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There is a growing interest in using social media content for Natural Lan-
guage Processing applications. This paper seeks to demonstrate a way to present
the changing semantics of Twitter within the context of a crisis event, specifically
tweets during Hurricane Irma. Using an implementation of the Word2Vec method
of Neural Network training mechanisms developed by Mikolov, et al to create
Word Embeddings, this paper will: discuss how the relative meaning of words
changes as events unfold; present a mechanism for scoring tweets based upon
dynamic, relative context relatedness; and show that similarity between words is

not necessarily static.
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CHAPTER I
INTRODUCTION

Twitter is one of the preeminent microblogging platforms worldwide. With
a reach of nearly 27 million Monetizeable Daily Active Users (mDAU)' in the
US and 126 million mDAU worldwide, Twitter users generate nearly 500 million
tweets per day [2]. Twitter’s ubiquity, combined with its functionality, ease of use,
and API configuration make it an frequent tool for harvesting data. Examples of
this type of implementation include: pairing the metadata associated with each
tweet to datasets [3] or applying spatio-temporal metadata to isolate tweets for
the purpose of analyzing regionally relevant events as they occur [4]. With the
prevalence of cellphone use during emergency situations, and the above men-
tioned features, Twitter might be an effective asset for first responders in times of
crisis.

Determining what tweets would be considered relevant to the needs of
emergency personnel presents a different problem. Tweets can contain any man-
ner of content, be it observations of weather related phenomena, commentary on
sports events, or social discussion. Isolating relevant tweets requires analysis of a
multitude of characteristics such as from location and time based metadata, but

also the content of the tweet itself. With events occurring in varying locations,

1 The Twitter Q4 2018 shareholder letter “...defines monetizable daily active usage or us-
ers (mDAU) as Twitter users who logged in or were otherwise authenticated and accessed Twitter

on any given day through twitter.com or Twitter applications that are able to show ads [1].”



each with their own regional parlance, metalinguistics, and iconography, while
addressing the meaning(s) of text changing relative to the circumstances at hand,
a dynamic interpretation of linguistics is necessary. This study tested methods of
optimizing context analysis for event related semiotics within tweets generated
during Hurricane Irma.

Hurricane Irma made landfall on the Florida coast on September 10,

2017. At this point in its progression, it was a Category 4 storm with “...max-
imum winds of 115 [knots|...” and “...sustained winds of 62 [knots| and a gust

of 81 [knots] were measured.” [5]. Rain and wind resulted in a storm maximum
of “...21.66 inches of rain... measured between 9 and 12 September...”[5] and “...
produc|ing| 25 confirmed tornadoes: 21 in Florida and 4 in South Carolina.”[5].
Hurricane Irma, as of 2017, was the fifth most costly Tropical Cyclone to hit the
United States, with an estimated cost of damage nearly $50 billion [6].

The purpose of this project was to analyze and compare methods for Word
Embeddings using vectorization in tweets generated during Hurricane Irma. A
series of Neural Networks were trained via Word2Vec to convert words in tweets
into numerical representations of meaningful context relationships. These contexts
were then applied to find tweets which were connected to designated search terms.
The resulting processes were used to identify a more comprehensive set of relat-
ed tweets beyond those indicated by the presence of the initial search term(s).
Findings from this project may be applicable for emergency response personnel
who seek to retrieve geolocated tweets associated with disasters, without using a

predetermined set of search criteria.



I.1. Basic Terms
1.1.1. Word Embeddings

Word embedding (or word embeddings) is the generic term for assigning
numeric values to words, with the mathematical operations between those numer-
ic values implying some semantic or syntactic relevance [7]. These numeric values
are assigned based on a computer generated algebraic representation of observed
contextual relationships. Such representations are critical in designating syntactic
intent in a manner such that it is capable of being interpreted by a computer.

To provide this function within such a model, word embeddings must be created
based upon an algorithmic approximation of natural language. Without such a
framework, words would lack the necessary connections to each other. To clarify,
it is possible to take every word in the English language, alphabetize them, and
assign them a numerical value. While this would provide organization and struc-
ture, there is no inherent meaning in how word no. 45 is related to word no. 50. A
computer in this example, when queried, could return trapezoid from trapeze, an
unlikely semantic connection.

Numerical values must therefore be established based upon a uniformly
consistent translation encapsulating context and meaning between words. This
process is defined as isolating commonalities between words, determining a di-
mensional model capable of representing relationships between these words, and
assigning numeric values to words based upon their individual spatial locations.
Each word then has a corresponding vector within this dimensionality. This

vectorization of words thus embeds meaning into these numerical representations.



1.1.2. Corpus

Training a computer to determine word meanings requires a sufficient
and relevant body of text. This body is known as a corpus. It is important that
a corpus be similar in purpose to the text that is intended to be analyzed. To
clarify, an algorithm trained on text retrieved from business emails may not be
adequately trained to determine ingredients in cookbooks. As illustrated in Yang,
et al, analysis of Twitter content by a neural network trained on “aligned” content
performs better than a neural network trained on a Wikipedia dump [8]. Likewise,
the meaning of an individual word is governed by its context; inconsistency across
contexts can introduce an element of ambiguity, thus reducing the effectiveness of
machine learning.

With the recent study conducted by Tshitoyan, et al, it was demonstrated
that a sufficiently large corpus could be used to make predictions in scientific
discovery [9]. This study “...collected and processed approximately 3.3 million sci-
entific abstracts published between 1922 and 2018 in more than 1,000 journals...”.
These texts were then processed via the Word2Vec library, with word embeddings
generated based upon the context gleaned from these abstracts. The information
contained in the corpus was comprised of journal articles specifically pertaining
to research on thermoelectric compounds and their properties. The articles were
separated into historic timeframes, and the word embeddings created for each
period. By comparing these word embeddings with publications that occurred
after each period, this system was able to predict the discovery and development
of thermoelectric materials well. For example, by “...analyzing abstracts published
before the year 2009...”, this system was able to “predict” the existence of “...a top

five compound four years before its publication in 2012.”[9]. While scientific dis-



covery can certainly change over nearly a century, and the language used evolves
with each subsequent advance in technology, this study shows there is significant
benefit to allowing a system to train on texts with consistent linguistic norms.

In the case of Twitter, the process of training via a corpus must be done
with allowances to compensate for linguistic variations in grammar and syntax,
as well as restrictions due to character limits. In addition to these variables,
topics within Twitter can trend and the meaning of words can change based upon
dominant topics. Tweets generated during a natural disaster, such as a hurricane,
can change the context of concepts and words (e.g.: the difference between literal:
there is a flood on my street and metaphorical: a flood of tears). As word relation-
ships can often be derived from the relative placement of words, the context in
which these words appear will add another potential avenue of complexity to the
vectorization process.

