0.5 0.0 
NSS 1.0 1.0 1.0 0.5 0.0 0.5 1.0 0.5 0.5 0.0 
NS6 0.5 0.5 0.0 0.5 0.0 0.5 0.5 0.0 0.5 0.0 
NS7 0.5 1.0 0.0 0.5 0.0 0.5 0.5 0.0 0.5 0.0 
NS8 1.0 1.0 0.5 1.0 0.0 1.0 0.5 0.0 0.5 0.0 
NS9 1.0 1.0 0.0 0.5 1.0 1.0 1.0 0.0 0.5 0.0 
NSIO 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.5 1.0 0.0 
NSll 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 
NSI2 0.5 1.0 0.5 1.0 0.0 0.5 1.0 0.0 1.0 0.0 
NSI3 0.5 1.0 0.0 0.5 0.0 0.5 1.0 0.0 0.5 0.0 
NSI4 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 
NSIS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 
NSI6 0.5 1.0 0.5 1.0 0.0 0.5 1.0 0.5 1.0 0.0 
NSI7 1.0 1.0 0.0 0.5 0.0 1.0 0.5 0.5 1.0 0.0 

Code P13 PI4 PIS P16 PI7 PI9 P20 P21 P22 P23 P25 

NSI 0.5 0.5 1.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.5 
NS2 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.5 
NS3 0.5 0.0 0.0 0.0 0.0 0.0 1.0 1.9 1.0 0.5 1.0 
NS4 1.0 0.5 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.5 
NS5 1.0 1.0 0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.5 
NS6 1.0 1.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 1.0 
NS7 1.0 0.5 0.5 1.0 1.0 0.0 0.5 0.5 0.0 0.0 0.0 
NS8 1.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.5 
NS9 0.5 0.5 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.5 
NSIO 1.0 0.5 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 
NSll 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 
NSI2 1.0 1.0 0.0 1.0 0.0 1.0 1.0 0.0 1.0 1.0 0.5 
NSI3 0.0 0.0 0.0 0.0 0.0 0.5 0.5 0.0 0.0 0.0 0.5 
NSI4 0.5 1.0 1.0 0.0 1.0 0.5 1.0 1.0 0.0 0.0 0.5 
NSIS 1.0 0.5 0.5 1.0 1.0 0.5 1.0 1.0 0.0 0.0 1.0 
NSI6 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 0.0 0.5 
NS17 1.0 0.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
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Table N-1 (continued) 
Posttest Item Data for Natural Science Students 

Code P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

NSl 0.5 1.0 0.5 1.0 0.5 1.0 1.0 0.5 0.0 1.0 0.0 
NS2 0.0 0.5 0.0 0.0 0.0 1.0 0.0 0.5 0.0 0.0 0.0 
NS3 0.5 . 0.5 0.0 1.0 1.0 0.5 0.0 0.5 0.0 1.0 1.0 
NS4 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.0 0.0 
NS5 0.0 0.5 0.0 1.0 1.0 1.0 0.0 0.5 0.0 1.0 1.0 
NS6 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 
NS7 0.5 0.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 1.0 0.0 
NS8 0.0 0.5 0.0 1.0 0.0 0.5 0.0 1.0 0.0 0.0 0.0 
NS9 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.5 0.0 0.0 1.0 
NSIO 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
NSll 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 
NS12 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 0.0 1.0 1.0 
NS13 0.0 1.0 0.0 0.0 0.0 0.5 0.0 0.5 0.0 0.0 0.0 
NS14 1.0 0.5 0.0 0.0 0.0 1.0 1.0 1.0 1.0 1.0 0.5 
NS15 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.0 1.0 1.0 
NS16 1.0 0.5 0.0 1.0 1.0 0.5 0.5 0.5 0.0 1.0 1.0 
NS17 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 



Table N-2 
Posttest Means by Item for Natural Science Students 

Question(s) 

Pl 
P2 
P3 
P4 
P5 
P7 
P8 
P9 
PlO 
Pll 
P13 
P14 
P15 
P16 
P17 
P19 
P20 
P21 
P22 
P23 
P25 
P26 
P27 
P28 
P29 
P30 
P31 
P32 
P33 
P34 
P35 
P36 

Mean 

.79 

.94 

.44 

.76 

.26 

.74 

.82 

.44 

.74 

.06 

.82 

.65 

.44 

.65 

.38 

.32 

.53 

.50 

.29 

.21 

.56 

.38 

.62 

.26 

.59 

.44 

.68 

.29 

.65 

.18 

.59 

.50 
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NOTE: The initial version of the posttest (Appendix G) piloted with Natural Science students 
consisted of 45 questions, 32 of which were included in the final version of the posttest. The 
means given in the tables of this Appendix are only for the questions common to both versions 
of the posttest. Questions labeled P6, P12, Pl8, and P24 are found on the final posttest 
(Appendix E) but not on the initial version. 
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Appendix 0 

Pilot Test #2: Posttest Item Data and Posttest Item Means 

Table 0-1 
Posttest Item Data for Physics Students 

Subject PI P2 P3 P4 PS P6 P7 P8 P9 PIO Pll P12 

PHYI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 
PHY4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 
PHYS 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 
PHY6 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 
PHY7 1.0 1.0 0.5 1.0 1.0 0.5 1.0 1.0 0.5 0.0 1.0 1.0 
PHY8 0.0 1.0 1.0 1.0 1.0 0.5 0.0 1.0 1.0 1.0 0.0 1.0 
PHY9 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 
PHYIO 0.0 0.5 0.0 1.0 0.0 0.5 0.0 0.5 0.0 0.5 0.0 1.0 

Subject P13 P14 PIS P16 P17 PIS Pl9 P20 P21 P22 P23 P24 

PHYl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHYS 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY6 0.5 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY7 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 
PHY8 0.0 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 
PHY9 0.0 1.0 0.0 1.0 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 
PHYIO 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 

Subject P25 P26 P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 

PHYI 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY3 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.5 
PHY6 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
PHY7 1.0 1.0 1.0 0.5 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 
PHY8 1.0 1.0 1.0 0.5 1.0 1.0 1.0 1.0 0.5 0.5 0.0 0.0 
PHY9 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 0.0 0.0 0.0 

PHYIO 0.5 0.0 1.0 0.0 1.0 0.0 0.5 0.0 0.5 0.0 1.0 0.0 



Table 0-2 
Posttest Means by Item for Physics Students 

Item 

Pl 
P2 
P3 
P4 
P5 
P6 
P7 
P8 
P9 
PlO 
Pll 
Pl2 
Pl3 
Pl4 
PIS 
Pl6 
Pl7 
Pl8 
Pl9 
P20 
P21 
P22 
P23 
P24 
P25 
P26 
P27 
P28 
P29 
P30 
P31 
P32 
P33 
P34 
P35 
P36 

Mean 

.70 

.95 

.85 
1.00 
.90 
.15 
.70 
.95 
.85 
.85 
.60 
.95 
.65 
.90 
.80 
.85 
.90 
.90 
.15 
1.00 
.90 
1.00 
.85 
1.00 
.95 
.90 
.95 
.15 
1.00 
.90 
.95 
.85 
.85 
.15 
.80 
.65 

NOTE: The final version of the posttest (Appendix E) was piloted with Physics students. 
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Appendix P 

lnterrater Reliability 

The posttests were blind scored. Each posttest was scored by two raters. The 
following table details the scoring differences between the two raters. For each subject 
a summary of scoring differences is given by test item. The "Agreed" column gives 
the number of items on which the scores assigned by the two raters were the same. 
The "Fixed" column gives the number of items on which the scores assigned by the two 
raters differed because one or both of the raters made an error in following the 
established scoring criteria .. The "Compromised" column gives the number of items 
on which the scores assigned by the two raters differed because the raters interpreted 
the correctness of the subject response differently. Both the Fixed and Compromise 
columns also list the items which were scored differently and, in parenthesis, the item 
difference between the two assigned scores. After the scoring was completed by the 
two raters, the raters compared assigned scores, item-by-item, and made adjustments to 
obtain one set of item scores per subject. 

