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Spatial prediction, or so-called kriging, is one of the ultimate goals in spatial

data analysis. The basic idea of kriging is to use the values of a geographic variable

at some locations to estimate the value(s) that are unknown at other locations. In

this dissertation, we consider the spatial prediction when a random process is axially

symmetric on the sphere. More specifically, we first decompose an axially symmet-

ric process as Fourier series on circles, where the Fourier random coefficients can

be expressed as circularly-symmetric complex random processes. The estimation of

covariance functions for complex random processes is then obtained through both

parametric and non-parametric approaches, where least squared error estimation and

the Wavelet-Galerkin methods are applied, respectively. Ordinary kriging is then con-

ducted on possibly complex random fields and predicted data values are computed

through the inverse Discrete Fourier transformation. All the above approaches and

results are demonstrated through simulation studies.
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CHAPTER I

INTRODUCTION

1.1 Introduction to Spatial Statistics

Spatial statistics refers to the application of statistical concepts and methods to

data that have spatial location, and this location component is used as a pivotal and

essential part of analysis [UNWIN09]. Using statistical techniques, topological, geo-

metric, or geographic properties of data are analyzed and inferences are deduced. The

GIS dictionary [Wad06] defines spatial statistics as the field of study in which sta-

tistical methods are used to do computations on space and spatial relationships such

as distance, length, height, orientation centrality and other related characteristics.

Spatial analysis began with early attempts of land surveying and had insubstantial

growth until the early 1990‘s. In the last four decades with the contribution from

other branches of science, spatial statistics has witnessed a quantum leap in com-

putational science. Many fields of study had contributed to the growth of spatial

statistics. Biology through botanical studies, economics through spatial econometrics

and epidemiology using disease mapping helped the evolution of spatial statistics in

the initial phase. Currently many studies including image processing, mineral envi-

ronmental, earth science, ecology, climatology, real estate marketing, remote sensing,

agronomy are contributing to the research, academic literature and application of

spatial statistics.
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1.1.1 Spatial Data

The data used in spatial statistics is called spatial data. Spatial data is any type

of data that directly or indirectly references a specific geographical area or location.

There are a variety of popular spatial data sets available in spatial statistics research,

including but not limited to the Total Ozone Mapping Spectrometer (TOMS) [Ste07],

Large ENSemble (LENS), and Microwave Sounding Units (MSU). The following figure

(Figure 1) depicts the spatial data which carried a TOMS instrument that measured

total column ozone daily from November 1, 1978 to May 6, 1993. A scanning mirror

repeatedly scanned across track about 3000km wide to collect the data on each track

yielding 35 total column ozone measurements.

Figure 1. TOMS data; data resolution spatial 10 Latitude × 1.250 Longitudes in May,

1 - 6, 1990 [Van16].
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1.1.2 Spatial Data Analysis

Spatial data analysis provides a set of tools used to analyze the spatial data.

[Good08], describes spatial data analysis as a set of techniques used to find patterns,

detect anomalies or test hypotheses and theories, centered on spatial data. More

precisely, the technique used in the study can be called spatial analysis, if and only if

the result obtained is unchanged even if the object under analysis undergoes reloca-

tion. Scrupulously, the location of the object under study is the base for the analysis.

[BISHOP20] inferred that spatial data analysis is guided by spatial concepts where

mathematics, geo-statistics and myriad of other techniques can be applied to deduce

a pattern, characterize a phenomenon and make inferences.

1.1.3 Spatial Prediction

As per [Zhu18], the main aim of spatial prediction is to use the already known

information about location to estimate or predict the values of a geographic variable

(referred to as the target variable) which are unknown in the same or other locations.

Spatial prediction is one of the fastest growing research topics in spatial data analysis.

A variety of approaches and techniques are used in spatial statistics to make predic-

tion. Unlike, other prediction models in statistics, spatial prediction is quite complex

and challenging due to the addition of location information to the data. Kriging is

one of the popular methods used in predicting data values on locations in a spatial

field. Universal kriging and ordinary kriging are the most commonly used kriging

methods. In this dissertation, we will focus on ordinary kriging.
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The following graph illustrates the challenges of spatial prediction. Here we have

10 observed values on points s1, · · · , s10 (observed data) and one unknown value at

the point s0 (unobserved). Our goal here is to predict the value at the point s0.

With only 10 values at locations s1, · · · , s10, we need to establish relationships among

the observed values and the predicted value based on their geographical locations.

Such relationships are often characterized by a covariance function, or in this case,

by a covariance matrix of 10 by 10 for these 10 values (more specifically, 10 random

variables). This will become extremely difficult if the number of geo-locations is large.

Further assumptions about the underlying process, in particular, the dependency

of observed and unobserved data, are needed, as they become critical in making

inferences and performing kriging in spatial statistics.

Figure 2. Arbitrary spatial data at 10 locations to demonstrate the basic process of

spatial analysis
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1.2 Random Process, Stationarity, and Covariance Function

In this section, we focus on covariance functions, variogram functions and various

types of staitonarities for random processes on Rd, a d-dimensional Euclidean space.

1.2.1 Random Process

A random process, also called a stochastic process, is a collection of random vari-

ables {Z(t)|t ∈ T} indexed by a set T . T could be a subset of real numbers,

{1, 2, 3, · · · }, [0,∞), Rd, or S2 (a three dimensional sphere). For such a random

process Z(t) on a region T ⊆ Rd, we define the finite-dimensional distributions of

Z(t) as the the joint distributions of (Zt1 , Zt2 , · · · , Ztn), for t1, t2, · · · , tn ∈ T , and for

any n ∈ N, a set that contains all positive integers. Mathematically, the distribution

of Z(t) is uniquely determined by its finite dimensional distributions, according to

Daniell-Kolmogorov existence theorem. More explicitly, the Daniell-Kolmogorov the-

orem states that to specify a stochastic process, the joint distributions of any finite

subset {Z(t1), · · · , Z(tn)} must be given in a consistent way that requires:

P (Z(ti) ∈ Ai, i = 1, · · · , n, Z(tn+1) ∈ R) = P (Z(ti) ∈ Ai, i = 1, · · · , n);

P (Z(tri) ∈ Ari , i = 1, · · · , n) = P (Z(ti) ∈ Ai, i = 1, · · · , n),

where π = (r1, r2, · · · , rn) is a permutation of {1, 2, · · · , n}. In other words, Kol-

mogorov existence theorem states that the stochastic process model is valid if the

family of the finite-dimensional joint distributions is consistent under reordering of

the sites and marginalization.
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1.2.2 Covariance Function and Stationarity

The other important concept is the covariance. In statistics, covariance is a mea-

sure of how much two variables change together, and the covariance function describes

the spatial or temporal relationship of a random process or random field. For a ran-

dom field or stochastic process Z(t), a covariance function C(t, s) gives the covariance

of the values of the random field at the two locations t and s.

Stationarity is a statistical property of a random process generating a time series

that does not itself change over time. Intuitively speaking, the time series from a

random process resembles itself over time intervals. Mathematically, this assumption

holds when

E[Z(s)] = µ; Cov[Z(s), Z(t)] = Cov[Z(s+ h), Z(t+ h)],

for all shifts h.

