INFORMATION TO USERS

This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitred.

The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction.

1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an imaga and duplicating adjacent pages to insure you complete continuity.
2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image. Vou vill find a good image of the page in the adjacent frame.
3. When a map, drawing or chart, etc., was part of the material being photographed the photographer followed a definite method in "sectioning" the material. It is customary to begin photoing at the upper left hand corner of a large sheet and to continue photoing from left to right in equal sections with a small overlap. If necessary, sectioning is continued again - beginning below the first row and continuing on until complete.
4. The majority of users indicate that the textual content is of greatest value, however, a somewhat higher quality reproduction could be made from "photographs" if essential to the understanding of the dissertation. Silver prints of "photographs" may be ordered at additional charge by writing the Order Department, giving the catalog number, title, author and specific pages you wish reproduced.
5. PLEASE NOTE: Some pages may have indistinct print. Filmed as received.

BOETEL, Norma M., 1934-
 A FACTORIAL APPROACH IN THE DEVELOPMENT OF A BASKETBALL RATING SCALE TO EVALUATE PLAYERS IN A GAME SITUATION.
 The University of North Carolina at Greensboro, Ed.D., 1977
 Education, physical

Xerox University Milicrofillms, Ann Aroor, Michigan 48106

NORMA M. BOETEL

ALL RIGHTS RESERVED

A FAC'ORTAL APPROACH IN THE DEVELOPMENT OF A
BASKETBALL RATING SCALE TO EVALUATE
PLayERS IN A GAME SITUATION

by

Norma Boetel

A Dissertation Submitted to the Faculty of the Graduate school at The University of North Carolina at Greensboro in Partial Fulfillment of the Requirements for the Degree Doctor of Education

Greensboro
 1976

APPROVAL PAGE

This dissertation has been approved by the following committee of the Faculty of the Graduate School at the University of North Carolina at Greensboro.

$\frac{\text { Qctexes 26, 1976 }}{\text { Date of Acceptance by Conmittee }}$

> POETEL, NORMA. A Factorial Approach in the Devolopment of a Baslaetball Rating Scale to Evaluate PJayers in a Game Situation. (1976) Directed by: Dr. Roacmary HcGec. Pp. 155

The primary purpose of this research was to develop a valid and reliable rating seale for usie in evaluating the phygical performance of female basketball piayers in a game situation. The secondary problems deriving fron the fomulation of the scale were (a) the jodentification of epenific factore (itens) for evaluatine basketbali skill in the competitive risuation and (b) the feasibility of using factor analysis as a chatistical technicue for collepaing components of play into a viable rating scale。

A theoretical structare of basketball performance was developed which included seven categories of basketball performance. A 96-item rating scale was designed which purportedly represented the seven categories: shooting ability and offensive moves, defensive moves and tactics, ball handling, rebounding, apeed and quicknese, body control and balance, and general floor play. The identification of the seven categories was based on an investigation of the literature, intervieva with coaches and physical educators, and observation of individual players. The original gomjtem rating scale was utilized to evaluate the performance of thirty-cjegt interscholastic and intercollegiate female basketiall playari.

Means and standard deviations were calculated for each of the 96 items and a correlation matrix for each category was formed utilizing the SPSS computer prograns. from the correlation matrix, each of the
seven categories was factor aralyzed independently of the remaining six categories.

Based on the factor structure after rotation, an abbreviated rating scale was developed. The original seven categories vere retained and seyenteen iteas were developed and selecied to represent the original 96-item scale.

After the original scale had been reduced to the 17-item scale, it was used to evaluate the basketball performance of high school girls in the 2975 South Dakota State "B" Tournament. The results from the evaluation of the thinty-four basketball players were used to provide an interjudge reliability of the scale. Kendall's Coefficient of Concordance was employed to determine the interjudge reliability which was found to be .86 , significant at the .01 level.

To determine the criterion-related validity, a coefficient of correlation was calculated by finding the degree of relationship between the total scores of players on the scale and a subjective ranking of the players. The coefficient obtained was . 65 which was Gignificant at the . 01 level.

Ihe anthor wishea to express her sincere gratitude and thanks to Hzr anviser, Dr. Mosemary MoGee. Her encomagement and interest were a delinite asset to the anthor in completing tois study. Her many questions stimulated contimove parsuit in reasarehing the subject meltere

Adaitional help of an immeastuable value was proviced by Dr. Pearl Berlin. Hex advice in the selection of the appropriate statistical toolt wos invalnable. Her help in interpreiting the results was greatly appreciated.

Sthe aution also wishes to thank her fanily and Ginn Huat for their continued Eupport theroughot this endeavor. Iheix constant entouraganent inspired the author to complete this study.

NB

TABLE OF CONTINTS

Page
APPROVAJ, PAGE ii
ACITVOLIEDGEHENTS i.ii
LIST OF TABIES vi
CHAPTER
I. IMTRODUCTION 1
Statement of the Problem 5
Definition of Terms 6
Assumptions 6
Scope 6
Significance of the Study 7
II. PEVIEF OF LITERATURE 10
Strategies of Scale Construction 21
Development of Scales Evaluating Performance in Non- Yhysical Education Areas 12
Development of Scales to Evaluate Performance in Sport Activities Other Than Basketball 20
Development of Scales to Evaluate Performance in Basketball 24
III. PROCFDURES 34
Development of the Original Item Pool 34
Utilization of the Original Ratine Scale 36
Utilization of the Reduced Rating Scale 43
Reliability and Validity of Reduced Scale 45
IV. ANALYSIS OF DAIA 47
First Phase 47
Descriptive Staitistics 48
Factor Analysis 51
Second Phase 62
Descriptive Statistics 63
Factor Analysis 63
Reduction of the Scale 73

CHAPITER

Third Phase 80
Interjudge Reliability 80
Validity 81
Discussion 83
V. CONCLUSIONS 85
Summary 85
Conclusions 86
Recommendations 87
BIBLIOGRAPHY 89
APPENDICES 97
A. BASKETIBALL RATING SCALE 98
B. INSTRUCTIONS TO RATERS 108
C. RAV SCORES (First Rating - Collegiate Players) $N=14$ 111
D. RAW SCORES (Second Rating - High School Players) $N=24$ 116
E. CORRELATION MATRIX (Within Each Category) $N=38$ 12^{4}
F. BASKETBALL RATING SCALE 129
G. RAW SCORES (Shortened Rating Scale) $N=34$ 132
H. JUDGES' TOTAL SCORES, RANKINGS OF JUDGES' SCORES, SUBJECIIVE RANKINGS OF PLAYERS, TOTAL POINTS SCORED BY INDIVIDUAL PLAYERS AND RANKINGS 137
I. FACTOR ANALYSIS - RATINGS OF COILEGIATE PLAYERS 138
J. VARIMAX ROTATED FACTOR MATRIX (Collegiate Players - $\mathrm{N}=14$ 144
K. FACTOR ANALYSIS OF RATINGS OF ALL PLAYERS 247
L. VARIMAX ROTATED FACTOR MATRIX, $N=38$ 153

IIST OF TABLES

Table Page1. NEANS AND STANDARD DEVIATIONS OF THE RATINGS OF COLIEGIATEMJAYERS, $N=14$ 。. 49
2 ETGENVALUES, PERCHTAGE OF VARIANCE, AND CUTULAATIVEpercentages of variance for the uirotated factors52
3 FACTOR ARRAYS OF VARTMAX ROTATION 54
4. FACIOR ARRAYS OF VARIMAX ROTATION 57
5 FACIOR ARRAYS OF VARIMAX ROTATION 60
6 FACTIOR ARRAYS OF VARIMAX ROTATION 61
7 JEANS AND STANDARD DEVIATIONS OF TFE RATINGS OF COLLEGIATEAND FIGE SCHOOL LLAIERS, $\mathrm{N}=38 \ldots \ldots64$
8 EIGENVALUES, EERCENTAGE OT VARIANCE AND CUMULATIVEPERCENTAGES OF VARIANGE FOR THE UNPORATED FACTORS66
9 FACTOR ARBAYS of VARIMAX ROTATION 68
10 FACTOR ARRAYS OF VARIMAX ROTATION 71
11 FACIOR ARRAYS OF VARIMAX ROTATION 72
12 JUIVGES SGORFS AND RANKINGS ON THE REDUCED SCALE, $N=34$ 82

CHAPTXR I

INTRODUCTION

The evaluation of nany aspects of physical education, or of any physical activity, is a complex process because the performances are multidimensional, thus making it difficult to define specific behaviors and executions. Likewise, to evaluate an individual's performance in a basketball game sjtuation becomes a complex procedure because of the many dependent and interdependent components and factors involved in such an activity. However, the search for better and improved methods of evaluation and measurement must continue.

As Wilson pointed out, "Too frequently, when considering evaluation, the concern of educators has been only with testing and grading students." (61:44) Educators can no longer do a fractional job of measuring, assessing and evaluating students' learning performance and progress, but they must concern themselves with any and all appropriate means available for this nost inportant function. Eokext said,

Educators are facing increasing pressures for accountability in the learning process. Increased educational budgets are resulting in more emphasis upon productivity which nust be justified in terms of facts and figures. (11:1)

True, there has been an increased domand to develop more standardized tosts, but standardized tests do not measure all facets of the educational and instructional procedure. In addition, many
standardized tests are often not appropriate for a specific situation. Ammons (64) said evaluation requires adequate samples of student's work. That is, a student must be evaluated many times and in many different ways. Too often, educators have been concerned with evaluating only the cognitive domain. This is only one facet of the total scope of evaluation. It is necessary to develop techniques which will evaluate the complete scope of student behaviors.

Physical ecucators have developed different methods of measuring and evaluating such as written tests, skills tests, and rating scales. However, many of these methods only measure and evaluate certain portions of the entire educational process and product. Also, many of the methods which have been developed and are being utilized are incomplete, invalid, unreliable, ambiguous and tire-consuming to administer and use.
"The physical educator evaluates to determine whether or not he is meeting the educational objectives of his course." (31:14)

Heasurement, as a part of the total evaluation program, can assist the physical educator and/or coach in assessing the student and program. Many authors ($5,7,11,30,31$) concur on the purposes of measurement and evaluation: classifying students, measuring the progress of individual students, providing motivation for teacher and student improvement, improving learning experiences, acquirinc knowledse of student status, and grading. Assuming the purposes of measurement and evaluation are as specified above, many mathods or tools can be utilized in the measurement and evaluation process. Written tests have been employed
as an objective assessment of the cognitive domain; skill tests have been used as an objective, partial evaluation of the psychomotor domain; and rating scales have been developed to incompletely, subjectively evaluate the affective and psychomotor domains. Other methods, such as check lists, anecdotal records, motor ability tests, and fitness tests have also been used. Once a decisinn has been determined concerning the purpose of measurement and evaluation, the appropriate tool(s) must be selected to accommodate the process.

Rating scales have been designed in many disciplines for specific purposes. For example, psychologists have used rating scales to measure personality variables; store managers have adopted rating scales to assess the performance of their departmental managers; and supervisors have utilized rating scales to appraise the work accomplished by workers. In physical education and coaching arenas, rating scales have been designed to evaluate character, personality, and behavior traits; rating scales have also been developed as supplements to objective measures (skill tests) to analyze how skills are performed.

Traditionally, the use of rating scales, in any discipline, has been subjected to criticism. The reasons are understandably clear. Smith and Kendall (58:149) said that jndividuals who have developed rating scales have tended to impose their own values, interpretations, and beljefs about some behaviors. They have used a language of their own. Thercfore, other raters attempting to use the scales have become confused and the interpretation of the word or statement varjed
from rater to rater. Generally, there is a lack of definitions resulting in a vague interpretation of the rating scale. Smith and Kendall ($58: 149$) stated reasons for misinterpretation of rating scales: raters are not consulted about their interpretaition of various forms of behavior in relation to the traits involved and the raters are not informed of the usefulness of the scales. Without consensus among the raters, . . . the raters cannot be expected to utilize the scales offered to them with any conviction or agreement." (58:149) Kerlinger pointed out that, "Rating scales are periaps the most ubiquitous of measuring instruments probably because they are seemingly easy to construct and more important, easy and quick to use." (20:547) However, as he said, this ease of constructing rating sceles is decejving because the scales lack validity due to a number of sources of bias.

Ratings made by psychologists, supervisors, teachers, and managerial personnel often require evaluation of complex behaviors. Because these areas are multidimensional and often difficult to define, they then become difficult to quantify. Abeles said, "One of the main difficulties in the evaluation of complex behaviors is that the measures employed are typically subjective judgments based on irregular and uncontrolled observations." (36:145) As pointed out previously, critics of some evaluation procedures have indicated that more objective measures are needed in many instances and performance measurement should be more sophisticated. "The replacement of judges'
general impressions by ratings arrived at by more systematic procedures is one method which may improve evaluation." (36:145)

If educators are going to evaluate the total scope of their objectives and programs, it scens that rating scales must be utilized as adjuncts to other methods in the evaluative process. And, if rating scales are to be used for this purpose, the newly developed scales must meet the needs of the raters and be functional for them to interpret. In her book, Safrit remarked about the construction of rating scales and said, 'Each category of the scale should be described in such detail that raters can be trained to use the scale objectively and students can receive meaningiul feedback about their scores." (30:173) It was the aim of this study to investigate a technique for the development of a rating scale for use in evaluating achievement and performance in a basketball game situation which cannot always be measured by other methods.

Statement of the Problem

The primary purpose of this research was to develop a valid and reliable rating scale for use in evaluating the physical performance of female basketball players in a game situation. The secondary problems deriving from the formulation of the scale were (a) the identification of specific factors (items) for evaluating basketball akill in the competitive situation and (b) the feasibility of using factor analysis as a statistical technique for collapsing components of play into a viable rating scale.

Definition of I'erms

EUALUATION (Use of the rating scale in this study) - The process of judging the value of a basketball player's behavior on a described set of observations.

FACIOR ANALYSIS - The author hes adopted the definition from Jackson and Messick to be used in this study. "Factor analysis is a mathenatical procedure which resolves a set of descriptive variebles into a smaller number of categories, components, or factors." (17:298)

RATING SCAIE - A list of statements descriptive of physical characteristics involved in basketball performance which were assigned a designated value by the rater.

Assumptjons

A basic assumption of this study was that basketball coaches generally agree upon performance standards of a good basketball player. It was assumed that the judges, who were coaches, were experts qualified for the task of evaluating the physical performance of female basketball players.

Secondly, it was assumed that different categories of basketball performance have many facets.

Scope

This study was Iimited to the evaluation of the physical performance of selected college women and high school female basketball players sho had played in competitive game situations. There was no attempt
to evaluate factors such as attitude, sportsmanship, desire and other such characteristics.

An original rating scale of 96 items was used to evaluate (a) basketball players who had been asked to participate at the United States Collegiate Sports Council Camp held at Maryville College, Maryville, Tennessee, June 16-23, 1974 and (b) selected high school fenale basketball players who participated in the 1975 regular season games played in South Dakota. A reduced rating scale was utilized to evaluate the performance of basketball players at the South Dakota State "B" girls' tournament held December 4-6, 1975 in Huron, South Dakota. Seven teams were selected for this purpose.

This study did not concern the evaluation of position play, such as forwards, guards or centers. The scale was used to evaluate the players as individual performers.

The scores acquired on the rating scale were relative to the performance of the players at a specified time and to the skill level of the players in the different rating situations.

Significance of the Study

The purpose of this study was to develop a rating scale as an aid and supplement in the measurement and assessment process when evaluating the proficiency of basketball players in a game situation.

Many basketball skills tests $(57,63,69,70,73,74)$ are found in the literature. However, these tests generally measure isolated skills and are not applicable to assessing the overall performance of a
player in a game situation. Points made, fouls committed, free throws made and attempted are a few of the statistics that have been acquired to analyze individuals' performances, but they do not give enough information. Elbel and Forrest stated, "There is quite general agreement that the box score does not give a very complete statistical picture of the game and is consequently of little value to coach or player from the standpoint of game analysis." (41:538)

Perhaps, in most instances, objective measures are better than subjective measures. But, as Baumgartner and Jackson (7:232) said, there are times when important objectives cannot always be measured rith an objective tool. Therefore, a supplement or another tool must be utilized to aid in the complete evaluation of objectives. "A highly desirable method of measuring playing ability is through the use of well developed rating scales that can be used during the gane." (30:173)

An objective, reliable, and valid rating scale could be used for many purposes. Some of these purposes are adding to the dimension of proficiency examinations, analyzing skill performance in a game situation, aiding in detecting individual errors and problem areas, supplementing other procedures for placing students at a specific level of skill, and giving students a device by which they can rate their oum and peers' performances.

Evaluation procedures need to becore more sophisticated; evaluation procedures need to be more complete; and evaluation procedures need to be more objective. Few rating scales have been constructed to
evaluate the performance of basketball players. Teachers and coaches have developed and used their own rating scales, but few are found in the literature. Often, the rating scales which have been developed for any activity have been constructed rapidly, serving only the constructor's immediate purpose. Many times, the rating scales which have been reported in the literature lack validity and/or reliability. Mathews indicated that "Rating scales suffer from lack of validity and reliability." (23:350) Because many people concur with Mathews, as does this researcher, it seems plausible to use a technique in attempting to devclop a rating scale which could result in higher validity and reliability. Also, the development of a rating scale using a different technique to construct the scale could contribute to the overall sophistication of creating an instrument.
"Very little experimentation has been done on the measurement of playine ability." (30:171) The significance of this study was to determine if a subjective tool, the rating scale, could be developed to be a reliable, valid and objective measuring device of playing ability. This study may lend support to the functional endeavors of those people interested in the total scope of the evaluation process.

CHAPIER II

REVIEV OF LITERATURE

The purpose of this study was to develop a rating scale for use in evaluating the physical performances of basketball players in a gane situation. Since the inclusion of game activities into the physical education curriculum and the beginning of structured competitive programs, there has been and continues to be an aspiration, perhaps sometimes a requirement, to measure and evaluate achievements and the ability to play in competitive game situations. Different types of techniques have been used in an effort to measure these aspects of performance.

A perusal of the literature indicated that rating scales have been developed for many different reasons and in many different ways. Even in the selection of items for the rating scale, distinctive methods had been eraployed.

The review of literature has been presented in four parts. In the first part, two studjes comparing different strategies for rating scale construction have been reviewed. Examples of studies concerning the development of scales that had been constructod in areas such 2.5 music, industry, nursing and therapy have been presented in the second section. In the third section scales that had been developed for evaluating physical performances in sport activities other than basketball were reviewed. Finally, studies which had evaluated
basketball performances in game situations utilizing different types of rating scales were described.

Strateries of Scale Construction

The purpose of Hose and Goldvere's (45) study was to examine the differential validity of peraonality inventory scales using six different strateries. These strategies were factor analytic, empirical group discriminative, intuitivemtheoretical, intuitive-rational, stylistic-psychometric and random. Using a common item pool (items fron the Califomia Psychological Inventory), eleven scales were constructed for each of the six strategies. The sample included two hondred freshan women from the University of Oregon. The results of this study indicated that the first four primary strategies did not differ from one another in overall validity. However, these four methods were significantly more valid than the last two strategies (stylistic-psychometric and random) for pe sonality assessment.

The purpose of a paper submitted by Butt and Fiske (37) was to compare the rational facet, factorial facet, rational trait, and factorial trait approaches in the development of scales for evaluating dominance. The instruments used for each measurement approach vere either published tests or tests constructed for the purpose of the study. Seventy-seven male and sixty-one female students from the University of Illinois, Chicago Circle were two of three groups used for the study. The third group was composed of 372 airmen in basic training at Lackland Air Force Base.

The results of this study indicated that both facet approaches mould produce scales with better homogeneity indicec. The facet strategy assumed that each trait had several facets, whereas, in the trait strategy, the construct was identified by a label. With both facet appooches, the results showed that cleaner subscales were developed by limiting and defining item content.

The factorial scales tended to be broader in content and freer from the researcher's biases than the rational scales. In addition, the rational scales did not show much relationship to variables which vere theoretically related to dominance, whereas the factorial epprosches showed a widespread relationship with variables related to domineace.