Table P 
Details of Posttest Raters' Differences by Subject 

Subject Agreed Fixed Compromised 

1-A11 34 2 [2.6(.5),5.6(.5)] 0 
2-A12 34 2 [5.6(.5),6.6(.5)] 0 
3-A21 35 0 1 [3.5(1)] 
4-A22 33 3 [1.4(.5),2.4(.5),5.2(.5)] 0 
5-A31 36 0 0 
6-A32 36 0 0 
7-A41 36 0 0 
8-A42 33 2 [4.6(.5),6.1(.5)] 1 [2.3(.5)] 
9-A51 33 2 [3.2(.5),5.3(.5)] 1 [3.3(.5)] 
10-A52 36 0 0 
11-A61 36 0 0 
12-A62 34 1 (4.4(.5)] 1 [4.5(.5)] 
13-A71 36 0 0 
14-A72 33 1 [4.4(.5)] 2 [6.5(.5),6.6(.5)] 
15-B11 35 1 [2.6(.5)] 0 
16-B12 35 1 [2.6(.5)] 0 
17-B21 36 0 0 
18-B22 35 0 1 (1.5(.5)] 
19-B31 36 0 0 
20-B32 34 1 [2.4(.5)] 1 [1.3(.5)] 
21-B41 35 0 1 [5.6(.5)] 
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Table P (continued) 
Details of Posttest Raters' Differences by Subject 

Subject Agreed Fixed Compromised 
22-B42 34 1 [4.4(.5)] 1 [2.3(.5)] 
23-B51 35 1 [5.6(1)] 0 
24-B52 35 1 [2.5(.5)] 0 
25-B61 34 1 [5.5(.5)] 1 [6.6(.5)] 
26-B62 36 0 0 
27-B71 34 2 [4.4(.5),5.1(.5)] 0 
28-B72 33 3 [1.6(.5),4.4(.5),6.6(.5)] 0 
29-Tll 35 1 [4.4(.5)] 0 
30-T12 36 0 0 
31-T13 35 0 1 [1.3(.5)] 
32-T22 34 1 [4.4(.5)] 1 [4.5(1)] 
33-T31 36 0 0 
34-M21 35 1 [1.4(.5)] 0 
35-M22 35 0 1 [1.3(.5)] 
36-M41 34 2 [5.1(1),6.3(.5)] 0 
37-M42 36 0 0 
38-M51 35 1 [2.1(.5)] 0 
39-M52 34 1 [4.4(.5)] 1 [1.1(1)] 
40-M61 36 0 0 
41-M62 36 0 0 
42-W11 36 0 0 
43-W12 31 3 [1.2(.5),2.2(.5),4.4(.5)] 2 [1.6(.5),4.3(.5)] 
44-W31 34 0 2 [5.2(.5),6.6(.5)] 
45-W22 36 0 0 
46-W31 35 0 1 [1.3(.5)] 
47-W32 34 0 2 [6.5(.5),6.6(.5)] 
48-W41 32 3 [1.4(.5),2.4(.5),5.3(.5)] 1 [6.2(.5)] 
49-W42 36 0 0 
50-W51 31 4 [1.4(.5),2.2(.5),5.1(.5),5.3(.5)] 1 [6.6(.5)] 
51-W52 34 0 2 [3.3(.5),4.6(.5)] 
52-W53 35 0 1 [6.6(.5)] 

Totals 1803 44 30 
Total Percent 96.3% 2.2% 1.5% 

Summary. Of the 1872 items scored by each, the raters agreed on 1803 items. This 
corresponds to an Interrater Reliability of 96.3%. Forty-four of the remaining 69 
scoring discrepancies (2.2%) were accounted for by misapplication of established 
scoring criteria. Only 27 items (1.4%) were scored differently because of rater 
interpretation differences. 



Appendix Q 

Analysis of Background Data by Experimental Pair 

Treatment Sample Sizes: 

Maximum value; may be lower due to missing data 
Maximum value; may be lower due to missing data 

Variable Identification: 

HSR 
HGPA 
MSAT 
VSAT 
TSWE 
HMHRS 
HSHRS 
HMGPA 
HSGPA 
PGPA 
CGPA 
CHRS 
CMHRS 
CSHRS 
CMGPA 
CSGPA 

High school rank in class (percentile) 
High school grade point average 
Score on mathematical portion of SAT 
Score on verbal portion of SAT 
Score on Test of Standard Written English 
Total number of credits in high school math 
Total number of credits in high school science 
Grade point average in high school mathematics courses 
Grade point average in high school science courses 
Predicted grade point average 
Current college grade point average 
Total number of semester hours completed in college 
Total number of semester hours in college mathematics courses 
Total number of semester hours in college science courses 
Grade point average in college mathematics courses 
Grade point average in college science courses 
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Table Q 
t-test Results for Background Data 

Variable DA Group A Mean DB Group B Mean df t-Value p-Value 

HSR 13 61.94 11 62.57 22 -.10 .9209 
HGPA 13 2.83 11 2.88 22 -.28 .7857 
MSAT 13 41.09 11 42.73 22 -.71 .4858 
VSAT 13 37.68 11 38.06 22 -.18 .8561 
TSWE 13 38.73 11 39.57 22 -.26 .7999 
HMHRS 13 3.59 12 3.36 23 .89 .3826 
HSHRS 13 2.87 12 2.90 23 -.12 .9059 
HMGPA 13 2.32 12 2.39 23 -.29 .7764 
HSGPA 13 2.41 12 2.54 23 -.56 .5823 
PGPA 9 2.42 10 2.42 17 -.03 .9742 
CGPA 10 3.01 10 2.86 18 .59 .5654 
CHRS 10 73.50 10 89.45 18 -.93 .3638 
CMHRS 9 6.39 10 7.10 17 -.61 .5524 
CSHRS 9 8.44 10 7.10 17 .60 .5536 
CMGPA 8 2.78 9 2.80 15 -.03 .9745 
CSGPA 7 2.61 9 2.60 14 .02 .9882 



Appendix R 

Analysis of Workshop Evaluation Form Results 

Treatment Sample Sizes: 

nA = 13 
DB= 12 

TableR 
t-test Results for Workshop Evaluation Form Responses (df = 23) 