1.2.2.1 Strong Stationarity

Given the random function Z(t), strong stationarity, also referred as strict station-

arity, indicates that for any number n of any sites t1, t2, · · · , tn, the joint cumulative

function of (Z(t1), Z(t2), · · · , Z(tk)) remains the same under an arbitrary translation

h:

P (Z(t1), Z(t2), · · · , Z(tk)) = P (Z(t1 + h), Z(t2 + h), · · · , Z(tk + h)).
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If the process is strongly stationary and has a finite second moment, it is also weakly

stationary.

1.2.2.2 Weak Stationarity

A weaker form of stationarity is the assumption that a covariance function, Cov[Z(t+

h), Z(t)] exists and depends only on h (equivalent to stationarity of the mean and

variance only). This form of stationarity is known as second order stationarity. A

process Z(t) is said to be weakly stationary when,

• The mean of the process does not depend on t : E[Z(t)] = µ,

• The variance of the process does not depend on t : E[(Z(t)− µ)2] = σ2 <∞,

• The covariance between Z(t) and Z(t+ h) only depends on h,

Cov[Z(t), Z(t+ h)] = E[(Z(t)− µ)(Z(t+ h)− µ)] = C(h).

1.2.2.3 Intrinsic Stationarity

An even weaker form of the stationarity assumption was proposed by [Math71]. If

the assumption of stationarity is made not about the random function Z(t) but about

the first order differences, Z(t+ h)−Z(t), then this form of stationarity is known as

the intrinsic hypothesis.

Under the intrinsic hypothesis, Z(t) is (intrinsically) stationary if

• the mean of the process does not depend on t : E[Z(t)] = µ,

• E[Z(t+ h)− Z(t)] = 0, for all t and h,

7



• Var[Z(t + h) − Z(t)] = E{[Z(t + h) − Z(t)]2} = 2γ(h), for all t and depends

only on h where γ(h) denotes the semi-variogram.

Under intrinsic stationarity, variogram or semivariogram functions play a critical

role in characterizing the properties of a process. The variogram is defined as the vari-

ance of the difference between field values at two locations (t, s) across realizations

of the field [Cre93]. The quantity 2γ(·) is called the variogram, and γ(·) is the semi-

variogram. [Math71] proposed the use of the semivariogram or variogram, γ, which

he defined as γ(h) = 1
2
Var(γ(s+h)−γ(s)), as an alternative to the covariance function.

A variogram function has the following properties:

(1) γ(h) = γ(−h), γ(h) ≥ 0 and γ(0) = 0.

(2) Variograms are conditionally negative definite (c.n.d.): ∀a1, a2, · · · , an ∈ R s.t.∑n
i=1 ai = 0, ∀{s1, s2, · · · , sn} ⊆ T , we have:

n∑
i=1

n∑
j=1

aiajγ(si − sj) ≤ 0.

(3) If the process Z(t) is stationary with covariance function C(θ), one can always

find a valid semivariogram γ(θ) = C(0)− C(θ).

(4) If γ is bounded in a neighborhood of 0, ∃a and b ≥ 0 such that for any x ∈ Rd,

γ(x) ≤ a||x||2 + b.

1.2.3 Relationships among types of Stationarity

We now establish a few propositions.
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Proposition 1.1: If the process {Z(t); t ∈ Z} is strongly stationary and has finite

second moment, then {Z(t); t ∈ Z} is weakly stationary.

Proof : If the process {Z(t); t ∈ Z} is strongly stationary, then · · · , Z(−1), Z(0), Z(1), · · ·

have the same distribution function and (Z(t1), Z(t2)) and (Z(t1 +h), Z(t2 +h)) have

the same joint distribution function for all t1, t2 and h. Because, by assumption, the

process {Z(t); t ∈ Z} has a finite second moment, this implies that

• E(Z(t)) = µ, ∀t;

• Cov(Z(t1), Z(t2)) = Cov(Z(t1 + h), Z(t2 + h)), ∀t1, t2, h,

concluding the proof.

Remark 1: If the existence of finite second moments are not assumed in the propo-

sition, strong stationarity does not necessarily imply weak stationarity. For example,

an independent and identically distributed (i.i.d. for short) process with standard

Cauchy distribution is strictly stationary but not weakly stationary because the sec-

ond moment of the process may not finite, neither the covariance function.

Remark 2: A weakly stationary process is not necessarily strongly stationary. Con-

sider the following example. Let {Y (t); t ∈ Z} be a stochastic process defined by

Y (t) =


V (t), if t is even;

1√
3
(2V (t)2 − 1), if t is odd,
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where V (t) ∼ N(0, 1). This process is weakly stationary but it is not strictly station-

ary since we have

E(Y (t)) =


E(V (t)) = 0, if t is even;

1√
3
E[(2V (t)2 − 1)] = 0, if t is odd,

and

V ar(Y (t)) =


V ar(V (t)) = 1, if t is even;

1
3
V ar[(2V (t)2 − 1)] = 1, if t is odd.

Further, because Y (t) and Y (t − k) are independent random variables, we have

Cov(Y (t), Y (t − k)) = 0 ∀k. Thus, the process Y (t) is weakly stationary. In partic-

ular, it is the so-called White Noise process, denoted as Y (t) ∼ WN(0, 1) with mean

zero and variance of one.

It must be noted that P (Y (t) ≤ 0) = P (V (t) ≤ 0) = 0.5 for t is even. and

P (Y (t) ≤ 0) = P ( 1√
3
(2V (t)2 − 1) ≤ 0) = P (2V (t)2 − 1 ≤ 0) = P (V (t)2 ≤ 1√

2
) = 0.6

for t is odd. Hence the random variables of the process are not identically distributed.

This implies that the process is not strongly stationary.

Remark 3: There is one important case in which weak stationarity implies strong

stationary.
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Proposition 1.2: If {Z(t); t ∈ Z} is a weakly stationary Gaussian stochastic

process, then {Z(t); t ∈ Z} is strongly stationary.

Proof: Let {Z(t); t ∈ Z} be a Gaussian stochastic process. Assume that the process

is weakly stationary. If the process is weakly stationary, then

• E(Z(t)) = µ, ∀t;

• Cov(Z(t1), Z(t2)) = Cov(Z(t1 + h), Z(t2 + h)), ∀t1, t2, h,

In addition, the joint distribution of (Z(t1), Z(t2), · · · , Z(ts)) depends only on the

mean and covariance function. Hence, it follows that the joint distribution func-

tion of the vector (Z(t1), Z(t2), · · · , Z(ts)) is equal with one of (Z(t1 + h), Z(t2 +

h), · · · , Z(ts + h)) for any finite set of indices {t1, t2, · · · , ts} ⊂ Z with s ∈ Z+, and

h ∈ Z. This implies that the process {Z(t); t ∈ Z} is strongly stationary.

Now we explore the relationship between weak stationarity and intrinsic stationar-

ity. From the definitions, it is obvious that a weekly stationary process is an intrinsic

stationary process. However, an intrinsic stationary process is not always a weakly

stationary process. Here we want to show that Brownian motion is intrinsically sta-

tionary but not weakly stationary.

Brownian motion B(t), t ≥ 0 satisfies the following:

• B(0) = 0,

• E[B(t)] = 0 and V ar(B(t)) = t,

• B(t) has independent increments,
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• For t2 > t1, B(t2)−B(t1) ∼ N(0, (t2 − t1)).

