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The main result of this thesis is a general procedure for constructing an asyn-

chronous automatic structure for some finitely generated groups quasi-isometric to

products of non-elementary hyperbolic spaces. An asynchronous automatic struc-

ture, in turn, can be used to represent the group computationally, by now-classical

means which we describe in some detail. We refer to the structures at the heart of 

this procedure as factor-language systems, and give certain criteria which guarantee

their existence. The particular criteria we describe enjoy an intriguing analogy with 

certain criteria of discreteness and reducibility in the theory of lattices in products of 

trees. Along the way, we explore the geometry of path systems, finite-state automata,

regular languages, automatic relations, hyperbolic geometry, quasi-isometries, and

HNN-extensions.
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Chapter 1: Introduction

1.1 Notation

In the sequel, the following notational conventions will be observed.

• E : A∗ → G is the natural evaluation map to a group generated by the finite set

A from the free monoid A∗.

• If v ∈ A∗ is a word in the free monoid A∗, |v| denotes the word length of v. If

#»γ is a rectifiable curve, ℓ( #»γ ) denotes the arclength of #»γ

• If w ∈ A∗ is a word in the free monoid A∗, we denote by #»w the length-

parametrized path in the ‘Cayley Graph’ of A∗ (i.e. a tree whose edges are

labeled by elements of A, viewed as a metric space) which interpolates the

prefixes of w. If G = ⟨A⟩ is a group, we let E #»w be the length-parametrized

path in Cay(G,A) which interpolates the images of the prefixes of #»w under the

evaluation map. That is, we extend the evaluation map to the edges of the

Cayley Graph.

• Given a group G = ⟨A⟩, we denote by |g|A the length of a geodesic word over

A representing g, and denote by dG,A the word metric on G induced by the
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generating set A (i.e. dG,A(g, h) = |h−1g|A). We extend dG,A to the entire Cayley

graph Cay(G,A) by the customary expedient of identifying each edge with a

copy of the unit interval.

• We will occasionally assign a common constant C to multiple independent

parameters whose only use is to be ‘sufficiently large’ (e.g. the constants of a

quasi-isometry, of a quasi-geodesic, or of a fellow-traveling path system).

• For a product X = X1 × · · · ×Xn and element x ∈ X, we denote by πi(x) the

i-th coordinate projection of x, and by σx
i the i-th ‘coordinate factor at x’, i.e.

the set of all points in X which can be obtained from x by changing only its

i-th coordinate. If a group is embedded in X, we omit the superscript in the

case that x is the image of the identity.

• N(r, x) denotes the closed neighborhood of radius r about a point x in a metric

space. This notation is used in preference to the standard notation for closed

balls, on account of the preponderance of other uses in this paper of the capital

Latin letter ‘B’.

• In Chapter 6, we use the notation (G,A) ↷ (X, o) to refer to the action of a

group G with a particular generating set A on a metric space X with distinguished

basepoint o (following convention, we refer to X as a ‘pointed metric space’ in

this context). This is to reinforce the fact that we wish to envision a specific

quasi-isometry from a specific Cayley graph of G into X, allowing us to refer to

the orbit map explicitly and unambiguously.
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1.2 Background

In recent decades, the family of hyperbolic metric spaces has seen successful

application in many domains, particularly the theory of finitely generated groups.

Developed by Mikhail Gromov in the 1980s [10,11], the theory of hyperbolic metric

spaces can be understood as generalizing the large-scale metric properties of metric

trees and hyperbolic n-space. Key to the success of the theory is the naturalness of

hyperbolic spaces when considering metric structures coarsely, that is, up to quasi-

isometry. This is because the category of hyperbolic metric spaces is closed under

quasi-isometry, and quasi-isometries of hyperbolic spaces induce true homeomorphisms

of their boundaries - objects which in some sense encode the ‘horizon’ of the space,

or, less figuratively, the long-term behavior of infinitely extended geodesics. Thus

the large-scale properties of hyperbolic spaces are highly robust under quite loosely

controlled perturbations, and this permits analysis of such spaces even when the

details of their internal geometry are not fully understood.

It is natural to wish to extend this theory to include more complex spaces which are

constructed on hyperbolic spaces in some way. This is a subject of ongoing research,

with some recent attention being given to products of hyperbolic spaces (e.g. the

hierarchically hyperbolic spaces of [1], the preservation of coarse median structures in

products noted in [2] and exploited in [16], or the powerful Theorem K in [20] which

we shall reference presently). While nontrivial products of unbounded hyperbolic

spaces do lose many of the convenient properties of hyperbolicity, we will still witness

hyperbolic behavior within the coordinate factors, i.e. the isometrically embedded

copies of the factor spaces obtained by restricting the coordinates in all but one factor

to a given point. If we can guarantee that these coordinate factors will be (coarsely)
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preserved by quasi-isometry, then we have a robust way of considering products of

hyperbolic spaces in their ‘natural environment’ (that is, as coarse geometric objects),

while preserving their product structures.

Quasi-isometries, however, do not always preserve the product structure in a

product of hyperbolic spaces: an example of this is given by rotation in Rn when n ≥ 2,

since almost all rotations will map coordinate factors to subspaces at infinite Hausdorff

distance from any coordinate factor. However, this issue turns out to be unique to

products including an ‘elementary’ factor (i.e. a factor which is either bounded or

quasi-isometric to R), at least when considering spaces sufficiently homogeneous to be

quasi-isometric to groups. It was shown by Bowditch [3], who credited the essence of

the result to previous work of Kapovich, Kleiner, and Leeb [17], that quasi-isometries

between products of so-called ‘bushy’ hyperbolic spaces must coarsely preserve the

factors. Notably, the metric homogeneity of groups allows us to conclude that the

factors in a product of hyperbolic spaces quasi-isometric to a group must be either

elementary or bushy, and so the hypothesis in this case can be weakened to the

stipulation that the factors be non-elementary. This result is strengthened significantly

in Margolis’s Discretisable Quasi-Actions I: Topological Completions and Hyperbolicity

[20], by the following theorem:

Theorem 1.1 (Margolis). Let Γ be a finitely generated group quasi-isometric to∏n
i=1Xi, where each Xi is a cocompact proper non-elementary hyperbolic metric space.

Then Γ acts geometrically on
∏n

i=1 Yi, preserving the product structure, where each Yi

is quasi-isometric to Xi and is either a rank one symmetric space of non-compact type

or a locally finite graph.

This is an extremely useful result for many reasons, not least because it gives us
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permission to jump immediately from a quasi-isometry between a group and a hyper-

bolic product to a true geometric action of that group on a product with substantially

simplified factors. As Margolis points out in a later theorem, recent work on Helly

groups [7] allows us to conclude that, when the factors Yi are graphs, the group Γ is

biautomatic, a notion from algorithmic group theory which lies at the heart of the

computational aspect of the present work.

The theory of automatic groups originates in the early 1990s with the monograph

Word Processing in Groups by Epstein, Cannon, Holt, Levy, Paterson, and Thurston

[8], and a more modern introduction can be found in Groups, Languages, and Au-

tomata by Holt, Rees, and Röver [13]. In terms of practical application, the purpose

of an automatic structure on a group is to provide a computable representation

of the group, where elements are represented by certain strings of characters from a

finite alphabet of symbols, and the group operation is realized by an algorithm which

takes those strings as input. The algorithm is required to be especially simple - in

computational terms, it is based on finite-state automata. A finite-state automaton

is a sort of stripped-down Turing machine (a formal model of computation of which

we give an informal description in Chapter 4) which takes a string as input, reads it

character by character with no memory other than its finite set of internal ‘states’,

and outputs only whether the string is ‘accepted’ or not. For an automatic structure,

the set of group elements will be represented by a set of such accepted strings called a

regular language, and the group operation will also be realized by a collection of

regular languages over a specially constructed alphabet described in Chapter 4. In

that same chapter, we also give an overview of the classical result that joins the theory

of automatic groups to geometric group theory: the fellow-traveling condition.
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In Chapter 2, we will describe the properties of path systems, by which we mean

functions which assign, to each pair of points in a geodesic space, some path connecting

them. A fellow-traveling condition on a path system is a bound on the ‘distance’

between two paths (we may make this notion precise in multiple ways, as will be

described in Chapter 2), as a function of the distance between the endpoints. When a

path system satisfies a fellow-traveling condition, we will say it is bounded. It turns

out, for reasons that will be described Chapter 4, that a finitely generated group G is

automatic if and only if there exists a regular language L with the property that the

path system which joins elements of G by paths which ‘spell out’ words in L is what

we will call synchronously bounded. A parallel notion, using a different metric

on paths, similarly identifies asynchronous automaticity (a generalization of an

automatic structure which sacrifices the time complexity of the algorithm computing

the group operation in favor of embracing a strictly larger class of groups) with the

asynchronous boundedness of the path system induced by some regular language.

In Chapter 3, we give a brief introduction to quasi-isometry and the concept

of a hyperbolic metric space. Among their many other useful features, hyperbolic

metric spaces satisfy the property that any path system consisting of uniform-quality

quasi-geodesics will be asynchronously bounded (a fact which follows easily from the

famous Morse Lemma, in combination with a useful lemma proved in Chapter 2).

Furthermore, we will prove in Lemma 3.3 that asynchronously bounded path systems

can be ‘transported across’ quasi-isometries in a consistent manner. Combining these

notions, we can conclude that any group quasi-isometric to a product of hyperbolic

spaces must admit an asynchronously bounded path system: we begin with the path
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system in the product which ‘hugs’ coordinate factors one by one in some fixed order,

then move this path system across the quasi-isometry to the group. At this point,

the only obstacle between us an an asynchronously automatic structure is assuring

that such a path system can be given by a regular language. We describe such an

asynchronously automatic structure in detail in Chapter 5, where we introduce the

notion of a factor-language system. A factor-language system consists of a group

G with generating set A, a space X which decomposes as a product of non-elementary

hyperbolic spaces, a quasi-isometry ϕ : G→ X, and regular languages over the alpha-

bet A whose images under ϕE ‘shadow’ coordinate factors in X. These components

are shown in Chapter 5 to yield an asynchronously automatic structure on G.

The remainder of the discussion concerns conditions which guarantee the existence

of ‘factor languages’ which correspond to the coordinate factors of X. One way to

accomplish this is hinted at in the definition of the coordinate factor σx
i : it is a

subspace of a product obtained by restricting all coordinates save one to a point, which

suggests that we may gain some traction by looking at an appropriately path-conscious

coarsening of point stabilizers for the action of the group on the factors. In Chapter 6,

we show that a factor-language system can always be obtained when the quasi-isometry

ϕ maps G into X in such a way that the paths with ‘small’ projections to any given

factor are given by a regular language. This allows us to show the existence of factor

languages when ϕ is the orbit map of a geometric action satisfying a condition we call

level-determinism, which can be thought of as a special kind of uniform discreteness

(in the topology of pointwise convergence) of the group G in the space of maps from

A∗ to the factors of X.
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We go on in Chapter 7 to show the methods described in Chapters 5 and 6 in

action, by using them to obtain asynchronous automatic structures on HNN-extensions

of non-elementary hyperbolic groups with finite-index associated subgroups. Since

hyperbolic groups are examples of automatic groups, this can be thought of as a

geometric generalization of Theorem 2.2 in [12] in the case in which the base group is

hyperbolic.

1.3 Notes on Theory and Computation

This thesis is intended to be of both theoretical and computational interest, and these

two approaches are intertwined throughout the chapters to come. All of the material

we discuss will come into play when we prove the main theorems of chapters 5 and

6, but it would be mostly accurate to say that chapters 2 and 3 are of principally

theoretical interest, while chapters 4 and 7 are mostly computational in nature.

The main computational result in the following is the construction of an explicit

asynchronous automatic structure for a large family of groups in Chapter 5, along

with a condition (see Corollary 6.5 in Chapter 6) which can be used to find the

components of this structure for certain groups. Synchronously automatic groups are

already well-implemented in Magma, with most of the computational machinery being

dedicated to finding an automatic structure for a group given only its presentation.

The main obstruction to similarly implementing asynchronously automatic structures

in a useful way is that these quick methods for finding the structure cannot be used.

Once such a structure is found, however, the process of using it to perform calculations

in the group is well-known and described in [8]. In presenting a blueprint for converting

geometric data about certain groups into asynchronous automatic structures explicitly,
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we provide the means to skip the search step and begin using the existing machinery

to perform computations. That said, algorithms using asynchronous as opposed

to synchronous automata are computationally costly, and will require much better

optimization to be of practical use. The word problem for asynchronously automatic

groups, for example, requires exponential time to solve using current methods, and it

is not known whether a polynomial-time algorithm exists at all.

The main theoretical results are found in Chapter 6 and concern the above-

mentioned observation about obtaining a factor-language system when the action of a

group on the hyperbolic factors of a product is level-deterministic, which we noted to

be a kind of discreteness condition. This bears an interesting analogy to a well-known

fact about lattices in products of trees, namely that such lattices are reducible (i.e.

virtually split as a direct product of lattices) when their projections to the factors are

discrete (see e.g. [6]). In the topology of pointwise convergence on the space of maps

between two metric spaces, a set of maps is discrete precisely when its elements can be

identified by their behavior on some ball of finite radius. If the same radius can be used

for all maps in the set, we might call such a set uniformly discrete. Level-determinism

is a condition akin to uniform discreteness, but weakens the notion to require only

that the image of a map on a ball of fixed radius determine the image of that map

on a slightly larger bounded set in the domain. Then, instead of concluding that the

group in question virtually splits as a direct product of groups, we get instead that

the group decomposes (in a way that respects the underlying geometric product) as a

product of rational subsets, which are themselves images (under the evaluation map)

of regular languages in the free monoid generated by the group generators. This is

curious, because it allows us to extract a kind of reducibility from groups which may

not admit a nontrivial product structure in the group-theoretic sense.
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Chapter 2: Bounded Path Systems

In this chapter, we introduce the properties of path systems, a notion which we

adapt from [21]. A path system on a path-connected space is simply a function which

chooses a single path connecting pairs of points in the space. We begin our discussion

by defining three distinct metrics on space of all paths in a geodesic space, and then

go on to classify certain path systems by their behavior under these respective metrics.