The authors concluded by indicating that, for basic research, the facet approaches were predominantly better than the trait approaches. The rational facet approach is most promising in theory development while the factorial facet approach is most efficient in exploring the associations of the dominance variable with life descriptions." (37:519)

Development of Scales Evaluating Performance in Non-Physical Education Areas

In a number of studies completed by Lawshe and others ($48,49,50,51$) studying job evaluation, factor analytic techniques were utilized to determine the applicability and reliability of different rating methods to muswer specific questions concerning types of systems, scale items mecded, lengths of scales needed and the numbers of factors needed to effectively evaluate jobs. In a study (48) dealing with a modified
system to evaluate salary paid jobs, Lawshe and Maleski computed the intercorrelations between point ratings on each of eleven items and total point ratings for each job. The correlation matrix was factor analyzed by Thurstone's centroid method and rotated by the Peters and VanVoorhis method. The Wherry-Doolittle shrinkage method was used to determine an abbreviated scale. Three primary factors were found and they accounted for nearly all the variability in total point ratings. Three items were extracted for the shorter rating scale. The combined effect of the three items selected accounted for about 96% of the variance in "total points". The authors concluded by saying that the shorter scale would give practically identical results to those of the Ionger eleven-item scale. Also, the use of the shorter scale would reduce the time required to do the rating.

Iawshe and Wilson (49) used the Factor Comparison System of job evaluation to further study the nature of basic job evaluation factors as identified in the judgment process. This system involved the comparison of jobs being rated with a scale of "key" jobs. The key jobs were ranked by a job evaluation committee in order of difficulty on mental requirements, physical requirements, skill requirements, working conditions and responsibility. Each different job was compared with the key jobs on each one of the factors Iisted above. Each analyst had five mounts which, added together, equaled the indicated Ealary.

Data were acquired on one hundred and seventymsix job classifications. The intercorrelations between ratings on the five factore
and total points were computed. Thurstone's centroid method was used to factor analyze the matrix yielding two factors. Rotation was done by the Eraphical method. The Wherry--Doolittle shrinkage selection method was applied and three items were selected for the abbreviated scale. The three items selected for the abbreviated scale, when combined, correlated .99 with the original scale. The authors concluded that although the reliability was not know, "the abbreviated scale can be considered as valid and as usable as the original scale." $(49: 434)$

The purpose of Lawshe's and Wilson's study (50) was to answer the reliability questions of the total point ratings of job evaluations utilizing the longer rating scales and the shorter scales. In addition, they attempted to determine the reliability of each of the items in the two systems.

The National Electric Manufacturers Association System of job evaluation provided for the rating of jobs on eleven items. The sum of the number of points assigned each of the eleven items, on a fivedegree scale, was the total point rating for each job. From results of previous studjes, a Simplified Job Evaluation System had been developed with four items. The total point rating using the Simplified Job Evaluation System was obtained in the same manner as the NEMA System.

Ten analysts rated jobs using the NEPA System and ten rated jobs using the Simplified System. Each analyst rated twenty of the forty jobs selected for the study. The average intercorrelation of the
ratings of five men on forty jobs was obtained as the reliability coefficient for the total point rating under each one of the plans and for each of the individual items in the two plans. The average intercorrelations of one rater with another rater were stepped up by use of the Spearman-Brow formula to estimate the increased reliabilities which would result fron using five pooled ratings.

The results from this study indicated that a system using more items was not necessarily more reliable than a plan with fewer items. The reliability coefficients obtained were .89 (one rater) and .98 (five raters) for the Simplified System; for the NEMA System, the coefficients were . 77 (one rater) and .94 (five raters).

In a follow-up study of job evaluation, Lawshe and others (5I) wanted to determine to what extent basic factors were involved in two different point-rating scales. The two systems mentioned in the other studies, namely the NEMA System (eleven. items) and Simplified System (four items), were utilized for this study.

The ratings lised were the ones acquired in a previous study (50). A composite rating on each item and the total. rating for each job was acquired from the iten ratings made by five independent analysts. The intercorrelation matrix was factor analyzed using the centroid method and the five factors were rotated using the graphic method. Five factors were found which seemed to account for the elements considered in the two systems. The authors concluded from the evidence in this study that five factors could be used to satisfactorily complete job evaluations. However, the authors also indicated that
other factors, not identified in this study, may be isolated in future studies which may be unique to other jobs.

Ryans (56) used a factor enalytic technique to aid in the construction of the Classroon Observation Scale. The data for his study wore acquired by having traincd observers assess teachers' performances. The purpose of his study was to attempt to describe the personal qualities of teachens. After an intensive review of the literature using a "critical incidents" approach, he identified specific behaviors (considered to be dimensions) of effective and ineffective teachers. The dimensions were described in terms of opposite meanings. For example, one dimension was partial to fair. A unique feature of Ryans' scale was a glossary attached to describe each dimension as fully and clearly as possible. He found that the specific behaviors fell into two categories: those relating to teacher behavior and those relating to pupil behavior, but reflecting teacher behavior.

The subjects (ratees) were 275 third-and-fourth grade teachers. The raters were three, and on one occasion four, judges trained in assessing teacher behavior. Observer intercorrelations were obtained ranging from .68 to .84. Intercorrelations were also obtained between the traits on the scale. The factor analytic process utilized was the centroid method with both orthozonel and oblique rotations attempted. Five centroid factors were extracted and the oblique rotation provided a solution that met the criteria of simple structure. Ryans concluded that the findings of this research and an analysis of the criterion
data suggested that teachers' personal qualities could ge aescribed in terms of several major dimensions. Also, he did note that some of the factors tended to overlap and were positively correlated.

The purpose of the study by Lorr et al. (53) was to identify fundamental variables "underlying behavjor, symptoms, and inferred motivation of mental hygiene clinic patients." (53:511) Seventy-three variables were selected from a wide range of psychological and psychiatric reports to define the fifteen hypothesized factors. A minimum of four variables was included to define each factor.

Experienced therapists rated 184 veteran patients using a detailed rating guide. Each patient had been seen for a minimum of four psychotherapeutic sessions. To secure a reliability check, ten patients were rerated after a two-week interval. The computed average product moment reliability correlation was .77. Positively correlated traits were segregated into nonoverlapping clusters to make the factorial reduction of the correlation table easier. A centroid analysis and oblique rotations were employed to achieve simple structure. Eight identifiable oblique factors were obtained from two centroid analyses.

Smith and Kendall (58) constructed rating scales to be used by head nurses to rate the performance of staff nurses. Their procedures involved the use of a series of graphic rating scales arranged vertically. Behavioral descriptions indicating various degrees of each dimension were printed beside the line at different heights. Judges rated each item from 0 to 2. Examples of their statements did
not represent actual behaviors but inferences or predictions from observations. A unique feature of their study included head nurses participaiing in the listing of dimensions or characteristics which they thought were inportant in evaluating the performance of staff nyrbes. In addition, after listing the categoriea, the head nurses formulated general statements representing high, Jow and acceptable parformace. The final rating scales which were developed by the nurses described expectations of specific behaviors. The researchers indicated that, in general this procedure showed excellent discrimination and high scale reliability (above 97). However, they also indicated that because of the use of trait names and general statements concerming levels of performance, the ratings may be ambiguous. They also said that there were too many scales for easy handling.

The purpose of a study done by Canpbell et al. (38) was similar to Smith's and Kendall's. However, their ratees were 537 department store managers and the raters were two store managers. The intent of their study was not only to develop behavioral rating scales, but in addition, to compare these scales with a summated ratings technique. Ttenty etore managers were asked to write specific behaviors (critical incidents) of department manager performance. These specific behaviors vere then submitted to a qualitative cluster and sorted into definable homogeneous categories. The participants were again asked to trite more behavioral incidents eventually sorting each incident into the dimension that it most closely represented. The completed rating acales consisted of nine dimensions defined by specific
behavioral incidents with appropriate scale values. An alternative rating method (summated rating scales) was developed from the definitions produced in the first method. Each individual was evalurted on a Likert-typo scale with a 4 point response. An individual's rating for a dimension was the average item response for that dimension. The difference between the two methods was that the first: approach used scaled behavioral anchors and the second did not. The correlation matrices of four sets of ratings were factor analyzed by the principal factors technique. Fach solution was rotated to simple structure by the varimax procedure. The clearer solution was obtained from the ratings usine the scaled expectations technique. All the entries in the validity diagonal were significantly different from zero at alpha $=$. OOl indicating convergent validity was achieved. Of the two scales, the scaled expectations method indicated higher validity entries in the validity diagonal. The authors concluded that the scaled expectations procedure was less subject to leniency and halo errors than the summated ratings method. They indicated that these scales could be very useful for selection and promotion decisions and could be incorporated in perfornance appraisal and review systens.

Using a facet-factorial approach to rating scale construction, Abeles (36) developed a scale to measure and evaluate ciarinet musjc performance. His original item pool, consisting of 9 items, was used by teachers rating clarinet performances. Two different music performances were evaluated by fifty teechers using the 94-item scale. A factor analysis was performed on the results of the ratings using
the iter pool. Six factors vere chosen for the final scale and thirty items were selected which had high factor loadings on the respective factors. After the selection of factors and items, judges evaluated performances mploying the ahbreviated scale. The results of this craluation were used to estimate the interjudge reliability for the rating scalc. Criterion validity was detercined by the pairedcomparison meihod. Interjudge reliability resulted in a .90 coefficient for the total score and a .60 coefficient for the scale scores. The criterionurclated validity coefficients were greater than - 80 for each of the sets of performances. The author concluded that the technique used in this study was an effective method of constructing scales to measure music performance.
... $\frac{\text { Develonment of Scales to Evaluate Performance }}{\text { in Sport Activities Other Than Basketball }}$
An interestine and unique analytical method was used by Durrant (39) for the developrent of a rating scele to evaluate synchronized swimming performers. She did not consider the degree of difficulty of a stunt, but assifned point values to component parts of each stunt. The number of points awarded to specific movements of each stunt was based upon the difficulty of the novement and upon its importance in the total stunt. The score sheets showed each component part and its point value. A score was given for degree of control in moving from one position to the next based upon the accuracy of reaching the next position.

Six judges rated 24 subjects (beginners to advanced swimmers) on a set of seven selected stunte. Two judging sessions were held and the same judges were used for both of these sessions. The correlations between judges' ratings for all the stunts ranged from .47 to . 94 . It was found that the stunts with the higher point values also produced a higher correlation between the judges.

After the second judging session, the author met with the judges to discuss the utilization of such an instrument. A number of points were discussed, but they did agree that the analytical method used here in this study was an objective method for evaluating performance in synchronized swirming. Also, they felt this method could be used as a teaching device and as an aid in the training of judges. The author concluded that the judges were consistent in their use of the scale, but some judges tended to use a broader range of the scale. The high correlations both between judges' ratings and between each judge's rating indicates that all judges were rating on the same basis.

Edwards (68) devised a rating scale for use as a measure of the process aspect of tennis serving skill. Another purpose of her study was to study the reliability and statistical concurrent validity of the scale. Three judges (tennis instructors at the University of Wisconsin, Madison) rated 45 women tennis players on 20 serves. A score was recorded after every five serves. The subjects were rated on the height and position of the ball toss, the racket arm position, wejght change, body rotation, solid contact, appropriate tension, and illustrating continuous notion throughout the serve. No points were
given if the behavior was not present; if the behavior was present, Hut not effective, .5 wass awarded; and one point was given if the Behavior wes present and effective.
mo determine concurrent validity, a "t" test was applied to the data acquired from a beginning gromp of temis players and an advanced ETonp. AII correlations vere above .829. The amalysis of variance method was used to determine reliability of the test. The results indicated the ratjop form vas reliable (day-toway, .945; trial-totrial, . 9 98). The interjudte objectivity correlation was .867 .

The purpose of Jackson's (72) study was to develov a rating ecale that sonld be ralid, objective and practical for discriminatine relative volleyball performance jn a competizive fame situation for sitilled fernale volleyball players. Sne identificd the following factors as important aspects for evaluating individual performance: serve, pase, spike, set, iblocir, vecovery, return, and violation and/or errors. One point was awarded for a good (by her definition) execution of any specific factor; no points were siven for a poor execution. An ane or a good serve received one point. If a violation or an error were committed, one point was subtracted. A total was computed by scmming all points and dividing tinis number by the number of contacts made during the game.

One hondred and sixteen players were rated by two sets of two Judes during seventeen matcines. They observed players for an entire match. At the conclusion of the match, the judees were asked to rank the players on the basis of their overall performance and contribution
to the team. Face validity vas shown by demonstrating that the items included were important in skilled volleyball competitions. Results of the rating scale were correlated with the averaged rankines of the judges to determine statistical validity. The correlations (. 109 and . 470) indicated that the volleyball rating scale was not a valid instrument with which to discriminate relative volleyball playing performance.

Utilizing the rating scale, each judge rated each player during two different games. A total score was computed for each player after each ganie. The total scores for each player were ranked and the Spearman rho method was used to determine the reliability (.395) of the scale which was not significant at .05. The averaged objectivity coefficient (.876) was significant beyond .01 .

In her conclusions, the author indicated that this scale had two advantages over a conventional method of evaluating performance. She said the scale measured realistic competitive situations and was diagnostic.

The purpose of the study done by McCatty, et al. (54) was to discover the extent of agreement in scoring the crawl, breast and side stroke by qualified raters. Each one of the 25 subjects (male and female) was to be scored on how they performed each one of the strokes mentioned above. The 22 raters were to score each swimmer according to the following scale: poor, l-2 points; deficient, $3-4$; fair to good, 5-6; very good, 7-8; and excellent, 9-10. Each swimmer swam three
lengths of a 25-yard pool executing each one of the strokes each lap. The spacing interval between swimmers was approximately 15 seconds.

After collecting the data, the authors found that the scoring was not discriminatory in distinguishing between the original five categories. Therefore, the cells were collapsed into three categories, namely, "failure," 1.-4 points; "superior," 7-10; and "weak," 5-6. It was found that, in all three strokes, the examiners differed considerably in rating the subjects' performances. The rating scale utilized by the raters proved to be a highly unreliable instrument. The authors made some possible recommendations for developing a more reliable scale, such as defining more precisely the points used in evaluating a stroke. Secondly, they suggested listing controversial points and obtaining experts' opinions as to whether or not "there is legitimate room for difference of opinion." (54:14)

Development of Scales to Evaluate
 Performance in Basketball

Many objective systems of evaluating basketball skill(s) have been reported in the literature. Generally, these systems have been termed "skill tests," "achievement tests" or "ability tests." Some systems have isolated a skill or an element to be measured outside the game sjtuation. Some researchers have combined these separate tests attempting to measure the skill of an individual's performance in a game situation.

As early as 1932, Edgren (40) developed an instrument to test ability and progress in basketball. Since that time, many others
$(1,2,57,63,67,69,70,72,73,74)$ have constructed "skill tests" to evaluate certain aspects of performance in basketball. Each one of these skills tests evaluates certain elements used in a basketball game such as dribbling, shooting, junping and passing. Also, these skill tests are edministered to evaluate performance in a structured situation. None of them is constructed to evaluate how a student performs skills in a gane situation.

Authors ($5,6,13,14,23,30$) who have written texts in measurement and evaluation of physical education briefly commented on the use of rating scales. Franks and Deutsch (13) gave two examples of basketball subjective grading sheets which are a form of a rating scale. Each scole is very Eeneral without any descriptions accompanying the scales. Also, no validity or reliability coefficients was reported.

Howard's (16) study involved the development and evaluation of a technique to neasure achievement of a basketball player while he was actively partjcipating in a game situation. Howard's technique involved simply the recording of performances, such as different types of shots, passing, dribbling, and blocking shots. The observer recorded these perforgances as either a success or a failure. For each of the thirteen specific skills, he had an objective definition to aid the observer in recording the skills that were performed by a player during the game. The final scores of the observational test were based on the sum of successes and failures or successes alone performed in six periods of observation. Three different weighted
formulas were used to yield an achievement score, dependent on whether successes and failures or just successes were used.

The data collected were acquired from observing 211 players during 865 complete periods of observation. Four different types of groups were used. One group included eight teams in the first round of the 1936 Olympic tryouts; another group consisted of 16 teams involved in intercollegiate and interclub competition during 1935-36. The third group of observations were made on basketball classes at Seth Jow Junior College; and the fourth group observed was the Varsity and Freshman teams at Ohio State University.

Four different methods of weighting the observed scores were tried. The two methods which proved to be useful vere weighting the successful and unsuccessful performances and weighing the successes alone. The criterion used to establish validity was the average of nine rankings made by three judges on sixty-nine students of Seth Low Junior College. To determine validity, the scores of eleven skills were intercorrelated and correlated with the criterion. Regression equations based upon the successes and failures and successes alone were computed. The multiple coefficient of corrclation was found to be .81 for both methods. The reliability coefficient was secured by correlating randon halves of the observation scores, then computing the coefficient for the whole serjes by using the Spearman formula. The scores based on successes and failures were weighted with a regression equation, correlated, then stepped up to give a cocfficient of .716. The ecores based on only succeseful performances were not
weighted, but based on actual scores giving a reliability coefficient of .701. In comparing the validity and reliability of his observational test with isolated skill types of tests to measure ability and achievement in games, Howard concluded that his observational test was superior to other tests concerning factors of validity and reliability. To determine the objectivity of the observation techrique, the author determind the number of skills per period of disagreement anon the observers. He found the average error per period to be approximately one skill; therefore, he concluded, the test was not objective.

Yoltmer and Watts (59) developed a method of rating basketball players to aid coaches in evaluating different aspects of the garde. The purpose for developing their method was to introduce a system that: "(1) requires comparatively few scorers, (2) relies relatively little on the opinions of the scorers, and (3) still presents adequate evidence on performance of skills under gane conditions." (59:94)

The authors chose five positive and five negative factors of performance which they considered important for evaluating individual performers. If a player exhibited a positive performance, he scored a certain number of points; if a player exhibited a negative performance, he would lose a designated number of points. A summery chart was prepared for each player which indicated the positive score, the negative score and the number of points made.

The authors' conclusions indicated that this chart did present important information concernins the execution of specific skills during a game. Secondly, the authors of this study felt the scale did
provide incentive for the players to make improvements. Thirdly, they indicated it did rule out the bias factor in player evaluation.

A type of a rating scale was developed by Elbel and Forrest (4i) to be used as a supplemeat in evaluating team and individual performance in a basketball gane situation. During the first year it was used, only offensive efficiency was calculated; during the next two years, defengive efficiency was computed as well as offensive efficiency. A weighted point system was devised for nineteen offensive (ten were positive, nine negative) and ten defensive statements (eight positive, two negative). For example, if an individual scored a field goal, he would receive ten points on the scale; if a player executed a good pass, he roceived one point. If an individual player would commit a violation or a personal foul, he would receive a negative five or nogative eight points respectively. The defensive efficiency rating chart was developed in a similar manner.

Tvelve men, working in pairs, acquired the necessary data during each competitive home game situation. After each game, the sum of the positive and negative points was computed. The algebraic sum of the positive and negative factors represented the offensive and defensive efficiency of each individual player. The authors stated, "This study shows rather well that scoring ability in itself, important as it is, can be readily offset by personal fouls and mistakes in ball handling." (4I:555) In addition, as the authors pointed out, the results indicated that certain factors were apparently important to the winning success
of a team. They also felt the players vere motivated to improve their ratings after they had seen the results of the data from each game.

In 1956, the Athletic Journal published a study conducted by Vroom and Nixon (60) on "Fundanental Basketball Skills of College Freshmen." A type of a rating scale or questionneire was developed to provide information and opinions for high school and college coaches as a guide to improve cosching practices. After a thorough discussion with coaches at both levels, twenty-six fundanental basketball skills, classified as defensive and offensive, were selected. Factors such as attitude, sportsmenship, desire, etc. were not considered for use in the questionnajre.