Searching for tweets associated with a named occurrence, such as a natural
disaster, can yield artificially limited results even when the name is used as part
of the search criteria. For Twitter to provide data to emergency responders during
a natural disaster, a system must be employed to help isolate tweets that are
relevant to that event. Training such a system for natural disaster context recog-
nition requires a body of temporally relevant data. Once this training is complete,
a metric must be implemented by which the relatedness of terms or text can be
evaluated.

If contextual information contained in tweets is to be relevant to emer-
gency responders, two primary factors must be addressed. The first factor is that
the semantic accuracy of any given system of analysis is relative to the topics

trending at that point in time. The overall meaning of a given tweet is dependent



on how the words it contains are used under immediate circumstances. Changes
in topics or contexts influences the interpretation of individual words [10]. Static
training of machine learning systems on enormous corpora is effective for prob-
abilistic interpretation of consistent meaning across a uniform body, but lacks
the nuance necessary for interpreting polysemy as it changes from moment to
moment.

The second factor is matter of available resources. It is important that
the analysis functionality of this system be efficient at a level of computational
infrastructure investment attainable in situations where funds and capability are
limited on short notice [11]. Again, while corpora of millions or billions of lines of
text are necessary to train more universal text recognition machine learning mod-
els, their efficiency can often be measured in hours or days. The typical response
in cases of emergency must be significantly shorter.

1.1.3. Cosine Similarity

7.3
= == (L1)
il g

Once the vectors have been constructed in a manner where spatial rela-
tionships imply syntactic relevance or similarity, mathematical comparisons of
these vectors can be used to interpolate meaning. In the vector dimensional space
of word embeddings, vectors of words with similar context or meaning will tend
to congregate. One way to quantify vectors’ spatial proximity can be done by

comparing their internal angles.



The cosine trigonometric function has the property where two coincident
vectors will have a cosine of 1, as their internal angle has a measure of zero. As
two vectors diverge, their internal angle increases. An internal angle measure of
90 degrees has a cosine of zero. Between zero and 90 degrees, the cosine of the
angle has a real, positive value between one and zero, respectively.

As the angle continues to increase above 90, and up to 180, degrees, there
is a commensurate relationship with the cosine of this angle as well. The cosine of
180 degrees has a value of negative one, and the cosine of the angles between 90
and 180 degrees have a range of real, negative values between zero and negative
one.

Envisioning each term within the context of a corpus as having a vector,
and that vector’s spatial position related to the term’s context or meaning allows
the relatedness of two vectors to be interpreted as inversely proportional to the
degree of the internal angle formed by the two vectors.

Thus, the phrase cosine similarity is used as a real number representing
how close two terms are within the context vector space. Two similar or related
terms will have a cosine similarity as a real value close to one, where two less-
er-related terms will have a lower cosine value, to a minimum at negative one.
1.1.4. Word Terminology and Designations

Throughout this paper, there will be mentions of input and output words;
target and center words; as well as words and their contexts. It may seem,
through repeated use, that some of these terms are interchangeable; in some
particular uses, they may be.

The target word and the center word are often used as equivalent. In both

cases, this is the word when associating training with a context. Often, target will



be associated with the relationship indicated by the CBOW training mechanism
(See: 11.2.2.1) where context is used to predict a word. Regardless, training is
done on a word that exists at the ‘center’ of its context(s), and the terminology
varies between sources.

The input and output words refer to the word pair currently training the
neural network on a particular iteration. Whether the input or output is the
center (or target) word depends on the method used. (See: 11.2.2.1 and 11.2.2.2)
I.2. Related Work
1.2.1. Social Media As Crisis Resource

Social media has been shown to be an effective means of addressing crisis
events [13,14]. The study and responsive analyses of social media and its applica-
bility to crisis events has been termed crisis informatics [15,16]. Crisis informatics
can encompass natural disasters, such as floods [4], hurricanes, and wildfires [13],
or can be applied to social and medical crises such as opioid addiction [17] and
the spread of disease [14,18|.

In the study of crisis informatics, social media can function as part of
the toolset used in crisis preparation and emergency preparedness [19]; and for
response and communication during the event [20-22]. Poblet et al. describe
the roles of social media separated across distinct data types as a crowdsourced,
multi-tiered tool [20]. Social media can be used as a source of data, because it
can function as the product of the “crowd as a sensor” [20] by providing location
data or other metadata that can be correlated with known datasets “...especially
in the mitigation and preparedness phases [of disaster management|” [20]. Of

particular interest is the “crowd as a reporter” [20] , wherein social media users



report “first-hand information on events as they are unfolding” to a specific social
media platform [20].

Reporting data to a social media platform is the first component of the
crowd as a sensor. Reuter, et al. categorizes interaction aspects of communication
within crisis informatics into four categories: Authorities-to-Citizens (A2C),
Authorities-to-Authorities (A2A), Citizens-to-Citizens (C2C), and Citizens-to-Au-
thorities (C2A) [16]. In the C2C quadrant, communications are categorized as
“Self-Help Communities” where private citizens are sharing crisis-related informa-
tion relevant to their locality; this data is intended for other regionally coincident
private citizens and is not specifically broadcast to, or for, emergency responders
[16]. Such crisis-related information can have some overlap with the C2A category,
which is “use of citizen-generated content.” [16] Finding and assessing user-gener-
ated social media content intended either for other citizens or authorities in times
of crisis, without necessarily distinguishing between the two, is essential to this
study.

1.2.2. Natural Language Processing and Text Mining

Data Processing is most effective when the data input is formatted in a
manner that acknowledges the idiosyncrasies of the processor. Very often, there is
an precursory set of operations before import where the data is cleaned.

Data, when taken as recorded in its default state, usually carries with it
additional information beyond what is necessary. Data in this state is often de-
scribed as messy. This is an especially common occurrence with data intended for
natural language processing. Extraneous characters or words that contribute no
additional semantic value can impair processing. Therefore, removing irrelevant

material is an essential step prior to analysis. While there are operations which



can handle such material, there is another component of language that presents
issues. Schoch argues that natural language is comprised of “analog, non-discrete
data, which cannot be analyzed or transformed computationally,” and languages
are “semiotic systems that have dimensions beyond the physically measurable,
dimensions which depend on semantics and pragmatics, that is on meaning in
context.” [23| Social media content, like that contained in Twitter, exhibits many
of the pitfalls of processing natural language and presents unique challenges
depending on objective.

One way to mine data largely comprised of natural language is to correlate
the unstructured content with more structured datasets via unique identifiers and
metadata. Longley and Adnan have leveraged both the structured and unstruc-
tured data in Twitter to produce effective demographic analyses in London [3]. In
their study “...represent|ing] a small and self-selecting sample of all Twitter users
in London...”, their methods were used to correlate geo-temporal metadata with
other datasets, and employ natural language processing techniques to determine
ethnicity, age, residence, and commuting routes, among other demographic
data. This study further extrapolated using the “UK government Generalised
Land Use Database for 2005” to pinpoint “...the probable residence of all 75,522
London-based Twitter users.” [3] By combining structured data with known
“clean” data sources, the study was able to use unstructured data and derive new
findings.