Most of the technical work in this chapter occurs in Section 2.2, where we prove a

useful lemma that will allow us to pass freely between two of these metrics when the

paths in the system under examination satisfy a coarse ‘no large loops’ property.

2.1 Metrics on the Space of Paths

Let X be a geodesic metric space, and denote by X⃗ the space of rectifiable curves

on X. For ease of notation, we shall think of curves #»γ ∈ X⃗ as being parametrized

by arclength on [0, ℓ( #»γ )] (where ℓ( #»γ ) is the length of the curve #»γ ) and satisfying

#»γ (t) = #»γ (ℓ( #»γ )) for t ≥ ℓ( #»γ ) or t = ∞. We may metrize X⃗ in three relevant ways:

Definition 2.1 (Metrics on X⃗). Denote the metric on X by d, and let #»γ 1,
#»γ 2 ∈ X⃗.
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• The synchronous distance between #»γ 1 and #»γ 2, denoted dsync, is

dsync(
#»γ 1,

#»γ 2) = sup
t
d( #»γ 1(t),

#»γ 2(t))

• The asynchronous distance between #»γ 1 and #»γ 2, denoted dAsync, is

dAsync(
#»γ 1,

#»γ 2) = inf
ρ,ρ′

sup
t
d( #»γ 1(ρ(t)),

#»γ 2(ρ
′(t)))

where ρ and ρ′ range over monotone surjections [0,∞) → [0,∞).

• The Hausdorff (pseudo-) distance between #»γ 1 and #»γ 2, denoted dHaus, is the

usual Hausdorff distance between the images #»γ 1([0,∞)), #»γ 2([0,∞)) in X.

The Hausdorff distance is a well-known metric on compact subsets of metric spaces,

though it fails to be a metric on the space of all paths since it can return a distance of

0 between two distinct paths (e.g. two copies of the same path, but with initial and

terminal points reversed). If we choose one orientation for each path, and consider

only paths which have finitely many self-intersections, then the Hausdorff distance

does yield a metric. The other two distances can be easily verified to give true metrics

on X⃗. The synchronous distance can be thought of as the maximal separation between

two travelers moving along two given paths at the same speed, while the asynchronous

distance is the optimal maximum separation between two such travelers when they are

not permitted to backtrack. Note that these definitions are meaningful for any maps

f : [0,∞) → X, and so we can talk about the ‘asynchronous distance’ between any

pair of functions f1, f2 : R → X, but we do need further assumptions (e.g. that the

maps be arclength-parametrized curves as above) to conclude that dsync and dAsync

give metrics and not pseudometrics.
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For our purposes, we will consider subsets of
#»

X which assign a unique path to

a pair of endpoints in X. In particular, we will often wish to fix a basepoint and

consider collections of paths having this basepoint as their initial point. The following

definition generalizes the notion of a path system on a graph introduced in [21] to

arbitrary geodesic spaces:

Definition 2.2 (Path System). A path system on X is a partial map P : X2 → X⃗

which is either a total map or has domain of the form {b} ×X for some b ∈ X, with

the property that #»γ = P (x, y) satisfies #»γ (0) = x and #»γ (∞) = y for all (x, y) in the

domain of P . We say P is two-sided if P is total, and we say P is one-sided if the

domain of P is of the form {b} ×X.

We will not worry too much about the distinction between one-sidedness and

two-sidedness, since a one-sided path system in a group can always be extended to

a two-sided path system by translation, and a two-sided path system can always be

restricted to a one-sided path system by a choice of basepoint.

In the theory of automatic groups, certain algorithmic objects associated to a

finitely generated group G (namely, word-difference automata) are shown to exist if

and only if an associated path system in the Cayley Graph of G satisfies a fellow-

traveling condition [8]. We will initially distinguish fellow-traveling conditions both by

the metrics used to characterize them and the functions which bound them. Then we

will show that, for geodesic spaces, we may assume the bounding function is linear.

Definition 2.3 (f -Bounded Path System). A path system P is synchronously

f -bounded if f : R → R is a nondecreasing function such that f(x) ≥ x for all x ∈ R,
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and

dsync(
#»γ 1,

#»γ 2) ≤ f(D)

for all #»γ 1,
#»γ 2 in the image of P , where

D = max{d( #»γ 1(0),
#»γ 2(0)), d(

#»γ 1(∞), #»γ 2(∞))}

Substituting the corresponding metric for dsync, we similarly define asynchronously

f -bounded and Hausdorff f -bounded.

Note that the condition that f(x) ≥ x for all x is satisfied automatically if f

bounds a path system synchronously or asynchronously, since, defining D as above,

we have

f(D) ≥ dsync(
#»γ 1,

#»γ 2) ≥ dAsync(
#»γ 1,

#»γ 2) ≥ D

as a consequence of the definitions of dsync and dAsync. We include this condition in the

definition to exclude pathological choices of f for Hausdorff-bounded path systems.

We will typically care about bounding functions only up to coarse Lipschitz

equivalence. Consequently, if a path system has a linear bounding function, we will

omit the function and simply say the path system is bounded:

Definition 2.4. A path system P is synchronously (asynchronously, Hausdorff)

bounded if it is synchronously (asynchronously, Hausdorff) f -bounded for some linear

function f .

As was mentioned previously (and will be proved shortly), we can always assume

f is linear if X is a geodesic space. Given P (x, y) and P (x′, y′) for an f -bounded path
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system P , we examine the sequence of paths

Pn := P ( #»γ xx′(nC), #»γ yy′(nC))

where C > 0, n ranges from 0 to N = ⌈max{d(x,x′),d(y,y′)}
C

⌉, and #»γ xx′ and #»γ yy′ are

geodesics which join x to x′ and y to y′, respectively. We have

dsync(Pi−1, Pi) ≤ f(max{d( #»γ xx′((i− 1)C), #»γ xx′(iC)), d( #»γ yy′((i− 1)C), #»γ yy′(iC))})

≤ f(C)

for all i = 1, · · · , N , since P is f -bounded. Hence,

dsync(P (x, y), P (y, y
′)) ≤ f(C)N

≤ f(C)(
1

C
max{d(x, x′), d(y, y′)}+ 1)

Defining the linear function f̄(d) = f(C)
C
d+f(C), this shows P is in fact f̄ -bounded,

and the same argument holds for asynchronously- or Hausdorff-bounded path systems.

In other words,

Lemma 2.5. Let X be a geodesic space with a path system P . Then P is bounded if

and only if it is f -bounded for some function f .
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2.2 Hausdorff-Bounded Path Systems are Asynchronously

Bounded

In this section, we prove a lemma that will greatly expedite the proofs in Section 5. In

that section, we use the Morse lemma for quasigeodesics in hyperbolic spaces to show

that a path system is asynchronously bounded. The conclusion of the Morse lemma,

however, only bounds the Hausdorff distance between quasigeodesic paths. It is shown

in [8] that, in finitely-generated groups, path systems given by regular normal forms

asynchronously fellow-travel if and only if they are Hausdorff-bounded and admit

what the authors refer to as a departure function. Their proof uses the automata

recognizing the normal form in a fairly essential way - here, we prove the more general

fact that any Hausdorff-bounded path system on a geodesic space is asynchronously

bounded if it admits a departure function (our definition of a departure function is

generalized to this broader case).

To begin with, we define an object associated to a pair of paths in a geodesic space

which, motivated by visual metaphor, we call a ladder:

Definition 2.6 (Ladder). Let X be a geodesic space, let α,m, n > 0 be given, and let

#»γ1,
#»γ2 ∈ X⃗. An (α,m, n)-ladder for ( #»γ1,

#»γ2) is a finite sequence (si, ti)
K
i=0 ⊂ R2 such

that

1. s0 = t0 = 0

2. sK ≤ ℓ( #»γ1) and tK ≤ ℓ( #»γ2)

3. si+1 − si ∈ [0,m] and ti+1 − ti ∈ [0, n], and either si+1 ≠ si or ti+1 ̸= ti, for all

i ∈ [0, K]
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4. d( #»γ1(si),
#»γ2(ti)) ≤ α for all i ∈ [0, K]

We will use the existence of certain ladders to prove Lemma 2.11. The following

lemma shows that the existence of a ladder bounds the asynchronous distance between

the associated paths:

Lemma 2.7. Let X be a geodesic space, and let #»γ1,
#»γ2 ∈ X⃗. If there exists an

(α,m, n)-ladder (si, ti)
K
i=0 for ( #»γ1,

#»γ2) with sK = ℓ( #»γ1) and tK = ℓ( #»γ2), then

dAsync(
#»γ1,

#»γ2) ≤
1

2
max{m,n}+min{m,n}+ α

Proof :

Choose any ρ, ρ′ such that ρ(i) = si and ρ′(i) = ti for all i (this is always possible

since the sequences (si)Ki=0 and (ti)
K
i=0 are monotone by the third condition of Definition

2.6). Let x ∈ (0, K) be given. Since (si, ti)
K
i=0 is an (α,m, n)-ladder, we know that

#»γ1(ρ(x)) lies on an arc of #»γ1 between #»γ1(s⌊x⌋) and #»γ1(s⌊x⌋+1) whose length does not

exceed m. Similarly, we see that #»γ2(ρ
′(x)) lies on an arc of #»γ2 between #»γ2(t⌊x⌋) and

#»γ2(t⌊x⌋+1) whose length does not exceed n. Assume without loss of generality that

m ≥ n, and that the arc of #»γ1 from #»γ1(ρ(x)) to #»γ1(s⌊x⌋) has length ≤ 1
2
m. By

assumption, there is some geodesic of length ≤ α from #»γ1(s⌊x⌋) to #»γ2(t⌊x⌋), and the

arc of #»γ2 connecting #»γ1(s⌊x⌋) to #»γ2(ρ
′(x)) has length ≤ n. Concatenating these three

curves gives a path of length ≤ 1
2
m+ n+ α = 1

2
max{m,n}+min{m,n}+ α between

#»γ1(ρ(x)) and #»γ2(ρ
′(x)), and so

d( #»γ1(ρ(x)),
#»γ2(ρ

′(x))) ≤ 1

2
max{m,n}+min{m,n}+ α
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for all x ∈ (0, K). If x = 0 or x ≥ K, then d( #»γ1(ρ(x)),
#»γ2(ρ

′(x))) ≤ α since (ρ(x), ρ′(x))

is a point on the ladder. The lemma is thus proved in the case that max{m,n} = m

and ρ(x) − s⌊x⌋ ≤ s⌊x⌋+1 − ρ(x), and this proof may be applied similarly to the re-

maining cases. □

A converse to this lemma is easy to show: if two paths asynchronously fellow-travel,

then any evenly-spaced sequence of points along them can be used as the ‘rungs’ of a

ladder:

Lemma 2.8. Let X be a geodesic space with #»γ1,
#»γ2 ∈ X⃗, and let α, β > 0. If

dAsync(
#»γ1,

#»γ2) ≤ α, then ( #»γ1,
#»γ2) admits a (β, β, α + β)-ladder (si, ti)

K
i=0 such that

si, ti ∈ βZ for all i ∈ {0, · · · , K}, sK = ℓ( #»γ1), and tK = ℓ( #»γ2).

Proof : Choose monotone surjections ρ1 and ρ2 such that d( #»γ1(ρ1(t)),
#»γ2(ρ2(t))) < β

for all t ≥ 0, and let K = ⌈max{ℓ( #»γ1),ℓ(
#»γ2)}

β
⌉. Then for all i ∈ {0, · · · , K}, we let si = iβ.

There must exist Ti ≥ 0 so that ρ1(Ti) = si, and so

d( #»γ1(si),
#»γ2(ρ2(Ti))) < α

Furthermore, there must be Ji ∈ {0, · · · , K} such that |Jiβ − ρ2(Ti)| < β, and hence

d( #»γ2(ρ2(Ti)),
#»γ2(Jiβ)) < β. Setting ti = Jiβ, the triangle inequality yields

d( #»γ1(si),
#»γ2(ti)) < α+ β

for all i ∈ {0, · · · , K}. A simple induction shows that we can choose the ti to be

monotone, and we can collapse any subsequences with (si, ti) = (si+1, ti+1) to obtain

the desired (β, β, α + β)-ladder. □
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We will prove Lemma 2.11 by appealing to a particular partial order on the

set of ladders for a pair of paths. The following lemma shows that this partially

ordered set contains maximal elements, which we need for our proof:

Lemma 2.9. Let X be a geodesic space, and take #»γ1,
#»γ 2 ∈ X⃗ and α,m, n ≥ 0. Denote

by H the set of all (α,m, n)-ladders on ( #»γ 1,
#»γ 2), and define a partial order ≤H on H

so that (si, ti)Ki=0 ≤H (s′i, t
′
i)

K′
i=0 if and only if sK ≤ s′K′ and tK ≤ t′K′. Then (H,≤H)

has a maximal element.

Proof:

We show that every chain in (H,≤H) has an upper bound, and the conclusion

follows by Zorn’s lemma. Let C be a chain in (H,≤H). If C is a finite set it has a maxi-

mum, so suppose C is infinite. We may project the elements of H to the poset (R2,≤R2)

(where (a, b) ≤R2 (c, d) ⇔ a ≤R c and b ≤R d) via π : (si, ti)
K
i=0 7→ (sK , tK), and we

see that π(C) is also a chain and has a least upper bound (xC , yC) ≤R2 (ℓ( #»γ 1), ℓ(
#»γ 2)).