B(t) having independent increments means that for all times 0 ≤ t1 ≤ t2 ≤ · · · ≤

tn the increments B(tn) − B(tn−1), B(tn−1) − B(tn−2), · · · , B(t2) − B(t1), B(t1) are

independent random variables.

E(B(t2)−B(t1)) = E(B(t2))− E(B(t1)) = 0,

Cov(B(t2), B(t1)) = Cov(B(t1), B(t1)) + Cov(B(t2)−B(t1), B(t1))

= t1 = min(t1, t2).

Here Cov(B(t2), B(t1)) does not depend on the difference. Therefore, Brownian mo-

tion is not weakly stationary. Nevertheless, Var(B(t2) − B(t1)) is a function on the

difference (t2 − t1). So, Brownian motion is intrinsically stationary, but not (weakly)

stationary.

Finally, we give some examples to illustrate the above stationarity.

An i.i.d. process is a strongly stationary process. This follows almost immediately

from the definition. Since the random variables Z(t1 + h), Z(t2 + h), · · · , Z(ts + h)

are i.i.d, we have that

Ft1+h,t2+h,··· ,ts+h(b1, b2, · · · , bs) = F (b1)F (b2) · · ·F (bs).
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On the other hand, we also have Z(t1), Z(t2), · · · , Z(ts) are i.i.d. and hence

Ft1,t2,··· ,ts(b1, b2, · · · , bs) = F (b1)F (b2) · · ·F (bs).

It can be concluded that, for any h ∈ Rd,

Ft1+h,t2+h,··· ,ts+h(b1, b2, · · · , bs) = Ft1,t2,··· ,ts(b1, b2, · · · , bs).

Consider the discrete stochastic process {Z(t); t ∈ N} where Z(t) = A, with

A ∼ U(3, 7) (A is uniformly distributed on the interval [3, 7]). This process is strongly

stationary. Whereas the discrete stochastic process {Z(t); t ∈ N} where Z(t) = tA,

with A ∼ U(3, 7) is not strongly stationary.

An example of a weakly stationary process is the white noise process. A stochastic

process {W (t); t ∈ Z} in which the random variablesW (t); t = 0,±1,±2, · · · are such

that

• E(W (t)) = 0, ∀t;

• Var(W (t)) = σ2
w < 1, ∀t;

• Cov(W (t),W (t+ k)) = 0 ∀t ∀k 6= 0.

It is called white noise with mean 0 and variance σ2
w, written asW (t) ∼ WN(0, σ2

w).

The first condition establishes that the expectation is always constant and equal to

zero. The second condition establishes that variance is constant. The third condition

establishes that the variables of the process are uncorrelated for all lags. Obviously,
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W (t) is (weakly) stationary.

An important example of non-stationary stochastic processes is the following. Let

{Y (t); t ∈ N} be a stochastic process where Y (0) = δ <∞ and Y (t) = Y (t−1)+W (t)

for t = 1, 2, · · · with W (t) ∼ WN(0, σ2
w). This process is called random walk. The

mean of Y (t) is given by

E(Y (t)) = δ

and its variance is

Var(Y (t)) = tσ2
w.

Thus a random walk is not a weakly stationary process, but it is intrinsically sta-

tionary since V ar(Y (t)− Y (s)) = |t− s|σ2
w.

1.2.4 Commonly Used Covariance Functions

In this section, we introduce a number of commonly used covariance functions,

including spherical covariance function, exponential covariance function, Matern co-

variance function, and Gaussian covariance function.
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Spherical Model Covariance Function : According to [Wack03], a commonly

used spectral density covariance function is the spherical model

Cspherical(h) =


b(1− 3|h|

2a
+ (|h|)3

2a3
), for 0 ≤| h |≤ a,

0, for | h |> a.

The parameter a indicates the range of the spherical covariance: the covariance

vanishes when the range is reached. The parameter b represents the maximal value

of the covariance: the spherical covariance steadily decreases, starting from the max-

imum b at the origin, until it vanishes when the range is reached.

Exponential Covariance Function: Based on [Wack03], the exponential co-

variance function model falls off exponentially with increasing distance

Cexp(h) = b exp (−|h|
a

),

where a, b > 0 and a determines how quickly the covariance falls off. The exponen-

tial model is continuous but not differentiable at the origin. It drops asymptotically

towards zero for |h| → ∞.

Matern Model Covariance Function: According to the [RW05], the Matern

class of covariance functions is given by

CMatern(h) =
21−v

Γ(v)
(

√
2v|h|
l

)vKv(

√
2v|h|
l

),
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with positive parameters v and l, where Kv is a modified Bessel function.

The γ-exponential Covariance Function: The γ-exponential covariance func-

tion has a similar number of parameters to the Matern class covariance function.

Based on [RW05], the γ-exponential family covariance function can be written as

C(h) = exp(−(|h|/l)γ) 0 < γ ≤ 2.

Gaussian Covariance Function: A Gaussian process is a collection of ran-

dom variables, any finite number of which have consistent Gaussian distributions.

The mean of the Gaussian process can take any value and the covariance matrix

should be positive definite. Based on [RW05], if we assume ~X = (X1, · · · , Xk)
T

is multivariate Gaussian with its mean function m(~x) and a covariance function

C(~x, ~y) = σ2exp(− 1
2l2

(~x − ~y)2), where σ > 0 and parameter l defining the charac-

teristic length-scale. Moreover, the stationary Gaussian covariance function is given

by

C(h) = σ2 exp

{
−|h|

2

2l2

}
.

1.3 Introduction to Axially Symmetric Process

Following the setup discussed in [HZR12], we consider a possibly complex-valued

random process X(P ) on a unit sphere S2, where P = (φ, λ) ∈ S2 with longitude

λ ∈ [0, 2π] and latitude φ ∈ [0, π]. Assume the process is continuous in quadratic

mean with respect to the location P , and has finite second moment, then X(P ) can

be represented by spherical harmonics, with convergence of the series in quadratic
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mean

X(P ) = X(φ, λ) =
∞∑
v=0

v∑
m=−v

Zv,me
imλPm

v (cosφ),

where Pm
v (·) is a normalized associated Legendre polynomial so that its squared

integral on [-1, 1] is 1, and Zv,m are the coefficients satisfying

Zv,m =

∫
S2

X(P )e−imλPm
v (cosφ)dφ.

Without loss of generality, the process is assumed to have mean zero, i.e., E(X(P )) =

0, which implies E(Zv,m) = 0. Then, the covariance function of the process at two

locations P = (φp, λp) and Q = (φQ, λQ) is given by,

R(P,Q) = E(X(P )X̄(Q)) =
∞∑
v=0

v∑
m=−v

∞∑
µ=0

µ∑
n=−µ

Zv,mZ̄µ,ne
imλpPm

v (cosφp)e
inλqPm

v (cosφQ),

where Z̄ denotes the complex conjugate of Z. Under the assumption of axial symme-

try [Jon63], where the covariance function depends on the longitudes only through

their difference, one has

E(Zv,mZ̄µ,n) = δn,mfv,µ,m

where δn,m = 0 if n 6= m else 1.