With Twitter as a conversational vehicle, there are concerns with attempt-
ing to parse meaning out of text. Aslan and Vésquez delve into the idea of citizen
sociolinguistics in internet-based discourse [24]. In their research, they observe

how users co-opted the dialectic idiosyncracies of a viral video, and were able

10



to convey meaning via social media using a community derived metalinguistic
understanding [24]. This is especially relevant for Twitter, where tweets are often
analyzed in a regionally coincident context. As such it is important to acknowl-
edge that sociolinguistic norms can affect semantics. An emphasis on semantic
consistency within NLP is important in many contexts. Training NLP to recog-
nize, or compensate for, these sociolinguistic patterns can be costly, but failing
to acknowledge their impact may adversely affect effectiveness of the analysis
functions.

In cases where consistent semantic interpretation over a large number of
documents is important, methods have been employed to increase the immuta-
bility of the vocabulary. In Pedersen, et al. one such mechanism is to reduce the
vocabulary, while minimizing the reduction’s impact on meaning [25]. This has
been accomplished by swapping words within an acceptable range based upon
semantic similarity [25]. Priority is placed upon enforcing semantics in an abso-
lute sense, where the meaning (or meanings) of a word remain relatively static
within the context of the document, e.g. where bi-grams like heart attack should
be correlated with myocardial infarction or coronary thrombosis [25]. Analysis on
semantics, therefore, can be compared across the entire corpus despite similar
concepts being represented by analogous phrases.

1.2.3. Twitter and Word2Vec

Many studies have approached analyzing the symantec content of Twitter
data by using Word2Vec as a mechanism for creating word embeddings. In Yang,
et al. Word2Vec was employed with various tests of hyperparameter values for
analysis of tweets related to an election [8]. This study compared the effectiveness

of training Word2Vec neural networks on Spanish Wikipedia with those trained
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on Twitter data sets. Their training data was labeled as “election related” or “non
election related” and focused on tweets that occurred during a parliamentary elec-
tion in Venezuela in 2015. Their objective was to attempt to predict whether a
tweet could be identified as election related based upon the vector representations
of words contained in the tweet. The study found that training on an aligned
data set (using Twitter data instead of a more generalized corpus, such as content
from Wikipedia) and proper configuration of Word2Vec parameters (specifically
increased word/context window and dimensionality sizes) proved effective at
creating representations of the tweets themselves [§].

In Benton, et al, Word2Vec was one of the components used to create
vector representations based upon the text of Twitter users. In their study, the in-
tention was to create embeddings to illustrate relationships for users, rather than
words, and then use these embeddings for predictive tasks. To do this, each user
“representation” is a set of embeddings aggregated from “...several different types
of data (views)...the text of messages they post, neighbors in their local network,
articles they link to, images they upload, etc.” [26]. The views in this context are
collated and grouped based upon the testing criteria. For example, to predict user
created content, a view of tweets created by a particular user would be isolated,
and the neural network trained on the user’s tweets as a single document. If,
instead, the intended goal is predicting friends of a particular user, then the view
would focus on tweets that are either liked by the user or reference other users
in the text. In either case, this study uses Word2Vec to create word embeddings,
and “[represents| each view as the simple average of the word embeddings for all

tokens within that view.” [26]
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1.3. Encompassing Study

The text analysis presented here is a component of a grant funded research
project taking place at UNC Greensboro: Leveraging Twitter and Big Data
Analytics for Natural Disaster Management and Recovery: A Case Study for
Hurricanes Irma and Harvey. This study analyzes selected tweets based upon
predetermined criteria, and then provides emergency responders with access to
the tweets that meet these criteria.

Tweets are first isolated for a specified time period and location. This
working set of tweets is then processed via a group of machine learning models
optimized for four different categories of geotagged and related data: weather,
image processing, user reliability, and text relatedness. These processing models
generate a 4-tuple of scores for each tweet, min-max scaled to 0-100. Personnel
would then be presented a web interface with a tunable control mechanism
associated with each score. Once a value is selected for each category, the user is
provided a list of all tweets whose scores exceed the selected value.

The weather scores are derived from observed rainfall, wind speed, and
distance. In the case of the Hurricane Irma study, distance component is calculat-
ed from the tweet’s location relative to the NOAA observation of the hurricane’s
eye within the time delta. The user reliability score is based upon a supervised
machine learning model trained on prediction of Twitter’s own verified users. The
image score is also the product of a supervised machine learning model using
human-coded images categorized for the depiction of various weather effects. In

this case, pictures are tagged for flood, wind, and destruction.
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CHAPTER II
METHODOLOGY AND MECHANISMS

I1.1. Tokenization and Cleaning
11.1.1. Tokenization

The text was first processed using regular expressions and tweet tokeni-
zation functions. One of the libraries leveraged for this process is NLTK, the
Natural Language Toolkit. The NLTK reduce lengthening under nltk.
tokenize.casual will reduce concurrent repeated characters to three incidents.
For example, 'OO0OOOMMMMGGGGGGG’ would be reduced to "'OOOMMMG-
GG’. It is assumed that homographs separated only by character quantity could
be reduced to the same word. This operation decreases the overall vocabulary
size, with minimal impact on individual token meaning.

Further token removal for stopwords was performed by removing entries in
the NLTK English stopwords library. This process was in addition to the Fre-
quent Word Subsampling formula contained in the Word2Vec specification (see:

I1.2.1) shown here.

(IL1)

This function removes frequent terms from corpora based upon frequency,

as opposed to a static list of words observed to add no additional syntactic
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import. As stated by Mikolov, et al, this formula evaluates “...each word w, in
the training set...” and discards it based upon the “...probability computed by
[Formula II.1| where f(w) is the frequency of word w, and ¢ is a chosen threshold,
typically around 10 °.” [27]
11.1.2. Cleaning

The terms were cleaned using regular expressions, and a custom cleaning
function was defined to remove the following from all tweets:

1. Uppercase letters

2. URLs beginning with http:// or https://

3. @mentions, including those with a leading -’ or .’

4. Punctuation, but not hashtags (#)

5. Non-hashtag # (e.g. bounded on left by word character,

single-character instance, etc.)

6. Word-bounded numbers

7. encoded HTML

While there are incidents where character case might denote semantic dif-
ference, such as march (to travel in regular pattern) or March (the third month),
patterns of case vary widely through tweets. In this study, as there might be the
presence of inconsistent capitalization, all words were converted to lower case first,
before further processing.

As strings containing URLs impart no semantic value to text, any ap-
pended URLs were stripped from text. While studies may be able to parse out
hyperlinks as a possible feature for machine learning, this study prioritized the

non-hyperlink content of the text of the tweet.
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Once cleaned as above, remaining word tokens were processed through
a stemmer function. The purpose of the stemmer is to further eliminate redun-
dancy in the vocabulary, by treating words with the same stems as semantically
equivalent. The words heavy, heavier, and heaviest would be reduced to heavi.
I1.2. Word2Vec and Parameters
11.2.1. Word2Vec

Word2Vec is the result of research performed by Mikolov, et al, seeking a
method for representing meaning as vectors while maintaining “multiple degrees
of similarity” [12]. In their research, they were able to analyze text and observe
relationships that could be illustrated by vector operations.