We now construct an (α,m, n)-ladder (si, ti)
K
i=0 with (sK , tK) = (xC , yC):

Let ((sji , t
j
i )

Kj

i=0)
∞
j=0 be a sequence in C whose image under π converges in R2 to

(xC , yC), i.e. limj→∞(sjKj
, tjKj

) = (xC , yC). Since d( #»γ 1(s
j
i ),

#»γ 2(t
j
i )) ≤ α for all i, j ≥ 0,

we have d( #»γ 1(xC),
#»γ 2(yC)) ≤ α by continuity. Now choose j so that xC − sKj

∈ [0,m]

and yC − tKj
∈ [0, n], and define a new ladder (si, ti)

Kj+1
i=0 so that (si, ti) = (sji , t

j
i )

for 0 ≤ i ≤ Kj and (sKj+1, tKj+1) = (xC , yC). This satisfies the definition of an

(α,m, n)-ladder, and is an upper bound for C. □

Finally, we define what we mean by a ‘departure function’ for a path system
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on a geodesic space:

Definition 2.10 (Departure Function). Let P : X2 → X⃗ be a path system on X. We

say a function D : R → R is a departure function for P if, for all #»γ in the image

of P and all M, s, t > 0, we have d( #»γ (s), #»γ (s + t)) > M whenever t > D(M) and

s+D(M) ≤ ℓ( #»γ )

More succinctly, D is a departure function for a path system if no path in the

system contains a subpath of length greater than D(M) whose endpoints are within

distance M of each other. In other words, D controls the extent to which paths in the

system can ‘loop back’ on themselves. We shall assume, without loss of generality,

that D is strictly increasing and continuous.

We can now prove the desired result: Hausdorff-bounded path systems are asyn-

chronously bounded.

Lemma 2.11. Let X be a geodesic space, and let P be a path system on X. If

P is Hausdorff f-bounded and has departure function D, then P is asynchronously

(1
2
D(2f +D(2f)) +D(2f) + f)-bounded.

Proof:

Let #»γ 1,
#»γ 2 ∈ P , and let α = f(max{d( #»γ 1(0),

#»γ 2(0)), d(
#»γ 1(∞), #»γ 2(∞))}), so

that dHaus(
#»γ 1,

#»γ 2) ≤ α by assumption. We wish to show that dAsync(
#»γ 1,

#»γ 2) ≤

(1
2
D(2α+D(2α)) +D(2α) + α). By Lemma 2.7, this will follow if we can show that

( #»γ 1,
#»γ 2) admits an (α,D(2α+D(2α)), D(2α))-ladder (si, ti)

K
i=0 such that sK = ℓ( #»γ 1)

and tK = ℓ( #»γ 2).

Let H be the set of (α,D(2α+D(2α)), D(2α))-ladders on ( #»γ 1,
#»γ 2). Since we have

assumed f(x) ≥ x for all x, we know α ≥ d( #»γ 1(0),
#»γ 2(0)). This means the single-
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element sequence (0, 0) is an (α,D(2α+D(2α), D(2α))-ladder, and H is nonempty.

Since H is nonempty, it contains a ≤H-maximal element by Lemma 2.9. Let (si, ti)Ki=0

be such a maximal ladder.

We wish to show that (si, ti)
K
i=0 satisfies (sK , tK) = (ℓ( #»γ 1), ℓ(

#»γ 2)). By way of

contradiction, suppose that this is false - i.e. we have either sK < ℓ( #»γ 1) or tK < ℓ( #»γ 2).

We will treat the case in which ℓ( #»γ 1)− sK > D(2α+D(2α)) in detail, then briefly

address the small differences in the proof of the complementary case, which proceeds

along nearly the same lines.

We will refer to a pair (x, y) ∈ [0, ℓ( #»γ 1)] × [0, ℓ( #»γ 2)] as Hausdorff partners

if d( #»γ 1(x),
#»γ 2(y)) ≤ α. Note that the pairs (si, ti) in our maximal ladder are all

Hausdorff partners. For ease of notation, we will label the following intervals (keeping

track of which arcs of #»γ 1 and #»γ 2 they correspond to):

• I = (sK , sK +D(2α +D(2α))] (a subpath of #»γ 1)

• A = [0, tK) (a subpath of #»γ 2)

• B = [tK , tK +D(2α)) (a subpath of #»γ 2)

• C = [tK +D(2α), ℓ( #»γ 2)] (a subpath of #»γ 2)

These intervals are motivated by the following illustration, which may be used as

a visual aid for the ensuing proof:
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Figure 2.1. Two possible paths, with a maximal ladder and labeled intervals. Hausdorff
partners are joined by dotted lines.

We obtain the desired contradiction if we can produce a pair of Hausdorff partners

(s, t) ∈ I ×B \ {(sK , tK)}, since we can append this pair to our maximal ladder

(si, ti)
K
i=0 and obtain a strictly greater ladder under the order ≤H .

Since #»γ 1 and #»γ 2 are Hausdorff α-close, we know that every point on #»γ 1 has some

Hausdorff partner on #»γ 2, and vice-versa. Thus, the following four cases are exhaustive:

1. Some point in I has a Hausdorff partner in B, or

2. Every Hausdorff partner of every point in I lies in C, or

3. Every Hausdorff partner of every point in I lies in A, or

4. There exists both a point of I with a Hausdorff partner in A and a point of I

with a Hausdorff partner in C.

We now show that, in each of these three cases, we can ‘advance’ our purportedly

maximal ladder to create a strictly greater one.

• Case 1: There exists s ∈ I such that s has a Hausdorff partner t ∈ B. As

mentioned above, this produces the desired contradiction immediately.
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• Case 2: For every s ∈ I, every Hausdorff partner t of s lies in C. Writing

s = sK + ϵ, we have d( #»γ 1(s),
#»γ 1(sK)) ≤ ϵ, and so

d( #»γ 2(t),
#»γ 2(tK)) ≤ d( #»γ 2(t),

#»γ 1(s)) + d( #»γ 1(s),
#»γ 1(sK)) + d( #»γ 1(sK),

#»γ 2(tK))

≤ 2α + ϵ

Since D is a departure function for #»γ 2, this means that t − tK ≤ D(2α + ϵ).

Furthermore, since we have assumed that t ∈ C, we also have t− tK ≥ D(2α).

Letting ϵ→ 0, we conclude that (sK , tK +D(2α)) must be Hausdorff partners.

We may append (sK , tK +D(2α)) to (si, ti)
K
i=0 to obtain a ladder in H strictly

greater than our maximal ladder: a contradiction.

• Case 3: This case is impossible, since sK+D(2α+D(2α)) must have a Hausdorff

partner in C. To see this, let s > sK + D(2α + D(2α)) be given. If s has a

Hausdorff partner t ∈ A, then by the definition of a ladder there exists a point

(si, ti) on our maximal ladder such that d( #»γ 2(t),
#»γ 2(ti)) ≤ d(2α). Then we have

d( #»γ 1(s),
#»γ 1(si)) ≤ d( #»γ 1(s),

#»γ 2(t)) + d( #»γ 2(t),
#»γ 2(ti)) + d( #»γ 2(ti),

#»γ 2(si))

≤ 2α +D(2α)

By the definition of a departure function, we must have s− si ≤ D(2α+D(2α)).

However, we have assumed that s > sK + D(2α + D(2α)), and so s − si >

D(2α + D(2α)), since si ≤ sK . We conclude that s cannot have a Hausdorff

partner in A.

Now we take any sequence (sj)
∞
j=0 converging to sK +D(2α+D(2α)) from above.
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By assumption, there is a corresponding sequence

(tj)
∞
j=0 ⊆ B ∪ C

such that (sj, tj) are Hausdorff partners for all j. Passing to a converging

subsequence of (tj)∞j=0, we obtain a Hausdorff partner for sK +D(2α+D(2α))

which also lies outside A, since B ∪ C is closed.

• Case 4: There exist Hausdorff partners (s, t) ∈ I×A and (s′, t′) ∈ I×C. Let s′′

be the supremum of points in I with Hausdorff partners in A. By approaching s′′

from below and passing to a subsequence as in the preceding case, we conclude

that s′′ has a Hausdorff partner tA ∈ A. Furthermore, since every s > s′′ has

a Hausdorff partner in C, we obtain a Hausdorff partner tC ∈ C for s′′. Thus

s′′ has a Hausdorff partner tA < tK and a Hausdorff partner tC ≥ tK +D(2α).

Now we have

d( #»γ 2(tA),
#»γ 2(tC)) ≤ d( #»γ 2(tA),

#»γ 1(s
′′)) + d( #»γ 1(s

′′), #»γ 2(tC))

≤ 2α

Since tC − tA > D(2α), this is a contradiction.

Having exhausted all possible cases, we conclude that the maximal ladder (si, ti)Ki=0

must satisfy ℓ( #»γ 1)− sK ∈ [0, D(2α+D(2α))]. If ℓ( #»γ 2)− tK > D(2α), we may repeat

the cases above almost identically to obtain the same contradiction: either sK and tK

can be advanced by a small amount (Case 1), d( #»γ 1(sK),
#»γ 2(tK +D(2α))) ≤ α (Case

2), or we can apply the fact that (ℓ( #»γ 1), ℓ(
#»γ 2)) is a pair of Haudsorff partners to find

s ∈ (sK , ℓ(
#»γ 1)] with two Hausdorff partners t, t′ such that t ≤ tK ≤ t′, t′−tK ≤ D(2α),
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and the ladder can be extended to (s, t′). We conclude that ℓ( #»γ 2)− tK ≤ D(2α), and

note that our ladder can now be extended to include (ℓ( #»γ 1), ℓ(
#»γ 2)). Thus a maximal

ladder in H must satisfy sK = ℓ( #»γ 1) and tK = ℓ( #»γ 2). □
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Chapter 3: Quasi-Isometry and

Hyperbolicity

This section provides a minimal introduction to quasi-isometry, hyperbolicity, and

metric products. Most of the following material is elementary in the theory of

hyperbolic geodesic spaces, a comprehensive introduction to which may be found in

[4], with the exception of Sections 3.2 (which contains observations about the behavior

of bounded path systems under quasi-isometry) and 3.5 (which contains elementary

facts about metric products and quotes a theorem of Bowditch).

3.1 Quasi-Isometry

We begin by defining the notion of a quasi-isometry, a coarse generalization of

isometry which permits the metric to be perturbed within fixed linear bounds:

Definition 3.1. Let (X, dX) and (Y, dY ) be metric spaces, and let λ, c ≥ 0 be given.

We say a map ϕ : X → Y is a (λ, c) quasi-isometry if the following hold:

1. 1
λ
dY (ϕ(x), ϕ(x

′))− c ≤ dX(x, x
′) ≤ λdY (ϕ(x), ϕY (x

′)) + c for all x, x′ ∈ X.

2. For all y ∈ Y , there exists x ∈ X such that dY (ϕ(x), y) < c
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Note that we are adopting the convention that the ‘coarse surjectivity constant’

in condition 2 is identical with the additive constant of quasi-isometry. This is not a

universal convention, but it is commonly used and conveniently keeps the number of

distinctly named constants to a minimum.

Essentially, a quasi-isometry is an isometry modulo some controlled distortion and

bounded perturbation. In particular, while a quasi-isometry ϕ : X → Y does not

necessarily need to be a bijection, it will always admit a quasi-inverse - that is, a

quasi-isometry ϕ̄ : Y → X such that ϕϕ̄ and ϕ̄ϕ are at bounded distance from the

identity maps on Y and X, respectively. A quasi-inverse is not necessarily unique, and

can be constructed by letting ϕ̄(y) be any x satisfying condition 2 in the definition

above for all y ∈ Y .

As is the case with isometries, the composition of two quasi-isometries is again a

quasi-isometry, though its constants λ and c may be different. One consequence of this

is that quasi-isometries induce an equivalence relation on metric spaces, so that it is

meaningful to talk about the ‘quasi-isometry class’ of a given metric space, or to deal

with such equivalence classes instead of the particular metric spaces they comprise.

We run into trouble, however, when we try to fix the quality of the quasi-isometries

under consideration; it is not generally the case that the composition of two (λ, c)

quasi-isometries is again a (λ, c) quasi-isometry.

Thus, when we speak in later sections of a group acting on a space by uniform

quasi-isometries, or more generally ‘quasi-acting’ on a metric space, we mean much

more than that the group is generated by uniform-quality quasi-isometries. We mean

additionally that all these quasi-isometries conspire among themselves to compose

without disturbing the constants λ and c. This means, for example, that a group

of uniform-quality quasi-isometries cannot contain elements that uniformly dilate or
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contract the original metric (e.g. non-isometric homotheties in affine n-space), even

though such maps are prototypical examples of quasi-isometries in general.

The following famous theorem concerning group actions and quasi-isometries is

central to geometric group theory, and will be needed in later sections. Recall that an

action of a group G on a metric space X is said to be geometric if the following hold:

1. G acts on X by isometries

2. For all compact sets K ⊆ X, we have #{g ∈ G | g ·K ∩K ̸= ∅} <∞

3. There exists K ⊆ X compact such that G ·K = X

In fact, the following result can be generalized fairly substantially while preserving

the same conclusion. In particular, we can let K be bounded instead of compact in

condition 3, and can even relax the isometric action in condition 1 to a quasi-action.

We present the theorem here in its most well-known form, and will address any

generalizations if they become relevant.

Theorem 3.2 (S̆varc-Milnor Lemma). Let X be a proper geodesic space, and let G be

a group acting on X geometrically. Then G is finitely generated, and the orbit map

g 7→ g · x, for any basepoint x ∈ X, is a quasi-isometry from G (metrized by the word

metric with respect to any finite generating set) to X.

The interested reader may find a proof for this famous theorem in Part I, Proposition

8.19 of [4].
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3.2 Quasi-Isometries and Path Systems

If two geodesic spaces X and Y are quasi-isometric, it is natural to wonder how

the systems of paths
#»

X and
#»

Y are related. In particular, what can we say about

bounded path systems on X, if we know Y admits bounded path systems? It turns

out that the answer varies depending on whether you are interested in synchronously

or asynchronously bounded path systems. Asynchronously bounded path systems are

well-behaved under quasi-isometry, as illustrated by the following lemma:

Lemma 3.3. Suppose X and Y are geodesic spaces, ϕ : X → Y is a (λ, c)-

quasi-isometry, and #»γ 1,
#»γ 2 are curves in X such that ϕ #»γ 1 and ϕ #»γ 2 are (monotone

reparametrizations of) curves in Y . If dasync(ϕ #»γ 1, ϕ
#»γ 2) < B, then dasync(

#»γ 1,
#»γ 2) ≤

λB + 3c.

Proof : We can choose a quasi-inverse ϕ̄ for ϕ so that d(ϕ̄ϕx, x) ≤ c for all x ∈ X.