Forty-two basketbell coaches from four-year colleges and universities west of the Rocky Mountains were chocen for the study. The college coaches were asked to express their opinions of players coming from high school concerning their fundamental basketball abilities. The coaches were to rate each one of these players on a five-to-one point (excellent to poor) rating scale on each of the tventy-six items. If a player showed maximun effort and if the coach felt the player vas ready for college level play, he gave the player an excellent rating or five points; if the player showed little exposure to high school playing experience and needed a very concentrated coaching effort, he vas given one point or a rating of poor.

After 35 of the 42 questionnaires had been returned, the skills were ranked in order of excellence according to the point values assigned. Four offensive skills topped the list with jump shooting
receiving the most points. "Talking on defense" received the smallest number of points. The authors found that offensive skills far surpassed defensive skills. They concluded by saying there was a definite need for defensive coaching on the high school level.

Wright and Wright (62) developed a set of rating scales to be used for grading purposes in women's physical education classes. The purpose of their study was to devise a scale winch would help provide a valid, reliable, and objective instrument to aid in assessing grades. Not only did they develop a scale to be used for basketball, but also one for field hockey, volleyball and softball. Their instruments were forced-choice rating scales composed of paired items, that is, the rater was forced to make a selection of the items which best described the ratee or player.

The basketball form was used to acsess playing skill in an actual game situation. Though many of the items in this scale appeared to measure knowledge of rules, attitudes, and personality characteristics, it was not designed for these purposes, but instead designed to measure skill and/or improvement in game play. In addition, it was developed to be used by peers evaluating the performance of individuals in a game situation. The basketball scale consisted of ten forced-choice paire.

The original item pool was developed by having students list items they felt were characteristic of a good player. Seventy-five items were obtained from this list. Using the 75-item acale, seventytwo students were asked to rate these same items on a ono to seven

Ininert-type scale according to how willing they would be to rate a team member as being like the item. Only the items with a relatively low Wariance mere chosen for the final scole wich incluced ten paired frowerd-choice statements.

The stan subjects were asted to rate fellow wembers by ranking them on their walue to the team. These rankings became the criterion. The stodents were ashed later to rate their team meabors by ranking then on the orizimal seventywive items. The Pearson product monent mettod of compating sorrelations was utilized to find the coefficients Betwen each item and the criterion. The comelations rarged from .07 to .97.

The walidity was found by compating man order correlations Between the triterion and scores from 710 sibjects on the final form of the smale, The walidity criterinn wre a rating of subjects done on a one-to-seven Iikert scale by two instuuctors. The validity correIations Ior sixteen teams ranged from .56 to .98 . The mean vaiidity cormelation was .87 and the median validity correlation was .85 . In cruar to deternine the optimal number of ratings that should be used, cach rater judgea each person a total of cight times. It was found that six ratings feye nearly maximum results (-72).

The authors concluded that when six ratings were used, their rating scales gave hisher walidity coefficients than skill tests. They ando indicated less time was necessary to adninster the rating scale世tion a skills test. Ine anthors thourht that tie resulting scales
represent valuable, objective instruments for use in evaluating performances in pame sitations.

Hosinshi (T1) developed four rating scales to be used as a cmiterion in detemaning if a computer instructed program was a more effective teaching method then the treditional method of teaching the shrufle difense in basketball. His scales were developed to evaluate each individual player in each series of the offense for each position, relative to his offectiveness concerning positioning, receiving the Wolly betting open, using screens, passing to a teamate, faking, cotting, and filling a vacated spot in the shoffle offense. Each item in the scole was scored on a five-tomone point besis; if a player Fericrmed well, he received five poinis; and if the player failed to perform, he received one point.

Five players performed at the same time but only one subject whe svaluated at one time on the above aspects. Three raters rated the players one by one as they exemted the shuffle offense. Each group and individud was rated four times, one tine for each series Of the shuffle offerse. No validity or reliability of the scaie was reported.
 system for rating college and professional baslretball players. He indentified fifteen fuctors or categories for rating the performance af imaividual players. The searing of his system was 10 points, macxinnum yroficiency; 8-9, excellent mehievement; 6-7, very good aitrility; 4-5, wnerage ability; 2-3, very foor performance; and, 0-1,
total failing. In addition to identifying each factor, he also described or defined each factor with a word, a group of words or a short statement. For example, he described "play making" as being creative, giving others an opportunity to score easily, seeing the entire court, executing good passes and dribbling well. The author dj.d not report any statistical evidence of reliability, validity or objectivity.

CHAPTER III

PROCFDURES

The purpose of this study was to devalop a rating scale for use in evaluatine individual physical skill periormance in a basketball. gane situation. There were three phases to this study. The first phose of the study consisted of the developaent of an evaluation tool, a rating scale, and the utilization of the scale by independent judges to rate actual performance in basketball game situations. The second phase consisted of the treatnent of the data from the original 96-item sGale, the roduction of the items in the oniginal scele to a number which vould be practical, and the utilization of the shortened scale. The third phase ascertained the reljability and validity factors of the collapsed scale.

Develoment of the Original Item Pool

The initial task of this portion of the study vas to acquire items and concepts related to the different aspects of basketball physical skill performance. From these ideas and concepts, descriptive statements indicative of basketball physical skill performance were developed.

One method used to gather information consisted of talline to basketball coaches, basketball players, and physical education teachers. These people were asked to describe and list the phrsical skills of a good and/or poor basketball performance.

Secondly, the investigator watched and observed individual players in competitive basketball games. During these observation periods, the physical skill components of basketball performance were described.

Finally, basketball literature was examined. Basketball books $(4,6,8,10,24,25,27,35)$ written by both men and women during the past decade were examined for ideas and concepts descriptive of good and poor basketball performances. Rating scales ($16,13,41,60,62,71,76$) which had been developed to evaluate basketball performance were examined and skill tests $(1,2,40,63,67,69,70,73,7 \%)$ were reviewed to determine important skills in evaluating basketball performance.

The descriptions and concepts gleaned from all the sources were subjected to content analysis. It was found that specific behaviors fell into seven general categories: (a) shooting ability and offensive moves, (b) defensive moves and tactics, (c) ball kanding, (d) rebounding (offensive and defensive), (e) speed and quickness, (f) body control and balance, and (g) general floor play.

Descriptive statements were developed and inserted in the appropriate categories. The items were phrased both in a positive and negative way to prevent judges developing a set type of response when evaluating individual basketball performance. After these items were developed, the completed instrument was given to two backetball coaches (one male and one female) for additional sugbesticns and for clarification purposes. After corrections, the rating scale was sent to the researcher's doctoral committee for further suggestions and approval. Editorial. and clarification surgestions were given by this committee.

Final editorial approval was given by the researcher's advisor. Ninetysix items were retained for the rating scale. A fivempoint Likert-type response scale was developed. Responses ranged from "highly agree" to "Eighly disagree." If the player exhibited the behavior all of the tise, the rater would check "highly agree"; if a player exhibited the behavior most of the time, the rater would check "agree"; if a player exhibited the behivior occasionally, the rater would check "disagree"; if the player did not exhibit the behevior, the rater would check "highly dicagree"; and if the rater could not arree or disagree that the statement was descriptive of the player, the middle category (NN) would be checked. The following are examples of the statements which are found in the 95-item rating scale: (a) She keeps her head level, straight over the center of gravity and base of support, (b) She avoids losing sight of the ball when guarding an opponent without the ball, and (c) She jumps and reaches to receive a rebound. The 96-iten rating scale is found in Appendix A.

Dtilization of the Oripinal Rating Scale

Permission was granted, by written notification from Betty Westmoreland (Chairperson of the Women's Basketball Games Committee of the USCSC), to use the rating scale to evaluate basketball players participating in the selection camp for the World University Games held at Maryville College, Maryville, Mernessee, June 16-23, 1974. Three persons on the United States Collegiate Sports Council basketball committee, who were at the selection camp, were independent judges
minizing the raiing scale. The data acquired from the ratings by the judges were used in the statistical analysis to reduce the original rating scale to a smaller, more practical scale. The judges were: Barbsua (Sme) Foss, Mississippi Gulf Coast Junior College; Jeanne Rowlands, Northeastern Uuiversity; and Betty Westmoreland, Western Garoline Univensity. Cae judge had been a varsity collegiate coach for mine years; the other two jurlots had coached for ten years at the college level.

Tithe first part of the selection camp was for the purpose of reducing the number of farticipants (approximately 40) to a select few for concentrated iasketball practice the following week. The judges mere frivon the rating scale daring the first part of the selection camp so they conld trecme familiar with the statements. Syecific Instructions were given concerning the use of the rating scale. They are fornd in Appendix B. During this first period, the judges were asked to look at the etatements in the scale and to tentatively evaluate players in their on mints.

After the selection of the final fourteen basketball players, the judges net with the investirator to determine if there were statements in tine rating bcale whiti vere unclear. For each staternent in which the jodges fat a gmestion, a discussion followed to clarify the intent Of the statement. The juares uere also asked if there were any questions concerning tine use of the scale and the categories to be marled. The attempt wes made to explain how each category should be checked to enable the judges to be as consistent as possible.

During the final week of the camp, the judges were asked to evaluate the individual playere in game situations utilizing the rating scale. The players ranged in age from $18-21$ with a mean age of 19.5 years. The number of years they had competed on an intercollegiate team ranged from one year to three years with a mean of 1.82 years of competition. The players were representatives of different areas of the country and were chosen because of their high level of skill in basketball. The results of the juiges' ratings for the fourteen basketball players appear in Appendix C.

Means and standard deviations were calculated for each of the 96 items by using the Statistical Pachace for the Social Sciences (SPSS) systen of coraputer programming.

A correlation matrix between each pair of the ninety-six variables vas calculated by using the SPSS PEABSON CORR (26:276-288) procedure. After the correlation matrix had been developed, a factor-analytic (principal factoring with iterations) technique was used to determine if a pattern of relationsinips did exist within each category. The purpose for utiljzing the factor-analytic technique was to determine if one could reduce the original 96-item scale to a rating scale with fewer statements which would be easier and less time-consuming for the rater. As Jae-On Kim and the authors stated, "Ihe single most distinctive characteristic of factor analysis is its data-reduction capability." (28:469)

The orthogonal rotational method was selected for this study and each factor matrix was rotated to a simple factor structure by using
the varimax and quartimax forms of rotation. The initial factor solution (unrotated) when applied to any set of data tends to be difficult to interpret.

The first factor so extracted tende to be a general factor, that is it tends to lead significantly on every variable. Hovever, the second factor tends to be binolar, that is, approximately nalf of the variebles have positive loadings und the other halif nasative loadings. The remaining factors also tend to be bipolar, and it is often rard to interpret such factors. Furthermore, every variable tends to be decomposed into positive as vell as negative factors, and the conplexity of each variable is usually greater than 1. (21:482)

Therefore, to simplify the factor structure and to effectuate a meaningful interpretation, the varimax and the quartimax solutions were selected for this purpose. Both of these solutions were chosen to ascertain if one scheme yielded a simpler structure for interpretation.

Subsequently, there was only one factor show for the categories "rebounding," "body control and balance," and "Eeneral floor play." Therefore, the rotation did not accomplish simplification. Nevertheless, rotation did yield structures in the remaining four categories.

After studying each rotation carefully, the varimax rotation was accepted because it seemed to be more realistic than the quartimax. The latter rotation, quartimax, tended to yield one general factor and the other factors seened only vaguely concerned rith simplifying the content of the factor matrix.

It was deternined to use a factor loading of at least .65 for the acceptance or rejection of individual items. Kerlinger (19:654)
indicated that there is generally no accepted standard for a
"significant" factor loading. In addition, Cooley and Lohnes (9:144)
denoted that high and Iow factor loadings are easily interpreted, but the midale-sized loadings give the researcher trouble. Kerlinger (19:674) surgests using the x that is significant for the N of the stady. With an II of 14 , a correlation of 623 was significant at the .01 Ievel.

Although categories A, B, C, and E did produce more than one factor, some of the rotated factors were difincult to interpret. The categories which produced only one factor could not be rotated. These categories producing the one factor did not have any interpretable meaning. सherefora, the decision was mene to collact more data by increasing the number of basketball players to be evaluated in gane situations. It wes speculated thai a greater number of persons night effect a clearer juicture of the factor structure of physical performance in basketboll.

To acquire more data for the statistical analysis, the original rating scale was used to cvaluate varsity higin school basketball players in a selected area in South Dakota during the fall of 1975. The three judges chosen for this part of the study were the women's warsity basketball coach and two assistant coaches of the South Dakota Ste.te Jriversity intercollegiate team. The head coach had ten years Of coaching experience at the collegiate level; one assistant coach fuad played four years of high school basketball, four years of collegiate basketball and had coached at the high school level for cme year; and the other assistant coach had played at the high school level and at the collegiate level for four years.

The judges were given the rating scale to become familiar with the statements on the rating scale. After they had studied the statements, a discussion followed for purposes of clarifying statements, and for instructing the judges as to how the categories should be checked. They were given the same instructions as the previous raters.

The scale was used during the first two games observed. These first two games were designated as practice sessions for the judges. During the first game, the judges were asked to evaluate one starting player using the rating scale. During the second practice session, the judges rated two starting players. After each practice session, a discussion was held with the judges to resolve any problems they had encountered with the use of the rating scale. At that point, it was decided that a player must play at least three quarters in the ball game to be evaluated efficiently. If a player did not play for that length of time, the rating was discarded. It was also decided at this time that no more than two players could be evaluated efficiently using the 96 -item rating scale.

During the girls' basketball season, twenty-four varsity interscholastic players were rated by the three judges. Two starting players were evaluated durjng each game that individual players were observed. Two playexs from the same team were chosen during each game. Thirteen seniors, eicht juniors, two sophomores and one freshman from twelve different school were the players who were rated. The scores for each individual player by each individual judge can be found in Appendix D.

The data acquired by using the rating scale for both groups (highly skilled collegiate players and varsity high school players) were combined into one set of scores. The total number of players evaluated was thirty-eight by two different sets of three judges.

For the combined group of thirty-eicht basketball players, the means and stardard deviations were calculated for each of the 96 items and a correlation mathix for each category wos found utilizing the same SPSS computer programs. From the correlation matrix, which is found in Appendix E, each of the seven categories was factor analyzed independently of the remeinirg six categories. Factors were extracted by utilizing the method of principal factoring with iteration. The factors were rotated analytically using three orthogonal methods (varimax, quadrimax and equimax). The SPSS factor procedure was employed for these procedures. After an examination of the factor structures for each one of the seven categories, the varimax rotation was chosen because it appeared to cive the best solution for the reduction of items. Because of the larger N(38) for this segment of the study, a correlation of .60 vas adopted for use as a significant loading on a specific factor.

For the shortened rating scale, seven categories were retained and seventeen items were developed. The seven categories were retained based on the original theoretical structure of evaluatine en all-around basketball. physical performance.

The seventeen items chosen for the revised scale were based on the factor loadings of each item, the content of the items and the interitem
correlations. For each category which yielded more than one factor, items were chosen which had hifh (. 60 and above) loadings on each factor and comparatively lower loadings on the reanining factors. Secondly, if rany items met this criterion, a content analysis was parformed to detemine the similerity and diversity of meanings of the specific items. If the items verc simjar in content, they were combined into one statement to eliminate two or more items with corresponding meanings and an attempt was made to preserve the concept of reducing the number of items to the smallest quantity possible. rhirdly, for categories which yielded only one factor, items were sclected cr combined on the basis of their interitem correlations with the remaining statements and/or the homogencity of the itens composition.

Because of the factor structure winch emerged within each independent eategory, a different number of ite:s was selected and developed to represent each specific frouping. For example, three factors were produced in category A (shooting ability and offensive moves). Therefore, based on the factor loadings, the interitem comrelations and the coatent, six items were chosen to represent this category in the revised scale. A corplete discussion of the selection and development of items for the shortened scale is found in the fourth chapter. The reduced scale appears in Appendix F.

Utilization of the Reduced Rating Scale

After the reduced scale had been approved by the researcher's adviser, it vas used to rate the basketball performance of high school girls in the 1975 South Dakota State "B" Tournament. This tournament
was played December 4-6, 1975 in Huron, South Dakota. Thirty-four players from seven different teams were rated.

Verbal permission to execute the ratings was given to the investigator by the Assistant Executive Secretary of the South Dakota High School Activities Association. The judges chosen to evaluate the basketball performances of the players were the same three who rated the high school players using the original scale. They were chosen because they vere familiar with the scale and they were available when the scale was going to be used.

The reduced scale was given to the three judges shortly after it had been developed. At this time, the judges were asked to study the statements and were then given an opportunity to ask questions about any difficulty in the interpretation of the statements. One week before the actual use of the scale, the three judges rated high school basketball players participating in a sectional tournament. The team virming this tournament went on to participate in the State "A" Tournanent. This rating was used as a practice session to determine how many players could be rated at one time. After observing the girls in a gane situation, utilizing the scale, the judges decided they could rate five players. Also, each player had to compete at least three quarters to be evaluated effectively. If a player had not participated this length of time, the rating was eliminated.

During the playing of the games at the South Dakota State "B" girls' tournament, thirty-four players wore rated. One rating was discorded because one of the starting five players fron the Canova
team did not play a sufficient amount of time to be rated. The starting five players on one team for each game were tho persons selected to be rated by the three judges. The members of the teams that were rated were froa Kadoka, Springfield, Canova, James Valley, Jefferson, and Clear Lake High Schools in South Daloota. The players rated were ten seniors, thirteen juniors, ten sophomores and one freshman; their ages renged from $14-18$ years with a mean age of 16.12 . The results of the judges ratings appear in Appendix G.

Reliabiljty and Validity of Reduced Scale

The results from the evaluation of the thirty-four basketball playcis utilizing the shortened rating scale were used to provide an interjudge reliabjlity of the scale. Kendall's (12:312-315) Coefficient of Concordance was the statistical technique employed to determine the interjudge reliability. The nonparametric method was chosen because the assumptions of the ANOVA could not be met adequately. The precise statements in the original scale were collapsed to generalized items in the reduced scale; therefore, the accuracy of the judgments was decreased. The exactness of the integers used to place a numerical value on each category did not warrant the use of the ANOVA. The repeated measures design was violated because repeated observations were not made.

There were some missing data in the rating of the individual. players. This was minimal; approximately ten items were missed of the more than 1000 observations made. Therefore, a method developed by Yates as reported by Steele and Torrie (32:139-140) was used to
estimate these missing values. The reason for utilizing this process was to facilitate the calculations of the total scores and means of each judge for each individual player on the rating scale.

After the missing values had been approximated, the total scores were computed for each player from the results of each one of the judges' evaluations. The total scores of all players were ranked according to the evaluations given by each judge. The lowest score was given a ranking of I and the second lowest was given a ranking of 2.

To determine the criterion-referenced validity of the finalized scale, the scores of the judges for each player were summed to acquire one tatal score for each person tho had been evaluated. These total scores were ranked and correlated with a subjective ranking of all the players who had been rated. The statistical method used for determining this coefficient was Spearman's Coefficient of Rank Correlation (12: 305-308).

The subjective criterion was acquired by having two judges (working together) rank all of the players from the best all-around basketball ployer to the poorest all-around player. This ranking was completed after the completion of the tournament and the rating of the players, using the ratine scale.

To calculate the sum of the three total scores of each judge for every player, missing data were estimated by the Yates method. The total scores, the rankings of the total scores and the rankines of the two judges are found in Appendix H .

CEAPCER IV
ANALESIS OF DATA

A 96 -item ratince beale was first developed to evaluate the prysical performance of bastetball players in a game situation. A fivempint hikertotype response scale vas used to rate each individual phayen on cach of the 96 items. The judges were asked to rate each person according to whetherg in their judgnents, the bebavior exhjbited high asceeant with the apecific items all of the time (5 points) agrement with the items nost of the tine (4 points), occasional agremont ujith each iten (2 points) or agrectacut that the player did not erecute tine behavior (I point). If the judges conld make no decision, they were to check the "neither agree or disagree" colum (3 points).