The Word2Vec vectorization method has been shown to be an effective
way to derive meaning from a large corpus, and then use that meaning to show
relationships between words. In the example: King - man + woman = Queen,
when the vector representation for man is subtracted from the vector represen-
tation for king this new vector difference implies some sort of monarch meaning.
When this monarch vector is added to the vector representation for woman,
the new vector is roughly equivalent to the vector for queen. When converted
to vectors and using vector operations, even word meaning in this framework
obeys some of the rules of linear algebra [12,28]. Even concepts as esoteric as
physical properties of molecules can be represented in such a manner (e.g. the
word embeddings for “ferromagnetic — NiFe + IrMn = antiferromagnetic” [9])

To begin this process, the vocabulary of the corpus is defined and its size

determined, W [29]. This first vector, I, is a W x 1 one-hot vector, where the
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single 1 in this matrix represents the input word’s position in the vocabulary list.?
The product of the first matrix transformed, I, and a second W x D matrix v,
where D is the arbitrary dimensionality of the word embeddings, yields a 1 x D

vector which is the vector representation of the input word embedding, Vw; for the

input word w, [29].

o
vi1 Uiz V13 ... UID I
0 V21 V22 V23 ... V2D I
1 —
O . . .
) Uw1 Vw2 Vw3 ... UWD Iq
—O_

The product of this vector, vy, and the D x W output word matrix, v’
, gives a W x 1 vector, Ufwo. The input and output word vectors correspond to
either center word and context words depending on mode (see 11.2.2.1 Continuous

Bag of Words and 11.2.2.2 Skip-Gram under Word2Vec Parameters).

2 When possible, the equations and variables indicated throughout this paper were refac-
tored and relabeled to coincide with the definitions in the works by Mikolov, et al [12,27]. Any
apparent disparity between other cited works and the formulas illustrated in this paper are from
the preference to unify representations based on consistency with the seminal works on Word2Vec.
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This Uqfuo vector is then softmax scaled. By performing this transformation,
the resulting 1 x W vector behaves similarly to a probability distribution. Its
values, now all positive, are compared to the 1 x W one-hot vector representing
the output word, we, in the vocabulary. This relationship is illustrated in the

following formula: [27]

;T
exXp | Uy Vw;

w ;T
Zw:l eXp (Uw vwi)

p(wolwr) = (11.2)

Backpropagation occurs via stochastic gradient descent, and the process
begins again with the next word within the context window. Once all context
terms are processed within the word window for the center word, the process
begins again with the next center word and its context words. The update func-
tions are further discussed in I1.2.2.6: Negative Sampling.

11.2.2. Word2Vec Parameters
11.2.2.1. Continuous Bag of Words

In the Word2Vec module, there are two different methods of training the
vector model, and they are nearly opposites of each other. The first, Continuous
Bag-of-Words, or CBOW, trains the neural network by using the context words
as the input and the expected target word as the output. The intended use here

is to predict a single word based upon an input of one or more context words.
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11.2.2.2. Skip-Gram

The other method for training the Neural Network is the Skip-Gram
model. In this model, the center word is the single input; the context words are
the output. This model aims to predict context words based on a single word.

The neighboring words are also scored by their relative location to the
center word, and weighted with a proportional function to emphasize a context
word when it is closer to the center word. In this way, a context word that is
directly adjacent to the center word carries more weight for context than a word
that is a few positions away. “For example, a size-5 window will weigh its contexts
by 2,5, 53,5 28]

Both methods are built upon maximizing the probabilistic pairing of the
correct word, w, with the correct context c¢. The difference comes from the con-
ditional event notation: P(w|c) indicates the CBOW relationship, while P(c|w)
indicates Skip-Gram, for any given word-context pair, (w, c¢).
11.2.2.3. Minimum Word Frequency

Word frequency can play an important role in analysis of large bodies
of text. Setting a floor on the occurrences of a word below which it is ignored
can prevent a word from being included in the vocabulary entirely. This can be
important if a corpus contains jargon or slang that is not necessarily endemic to
the work(s) in question. It is possible, however, that too aggressive of a floor on
occurrence frequency could diminish some of the nuanced meaning desired by this
study. Furthermore, wholly unique tweets could be eliminated from consideration
entirely. This presents a problem both from a comprehensive standpoint, as a
unique tweet may convey information essential to analysis, but also a program-

matic problem, as tweets with zero tokens require special handling.
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11.2.2.4. Word Window

The word window argument sets the maximum distance on either side of
a center word where neighboring words are considered for context. For example,
a word window of 3 would look both three words ahead and behind the center
word to include any words found in the context part of the neural network con-
struction. Though words outside of this window are considered to be part of the
same document, words within the same document will share context words where
the word windows overlap. For CBOW, these words are the input values for the
neural network, and for Skip-Gram, these words are the output values.
11.2.2.5. Word Vector/Hidden Layer Dimensionality

As mentioned above in section I1.2.1, the construction of the neural
network is based upon inputs and outputs, but the internal weights are used
as a representation for each of the word embeddings [29,30|. For the purpose of
this project, the dimensionality of the word embedding vectors and the hidden
layer of the neural network are equivalent, and the terminology will be used
interchangeably. To correspond with the Gensim documentation, "Hidden Layer
Dimensionality’ is represented by the argument size within the Gensim imple-
mentation of the Word2Vec function [30].
Negative Sampling

If all words in a vocabulary V are combined such that (‘2/) represents
all possible word-context pairs, far more pairs exist than true word-context
relationships within the training corpus. Assume for all valid word-context pairs
(w, ¢) there exists an N such that (w,c) € N and an N’ such that (w, c) ¢ N', and

NUN' =V.
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If the neural network is only trained on (w, ¢) pairs in N, then any single
(w,c) € N has tremendous significance. And, as each (w, ¢) pair represents only a
portion of the total number of contexts for any given word, updating each row of
the input and output matrices can be costly in terms of processing. Instead, for
each w, the parameter for the negative sampling function, k, indicates a choice
of k negative values for ¢, such that (w, ¢,,s) ¢ N. This limits the impact of any
single (w, ¢) pair, and further discourages any recognition of a (w,c) € N’, while
minimizing the processing overhead.

Mikolov, et al, define the Negative Sampling objective function as fol-

lows, and this is used to “...replace every log P(wo|wy) term in the Skip-Gram

k
log o (v;OTUwJ + ZEwan(w) [loga (—v;ivaJ] (I1.3)

=1

objective” (See: 11.2). [27] This function seeks to “...distinguish the target word
wo from draws from the noise distribution P, (w) ...where there are k negative
samples for each data sample.” [27]

By default, the Gensim implementation of Word2Vec for Python uses a
negative sampling value of 5, where the recommended range is 5-20 [27,20,32].
For each iteration of positive training on a word-context pair, the algorithm also
selects a set of “noise words” [30] where the neural network associates these words
negatively with the input layer.