Now we choose reparametrizations ρ, ρ′ so that dY (ϕ #»γ 1ρ(t), ϕ
#»γ 2ρ

′(t)) ≤ B for all t,

and we see that

dX(
#»γ 1ρ(t),

#»γ 2ρ
′(t)) ≤ dX(ϕ̄ϕ

#»γ 1ρ(t), ϕ̄ϕ
#»γ 2ρ

′(t)) + dX(
#»γ 1ρ(t), ϕ̄ϕ

#»γ 1ρ(t))

+ dX(
#»γ 2ρ

′(t), #»γ 2ρ
′(t))

≤ λB + 3c

□

Note that it is not generally the case that the image of a rectifiable curve under a

quasi-isometry is again a curve. This does not prove to be an obstruction, however,
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and we lose no generality by assuming that ϕ maps curves to curves. This is because

the asynchronous boundedness of a path system is equivalent to the existence of

uniform-quality ladders for nearby pairs of paths (see Lemmas 2.7 and 2.8). If we have

a path #»γ ∈ #»

X and ϕ : X → Y is a quasi-isometry, then we can take any sequence

(ti)
K
i=0 that gives a uniform discretization of #»γ (as in the proof of Lemma 2.8) and

associate to #»γ any piecewise-geodesic interpolation #»γϕ of the discrete path given by the

sequence (ϕ(ti))
K
i=0. Thus while ϕ #»γ may not be a curve itself, it does asynchronously

fellow-travel the curve #»γϕ with bound depending only on the quasi-isometry ϕ and the

coarseness of the discretization (ϕ(ti))
K
i=0. This allows us to conclude

Proposition 3.4. Let X and Y be geodesic spaces, ϕ : X → Y a quasi-isometry, and

P an asynchronously bounded path system on X. Then there exists an asynchronously

bounded path system Pϕ on Y , such that ϕP (x, y) and Pϕ(ϕ(x), ϕ(y)) are at uniformly

bounded asynchronous distance for all x, y ∈ X.

Finally, it should be pointed out that synchronously bounded path systems do not

exhibit such nice behavior under quasi-isometry. This is one of several compelling

reasons to think of the asynchronous distance as the ‘natural’ notion for applications

of path geometry in geometric group theory.

By way of illustration, consider the following two spaces, with their respective

intrinsic metrics (i.e. the distance between two points is the length of the shortest

path connecting them):

• A := [0, 1]× [0,∞) ⊂ R2

• B := A \
⋃

n∈NN(1, (2n− 1, 0))◦

We see that A has a synchronously bounded path system P given by geodesics,

and that the identity map gives a quasi-isometry B → A. However, if we take a path
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in P and follow the procedure from Proposition 3.4 - discretizing paths with steps

of uniform size, chasing them through the quasi-isometry, and joining them up by

geodesic segments - we often get a path that does not synchronously fellow travel the

original.

Figure 3.1. Synchronously fellow-traveling paths in A with quasi-isometric images in
B, constructed as in the proof of Proposition 3.4 using steps of length 2

3.3 Hyperbolic Spaces

The notion of hyperbolicity for general metric spaces was introduced by Mikhail

Gromov in the 1980s [10,11], and is defined in its greatest generality in terms of the

Gromov product. Since we are interested in geodesic spaces, we will use an equivalent

characterization in terms of geodesic triangles. There are several characterizations of

hyperbolicity for geodesic spaces, but the following definition has become standard:

Definition 3.5. Let X be a geodesic space, and let δ > 0 be given. We say X

is δ-hyperbolic if each side of every geodesic triangle in X is contained in the

δ-neighborhood of the other two sides.

This ‘thin triangle condition’ means that triangles in hyperbolic spaces approximate
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tripods at large scales. One consequence of this is that every asymptotic cone (a

construction that formalizes the idea of ’zooming out to infinity’ when looking at a

metric space) of a hyperbolic space is an R-tree.

Hyperbolic spaces are fantastically well-behaved in many ways. Immediately

relevant to us are the two classic results in the field: the Morse lemma, and the

local-to-global property for quasi-geodesics. We begin with the Morse Lemma ([4],

Part III, Theorem 1.7):

Lemma 3.6 (Morse Lemma). Let X be a δ-hyperbolic geodesic space, and let λ, c ≥ 0.

Then there exists a constant M > 0 such that, for any geodesic #»γ1 and (λ, c) quasi-

geodesic #»γ2 such that #»γ1(0) =
#»γ2(0) and #»γ1(∞) = #»γ2(∞), we have

dHaus(
#»γ1,

#»γ2) < M

In other words, quasi-geodesics with common endpoints have images contained

within an M -neighborhood of each other., where M only depends on the quality of the

quasi-geodesics. In light of the discussion in Section 2, we can restate this lemma both

quantitatively and in terms of the asynchronous distance between quasi-geodesics:

Lemma 3.7. In a δ-hyperbolic geodesic space X, the asynchronous distance between

any pair of (λ, c) quasi-geodesics #»γ1,
#»γ2 is bounded by a linear function of the distance

between their endpoints. In other words, any path system on X consisting of (λ, c)

quasi-geodesics is asynchronously bounded.

Proof : Because the departure function for a path system of fixed-quality quasi-

geodesics is linear, Lemma 2.11 shows that the asynchronous distance between #»γ1

and #»γ2 is a linear function of the Hausdorff distance between their images. We
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may apply the Morse lemma to #»γ1 and the concatenated path # »γL
#»γ2

# »γR, where # »γL

and # »γR are geodesics joining the endpoints of #»γ1 and #»γ2. Note that # »γL
#»γ2

# »γR is a

(λ, c+ d)-quasigeodesic, where d is the maximal distance between pairs of correspond-

ing endpoints. Referencing [9], we find that the Hausdorff distance between #»γ1 and #»γ2

is bounded above by 184λ2(c+ d+ δ), which is linear in d. □

The second foundational result we need to cite is the local-to-global property

of quasi-geodesics in hyperbolic spaces. A k-local geodesic is a curve #»γ such that

d( #»γ (s), #»γ (t)) = |s− t| whenever |s− t| < k and s, t ∈ [0, ℓ( #»γ )]. In hyperbolic spaces,

k-local geodesics for sufficiently large k are guaranteed to be quasi-geodesics whose

quality depends on δ and k ([4], Part III, Theorem 1.13):

Theorem 3.8. Let X be a δ-hyperbolic geodesic space, and let k > 8δ. Then every

k-local geodesic #»γ is a global (k+4δ
k−4δ

, 2δ) quasi-geodesic.

3.4 The Gromov Boundary

Mostly, these nice properties of hyperbolic spaces can be derived from the behavior of

geodesics and geodesic rays - that is, maps #»γ : [0,∞) → X such that the restriction

of #»γ to any closed, bounded interval is a geodesic. Significantly for the present

discussion, geodesic rays in hyperbolic spaces allow us to define a nice boundary,

whose topology is intimately related to the internal geometry of X:

Definition 3.9. Let X be a hyperbolic space. The Gromov boundary ∂X of X is

the set of equivalence classes of geodesic rays in X with a fixed basepoint, where two

rays are equivalent if they are at bounded synchronous distance from each other.
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The Gromov boundary of a proper hyperbolic geodesic space X can be equipped

with a topology that makes it a compact, metrizable space. A basis for this topology

is given by the set of ‘cones’, or sets of equivalence classes of geodesics which have

representatives identical on some interval [0, r]. Furthermore, quasi-isometries of X

induce homeomorphisms of ∂X, and this correspondence can be exploited to control

the behavior of quasi-isometries on X.

We will only need the Gromov boundary to define the notion of a ‘bushy’ hyperbolic

space, which supports a critical theorem used in Section 5. Before we can give this

definition, we need to introduce one more concept: that of a coarse median, as

defined by Bowditch in [2]. The true definition is a coarsening of the notion of a

median function on a so-called ‘median space’ and applies to a broad class of metric

spaces. For simplicity, we only define coarse median maps in the context of hyperbolic

spaces.

Definition 3.10. Let X be a δ-hyperbolic geodesic space. A coarse median map on

X is a map µ : X3 → X such that the image of any triple (x, y, z) ∈ X3 lies in the

intersection of the δ-neighborhoods of the sides of the geodesic triangle xyz.

Recall that hyperbolic geodesic spaces are spaces in which triangles are ‘coarsely

tripods’. A coarse median map, then, maps the corners of such a coarse tripod to its

‘coarse center’. If we allow the corners of a geodesic triangle to escape ‘to infinity’

along geodesic rays, we can extend the coarse median to the Gromov boundary. With

this fact in hand, we introduce the following definition from [3] :

Definition 3.11. A δ-hyperbolic geodesic space X is said to be bushy if the coarse

median map on the boundary, µ|∂X : (∂X)3 → X ∪ ∂X, is coarsely surjective onto X

(i.e. has image at bounded Hausdorff distance from X).
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We will use this definition in the next section.

3.5 Products of Hyperbolic Spaces

The main results in this paper concern asynchronous automatic structures on groups

quasi-isometric to products of hyperbolic spaces. In this section, we briefly go over

the properties of metric products, with emphasis on the special properties enjoyed by

products of hyperbolic spaces.

3.5.1 Equivalent Product Metrics

Given a direct product of metric spaces (X1, d1), (X2, d2), · · · (XN , dN) and p ∈ N, we

define the p-product metric

dp((x1, · · · , xN), (y1, · · · , yN)) = (
N∑

n=1

dn(xn, yn)
p)

1
p

for any two points (x1, · · · , xN), (y1, · · · , yN) ∈
∏N

n=1Xn. Evaluating this expression

in the limit as p→ ∞ gives the sup metric

d∞((x1, · · · , xN), (y1, · · · , yN)) = max{d(xn, yn) | n ∈ {1, · · · , N}}.

Note that the metric topology arising from any of these metrics coincides with the

product topology, as we would expect for a ‘product metric’.

We say two metrics d and d′ on a common space X are equivalent metrics if
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they are Lipschitz equivalent - that is, there exists C > 0 so that

1

C
d(x, y) ≤ d′(x, y) ≤ Cd(x, y)

for all x, y ∈ X. Since we clearly have

d∞((x1, · · · , xN), (y1, · · · , yN)) ≤ dp((x1, · · · , xN), (y1, · · · , yN))

≤ Nd∞((x1, · · · , xN), (y1, · · · , yN))

for all (x1, · · · , xN), (y1, · · · , yN) ∈
∏N

n=1Xn and all p ∈ N, we can conclude that all

of the product metrics defined above are equivalent. Importantly, this means that

the quasi-isometry class of the product
∏N

n=1Xn is independent of which of the above

product metrics we choose to assign it. We will largely be concerned with properties

of quasi-isometry classes of groups, so we will simply refer to ‘the’ product metric in

later sections.

3.5.2 The Geometry of Coordinate Factors

If X =
∏N

i=1Xi is a product of metric spaces, then for any x ∈ X and i ∈ {1, · · · , N},

there is a ‘canonical’ copy of Xi isometrically embedded in X which contains x. We

call this copy, denoted σx
i , the i-th coordinate factor at x and obtain it by setting

σx
i = {y ∈ X : πj(y) = πj(x) ∀j ̸= i}

If a factor Xi is hyperbolic, it is within the corresponding coordinate factor that

hyperbolic behavior will appear in the product. This is because, as mentioned, the

coordinate factors are all isometrically embedded. In the context of a product of

35



geodesic spaces, this means that the induced metric on a coordinate factor as a

subspace coincides with its intrinsic metric. Hence, the geodesics and quasi-geodesics

of X which remain within a single, hyperbolic coordinate factor will be bound by the

hyperbolic geometry of that factor.

Furthermore, this is true of any fixed neighborhood of a coordinate factor as well,

up to possibly inflating the value of δ. This is because points in coordinate factors

are joined by geodesics lying in those coordinate factors, and these geodesics remain

geodesic after embedding the coordinate factor into its neighborhood (with its intrinsic

metric). This yields the following theorem:

Theorem 3.12. Let X be a geodesic space, H a δ-hyperbolic geodesic space, x ∈ X×H

a point in their product, and η > 0 some fixed constant. Then the η-neighborhood of

σx
H is a δ′-hyperbolic space, where δ′ depends only on δ and η.

Proof : The inclusion ι : H → N(η, σx
H) is an isometric embedding by the observa-

tion above. This is in fact a quasi-isometry, since dHaus(ι(H), N(η, σx
H)) = η, and the

constant of hyperbolicity for the target space depends only on the hyperbolicity con-

stant of H and the coarse-surjectivity constant δ (since the ‘quasi-isometry constants’

of the isometry ι are (1, 0)). □

3.5.3 Products of Hyperbolic Spaces

We now have the terminology to discuss the main result that we will apply to control

the behavior of a group quasi-isometric to a product of hyperbolic spaces. This essence

of this theorem is originally due to a publication of Kapovich, Kleiner, and Leeb [17],

but we will use a refinement of the original result by Bowditch [3] as the latter’s

hypotheses are slightly more general and require less exposition.
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The essence of the following theorem is that quasi-isometries from a product

of non-elementary hyperbolic spaces to itself must coarsely decompose as products

of quasi-isometries in the factors, up to permutation of quasi-isometric factors. In

the language we have developed so far in the present paper, this means that self

quasi-isometries of hyperbolic products, composed with an appropriate permutation of

coordinates, coarsely preserve coordinate factors. First, we repeat Bowditch’s theorem

in its entirety:

Theorem 3.13 (Bowditch). Suppose that for i = 1, ..., n, we have hyperbolic spaces

Λi and Λ′
i. Suppose that 1 ≤ q ≤ p ≤ n, such that for all i ≤ p, Λi is bushy and for

all j > q, Λ′
j is quasi-isometric to the real line. Let L =

∏n
i=1 Λi and L′ =

∏n
i=1 Λ

′
i.

Suppose that ϕ : L → L′ is a quasi-isometric embedding. Then p = q. Moreover,

after permuting the indices 1, ..., p, there are quasi-isometric embeddings ϕi : Λi → Λ′
i

for i ≤ p, and a quasi-isometry, ϕu :
∏n

i=p+1 Λi →
∏n

i=p+1 Λ
′
i, for each u ∈

∏p
i=1 Λi

such that for all x ∈ L, ϕ(x) is a bounded distance from ψ(u), ϕu(v), where u, v are

respectively projections of x to the first p and last n− p coordinates, and where ψ is a

direct product of the maps ϕi for i ≤ p, and the bound depends only on the parameters

of the hypotheses.