The results of the data vere reported in three different pheses. The first phase concerned the analysis of the data after fourteen players were cvaluated. The second phase reported the results of the data after twonty-four more players had been evaluated and the process of collapsing the original scale had been rompleted. The third phase included an analysis of the results after the reduced scale had been utilized rating basketball players in a conpetitive situation.

First Fhase

The sample of the initial phase included fourteen highly akilled collegiate basketball players tho had been invited to remain after the
selection camp for the Horld University Ganes. This camp was held at Maryville CoJlege, Karyville, Tennescee, June 16-23, 1974.

Deseripaive Statistics

Three juages rated each player on each of the 96 items. Means and standard deviations vere calculated for each of the 96 items by using the SGatistical Pargate for the Sogial Scirnces (SPSS) system of computer prompming. The results of the item means and standard deriations are presented in Table 3.

Product-momelt corrclation coefficients vere found between each pair of vaxiables on the 96-iten rating scale by uging the SPSS system. Ho sone cascss there were missing data because the judges felt the items Wore not appopriete to specific players. For example, one judge felt that a flayer playing the guard position never had an opportunity to rebound; therefore, she did not rate the individual player on this expect of the game. The pairwise deletjon of missing data option was wiilized in the process of corapucing the simple correlations. The intercorrelations were used in the first phase of the study. However, after collecting moze data, the first group of intercorrelations was rot used. Therefore, the correlation matrix is not included in this paper.

In the following discussion, category A referred to "shooting ebility and offensive movess" category B was "defensive moves and tactics," category C was labeled "ball handing," category D was "rebcunding," "speed and quickness" was category E_{9} "body control and balance" was category F_{2} and category G tas "general floor play."

TABLE 1

> MEANS AND STANDARD DEVIATIONS OF THE RATINGS OF COLLEGIATE PLAYERS $N=14$

Items	Means	St. Dev.	Items	Means	St. Dev.
1	4.02	. 74	13	3.95	. 98
2	4.12	. 84	3.4	3.50	. 69
3	4.07	. 69	15	3.95	. 94
4	4.29	. 55	16	3.93	. 99
5	4.40	. 60	17	3.60	. 94
6	4.00	. 78	18	3.45	1.00
7	3.86	- 91	19	3.71	. 64
8	4.10	. 63	20	3.83	. 64
9	3.64	2.09	21	3.48	. 86
10	3.62	. 98	22	4.02	. 63
11	3.19	. 64	23	3.81	. 79
12	4.17	.73			

Category B (Defensive Moves and Tactics)

1	4.10	.67	11	3.31	.72
2	3.88	.89	12	3.69	.61
3	3.98	.50	13	3.29	.87
4	4.21	.58	14	3.74	.53
5	3.60	.74	15	3.93	.68
6	4.31	.58	16	3.71	.69
7	4.02	.56	17	3.76	.61
8	3.98	.73	18	3.31	.73
9	3.43	1.00	19	3.36	.70
10	3.93	.79	20	3.79	.78

Category C (Bull Handling)

1	4.05	.74	9	4.05	.26
2	4.18	.61	10	3.38	.63
3	3.95	.49	11	3.21	.98
4	3.15	1.33	12	3.81	.58
5	4.29	.80	13	3.31	.85
6	4.57	.28	14	3.29	.90
7	3.81.	.68	15	3.38	.78
8	4.19	.61			

TABLE 1 (Con't.)

Category D (Rebounding)

Items	Means	St. Devo	Items	Means	St. Dev.
1	3.90	. 84	7	3.95	. 82
2	3.88	. 92	8	4.00	. 82
3	3.71	1.00	9	3.93	. 68
4	3.79	. 92	10	4.19	. 74
5	3.86	. 90	11	3.88	. 76
6	4.07	. 89	12	3.79	.61

Category E (Speed and quickness)

1	4.02	.81	7	4.00	.82
2	3.76	1.08	8	3.71	1.29
3	4.00	.83	9	3.90	.68
4	3.57	1.03	10	3.98	1.22
5	3.07	.84	11	4.07	1.10
6	3.83	1.03	12	4.02	.88

Category F (Body Control and Balance)

1	4.00	.77	5	3.90	.84
2	4.48	.72	6	3.86	1.04
3	4.62	.39	7	4.10	.56
4	4.57	.38			

Category G (General Floor Play)

1	3.76	.77	5	4.07	.80
2	4.00	.97	6	3.98	1.22
3	4.62	.32	7	3.48	1.13
4	4.10	.81			

Factor Analysis

The results from the evaluation of the fourteen players by three judges on the specific number of items in each category were factor analyzad independently of the other categories using the principal components factor solution with iterations. Therefore, seven separate factor analyses were calculated and interpreted. The purpose of the factor anslysis was to explore the possible patterning of variables to determine jf jitems could be eliminated and reduced from the original scale. "One way of stating the purpose of factor analysis is that it is a nethod for searching, for relations in a body of data." (33:110)

The unrotated factor matrix identified the estimated commanalitien (squared bultiple correlations), eigenvalues, the proportion of variance accounted for by each factor and the cumulative percentage of variance described by the factors.

In category A (shooting ability and offensive moves), four factors were jdentified wi.th eigenvalues greater than one which accounted for 87.9\% of the total variance. (fable 2) In category B (defensive moves and tactics), three factors emerged accounting for 82.7% of the variance. Category C (ball handling) produced two factors with eigenvalues greater than one accounting for 80.7% of the total variance. Categories D (rebounding), F (body control and balance) and G (generel floor play) described one factor accounting for $88 \%, 76.9 \%$ and 75.9% of the total variance, respectively. Category E (speed and quickness) yielded two factors with eigenvalues superior to one accounting for 86.6% of the total variance. The complete printout of the unrotated factor matrix in found in Appordix J.

TABLE 2
EIGENVILUES, PERCENTAGE OF VARIANCE, AND CUHULATIVE PERCEITAGES OF VARIANCE FOR THE UNROMATED FACTORS

Factor	Eigenvalue	Pct. of Var.	Cum. Pct.
Category A (Shooting Ability and Offensive Moves - 23 Items)			
1	14.74170	64.1	64.1
2	3.04666	13.2	77.3
3	1.33259	5.8	83.1
4	1.10619	4.8	87.9
Category B (Defensive Moves and Tactics - 20 Items)			
1	12.20650	61.0	61.0
2	2.59201	13.0	74.0
3	1.74410	8.7	82.7
Category C (Ball Handling - 15 Items)			
1	10.59950	70.7	70.7
2	1.50322	10.0	80.7
Category D (Rebounding - 12 Items)			
2	10.56452	88.0	88.0
Category E (Speed and Quickness - II Items)			
1	9.38678	78.2	78.2
2	1.00613	8.4	86.6
Category G (General Floor Play - 7 Items)			
1	5.31051	75.9	75.9

In each category that produced more then one factor, the factors vere rotated utilizing the varimax rotation. The items chosen to represent each of the factors within each category had a factor loading of 65 or higher. As pointed out in Chapter IIT, Kerlinger (19) guggosts using the r that is sicuiricant for the N of the study. In this case, a correlstion of . 623 wes significant. Therefore a .65 fector loadirg was accepted for thin study.

Four factors were rotated in category A (shooting ability and offensive moves) employing the varimax rotation. Table 3 indicates the itens with high loadings (according to the predetermined criterion) on each of the factors.

Factor I described proper alignment of the body shooting arm and hand release which enobles a shooter to be accurate. In addition, the items which indicated use of a variety of shots and the ability to move either loft or right to successfully get the shot started from a dribble were also important in describing this factor. The item, "she uses screens effectively to gain an offensive advantage," seemed to add to the dimension of noving the body to a position which would be effective for better shooting.

Factor IT included behavions indicating the use of evasive moves (fakes and cuts) to be in a position for a good shot. Items seven and eight, which were negative statements, seemed to indicate that if a player did not use evasive moves, the result was the execution of a poor shot or shooting from an unbalanced position.

TABLE 3

FACTOR ARRAYS OF VARTMAX ROTATION

Item	Loading	Statement
		Factor I--Proper Alignment of Body
1	. 82	She consistently uses an effective alignment of the shooting arm, hand, and wist in relationship to the feet and the rest of the body.
2	. 94	She shoots the ball easily to the basket with a smooth and balanced hand release.
3	.77	She keeps her head level, straight over the center of gravity and base of support.
4	. 93	The player pushes the ball toward the basket prinarily with her shooting elbow.
5	. 89	The shooter permits the ball to roll off her fingers toward the basket.
6	. 65	The shooter attempts to square her body toward the basket as she is shooting.
9	. 89	She executes a shot with a smooth, continuous, balanced motion.
10	. 86	She is consistently accurate in her shooting.
12	. 88	She has a soft, natural backepin on the ball when shooting.
13	.77	She has a smooth, continuous follow-through.
14	. 74	She uses a variety of shots.
18	. 71	The shooter can go both left and right to succesefully get the shot started fron the dribble.
22	. 71	She uses screens effectively to gain an offensive advantoge。

Factor II-EEvesive Moves
The shooter takes shots when she is of \hat{y} balance. The shooter takes poor shots.
When preparing to choot, she utilizes fakes to be in a position for the high fexcentage shot.

TABLE 3 (Con't.)

Iten Ioading	Statement	
16	.87	She continually uses evasive (fakes, cuts) maneuvers to free herself from an opponent.
17	.88	She coordinates her actions with other team members and uses moaningful and evasive moves when she does not have poasession of the ball.
19	.69	She goes to meet the ball for a pass reception.

Factor III--Maneuverability

21	.66	She uses the dribble to draw the opponents out of a good defensive position.
23	.80	She moves quickly into a position to aid a teammate under defensive pressure.

Factor IV--Pivoting
20.84 She uses the pivot to gain an offensive advantage。

There were two items that loaded fairly high on Factor III which appeared to be identifying two different types of behavior. The first item, "sihe uges the dribble to draw the opponents out of a good defensive position," suggested the usc of a basic skill to counteract the opposition's position. The second item, "she moves quickly into a position to aid a teanmate under defensive pressure," denoted moving effectively without the ball which was an asset on offense. This specific factor did not purport to have clear-cut meaning.

Factor IV described an evasive maneuver by a player. The items which loaded high on Factor II also described evasive moves; however, the item, "she uses the pivot to gain an offensive advantage," which loaded high (.84) on Factor IV was describing a different skill than the behavions which loaded on Factor II.

In category B (defensive moves and tactics), three factors were rotated. An inspection of the items loading on the respective factors in this category as presented in Table 4 resulted in the following description.

Factor I presented items relating to defersive stance, alertness and aggresgiveness. These characteristics aleo described how well an indivjedual displayed the execution of the behaviors in helping and assjisting a teamate(s)。

Factor II inclvded itens which related to movenent when guarding an opposing offensive player. The player moved by maintaining an erect trunk position, thuffling on defense and maintaining contact with the floor to droid inferior body balance on defense.

TABLE 4

FACHCR ARRAYS OF VARIMAX ROTATION

Iten	Ioading	Statement
		Facior I-..-Deínsive Stance, Alertness mat Aggresai.veness
3	.79	In her initial stance and as she moves with her opponent on defense, she bends her knees to bring her body into a good defensive position.
2	. 86	Her defensive stance (static or dynamic) is effective for the periomance of counteracting the opponent's noverents.
7	. 76	She works efficientily as part of the total defensive tewn zlan。
8	.86	She is alert to help teanmates on defense.
9	. 87	She aids her tecumatea on defense by conctantly giving verbal cues.
10	.75	She allows her opporent to drive past her into an easy scorine position.
12	. 87	She maintains a defensive position which prevents the opponent from driving around her.
14	. 79	She allows hersclf to be screened by an opponent.
15	. 78	She is consistently alext for possible interceptions.
16	. 92	She forces her opponent, without the ball, to a less daggerous scoring area.
20	. 65	Sne constantly applies defensive pressure throughout the gane.

Factor II--Defonsive Movement
She keeps the trunk of her body erect when guarding -an offensive player.
$6 \quad .70$
She crosses her feet when she is moving or shuffling on defense.
17.87 She leaps into the air when an opponent fakes a shot or a pass.

TABLE 4 (Con't.

Item Loading	Statement Factor III--Disturbing Opposing Offensive Patterns	
13	.81	She consistently moves around a screen or slides through successfully.
19	.84	She causes the offensive player to dribble the ball to the least advantageous position.
	$.72 \quad$She forces her opponent, without the ball, to a less dangerous scoring area.	

Factor III included behaviors which disturbed the offensive pattern of the opposing team. Jt indicated that the defensive players were attempting to prevent the offensive players from going in any set patterns.

Table 5 revealed the items and loadings on each of the two factors rotated in category C (ball handling). The statements depicted the iterns and the Joadings on each specific factor.

Factor I in category C described bchavions which related directily to the player's passing capabilities. The passes were sharp, accurate and relevant to each situation during the game.

Factor II presented items relating directly to the dribbling ability of the individual player. This factor specified the position of the head, shoulder and eyes when dribbling. In addition, it described the player who can change pace and direction capably yet controlling the dribble.

Categories D (rebounding), F (body control and balance) and G (general floor play) produced only one factor each. Iherefore, there was no rotation executed on each one of the unrotated factor structures. In category D, the unrotated factor structure was meaningless with each item loading above o84. The factor structure for category F produced loadings above . 69 and in category G, the lowest loading was .54 .

In category E (speed and quickness), two factors were rotated using the varimax rotation scheme. Table 6 supplied the information describing each factor.

TABLE 5
FACTOR ARRAYS OF VARTMAX ROIATION

Category C (Eaj.l. Handling)

Item	Loading	Statement
		Factor I--Passing Effectively
6	. 75	She tends to waate the dribble by bouncing the ball as soon as she gains possession of j.t.
9	. 74	When receiving a pass, she keeps her eyes on the ball until the ball is in her hands.
10	. 79	She loses the ball. to her opponente because of poor passes.
12	.78	Her passes are sharp and crisp.
13	.69	Her passes are accurate.
14	. 81	Her passes are to a space away from the opponent.
15	.87	Her passea are relevant (lob, bounce, straight) to each situation.

Factor II--Dribbling Competently

1	.83	Her head and shoulders are up when dribbling.
2	.83	When closely guarded, she dribbles the ball keeping her body between the defender and the ball.
3	.77	She loses the ball becauge of rule violstions (illegal dribble, traveling).
5	.71	Her eyes are on the ball when dribbling.
77	.87	When dribbling the ball, she changes pace aud direction efficiently.
8	.84	When dribbling the ball, she allows it to bounce too high.

TABLE 6

FACTOR ARRAYS OF VARIMAX ROTATION

Item	Loading	Statement
		Factor I--Quickness of Movement
1	. 84	She starts quickly.
2	. 83	She stops, changes pace and direction quickly.
3	. 76	She establishes her initial defensive position quickly.
5	.72	She maintains her quickness with the ball without causjing a turnover.
6	.69	She maintains her speed and quickness throughout the game.
7	.69	She uses her hands and arms quickly and efficjently.
8	. 86	She has good straightaway speed with and without the ball.
10	. 66	She changer from an offensive position back into a defensive position quickly.
11.	. 71	She changes from a defensive position back into an offensive position quickly.
32	.79	She stays on the balls of her feet enabling her to move quickly.

Factor II--Recognition and Response to Opponent

$4 \quad .79$
On defense, she reacts quickly to her opponent's changes of pace and direction.
She maintains her speed and quicknebs throughout the ganie.
9.81

10 . 70
She moves quickly to a good rebounding position. She changed from an offensjue position back into a defensive nosition quickly.

Factor I referred to the individual player's general speed and quickness. The player stops and starts quickly and the player changes pace and direction quickly.

Factor II described behaviors which require quiekness in reacting to an opponent's movenent. On defense, the player rencted quickly to coumeract her opponent's movements.

After carefully examining the rotaied factor matrices and recognizing the fact that some categorics produced only one factor, the deciaion was made to collect more data. The basic reason for this decision was based on the existence of the sinall number of cases which had been evaluated. It was felt that posmibly a larger number would provide a clearer factor structure, specifically in categories I, F and G. In addition, many of the factors which had been rotated were not well-defined. Therefore, it was concluded that nore playern should be evaluated in a game situation utilizing the original go-item rating scale. Appendix I shows the complete unzotated factor structures of all of the categories; Appendix J displays the complete rotated factor matrices of categories A, B, C and E.

Second Phase

The players evaluated in the second facet of this study were twenty-four interscholastic female basketball players in a select portion of the State of South Dakota. Three judges rated two players during twelve regular season games using the 96-item scale.

Descriptive Statistics

Succeeding the evaluation of the high school female basketball players, results from the first rating and the second rating were comoined. The total number which had been evaluated was thirty-eight. The meas and otandard devjations were computed for each item within each category. The results of the iten neens and standard devintions are recorded in Table 7 .

When comparing the means (Table 1) of the hicilly skilled collegjate players and the means of the combined group (Table 7), a cursory examination indicated the means of the combined group rere considerably lower for each jtem. The fundanental cause for this occurrence was attributed to the fact that the high school basketball playexs were not as hienly skilled as the collegiate players.

Factor Analysis

After both groups had been combined, the resulits from the evaluation of the thirty-ejeht players were factor analyzed utilizing the principal components factor solution with iterations. Again, the purpose for the factor analysisi was to determine if there were relationships anong the reaults and to search for possibilities for the reduction of itens in the original 96-item scale。

Table 8 shows the results of the estimated commalities, eigenvalves, the proportion of variance accounted for by each factor and the cumulative percentage of variance described by the factors.

Three factors were identified in category A (shooting ability and offensive moves) as compared to four factors in the initial phase.

TABLE 7
MEANS AND STANDARD DEVTATIONS OF THE RATINGS OF COLLEGIATE AND HIGH SCHOOL PLAYERS

$$
N=38
$$

Items Means St. Dev. Items Means St. Dev.
Category A (Shooting Ability and Offensive Moves)

1	3.28	.93	13	2.92	3.12
2	3.29	1.06	14	2.62	.96
3	3.61	.75	15	2.66	1.41
4	3.63	.83	16	2.73	1.25
5	3.32	1.12	17	2.96	1.06
6	3.52	.83	18	2.61	1.15
7	3.50	.75	19	3.25	.90
8	3.61	.76	20	2.85	1.06
9	3.01	1.04	21	2.65	1.06
10	2.79	1.04	22	2.58	1.27
11	2.37	.94	23	3.12	1.00
12	3.18	1.10			

Category B (Defensive Moves and Tactics)

1	3.11	1.09	11	2.32	1.02
2	3.06	.98	12	2.66	1.07
3	3.84	.49	13	2.63	.87
4	3.47	.86	14	3.02	.83
5	3.32	.72	1.75	3.47	.83
6	3.72	.77	16	2.79	.95
7	3.54	.79	17	2.93	.87
8	3.51	.83	18	2.39	.95
9	2.27	1.29	19	2.21	1.03
10	2.99	1.01	20	2.95	1.02

Category C (Ball Handi.ing)

1	3.54	.93	9	3.55	.78
2	3.54	.91	10	3.04	.75
3	3.31	.90	11	2.80	.94
4.	2.85	1.21	12	3.11	.90
5	3.59	1.04	13	3.13	.74
6	3.88	.87	14	3.07	.82
7	2.90	1.10	15	3.23	.69
8	3.58	.93			

TABLE 7 (Con't.)