As the objective for training involves numerous rows on both the input and
output layers, the update equations must be similarly adjusted. Rong describes

the update equation for the input to hidden layer for Skip-Gram below [29].
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W 1d T
v = v —n - EH (IL4)
Here EH is a vector representing the summation of the prediction errors,
and 7 represents the learning rate.
For the Negative Sampling aspect of Skip-Gram, the update equations for

the hidden to output layers is described here [29].

vfﬂj(new) = U, (old) _ n <0 (vfﬂjTh) — tj> h (IL.5)

The equation above “...only needs to be applied to w; € {wo} U Wieg
[.]” [29] To address the additional functionality of the Negative Sampling,
Rong expands the variables indicated earlier with the following description: ¢
Wheg = {wj|j =1,--- , K} is the set of words that are based on P, (w), i.e., neg-
ative samples... ¢ is the ’label’” of word w,. = 1 when w, is a positive sample;
t = 0 otherwise.” [29] Furthermore, “...j [is|] the subscript for...output layer units”
[29] and “...h is simply copying (and transposing) a row of the input — hidden
weight matrix...associated with the input word w,.” [29]
I1.3. Scalar Comparison Formulas

After training, the Word2Vec neural network produces vectors for terms
but not tweets. For the results of this analysis to be compatible with the other
scoring mechanisms within the encompassing study (see: 1.3), a single scalar val-
ue would need to be determined for each tweet. The following formulas were used
to derive a scalar score for the tweet from an amalgamation of the component
term vectors. In the initial testing, each formula was executed in tandem, and the

equations would be used to compare the effect of variation in the parameters.
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For purposes of consistency, and to distinguish from previous terminology,
new symbols will be used for the components necessary for these comparisons.
The symbol a designates the initial search or seed term, the basis of all compar-
isons for these formulas. The symbol 7 will refer to a token contained within a
processed tweet, where 7, indicates one of many such tokens in any given tweet.

11.3.1. Cosine Similarity From Cosine Distance of One Dimensional Arrays (CSTVS)

Q- Z?:l Ti

1- (I11.6)
k
el 22— 7l

The SciPy spatial.distance library has a built-in function for cosine
distance between two 1D arrays, interpreted as vectors. In this function, a sep-
arate 1 x D zero matrix is initialized, with D as the dimensionality of the word
vectors. In this formula (as with I1.7) this new matrix is calculated as the summa-
tion of the word vectors for each tweet. Using this 1 x D matrix as a vector itself,
the cosine distance between the matrix-as-vector and the word vector for the
seed term irma is calculated. Cosine distance can be further converted to cosine
similarity by subtracting from one.

This formula was selected to leverage the efficiency of optimized pre-gen-
erated code over other possible functions. If the performance of this scoring
mechanism proved to be nearly equivalent to others of the formulas, then it could

be evaluated on the basis of resource and time consumption.
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I1.3.2. Dot Product of Search Term Vector and Tweet Vector Sum (DP)
leel| [ 7il| x cos® (IL7)
i=1

Cosine similarity (see: Equation I.1) is proportional to the dot product of
two vectors. It has been observed within the vector constructs for Word2Vec that
vector operations, such as addition and subtraction, yield meaning [12,28]. This
was used as the predicate for interpreting the meaning of a tweet as the sum of
its component word vectors. Summation of all of the token vectors, 7, within a
tweet returned a vector itself in the same dimensionality as, and therefore could
be compared to, the vector for the seed term irma, a, via the cosine similarity
of the two. Using Equation: I1.7 gives a scalar value for the tweet comprised of
related word vectors.

11.3.3 Mean Cosine Similarity of Tweet Terms in Vector Vocabulary (MCS)
1 n
> 7 (IL.8)
i

For this process, after tokenization and cleaning, each remaining token, 7,
in each tweet was scored based upon its cosine similarity (see: Figure I1.8) to the
seed term irma. If a term was not present in the vocabulary, due to minimum
word count or other restricting criteria, the term was given a zero, which evalu-
ates to a neutral context relation due to cosine similarity. The mean of all cosine

similarity values for tokens = within the tweet, including zeroes, was calculated,
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and this value was designated as the score for the tweet. As stated in section:
[.2.3, Benton, et al used a similar mechanism for representing an aggregation of
tweets and their metadata within each “view”. [26]

I1.3.4 Sum of Cosine Similarity of Tokens Over Square Root of Token Count (SCSSC)

- g_; (IL9)

Like the equation in II.8, this formula scores a tweet based upon a summa-
tion of the tweet’s component token vectors. However, the scalar value calculated
in I1.8 could disproportionately favor shorter tweets, as each token would contrib-
ute a greater proportion of the score. In an attempt to minimize the impact of
word count in any given tweet, the mean operation was replaced by dividing by

the square root of the word count.
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CHAPTER III
EXPERIMENTATION AND EVALUATION

II1.1. Methods
I1.1.1. Human-Coded Tweets

There were 19088 tweets in this dataset for the time period 2017-09-10
00:00 GMT through 2017-09-11 00:00 GMT, inclusive. These tweets were hu-
man-coded for relatedness to Hurricane Irma. For purposes of identifying related-
ness, a tweet whose context was interpreted by a human reader as being associat-
ed with Hurricane Irma was given a boolean True value. The presumption being:
tweets whose content implied the composer’s present awareness of the hurricane
would contain context sensitive terms as well as location based metadata. Both
are considered essential to the studies associated with this research.

These tweets were further isolated to exclude non-English content. While
the functionality of the training mechanism is sufficiently language agnostic,
words that are interlingual homographs could potentially alter context for a
particular spelling (i.e. done, an adjective indicating a completed state in English,
is also the first-person singular present subjunctive form of donar, to donate, in
Spanish.)

To ensure independence between human-coded data and the training
mechanism, the value for human-coding was not introduced into the neural net-

work as a feature during training. This attribute was only used when evaluating
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the effectiveness of a particular scoring formula, and to assess the impact of
variation on a parameter. See I11.1.4 for details on the AU-ROC score.
1I1.1.2. Cleaning and Tokenization

To account for changes in the vocabulary size before and after the various
transformations, an initial operation to split solely on whitespace characters was
performed. The remaining unprocessed tokens were grouped and counted, leaving
43387 tokens in the vocabulary. The following table (II1.1) shows the twenty most

frequent tokens and their counts prior to any transformations.

Table I1I.1. Pre-Transformation Count of Tokens in Tweets

token count
the 4900
1 4133
to 3853
Q 3337
a 3020
in 2998
and 2843
of 2796
is 2619
for 1977
my 1943
S 1772
you 1647
Florida 1592
this 1572
on 1491
t 1357
from 1236
it 1202
at 1129

The first transformation performed was the reduce lengthening

functionality mentioned in II.1.1. This function reduced the total number of
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tokens to 43254. While this represents a reduction of only .31% such a reduction
is essential. Any superfluous tokens decrease the effectiveness of training; two (or
more) words whose existence otherwise would be treated as identical, but whose
spelling is only separated by the quantity of a character, and therefore completely
different, dilutes the likelihood of the neural network recognizing their syntactic
equivalence.