The key application of this theorem is the following observation:

Corollary 3.14. Let X =
∏N

i=1Hi be a product of hyperbolic geodesic spaces, and

let ϕ : X → X be a quasi-isometry whose induced permutation on the factors of X

is trivial. Then ϕ splits as a product of self-quasi-isometries of the factors Hi, up to

some bounded error depending only on the space X and the quality of ϕ. In particular,

there exists α > 0 (depending only on the constants of hyperbolicity, quasi-isometry,

and bushiness) such that diam(πjϕ(σ
x
i )) < α for all x ∈ X and all i, j ∈ {1, · · · , N}
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such that i ̸= j.

Given any group of G of quasi-isometries of X, we can always pass to a finite-index

subgroup of G whose elements induce only the trivial permutation on the factors. The

finite-index subgroups of G are quasi-isometric to G, so we will assume going forward

that our quasi-isometries do not permute factors, and thus satisfy Corollary 3.12.
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Chapter 4: Regular Languages and

Automatic Groups

Let G be a group generated by a finite set of group elements A ⊆ G. For the sake

of simplicity, we shall always assume that A−1 = A. Associated to the group G is a

graph, the Cayley Graph of G, whose edge relation effectively encodes the entire

structure of the group.

Definition 4.1 (Cayley Graph). Let G be a finitely generated group with generating

set A. The Cayley Graph of G with respect to A, denoted Cay(G,A) or simply

Cay(G) if the generating set is understood, is the labeled directed graph with vertex set

V = G and labeled edge set E = {(g, ga, a) | a ∈ A} (we understand the edge (g, ga, a)

to be directed from g to ga and labeled by a).

The set of finite ordered tuples of elements of A, called strings or words over

the alphabet A, is denoted A∗, and the set of strings of length n will be denoted An.

We shall use the simplified notation a1...am to indicate the ordered tuple (a1, ..., am).

The set A∗ admits a natural binary operation in the form of concatenation, i.e. the

operation (a1...am, a
′
1...a

′
n) 7→ a1...ama

′
1...a

′
n. Under this operation, the set A∗ has the

structure of a monoid with the addition of an identity element ϵ ̸∈ A, called the
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empty word or the empty string. This monoid A∗ is also called the free monoid

generated by the set A.

There is a natural monoid homomorphism E : A∗ → G which maps each letter

a ∈ A to the group element a ∈ A ⊆ G and maps the empty string to the identity of

G. We refer to E as the evaluation homomorphism, evaluation map, or simply

evaluation. We will represent the vertices of Cay(G,A) (i.e. the elements of G) by

choosing a normal form for G in A∗. For us, a normal form will always be a subset

L ⊂ A∗ such that

• E(L) = G, and

• There exists n ∈ N such that #(E−1(g) ∩ L) ≤ n for all g ∈ G

It is not uncommon for authors to drop the second condition in this definition, in

which case the normal forms we treat here would be specified as (uniformly) finite-

to-one. Assuming from the outset that all of our normal forms are finite-to-one will

save us a lot of technical headaches later on, and will not in any way limit the use

of this concept for our purposes. In most cases, it is safe to assume that a normal

form consists of unique representatives - in the particular case of automatic groups,

defined in a later section, the generality of this assumption is in fact a theorem [8].

4.1 Regular Languages and Finite-State Automata

A subset L of the free monoid A∗ is also called a language over the alphabet A. We

shall principally concern ourselves with regular languages, as they are the most

restrictive and, consequently, computationally simple. There are many equivalent

characterizations of regular languages. The most compact, and hence most valuable
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to computer scientists, is the regular expression. A regular expression is a finite

string whose characters consist of the alphabet A over which a language is to be

defined, parentheses and commas for bracketing and listing, the alternation symbol

∨ (understood as indicating set union or logical disjunction), and the Kleene star ∗.

We have already seen the Kleene star applied to the alphabet A to yield the set A∗ of

all finite words over A - in general, the Kleene star of a set of strings S is the set of

all finite strings which can be obtained by concatenating elements of S.

Example 4.2. The following regular expression describes the language L of all strings

over the alphabet {a, b, c} which contain an even number of occurrences of the letter a:

(b ∨ c)∗(a(b ∨ c)∗a)∗(b ∨ c)∗

We may read this expression as beginning with any string over {b, c}, followed by

arbitrarily many pairs of a’s with any string over {b, c} between them, followed by any

string over {b, c}.

A more comprehensive perspective on regular languages classifies them by the

type of Turing machine that recognizes them. These machines are called finite-state

automata, and can in fact be thought of as forming an essential component of every

Turing machine.

Definition 4.3. A finite-state automaton M is a tuple M = (A,Q, S, C, τ ) where

A is a finite alphabet, Q is a finite set called the set of states, S ⊆ Q is the set of

start states, C ⊆ Q is the set of accept states, and τ : Q× (A ∪ {ϵ}) → 2Q (where ϵ

is the empty word of A∗) is the transition function. We say the language L ⊆ A∗

is accepted or recognized by the finite-state automaton M if and only if L consists
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precisely of strings a1...an such that there exists a sequence of states Q1, ..., Qm, plus

a subset V ⊆ {1, · · · ,m} of cardinality n, satisfying

1. Q1 ∈ S

2. Qm ∈ C

3. Qi+1 ∈ τ(ai, Qi) for all i ∈ V , and Qi+1 ∈ τ(ϵ, Qi) otherwise.

It is usually more convenient to describe a finite-state automaton as a finite directed

graph with vertex set Q, having a set of distinguished ‘start’ vertices and a set of

distinguished ‘accept’ vertices. We have an edge labeled a from Q1 to Q2 if and only

if Q2 ∈ τ(a,Q1). The accepted language is then the language of labels of directed

paths beginning at the start vertex and ending at an accept vertex. The illustration

below is the state graph for an automaton recognizing the language above:

Figure 4.1. The state graph for an automaton recognizing the regular expression in
Example 4.2

It is this more visual understanding of finite-state automata that we shall prefer in

subsequent discussion, as it allows for intuitive visual proofs.
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4.1.1 Properties of Regular Languages

Regular languages satisfy many useful closure properties. We will by no means exhaust

all of them here, but we will go over a few that are relevant to the preceding and

following discussion.

Alternation If L and L′ are regular languages, then their union L′′ = L ∪ L′ is

also a regular language (in the parlance of regular expressions, we referred to this as

alternation and notated it L∨L′). If M and M′ are finite state automata recognizing

L and L′, respectively, then we can get an automaton M′′ recognizing L′′ by simply

taking as a state graph the disjoint union of the state graphs of M and M′, keeping

start and accept states as well.

Complementation Given a language L over an alphabet A, its complement A∗\L

is its set-theoretic complement in A∗. Given a finite-state automaton M recognizing

A∗ \ L, the automaton recognizing A∗ \ L is constructed in two steps. First, we

complete the automaton M by adding a new state F , often called a fail state, and

setting τ(a,Q) = {F} wherever we had τ(a,Q) = ∅ before. In terms of state graphs,

this corresponds to adding a new vertex with incident loops labeled by each letter

in A, and an incoming edge labeled a from every state which previously lacked an

outgoing edge labeled a. Once we complete M to an automaton M′ which recognizes

L and has nonempty transitions for all nonempty inputs, we finish constructing the

automaton recognizing A∗ \ L by changing the accept set C to Q \ C; that is, by

reversing the roles of accept and non-accept states.

With procedures for handling alternation (i.e. disjunction) and complementation

(i.e. negation), we have an effective procedure for building a finite-state automaton
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Figure 4.2. An automaton recognizing L = {a2mbn|m,n ∈ N} is completed by adding
a fail state.

which recognizes the language of words w satisfying any propositional sentence whose

atomic formulas are containment of w in some fixed regular language.

Concatenation If L and L′ are regular languages, their concatenation LL′ is the

language {vw|v ∈ L, w ∈ L′}. Given deterministic finite-state automata M and M′

recognizing L and L′, respectively, we obtain an automaton recognizing LL′ by taking

the disjoint union of their state graphs and adding an edge labeled ϵ from every accept

state of M to the start state of M′.

Kleene Star Similar to the construction for concatenation, we can construct an

automaton recognizing the Kleene star of a finite collection of regular languages,

{L1, ...,Ln}∗, by taking the disjoint union of the state graphs of deterministic finite-

state automata M1, ...,Mn recognizing L1, ...,Ln, respectively, and adding to the

resulting state graph an edge labeled ϵ from each accept state of Mi to the start state

of Mj, for all i ̸= j.

44



Figure 4.3. Concatenation of automata

4.1.2 Regular Languages and Local Recognition

A subclass of regular languages that will be of interest to us is what we shall refer

to as locally recognized languages. By ‘locally recognized languages’, we refer to

those languages whose membership can be checked by looking at a candidate word

only through a sliding ‘window’ of finite length. More precisely,

Definition 4.4. Let A be a finite alphabet, L ⊆ A∗ a language over A, and k > 0.

We say L is k-locally recognized if and only if there exist finite sets S,C ⊆ A∗ and

R ⊆ Ak (called, respectively, the prefixes, suffixes, and infixes of L) such that L is

the set of words w ∈ A∗ satisfying the following:

1. w ∈ SA∗C

2. For every x ∈ Ak such that w = uxv for some u, v ∈ A∗, we have x ∈ R

If there exists k > 0 such that L is k-locally recognized, we say L is locally recognized.
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Figure 4.4. Automaton recognizing the Kleene star of a pair of languages

Sometimes this notion is defined so that R is a set of forbidden infixes rather than

allowed ones. This definition is equivalent, and we can translate between them by

complementation in Ak.

Proposition 4.5. All locally recognized languages are regular.

Proof : Let L satisfy definition 4.4 with respect to k > 0,S,C ⊂ A∗, and R ⊆ Ak.

We will first show that the language

L′ = {w ∈ A∗| every length k infix of w is in R, or w is a prefix of an element of R}

is regular. The result will then follow, since L = L′ ∩ SA∗C, and the intersection of

two regular languages is regular.

We will build a finite-state automaton M′ recognizing L′. First, we create a state

for each word w ∈ R. Then we create a start state together with enough new states to

draw a path labeled by w from the start state to the state w, for each w ∈ R. Then,
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for each a ∈ A and w = w1...wn ∈ R, we set τ(a, w) = {w2...wna} ∩R. All states are

accept states.

Figure 4.5. M′ when A = {a, b} and R = A3 \ {aaa, bbb}

It is now easy to check that M′ recognizes L′. □

Locally recognized languages occur frequently in normal forms that arise from appli-

cations in geometric group theory. Of particular note is the 2006 work of Świa̧tkowski

[21] which helpfully generalized earlier results on the automaticity of certain groups;

this result has seen much recent reference in works by Chalopin, Osajda and others

[7, 14] on injective spaces and Helly graphs.

4.2 Multi-Tape Automata and Automatic Relations

The notion of an automatic group was defined and elaborated on in a seminal

monograph of Cannon, Epstein, Holt, Levy, Paterson, and Thurston [8], and proofs for

the theorems in this section can be found there (we also provide our own proofs here,

using the language of path systems developed in the preceding chapters). Automatic

groups satisfy an impressive list of useful properties related to complexity, and admit
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efficient algorithms for resolving group-theoretic questions. Given a group G generated

by a finite set A, an automatic structure on G is a regular language in A∗ which

gives a finite-to-one normal form for G, and such that the relation

Ra = {(w, v) ∈ A∗ : w, v ∈ L and E(w) = E(v)a}

is what we will call an automatic relation for each generator a. Informally, a relation

on A∗ is called automatic if it is ‘given by’ a regular language. Our first objective will

be to define what we mean by a regular language of pairs of words (or, more generally,

tuples of words). Our definition will agree with the slightly more general notion of an

automatic structure as introduced by Khoussainov and Nerode [18].

4.2.1 Synchronous and Asynchronous Languages of Tuples

The relation described above is a subset of A∗ × A∗, in the same way that regular

languages are subsets of A∗. The ambiguity in describing a subset of A∗ × A∗ as

a language itself lies in the alphabet. We may naively propose A2 as a candidate

alphabet, but this fails since A2 does not even generate A∗ × A∗ as a monoid: it

instead generates the submonoid {(w, v) : |w| = |v|}.

To account for words of differing lengths, we introduce a new symbol not originally

in the alphabet A, called the padding symbol and typically denoted $. Now for any

natural number n, we define the n-letter padded alphabet

A(n) := (A ∪ {$})n \ {($, · · · , $)}

From here, we can form the free monoid A∗
(n) and see that it does represent (A∗)n via
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the natural surjection U : A∗
(n) → (A∗)n which sends $ to ϵ in each coordinate.

If we stop here and consider a subset R ⊆ (A∗)n such that there is a regular language

L ⊆ A∗
(n) with U(A∗

(n)) = R, then we have what we shall call an asynchronously

automatic relation. The synchronous counterpart of this notion, as well as the

synchronous/asynchronous naming convention itself, will benefit from some motivation.

The classic mechanical metaphor for the Turing Machine envisions a physical device

consisting of three parts: an (in principle) infinite tape divided into cells which contain

the letters of an input, a read/write head positioned over the tape that processes

one cell at a time, and an internal mechanism connected to the read/write head that

tracks the machine’s state. When the read/write head is only allowed to read and

the input tape must proceed sequentially from left to right, this contraption acts as

a finite-state automaton and recognizes regular languages. We can now imagine a

similar device which has multiple read/write heads and admits a tape for each one,

advancing at least one tape to the right by one cell at each step in its computation.

An asynchronously automatic relation as described above corresponds to a collection

of tuples of input words that can be accepted by the machine if their tapes are processed

in the correct order. Since the tapes do not have to be read simultaneously, we call

the corresponding multi-tape automaton asynchronous. The downside is that, a priori,

we do not know what sequence of tape advancements will allow an accepted tuple to

be successfully processed by the machine. In principle, our best decision algorithm in

the general case would require us to try every possible configuration for a given set

of inputs before deciding to reject them. This results in exponential-or-worse time

complexity for algorithms naively based on asynchronously automatic structures.