TABLE 8

EIGENVALUES, PERCENTAGE OF VARIANCE AND CUHOLATIVE pERCENPAGES OF VARIANCE FOR TIE UNROTATED FACTORS

Factor Analysis - Combined Groups $N=38$

Factor	Eigenvalue	Pct. of Var.	Cum。Pct.
Category A (Shooting Ability			
		and	
1	15.63	67.9	67.9
2	1.81	7.9	75.8
3	1.26	5.5	81.3

Category B (Defensive Moves and Tactics - 20 Items)
1
13.22
66.1
21.35
31.03
6.7
66.1
72.8
78.0

Category C (Ball Hendling - 15 Items)
1
2
9.42
1.75
62.8
11.7
62.8
74.5

Category D (Rebounding - 12 Items)
1
8.65
72.0
72.0

Category E (Speed and Quickness - 12 Items)
1
9.08
75.6
75.6

Category F (Body Control and Balance - 7 Items)
1
5.35
76.5
76.5

Category G (General Floor Play - 7 Items)

1
5.13
73.2
73.2

These three factors accounted for 81.5% of the total variance. Three factors in category B (defensive moves and tactics) with eigenvalues greater than one attributed to 78.0% of the total variance. Category C (ball handling) produced two factors accounting for $74,5 \%$ of the total variance, The remgings fow categories (rebounding, speed and quick-. ness, body control and belance, generat floor play) yielded one factor accouting for $72.0 \%, 75.6 \%, 76.5 \%$ and 73.2% of the total variances respoctively, The entixe unrotated factor matrix is found in Appendix K.

Two or three factors were rotated employing the vaximax rotation. Three factcis were rotated ia category A. Table 9 shows the items which loadsd highly on these three factors.

There vere eleven iterus which loaded fairly high on Factor 1. The behavions in these items referred to good body alimment, a proper release of the ball and a. shooth, continuous follow-through when shooting. Two of the jtems described the concept of having the ability to use either hand and one item referred to the use of a variety of shots.

Facton II presented items relating to the use of evasive moves and skijls to gain an offensive advantage. Items such as, "she uses a variety of shots," "she goes to meet the ball for a pass reception," and "she moves quicidy into a position to aid a teammate under defensive pressure" indicated the use of maneuvers and skills which were important for a player to execute on offense.

TABLE 9
FACTOR ARRAYS OF VARIMAX ROTATION

Category A (Shooting Ability and Offensive Moves)

Item	Loading	Statement
		Factor I--Proper Alignment of the Body
1	.62	She consistently uses an effective alignment of the shooting axm, hand, and wrist in relationship to the feet and the rest of the body.
2	.82	She shoots the ball easily to the basket with a smooth and belanced hand release.
4	. 80	The player mushes the ball tovard the basket primarily with her shooting elbow.
5	. 80	The shooter permits the ball to rall off her fingers toward the basket.
9	. 74	She executes a shot with a smooth, continuous, balanced motion.
10	. 83	She is consistently accurate in her shootine.
11	.64	In executing a lay-up shot, she shoots accurately with either hand.
12	. 76	She has a soft, natural backspin on the ball when shooting.
13	.73	She hag a smooth, continuous follow-through.
14	. 65	She uses a variety of shots.
18	. 63	The shooter can go both left and rjght to successfully get the shot started froa the dribble.

Fector II--Gaining an Offensive Advantage

14	.65
15	.77
16	.81
17	.73
19	.70

She uses a variety of shots.
When preparing to shoot, she utilizes fakes to be in a position for the high percentage shot.
She continually uses evabive (fakes, cuta) maneuvers to free herscif from an opponent.
She coordjnates her actions with other team nembers and uses meaningful and evasive moves when she does not have posisession of the ball.
She gocs to meet the baill for a pass reception.

TABLE 9 (Con $^{\circ} \mathrm{t}_{\mathrm{o}}$)

Item	Loadjins	Statement
20	.66	She uses the pivot to gain an offensive advantage.
21	.75	She uses the dribble to draw the opponents out of a good defensive position.
22	. 71	She uses screens effectively to gain an offensive advantage.
23	. 78	She moves quickly into a position to aid a teammate under defensive pressure.
		Factor III--Body Position When Shooting
6	.64	The shooter attempts to square her body toward the basket.as she is shooting.
7	. 79	The shooter takes shots when she is off balance.

Factor III included behaviore which described the balanced body position of a shooter in relation to the basket. The player squares her body toward the basket and shoots from a balanced position.

Three factors were rotated in category B (defensive moves and tactics). The items loading on the respective factors are presented in Table 10.

Most items which deseribed Factor I related to the individual's defensive stance and how the player noved to counteract the offensive naneuvers of the opponent. The item, "she aids her teammates on defence by constantly giving verbal cues," also loaded fairly high on this factor. This was an individual defensive asset. However, it was not related to individual movenent which the other items indicated.

Factor II included behaviors which referred to helping a teammate on defence and guarding a player without the ball. Item six, "she crosses her feet when she is moving or shuffling on defense," also had an acceptable loading on this factor.

One item, "she blocks attempted shots by her opponenta," described Factor III. This beharior included a defensive act against an opponent shooting compared to the items describing the first two factors which referred to indivjanal and tean derensive movement and alertness.

Table 11 cxhjbited the items and loadings on each of the two factors rotated in category C (ball handing). Tie atatements portrayed the items and loadings on each specific factor.

TABLE 10
FAGTOR ARRAYS OF VARTMAX ROTATION

Item	Loading	Statement
		Factor I--Individual Defensive Movement and Counteracting Maneuvers
1	.71	In her initial atance and as ahe moves with her opponent on defense, she bends her knees to bring her body into a good defensive position.
2	.63	Her defensive stance (static or dynanic) is effective for the performance of counteracting the opponent's movements.
9	.65	She aids her teammates on defense by constantly giving verbal cues.
13	.77	She consistently moves around a screen or slides through successfully.
134	.77	She allows herself to be screened by an opponent.
18	.69	She causes the offensive player to dribble the ball to the least advantageous position.
29	.77	She forces her opponents without the ball, to a legs dangerous scoring area.
20	.70	She constantly applies defensive pressure throughout the game.

Factor II--Tearn Defense

5.67 She avoids losing sight of the ball when guarding an opponent, without the ball. .
$6 \quad .62$
She crosises her feet when she is moving or shuffling on defense.
$7 \quad .69$
She works efficiently as part of the total defensive tean plan.
$8 \quad .72$
$15 \quad .79$
She is alert to help teamates on defense.
She in consistently alert for possible interceptions.

Factor IIT---Blocking Shots
11 .79 She block attempted shots by her opponent.

TABLE 1.1
FACtor arrays of varimax rotation

Item	Loading	Statement
		Factor I--Efficient Dribbling
1	. 85	Her head and shoulders are up when dribbling.
2	. 83	When closely guarded, she dribbles the ball keeping her body between the defender and the ball.
3	. 70	She loses the ball because of rule violations (illegal dribble, traveling).
4	. 75	:is closely guarded, she dribbles the ball succeesfully with either hand.
5	. 88	Her eycs are on the ball when dribbling.
7	. 89	When dribbling the ball, she changes pace and direction efficiently。
8	. 75	When dribbling the ball, she allows it to bounce too high.
12	.68	Her passes are sharp and crisp.
		Factor II--Efficient Passing
10	. 82	She loses the ball to her opponents because of poor passes.
13	. 82	Her passes are accurate.
14	. 80	Her passes are to a space away from the opponent.
15	. 89	Her pascen are relevant (lob, bounce, straight) to each situation.

Factor I described behaviors which referred to efficient dribbling; with the exception of item 12 (her passes are sharp and criap). However, iten 12 loaded fairly high (.68) on Factor II as well. All of the items deacribed by Factor II alluded to having the ability to pass accurately, relevant to the situation and to a space away from the opponent.

The remaining four categories (rebounding, speed and quickness, Bony control and balance, general floor play) produced only one factor in this phase of the study. Therefore, there was no rotation executed on those specific factor structures. In the initial phase, category E (speed ena quickness) did yield two factors. However, the remaining categories generated one factor in both facets of the study. The . complete unrotated factor structures for all categories are found in Aprendix K and Appendix L shows the rotated factor matrices of categories A, B and C.

Reduction of the Scale

Although many of the categories produced only one factor, the number of itcres was reduced based on the factor and correlation matrices produced in each category. Seven categories were retained based on a theoretical structure of what the basketball rating scale tins supposed to measure; that is, all-around basketball playing ability. Seventeen items were selected to represent the seven categories. For each category which yielded more than one factor, items were chosen uhich had relatively high factor loadings on the factor they defined and lower correlations with the other factors. Many items met this
criterion; therefore, the diversity of the content was considered in the selection of the items. In addition, many items with high interitem correlations loading on one factor had sjmilar content. Consequent.]y, these items were combined into one specific item to eliminate duplication and an attempt was made to keep the number of items to a minimum。

For each category which produced only one factor, items were chosen or combined based on their high interitem correlation or the similarity of content of the specific itens. The reduced scale appears in Appendix F.

In category A (shooting ability and offensive moves), six statements vere developed and included. Three factors were identified which related to a balanced body, proper arm position and hand release, gaining an offensive advantage and the description of a specific body position when shooting.

After examining factor number one (Table 9), the items which loaded high (above .60) appeared to have four different contents. One set of items (items 1, 4, 9, and 10) was related to accuracy of shooting with a balanced position of the body and the proper alignment of the shooting arm. These items also had high (above .7l) interitem correlations. The statement, "she is accurate in her shooting with the proper alienment of the body and shootine arm," was developed to represent the aforenentioned items. Another set of itens (2, 5, 12 and 13) concerned the release of the hall and follow-through when shooting, Therefore, the statcment, "when shootine, she has a mooth
balanced hand release and follow-through," was included in the shortened rating acale.

The third item, "she uses a variety of shots," was included because of its correlation (.65) with this factor. In addjition to the comparatively high loading, it seemingly had a distinctive content which was unique to this explicit facior.
"The shooter can go both left and right to successfully get the shot started from the dribble, " was the fourth j.tem which met the criterion of a high factor loading (.63) on one factor and comparatively Jow loadings on the other factors (Appendix L): Furthermore, the escence of this statement purported to reveal a distinguishing characterjstic which was the preparation to shoot contrasted with the actual performance of the shot.

The second factor of category A reflected a player gaining an offensive advantage. Items 15, 16, 17, 20, 21 and 23 all met the criterion of having relatively high factor loadinga (. 66 and above) on this factor and comparatively lower loadings (. 47 and below) on the other factors. When one examined the interitem correlation among these items, the majority of the coefficients were above .70. In addition, the content of these items appeared to be similar, that is, the use of elusive maneuvers. Therefore, the statement, "she gains an offensive advantage by using evasive moves (fakes, cuts, pivote, dribbles)," was incorporated to depict the six items which loaded high on this factor.

Items 6 and 7 which licaded (above .64) on factor three of category A had loadings of 46 and less on the other two factors. The interitem correlation between these two items was . 71 (Appendix E); therefore, these two itens were combined into one negative statement, "che shooter takes shots when she is off balance and has not squared her body to the basket," to represent factor three of category A.

Category B (defensive noves and tactics) produced three factors (Table 10). For the abbreviated rating scale, three statements were used to represent the three factors within this category.

Items 1, 2, 9, 13, $14,18,19$ and 20 loaded above .63 on this factor, however, items 1, 13, 14, 18 and 19 met the criterion of having a high loading (69 and above) on thic factor and smaller loadings (. 42 and below) on the remaining two factors. The iteritem correlations among items 1,18 and 19 vere high (above .79) but statements 13 and 14 had lower coefficients with some of the above items. Hence, the statement, "she uses the appropriate defensive stance to counteract the opponents' movements on offense," was adopted to denote the first factor of category B. This factor appeared to describe individual defensive movenents.

The items which loaded on the necond factor seemed to be indicative of toam defensive maneuvers. After cxamining the items, it was found that item 5 had a loading of .67 on this factor and a loadine of .40 with the firet factor. In addition, iten 5 had iteriten correlations of . 6l and lower with the remaining four items. Thus, this item was eliminated.

Item G $_{2}$ maine arosses her feef, when she is moving or shurfing on defence, ${ }^{\pi}$ had a loading of 62 on this factor which vas not exceptionally figho Also, this item had loadingis of . 34 and 041 on factors one and three, respectively, which sere not comparaively lover than the Iowding of this zten on factor two; theretore, tinis itein was eliminated.

Tidab 7. 8 and 35 hod higher interitem correlations (. $70-.77$)
 the Ioadings on the othor two factors. The ensiuing statement, "she works efficientiy as part of the totel defensive team plan by being alloct for posbible interveptions and aiding teamates on defense ${ }^{n}$ " ras uncilised to represent factor two.

The finird factor had one item mich loaned above 60 and had Iow Hoadings on the other fiso factors. mowefore, item number 17 from the curisinal soale was employen in the abbreviated scale in category $\mathrm{B}_{\text {. }}$

The categorys "roall handing" produced two factors (Takle 13); The firct factor concemened the basic sirill of dribbling and the second froctor portrayed the ability to pass effectively.

Items $I_{n} 2,3,4,5,7$ and 8 had loadings of .70 and above on the fincot factor. In adation, these items had Ioadings of .35 and below on the other factor and the interitem coryelations anone these items were consistently above . 67 with exceptions between items two and Htree (${ }^{61}$), three and four (.54) and four and eight (.53) . Subwequently, the statement, "sine exccutes the dribble trith her head and
 to inllustrate the wody and the ball position when dribbling. Item

efficiently," had the highest loading on this factor, thus it was included with the addition of "using either hand."

Items 10, 13, 14 and 15 had high correlations (.80-.88) on the second factor. After inspection of the interiten correlationa, it was found that these coefficients ranged from. 70 to .84 . A11 of the statements had a high correlation (.74-.84) with statements 1.3 and 15, thus the two btatements were combined and adovted for the shortened rating scale. The accruing statement was, "her pesses are accurate and relevant (1.0b, bounce, straight) to each gituation."

In category D (rebounding), only one factor sas extracted; therefore there was no rotation performed on this factor. It was difficult to interpret the original factor structure and the factor loadinga vere neaninglegs. However, an examination of the interitem correlations (Appendix E) was performed to determine if the statements were neasuring the same thing or if there were any statements which had a discrepancy with the othere. Most of the interitem correlations were relatively high (above .68) indicating agreenent among the statements. Jtem twelve was an exception with the highest interitem coefficient of .61 among the remaining statements. Subsequently, two items were retaned for this category. One item has developed to represent the first eleven statements which was, "she is consistent in acquiring the rebound." The second statement selected for the abbreviated scale in this categoxy was the same as iten number twelve in the original. scale which was, "when reboundine, sihe corsistently jumps over a positioned player."

Category E (apeed and quickness) produced only one factor which vas difficult to interpret, Nevertheless, if one examines the interitem correlations, one can see from inspection that most of these coefficients were relatively high (. 65 and above). Again, there were two notable exceptions. Item five, "she maintains her quickness with the ball without causing a turnover," had comparatively lower interitem correlations (.32-.70) than the remaining items. When the content was examined in these two statements, it reflected something somewhat different. In item five, the statement described a behavior regarding bail handling; in statement nine, the item described a rebounding position. Because of the content, these items were not considered for the revised scale in this category.

Item twelve had high interitem correlations (. 81 and above) with all the items except number five, six and nine. Therefore this statement was used in the shortened rating scale with slight modifications. The revised statement was, "she maintains her weight on the balls of her feet enabling her to move quickly."

Category F (body control and balance) yielded one factor; therefore no rotation was possible. The correlation matrix revealed all interitem correlations were above .60. Since only one factor appeared and the interitem coefficients were relatively high, the statement, "she maintains body control and balance through the execution of proper footworkg" was adopted to represent this category. ".

The seventh category, "general floor play" generated one factor. The correlation matrix revealed that item seven, "ahe is at the right
place at the right time consistently," had correlations of 062 and above between items. Because this statement showed substantial (.61 and above) intercorrelations with the renaining items, this one was utilized for the shortencd rating scale. The seventeen items which were developed and adopted are found in A.ppendix F.

Third Phase

After the original scale had been reduced to seventeen items, the shortened scale was used to evaluate the basketball physical performance of high school girls in the 1975 South Dakota State "B" Tournament. Thirty-four players were rated utilizing the revised beale. The three judges rating the players were the eame three who had rated the high school girls using the original 96-item scale. The raw scores of the judges ratings appaar in Appendix G_{0}

There vere some missing data in the results of the judges' ratings. In order to utilize these results to determine the reliability and validity of the scale, missing values were estimated using a method developed by Yates as reported in Steele and Torrie (32:139-140). The estimated missing values are included in the enclosed sections of Appendix G.

Interjudge Reliability

To determine the degree of agreement among the judges utilizing the scale, Kendall's Coefficient of Concordance-(12:313-315) was employed. The total scores (including estimated missing data) of each judge for every individual player were found. Each set of judges
scores vere ranked from the lowest score to the highest acore. The total acores and the rankings appear in Table 12.

Since the data indicated a numerous amount of ties, a correction factor was calculated. The formula utilized subsuming this correction factor was:

$$
W=\frac{S}{\frac{1}{12} \mathrm{in}^{2}\left(\mathbb{N}^{3}-W\right)-m \lesssim I^{2}}
$$

The coefficient of concordance or agreement among the three judges was found to be .86. With thirty-three degrees of freedom, the coefficiont of .86 indjcated a significant agreement among the judges at che .01 level.

Validity

To determine the criterion-melated validity, a coefficient of correlation was calculated by finding the degree of relaitonship between the total scores of players. The total scores were found by summing the three judges scores for each player. The estinated missing values were included in this total. After the totals were computed, the acores were ranked from the highest total points to the lowest number of points each player received on the rating scale.

I'wo of the judges who had rated the players using the rating scale (working together) ranked the thirty-four playere who had been evaluated from the beat all-avound player to the poorest all-around player. This ranking became the criterion to be used for determining the validity of the finalized scale.

TABLE 12
JUDGES' SCORES AND RANKINGS
ON THE REDUCED SCATE
$N=34$

Player	Total Scores Judzes			Total Scores Judges: Rankings			Total of Rankings
	I	,	3	I	2	3	
1	37	30	40	6	7.5	16.5	30.0
2	33	28	35	3	4.5	12.0	19.5
3	49	39	43	20	15	18.5	53.5
4	41	31	30	10	9	2	21.0
5	34	23	27	4	1	1	6.0
6	32	27	31	2	3	4	9.0
7	40	34	34	9	10	9	28.0
8	48	47	4.6	16	22.5	21.5	60.0
9	51	42	38	24.5	18	14	56.5
10	43	51	48	12	26	23.5	61.5
12	48	49	45	16	24	21.5	61.5
12	51	46	51	2.4 .5	21	28	73.5
13	49	63	58	20	32.5	29.5	82.0
14	54	54	58	28.5	2.8 .5	29.5	86.5
15	42	35	40	11	11.	16.5	38.5
1.6	50	45	50	23	20	26.5	69.5
17	4.8	43	4.3	16	19	18.5	53.5
18	49	39	34	20	15	9	44.0
19	53	38	39	27	13	15	55.0
20	57	47	49	33	22.5	25	80.5
21	56	55	59	30.5	30	31	91.5
22	57	66	65	33	34	34	101.0
23	54	56	62	28.5	31	32	97.5
24	57	63	63	33	32.5	33	98.5
25	52	51	44	26	26	20	72.0
26	45	39	35	14	15	12	41.0
27	49	36	31	20	12	4	36.0
28	44	54	50	13	28.5	26.5	68.0
29	56	51	48	30.5	26	23.5	80.0
30	35	38	33	5	4.5	6.5	16.0
31	49	29	33	20	6	6.5	32.5
32	39	30	35	8	7.5	12	27.5
33	31	26	34	1	2	9	12.0
34	38	40	31	7	17	4	28.0

Spearman'a Coefficient of Rank Correlation nethod was used to determine the degree of relationship between the two veriablea. The coefficient obtained was .65. The observed value of .65 was significant at the . 01 level and was aifuificantly different from zero.
The total maver of paints scored by each player during the three ganes played during the tournament was also acquired. This information is found in Appendix: H. Although this information was not considered the primary critarion, a coefficient of correlation was calculated between these scoves and the judges' total scores. Each total score was ranked fron the hjeghest to the lowest. Again, Spearman's Rank Cornclation method was cmployed. The coefficient obtained was .67 .