The second transformation operation is detailed in Section: II1.1.2. Once
these operations were performed, the quantity of tokens left in the vocabulary
was 14439, a reduction of 66.9%. The list in Table: II1.2 shows the top twenty
words ordered by count after the combined transformations. When compared with
the initial list in Table: III.1 it is immediately apparent that case-sensitivity is
significant in minimizing vocabulary. In the first table, Florida occurs 1592 times.
After cleaning, florida appears 1809 times and is the most frequently used word.
Note: the incident of the word hurrican could likely be attributed to misspelling,
but also to the effect of the stemmer function (i.e. truncating both hurricane and

hurricanes to their root.)
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Table I11.2. Post-Transformation Count of Tokens in Tweets

token token count
florida 1809
#hurricaneirma 1623
fl 1587
irma 1374
hurrican 1360
#irma 1193
wind 946
get 936
report 886
go 830
storm 775
power 715
miami 705
rain 682
mph 661
like 657
beach 656
gust 655
safe 633
aso 544
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The graph in I1I.1 shows the quantity of tweets by number of tokens
before and after processing.

The tweets had a maximum length of 33 tokens, separated by whitespace
characters, prior to cleaning and tokenization. The performance of these oper-
ations reduced the maximum number of tokens in a tweet to 20. 15971 of the
19088 tweets, or 83.7%, contained 10 or fewer tokens.

I11.1.3. Uniwversal Constraints

With the stated purpose of interpreting content related to a single search
term, the Skip-Gram mode was selected for training. By prioritizing a mode
where word-predicts-context, it is hoped that the similarity of two single words
could be compared based upon the syntactic equivalence of their contexts. The
potential groups of terms that would predict individual target words would be

comprised of temporally relevant, yet likely unknown contexts, and therefore
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CBOW might not be as effective, i.e. the desired result of this operation is gener-
ative, not reductive. Therefore, the mechanism that derives many output contexts
from a single word fits the preferred mode of training.

Additionally, for purposes of consistency, one other element was held
constant through all the first sets of tests: the number of epochs for training.
Since the first rounds of testing were to suggest ranges for a later grid search,
and not for optimal settings, it was decided to prioritize minimal training time
over accuracy. As such, all experimental neural networks were trained through 10
epochs for each iteration of the parameter being tested. The Python timeit was
used to calculate the time efficiency on training the neural network once optimal
parameters are determined.

11.1.4. Comparison Metrics

To compare the effectiveness of changing a particular parameter, the vector
model was created using at least ten different values for that parameter (with
all other parameters held constant), and the results of the scalar comparison
function compared via the Area Under Receiver Operating Characteristics curve
(AU-ROC) value. The Receiver Operating Characteristics curve is a function
comparing the relative rates of increase of true-positives versus false-positives as
the values corresponding to an independent threshold are increased. The area
under this curve is calculated as a real number value between 0 and 1, with 1
implying a perfect recognition of true-positives, and a value of .5 indicating per-
formance roughly equivalent to random selection [11]. If the initial trial range(s)
for the parameter would indicate a monotonic relationship between the parameter
and AU-ROC, a new range of values were considered for the parameter, and the

tests were performed again.
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While each test of a range for a parameter shows its impact on a set of
defaults, it does not properly show how the combined variability of two (or more)
parameters affects performance. In order to compensate for these compositions,
an iterative grid search test of all variables was performed. This comprised of
testing the cross-product of all ranges for the parameters, along with testing a
range of training epochs, each as a discrete set of parameters for training the
neural network, with the AU-ROC used as the scoring parameter. See IV.1.2 for

results of the Grid Search.
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CHAPTER IV
RESULTS AND DISCUSSION

IV.1. Selection of Scalar Formulas

The initial sets of tests compared the AU-ROC of each scalar formula as
applied to tweets relative to the search term: irma. Each iteration of the testing
involved training the neural network with default values for each parameter,
isolating one parameter and determining a window which contained a local maxi-
mum for AU-ROC.
1V.1.1. Tuning Parameters
1V.1.1.1. Word Window

The initial test for the Word Window Size parameter variability set a
ceiling at 10 tokens on either side of the center word. The other parameters were
set at constants: minimum word count 1, word vector dimensionality 100, nega-
tive sampling 5, and using the Skip-Gram model. As stated in section II1.1.2, the
maximum token count for a tweet within this data set was 20. A word window
value of 10 as the upper bound for the testing range ensured that all center
words were provided at least half of the encompassing tweet as context. This also
ensured that any given word potentially had the entire tweet as context for 83.7%

of tweets. See III.1 for the distribution of tweets by length.
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Table IV.1. AU-ROC of Word Window Size Values 1 to 10

Formula |1 2 3 4 5 6 7 8 9 10

CSTVS 0.706 | 0.708 | 0.724 1 0.739 [0.734 0.737(0.748 [ 0.754 [0.750 | 0.755
DP 0.814 [ 0.811 [ 0.816 | 0.817 |0.818 [0.81910.821 | 0.822 [ 0.821 | 0.821
MCS 0.512 ] 0.548 | 0.588 | 0.619 [0.617 ]0.630|0.649 |0.657 |0.654 |0.659
SCSSC 0.71710.724 1 0.742 | 0.758 [0.760 |0.770{0.781 [0.784 [0.783 [0.790

For word window values 1 through 10 in Table: IV.1, the four scalar
comparison formulas have a maximum observed AU-ROC at window size 8 for
the Dot Product formula II.7. While the difference in scores was negligible, it
did indicate a trend towards a local maximum, therefore further tests were not
performed.
1V.1.1.2. Minimum Word Frequency

Testing Minimum Word Frequency presented a different problem than
most of the other parameter tests. By setting a threshold on frequency, it would
be possible for a tweet to be comprised entirely of words that would not exist in
the vocabulary of the vector sets. With the scalar comparison formulas dependent
on the cosine similarity of a term and the search term, if a vector did not exist,
it is possible for some of the tweets to end up with component elements in the
denominator equal to zero. This required additional error handling in the code
representing the scoring formulas.

Variation in Minimum Word Frequency also affected the maximums for
each scalar comparison formula differently. With each of the other parameters,
the maximum AU-ROC score consistently correlated with the same value for

all scalar comparison formulas (e.g. the optimal value for Word Window Size,
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8, corresponded to a maximum AU-ROC for all four formulas, See: IV.1). With
Minimum Word Frequency, the optimal value for three of the four formulas was
8. However, for the Dot Product formula, the optimum value for Minimum Word

Frequency was 3.