Statement Group A Mean Group B Mean t-Value p-Value 

Sl 
S2 
S3 
S4 
S5 
S6 
S7 
S8 
S9 

S10 
Sll 
S12 

3.09 
2.87 
3.21 
2.87 
3.67 
4.42 
3.91 
3.80 
3.94 
3.54 
3.24 
3.12 

3.51 -1.46 
2.72 .48 
2.75 1.59 
2.89 -.05 
3.57 .26 
4.58 -.60 
4.13 -.78 
4.13 -1.27 
4.21 -.79 
3.61 -.30 
3.17 .25 
3.40 -.97 

.1579 

.6375 

.1263 

.9586 

.7959 

.5563 

.4421 

.2151 

.4350 

.7661 

.8082 

.3401 
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Appendix S 

Data by Individual Subject 
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Table S-1 
Background Data by Individual Suibject 

StJBJECf TREAT HSR HGPA MSAT VSAT TSWE HMHRS IISHRS HMGPA 

All 93.5 3.79 65 40 45 5.0 4.0 3.60 
A12 71.0 2.87 34 31 33 3.0 2.0 2.50 
A21 61.2 2.71 39 30 29 4.0 3.0 2.63 
A22 66.2 3.0 2.0 2.00 
A31 61.9 2.81 42 37 36 4.0 4.0 2.13 
A32 
A41 40.1 2.47 38 41 47 4.0 4.0 2.00 
A42 90.0 4.00 33 30 34 4.0 3.0 3.50 
A51 93.6 4.00 47 41 4.0 3.0 3.50 
A52 28.0 2.64 33 49 53 3.0 4.0 1.67 
A61 62.5 2.87 2.0 1.0 2.0 
A62 23.8 2.08 37 37 38 4.0 2.0 1.80 
A71 38.8 2.43 28 32 3.0 2.0 1.33 
A72 I 71.3 3.17 42 34 46 5.0 3.0 2.40 
811 2 
812 2 38.2 2.60 38 37 41 3.5 3.0 1.71 
821 2 89.6 3.68 46 36 43 4.0 2.0 3.67 
822 2 92.5 34 33 42 3.0 3.0 2.00 
831 2 
832 2 2.0 2.0 3.50 
841 2 56.2 2.64 41 35 38 4.0 3.0 L75 
842 2 40 34 32 4.0 3.0 2.63 
851 2 69.6 2.71 31 39 45 4.0 3.0 2.00 
852 2 99.8 3.96 53 43 50 4.0 3.0 3.75 
861 2 40.2 2.06 41 31 33 3.0 3.0 1.00 
862 2 
871 2 49.1 2.61 41 40 31 3.0 4.0 1.33 
872 2 65.5 2.80 36 46 48 4.0 4.0 2.50 
M21 59.3 3.12 45 40 36 4.0 2.0 2.50 
M22 81.6 37 39 42 3.0 2.0 2.33 
M41 63.6 2.61 27 30 30 4.0 2.0 2.50 
M42 22.2 2.05 39 32 34 4.0 3.0 2.50 
M51 39.1 1.86 42 28 27 4.0 3.0 1.60 
M52 65.7 2.79 32 36 4.0 4.0 2.75 
M61 91.9 3.43 65 42 50 4.0 3.0 3.25 
M62 54.7 2.90 48 42 44 4.0 4.0 2.50 
Tll 93.8 3.70 37 45 41 3.0 3.0 2.67 
Tl2 1 37.0 0.57 34 45 42 4.0 4.0 2.00 
Tl3 1 37.3 3.03 45 43 43 4.0 3.0 2.63 
T21 1 0.0 1.0 0.00 
T22 1 78.3 2.73 50 48 35 3.0 3.0 2.33 
Wll 2 54.1 2.99 42 37 3.0 2.0 3.67 
W12 2 69.0 2.92 47 35 42 3.0 3.0 3.00 
W21 2 87.1 3.39 40 34 40 3.0 3.0 2.67 
W22 2 77.3 3.60 56 54 51 4.0 3.0 3.63 
W31 2 42.5 2.12 36 31 40 4.0 2.0 2.50 
W32 2 87.9 3.52 51 42 43 4.0 3.0 2.75 
W41 2 75.0 3.10 52 33 28 3.0 2.0 2.33 
W42 2 61.9 2.66 46 52 so 3.0 4.0 1.33 
WSI 2 71.3 3.43 39 34 42 4.0 4.0 2.75 
W52 2 11.2 1.40 57 49 38 2.0 2.0 1.33 
W53 2 47.1 2.60 39 33 44 4.0 4.0 1.20 
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Table S-1 (continued) 
Background Data by Individual Subject 

SUBJECI' TREAT HSGPA PGPA CGPA CHRS CMHRS CSHRS CMGPA CSGPA 

All 3.75 2.88 103 6.0 12.0 4.00 4.00 
A12 2.50 2.52 2.54 99 6.0 8.0 3.00 2.50 
A21 1 2.33 2.98 122 6.0 8.0 3.50 2.00 
A22 1 2.00 3.22 90 6.0 14.0 2.50 
A31 1 2.63 2.15 2.54 85 9.0 8.0 2.50 2.00 
A32 1 2.87 99 6.0 4.0 1.50 2.00 
A41 1 2.00 3.13 90 9.0 12.0 3.00 3.00 
A42 1 3.67 3.35 101 9.0 12.0 3.00 3.00 
AS! 1 3.67 3.68 89 9.0 22.0 3.50 
A52 1 2.50 2.13 3.20 84 9.0 8.0 3.00 3.00 
A61 1 2.00 2.90 93 6.0 8.0 2.00 2.00 
A62 1 2.50 3.23 108 9.0 8.0 3.00 2.00 
A71 1 2.00 3.06 115 9.0 12.0 3.00 3.00 
A72 1 3.33 3.33 88 0.0 0.0 
Bll 2 4.00 106 12.0 7.0 4.00 
B12 2 3.00 2.40 2.45 91 6.0 8.0 3.00 1.00 
B21 2 3.50 3.61 106 7.0 5.0 4.00 
B22 2 4.00 4.00 136 6.0 34.0 4.00 4.00 
B31 2 3.34 139 15.0 7.0 3.00 3.00 
B32 2 3.00 4.00 101 9.0 5.0 4.00 
B41 2 2.67 2.18 3.07 97 6.0 8.0 4.00 2.50 
B42 2 2.67 2.35 2.90 101 12.0 4.0 3.00 3.00 
B51 2 2.00 2.23 2.53 89 6.0 8.0 1.67 1.50 
B52 2 4.00 3.35 3.97 97 6.0 8.0 4.00 4.00 
B61 2 2.00 1.91 2.61 105 9.0 8.0 3.00 2.00 
B62 2 3.20 182 6.0 12.0 4.00 3.33 
B71 2 2.50 2.34 2.64 99 9.0 8.0 2.67 1.50 
B72 2 2.50 2.39 3.10 92 9.0 8.0 2.00 3.00 
M21 1 2.00 2.79 
M22 1 2.00 2.56 2.76 25 2.0 0.0 2.00 
M41 1 2.00 2.28 6.0 8.0 
M42 1 2.00 1.94 
MSI 1 2.00 1.63 
M52 1 2.50 2.35 
M61 1 2.67 3.18 
M62 1 2.50 2.59 
Tll 1 3.00 3.09 3.50 6.0 
T12 1 2.00 2.36 
T13 1 2.50 2.28 
T21 0.50 1.91 21 
T22 2.00 2.71 
Wll 2 1.50 2.43 
Wl2 2 2.33 2.49 2.12 26 3.0 3.0 2.00 3.00 
W21 2 1.67 2.35 2.04 52 3.0 3.0 2.00 
W22 2 3.83 3.30 
W31 2 2.00 1.85 1.70 46 6.0 0.0 0.00 
W32 2 3.00 3.18 
W41 2 2.00 2.61 
W42 2 1.75 2.50 
WSI 2 1.57 2.10 
WS2 2 .67 2.20 
WS3 2 2.25 2.07 
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Table S-2 
Evaluation Form Data by Individual Subject 