17



Moreover, for an axially symmetric process X(P ), P ∈ S2, the covariance function

R(P,Q) at two locations P = (φP , λP ), Q = (φQ, λQ) ∈ S2 is given by

R(φP , φQ, λP , λQ) = R(φP , φQ, λP − λQ).

That is, the covariance function on two locations depend on the (directional) longi-

tudinal difference.

Using spherical harmonics, the covariance function has the property

R(φP , φQ, λP − λQ) = R(φQ, φP , λQ − λP ).

One special case of the axially symmetric process is the so-called longitudinally re-

versible process where the covariance function R(P,Q) satisfies

R(φP , φQ, λP − λQ) = R(φP , φQ, λQ − λP ).

This indicates that the covariance function between two locations depends on the

(un-directional) longitudinal difference.

According to [HZR12], the covariance function for an axially symmetric process

can be written

R(P,Q) =
∞∑

m=−∞

Cm(φP , φQ)eim∆λ, (1.1)
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where Cm(φP , φQ) is Hermitian and positive definite with
∑∞

m=−∞ |Cm(φP , φQ)| <∞,

and ∆λ can be specified as

∆λ =


λP − λQ + 2π, λP − λQ ≤ −π

λP − λQ, λP − λQ ∈ (−π, π]

λP − λQ − 2π, λP − λQ > π.

Equation (1.1) is actually the Fourier transform between R(P,Q) and Cm(φP , φQ).

Therefore, through the inverse Fourier transform, Cm(φp, φq) can be obtained by

Cm(φP , φQ) =
1

2π

∫ π

−π
R(P,Q)e−im∆λd∆λ.

The derivation of Cm(φp, φq) based on the discrete Fourier transform will be used

later for kriging.

The longitudinal reversibility yields C−m(φP , φQ) = Cm(φP , φQ), which leads to

the following representation mentioned in [HZR12] Proposition 3.

R(φP , φQ,∆λ) = C0(φP , φQ)+
∞∑
m=1

Cm(φP , φQ)(e−im∆λ+eim∆λ) =
∞∑
m=0

Cm(φP , φQ) cosm∆λ

where ∆λ = min{|λP − λQ|, 2π − |λP − λQ|} ∈ [0, π], and the last Cm is rescaled to

absorb a constant value 2 for m > 0.

19



CHAPTER II

LITERATURE REVIEW

The word "kriging" in the domain of spatial statistics is widely used to refer to

the spatial prediction methods, named in honor of D. G. Krige, a professor at the

University of the Witwatersrand, South Africa. Professor Krige promoted the use of

statistical tools for exploring minerals and in 1951 laid the foundation for the develop-

ment of spatial statistics, which was later adopted and developed by Georges Math-

éron and colleagues at L’Ecole des Mines in Fontainbleau. [Ord83] describes kriging

as the concept of interpolation of random spatial processes and presented predictors

that were linear in observations and mentioned nonlinear possibilities. [Math63] de-

fines kriging as predicting the grade of a panel by computing the weighted average

of available sample. The suitable weights ai is determined by
∑n

i=1 ai = 1 and the

variance used for prediction should take the smallest value. [Krig] perceives the word

kriging as the multiple regression procedure to arrive at the best linear unbiased pre-

dictor or best linear weighted moving average predictor of the ore grade of an ore

block of any size by assigning an optimum set of weights to all the relevant and avail-

able data both inside and outside of the ore block. Thus, originally geostatistical

methods were developed to predict the likely yield of a mining operation over a spa-

tial region D, from the available samples of ore extracted from a finite set of locations.

There are various kriging methods in literature. [Cre93] explains ordinary kriging

as the linear prediction of points at unobserved sites. Their discussion on ordinary
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kriging considers n observations {Z1, · · · , Zn} at known spatial locations {t1, · · · , tn};

then the aim of kriging is to give a linear prediction Z0 at the unobserved location

t0. The assumption is that the covariance (or variogram) of Z(t) is already known.

If not known it is pre-estimated. Z(t) follows a Gaussian process with an unknown

mean µ and constant variance. Moreover, the sum of the coefficients of a linear

predictor is equal to 1. Simple kriging is another type of kriging technique similar

to ordinary kriging, under which, in contrast, Z(t) follows a Gaussian process with

a known mean µ and the sum of the coefficients of the linear predictor is not equal to 1.

Finally, universal kriging generalizes the ordinary kriging procedure. It is krig-

ing with a local trend. This local trend or drift varies slowly but continuously on

the surface on top of which the variation to be found is superimposed. The theory

behind universal kriging is to perform kriging under universality conditions, which

would eventually help deepen the understanding and interpolate the points. [Wack03]

states that "the universal kriging model splits the random function into a linear com-

bination of deterministic functions, known at any point of the region, and a random

component, the residual random function."

Kriging methods have been widely used in literature. [Cre88] considered the as-

sumptions needed to carry out the spatial prediction using ordinary kriging, and

analyzed how nugget effect, range, and sill of the variogram affected the predictor.

Moreover, kriging is used in many fields in practical applications such as empirical

Bayesian kriging (EBK) for a fast and reliable solution for both automatic and interac-

tive data interpolation [Grib20], feed-forward neural network (FFNN)-based path loss
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modeling improves the accuracy of kriging [Sato19], integrated random forest (RF)

models and spatiotemporal kriging [Shao20], minimax approach used in the semivari-

ogram fitting process [Seti20], predicting the above ground biomass map [Li20], calcu-

lating distance between locations on earth’s surface [Grib20], trend removal methods

for observed spatial data represented as LR - fuzzy numbers [Hes20], prediction per-

formance of kriging predictors with isotropic Matérn correlations [Tuo20], network

path prediction into statistical prediction [Chu07], novel neural network structure for

spatial prediction [Li20], mapping the health risk factors in primary sector to over-

come the challenges of working with discrete occupational data [Ger20], to mention

just a few.

Although kriging methods have been widely used, the approaches and applications

are mainly on Rd or a region of Rd. In recent years, with the global networks and

satellite sensors that have been widely used to monitor a wide array of global-scale

processes and variables, increasing attention has been now switched to the study of

random processes on the sphere. Consequently, a number of studies on kriging meth-

ods on spheres have been proposed. For example, [Woj18] discusses the advantages

and disadvantages among the widely available kriging models such as least-squares

collocation, ordinary kriging, and universal kriging when real-world data has some

imperfect conditions, which refer to the addition of mean value or trend to the sta-

tionary or intrinsically stationary processes on the sphere. These comparisons are

carried out through the modeling of vertical total electron content (VTEC) derived

from GNSS station data. [BUS20] develops a universal kriging method on the sphere

based on the intrinsic random functions. They explore graphical and numerical pro-
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cedures to determine the order of non-stationarity, and their proposed method has

been used to analyze a multi-decadal global temperature dataset. [Grib20] provides a

review on various geostatistical modeling approaches on the sphere, which include the

use of covariance models that are valid in Rd, the possible new classes of covariance

models that are valid on the sphere, and the use of intrinsic random functions that

are proposed by [HZRS19]. They point out the limitations in the above approaches

in terms of the multivariate Gaussian data assumption as well as the large number of

data extents for prediction. Furthermore, they propose ways of interpolating data in

a geographic coordinate system using empirical Bayesian kriging and investigate some

geostatistical modeling on the sphere such as using the covariance models that allow

replacement of the Euclidean distance with the great circle distance. They propose

new classes of covariance functions that is not valid for Euclidean distance, while

using intrinsic random functions that allows the removal of the local non-stationarity

in the data.