Returning to the multi-tape machine, we might imagine imposing a further restric-

tion on its operation: the two input tapes must be read simultaneously until one of
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them reaches its end, and from there the other tape is read alone. The result is a

mechanical realization of a synchronous multi-tape automaton.

At the algebraic level, we begin defining a ‘synchronizing map’ S : (A∗)n → A∗
(n),

which we illustrate in the case of two-tape automata: for words w = w1 · · ·wn and

v = v1 · · · vm (assuming without loss of generality that m ≤ n), we set

S(w, v) = (w1, v1) · · · (wm, vm)(wm+1, $) · · · (wn, $)

The extension of this map to automata with more than two tapes is similar. Now we

will declare a subset R ⊆ (A∗)n to be a synchronously automatic relation if and

only if S(R) is a regular language.

Before we move on to define synchronously and asynchronously automatic groups,

two additional observations may be of interest. Firstly, there is no loss of generality

in assuming that a multi-tape automaton reads from only one tape in any time step.

This corresponds to replacing A(n) with the alphabet

A[n] := {(a1, · · · , an) ∈ (A ∪ {$})n : ai ̸= $ for exactly one i}

Given an automaton recognizing an asynchronously automatic relation, we can obtain

an equivalent automaton over A∗
[n] by replacing every transition labeled (a1, · · · , an)

with a sequence of transitions (and new states between them) labeled (a1, $, · · · , $),

($, a2, $, · · · , $), etc.

Secondly, there is nothing sacred about the synchronizing function S. The perfor-

mance advantage enjoyed by synchronous automata is shared by any asynchronous

automaton equipped with a similar ‘conditioning’ function; e.g. an asynchronous
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automaton whose accepted pairs are always read at a rate of 2 to 1 can be treated like

a synchronous automaton with a modified synchronizing function S ′ which encodes

inputs in a way that reflects this.

4.2.2 Automatic Groups

The notions of automatic and asynchronously automatic groups were first introduced

in [8]; our definitions below and in the preceding section are equivalent to theirs

and differ only by a little terminology, with one exception. The familiar reader may

recall that their definition of an asynchronous multi-tape automaton differs from

ours significantly. In particular, their asynchronous multi-tape automaton recognizes

‘shuffles’ of strings over a single alphabet, while ours recognizes padded languages of

tuples as in the synchronous case. That these notions yield identical characterizations

of automatic groups is nontrivial, and was first established by Derek Holt [8].

An automatic group is a finitely generated group G = ⟨A⟩ with a regular normal

form L ⊂ A∗ such that equality in G and differing on the right by a given generator

are both automatic relations. Automatic groups satisfy a number of useful geometric

properties, and also admit efficient algorithms for certain group-theoretic problems

like the word problem. We will call such a group asynchronously automatic if the

associated relations are asynchronously automatic relations.

Definition 4.6. Let G be a group generated by a finite set A, and L ⊂ A∗ a regular

language. We say L furnishes an automation for G, (G,L) is an automatic

structure, or simply that G is an automatic group with normal form L, if the

following conditions hold:

• L is a normal form for G
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• The sets

Rϵ := {(v, w) ∈ L × L : E(v) = E(w)}

and

Ra := {(v, w) ∈ L × L : E(v) = E(w)a}

(for each a ∈ A) are synchronously automatic relations.

If the relations in condition 2 are instead asynchronously automatic, then we say

G is an asynchronously automatic group, that L furnishes an asynchronous

automation for G, or that (G,L) is an asynchronously automatic structure.

Once it is known that a group is automatic with respect to some normal form,

the problem of constructing the automata for an automatic structure can be reduced

to determining a single constant associated with the geometry of the normal form

L as a path system in Cay(G,A). It is this geometric association, often called a

fellow-traveling property, that makes automatic groups of such interest to geometric

group theorists.

Consider an automatic structure (G,L) with generating set A. Choose a ∈ A∪{ϵ}

and let M be a two-tape automaton recognizing Ra. Now take any (v, w) ∈ Ra, and

let W be a word in A∗
[2] which is accepted by M and satisfies U(W ) = (v, w). Letting

Wi denote the i-th prefix of W , we similarly define vi = π1U(Wi) and wi = π2U(Wi),

where πi is the canonical projection to the i-th factor in A∗ × A∗.

Since Wi is a prefix of an accepted word, there is a directed path in the state graph

of M from the state after reading Wi to an accept state. We can always choose this

path so that it crosses fewer than N edges, where N is the number of states in M.
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Let W ′
i be the label of this path, and define v′i = π1U(W

′
i ) and w′

i = π2U(W
′
i ). Since

WiW
′
i is accepted by M, we have

E(viv
′
i) = E(wiw

′
i)a

or, equivalently,

E(wi)
−1E(vi) = E(w′

i)aE(v
′
i)
−1.

This allows us to conclude

dG,A(E(vi), E(wi)) ≤ N + 1.

In other words, #»v and #»w admit a (1, 1, N + 1)-ladder. By Lemma 2.7, we can now

conclude that every pair of words v, w ∈ L such that dG,A(
#»v (∞), #»w(∞)) ≤ 1 satisfies

dAsync(
#»v , #»w) ≤ 2N + 5

2

In other words, the path system on Cay(G,A) induced by L is bounded; synchronously

if the automatic structure is synchronous and asynchronously otherwise.

Now suppose that G = ⟨A⟩ is a finitely-generated group and L is a regular normal

form for G which induces a bounded path system on Cay(G,A). Then for every

a ∈ A ∪ {ϵ}, the set Ra consists of pairs of words which fellow-travel with some

uniform constant k. We can now define an automaton Ma recognizing Ra. The states

of Ma are the vertices of the ball of radius k in Cay(G,A). We add a transition with

label (a′, $) from g to ga′ for each state g and each a′ ∈ A such that ga′ is a state, and

we add a transition with label ($, a′) from g to (a′)−1g for each state g and each letter
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a′ ∈ A such that (a′)−1g is a state. Finally, we make the vertex a the unique accept

state. We see now that, for any word W ∈ A∗
[2] which can be read by Ma, the state of

Ma upon reading W is precisely the word-difference

(Eπ2U(W ))−1Eπ1U(W )

That is, if we write U(W ) = (v, w), then the state of this automaton after reading W

is precisely the element g ∈ G such that E(v) = E(w)g. Since the only accept state is

a, this automaton recognizes those pairs of words which evaluate to elements of G

differing on the right by a. Intersecting this automatic relation with L×L shows that

Ra is itself an automatic relation (or asynchronously automatic, if the path system

induced by L is asynchronously bounded).

This proves the following foundational theorem in the theory of automatic groups,

which was originally shown in [8]:

Theorem 4.7. A group G generated by a finite set A is automatic if and only if there

is a regular normal form L ⊆ A∗ for G which induces a synchronously bounded path

system on Cay(G,A). G is asynchronously automatic if and only if there is a regular

language L ⊆ A∗ which induces an asynchronously bounded path system on Cay(G,A).

Consequently, the standard way to show that a group is automatic (or asyn-

chronously automatic) is to find a bounded path system on the group and show that

it is given by a regular language. The ‘multiplier automata’ recognizing the relations

Ra are rarely specified in practice.

It should be noted here that one can show that the image of a regular language L in

a group (sometimes called a rational subset) has prefixes at bounded distance from

E(L), using an approach very similar to that used to show that automatic relations
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fellow-travel in groups. We will use this fact to prove a crucial lemma in Section 5.

Lemma 4.8. Let G be a group generated by a finite set A, and let L ⊆ A∗ be a regular

language. Let v ∈ L be a word in L, and denote by vi the product in A∗ of the first i

letters of the word v. Then for any prefix vi of V , we have dG,A(E(vi), E(L)) ≤ N ,

where N is the number of states in an automaton recognizing L.

Proof : Since vi is a prefix of an accepted word, there is a directed path in the state

graph of an automaton recognizing L from the state upon reading vi to an accept

state. This path can be chosen to cross no more than N edges. If w is the label of this

path, then we have |w| ≤ N and viw ∈ L - hence dG,A(E(vi), E(L)) ≤ N , as desired. □

Before we move on from automatic groups, we will first note a minor gener-

alization of a well-established fact about automatic subgroups. It is well-known that

automaticity is preserved by finite-index supergroups; that is, G is automatic (or

asynchronously automatic) if it has a finite-index subgroup which is automatic (or

asynchronously automatic). This is easy to prove, and the proof does not rely on

the fact that the automatic subgroup is a group. Rather, it easily generalized to the

case in which a regular language gives a partial path system on Cay(G,A) which has

coarsely dense image in G (here, we denote by Ak the set of words over A of length at

most k):

Theorem 4.9. Let G be a group with finite generating set A, and let L ⊂ A∗ be a

regular language whose image in G under the evaluation map gives a synchronously

(asynchronously) bounded, finite-to-one path system. If E(L) is coarsely dense in G,

then there exists k > 0 so that LAk gives a synchronous (asynchronous) automation

for G.
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Proof : Choose k so that E(LAk) = G, and let w1, w2 ∈ LAk be words in A∗ such

that E(w1) and E(w2) differ by a generator (i.e. dG,A(E(w1), E(w2)) = 1). We wish

to show that the paths E # »w1 and E # »w2 synchronously (asynchronously) fellow-travel.

Since w1 and w2 differ from words in L by at most k letters, we conclude that w1 and

w2 have prefixes w′
1 and w′

2 such that w′
1, w

′
2 ∈ L, and

dG,A(E(w
′
1), E(w1)), dG,A(E(w

′
2), E(w2)) ≤ k

Then dG,A(E(w′
1), E(w′

2)) ≤ 2k+1, and so the synchronous (or asynchronous) distance

between
# »

w′
1 and

# »

w′
2 must be bounded above by f(2k + 1). The final arcs of E # »w1 and

E # »w2, which join E(w′
1) to E(w1) and E(w′

2) to E(w2), have length bounded above

by k and endpoints at distance bounded above by 2k + 1, and so their images are

contained in a common neighborhood of radius 4k + 1. Thus the paths E # »w1 and E # »w2

synchronously (or asynchronously) fellow-travel with constant max{f(2k+ 1), 4k+ 1}.

The evaluation E : LAk → G is clearly still finite-to-one, and so LAk gives a

synchronous (or asynchronous) automatic structure on G. □

Finally, we record the following classic result from [8] on hyperbolic groups, for

later reference:

Theorem 4.10. Let G be a finitely generated hyperbolic group, with finite generating

set A. Then the set L ⊂ A∗ of geodesic words is a regular language. Furthermore, G

is biautomatic with respect to L.

Note that the asynchronous automaticity of hyperbolic groups is already guaranteed

by combining Lemma 3.7, Theorem 3.8, Proposition 4.5, and Theorem 4.9. This will

result in an automation furnished by a regular language of uniform-quality quasi-

geodesics. The additional detail asserted by the theorem above is that the language of

56



geodesic words (rather than just the language of locally geodesic words) in a hyperbolic

group is always regular.
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Chapter 5: Factor Languages

In this chapter, we define the central object which we shall use to describe asyn-

chronous automatic structures for groups quasi-isometric to products of non-elementary

hyperbolic spaces - the factor-language system - and show that it does yield an

asynchronous automation. This definition is recursive, with the idea being that we

will introduce one hyperbolic factor H to the product at a time, always concatenating

a language which embeds along the coordinate factor σH quasi-isometrically. The lan-

guage corresponding to the product of the previous factors is allowed to be embedded

in this larger product more loosely, being required only to map quasi-isometrically to

the corresponding factors through the canonical projection. This generality is inspired

by the embedding of the factor languages in the asynchronous automatic structure

studied in Chapter 7, where one factor language embeds quasi-isometrically to an H2

coordinate factor while the other (corresponding to the tree factor T ) is ‘spread out’

in the sense that its projection to the H2 factor is not bounded.

We begin with the definition of a factor-language system. This definition has a

recursive flavor and specifies a slightly more general object than the one we will care

about in our main theorem, but this somewhat contrived construction has been chosen

to simplify the subsequent proofs.

Definition 5.1 (Factor Language). Let G be a group with finite generating set A ⊆ G,
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let X̂ =
∏N

i=1Hi be a metric space which splits as a finite product of non-elementary

hyperbolic geodesic spaces, let ϕ̂ : G → X̂ be a quasi-isometry. Now suppose that

L1,L2 ⊂ A∗ are regular languages, and ϕ : E(L1L2) → X, where X =
∏M

i=1Hi

with M ≤ N , is a quasi-isometry which agrees with πX ϕ̂ on E(L1L2). We say

(G,A,X,L1,L2, ϕ) is a factor-language system if the following conditions hold:

1. The Hausdorff distance between ϕE(L2) and the coordinate factor σM ∼= HM is

finite, and the paths given by words in E(L2) are uniform-quality quasi-geodesics

in G.

2. One of the following holds for X ′ =
∏M−1

i=1 Hi:

(a) L1 = {ϵ} and X ′ is hyperbolic

(b) There exist regular languages L′
1,L′

2 ⊆ A∗ such that L1 = L′
1L′

2, and

(G,A,X ′,L′
1,L′

2, π1ϕ) is a factor-language system

If the other elements are understood, we say (L1,L2) is a factor-language pair.

In the following, it will be convenient if ϕ takes edges in Cay(G,A) to geodesics in X,

so that the image of a rectifiable curve under ϕ is a rectifiable curve with bounded

length. We shall assume this without loss of generality.

Lemma 5.2. Let (G,A,X,L1,L2, ϕ) be a factor-language system. Then there exists

α > 0 such that dH1(π1ϕE(wv)), π1ϕE(w)) < α for all w ∈ L1 and all v ∈ L2.