SUBJECJ" TREAT Sl S2 53 S4 S5 S6 S7 ss S9 SIO Sll Sl2 

All 4 3 4 3 4 4 4 4 4 4 4 4 

A12 2 3 2 2 4 4 4 4 4 4 1 2 
A21 3 3 2 2 2 4 4 3 4 4 3 3 
A22 2 4 2 3 5 5 4 4 5 4 4 4 
A31 4 3 3 3 5 5 5 5 5 4 3 :3 
A32 3 4 3 4 3 5 5 5 5 3 3 3 
A41 2 2 2 3 I I 2 2 I 2 2 2 
A42 3 2 3 3 2 4 3 3 3 3 3 2 
A51 3 3 3 3 3 3 3 3 4 3 3 :3 
A52 4 4 4 3 3 5 5 5 5 5 5 4 
A61 3 3 3 3 4 4 4 3 5 3 2 2 
A62 :3 3 4 3 2 5 4 4 4 4 3 3 
A71 1 3 3 3 3 5 5 5 5 5 3 3 3 
A72 1 4 4 4 4 5 5 5 4 5 4 4 4 

811 2 3 2 3 3 4 5 3 4 4 3 3 3 
812 2 4 2 2 2 5 4 4 4 4 2 2 1 
821 2 4 3 3 4 3 5 4 4 4 4 4 5 
822 2 4 4 s 5 5 5 5 5 5 4 4 4 

831 2 :3 4 2 2 4 5 2 2 4 2 4 4 
832 2 4 3 2 3 4 5 3 4 4 4 3 :3 
841 2 4 5 4 5 4 5 5 5 5 5 4 4 

842 2 4 4 4 4 s 5 5 5 5 5 4 4 
851 2 1 1 I 3 4 4 4 5 3 2 

852 2 
861 2 3 3 2 2 2 s 4 4 4 4 2 3 
862 2 
871 2 3 3 2 3 2 I 3 3 2 3 3 3 
872 2 4 2 4 2 5 5 5 5 5 4 4 4 
M21 1 2 3 4 4 4 4 4 4 4 4 2 3 

M22 1 4 I 4 2 3 5 2 2 3 2 4 3 

M41 I 2 3 3 3 5 5 4 4 3 3 4 4 

M42 1 2 1 4 2 3 5 3 3 3 4 2 3 

M51 1 3 3 4 4 5 5 5 5 5 5 4 3 

M52 1 
M61 1 2 2 3 3 3 4 5 4 3 3 3 2 
M62 1 3 2 4 3 2 5 3 3 2 3 2 

Til 1 4 4 3 3 4 5 5 4 5 4 4 4 

T12 1 3 2 3 3 5 5 s 5 5 5 3 4 
T13 1 4 4 2 4 s 5 3 4 4 3 4 4 

T21 1 3 2 2 1 5 5 3 5 4 3 4 5 
T22 1 4 4 4 4 5 5 4 5 5 5 4 I 
Wll 2 5 2 4 2 5 5 5 4 5 4 4 3 

W12 2 3 2 2 2 3 5 5 s 5 3 3 4 

W21 2 4 3 2 2 3 5 4 3 3 3 3 4 
W22 2 4 3 3 3 4 5 5 5 5 5 4 4 

W31 2 4 3 3 3 4 4 4 3 4 3 4 4 

W32 2 4 3 3 3 5 5 5 5 5 5 5 5 
W41 2 4 2 2 4 3 3 3 4 3 4 3 3 
W42 2 4 .. 4 4 3 5 5 5 3 3 3 :3 .. 
WS1 2 3 3 2 4 3 s 4 4 3 3 2 3 

WS2 2 4 2 3 3 2 5 3 3 4 4 3 3 
WS3 2 4 3 4 4 2 5 5 5 5 5 4 4 
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Table S-3 
Posttest Item Data by Individual Subject 

SUBJECT TREAT P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Pll P12 

All 1 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 .0 1.0 .0 1.0 
A12 1 1.0 1.0 .0 1.0 1.0 .s 1.0 .s .0 1.0 .0 1.0 
A21 1 1.0 1.0 .0 1.0 .5 .5 1.0 1.0 .0 1.0 .0 1.0 
"A22 1 .0 .0 .0 .5 .0 .s .0 .0 .0 .s .0 1.0 
A31 1 1.0 1.0 .5 .5 .0 .0 1.0 1.0 .s .s .0 .0 
A32 1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
A41 1 1.0 .5 .5 .0 1.0 1.0 1.0 .5 .0 1.0 .0 .0 
A42 1 1.0 .s .s .5 .5 .0 1.0 .s .s .5 .0 .5 
AS! 1 1.0 .s .s 1.0 1.0 .5 1.0 .s .0 1.0 .0 1.0 
A52 1 1.0 1.0 .5 1.0 1.0 .s 1.0 .0 .5 1.0 .0 1.0 
A61 1 1.0 .s .0 .s .0 .0 1.0 .5 .0 .s .0 .0 
A62 1 1.0 1.0 .0 .s .0 .0 1:0 .5 .0 .s .0 1.0 
A71 1 1.0 .0 .0 .0 .0 .s 1.0 .0 .0 .0 .0 1.0 
A72 1 1.0 1.0 .0 1.0 .5 1.0 1.0 .5 .s .s 1.0 .5 
811 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 
812 2 1.0 .5 1.0 .0 .0 .0 1.0 .5 .0 .5 .0 1.0 
821 2 1.0 .s .0 1.0 .0 .s 1.0 .5 .0 1.0 .0 1.0 
822 2 1.0 1.0 .0 1.0 1.0 .s 1.0 1.0 1.0 1.0 1.0 1.0 
831 2 1.0 .s .0 1.0 .0 .0 1.0 .5 .5 1.0 .0 .0 
832 2 1.0 1.0 .0 .s 1.0 .s .0 .5 .0 .0 .0 .0 
841 2 1.0 1.0 .s 1.0 1.0 1.0 1.0 1.0 1.0 .s .0 .5 
842 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 .0 .5 
851 2 1.0 .0 .0 .0 .0 .5 1.0 .0 .5 .0 .0 1.0 
852 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .s 1.0 1.0 1.0 
861 2 1.0 1.0 .0 .5 .0 .0 1.0 .5 .0 1.0 .0 1.0 
862 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 
871 2 .0 .s .0 1.0 .0 .0 .0 .s .0 1.0 .0 1.0 
872 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .s .0 1.0 
M21 .0 .0 .s .0 .0 .s 1.0 .5 .s 1.0 .0 .0 
M22 1.0 .s .0 1.0 1.0 .0 1.0 .s .0 .s .0 .0 
M41 1.0 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 
M42 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
MSI 1.0 .s .5 .s .0 .s .0 .0 .0 .0 .0 .0 
MS2 1.0 1.0 1.0 .s 1.0 .0 1.0 .s .0 1.0 .0 .0 
M61 1.0 .s 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 1.0 .s 
M62 1.0 .0 .0 .s .0 .s 1.0 .0 .0 .0 .0 1.0 
Tll 1.0 .s .0 1.0 1.0 .0 1.0 .5 .s .s .0 .0 
T12 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
T13 1.0 .s .0 1.0 1.0 .s 1.0 .s .0 1.0 .0 .0 
T21 I 1.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
T22 1 1.0 1.0 .s 1.0 1.0 .s 1.0 1.0 1.0 1.0 .0 1.0 
Wll 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 .0 .0 
W12 2 1.0 .s .0 1.0 1.0 .0 1.0 .0 .0 .s .0 .0 
W21 2 1.0 .5 .0 .s .5 .5 1.0 .5 .0 .5 .0 1.0 
W22 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
W31 2 1.0 .s 1.0 1.0 .0 .5 1.0 .5 1.0 1.0 .0 1.0 
W32 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 
W41 2 1.0 1.0 .0 .0 .0 .0 1.0 .5 .0 .0 .0 .0 
W42 2 1.0 .5 .0 1.0 1.0 .1.0 1.0 .s 1.0 1.0 .0 1.0 
WS1 2 1.0 .0 .0 .s .0 .s 1.0 .5 .0 .5 .0 .0 
W52 2 1.0 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 1.0 
W53 2 1.0 1.0 .s 1.0 1.0 .0 1.0 1.0 .0 1.0 .0 .0 
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Table S-3 (continued) 
Posttest Item Data by Individual Subject 