It has been known that large scale or global processes usually show the pattern

of nonstationarity since the factors driving the characteristics of the random field

typically vary at various locations. In recent years, the axially symmetric process

has received increased attention. For an axially symmetric processes, as described

in [Jon63], the covariance function depends on the longitudes only through their dif-

ference. [Ste07] has applied this approach to model total column ozone on a global

scale, while [JS08] consider the axially symmetric process by applying the differential

operators to an isotropic process. [HZR12] obtained a simplified representation of a

valid axially symmetric covariance function on the sphere. In this dissertation, we
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focus on the ordinary kriging for the axially symmetric process on the sphere.

[Jae2014] proposed a method to construct covariance function for smooth pro-

cesses on the surface of a sphere that is valid with great circle distance. Moreover,

[Jae2014] used the kriging approach to numerically compare their proposed model

with existing Matérn class models. Unlike our approach, instead of considering the

whole sphere identically, they picked more samples near to the equator and fewer

samples in both poles in a simulation method. In the comparison study, they used a

cross-validation technique to justify their prediction performance. Meanwhile, they

applied the maximum likelihood estimation for the parametric approach for which

we had computational difficulties when we applied it to our approach. Neverthe-

less, the performance of the model proposed has similarities to the existing Matérn

class models. However, no detail kriging approach was discussed in their paper. In

[Zhu16], they proposed a kernel convolution approach to model the axially symmetric

processes on the sphere. More specifically, the spatial random process is first modeled

at each latitude and the raw estimates are smoothed with a local smoothing method

across different latitudes through leave-one-out cross validation. They then use the

estimated covariance model to perform the ordinary kriging. Finally, this approach

is applied to the detrended TOMS data for 3600 locations for the ordinary kriging

predictions with the assumption that the kriging variance is constant at the same

latitude and the process is axially symmetric.

In this dissertation, we consider ordinary kriging when a random process on the

sphere is axially symmetric. In particular, the kriging process will involve the pre-
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diction for a complex random field. It would extend the ordinary kriging approach

that was described in [Cre93], which focuses on random processes on the real domain.

It should be noted that although many results for complex random processes can be

obtained through those for real random processes, there are some differences. For

example, the covariance function for complex random processes might also be com-

plex, involving the real and imaginary components. In addition, there is very limited

research on kriging under a complex domain. [Deu98] seems to be the first one to

consider the complex kriging prediction, but with an additional predictor assump-

tion. [Sand15] extensively discusses the computational developments of kriging with

the complex covariance functions and performs kriging on the complex random field.

Meanwhile, they applied the parametric method for estimating the parameters of the

complex covariance model through the non-linear weighted least square method (for

example, see [Cre93]). They applied their method to two types of data sets: regularly

and irregularly sampled data.

In our dissertation research, the Discrete Fourier transform plays a pivotal role.

First, according to [HZR12], an axially symmetric process on the sphere can be de-

composed as Fourier series on circles, where the Fourier random coefficients can be

expressed as a circularly-symmetric complex random process. Ordinary kriging is

then conducted for the circularly-symmetric complex random processes, and the pre-

dicted data values will be obtained through the inverse Discrete Fourier transfor-

mation. For our kriging methods, we consider both parametric and non-parametric

approaches in estimating the empirical covariance models. Under the parametric ap-

proach, we choose the optimal values of the particular parameters based on the least
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total squared differences of true variograms and empirical variograms. In addition,

we calculate the Increase in Prediction Error (IPE) given by [Yan13] to justify the

kriging performance. For the non-parametric approach, we use the Wavelet-Galerkin

method to obtain the estimated covariance function. All the above approaches and

results are demonstrated through simulation studies.

The dissertation is organized as follows. In Chapter III, we provide a full de-

velopment of kriging methods under both real and complex random processes. In

Chapter IV, we propose both parametric and nonparametric approaches to estimate

the covariance function. Finally, a summary of results and future research areas are

presented in Chapter V.
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CHAPTER III

SPATIAL PREDICTION FOR AXIALLY SYMMETRIC PROCESSES ON THE

SPHERE

Optimal prediction (kriging) or making estimations on the spatial data analysis is

always challenging and interesting. However, there is very limited research on kriging,

in particular, for random processes on the sphere. In this chapter, we propose vari-

ous ordinary kriging approaches when the underlying process is an axially symmetric

process on the sphere.

This chapter is organized as following. We introduce some basic structure of grid-

ded data in the spatial field, followed by variogram functions, a block circulant co-

variance matrix for both longitudinally reversible and axially symmetric processes on

the sphere, and a cross covariance and variogram estimator on the sphere in Sec-

tion 3.1. Further, in Section 3.2 we review various Fourier transforms including but

not limited to the discrete Fourier transform for finite data series. Finally, Section

3.3 contains the general setup for developing our kriging methods when the under-

lying process is longitudinally reversible or axially symmetric processes on the sphere.

3.1 Gridded Data and Estimators

A gridded data structure defines two-dimensional coordinates based on the Earth’s

surface. Gridded data structure is the common way to represent the spatial data. It

contains latitudes and longitudes to identify exact locations on the surface of the
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Earth. The quantity of latitudes and longitudes provides the data resolution or di-

mension. Latitude lies between 0 and π and longitude has the range of [0, 2π]. In

spatial research literature, Microwave sounding units (MSU), Total Ozone Mapping

Spectrometer (TOMS) and Large ENSemble (LENS) data sets have been widely used

and discussed, all of which are have gridded data structure. For example, accord-

ing to [PAC18], regular gridded LENS data contain 192 latitudinal points and 288

longitudinal points. It has the 1.25◦ common length among longitudes. Meanwhile,

MSU data have an equal length difference for both latitudes and longitudes. It has

2.5◦ length differences, which gives 72 latitudinal points and 144 longitudinal points

on the Earth. Therefore, throughout this dissertation work we will assume that the

gridded data structure on the sphere is observed.

More explicitly, we assume the data observed on the sphere are represented as

{X(φi, λj) : 1 ≤ i ≤ nl, 1 ≤ j ≤ n}. Here φ1, φ2, · · · , φnl
are nl latitudes and

λ1, λ2, · · · , λn are n gridded longitudinal values with λj = (j − 1)δ where δ = 2π/n

for j = 1, 2, · · · , n. We can also write the gridded data in the following matrix form.

X =



X(φ1, λ1) X(φ1, λ2) X(φ1, λ3) · · · X(φ1, λn)

X(φ2, λ1) X(φ2, λ2) X(φ2, λ3) · · · X(φ2, λn)

X(φ3, λ1) X(φ3, λ2) X(φ3, λ3) · · · X(φ3, λn)

...
...

...
...

...

X(φnl
, λ1) X(φnl

, λ2) X(φnl
, λ3) · · · X(φnl

, λn)


. (3.1)

As a special case where there are only two latitudes denoted as φP and φQ, all ob-

servations on latitudes φP and φQ can be written as {(φP , λj)}nj=1 and {(φQ, λj)}nj=1,
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respectively.