Proof : By assumption, ϕ(E(v)) is at finite Hausdorff distance from σ2 and thus

we may take C > 0 so that ϕ(E(v)) lies in NC(σ2), the C-neighborhood of σ2. Hence,

dH1(π1ϕE(v), π1ϕE(e)) ≤ C
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Furthermore, the elements E(w) ∈ E(L1) induce uniform-quality quasi-isometries on

X̂ by composing the left-action of G on itself with ϕ̂ on the left and (a choice of)

its quasi-inverse on the right. Letting X = X ′ ×HM as in the definition, Corollary

3.14 shows that each of these E(w) induces a quasi-isometry on X which splits as a

product of quasi-isometries E(w)1 × E(w)2 : X
′ ×HM → X ′ ×HM , up to bounded

error. Without loss of generality, we will take these all to be (C,C)-quasi-isometries,

and we will also take the error bound to be C. Thus,

dH1(π1ϕE(wv), π1ϕE(w)) = dH1(π1ϕ(E(w)E(v)), π1ϕ(E(w)E(e)))

= dH1(π1(E(w) · ϕE(v)), π1(E(w) · ϕE(e)))

≤ dH1(E(w)1 · π1ϕE(v), E(w)1 · π1ϕE(e)) + 2C

≤ CdH1(π1ϕE(v), π1ϕE(e)) + 3C

≤ C2 + 3C

Taking α > C2 + 3C completes the proof. □

Lemma 5.3. Let (L1,L2) be the factor-language pair in the system described above.

Then there exists η > 0 such that, for any w ∈ L1 and v ∈ L2, the subpath of ϕE #  »wv

joining ϕE(w) to ϕE(wv) has image contained in an η-neighborhood of σϕE(w)
2 .

Proof : Let #»γ denote the subpath in question, let γ denote its image in X, and let vi

denote the i-th prefix of v for all 0 ≤ i ≤ |v|. By assumption, #»γ is a piecewise-geodesic

interpolation of the discrete path (γ0, ..., γ|v|), where γi = ϕE(wvi) for 0 ≤ i ≤ |v|.

From Lemma 5.2, we know that there is a uniform constant α > 0 such that

dX′(π1ϕE(w), π1ϕE(wv
′)) < α.

60



for all v′ ∈ L2. Assuming without loss of generality that C is greater than the number

of states in an automaton recognizing L2, we see by Lemma 4.8 that every point γi

is joined by a piecewise-geodesic arc to an element of ϕE(wL2), and this arc can be

chosen to consist of no more than C geodesic pieces. These pieces are the images under

ϕ of edges in the Cayley graph Cay(G,A), which have length 1, and consequently

have length not exceeding 2C. Thus the entire arc has length bounded above by

2C2, and every point on it is at distance at most C2 from an endpoint lying in the

α-neighborhood of σϕE(w)
2 . Letting η = α+ C2, every point of γ is contained in the

η-neighborhood of σϕE(w)
2 , as desired. □

Theorem 5.4. Let (G,A,X,L1,L2, ϕ) be a factor-language system such that E(L1L2)

is at bounded Hausdorff distance from Cay(G,A). Then there exists k > 0 such that

L = L1L2A
k gives an asynchronous automatic structure for G.

Proof : We will show that the paths given by words in L1L2 give an asynchronously

bounded path system in G through the evaluation map E, and the desired result will

follow from Theorem 4.9.

Let w1, w2 ∈ L1 and v1, v2 ∈ L2. We wish to show that there exists a function f

so that

dAsync(ϕE
#      »w1v2, ϕE

#      »w2v2) ≤ f(D),

where D = d(ϕE(w1v1), ϕE(w2v2)). Letting X =
∏N

i=1Hi be the associated decompo-

sition of X as a product of non-elementary hyperbolic spaces, we shall assume by way

of induction that factor-language systems give asynchronously bounded path systems

if X is a product of N − 1 or fewer non-elementary hyperbolic geodesic spaces. The

basis for this induction is the case in which N = 1, X is hyperbolic, and L1L2 = L1

gives uniform-quality quasi-geodesics in G, which are asynchronously bounded by the
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Morse Lemma.

As a first step, we show that ϕE # »w1 and ϕE # »w2 asynchronously fellow-travel with

bound linear in D. This will follow from the inductive hypothesis above, if we

can show that dG,A(E(w1), E(w2)) is bounded by a linear function of D. Since

D = d(ϕE(w1v1), ϕE(w2v2)), we have

dH1(π1ϕE(w1v1), π1ϕE(w2v2)) ≤ D,

and by Lemma 5.2, we have

dH1(π1ϕE(w1v1), π1ϕE(w1)), dH1(π1ϕE(w2v2), π1ϕE(w2)) ≤ α

for some fixed constant α > 0. We may therefore conclude that

dH1(π1ϕE(w1), π1ϕE(w2)) ≤ D + 2α

by the triangle inequality. Since π1ϕ : E(L1) → H1 is a quasi-isometry, this shows

that dG,A(E(w1), E(w2)) is bounded by a function of D, as desired.

Now we need to show that the arcs joining ϕE(w1) to ϕE(w1v1) and ϕE(w2) to

ϕE(w2v2) asynchronously fellow-travel with bound a function of D. Denoting these

arcs by #»γ1 and #»γ2, respectively, and denoting their images by γ1 and γ2, we see from

Lemma 5.3 that there exists a constant η, independent of #»γ1 and #»γ2, such that γi

lies in the η-neighborhood of σϕE(wi)
2 , for i = 1, 2. Let β be the Hausdorff distance

between σϕE(w1)
2 and σϕE(w2)

2 . By the preceding paragraph, β is bounded by a function

of D. Furthermore, both γ1 and γ2 are contained in an 2η + β-neighborhood of

σ
ϕE(w1)
2 . By Theorem 3.12, this neighborhood is δ′-hyperbolic, where δ′ is linear in
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β and hence linear in D. Since E #»v1 and E #»v2 (hence their translates E(w1)E
#»v1 and

E(w2)E
#»v2) are uniform-quality quasi-geodesics, we see by Lemma 3.7 that #»γ1 and

#»γ2 must asynchronously fellow-travel with bound linear in both δ′ and the maximal

distance between corresponding endpoints - all of which we have shown to be bounded

by linear functions of D.

Since E # »w1 and E # »w2 asynchronously fellow travel with bound f(D), and #»γ1 and #»γ2

asynchronously fellow-travel with bound f(D), the asynchronous distance between

their respective concatenations, ϕE #      »w1v1 and ϕE #      »w2v2, is also bounded by f(D). □
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Chapter 6: Level-Deterministic

Actions

In this section, we give a sufficient condition for an isometric action of a finitely

generated group G = ⟨A⟩ on a pointed geodesic space (X, o) to admit regular languages

of paths which do not depart a fixed neighborhood of the basepoint o. First, we shall

discuss the application of such languages to the construction of the preceding section.

Definition 6.1. Let (G,A) be a group and finite generating set, and let (X, o) be a

pointed geodesic space on which G acts cocompactly by isometries. Let r > 0 be a real

number. We say the action (G,A) ↷ (X, o) has an r-coarse regular stabilizer if

the language

Lr = {w ∈ A∗ | dX(o, E(wi) · o) ≤ r for all prefixes wi of w}

is regular.

Note that ‘coarse regular stabilizers’ are distinct from the idea of coarse stabilizers

used in [20]. For one thing, the languages Lr only give subsets of G under evaluation,

rather than subgroups. For another, these languages consist of words whose entire

trajectories in X remain within a fixed neighborhood, rather than just words which
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evaluate to small translations of o.

The utility of this property can be seen in the case that X is a hyperbolic factor in

a product of hyperbolic spaces as in Section 5, as is shown in the following theorem:

Theorem 6.2. Let G be a group acting geometrically on a pointed, finite product

(X, o) = (
∏N

i Hi, o) of non-elementary hyperbolic geodesic spaces, preserving the

factors, and suppose that the action of G on each factor Hi has an r-coarse regular

stabilizer. Then G is asynchronously automatic if r ≥ D, where D is a constant

depending only on the action (G,A) ↷ (X, o).

Proof : For i ∈ {1, · · · , N}, denote by Li
r the coarse regular stabilizer with radius

r for the action of G on Hi, and let C be the coarse density constant of the orbit

quasi-isometry associated with the geometric action of G on X. We begin by showing

that, for large enough r, we have E(
⋂

i ̸=j Li
r) · o at finite Hausdorff distance from σj,

the j-th coordinate factor, for all indices j.

Let us now fix j. Since N(C, σj), the C-neighborhood of σj, has intersection with

G · o which is coarsely dense in N(C, σj), we obtain the desired result if we choose r

large enough that g ∈ Li
r for every g such that g · o ∈ N(C, σj). Fix such an element

g. We show that we may choose r so that N(r, σj) contains the entire image of a path

in G from the identity to g, and the desired result follows.

We accomplish this by noting that g · o and o are joined in X by a (1, C) quasi-

geodesic #»γ whose image lies in N(C, σj). We can construct #»γ by taking any geodesic

in σj connecting o to a closest-point projection of g · o to σj, and then joining the

endpoint of that geodesic to g · o by a path of length not exceeding C. By Proposition

3.4, there is a path in G which asynchronously fellow-travels the image of #»γ under a

quasi-inverse of the orbit map, and we see that this path must be a quasi-geodesic

65



with quality depending only on the action (G,A) ↷ (X, o). Applying the orbit

map to this path yields a path in X lying in a B-neighborhood of the image of #»γ

(hence in a B-neighborhood of N(C, σj)), where B depends only on (G,A) ↷ (X, o).

Choosing D = C +B ensures that
⋂

i ̸=j Li
r contains a representative for every g ∈ G

such that g · o ∈ N(C, σj) whenever r ≥ D, as desired. Furthermore, we have also

shown that
⋂

i ̸=j Li
r contains a representative for g that evaluates to a uniform-quality

quasi-geodesic in G, with quality determined by the action.

Since
⋂

i ̸=j Li
r is regular (as a finite intersection of regular languages), prefix-closed,

and has image in X Hausdorff-close to a coordinate factor, it is almost a (second) factor

language in the sense of Definition 5.1. To align with this definition, our language

must also consist of words which evaluate to uniform-quality quasi-geodesics. This

is easy enough to arrange, since the paths in
⋂

i ̸=j Li
r have images lying entirely in a

fixed neighborhood of σj, which is hyperbolic by Theorem 3.12. Consequently, these

paths lie entirely in a hyperbolic subspace H ′ of G - namely, the preimage of the

previous neighborhood under the orbit map. Invoking Theorem 4.5, we note that, for

any k ∈ N, the k-local geodesic words in G form a regular language LLG(k) since they

are locally recognized. Local geodesics in G whose images lie in H ′ are local geodesics

in H ′, and therefore they are in fact global quasi-geodesics in H ′ by Theorem 3.8.

Consequently,

Lj := LLG(k) ∩
⋂
i ̸=j

Li
r

is a regular language consisting of uniform-quality quasi-geodesics. Since we have

chosen r large enough to ensure that
⋂

i ̸=j Li
r contains uniform-quality quasi-geodesic

representatives for a coarsely dense subset of a neighborhood of σj, this intersection

still satisfies the remaining hypotheses for factor languages when k is sufficiently large.
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By Theorem 5.4, G is asynchronously automatic, with normal form given virtually by

the concatenation of the Lj. □

Now that we have an intermediary condition that gives us the desired factor-

language system, we will produce a condition on the action (G,A) ↷ (X, o) which is

similar in flavor to the way that reducibility of such an action on a product follows

from discreteness of the action on the factors. Inspired by this comparison, we call

this property level-determinism and will define it after establishing the following

notation: we associate to each g ∈ G a map g|∗ : A∗ → X by defining

g|∗(w) := gE(w) · o

for all w ∈ A∗. Note that the maps g|∗ are K-Lipschitz, where K is the maximum

distance between o and a · o for any generator of a ∈ A,

Letting An =
⋃n

i=0A
n, we denote by g|n the restriction of g|∗ to An. More generally,

we will write g|Y for the restriction of g|∗ to any subset Y ⊂ A∗. For m ≥ n, denote

the restriction to An of maps Am → X by Rm
n : XAn+1 → XAn . Finally, we will

make special use of the following subsets of A∗ parametrized by g ∈ G, r ∈ R≥0, and

n ∈ Z≥0:

S(g, r, n) := An ∪
⋃

g|∗(a)∈N(r,o)

aAn

In other words, S(g, r, n) is An plus those words in An+1 that begin with a letter

a ∈ A such that g|∗(a) is within the closed r-neighborhood of the origin o.

Definition 6.3. Let G be a group with finite generating set A, and let (G,A) ↷ (X, o)

by isometries for some pointed geodesic space (X, o). Let r ≥ 0 be a nonnegative real
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number, and let n ≥ 0 be a nonnegative integer. We say the action (G,A) ↷ (X, o) is

(r,n) level-deterministic if the following conditions hold:

1. #(G · o ∩N(s, o)) <∞ for all s > 0

2. For all g, h ∈ G such that g · o, h · o ∈ N(r, o), we have g|S(g,r,n) = h|S(h,r,n) ⇔

g|n = h|n

The second condition may seem somewhat contrived, but more or less means

that the elements of G, viewed as maps An+1 → X, are fully determined by their

behavior on An. Isolating the potentially smaller set S(g, r, n) is necessary to allow

for a special case that will be discussed in Section 7. In turn, the condition that g|n

determines g|n+1 is a weakening of the condition that g|n determines g|∗, which is a

kind of uniform discreteness for G as a set of maps A∗ → X.

The idea behind this setup is to produce a sufficient condition for the set Lr in

Definition 6.1 to be a regular subset of A∗, by explicitly producing an automaton

recognizing it. The states of the automaton are the points in G · o ∩N(r, o), together

with a choice of embedding of An that sends the empty word to the given point.

Condition 1 of Definition 6.3 implies there will only be finitely many states. Condition

2 then ensures that the transition function is well-defined for all a ∈ A that should be

accepted by Lr.

Theorem 6.4. Let G be a group with finite generating set A, and let (G,A) ↷ (X, o)

by isometries for some pointed geodesic space (X, o). If this action is (r, n) level-

deterministic for some r ∈ R≥0, n ∈ Z≥0, then the action has an r-coarse regular

stabilizer.
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Proof : As mentioned above, we will explicitly construct a finite-state automaton

recognizing Lr. Given r ∈ R≥0 and n ∈ Z≥0, the state set for this automaton will be

Q := {g|n | g · o ∈ N(r, o)}

Since the action is level-deterministic and the maps g|n are uniformly Lipschitz, there

are only finitely many possible images in G · o for each w ∈ An, once the image of the

empty word is fixed. This shows that Q is finite. The start state is e|n, where e is the

identity in G, and all states are accept states.