SUBJECT TREAT Pl3 Pl4 PIS Pl6 Pl7 PIS Pl9 P20 P21 P22 P23 P24 

All 1.0 1.0 1.0 1.0 1.0 .s 1.0 1.0 1.0 1.0 1.0 1.0 
Al2 1.0 .s .0 1.0 .0 1.0 .0 .0 .0 .0 .0 .0 
A21 .0 .0 .0 .s .s 1.0 .0 .0 .0 .0 .0 .0 
A22 .0 .0 .0 .s .0 .0 .0 .0 .0 .s .0 .0 
A31 1.0 .s .s 1.0 1.0 .0 .0 .s .0 .0 .0 .0 
A32 I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
A41 I .0 .s .s .0 1.0 .s 1.0 1.0 1.0 1.0 1.0 1.0 
A42 I .0 .0 .0 .s .0 .0 .0 .0 .0 .0 .0 .5 
ASI I .0 .5 .5 .5 1.0 .s 1.0 .5 .0 1.0 1.0 1.0 
A52 I 1.0 1.0 1.0 1.0 1.0 1.0 .0 .0 1.0 1.0 1.0 1.0 
A61 I .0 .0 .0 .0 .0 .0 .0 .5 .5 .0 .0 .0 
A62 I 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 .s .0 .0 
A71 I .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0 
A72 I 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 .0 .5 .0 .0 
Bll 2 1.0 1.0 1.0 1.0 1.0 1.0 .0 .0 .0 .0 .0 .0 
B12 2 .0 1.0 1.0 .s 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 
B21 2 .0 .0 1.0 .s .0 1.0 1.0 .5 .s 1.0 .0 1.0 
B22 2 1.0 .s 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
B31 2 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 .0 
B32 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
B41 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
B42 2 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 .5 .0 .0 
B51 2 .0 .0 .0 .0 .0 1.0 .0 .0 .0 .0 .0 1.0 
B52 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 1.0 1.0 
B61 2 1.0 .5 .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0 
B62 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
B71 2 .0 .0 .0 .s .0 .0 .0 .0 .0 .s .0 .0 
B72 2 1.0 .5 1.0 1.0 1.0 1.0 .0 1.0 1.0 .s .0 .0 
M21 I .0 .0 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 
M22 I .0 .s .s 1.0 1.0 1.0 .0 .0 .0 .0 .0 .0 
M41 I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 1.0 .0 
M42 I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
M51 I 1.0 .5 .5 .s .0 .0 1.0 .5 1.0 1.0 .5 .0 
MS2 I 1.0 1.0 1.0 1.0 1.0 .0 .0 .s 1.0 .5 .0 .0 
M61 I 1.0 .s 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 .5 1.0 
M62 I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
Tll I 1.0 .5 .0 1.0 1.0 1.0 .0 .0 .0 .5 .0 .0 
T12 I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
Tl3 I 1.0 .s 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 1.0 1.0 
T21 I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
T22 I 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 .5 1.0 .0 
Wll 2 1.0 1.0 1.0 1.0 1.0 .5 1.0 1.0 1.0 1.0 1.0 1.0 
Wl2 2 1.0 1.0 1.0 1.0 .0 .0 .0 1.0 1.0 .s .0 .0 
W21 2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
W22 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
W31 2 1.0 .5 1.0 1.0 1.0 1.0 .0 .0 .0 .0 .0 .0 
W32 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
W41 2 .0 .0 .0 .s .0 .5 .0 .0 .0 .0 .0 .0 
W42 2 1.0 1.0 1.0 1.0 1.0 1.0 .0 .s 1.0 .0 .0 .0 
WSI 2 .0 .5 .0 1.0 .0 .0 .0 .0 .0 .0 .0 .0 
W52 2 .0 .0 .5 .0 .0 1.0 .0 .0 .0 .0 .0 .5 
W53 2 1.0 1.0 .5 1.0 1.0 1.0 .0 .5 .0 .0 .0 .0 
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Table S-3 (continued) 
Posttest Item Data by Individual Subject 