In this section, we will first discuss the cross-variogram function. We then in-

troduce the block circulant covariance matrix for axially symmetric processes and

the symmetric block circulant covariance matrix with symmetric blocks for longitudi-

nally reversible processes on the sphere. Finally under the assumption of gridded data

structure, the Method of Moments (MOM) estimators for variogram and covariance

function are given.

3.1.1 Variogram functions

We assume constant means µ1 and µ2 on latitudes φ1 and φ2, respectively. For

two latitudes φ1 and φ2, the cross variogram function on those two latitudes with

longitudinal difference ∆λ is defined as follows and is further simplified.

2γ(φ1, φ2,∆λ) = E[(X(φ1, λ+ ∆λ)−X(φ1, λ))(X(φ2, λ+ ∆λ)−X(φ2, λ))]

= E [(X((φ1, λ+ ∆λ)− µ1)− (X(φ1, λ)− µ1))

× (X((φ2, λ+ ∆λ)− µ2)− (X(φ2, λ)− µ2))]

= cov(X(φ1, λ+ ∆λ)X(φ2, λ+ ∆λ))− cov(X(φ1, λ+ ∆λ)X(φ2, λ))

−cov(X(φ1, λ)X(φ2, λ+ ∆λ)) + cov(X(φ1, λ)X(φ2, λ))

= R(φ1, φ2, 0)−R(φ1, φ2,∆λ)−R(φ1, φ2,−∆λ) +R(φ1, φ2, 0)

= 2R(φ1, φ2, 0)−R(φ1, φ2,∆λ)−R(φ1, φ2,−∆λ).
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Hence,

γ(φ1, φ2,∆λ) = R(φ1, φ2, 0)− 1

2
(R(φ1, φ2,∆λ) +R(φ1, φ2,−∆λ)).

If X(P ) is longitudinally reversible, that is, R(φ1, φ2,∆λ) = R(φ1, φ2,−∆λ), we have

γ(φ1, φ2,∆λ) = R(φ1, φ2, 0)−R(φ1, φ2,∆λ).

When φ1 = φ2, the above equation reduces to the variogram function on the circle.

3.1.2 Block Circulant Covariance Matrix for Axially Symmetry Processes

Let X(φ, λ) be an axially symmetric process on the sphere. Under the assumption

of gridded data X specified above by (3.1), the variance-covariance matrix of X(φ, λ)

is a block circulant matrix C ∈ Rnln×nln where nl and n denote the number of latitudes

and longitudes, respectively ([Ada17], [Yan13], [Ste07])

C =



C0 C1 C2 · · · Cn−2 Cn−1

Cn−1 C0 C1 · · · Cn−3 Cn−2

Cn−2 Cn−1 C0 · · · Cn−4 Cn−3

...
...

...
...

...

C1 C2 C3 · · · Cn−1 C0


.
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Here Cj, j = 0, 1, · · · , n − 1, is the covariance matrix of {X(φi, λ1), i = 1, 2, · · · , nl}

and {X(φi, λj+1), i = 1, 2, · · · , nl}, that is,

Cj =



cov(X(φ1, λ1), X(φ1, λj+1)) · · · cov(X(φ1, λ1), X(φnl
, λj+1))

cov(X(φ2, λ1), X(φ1, λj+1)) · · · cov(X(φ2, λ1), X(φnl
, λj+1))

...
...

...

cov(X(φnl
, λ1), X(φ1, λj+1)) · · · cov(X(φnl

, λ1), X(φnl
, λj+1))


.

Moreover, for any two latitudes φP , φQ, we have

cov(X(φP , λ1), X(φQ, λi+1)) = R(φP , φQ, iδ)

6= cov(X(φQ, λ1), X(φP , λi+1)) = R(φQ, φP , iδ),

where δ = 2π
n
. That is, Ci may not be symmetric. However, Ci = CT

n−i because

cov(X(φP , λ1), X(φQ, λi+1)) = R(φP , φQ, iδ)

= R(φQ, φP , (n− i)δ) = cov(X(φQ, λ1), X(φP , λn−i+1)).

3.1.3 Symmetric Block Circulant Matrix with Symmetric Blocks for Longitudinally

Reversible Processes

We can extend the above work when the underlying process is a longitudinally

reversible process. Longitudinally reversible process is a special case of an axially
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symmetric process where R(φP , φQ,∆λ) = R(φP , φQ,−∆λ). Hence,

cov(X(φP , λ1), X(φQ, λi+1)) = R(φP , φQ, iδ) = R(φP , φQ,−iδ)

= R(φQ, φP , iδ) = cov(X(φQ, λ1), X(φP , λi+1)).

This above derivation shows that all Ci are symmetric blocks with Ci = Cn−i.

cov(X(φP , λ1), X(φQ, λi+1)) = R(φP , φQ, iδ)

= R(φP , φQ, (n− i)δ) = cov(X(φP , λ1), X(φQ, λn−i+1)).

Hence, the block circulant covariance matrix of longitudinally reversible processes

is given by

C =



C0 C1 C2 · · · C2 C1

C1 C0 C1 · · · C3 C2

C2 C1 C0 · · · C4 C3

...
...

...
...

...

C2 C3 C4 · · · C0 C1

C1 C2 C3 · · · C1 C0


,

with Ci = CT
i .

3.1.4 Cross Covariance Estimator on the Sphere

According to [Ada17], the MOM (Method of Moments) cross covariance estimator

between two points with longitudinal difference of ∆λ for an axially symmetric process
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can be written

R̂12(∆λ) = R̂(φ1, φ2,∆λ)

=
1

n

n∑
i=1

(X(φ1, (i− 1)δ + ∆λ)− X̄φ1)(X(φ2, (i− 1)δ + ∆λ)− X̄φ2)

=
1

n

n∑
i=1

X(φ1, (i− 1)δ + ∆λ)X(φ2, (i− 1)δ)− X̄φ1X̄φ2

= ~XTA(∆λ) ~X.

Here

X̄φi =
1

n

n∑
j=1

X(φi, λj), i = 1, 2,

~X = (X(φ1, λ1), X(φ2, λ1), X(φ1, λ2), X(φ2, λ2), · · · , X(φ1, λn), X(φ2, λn))T ,

and A(∆λ) is a block circulant matrix given by

A(∆λ) =
1

n
circ


0 −1

n

0 0

 , · · · ,

0 1− 1
n

0 0

 , · · · ,

0 −1
n

0 0




According to [Ada17], A(∆λ) can be unitarily diagonalized as following

A(∆λ) = Pdiag(S
(A)
1 , S

(A)
2 , · · · , S(A)

n )P ∗,

where P is a unitary matrix satisfying

PP ∗ = P ∗P = In
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with

S
(A)
j =

n−1∑
m=0

ωmj Am,

where Am,m = 0, 1, · · · , n−1 represents the 2×2 blocks in A(∆λ). (See more details

in [Ada17]).