The transition function for this automaton is defined as follows: for g|n ∈ Q and

a ∈ A, we pick any representative g ∈ G which restricts to g|n as a map An → X. We

then define the state transition

(g|n, a) 7→ (gE(a))|n

for all a such that g|∗(a) ∈ N(r, o). Note that g|n = h|n ⇒ g∗(a) = h∗(a) as long

as n > 0, so the a ∈ A for which this transition is added are independent of our

choice of representative (that is, g|n = h|n ⇒ S(g, r, n) = S(h, r, n) always holds if

n > 0). If n = 0, then this is an assumption of Definition 6.3 which must be verified

independently.

We now show this transition is well-defined - that is, it does not depend on our

choice of representative g. Let â : An → An+1 be the map that sends w 7→ aw for all
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w ∈ An. Then we have the following for all w ∈ An:

(gE(a))|n(w) = gE(a)E(w) · o

= gE(aw) · o

= gE(â(w)) · o

= g|n+1(aw)

Now if g′ is any other representative for g|n, we have g′|n+1(aw) = g|n+1(aw) since

aw ∈ S(g, r, n) = S(g′, r, n). Thus (gE(a))|n = (g′E(a))|n, as desired.

It is now straightforward to show that this automaton in fact recognizes Lr, the

set of words in A∗ whose corresponding paths in X remain within distance r of o. By

way of induction on word length, suppose that w ∈ A∗ describes a path in X which

does not depart N(r, o), and let a ∈ A. When the automaton finishes reading w, it

must be in state E(w)|n (this can either be shown directly or included in the inductive

hypothesis). We have wa ∈ Lr if and only if E(w)|∗(a) ∈ N(r, o), which is true if and

only if there is an outgoing transition from the state E(w)|n labeled a. That is, wa is

accepted by our automaton if and only if wa ∈ Lr. □

Combining Theorems 6.2 and 6.4, we obtain the following corollary:

Corollary 6.5. Let G be a group acting geometrically on a pointed, finite product

(X, o) = (
∏

iHi, o) of non-elementary hyperbolic geodesic spaces, preserving the factors,

and suppose that the action of G on each factor Hi is (r, n) level-deterministic. Then

G is asynchronously automatic if r ≥ D, where D is a constant depending only on the

action (G,A) ↷ (X, o).

The next section covers a special case of this approach, where the factor language
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in question is given by an entire subgroup. In this case, choosing the right generators

allows us to take D = r = n = 0.
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Chapter 7: Application: HNN

Extensions of Hyperbolic Groups

In this chapter, we illustrate the tools developed in the preceding chapters by finding a

factor-language system for a broad class of groups: HNN extensions by commensurated

subgroups of hyperbolic groups. That these groups are asynchronously automatic

was recently observed by Hughes and Valiunas in [15], a note following the authors’

groundbreaking work in [16]. The family of languages they provide coincides coarsely

with the one obtained here, but it may still be of interest to see how these languages

fit within the more general pattern established in the present work.

The groups described in [16], which we shall refer to as the Hughes-Valiunas

groups, are obtained as commensurated HNN extensions of lattices in PSL(2,R).

We omit the details here - the curious reader may consult the detailed treatment in

[16] to confirm that these groups satisfy the conditions of Theorem 7.5.

First, we define the HNN-extension:

Definition 7.1. Let G be a group, and suppose H,K ≤ G are subgroups of G with

τ : H → K an isomorphism. The HNN extension of G with respect to τ , denoted
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G⋆
τ , or G⋆ if τ is understood, is the quotient

G ∗ ⟨t⟩/⟨⟨tht−1τ(h)−1 |h ∈ H⟩⟩

where ⟨⟨·⟩⟩ denotes the normal closure of a subset.

Alternatively, we can think of the HNN extension in terms of group presentations.

If G is presented by generators A and relators R, then a presentation for the HNN

extension G⋆
τ is obtained by adding t to the generators and adding the relation

ht = τ(h) for all h ∈ H.

Let TH and TK be coset transversals of H and K, respectively. Every element of

G⋆ can be written as an alternating product

g0t
ϵ0g1t

ϵ1 · · · gntϵn

where gi ∈ G and ϵi ∈ {−1, 1} for all i = 0, 1, · · · , n. Now for any i ∈ {0, 1, · · · , n},

we can use the HNN presentation to rewrite gitϵi = cit
ϵig′i, where g′i ∈ G, ci ∈ TH if

ϵi = −1, and ci ∈ TK if ϵi = 1. Iterating this process from left to right produces an

expression of the form

c0t
ϵ0c1t

ϵ1 · · · cntϵng

where g ∈ G and the ci satisfy the preceding condition in relation to ϵi. If we pick

representative words for the ci and write g in a normal form for G, we obtain a normal

form for G⋆:

Definition 7.2. Let G⋆ be an HNN extension of a group G = ⟨A⟩ with isomorphic

subgroups H and K, and let TH and TK consist of unique representatives in A∗ for

coset transversals of H and K, respectively. A left HNN normal form for G⋆ is
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given by freely reduced words which match the regular expression

(THt
−1 ∨ TKt)

∗L

where L is a normal form over A∗ for G. Given a word in this normal form, the

initial string of coset representatives and powers of t is called the prefix.

Up to choice of representatives for coset transversals and normal form for G, the

left HNN normal form gives unique representatives for elements of G⋆. This unique

normal form can be used to show that the canonical map G→ G∗⟨t⟩ → G⋆ is injective

- that is, G ≤ G⋆. This embedded copy of G can be used to produce an action of G⋆

on a tree.

HNN extensions play a central role in the development of Bass-Serre theory, which

characterizes groups acting on simplicial trees by graph automorphisms. In particular,

there is associated to each HNN extension G⋆ a regular tree T , called the Bass-Serre

tree, on which G⋆ acts by graph automorphisms (i.e. isometries, if T is given the

graph metric).

Definition 7.3. Let G⋆ be an HNN extension of a group G with isomorphic subgroups

H and K. The Bass-Serre tree associated to G⋆ is the graph T whose vertices are

the left cosets of G in G⋆ and whose edges are of the form (xG, xtG) or (xG, xt−1G).

If m = [G : H] and n = [G : K], then T is an m+ n-regular tree.

Proposition 7.4. Let G⋆ be an HNN extension. Then G⋆ acts on its Bass-Serre tree

by graph automorphisms, with the action on the vertex set given by g · xG = gxG.

Under this action, the vertex G is clearly stabilized by the subgroup G ≤ G⋆. This

shows, among other things, that the prefixes of the left HNN normal form uniquely
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address the vertices of the Bass-Serre tree. In other words, the prefixes are a coset

transversal of G in G⋆. More generally, one can show that the vertex stabilizers for

the action of G⋆ on the Bass-Serre tree are precisely the conjugates of G in G⋆.

HNN extensions have been a fruitful source of interesting examples in group

theory. They were used in the 1960’s by Britton [5] to give a simplified proof of the

famous result that that there exist finitely generated groups with unsolvable word

problem. More recently, Leary and Minasyan [19], as well as Hughes and Valiunas

[16], used carefully constructed HNN extensions to provide negative solutions to a pair

of open problems in geometric group theory. The Hughes-Valiunas examples, as was

mentioned above, are HNN extensions of certain lattices in the hyperbolic plane, and

they furnish examples of hierarchically hyperbolic groups which are not biautomatic.

The Leary-Minasyan groups are HNN extensions of finite-rank free abelian groups,

some of which can be shown to be CAT(0) but not biautomatic.

Both cases are currently potential candidates to produce a group which is automatic

but not biautomatic, and both use a similar strategy. Namely, they form HNN

extensions by embedding the base group G in a larger isometry group and then

conjugating it by some isometry which commensurates G. Since the stable letter acts

by isometries on the same space as G, the result is a group which is quasi-isometric

to the product of a finite-valence Bass-Serre tree and a space with nice geometry

(Euclidean n-space, or the hyperbolic plane), with a geometric action that assures the

desired properties (the CAT(0) condition, or hierarchical hyperbolicity). While the

potential automaticity of such groups remains an open question, we can use Theorem

5.4 to show that this kind of construction produces a group which is asynchronously

automatic, whenever the base group is non-elementary hyperbolic.

75



Theorem 7.5. Let X be a non-elementary proper hyperbolic geodesic space, and

suppose G ≤ Isom(X) acts geometrically on X. For any element τ ∈ Isom(X) and

subgroup H ≤ G, the HNN-extension

G⋆ := ⟨G, t | gt = gτ , g ∈ (Hτ ∩G)τ−1⟩

acts geometrically on T ×X, where T is the Bass-Serre tree.

Furthermore, if (Hτ ∩G) and (Hτ ∩G)τ−1 have finite index in G, then (G⋆, A ∪

{t}, T,X,L1,L2, ϕ) is a factor-language system, where A is a finite set of generators

for G, ϕ : G → T × X is the orbit map, L1 ⊆ (A ∪ {t})∗ gives the prefixes of the

left HNN normal form for G⋆, and L2 ⊆ A∗ is the set of geodesic words in G. In

particular, G⋆ is asynchronously automatic.

Proof : To simplify notation, we will refer to the isomorphic subgroups of G as H

and K.

G⋆ acts on the Bass-Serre tree T by isometries, and also acts by isometries on X

by letting the stable letter t act as the isometry τ . This action is clearly cocompact (it

is cocompact on X and transitive on T ), and it is also properly discontinuous, since T

is discrete and the vertex stabilizers of the action of G⋆ all act geometrically on X.

By the S̆varc-Milnor lemma, the orbit map ϕ : G→ T ×X, with respect to any

basepoint (v0, x0), is a quasi-isometry when T ×X is proper. This will occur precisely

when T is of finite valence - that is, when H and K both have finite index in G, as in

the hypothesis.

We wish to verify that (L1,L2) is a factor-language pair. We see immediately

that L2 meets the criteria: L2 is regular by Theorem 4.10, consists of uniform quasi-

geodesics, and is prefix-closed; furthermore, E(L2) = G, the stabilizer of the basepoint
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v0 in T , and so ϕE(L2) = {v0} ×G · x0, which is at bounded Hausdorff distance from

σ2 = σ
(v0,x0)
2 .

L1 consists of prefixes for the left HNN normal form, so we know L1 is (|w|+1)-prefix

closed, where w is a maximal-length word in TH ∪ TK . Since L1 is a regular language

(it is given by a regular expression), it remains only to show that π1ϕ : E(L1) → H1 is

a quasi-isometry.

Let TH and TK be the representatives of coset transversals that determine L1, and

let g, h ∈ E(L1). Since ϕ is a quasi-isometry and π1 is 1-Lipschitz, we only need to

show that dG,A(g, h) ≤ KdT (π1ϕ(g), π1ϕ(h)) + C for some uniform K,C.

Since g, h ∈ E(L1), we can write g and h as words in L1:

g = c1t
ϵ1 · · · cmtϵm

h = d1t
ϵ′1 · · · dntϵ

′
n .

Assume without loss of generality that cm ̸= dn. Then

dG,A(g, h) = |gh−1|

≤ |g|+ |h|

≤ (
m∑
i=0

|ci|+m) + (
n∑

i=0

|dn|+ n)

≤M(m+ n)

where M = max{|w| | w ∈ TH ∪ TK}. On the other hand, we have π1ϕ(g) = gG

and π1ϕ(h) = hG (recall that vertices of T are cosets of G in G⋆). Using the same
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expression for g, we see

(c1t
ϵ1 · · · citϵici+1t

ϵi+1)t−ϵi+1G = c1t
ϵ1 · · · citϵici+1G

= c1t
ϵ1 · · · citϵiG

Hence π1ϕ(c1tϵ1 · · · ci+1t
ϵi+1) is adjacent to π1ϕ(c1tϵ1 · · · citϵi) for all i ∈ {1, · · · ,m−1},

and the same is true for the above expansion of h. These adjacencies give paths from

gG and hG to the root vertex G, and these paths are geodesic since the prefix of

the left HNN normal form is freely reduced (i.e. does not backtrack in T ). Since we

assumed cm ̸= dn, gG and hH are on different branches of T from the root vertex, the

concatenation of these paths is also geodesic: dT (π1ϕ(g), π1ϕ(h)) = m+ n. Thus,

dG,A(g, h) ≤MdT (π1ϕ(g), π1ϕ(h))

as desired. □

Corollary 7.6. The Hughes-Valiunas groups are asynchronously automatic.

It should be pointed out that this asynchronous automatic structure is very nearly

synchronous. If g ∈ G⋆, we can write g in left HNN normal form:

g = E(c1t
ϵ1 · · · cntϵnw)

Now if h differs from g by a generator, either h = ga for some a ∈ A, in which case

h = E(c1t
ϵ1 · · · cntϵnwa)

and a geodesic representative for E(wa) must synchronously fellow-travel E #»w. The
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only possible complication occurs when h = gt, for then

h = E(c1t
ϵ1 · · · cntϵnwt)

= E(c1t
ϵ1 · · · cntϵncn+1t

ϵn+1w′)

and it may be the case that E
#»

w′ is of very different length than E #»w ′. Synchronous

automaticity can be assured if A, the generating set for G, can be chosen so that

|τ(h)| = |h| for all h ∈ H, up to uniformly bounded error.

Finally, we can show that the machinery of Section 6 applies here as well. Since

the action on the Bass-Serre tree is transitive and the images of elements of G are all

at distance 0 from the second coordinate factor σ2, we have D = 0 in the conditions of

Corollary 6.5. We see that the action on the Bass-Serre tree is (0, 0) level-deterministic

by the following argument:

Condition 1 of Definition 6.3 is clearly satisfied, so we turn to condition 2. If g · o

and h ·o lie in N(0, o), then g, h ∈ G. Since g, h ∈ G, we have ga ·o = G and ha ·o = G

if and only if a is one of the generators of G. Thus the automaton constructed in

Theorem 6.4 is a single state e|0 with loops labeled by the generators of G and no

transitions labeled by the stable letter or its inverse. This shows what we already

established above: that the entire language A∗, where A is a generating set for G,

gives the 0-coarse regular stabilizer. Intersecting this with the language of geodesics

in G gives L2, but we could also have used local geodesics as in Theorem 6.2 to obtain

an alternative factor language (which would incidentally contain our original L2).
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