SUBJECT TREAT P25 P26 P27 P28 P29 P30 P3I P32 P33 P34 P35 P36 

All 1.0 I.O 1.0 1.0 1.0 I.O 1.0 1.0 1.0 .0 1.0 1.0 
AI2 .5 .0 1.0 .0 1.0 .0 .5 .0 .5 .0 .5 .0 
A2I 1.0 .0 1.0 1.0 .0 .0 1.0 .0 1.0 .0 .0 .0 
A22 .5 .5 .5 .0 .0 .0 .5 .0 .5 .0 .0 .0 
A3I .5 .0 .5 .0 .0 .0 .5 .0 .5 .0 .0 .0 
A32 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
A4I .5 .0 1.0 1.0 .0 .0 .5 .0 1.0 .0 .0 .0 
A42 .5 .0 1.0 .0 .0 .0 .5 .0 .5 .0 .5 .0 
ASl .5 .0 .5 .0 1.0 1.0 .5 .0 .5 .0 1.0 .5 
A52 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
A61 .5 .0 .5 .0 .0 .0 .5 .0 .5 .0 .0 .0 
A62 .5 .0 1.0 .5 1.0 .0 .5 .0 .5 .0 1.0 1.0 
A7I I .0 .0 .0 .0 1.0 I.O .0 .0 .0 .0 .0 .0 
A72 I .5 .5 1.0 1.0 1.0 .0 .5 .0 1.0 1.0 .5 .5 
811 2 .5 .0 1.0 1.0 1.0 1.0 .5 .0 .0 .0 .0 .0 
812 2 1.0 1.0 .5 .0 1.0 .5 .5 .0 .5 .0 .0 .0 
82I 2 .5 .0 1.0 .0 .0 .0 .5 .0 .5 .0 .0 .0 
822 2 1.0 1.0 1.0 1.0 1.0 I.O 1.0 1.0 1.0 1.0 1.0 1.0 
83I 2 .0 .0 .0 .0 .0 .0 .5 .0 .5 .0 .0 .0 
832 2 .5 1.0 1.0 .5 1.0 1.0 .5 .0 .0 .0 .0 .0 
84I 2 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0 .5 .0 .5 .5 
842 2 1.0 .5 1.0 1.0 .0 .0 .5 .0 .5 .0 1.0 1.0 
85I 2 .0 .0 .0 .0 1.0 1.0 .0 .0 .0 .0 .0 .0 
852 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 
86I 2 .5 .0 .5 .0 .5 I.O .5 .0 .5 .0 .5 .0 
862 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .0 .0 .0 
87I 2 .0 .0 1.0 .5 .0 .0 .5 .0 .5 .0 .0 .0 
872 2 1.0 1.0 .5 .5 1.0 1.0 .5 .0 .5 .0 1.0 1.0 
M21 I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
M22 I .5 .0 .5 .0 .0 .0 .5 .0 .5 .0 .0 .0 
M41 I 1.0 .0 .0 .0 .0 .0 .0 .0 .5 .0 .0 .0 
M42 1 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
M51 l .5 .0 .5 .0 .0 .0 .5 .0 .5 .0 .0 .0 
M52 .0 .0 .0 .0 .0 .. 0 .0 .0 .0 .0 .0 .0 
M6I .5 1.0 1.0 1.0 1.0 1.0 .5 .0 1.0 1.0 .5 1.0 
M62 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
Tll .5 .0 1.0 .0 .0 .0 .5 .0 1.0 .0 .0 .0 
TI2 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
TI3 .5 .0 .5 1.0 1.0 1.0 .5 .0 .5 .0 1.0 1.0 
T2I .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
T22 I 1.0 1.0 1.0 .0 1.0 1.0 1.0 1.0 .5 .0 1.0 1.0 
Wll 2 .5 .0 .5 .0 1.0 1.0 .5 .0 .5 .0 1.0 1.0 
WI2 2 .5 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 
W2I 2 .5 .0 .5 .0 1.0 .0 .5 .0 .5 .0 1.0 .0 
W22 2 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .5 .0 1.0 1.0 
W3I 2 .5 1.0 1.0 .0 .0 .0 .5 .0 .5 .0 .0 .0 
W32 2 1.0 1.0 1.0 .5 1.0 1.0 1.0 .5 1.0 .0 1.0 1.0 
W4I 2 .5 .0 .0 .0 .0 .0 .5 .0 .0 .0 .0 .0 
W42 2 .5 .0 1.0 1.0 1.0 I.O .5 .0 .5 .0 1.0 1.0 
W5I 2 .5 .0 .5 .0 1.0 1.0 .5 .0 .0 .0 1.0 .5 
W52 2 .0 .0 .0 .0 .0 .0 .0 .0 .5 .0 .0 1.0 
W53 2 1.0 .0 1.0 1.0 1.0 1.0 1.0 .0 .5 .0 1.0 .5 



209 

Appendix T 

Data by Experimental Pair 

Table T-1 
Background Data by Pair 

PAIR TREAT HSR HGPA MSAT VSAT TSWE HMHRS HSHRS HMGPA 

AI 1 82.2 3.33 49.5 35.5 39.0 4.00 3.00 3.05 
A2 1 63.7 2.71 39.0 30.0 29.0 3.50 2.50 2.32 
A3 1 61.9 2.81 42.0 37.0 36.0 4.00 4.00 2.13 
A4 1 65.0 3.24 35.5 35.5 40.5 4.00 3.50 2.75 
A5 1 60.8 3.32 40.0 45.0 53.0 3.50 3.50 2.58 
A6 1 43.2 2.48 37.0 37.0 38.0 3.00 1.50 1.90 
A7 1 55.0 2.80 35.0 33.0 46.0 4.00 2.50 1.86 
B1 2 38.2 2.60 38.0 37.0 47.0 3.50 3.00 1.71 
B2 2 91.0 3.68 40.0 34.5 42.5 3.50 2.50 2.84 
B3 2 2.00 2.00 3.50 
B4 2 56.2 2.64 40.5 34.5 35.0 4.00 3.00 2.19 
B5 2 84.7 3.34 42.0 41.0 47.5 4.00 3.00 2.88 
B6 2 40.2 2.06 41.0 31.0 33.0 3.00 3.00 1.00 
B7 2 57.3 2.70 38.5 43.0 17.9 3.50 4.00 1.92 
M2 1 70.4 3.12 41.0 39.5 39.0 3.50 2.00 2.42 
M4 1 42.9 2.33 33.0 31.0 32.0 4.00 2.50 2.50 
M5 1 52.4 2.32 37.0 32.0 27.0 4.00 3.50 2.18 
M6 1 73.3 3.16 56.5 42.0 47.0 4.00 3.50 2.88 
T1 1 56.0 2.43 38.7 44.3 42.0 3.67 3.33 2.43 
T2 1 78.3 2.73 50.0 48.0 35.0 1.50 2.00 1.16 
Wl 2 61.6 2.96 44.5 36.0 42.0 3.00 2.50 3.34 
W2 2 82.2 3.50 48.0 44.0 48.5 3.50 3.00 3.15 
W3 2 65.2 2.82 43.5 36.5 41.5 4.00 2.50 2.62 
W4 2 68.4 2.88 49.0 42.5 39.0 3.00 3.00 1.83 
W5 2 43.2 2.48 45.0 38.7 41.3 3.33 3.33 1.76 



Table T -1 (continued) 
Background Data by Pair 

PAIR TREAT HSGPA 

A1 1 3.12 
A2 1 2.16 
A3 1 2.63 
A4 1 2.84 
AS 1 3.08 
A6 1 2.25 
A7 1 2.66 
B1 2 3.00 
B2 2 3.75 
B3 2 3.00 
B4 2 2.67 
B5 2 3.00 
B6 2 2.00 
B7 2 2.50 
M2 1 2.00 
M4 1 2.00 
MS 1 2.25 
M6 1 2.58 
T1 1 2.50 
T2 1 1.25 
WI 2 1.92 
W2 2 2.75 
W3 2 2.50 
W4 2 1.88 
W5 2 1.50 

PGPA CGPA 

2.52 3.21 
3.10 

2.15 2.70 
3.24 

2.13 3.44 
3.06 
3.20 

2.40 3.22 
3.80 
3.67 

2.26 2.98 
2.79 3.25 
1.91 2.90 
2.36 2.87 
2.68 2.76 
2.11 
1.99 
2.88 
2.58 3.50 
2.71 1.91 
2.46 2.12 
2.82 2.04 
2.52 1.70 
2.56 
2.12 
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CIIRS CMHRS CSHRS CMGPA CSGPA 

101 6.0 10.0 3.50 3.25 
106 6.0 11.0 3.00 2.00 
92 7.5 6.0 2.00 2.00 
96 9.0 12.0 3.00 3.00 
86 9.0 15.0 3.25 3.00 