3.1.5 Cross Variogram Estimator on the Sphere

Based on [Ada17], the MOM cross variogram estimator for an axially symmetric

process can be written

γ̂12 = γ̂(φ1, φ2,∆λ)

=
1

2n

n∑
i=1

(X(φ1, (i− 1)δ + ∆λ)− (X(φ1, (i− 1)δ))

×(X(φ2, (i− 1)δ + ∆λ)−X(φ2, (i− 1)δ)),

where A(∆λ) is a block-symmetric circulant matrix. For illustration, we give the

detailed expression of A(∆λ) when n = 6.
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If n = 6, we have the following expressions for A(∆λ) with ∆λ = 0, π/3, 2π/3, π.

A(0) = 012×12

A(π/3) =
1

12
circ(

0 1

1 0

 ,

 0 −1
2

−1
2

0

 ,

0 0

0 0

 ,

0 0

0 0

 ,

0 0

0 0

 ,

 0 −1
2

−1
2

0

).

A(2π/3) =
1

12
circ(

0 1

1 0

 ,

0 0

0 0

 ,

 0 −1
2

−1
2

0

 ,

0 0

0 0

 ,

 0 −1
2

−1
2

0

 ,

0 0

0 0

),

A(π) =
1

12
circ(

0 1

1 0

 ,

0 0

0 0

 ,

0 0

0 0

 ,

 0 −1

−1 0

 ,

0 0

0 0

 ,

0 0

0 0

).

Also, A(∆λ) has a spectral unitary decomposition as follows.

A(∆λ) = Pdiag(S
(A)
1 , S

(A)
2 , · · · , S(A)

n )P ∗

with

S
(A)
j = (1− cos((j − 1)∆λ))

0 1

1 0

 , j = 1, 2, · · · , n.

Hence,

A(∆λ) = Pdiag(1− cos((j − 1)∆λ))

0 1

1 0

P ∗.

Further expressions of S(A)
j , j = 1, 2, · · · , n and P when n = 6 are given in [Ada17].
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3.2 Fourier Transform

The Fourier Transform is a tool that breaks a waveform (a function or signal) into

an alternate representation, characterized by sine and cosines. The Fourier Series

breaks down a periodic function into the sum of sinusoidal functions. It is the Fourier

Transform for periodic functions.

The discrete Fourier transform (DFT) converts a finite sequence of equally spaced

samples of a function into an equally long sequence of equally spaced samples of the

discrete time Fourier transform (DTFT), which is a function of frequency with com-

plex values. The DFT is the most important discrete transform, used to perform

Fourier analysis in many practical applications.

The Fourier transform takes various forms:

Continuous Form: The continuous Fourier transform of a signal x(t) ∈ C, t ∈

(−∞,∞) , is defined as

P (w) =

∫ ∞
−∞

x(t)e−jwtdt

and its inverse given by

x(t) =
1

2π

∫ ∞
−∞

P (w)ejwtdw.
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Fourier Series: The Fourier Transform of a function can be derived as a special

case of the Fourier Series when the period, T → ∞. Start with the Fourier Series

synthesis equation.

x(t) =
+∞∑

n=−∞
cne

jnωot

where cn is given by the Fourier Series analysis equation,

cn = 1
T

∫∞
−∞ x(t)e−jnω0tdt

which can be rewritten as following.

Tcn =
∫∞
−∞ x(t)e−jnω0tdt.

As T →∞ the fundamental frequency, ω0 = 2π/T , becomes extremely small and

the quantity nω0 becomes a continuous quantity that can take on any value. So

we define a new variable ω = nω0; we also let X(ω) = Tcn. Making these substi-

tutions in the previous equation yields the analysis equation for the Fourier transform.

Discrete Fourier Transform: Finite DFT plays a key role throughout this

dissertation work. According to the [Brock91], let ~x = (x1, x2, · · · , xn)T ∈ Cn be a

sequence of n numbers and ~a = (a1, a2, · · · , an)T a vector of real numbers. Then the

representation of ~x as a linear combination of harmonics,

xt =
1√
n

∑
0≤wj<2π

aje
itwj , t = 1, · · · , n.

Where wj = 2πj/n, j ∈ {0, 1, · · · , (n − 1)} = Fn falls in the interval [0, 2π). The

vectors ej, j ∈ Fn are defined by the following

~ej = n−1/2(1, eiwj , ei2wj , · · · , ei(n−1)wj).
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Define the inner product of two vectors ~u = (u1, u2, · · · , un)T , ~v = (v1, v2, · · · , vn)T ∈

Cn as follows.

< ~u,~v >=
n∑
t=1

utv̄t.

Hence from the properties of the above inner product, one can show that, for

j, k ∈ Fn,

< ~ej, ~ek >=

 1, j = k

0, j 6= k

That is {~ej, j ∈ Fn} forms a unitary basis of Cn.

The above representation of ~x can be written in vector form as

~x =
∑
j∈Fn

aj~ej.

We can derive the aj where j ∈ Fn by taking the inner product of ~x with ~ej.

aj = 〈 ~x,~ej〉 =
1√
n

n∑
t=1

xteitwj =
1√
n

n∑
t=1

xte
−itwj .

In summary, we have

aj =
1√
n

n∑
t=1

xte
−itwj and xt =

1√
n

∑
j∈Fn

aje
itwj
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to form a DFT pair.

Now let us consider the following special cases.

• First, when ~a is real, that is, aj = aj for all j = 0, 1, 2, · · · , n− 1. We have

aj =
1√
n

n∑
t=1

xte
−itwj = āj =

1√
n

n∑
t=1

xte−itwj

⇒
n∑
t=1

xte
−itwj =

n∑
t=1

xte
itwj .

Expanding the last two summands, and letting xt = ut + ivt and e−itwj =

cos(twj)− i sin(twj), we have

0 =
n∑
t=1

((ut + ivt)(cos(twj)− i sin(twj))− (ut − ivt)(cos(twj) + i sin(twj)))

=
n∑
t=1

2i(vt cos(twj)− ut sin(twj))

⇒
n∑
t=1

(vt cos(twj)− ut sin(twj)) = 0.

Therefore, if we take xt = ut + ivt with both ut and vt real, we have

aj =
1√
n

n∑
t=1

(ut + ivt)(cos(twj)− i sin(twj))

=
1√
n

n∑
t=1

(ut cos(twj) + vt sin(twj)) +
n∑
t=1

(vt cos(twj)− ut sin(twj))

=
1√
n

n∑
t=1

(ut cos(twj) + vt sin(twj)).

39



On the other hand, if we write

xt = ut + ivt =
1√
n

∑
j∈Fn

aje
itwj =

1√
n

∑
j∈Fn

aj(cos(twj) + i sin(twj)),

then, ut = 1√
n

∑
j∈Fn

aj cos(twj) and vt = 1√
n

∑
j∈Fn

aj sin(twj). Moreover, we

note that ut = un−t, vt = −vn−t, implying that xn−t = x̄t, t = 1, 2, · · · , n− 1.

Remark: We will apply the above result when we consider the kriging method

for axially symmetric processes in Section 3.3.

• If xt, t = 1, 2, · · · , n are real, it is obvious that a0 is real. We further prove that

an−j = āj for j = 1, 2, · · · , n− 1.

an−j =
1√
n

n∑
t=1

xte
−itwn−j =

1√
n

n∑
t=1

xte
−it(2π)(n−j)/n =

1√
n

n∑
t=1

xte
it(2π)j/n = āj.