Discussjon

The reduction of the original 96-iten scale to a seventeen-item scale wan not completely $\operatorname{successful~with~the~factorial~approach.~Since~}$ a sufficient number of factons were not produced in each category, a complete factorial method was not utilized to develop the shortened rating scale. Two subsidiary methods were used to supplement the factorial approach because of the lack of information produced by the factor analysis on the data which had been acquired. Each item in the original scale was subjected to a content analysis to determine if the statements were similar or diverse in meaning. This was a judgmental appraisal by the investigator. Finally, an interitem examination was accomplished to statistically determine if the items were homologous.
It appears that the factorial method could be a creditable approach for the development of a rating scale. However, such a
technique necessitates obtaining a larger amount of data. If more data were acquired, the factor analysis process applied across categories in the theoretical structure might support this structure as originally proposed by the author. As Liba and Safrit contend,

There must be a beginning and since, in general, there is no complete a priori information about the nature of the domain or there vould be no need for factor analytic exploration, thatever filall segment is chosen for study should begin to add to substantive knowledge about the larger domain of concern. (22:144)

The interjudge reliabjility of the shortened scale was .86 which vas signifjcant at the o 01 level. The resulting reJiability estimate might have been due to the homogeneity of the sample, therefore decreasing the value of the coefficient. Consequently, interjudge relinbility ahould be studjed utilizing samples which are heterogeneous in skill performance.

The reliability of the scale itself is not known. It was impractical to obtain re-ratings by the three judges because of the judging situation. However, the rating scale does provide a framework in thich judges can work more systematically. The procedure for estinating the reliability of a rating scale, such as the one which was developed for this study, should be investigated further.

The criterion-related validity of the scale was .65. The result of this estimate might have been due to the adequacy of the criterion which was a subjective ranking. Because of the fallibility of the criterion measure, it is the opinion of the author that different criterion measures should be used in attempting to estimate the criterion-related validity.

CHAPPER V

CONCLUSIONS

Summary
The intent of this ridy yes to devclop a rating scale for use in evaluating gixls' aird women's physical performance in a basketball gane aituadion. To accomplish that purpose, a theoretical structure of basletball perfomance kas developed by identifying seven categories of besketball performance. A 96-item rating scale was desjened which propontedly represented the geven categories: shooting ability and offensive moves, defensive moves and tactics, ball handling, rebounding, speed aud quickners, body control and balance, and general floor play. The identification of the seven categories was based on an investigation of the Jiterature, intervieus with coaches and phygical educators and observations of individual players. The original 96-item rating scale tras utilized to eveluate the performance of thirty-eight interscholastic and intercollegiate female basketball players. Two sets of three judges (women basketball coaches) used the scale to rate the players.

Judges' responses in the form of numerical ratings of the actual performances of basketball players in competitive situations were factor analyzed. The principal factoring with iteration technique was executed and the varimax rotation method was employed to simplify the factor structure. The SPSS program was run at the University of North Caroliaa, Greensboro at the computer center.

The 96 .-item ecale was reduced to severiceen items by a selection process which acknowledged factor loadinga, interjtem correlations and diversity and similarity of content. The items which were developed for the aboreviatod scale had relatively high loadings on those factors they were selected to define and relatively low correletions on the remaning factore. For the categorien which produced only one factor, items were constructed based on the high jnteriten corrolations and siniliarity of content.

The reduced seale was further used by a set of three judgea to evaluate thirtymfour interscholastic iemale basketball plavers. The results of this rating were used to estinate the interjudge reliability of the scale and obtain results for the criterion-related validity coefficient。

To estimate the interjudge reliabjlity, Kendall's Coefficient of Concordance was utilized. the interjudge reliability estimate for the finalized scale was . 86 which was significant at the . 01 level.

To examine the criterion.related validj.tys judges' total scores of each individual player from the ratings on the finalized scale were correlated with a subjective ranking of the individual players by two judges. Spearman's Coefficient of Rank Correlation vas used to determine the coefficient. The sequential criterion-related estimate uas . 65 which was significant at the o 01 level.

Conclusions
The primary purpose of this research was to develop a valid and reliable rating scale to evaluate the basketball performance of girls
and women participating in a competitjve situotion. This was acconplished by showing that the reduced scale did have substantial interjudge reliability and criterion-related validjty.

The secoad problem was io identify specific items for evaluating Baskotbell ahill in a comptitive situation. Based on a literature Eearch, the identification of items for evaluating basketball performance in a gane sithation mas acheved for the origiaal 96 -item scale. The selection of itens fow the reducod scale was based on the results moduced from the factor analysis of the results of the original scale, the interitem correlations and the similarity of content. Although the fertor analybis did aid in the selection of itens within categorics for colzapoing the components of play into a vsable and practicol rabing seale, it was not used to substantiate the orjginal sevencaterory siructwre. The results of this study indjcate that more data mast be asquined to use the factor analysje technique to support the *heoretical structure which was developed. Additional eqploration and research is required to confira this supposition.

Recommendations

The factor analytic technique for the construction of a rating scale merits further invesijgation. Recomendations for future study include:
(1) The acouisition of more data on the original 96-iten scale to smerease the size of the sample With a larger N_{8} it might be possible to factor analyze the complete 96 -item scale to determine if the results corresponded to the original theoretical structure.
(2) The factoring of the reduced scale to determine if the factor structure was similar to the one based on the factor analysis of the original independent categories of the $96-$ item results.
(3) The acquisition of data of different age and ability groups of performers to detexmine if a factox analytic technique produces similarity of factor structures between the eroups concerning the performances of basketball players.
(4) The application of a different factor model and method of rotation. Perhaps, a canonical or alpha factor analysis vith an orihogonal and an oblique solution would provide more information.
(5) The construction of rating sicales for the evaluation of performances in other sport areas by utilizing factor analytical techniques.
(6) The attempt to determine the reliability of the original and the shortened rating scale by systematic investigations.
(7) The attempt to resolve the problem of selecting an infallible criterion to estimate cxiterion-related validity.

BIEBLIOGRA.PHY

BJPLICGRAPFY

BOOKS

1. AHPG Rastetall Shins Test Menual for Boys, (David K. Brace, Fealth, Physical Fiducation and Fecreation, $196 \sigma^{\circ}$
2. MUPFR Dascthall NEils Mest Manual for Girls, (Davia K. Brace, Consultant). Vastingtom, D.C.: american Association For Health, Flymical Piducation and Recreation, 1966.
3. Aiken, I. R. ifr Psycholorical and Educational Testine. Boston: Al7yn and Bacon, Inc, 1971.
4. Bames, M. J. Momens Easletball. Boston: Allyn and Bacon, Inc, 1972.
5. Barrow, \#. Mo \& Mc Gee, R. A Practical Abroach to Measurement in Phybical Education (2na Ed。). Fhinaelpnia: Lea and Febiger, 1971.
6. Emumartner, D. Pecnniques for Great Outside Shooting. Richmond, Indiana: Dick Baumgartner, Inc, 1972.
7. Pammartner, T. A. P Jackson, A. S. Measurement for Evaluation in Physical RAucation. Boston: Houchton Hifflin Company, 1975.
B. Bell, M. M. Homen's Basketball (2nd Ed.). Dubuque, Iowa: Wm. C. Brow Company Iublishers, 1973.
8. Gonley, M. W. 2 Iobnes, R. R. Moltivariate Data Analysis. New York: John Viley and Sons, Inc, J.971.
9. Consy, B. Fiower, F. G., Jr. Baskethall Concents and Techniques. Boston: A그금 and Becon, Inc, 1970.
10. Ercert, H. M. Tractical Mospurement of Fhysical Performance. Whilajelphia: Lea and Febiger, I974.
11. Tranneon, G. A. Statistical Analvsis in Psychology and Education (3ra 玉d.). Nem York: McGram-ilili Book Jompany, 197l.
12. Franks, B. D. \& Deutech, H. Evaluatine Performarce in Physical Entucation. Tew York: Academic Press, 2973 .
13. Haskins, M. J. Evaluation in Physical Education. Wm. C. Brown Brown Company, 1971.
14. Hobson, H. A. Scientific Basketball for Coaches, Plovers, Officials, Spectators and Sourtsurters. (and Ed.). New York: Prentice-ilall, Inc, 1955.
15. Howard, G. W. A Measurement of the Achievement in Motor Slings of College yen in the Game situation of Besetral. Few York: Bureau oi Publications, Teachers College, Columbia University, 1937.
16. Jackson, D. N. \& Messick, S., (Eds.). Problems in Women Assess. mint. New York: McGraw-Hill Book Company, IS 57.
17. Touch, R. A. The Basketball Rating Handbook. New York: A. S. Barnes and Company, 1969.
18. Kerlinger, F. N. Foundations of Behavioral Research. New York: Holt, Rinehart and Winston, Inc, 1965.
19. \qquad - Foundations of Behavioral Research. (Ind Ed.). New York: Holt, Rinchart and Winston, Inc, 1973.
20. Kim, J. Factor Analysis. "In Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K. \& Bent, D. H. Statistical Package for the Social Sciences. New York: McGraw-Hill, 1975.1
21. Liba, M. R. \& Safrit, M. J., Forms and Functions of Factor Analysis. Brown, R. C. \& Cratty, B. J., Net Perspectives of Man in Action. Englewood Cliffs, New Jersey: Prentice-hall, Inc, 1969.
22. Mathews, D. K. Measurement in Physical Education. (4th Ed.). Philadelphia: W. B. Sanders Company, 1973.
23. McGuire, F. Defensive Basketball. Englewood Cliffs, New Jersey: Prentice-Hall, Inc, 1959.
24. \qquad - Team Basketball: Offense and Defense. Englewood Cliffs, New Jersey: Frentice-Hall, Inc, 1906.
25. Montoye, H. J. (Ed.). An Introduction to Measurement in Physical Education. Indianapolis, Indiana: Fri Epsilon Kappa Fraternity, 1970.
26. Neal, P. Basketball Techniques for Women. New York: Ronald Press Company, l906.
27. Nie, N. H., Hull, C. H., Jenkins, J. G., Steinbrenner, K., \& Bent, D. H. Statistical Paclrage for the Social Sciences. (2nd Ed.). New York: McGraw Hill, 1975.
28. Rummel, R. J. Anrlied Factor Anglysis. Evenston: Northwestern University Fress, 1970.
29. Sairit, MoJ. Eve?ration in physicel Education. Englewood Cliffs, Newuersey: Prentice-Hall, Inc, 1973.
30. Sheearn, T. J. An Introduction to the Evaluation of Feasurement Data in Pnsical Education. Reading, Hassachusetts: fdrisonWesley Publishing Company, 1971.
31. Stcel, R. G. D. \& Torrie, J. H. Princinles and Procedures of Statistics. New York: MeGraw-IiJl, 1060.
32. Tucker, I. R. The Extension of Factor Analysis to ThrecDimensional Natrices. "In Frederiksen, N. \& Gullikson, H., (Eds.), Contributions to Mathematical Psvcholocy. New York: Holt, Rinehart, and \#inston, Inc, 1964.
33. Hiner, B. J. Statisiical Principles in Experimental Design. (2nd Ed.). New York: HCGraw-Hill, 19ra.
34. Wooden, J. R. Practical Modern Easketball. New York: Ronald Press Company, 1966.

PERIODICALS

35. Abeles, H. F. A Facet-Factorial Approach to the Construction of Rating Scales to Measure Complex Behaviors. Journal of Educational Measurement, 1973. 10, 145-151.
36. Butt, D. S. \& Fiske, D. W. Comparison of Strategies in Developing Scales for Dominance. Esycholopical Bulletin, 1968. 70, 505-519.
37. Campbell, J. P., Dunnette, M. D., Arvey, R. D., \& Hellervik, L. V. The Development and Evaluation of Behaviorally Based Rating Scales. Journal of Applied Psycholory, 1973. 57, 15-22.
38. Durrant, S. M. An Analytical Method of Reting Synchronized Swimming Stunts. The Research Quarterlv, 190́4. 35, 126-134.
39. Edgren, H. D. An Experiment in the Testing of Ability and Progress in Basketball. The Research Quarterly, 1932. 3, 159-171.
40. Elbel, E. R. \& Allen, F. C. Evaluating Team and Individual Performance in Basketball. The Research Quarterly, 1941. 12, 538-555.
41. Fox P. S. \& Usilander, H. Ball-Handling Specifics. Scholastic Coach, 1963. 33, 42-44.
42. Glass, G. V. \& Taylor, P. A. Factor Analytic Methodology. Review of Educational Research, 1966. 36, 566-587.
43. Hartley, J. W. \& Fulton, C. Mechanical Analysis of the Jump Shot. Athletic Journal, 1971. 51, 92+.
44. Hase, H. D. \& Goldberg, L. R. Comparative Validity of Different Strategies of Constructing Personality Inventroy Scales. Psychological Bulletin, 1967. 67, 231-248.
45. Hoyt, C. Test Reliability Estimated by Analysis of Variance. Psychometrika, 1941. 6, 153-160.
46. Kroll, W. A Note on the Coefficient of Intraclass Correlation as an Estimate of Reliability. The Research Quarterly, 1962. 33, 313-316.
47. Lawshe, C. H., Jr. \& Maleski, A. Studies in Job Evaluation. 3. An Analysis of Point Ratings for Salary Paid Jobs in an Industrial Plant. Journal of Applied Psychology, 1946. 30, 117-128.
48.

\& Wilson, R. F. Studies in Job Evaluation. 5. An Analysis of the Factor Comparison System as it Functions in a Paper Mill. Journal of Applied Psychology, 1946. 30, 426-434.
50. \qquad - Studies in Job Evaluation. 6. The Reliability of Two Point Rating Systems. Journal of Applied Psychology, 1947. 31, 355-365.
51. \qquad , Dudek, E. E., \& Wilson, R. F. Studies of Job Evaluation. 7. Factor Analysis of Two Point Rating Methods of Job Evaluation. Journal of Applied Psychology, 1948. 22, 118129.
52. Lehsten, N. A Measure of Basketball Skills in High School Boys. The Physical Educator, 1948. 2, 103-109.
53. Lorr, M., Rubinstein, E., \& Jenkins, R. L. A Factor Analysis of Personality Ratings of Outpatients in Psychotherapy. The Journal of Abnormal and Social Psycholory, 1953. 43, 511514.
54. McCatty, C. A. M., Romeiko, S., \& Campbell, R. Performance Rating in Tnree Aquatic Strokes. Journal of the Canadian Association for Fealth, Physical Education and Recreation, 1971. 27, 10-14 +14.
55. Miller, W. K. Achieverent Levels in Basketball Skills for Women Physical Education Majors. The Research Quarterly, 1954. 25, 450-455.
56. RYyans, D. G. A Stady of Criterion Data (A Factor Analysis of Feacher Behaviore in the Elementary School). Educational and Peycholosical Heasurement, 1952. 12, 333-344.
57. Schwartz, H. Knowledge and Achievement Tests in Girls' Basketball on the Senior Hich School Level. The Research Quarterly, 1937. 8, 143-153.
58. Smith, P. C., \& Kendall, I. M. Retranslation of Expectations: An Approach to the Construction of Unambiguous Anchors for Pating Scales. Journal of Apolied Psychology, 1963. 47, 149-155.
59. Voltmer, E. F. \& Watts, T. A Rating Scale of Player Performance in Basketball. The Journal of Health and Physical Education, 1940. 11, $94-95+123-124$.
60. Vroom, G. A. \& Nixon, J. E. Fundamental Basketball Skills of College Freshmen. Athletic Journal, 1956. 36, $16+53$.
61. Wilson, R. The Physical Educator as Evaluator. Quest, 1966 (Monograph VII).
62. Wright, L. \& Wright, P. K. An Instrument for Evaluation of Skill in Women's Physical Education Classes. The Research Quarterly, 1964. 35, 69-74.
63. Young, G. \& Moser, H. A Shori Battery of Tests to Measure Playing Ability. The Research Quarterly, 1934. 5, 3-23.

UTPJBIISEFED MATERIALS

 It Be Done? (Himeographed) Jniversity of bi sconsin, [n.d.]
65. Clayton, C. Basketball Ratinf Scale. (Mimeographed) University of North Carolina, [n.d.]
66. Cracraft, J. D. A Basketball Bibliography of Books, Selected Periodical Articles, Unnublished Theses and Dissertations, and Films Produced from July 1, 1957 through June 30, 1368 Includine Annotations and Comments on Selected Materials. Unpublished Master of Arts Thesis, Sacramento State College, 1968.
67. Cunningham, P. Measuring Baskethall Playing Ability of High School Girls. Unpublished Doctoral Dissertation, University of Iowa, 1964.
68. Edwards, J. M. A Study of Three Measures of the Tennis Serve. Unpublished Master of Science Thesis, University of Wisconsin, 1965.
69. Harrison, E. R. A Test to Measure Basketball Ability for Boys. Unpublished Master of Arts Thesis, University of F'lorida, 1969.
70. Hill, L. J. Determining Basketball Ability Throurh the Use of a Basketball Skill Test. Unpublished Master of Science Thesis, State College of Washington, 1956.
71. Hosinski, J. P. An Investigation of the Use of Computer Assisted Instruction in Teaching the Shuffle Offense in Basketball. Unpublished Doctoral Dissertation, Florida State University, 1965.
72. Jackson, P. L. A Ratine Scale for Discriminating Relative Playing Performance of Skilled Female Volleyball Players. Unpublished Hasters of Arts Thesis, The University of Alberta, 1967.
73. Lambert, A. T. A Basketball Skill Test for College Women. Unpublished Master of Science Thesis, University of North Carolina, 1969.
74. Leilich, A. R. The Primary Components of Selected Basketball Tests for College Women. Unpublished Doctoral Dissertation. Indiana University, 1952.
75. Squibb, D. D. Evaluation of Basketball Player Combinations by Use of the Offensive and Defensive Efficiency Ratinf System. Unpublished Master of Science Thesis, South Dakota State University, 1971.
76. Walter, R., Jr. A Comparison Between Two Selected Evaluative Techniques for Measurins Baskotball Bkill. Unpublished Masier of Science Thesis, Western Inlinois University, 1968.
77. Yow, K. Identification of Elements in Dofensiye Rebounding. (Mimeographod) University of Horth Caroline, [r.d.] *

APPENDICES

AP1wndX A

BASEETEATL RATITG SCATE

INAE OF PIAYER

Ixty to Rating Scale
HA Jiphly Aree the Etatemont is descriptive of the player.
A Slimhty Asree the statement is descriptive of the player.
NN Neither Disgrrec mor Arree the statenent is descriptive of the player.

D Slimhty Disamee the statement is descriptive of the player.
IT Hichly Disarree the statenent is deccriptive of the player.

Please tinoose only pne response to each statement.
Pleabe attempt to answer svery statement.
Phace n check (r) mank in the space which corresponds to your judrment.

The 1 found in front of several statemants indicates a negative. statement.

MMIE OF RATER \qquad

Shootinf Abjlity and Offensive Moves

1. She consistently uses on effective alignment of the shooting arm, hand, and wrist in relationship to the feet and the rest of the body.
2. She shoots the ball easily to the basket with a smooth and balanced hand rclease.
3. She keeps her head level, straight over the center of gravity and base of support.

N4. The player pushes the ball toward the basket primarily with her shooting elbow.
5. The shooter permits the ball to roll off her fingers toward the basket.
6. The shooter attempts to square her body toward the basket as she is shooting.

N7. The shooter takes shots when she is off balance.

N8. The shooter takes poor shots.
9. She executes a shot with a smooth, continuous, balanced motion.
10. She is consitently accurate in her shooting.
11. In executing a lay-up shot, she shoots accurately with either hand.
12. She has a soft, natural backspin on the ball when shooting.
13. She has a smooth, continuous followthrough.

\qquad

Shooting Ahility and Offensive Moves, (Con't.)
14. She uses a variety of shots.
15. When preparing to shoot, she utilizes fakes to be in a position for the high percentage shot.
16. She continually uses evasive (fakes, cuts) maneuvers to free herself from an opponent.
17. She coordinates her motions with other team members and uses meaningful and evasive moves whon she does not have possession of the ball.
18. The shooter can go both left and richt to successifully get the shot started from the dribble.
19. She goes to meet the ball for a pass reception.
20. She uses the pivot to gain an offensive advantace.
21. She uses the dribble to draw the opponents out of a good defensive position.
22. She uses screens effectively to gain an offensive advantage.
23. She moves quickly into a position to aid a teamate under defensive pressure.