100 7.5 8.0 2.50 2.00 
102 4.5 6.0 3.00 3.00 
98 9.0 7.5 3.50 1.00 

121 6.5 19.5 4.00 4.00 
120 12.0 6.0 3.50 3.00 
99 9.0 6.0 3.50 2.75 
93 6.0 8.0 2.84 2.75 

144 7.5 10.0 3.50 2.66 
96 9.0 8.0 2.34 2.25 
25 2.0 0.0 2.00 

6.0 8.0 

6 
21 
26 3.0 3.0 2.00 3.00 
52 3.0 3.0 2.00 
46 6.0 
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Table T-2 
Evaluation Form Data by Pair 

PAIR TREAT Sl S2 S3 S4 ss S6 S7 S8 S9 SlO Sll S12 

Al 1 3.0 3.0 3.0 2.5 4.0 4.0 4.0 4.0 4.0 4.0 2.5 3.0 
A2 1 2.5 3.5 2.0 2.5 3.5 4.5 4.0 3.5 4.5 4.0 3.5 3.5 
A3 1 3.5 3.5 3.0 3.5 4.0 5.0 5.0 5.0 5.0 3.5 3.0 3.0 
A4 1 2.5 2.0 2.5 3.0 1.5 2.5 2.5 2.5 2.0 2.5 2.5 2.0 
A5 1 3.5 3.5 3.5 3.0 3.0 4.0 40 4.0 4.5 4.0 4.0 3.5 
A6 1 3.0 3.0 3.5 3.0 3.0 4.5 4.0 3.5 4.5 3.5 2.5 2.5 
A7 1 3.5 3.5 3.5 3.5 5.0 5.0 5.0 4.5 5.0 3.5 3.5 3.5 
Bl 2 3.5 2.0 2.5 2.5 4.5 4.5 3.5 4.0 4.0 2.5 2.5 2.0 
B2 2 4.0 3.5 4.0 4.5 4.0 5.0 4.5 4.5 4.5 4.0 4.0 4.5 
B3 2 3.5 3.5 2.0 2.5 4.0 5.0 2.5 3.0 4.0 3.0 3.5 3.5 
B4 2 4.0 4.5 4.0 4.5 4.5 5.0 5.0 5.0 5.0 5.0 4.0 4.0 
B5 2 1.0 1.0 1.0 1.0 3.0 4.0 4.0 4.0 5.0 3.0 1.0 2.0 
B6 2 3.0 3.0 2.0 2.0 2.0 5.0 4.0 4.0 4.0 4.0 2.0 3.0 
B7 2 3.5 2.5 3.0 2.5 3.5 3.0 4.0 4.0 3.5 3.5 3.5 3.5 
M2 1 3.0 2.0 4.0 3.0 3.5 4.5 3.0 3.0 3.5 3.0 3.0 3.0 
M4 1 2.0 2.0 3.5 2.5 4.0 5.0 3.5 3.5 3.0 3.5 3.0 3.5 
M5 1 3.0 3.0 4.0 4.0 5.0 5.0 5.0 5.0 5.0 5.0 4.0 3.0 
M6 1 2.5 2.0 3.5 3.0 2.5 4.5 4.0 3.5 2.0 2.5 3.0 2.0 
T1 1 3.7 3.3 2.7 3.3 4.7 5.0 4.3 4.3 4.7 4.0 3.7 4.0 
T2 1 3.5 3.0 3.0 2.5 5.0 5.0 3.5 5.0 4.5 4.0 4.0 3.0 
W1 2 4.0 2.0 3.0 2.0 4.0 5.0 5.0 4.5 5.0 3.5 3.5 3.5 
W2 2 4.0 3.0 2.5 2.5 3.5 5.0 4.5 4.0 4.0 4.0 3.5 4.0 
W3 2 4.0 3.0 3.0 3.0 4.5 4.5 4.5 4.0 4.5 4.0 4.5 4.5 
W4 2 4.0 2.0 3.0 4.0 3.0 4.0 4.0 4.5 3.0 3.5 3.0 3.0 
W5 2 3.7 2.7 3.0 3.7 2.3 5.0 4.0 4.0 4.0 3.3 3.0 3.3 
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Table T-3 
Posttest Item Data by Pair 

PAIR TREAT PI P2 P3 P4 PS P6 P7 P8 P9 PIO Pll Pl2 

AI 1 1.00 1.00 0.50 1.00 1.00 0.50 1.00 0.75 0.00 1.00 0.00 1.00 
A2 1 0.50 0.50 0.00 0.75 0.25 0.50 0.50 0.50 0.00 0.75 0.00 1.00 
A3 1 0.50 0.50 0.25 0.25 0.00 0.00 0.50 0.50 0.25 0.25 0.00 0.00 
A4 1 1.00 0.50 0.50 0.25 0.75 0.50 1.00 0.50 0.25 0.75 0.00 0.25 
AS 1.00 0.75 0.50 1.00 1.00 0.50 1.00 0.25 0.25 1.00 0.00 1.00 
A6 1.00 0.75 0.00 0.50 0.00 0.00 1.00 0.50 0.00 0.50 0.00 0.50 
A7 1 1.00 0.50 0.00 0.50 0.25 0.75 1.00 0.25 0.25 0.25 0.50 0.75 
B1 2 1.00 0.75 1.00 0.50 0.50 0.50 1.00 0.75 0.50 0.75 0.00 1.00 
B2 2 1.00 0.75 0.00 1.00 0.50 0.50 1.00 0.75 0.50 1.00 0.50 1.00 
B3 2 1.00 0.75 0.00 0.75 0.50 0.25 0.50 0.50 0.25 0.50 0.00 0.00 
B4 2 1.00 1.00 0.75 1.00 1.00 1.00 1.00 0.75 1.00 0.75 0.00 0.50 
B5 2 1.00 0.50 0.50 0.50 0.50 0.75 1.00 0.50 0.50 0.50 0.50 1.00 
B6 2 1.00 1.00 0.50 0.75 0.50 0.50 1.00 0.75 0.50 1.00 0.00 1.00 
B7 2 0.50 0.75 0.50 1.00 0.50 0.50 0.50 0.75 0.50 0.75 0.00 1.00 
M2 1 0.50 0.25 0.25 0.50 0.50 0.25 1.00 0.50 0.25 0.75 0.00 0.00 
M4 0.50 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00 
M5 1.00 0.75 0.75 0.50 0.50 0.25 0.50 0.25 0.00 0.50 0.00 0.00 
M6 1 1.00 0.25 0.50 0.50 0.50 0.75 1.00 0.25 0.50 0.50 0.50 0.75 
T1 0.67 0.33 0.00 0.67 0.67 0.17 0.67 0.33 0.17 0.50 0.00 0.00 
T2 1.00 0.50 0.25 0.50 0.50 0.25 0.50 0.50 0.50 0.50 0.00 0.50 
W1 2 1.00 0.75 0.50 1.00 1.00 0.50 1.00 0.50 0.00 0.75 0.00 0.00 
W2 2 1.00 0.75 0.50 0.75 0.75 0.75 1.00 0.75 0.50 0.75 0.50 1.00 
W3 2 1.00 0.75 1.00 1.00 0.50 0.75 1.00 0.75 1.00 1.00 0.00 1.00 
W4 2 1.00 0.75 0.00 0.50 0.50 0.50 1.00 0.50 0.50 0.50 0.00 0.50 
W5 2 1.00 0.33 0.17 0.50 0.33 0.17 1.00 0.50 0.00 0.50 0.00 0.33 