Table IV.2. AU-ROC of Minimum Word Frequency Values 0 to 9

Formula |0 1 2 3 4 5 6 7 8 9
CSTVS 10.736 |0.733 10.74010.744 (0.732 [0.735 |0.743 |10.745 [ 0.751 | 0.728
DP 0.818 [0.816 |0.82710.829 |0.824 [0.823 |0.827 |0.826 [ 0.828 | 0.818

MCS 0.629 [0.625 |0.626 |0.634 |0.623 |0.634 | 0.642 [0.641 | 0.656 | 0.632
SCSSC  [0.767 10.759 0.781]0.794 |0.789 [0.793 | 0.800 [0.799 | 0.806 | 0.790

IV.1.1.3. Word Vector/Hidden Layer Dimensionality

As with the previous tests, the Dot Product formula (see: I1.7) indicated
the best performance for scoring a tweet. Changes in vector dimensionality
yielded minimal performance changes, as indicated in Table IV.3. All formulas
performed best with a dimensionality of 150, though the change from the default

100, showed little appreciable difference in the results.

Table IV.3. AU-ROC of Hidden Layer Dimensionality Values 50 to 500

Formula |50 100 150 200 [250 [300 [350 [400 (450 |500

CSTVS ]10.744 10.754 [ 0.755 [0.751 | 0.749 | 0.749 [ 0.748 | 0.747 | 0.746 | 0.746
DP 0.816 [0.822 | 0.823 ] 0.822 1 0.822 ] 0.822 ] 0.821 | 0.821 | 0.821 | 0.821
MCS 0.654 [0.657 | 0.657 |0.652 | 0.650 | 0.649 | 0.648 | 0.647 | 0.646 | 0.645
SCSSC 0.779 [0.784 10.784 10.78110.779 1 0.779 |1 0.777 | 0.777 |1 0.776 | 0.775

35



1V.1.1.4. Negative Sampling

The initial test of the negative sampling set out to compare the effective-
ness of increased numbers of negatively sampled terms. The default value of 5
seemed to have minimal impact on the AU-ROC score. However, this test showed
one of the more dramatic outliers for AU-ROC score over all tests of parameters.
Changes from one value to the next for all parameter tests were measurable, but
the variation rarely exceeded .02 in the subsequent calculation of AU-ROC. The
difference between 0 and 1 for the negative sampling value showed a substantial
increase from 0.560 to 0.854 for the Dot Product Formula: I1.7. Similar increases
were noted for the other scalar comparison formulas. The 0.854 for the Dot Prod-
uct formula below also represents the highest AU-ROC score for all parameter
tests. The remaining AU-ROC values for 2 through 9 negatively sampled words
were also greater than the corresponding value for 0. This indicated that includ-
ing a minimal number of negative context words in the training has an overall

positive effect on the accuracy of the neural network.

Table IV.4. AU-ROC of Negative Sampling Values 0 to 9

Formula |0 1 2 3 4 5 6 7 8 9

CSTVS [0.564 |0.771 |0.745 [0.748 [0.749 [0.754 [0.753 ] 0.760 | 0.752 | 0.756
DP 0.560 |0.85410.829 [0.826 [0.822 [0.822 [0.819]0.820 | 0.817 | 0.816
MCS 0.561 |0.717 1 0.678 [ 0.665 [0.653 |[0.657 | 0.649 | 0.658 [ 0.643 [ 0.645
SCSSC 0.560 |0.811 |0.786 [0.782 [0.783 [0.784 [0.783]0.788 | 0.783 | 0.784
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1V.1.2. Optimized Parameters and Grid Search

Once ranges containing a local maximum on the AU-ROC score were
determined, these ranges were used as the testing values of a Grid Search, with
one alteration. With minimal initial impact seen by variability in Hidden Layer
Dimensionality, only vectors of 100D and 150D were tested. Below is the table of

the top performing permutations of parameters.

Table IV.5. Grid Search Parameter Results

AU-ROC [HLD |MWF [WWS |NS [EP |SF
0.887560 |150 |5 1 1 25 |DP
0.886191 |100 |5 1 1 25 |DP
0.881556 |150 |3 1 1 25 |DP
0.879418 |150 |7 1 1 25 |DP
0.879235 |150 |6 1 1 25 |DP
0.878688 |150 |8 1 1 25 |DP
0.878547 100 |6 1 1 25 |DP
0.878196 |100 |3 1 1 25 |DP
0.877670 |100 |7 1 1 25 |DP
0.877067 150 |9 1 1 25 |DP

As expected, the Dot Product (DP) I1.7 scalar formula performed the best
overall. The Negative Sampling (NS) parameter value also reflected the observa-
tions in initial testing; a value of 1 was clearly optimal for this training. Another
expected outcome was the apparent negligible impact in using 100D versus 150D
for Hidden Layer Dimensionality (HLD).

The remainder of the parameters appeared to deviate somewhat from the

values seen as local maximums in the initial testing. Minimum Word Frequency
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(MWF) and Word Window Size (WWS) were apparently affected by the simulta-
neous adjustment of other parameters, as well as being somewhat more influenced
by the number of training epochs (EP).

The violin plot below (IV.1) shows the distributions of AU-ROC scores for
each of the four scalar formulas. The two halves of each distribution correspond

to the two values tested for Hidden Layer Dimensionality.
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Figure IV.1. Effect of Scalar Formula on AU-ROC
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The Dot Product (DP) II.7 scalar formula shows a higher overall max-
imum, although with slightly greater variance, when compared to the Sum of
Cosine Similarity of Tokens over Square Root of Token Count (SCSSC) I1.9.
1V.1.2.1. AU-ROC of Scalar Comparison Formulas

Using the neural network trained with optimal parameters, the tweets were
again scored and their AU-ROC curves created. Figure IV.2 shows the scalar com-

parison formulas both with optimal parameters (indicated by (O) and solid lines)
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and default parameters (indicated by (D) and dotted lines), color-matched, with a
reference line for the .5 AU-ROC threshold. As was indicated in previous tests, the
Dot Product (DP) formula proved to be the most effective and consistent method

for scoring a tweet. The Mean Cosine Similarity score seemed the least effective, but
somewhat more consistent than the Cosine Similarity of Tweet Vector Sum (CSTVS).
It is worth noting that dividing by the square root of the tweet length (SCSSC)

proved to be a significant improvement over the simple mean.
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Figure IV.2. AU-ROC of Scalar Comparison Formulas

1V.1.3. Dynamic Relatedness

IV.1.8.1. Word Lists Per Hour

For the tables in Appendix: Related Word Lists A, each column represents

one hour within in the 24-hour period starting at 00:00 GMT on September 10, 2017.
For each hour, the Word2Vec neural network is trained on only the tweets that occur

during that period, using the optimal parameter configuration determined by the grid
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search IV.1.2 above. The list of words represent the top twenty most similar by cosine
similarity in descending order as compared to the search term: “irma’”.