HA A NN D HD

Defensive Moves and Tactics
l. In her initial sitance and as she moves with her opponent on defense, she bends her knees to bring her body into a good defensive position.
2. Her defensive stance (static or dynanic) is effective for the perform ance of counteracting the opponent's movements.
3. She keeps the trunk of her body erect when euarding an offensive player.
4. She utilized slide steps for maintaining the path of her defensive action relative to the path of her opponent's action.
5. She avoids losing sight of the ball when guarding an opponent without the ball.

N 6. She crosses her feet when she is moving or shuffling on defense.
7. She works efficiently as part of the total defensive team plan.
8. She is alert to help teammates on defense.
9. She aids her teamuates on defense by constantily giving verbal cues.
N.20. She allows her opponent to drive past her into an easy scoring posi.tion.
11. She blocks attempted shote by her opponent.
12. She maintains a defensive position which prevents the opponent from driving around her.

HA A NM D HD

Defensive Moves and Tactics (Con't) HA A NN D HD
13. She consistently moves around a screen or slides through successfully.

N 14. She allows herself to be screened by an opponent.
15. She is consistently alert for possible interceptions.
16. She forces her opronent to hurry her passes.

N 17. She leaps into the air when an opponent fakes a shot or a pass.
18. She causes the offensive player to dribble the ball to the least advantageous position.
19. She forces her opponent, without the ball, to a less dangerous scoring area.
2.0. She constantly applies defensive pressure throughout the game.

Name of Player

Bal1. Handling

1. Her head and shoulders are up when dribbling.
2. When closely guarded, she dribbles the ball keeping her body between the defender and the ball.

N 3. She loses the ball because of rule violations (illegal dribble, traveling).
4. When closely guarded, she dribbles the ball successfully with either hand.

N 5. Her eyes are on the ball when dribbling.

N 6 . She tends to waste the dribble by bouncing the ball as soon as she gains possession of it.
7. When dribbling the ball, she changes pace and direction efficiently.

N 8 . When dribbling the ball, she allows it to bounce too high.
9. When receiving a pass, she keeps her eyes on the ball until the ball is in her hands.

N 10. She loses the ball to her opponents because of poor passec.
11. She is able to penetrate the defense with well.-executed, deceptive passes.
12. Iler pasees are sharp and crisp.
13. Her passes are accurate.
14. Iler passes ure to a space away from the opponent.
15. Her pasces are relevant: (lob, bounce, straicht) to each situation.

Rebounding (Offensive and Defensive)

1. She is active in attempting to gain position for a rebound.
2. On defense, she "boxes out" her opponent immediately after a shot has been taken.
3. As a prime rebounder, she attempts to move around the defensive person into position to obtain an offengive rebound.

N 4. She passes immediately to the outside after retrieving an offensive rebound.
5. On defense, she assumes a wide, balanced stance to provide a broad coverage of the rebound area.
6. She jumps and reaches to retrieve a rebound.
7. When rebounding, the timing of her jump brings her in contact with the ball at the hichest point of her jump.

N 8. She allows her opponent to force her too far under the basket for a good rebounding position.
9. She grasps the ball solidly with both hands when rebounding.
10. After a successful rebound, she protects the ball with her body.
11. After rebounding the ball, she lands with her knees bent, feet wide apart and weight balanced.

M 12 . When rebounding, she consistently jumps over a posjitioned defender.

HA A NN D HD

Speed and Quickness

1. She starts quickly.
2. She stops, changes pace and direction quickly.
3. She establishes her initial defensive position quickly.
4. On defense, she reacts quickly to her opponent's changes of pace and direction.
5. She maintains her quickness with the ball without causing a turnover.
6. She maintains her speed and quickness throughout the game.
7. She uses her hands and arms quickly and efficiently.
8. She has good straightaway speed with and without the ball.
9. She noves quickly to a good rebounding position.
10. She changes from an offensive position back into a defensive position quickly.
11. She changes from a defensive position back into an offensive position quickly.
12. She stays on the balls of her feet enabline her to move quickly.

HA A NN D HD

1. She changes direction quickly without losing her balance.

N2. She bumps into other players because of the inability to stop or change direction quickly.

N 3. She lunges at her opponent when playing defense.

N 4. Her movements are stiff and jerky.
5. She maintains good body balance when playing defense.
6. She has good footwork enabling her to start and stop quickly.

N 7. She reaches for the ball instead of getting into a good position.

Name of Player

General Floor Play

1. She sees the entire court, both defensively and offensively.
2. She synchronizes her efforts with the rest of the team.
3. She gears her efforts toward team play.
4. She has cood stamina, endurance and consistency.
5. She has good over-all execution of basic fundamentals.
6. She adjusts quickly to offensive and defensive changes with the correct counteracting actions.
7. She is at the right place at the right time consistentiy.

APPETDIX B

INSTRUCTIONS TO RATERS

The purpose of this study is to develop a rating scale which can be used to evaluate a player's physicel performance in a game situation. The original scale (thig one--the one you are to use) has 96 iterns which you will use to evaluate each player's perfornance. After collecting this data, a factor analysis technique will be used to determine the relevant factors to analyze the items which have the high factor loadings. From this information, the scale will be reduced and only the items with the high factor loadjegs will be retained for the final rating scale. Hopefully, a rating scale can be developed which can be utilized efficiently, easily and quickly for evaluating a player's physical performance.

The itens in this rating scale have been developed to evaluate only a player's physical performance. There are also other affective factors involved when evaluating a player, but that is not the purpose of this scalc.

Seven factors have been indicated for evaluating a player's physical performance. They are: shooting ability and offensive moves, defensive moves and tactics, speed and quickness, ball handling, rebounding, body control and balance and general floox play. The statistical treatment of the data may indicate these are important or j.t may indicete there are other factors wich are as important.

The statenents have been phrased both negatively and positively. The N in front of several of the statements indicates a negative statement. The responses to each item rance from "highly agree" that the statement is descriptive of the performer to "highly disagree" that the statenent is descriptive of the player. You are to check the category which describes the player's physical performance, according to your judgment. For example, number one under shooting ability and offensive moves: If a player is accurate in her shooting all of the time, you would check HA, "highly agree," becouse the statement is descriptive of the player's performance. If a player is accurate most of the time, you vould check A, "agree," beceuse the statement is descriptive of how she performs most of the time. If the player is accurate occacjonally, you would check D, "disagree," because the statement is descriptive of her performance part of the time. If the player is never accurate, you would check $H D$, "highly disagree," because the statement is never descriptive of the ployer. A negative statenent involves the same process, but in reverse. For example, number five under ball handling: If the player's eyes are always on the ball when she is dribbling, you would check HA, "highly agree," because the statemert describes exactly how she performs the stcill. If the player's eyes are on the ball most of the time, but not all of the time, you would check A, "arree," because the statement describes how ehe performs part of the time. If the player's eyes are on the ball occasionally, you would check 1 , "disacree," because this does not descrjbe her performance most of the tine. If the player's eyes
are never on the ball when she is dribbling, you would check $H D$, "highly disagree," because the statement is never descriptive of her performance. If possible, attempt to use the first two or the last two categories.

You may take as long as you feel is important in completing the rating scale. Please do not consult any of the other judges when completing the rating scale.

Please read over each statement carefully. When you feel you can make a judgment concerning a player's performance on any one of the items, as accurately $2 s$ possible describe the performance by checking the appropriate catefory.

APPENDIX C

RAW SCORES
(First Rating - Collegiate Players)
$\mathrm{N}=14$

Player Judre Scores

1 I

1

1

2

2
1

2

3

44442244344444445444554554 44544554444554445554544554 44444444354435444455544545 455555554454455555
$44445 \quad 24442442242224222444$ 44244242424444444444455454 24322244444452442455542445 44454544444444444
$3 \quad 54455544444545554544454544$ 54445544444442444554555544 24442444355555455455554555 555555545555555555
$\begin{array}{lllllllllllllllllllllllll}5 & 5 & 4 & 5 & 5 & 4 & 5 & 5 & 5 & 5 & 4 & 5 & 4 & 5 & 5 & 5 & 4 & 5 & 5 & 5 & 5 & 5 & 4 & 4 & 4 \\ 4 & 3 & 4 & 4 & 4 & 4 & 4 & 3 & 4 & 4 & 4 & 3 & 3 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 3 & 4 & 4 & 3 & 4\end{array}$ 44444443344434444444443442 344444554444445444
$\begin{array}{llllllllllllllllllllllllll}5 & 5 & 5 & 5 & 5 & 5 & 4 & 4 & 5 & 4 & 2 & 5 & 5 & 4 & 4 & 4 & 4 & 2 & 2 & 4 & 2 & 4 & 4 & 4 & 5 & 4 \\ 5 & 5 & 5 & 4 & 5 & 4 & 4 & 2 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 4 & 4 & 5 \\ 5 & 5 & 4 & 4 & 4 & 4 & 5 & 4 & 5 & 4 & 4 & 4 & 4 & 5 & 4 & 5 & 4 & 4 & 2 & 2 & 4 & 4 & 4 & 4 & 5 & 4\end{array}$ 555545555455554445

45545444444544444444444424 44244243244434444454455444 44444444454455455442423342 444445554444455444

24444244444442444444444544 54544443444544445555555554 444444 455555554554455554

45555544552554554525444554 55522443444544444554444554 44424442342444444455442555 355555454524445554

Player	Judge	Scores
3	3	44444444445544455554444544
		54544243444442444554555454
		24444434334443455545444455
		455555554444555554
4	1	44454455444444444344344444
		44544445444444224444314444
		44444455555555555544444244
		544445554444452444
4	2	45455545442454422424344444
		5544225444444242424455244
		4442444244552445443422442
		422444444244443442
4	3	44445444445544444454455544
		5445544444444434444445444
		44544455555545455444444444
		455445555454554454
5	1	44454455442444555255555444
		42544343444544444555254454
		444444
		355555554544455554
5	2	44434444241224554444444444
		54544452444444444444144441
		44442244324544444355542445
		355555454544445454
5	3	54545544445544444254445445
		44444242444434334454255454
		23444435344445444555424445
		455445554454444444
6	1	$55555544553554222332243444$
		42522223222224222444344444
		$444444 \quad \therefore 22224322$
		324334443442454323
6	2	44555444444454544445444224
		44542242424224222444454444
		4444442242224444422222242
		222424452245452422
6	3	444455444455444424444424
		42344224232424333444445444
		4445454555455544442242
		444423

Player Judge Scores

1

44354455444442444344444455 54555453554445445444444444 44444445544555555544554444 555545555454555454

44434444422422222222422223 42442241224444222444144444 42424244444444444222222442 444424542442442242

22222222222222222224222224 22422224222224442232244244 22222242244444442411111112 リ11エコ2442122241111

45445422444544
44344424

 42244444224444323

3234444423232442343243444 44444544444344444244244244 422222444444444444424424 444324444344454434

22244222222222234222224442 $44444544424444 \quad 224224244$ 22422244544542444444422442 444244444242242242

44445444245544442424444444

 44444444444444434

Player	Judre	Scores
10	1	44344444443442333242242222
		42422223224222222444344244
		$43333332342234343342322324$
		224344442342444323
10	2	44444444422442424424224442
		$44444242424442424444244444$
		$44424244424444442442443443$
		244444554432444444
10	3	
		$24244223222442424454455444$
		444444444424454442
11	1	555555555545545554555554444 44555554444444444445455454
		$54444445555555555554554555$
		555545555555554555
11	2	45555514550554555444455554
		55545544444450444445542555415
		544445554425555544
11	3	$\begin{array}{llllllllllllllllllllllllll} 5 & 5 & 5 & 5 & 5 & 5 & 5 & 5 & 4 & 4 & 5 & 5 & 5 & 4 & 4 & 4 & 4 & 5 & 5 & 4 & 4 & 5 & 5 & 5 & 4 & 5 \\ 4 & 4 & 5 & 5 & 5 & 2 & 4 & 4 & 4 & 4 & 2 & 4 & 4 & 5 & 4 & 4 & 5 & 4 & 5 & 4 & 5 & 5 & 5 & 4 & 5 & 4 \end{array}$
		$4454544555555555554444445$
		555445555554555555
12	1	5545555555454555445554555
		55555553554554445555555555
		$44444444454555544555554555$
		455555555554555554
12	2	555554445425545.54545554555
		55544454444554444554555554
		$44544455344544454255554555$
		455555555545445554
12	3	
		4445545344454144455545554444
		44545545455545555445555455
		455455555555555555

Plaver Judge Scores
13

2223334422323244444344555
$13 \quad 2 \quad 21422244211222444244224444$
$13 \quad 3 \quad 44444444224544544444344454$
$14 \quad 2 \quad 55555544544554554544445555$
$14 \quad 3 \quad 45445545445555555554554454$

1

1 $\begin{array}{llllllllllllllllllllllllll}5 & 5 & 5 & 5 & 5 & 5 & 5 & 4 & 5 & 4 & 4 & 4 & 4 & 4 & 4 & 5 & 5 & 4 & 4 & 4 & 2 & 4 & 4 & 4 & 4 & 4 \\ 4 & 3 & 4 & 4 & 4 & 5 & 5 & 5 & 5 & 5 & 5 & 4 & 5 & 4 & 4 & 4 & 4 & 4 & 3 & 4 & 5 & 3 & 4 & 4 & 4\end{array}$ 555445555444555454 44444444444444244234244244 42424444544444444444444444 555554444444553444 44555544144445454445444 55555555555444554445 444445544454454454
55555555554454554444454454 45544453444444444445455554 43444344444444443455444555 444445554544455544 545551444445544444544455455 44444555444554454444544454 544555554555554555 44444552455444445555455454 44444555555445555555455545 455445545554555555

APPENDIX D

RAW SCORES
(Second Rating - IIjeh School Players)

Player	Indee	Scores
1	1	42442222240222212041212424
		244441212423232224244244
		42444421242234424442422423
		244244424444444242
1	2	2212222222112211111312224
		44423132233423112422144134
		21222221132223221422421222
		232124323322242222
1	3	22212222121222112121232224
		22222122233222222424144122
		22222222242422222422222221
		222222222222442122
2	1	4224244522222244242434444
		44444441434423222244244442
		4444444224224444444444424
		24444444444444242
2	2	42422444222222424244424444
		$44244522444444,44424444$
		$4444442 \quad 44444433442442$
		244445444444444244
2	3	42422444222222424244424244
		24444442444444444444244244
		44444422242444444444444444
		$224444444444444_{7} 244$
3	1	44444444442442444444444424
		44424222224424224544554444
		4444442224444244444424454
		244444454444445444
3	2	45545444443554444443435454
		$44444444434+44425444544445$
		45444433333444433444444455
		244455454444455444

Player	Judge	Scores
3	3	4444444444444444444424444
		44444442442444424444544544
		44444424244444444444444444
		244444444444444444
4	1	2444444444444244444222444
		44444244444424224444844444
		44444442443434444444242244
		424444444442222442 .
4	2	24444444422424424244444244
		2244424422242112422144244
		24424241254444444422222422
		244224244442444222
4	3	24444444423424444244444244
		22444224222444222444444444
		44444442242444444444224224
		442444444422442422
5	1	424222412322222442124424
		44122222232222124
		44244442454444444442423443
		44444444422244242
5	2	22134444221222112144212424
		44444542423423112342133234
		22222341454444454444443443
		544444544442444242
5	3	22442444223222444342224244
		24444242244222244333334334
		42444442442444444444443443
		244444444442444222
6	1	44452444441242224222112224
		2222214212322321244445242
		142234442244444242
6	2	44444244414221111111111124
		22422121223213112233325332
		1222245442224442 1. 2
6	3	44444444443422112111211224
		22222122133222111233324334
		11122444222222111

Player	Judge	Scores
7	1	222223442112222222114224
		2442422123342221240
		43242443242224222222423422
		242222442224444242
7	2	21222222212210112212124
		14424121122222112224123242
		21222341132111111222213221
		222122242212442122
7	3	1222222221122112222222224
		424241541222421112
		22222211311212222144
		1222244221422111
8	1	444422444244212242212444
		4444412223342321444424442
		42243442242434222422423422
		24422222422244242
8	2	22122444211221112121112214
		44424 J 212 J 3423114222124132
		21232242132324221444322422
		424244242422444222
8	3	22442444222222224242224224
		44444122233442222224224222
		24222242442422222444422442
		244444244442444222
9	1	4444424442422422342212444
		44444221233423224444442442
		22222444244444424444422424
		24444444444444242
9	2	222 2 221221222421422222224
		22242121113223112444444444
		4444444132444412422422422
		442244422422444222 .
9	3	22442422222222424444422224
		44442122233224222444444444
		44444442424444424444224444
		444444444422444222
1.0	1.	44454444443442222342222444
		42424121222423224444444444
		42444412232124333442224444
		144224442232244242

Player	Judge	Scoreb
10	2	2424444444142213142122
]. 221212423212444444244
		424444221322222444222442
		124244244222244222
10	3	24444444443222224422222424
		44444212222224222444444444
		22222221242224222444224424
		244444444442444422
11	1	44442444423222244242224244
		45444141433423214444442344
		44444422232224444422224442
		222224444224444222
11	2	22222222221222114142224224
		244441123423214443444244
		32442422131212443422222422
		224222222424444222
11.	3	22442422222222224242224224
		22244222222222222444444244
		14444422242222244424224222
		222242222242442222
12	1	44442224423224244341224424
		44444421244423214244422444
		42244442244224444442444444
		24444444444444242
12	2	22422222221222112241244444
		44444141433443115444144244
		$224244222321] 3444422442242$
		244444444444442244
12	3	22422444222222224242424424
		42444222222242422444244224
		24444422242224444444442442
		244444444442444242 .
13	1	44444442443442244342224244
		44444132434423222444344344
		42244424244444444444434544
		24444444444444444
13	2	44444442234442224224214224
		2444212222342121244624444
		42442244242444444455422424
		244244444444444422

Player	Judge	Scores
13	3	44454444444444444444224224
		44444224222444222444444444
		44444444444444444444424444
		44444444444444444
14	1	44242244223442244342214244
		44444221233423412445345344
		24422422242424422544424444
		244444442444444242
14	2	22222422232222224122114224
		4444211122423214424244232
		24422142244444544422444
		45444444422444222
14	3	2242442422222222222222224
		44444222222444224444444242
		2422224444444444444424444
		24444444444444242
15	1	44452444442224222422412444
		44424122233423222444454442
		22222241234444424422224442
		244444444244224442
15	2	42442222222224422422414124
		2244412221222122442444442
		22222242244444444444224424
		424244442422244222
15	3	2422422212224222422432114
		22222142322222222222222
		22222221242422222422222422
		22222222222112222
16	1	42422222223224122321112244
	1	44422122233223232044
		42242421242444222222222422
		24422222244444242
3.6	2	
		12 2211213113113
		112111 11141212211311211111
		122123212121222121
1.6	3	1125122412311191131130114
		11132222212221111

11096	W9m	sorre
37	?	
		2, 24 4 4 2 2 2 2 2 2 2
17	2	
Y/	3	
28	2	
		244234443242444242
38	?	
3 j	3	
1)	2	
19	2	
	r	
19	3	
		244414444442444322
20	1.	
		$\therefore 44244423444444842$

3mes	9us	Seme;
0	2	
20	3	
21	I	
27	\cdots	
23	y	
22	1.	
22	2	
2.2	3	
	,	
		244444 24422444 ¢? ?
23	I	
	.	
		$4324442 x 242444414442442544$
23	2	
		2 2 2 24333243443444423434

i \quad te

I
$\varepsilon<$

+Dectar: poines a=iteci

1	2	3	5	5	6	7	8	9	≥ 0	3	12	23	is	5
12.00	34	70	79	∞	15	70	72	r8	42	6	65	59	50	12
2	1.00	62	72	82	6	5	6	5	\％	\therefore ？	60	－	0	4
－ 3		2.00	54	70	65	67	7	50	5	6	\％	4	6	$5 ?$
4			2.00	70	5	70	5	50	0	9	\because	i	AF	\％
5				i． 00	53	O	\bigcirc	60	50	6	8	㫫	5	16
6					$1 . \infty$	56	\bigcirc	50	－	55	5	2	\％	\therefore
7						3.00	6	57	3	5	\％	\％	\square	2
6							200	40	3	\because	\because	\％	4	15
8								2.00	6	3	6	5	0	52
10									1.00	6	7	\cdots	7	$\%$
12										2.00	6	－	6	67
2											2.00	8	2	6
23											いい	\cdots	\because	\bigcirc
2													co	3
25														6

	1		3	$1:$	5		7
1	1.00	73	63	64	77	89	6
2		2.00	\Leftrightarrow	67	7	7	$\%$
3			3.00	73	65	63	$\%$
i_{i}				1.03	63	6	6
5					1.00	85	80
6						2,	73
7							$\cdots 00$

	1	$?$	3	4	5	6	7
J.	1.00	63	64	62	75	75	79
2.		1.00	69	60.	47	68	62
3			1.00	65	69	5	65
4				3.00	72	$\%$	76
5					1.00	73	62
6						1.00	8
7							1.0)

APPENDIX F

BASKETBALL RATIMG SCALE

NANE OF PLAYER

Key to Pating Scale
EA Hiehly Agree the statement is descriptive of the player.
SA Shighty Arcee the statement is descriptive of the player.
NN Neither Disagree nor Agree the statcment is descriptive of the player.