Table T-3 (continued) 
Posttest Item Data by Pair 

PAIR TREAT P13 P14 

A1 1.00 0.75 
A2 1 0.00 0.00 
A3 1 0.50 0.25 
A4 1 0.00 0.25 
AS 1 0.50 0.75 
A6 1 0.50 0.50 
A7 1 0.50 0.50 
81 2 0.50 1.00 
82 2 0.50 0.25 
83 2 0.50 0.50 
84 2 1.00 1.00 
85 2 0.50 0.50 
86 2 1.00 0.15 
87 2 0.50 0.25 
M2 1 0.00 0.25 
M4 1 0.00 0.00 
M5 1.00 0.15 
M6 1 0.50 0.25 
Tl 1 0.67 0.33 
T2 0.50 0.50 
W1 2 1.00 1.00 
W2 2 0.50 0.50 
W3 2 1.00 0.75 
W4 2 0.50 0.50 
W5 2 0.33 0.50 

PIS P16 

0.50 1.00 
0.00 0.50 
0.25 0.50 
0.25 0.25 
0.75 0.75 
0.50 0.50 
0.50 0.50 
1.00 0.75 
1.00 0.75 
0.50 0.50 
1.00 1.00 
0.50 0.50 
0.50 1.00 
0.50 0.75 
0.50 0.50 
0.00 0.00 
0.75 0.75 
0.50 0.50 
0.33 0.67 
0.50 0.50 
1.00 1.00 
0.50 0.50 
1.00 1.00 
0.50 0.75 
0.33 0.67 
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P17 PIS Pl9 P20 P21 P22 P23 P24 

0.50 0.75 0.50 0.50 0.50 0.50 0.50 0.50 
0.25 0.50 0.00 0.00 0.00 0.25 0.00 0.00 
0.50 0.00 0.00 0.25 0.00 0.00 0.00 0.00 
0.50 0.25 0.50 0.50 0.50 0.50 0.50 0.75 
1.00 0.75 0.50 0.25 0.50 1.00 1.00 1.00 
0.50 0.50 0.00 0.75 0.75 0.25 0.00 0.00 
0.50 1.00 0.00 0.50 0.00 0.25 0.00 0.00 
1.00 1.00 0.50 0.50 0.50 0.25 0.50 0.50 
0.50 1.00 1.00 0.75 0.75 1.00 0.50 1.00 
0.50 1.00 0.50 0.50 0.50 0.50 0.50 0.50 
1.00 1.00 0.50 1.00 1.00 0.75 0.50 0.50 
0.50 1.00 0.50 0.25 0.50 0.50 0.50 1.00 
0.50 0.50 0.50 0.50 0.50 0.50. 0.50 0.50 
0.50 0.50 0.00 0.50 0.50 0.50 0.00 0.00 
0.50 0.50 0.00 0.00 0.00 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 
0.50 0.00 0.50 0.50 1.00 0.75 0.25 0.00 
0.50 0.50 0.50 0.25 0.50 0.50 0.25 0.50 
0.67 0.67 0.33 0.17 0.33 0.50 0.33 0.33 
0.50 0.50 0.00 0.50 0.50 0.25 0.50 0.00 
0.50 0.25 0.50 1.00 1.00 0.75 0.50 0.50 
0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 
1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 
0.50 0.75 0.00 0.25 0.50 0.00 0.00 0.00 
0.33 0.67 0.00 0.17 0.00 0.00 0.00 0.17 



Table T-3 (continued) 
Posttest Item Data by Pair 

PAIR TREAT P25 P26 

A1 1 0.75 0.50 
A2 1 0.75 0.25 
A3 1 0.25 0.00 
A4 1 0.50 0.00 
AS 1 0.50 0.00 
A6 0.50 0.00 
A7 1 0.25 0.25 
81 2 0.75 0.50 
82 2 0.75 0.50 
83 2 0.25 0.50 
84 2 1.00 0.75 
85 2 0.50 0.50 
86 2 0.75 0.50 
87 2 0.50 0.50 
M2 1 0.25 0.00 
M4 1 0.50 0.00 
M5 1 0.25 0.00 
M6 1 0.25 0.50 
T1 1 0.33 0.00 
T2 1 0.50 0.50 
W1 2 0.50 0.00 
W2 2 0.75 0.50 
W3 2 0.75 1.00 
W4 2 0.50 0.00 
W5 2 0.50 0.00 

P27 P28 

1.00 0.50 
0.75 0.50 
0.25 0.00 
1.00 0.50 
0.25 0.00 
0.75 0.25 
0.50 0.50 
0.75 0.50 
1.00 0.50 
0.50 0.25 
1.00 1.00 
0.50 0.50 
0.75 0.50 
0.75 0.50 
0.25 0.00 
0.00 0.00 
0.25 0.00 
0.50 0.50 
0.50 0.33 
0.50 0.00 
0.25 0.00 
0.75 0.50 
1.00 0.25 
0.50 0.50 
0.50 0.33 
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P29 P30 P3l P32 P33 P34 P35 P36 

1.00 0.50 0.75 0.50 0.75 0.00 0.75 0.50 
0.00 0.00 0.75 0.00 0.75 0.00 0.00 0.00 
0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.00 
0.00 0.00 0.50 0.00 0.75 0.00 0.25 0.00 
0.50 0.50 0.25 0.00 0.25 0.00 0.50 0.25 
0.50 0.00 0.50 0.00 0.50 0.00 0.50 0.50 
1.00 0.50 0.25 0.00 0.50 0.50 0.25 0.25 
1.00 0.75 0.50 0.00 0.25 0.00 0.00 0.00 
0.50 0.50 0.75 0.50 0.75 0.50 0.50 0.50 
0.50 0.50 0.50 0.00 0.25 0.00 0.00 0.00 
0.50 0.00 0.75 0.50 0.50 0.00 0.75 0.75 
1.00 1.00 0.50 0.50 0.50 0.50 0.50 0.50 
0.75 1.00 0.75 0.50 0.75 0.00 0.25 0.00 
0.50 0.50 0.50 0.00 0.50 0.00 0.50 0.50 
0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.00 
0.00 0.00 0.00 0.00 0.25 0.00 0.00 0.00 
0.00 0.00 0.25 0.00 0.25 0.00 0.00 0.00 
0.50 0.50 0.25 0.00 0.50 0.50 0.25 0.50 
0.33 0.33 0.33 0.00 0.50 0.00 0.33 0.33 
0.50 0.50 0.50 0.50 0.25 0.00 0.50 0.50 
0.50 0.50 0.25 0.00 0.25 0.00 0.50 0.50 
1.00 0.50 0.75 0.50 0.50 0.00 1.00 0.50 
0.50 0.50 0.75 0.25 0.75 0.00 0.50 0.50 
0.50 0.50 0.50 0.00 0.25 0.00 0.50 0.50 
0.67 0.67 0.50 0.00 0.33 0.00 0.67 0.67 