Some of the interesting observations come from interpreting the possible con-
text and reasoning for why certain terms are positioned in lists at particular times. For
example, the word shelter appears in various locations throughout the lists. Perhaps
more interestingly, it is the top word of the hourly list at the time of Hurricane Irma’s
landfall, and the top word for the subsequent three hours. And landfal, the stem of
landfall and landfalls, only appears once: during the landfall hour. The word tomorrow
appears four times in the five hours, 00:00 — 04:00. Since local time is UTC-4, these
hours correspond with 8:00PM — midnight on the day previous to landfall. Tomorrow
does not appear on the lists for related words on the day of landfall.

The word ese presents another interesting linguistic observation. While this
word has colloquial meaning in Spanish, its appearance in these lists is indicative of
another meaning. Searching the graph of word communities (See: IV.1.3.2.), ese is
found in a group of weather terms. By isolating the training to English only tweets,
the meaning appears to have tended toward ESE, an abbreviation for Fast by South-
east. In this context, the probability of this particular interlingual homograph was
higher when considering the direction from which the hurricane approached. Further-
more, when looking at the hourly lists of words, it appeared in the top four words in
each of the four hour lists prior to landfall; only once in the lists prior to that; and
never in the hours afterward.

Another word that has a fascinating set of positions on this list is the word
safe. It appears only once in the twelve hourly lists prior to landfall, at the bottom of
the 08:00AM UTC list. However, it appears seven times in the eleven hourly lists after
landfall.
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1V.1.3.2. Graphs of Word Communities

For the graph depicted in Appendix IV.3, each word is connected to terms
based on cosine similarity. The edges in this graph represent values for cosine similari-
ty greater than cos(45) or = .7071. This value was chosen as a lower bound on vector
representation of similarity, as included values would be closer to coincident than
orthogonal. The nodes are subjected to a gravity algorithm to encourage similar terms
to cluster, and dissimilar terms to repel each other. The edges in this graph represent
the cosine similarity between the vectors that represent the word embeddings of the
words in the nodes. Each node’s relative size is proportional to the related token’s
PageRank score.

In the graph, sections separated by color are designated based upon Louvain
Modularity. The communities that formed depict topics, with some highlights in the
figures below. For example, in Figure IV.4, there is the topic of famous Florida attrac-
tions as represented by the words: Magic Kingdom, Walt Disney World, Harry Pot-
ter’s Wizarding World, and Hollywood Studios. Similarly, in Figure IV.5, there appear
to be weather related words associated with windspeed (41mph, 80mph), pressure
(994mb, 1002mb, baromet|ric|, pressur|e]), weather phenomena (thunderstorm, gust,
funnel, squall, drizzl[e], rain, mist, humid[ity]), measurements of compass direction (e,

ese, sw, ene, nne), and terms of scale (light, heavi[est|, moder|ate|, intens|e]).
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Figure IV.3. Graph of Topic Communities
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Figure IV.5. Graph of Topic Communities: Weather
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CHAPTER V
CONCLUSION AND FUTURE WORK

For this paper, it is proposed that a regionally and temporally coincident
corpora comprised of the text of tweets surrounding an emergency event provide
a good basis for a dynamic syntactic construct. This construct can then be used
to widen and improve results based upon a single search term, where many of
these results may be omitted. This construct can also be used to infer meaning
and significance by reviewing lists of related words based upon the corpora at
hand.

Over the course of this research, a number of opportunities for future work
presented themselves based upon the results of this study. While this methodol-
ogy shows promise, it has not been performed at scale. Some of the next steps
may be to pursue these tests on larger sets of tweets, with similar constraints on
time and region. It also may be employed to study the transformation of a con-
versation topic as designated by a search term, and comparing this to other well
known topic modeling methods, such as LSI and LDA. It may also be compared

to other dimensionality reduction techniques such as PCA and SVD.
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APPENDIX A
RELATED WORD LISTS

Table A.1. Related Words 00:00 UTC — 05:00 UTC

00:00 01:00 02:00 03:00 04:00 05:00
tampa whole time shelter tampa time
last tampa beauti shift tri night
shelter last let guess time make
make read storm tri made friend
night outsid night last yet alway
beauti check tomorrow pet whole sleep
yet ese see sleep night need
close made tri outsid tomorrow want
help tri shelter time mom world
outsid tomorrow #irma check friend fuck
hit time like strong outsid wind
whole sleep hurrican made make watch
tri night last cuba alway boy
#irmahurrican | make make help sleep nigga
time yet still saturday open see
move food watch night could pleas
ago footbal place dawg hit wait
tomorrow might need yet great beach
wait lake tampa eye want tonight
#hurricanirma | spend person school need #irma
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Table A.2. Related Words 06:00 UTC — 12:00 UTC

06:00 07:00 08:00 09:00 10:00 11:00 12:00
tri sleep last ese ese tampa tampa
time offici outsid outsid tri yet time
night need sleep moder help time check
close e heavi valkaria close ese ese
outsid want e sleep outsid eye tri
sleep hit #key nation eye friend might
alway #key wind e moder first night
need wind tropic need sleep night first
want tropic good wind heavi last close
well see beach fuck wellington | close coffe

e much #irma #sfltraffic | wind #traffic friend
wind #irma florida pleas fuck strong help
fuck beach storm storm tropic outsid last
watch florida #mfl beach good make follow
wait storm aso peopl see well outsid
good know lauderdal | #irma pleas want make
beach #mfl power florida storm phone sleep
storm power mesonet f flood sleep strong
live call rain rain beach hit #irmageddon
florida aso safe mesonet rain florida open

ol




Table A.3. Related Words 13:00 UTC — 18:00 UTC

13:00 14:00 15:00 16:00 17:00 18:00
shelter shelter shelter shelter #hurricaneirma | hit

first whole tampa want outsid safe
wait tampa beauti time food outsid
beauti yet see good get open

tri check #hurricaneirma | tampa safe updat
make open prep get watch hurrican
could hit food guess time make
made get come hurrican | peopl prayer
see friend watch last know first

eye read yet check see get
#hurricaneirma | world time hit love wait
world safe sleep peopl power everyon
night good ride come gonna check
peopl time first eye #irma see
close come get friend still home
outsid make check food hurrican power
help first go day #nfl #hurricaneirma
landfal beauti know see make okay
come wait open make home watch
pleas home tri way want yet
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Table A.4. Related Words 19:00 UTC — 00:00 UTC

19:00 20:00 21:00 22:00 23:00 00:00
tampa #hurricaneirma | shelter #hurricaneirma | #hurricaneirma | power
eye go hurrican day get back
bay #irma #irma watch still get
first come still live go come
time watch come time updat even
wait #napl updat updat wait got
hit wait time get power updat
outsid live whole make last #irma
#hurricaneirma2017 | pass #hurricaneirma | shelter #irma time
make hit make go first outsid
food right watch wait yet still
us friend wait see right go
shelter day stay still time storm
get shelter see #irma tampa much
last get safe hit us hurrican
point safe rain need everyon light
safe beauti home rain home let
open look tampa safe made friend
alway everyon get open hour watch
video make pleas pleas back start
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