D Slightly Disarree the statemont is descriptive of the player.
HD IIjghly Diserree the statement is descriptive of the player.

Please choose only one response to each statement.
Please atternpt to answer every statement.
Flace a check (\checkmark) mark in the space which corresponds to your judgment.

The N found in front of several statements indicates a negative statement.

NAME OF RATER
shootion doliw and armaive loms
7. Sic jn xocmat in how rioutimo vith the mopur alignent of tha hory nut alactivas atan
 boracod aoms yoverse ate tollow lin: unt.

 ory bujare an lag mot wraro hor Fong tronod the bordrot.

G. rite wooton or no both lott and riwh to macouronioy get the shot Etantod feom tine drybitc.

Defongur brow ay sachro
7. Buc vers the apmon abe defonive stand to ocondanct the chaomentrs monemata on oficast.
8. She vorte ofticicntry - wat of tho totet cetenojue tram phan by betne aleat fow fosmite intoroptions and andime tomeneles min cernose
9. Sha buone atomptos shoti; by hea onncments.

Paty IGuctive

10. Sbe exocuto the aribble with her lieod ate moulder: wo and koens the bell from benucing too hegh.
11. Sten drjbhtjurg the bett res usee cither bom bo chone dimeation ond peee efritiontly.

Wh] Inatine (Gomimone)
 (?om, mover, soraides) to cuch aituaizon。

 juma an a rampone acmach.
 roboma.

15. rambunc ner werth on the brta af hew tect esmjus her to mone gusoly.

Bny Sonta matame
16. Sa mandene boty ormerol one Rancoe throum the weoution of y. oser foownt.

Genoma Fiom Fex
17. Fe is at the right place al the wht tino omadetatay.

Fone of Playox \qquad

[^0]| P19:8 | | | 0 | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7 | 2 | 1. | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 1. | 2 | 2 | $\ddot{ }$ | 1 | 1 | 4 | 4 | 2 |
| 7 | 3 | 3 | 3 | 2 | $?$ | ? | \because | ? | 2 | 1. | 2 | I | a | 2 | 2 | 1 | 4 | $?$ |
| 8 | 1 | 2 | 2 | 2 | 2 | 4 | 1 | 4 | \therefore | \} | 2 | 4 | 4 | $?$ | $\%$ | 4 | 2 | 4 |
| 8 | 2 | 2 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 2 | 3 | 4 | a | 4 |
| 8 | 3 | 2 | $\dot{\sim}$ | l_{r} | 2 | 2 | 2 | 4 | 1 | 2 | 2 | 1 | 4 | 1 | 4 | 2 | t | 4 |
| 9 | 1 | 4 | i | 4 | 4 | 2 | 2 | 2 | 4 | 2 | \cdots | 2 | 2. | 2 | 1 | 4 | i_{i} | 4 |
| 9 | 2 | 2 | 2 | J | 3 | 2 | 1 | 4 | 2 | 1 | 4 | 2 | 4 | 2 | 2. | 4 | i | $?$ |
| 9 | 3 | 2 | 2 | 1 | 4 | 2 | a | (2) | | 2 | $?$ | . | 2 | 2 | 2 | 1 | 4 | 2 |
| 10 | 1 | 2 | 2 | 4 | 2 | 1 | 4 | 2 | 4 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | ? | 2 |
| 70 | 2 | 2 | 2 | 4 | 4 | \because | 2 | 4 | 4 | i | 4 | 2 | 4 | 1 | 2 | 4 | 1 | 2 |
| 7.0 | 3 | 2 | 2 | 2 | 4 | 4 | 2 | 2 | 4 | 2 | 4 | 2 | 4 | 2 | 2^{2} | t_{r} | 1 | 2 |
| 11. | 1 | i_{i} | 2 | 4 | 2 | 1 | 2 | 1 | 4 | 1 | 2 | 2 | 1 | 2 | 1 | 4 | 1 | ? |
| 13. | 2 | 2 | 2 | 4 | 4 | \ddot{z} | 2 | 4 | 4 | 2 | 2 | 2 | 4 | 1. | 4 | 4 | 4 | 2 |
| 11 | 3 | 2 | ? | 1 | 4 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 2 | \cdots | 4 | 4 | \because |
| 1.2 | 1. | 4 | 2 | 4 | 2 | 2 | 4 | 2 | 4 | 1 | 5 | 4 | 4 | 1 | 2 | 5 | 4 | 2 |
| 1.6 | 2 | 2 | 2 | 4 | 4 | 1 | 2 | 4 | 4 | 1 | 1 | 2 | 4 | I | 4 | 4 | 4 | 2 |
| 12 | 3 | $?$ | 2 | 4 | t | 1 | 1 | 2 | 4 | ? | 2 | 4 | 4 | 3. | 2 | 4 | 4 | 2 |
| 13 | 9 | $?$ | 2 | 4 | 2 | 2 | 4. | 2 | 4 | 1. | 4 | 4 | 4 | ? | 4 | 4 | 2 | ? |
| 33 | 2. | 4 | 2 | 4 | 4 | 4 | 5 | 5 | 5 | 2 | 4 | 4 | 4 | I | 4 | j | 4 | 2 |
| 13 | 3 | 2 | 2 | 1 | 4 | 4 | 4 | 4 | 4 | 2 | 1 | 4 | 4 | 2 | 4 | 4 | 4 | $\ddot{2}$ |
| 14 | 1. | 4 | 2 | 4 | 4 | J. | 4 | 4 | 4 | a | 1 | 4 | 4 | 2 | 2 | 4 | 4 | $?$ |
| 14 | 2 | 4 | 4 | 4 | 4 | 2 | \therefore | 4 | 5 | 1. | 4 | . 1 | 4 | 1 | (3) | 5 | 5 | 2 |
| 1.4 | 3 | 4 | 4 | 1 | i_{i} | 4 | 1 | 2 | $t:$ | 2 | 1 | 4 | 4 | 2 | 2 | 1 | 1 | $?$ |

Jume.	\%u\%			me															
$2 ?$	3		1	1	4	4	4	t_{i}	4	5	2	1	4	5	1	2	5	5	4
23	1		2.	$?$	4	4	2	4	4	4	2	$1 ;$	2	4	2	4	4	, 1	2
2%	$?$,	2	4	4	2	$?$	4	4	2	4	2	4	J	5	1	4	4
33	\because		4	4	4	4	4	4	4	4	2	4	2	4	2	4	4	1	1
2	a		2	1	4	4	4	2	4	4	1	4	4	4	2	2	4	i	4
24	$?$		1	4	4	5	4	4	4	5	2	4	4	4	1	2	i	4	4
? ${ }^{4}$	3		2	2	4	1	4	4	1	1	2	5	5	5	2	?	5	5	4
25	3.		?	2	2	2	2	4	4	4	2	4	2	4	2	4	4	4	4
25	$?$.	2	4	$?$	2	?	4	4	2	3	2	4	1.	4	4	5	t
2.5	3		?	2	2	2	2.	2	2	4	\cdots	$?$	2	4	2	4	1	4	2
26	3.		2	2	4	2	2	2.	4	1	2	2	2	4	2	4	3	2	2
26	2		2	1	1	2	2	1	2	4	?	3	1	2	?	4	4	a	2
26	3		?	2	1	2	2	2	2	2	2	2	2	2	4	2	2.	2	2
29	1		1	2	4	2	2	1	2	a	I	$?$	1	4	2	1	4	4	2
2.7	2		.	2	4	2	2	2	2	2	1.	2	2	1	.	2	2	2	2
27	3		.	2	1	2	2	7	2	2	2	$?$	1	2	2	\because	2	$?$	2
29	1.		2	2	4	4	\therefore	2	2	2	3	4	2	1	\ddot{z}	1.	4	4	2
28	2		.	2	4	4	2	4	2	4	2	4	t_{s}	4	1.	1	5	4	2
26	3		2	2	4	4	2	4	2	a	?	4	1	4	2	\cdots	4	4	a
23	$\underline{1}$		2	4	4	2	1	4	4	4	2	4	4	4	1	2	4	4	4
29	2		?	2	4	2	2	1	4	4	J	4	4	4	1.	2	4	1	1
29	3		.	2	4	2	$?$	4	2	4	2	4	4	\because	\because	2	4	1	$?$
30	I			\cdots	1.	2	3.	2	\therefore	2	1.	2	$?$	3	4	1	1	2	\therefore

mexe	duge		ove															
30	2	2	2	2	2.	2	J.	1	2	3.	3	3	2	2	1	1	1	1
30	3	2	2	3.	2	2	1	2	2	2	$?$	1	2	4	2	2	2	2
31	J.	2	2	4	\because	2	t_{i}	$?$	4	$?$	4	$1:$	4	\dot{C}	4	4	2	$?$
37	2	2.	1	1	i	2	1	2	2	.	2	2	2	2	$?$	\therefore	1	2
31	3	2	2	1	2	2	2	2	2	2	$?$?	2	2	2	\because	2	2
32	1	2	2	?	1	1.	2	2	2	1	4	\therefore	4	1	2	2	4	?
32	2	3	3	.	3	1	3.	2	2	3	2	1	2	1	j	2	a'	2
$3 ?$	3	2.	2	1	4	1	1	2	2	2	2	2	2	4	2	2	?	Σ
33	1.	2	2	2	(1)	2	2	2	2	1	$?$	1	2	2	2	2	2	?
3	2	1.	2	2	(1)	2	1	j	1	1	2	I	2	2	1.	2	2	2
33	3	2	2	1.	\because	2	2	2	2.	2	2	7.	2	4	2	a	2	2
34	1	2	3.	2	a	2	1.	4	2	2	2	1	2	4	4	4	2	$?$
31	2	2	2	2.	2	4	2	2	2	2	2	2	2	2	4	$1 ;$	2	2
34	3	1	1	2	3	2	i	2	2	2	2	3.	2	2.	2	2	\cdots	2

APPENIIX H

JUDGES' TOTAL SCORES, RANKINGS OF JUDGES' SCORES, SUBJECTIVE RANKINGS OF PLAYERS, TOTAL POINTS SCORED BY INDIVIDUAL PLAYERS AND RANKINGS

Player:	Total Score Three Judges	```Rank of Judges' Scores```	Sub. Ranking Two Judges	Points Scured During Tour.	Rank of Total Pes
1	107	27	27	18	24
2	96	30.5	31	19	21
3	131	17.5	29	24	17.5
4	102	29	12	19	21
5	84	34	21	16	26.5
6	90	33	28	24	17.5
7	108	26	22	10	30.5
8	141	15	7	49	3
9	131	17.5	26	15	28
10	142	14	20	19	21
11	143	13	5	31	10
12	148	9.5	23	18	24
13	170	4.5	9	32	9
14	166	6	16	7	32.5
15	117	22	14	25	15.5
16	145	12	13	26	14
17	134	16	6	10	30.5
18	122	20	19	16	26.5
19	130	19	8	44	5
20	153	8	15	29	12
21	170	4.5	11	25	15.5
22	188	1	45	45	4
23	172	3	4	34	8
24	183	2	3	30	11
25	147	11	2	40	6
26	119	21	25	7	32.5
27	116	23	10	51	1
28	148	9.5	24	22	19
29	155	7	18	38	7
30	96	30.5	30	27	13
31	111	24	32	12.	29
32	104	28	34	0	34
33	91	32	33	18	24
34	109	25	17	50	2

$$
\begin{aligned}
& \text { APperdex: }
\end{aligned}
$$

AD WaOATD morce stavemes
$\because=7$

Categors A（sinooting Ability nme offonse voves）

$\underline{z t e}$	Estecos	Emenvise	Pctor Ver	Cum OL	Fastos 2	Pactor 2	20ミさ゚ー3	Eactor it
2	． 80	24．74	64.2	64.2	－ 82	－ 24	－20	－ 05
2	－ 54	3.05	こう．こ	79.5	－87	－ 25	－ 20	－ 03
3	． 97	2.33	5.8	83.1	－95	－ CO	07	$-\mathrm{O}$
4	． 84	1.2	\％． 6	87.9	－83	\sim	－ 22	CL
5	－ 24	． 86	3.7	9.6	－ 60	－ 3	05	06
6	－	． 32	2.5	93	－70	－ 23	2	03
7	－ 9	4：6	2.0	96.1	－${ }^{3}$	26	40	0.1
ε	． 88	－3＇5	1.5	97.5	－8＇t	23	20	－ 30
9	－ 5	.20	0.6	83.5	－ 85	－ \bar{j}	－ 22	30
10	－	． 12	0.5	92.0	－ 85	－ 31	－0．	2%
11	S	． 23	0.5	9\％	－	－i？	30	－ 2
23	．$\%$	． 03	0.3	29.3	－63	－	－	－IS
33	． 87	． 04	0.2	200.0	－ 8	－ 25	20	\％
－ 4	－ 23	． 00	0.0	200.0	－ 08	－ 09	0	20
35	.53	． 00	0.0	200．0	－ 84	－	25	－is
26	．	．00	0.0	200.0	－ 76	47	C_{5}	－ 25
37	－ 6	－00	0.0	200.0	－-2	58	－ 0	－ 2 Z
20	． 83	．co	0.0	100.0	－	－	C5	－
39	． 84	－．．20	－ 3.0	20：0	－ 76	\％	20	－ 6
20	． 76	－$-\infty$	－0．0	20．0	－ 50	58	－ 1 － 7	30
21	． 80	－．． 0	－0．0	200.0	－70	39	－	－ 38
22	－ 9	－ 0	－0．0	200.0	－ 05	07	-23	05
23	． 24	－． 00	－ 0.0	200.0	－ 7	3	30	27

rectan zointe onitioc．

[^1]

wocimar points omitcos.
 Category D (Reoouring

\[

\left.$$
\begin{aligned}
& \because \\
& 0 \\
& 4
\end{aligned}
$$ \right\rvert\,
\]

こi

Catesory \approx (Gencrai Floow Fiar
5
0
$i \cdot i$

*Docimal points onittod.

nxemore J				
(Comagite meone .. $11=14$)				
42	retor !	Mas?	Fexow 3	Factor 4
].	48	32	- 01	1.7
2	94	24	- 05	13
3	75	54.	23	02
4	93	19	07	-09
5	89	17	20	-13
6	615	2%	23	- 07
7	40	$\%$	54	00
6	45	0	10	01
9	89	24	1.4	00
10	86	38	32	10
11	15	\cdots	- 07	- 58
12	83	38	-02	- ${ }^{4}$
13	77	27	17.	.. 0^{\prime}
J:	74	36	33	18
25	29	90	32	09
1.6	27	87	1.2	19
17	24	83	17	34
18	70	51	- 01.	- 18
19	3.3	6	35	23
20	16	40	09	814
21	39	66	-21.	51
22.	73	55	20	27
23	29	43	80	24

Itom	mato: 1	Fetore	Factor
3.	:99	30	35
2.	86	10	2%
3	27	\&	28
4	63	49	21.
5	$6 ?$	05	18
6	36	70	J0
7	76	4.3	. 75
8	6	2.7	01
9	(1)	24	. 30
10	7	45	3%
17.	23	08	- \%
12	ES	4.1	07
33	25	50	87.
14	7.	36	24
35	78	28	19
16	91	09	2.1
1.7	19	87	- 28
18	25	- 09	84
19	10	18	$7 ?$
20	65	2.4	54

]tem	Feose 1	Fectow 2
I	$\because 50$	82
2	37	8%
3	1:0	77
4	59	50
5	64	71
6	17	23
7	34	8 ?
8	25	8
9	8%	13
10	78	12
31	6.	63
1.2	73	10
13	69	41
1.4	81	41
15	89	4%
moctual jointa mitioc.		
Itea	Peaboz	Fotur?
7.	$\% 81$	41
2	8	39
3	76	50
${ }_{4}$	57	18
5	72	7.4
6	69	67
\%	69	48
8	86	27
9	22	81.
10	66	70
11	7.	63
12	89	5

* Decimel points omitued.

以
8
\square
i

Fector?
 11111111

Ect on vin

Catezory F (Bocy Control end Ealanos)

Item	Stecom	Esomeno	Pet of Van	comeot	F20ton 1
\square	. 83	5.35	75.5	76.5	885
2	-6	.6;	S.I	35.6	87
3	-85	0.6	5.1	50.7	84
4	. 7	-2	i. ${ }^{\text {a }}$	95.2	73
5	. 83	58	2.5	37.7	68
6	. 87	.10	2.5	96\%	07
7	. 78	. 06	0.9	20.0	25

*Deciral points omitted.

Cajegory $\&$ (General Ficor Flay)

Ttem	Ete Comm	Eiemvajue	Pot of Vax	cosez	Eactor 1
7	. 70	5.23	73.2	? 22	684
2	. 71	. 6.	3.7	82.3	72
\%	-2	,4\%	6.3	83,2	7
4	. 65	-33	5.5	93.6	82
5	. 80	. 29	2.35	56	83
6	. 80	. 25	2.	20.3	36
7	. 32	. 10	2.5	2 Cog	92

Docimaz nointe omittei.

Arpame J $\mathrm{N}=30$			
Its	Peoter 1	Petam?	Fuctom 3
2	*62	35	38
2	8	26	$4{ }^{4}$
3	56	42	50
${ }_{4}$	80	21	4.4
5	80	3	37
6	47	30	64
$?$	33	23	78
8	35	30	57
9	${ }^{7}$	19	51
10	8	31	26
11	${ }^{6}$	38	176
12	76	36	$4{ }^{4}$
13	73	4.6	33
14	65	65	06
15	$4 ?$	77	25
16	45	81	25
17	22	73	45
18	63	47	0
19	03	70	50
20	4.4	66	29
21	40	75	16
22	57	73	16
23	22	78	33

Iten	Fatos 1	fetor ?	Feotor 3
1	"ry	36	39
2	63	50	4.4
3	25	3	2.1
1	59	5%	33
5	10	67	-03
6	34	6 ?	13.
7	2	69	43
8	2	ria	44
9	65	55	5
10	56	35	97
11.	30	22	80
12	51	54	60
13	17	35	13
12	77	18	29
7.5	$2 ?$	79	29
16	58	54	50
17	55	3]	50
18	63	140	25
19	77	26	12
20	9	56	21

rDecima paines ontred.

Category C (Ball Handing)		
Item	Factor 1	
1	88	Factor 2
1	85	39
2	70	32
3	75	36
4	88	24
5	53	30
6	89	35
7	75	19
8	49	31
9	30	56
10	57	82
11	68	54
32	23	59
13	32	82
14	25	80
15		89

*Decimal points omittod.

[^0]: Petamated miscin: valucs.

[^1]: amざゥen．
 ＂Decimaz