Now we consider the following expansion for xt. For simplicity, we set n = 2N .

xt =
a0√
n

+
1√
n

(
N−1∑
j=1

aje
itwj +

n−1∑
j=N+1

aje
itwj

)
+

1√
n
aNe

itπ t = 1, · · · , n.

Let k = n− j in the second summation above. We have

n−1∑
j=N+1

aje
itwj =

N−1∑
k=1

an−ke
itwn−k =

N−1∑
k=1

āke
−itwk .
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Hence,

xt =
a0√
n

+
1√
n

(
N−1∑
j=1

aje
itwj +

n−1∑
j=N+1

aje
itwj

)
+
aN√
n
eitπ

=
a0√
n

+
1√
n

N−1∑
j=1

(aje
itwj + āje

−itwj) +
1√
n
aN(−1)t

=
a0√
n

+
1√
n

N−1∑
j=1

(aje
itwj + āje

−itwj) +
1√
n
aN(−1)t.

Note that if n is odd, the last term in the above expression disappears.

If we write aj = rje
iθj , then we can rewrite the above expression as

xt =
a0√
n

+
√

2
N∑
j=1

(rjcj cos θj − rjsj sin θj) +
1√
n
aN(−1)t, t = 1, · · · , n

where for j = 1, 2, · · · , N − 1,

cj =

√
2

n
(1, coswj, cos 2wj, · · · , cos (n− 1)wj)

T ,

and

sj =

√
2

n
(0, sinwj, sin 2wj, · · · , sin (n− 1)wj)

T .

Therefore, now we can establish the orthonormal basis of Rn by

{e0, c1, s1, · · · , cN1 , sN1 , eN}, where e0 = 1√
n
(1, 1, · · · , 1)T , and

41



eN = 1√
n
(−1, 1,−1, 1, · · · , 1) if n is even.

• If both ~a = (a0, a1, · · · , an−1)T and ~x are real, then we have

aj =
1√
n

n∑
t=1

xt cos(itwj) and xt =
1√
n

∑
j∈Fn

aj cos(itwj).

The above expression can be simplified further. For simplicity, we assume that

n = 2N , an even integer. Note that when both ~x and aj are real, one can

deduce that an−j = aj and xt = xn−t for all available j and t. Therefore, the

above two equations can be simplified as following:

aj =
1√
n

(
xn + 2

N−1∑
t=1

xt cos(twj) + xN(−1)j

)
,

xt =
1√
n

(
a0 + 2

N−1∑
j=1

aj cos(twj) + aN(−1)t

)
.

If n is odd, the last term in the above expressions disappears.

In the above real value DFT, the orthonormal basis is given by {e0, c1, · · · , cN−1}

and eN if n is even.

Remark: We will apply the above result when we consider the kriging method

for longitudinally reversible processes in Section 3.3.
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3.3 Kriging Method Development

In this section, we first provide the general idea for developing kriging methods

for axially symmetric processes on the sphere. In particular, we note that an axi-

ally symmetric process on the sphere can be decomposed as Fourier series on circles,

where the Fourier random coefficients can be expressed as circularly-symmetric pos-

sibly complex random processes. Based on the Discrete Fourier transform, ordinary

kriging methods have been developed for axially symmetric processes with zero mean,

constant mean, and different means on different latitudes, respectively, after which

both parametric and non-parametric approaches will be proposed. That will be pro-

vided in details in Chapter IV.

3.3.1 Introduction

Let X(φ, λ) be an axially symmetric process on the sphere, where φ ∈ [0, π] repre-

sents the latitude, and λ ∈ [0, 2π] represents the longitudes. Based on Proposition 2.5

from [HZR12], an axially symmetric random process with mean zero on the sphere

can be written as

X(φ, λ) =
∞∑

m=−∞

Wm(φ)eimλ, (3.2)

where the complex random process Wm(φ), φ ∈ [0, π] can be obtained by

Wm(φ) =
1

2π

∫ 2π

0

X(φ, λ)e−imλdλ,
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satisfying E(Wm(φP )Wn(φQ)) = δn,mCm(φP , φQ). Here Cm(φP , φQ) is possibly a com-

plex covariance function ofWm(φ). Further, if the Gaussianity of X(φ, λ) is assumed,

{Wm(φ),m = 0,±1,±2, . . .} are independent circularly-symmetric Gaussian complex

random process on φ ∈ [0, π] (Proposition 1 from [VWZ21]).

If the random process X(φ, λ) on the sphere is a longitudinally reversible process,

X(φ, λ) can be represented as follows.

X(φ, λ) = W0(φ) + 2
∞∑
m=1

Wm(φ) cos(mλ),

with

W0(φ) =
2

π

∫ 2π

0

X(φ, λ)dλ, Wm(φ) =
1

π

∫ 2π

0

X(φ, λ) cos(mλ)dλ,m = 1, 2, · · · .

HereWm(φ),m = 0, 1, · · · are uncorrelated real-valued random processes on φ ∈ [0, π].

If the Gaussianity is further assumed, Wm(φ) will be independent Gaussian random

processes on φ ∈ [0, π].

3.3.2 Kriging Method Development - Main Idea

Suppose we have finite gridded data values {X(φi, λj), i = 1, 2, · · · , nl; j = 1, 2, · · · , n}

where λj = (j − 1)δ with δ = 2π
n

but φi, i = 1, 2, · · · , nl might not be gridded. The

purpose in this section is to provide the kriging method to predict the value X(φ0, λ0)

where φ0 may not be one of the latitudes φi, i = 1, 2, · · · , nl.
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Gridded data

X(φi, λj) with

k latitudes &

n longitudes.

λj = (j −

1)δ where

δ = 2π/n.

Estimate

{Wm(φ)}

m = 0, 1, · · ·

Estimate

{Ŵm(φ0)}

m = 0, 1, · · ·

Predict

X̂(φ0, λ0)

Estimate

covariance

function

Cm(φP , φQ)

IDFT Kriging

Covariance

DFT

Figure 3. Spatial prediction flow

The above diagram (Figure 3) can be decomposed into the following major steps:

(1) Given gridded data values {X(φi, λj), i = 1, 2, · · · , nl; j = 1, 2, · · · , n}, we ob-

tain Wm(φi), i = 1, 2, · · · , nl;m = 0, 1, · · · through an inverse DFT.

(2) Based on the given/estimated gridded data values, we estimate the covariance

function Cm(·, ·),m = 0, 1, 2, · · · (details will be discussed in Chapter IV).

(3) Perform kriging to estimate {Wm(φ0)},m = 0, 1, · · · , where φ0 is the given

latitude.

45



(4) Use DFT to obtain the predicted value X̂(φ0, λ0) at the new location (φ0, λ0).

We will illustrate the above kriging flow chart under two separate settings: when

X(φ, λ) is longitudinally reversible, and when X(φ, λ) is axially symmetric.

3.3.3 Kriging under Longitudinal Reversibility

We assume that X(φ, λ) is a longitudinally reversible process on the sphere. As we

note from Section 3.3.1, Wm(φ),m = 0, 1, 2, · · · becomes a real-valued uncorrelated

random process on φ ∈ [0, π]. We illustrate the above diagram(Figure 3) in more

details.

Step 1: Obtaining Wm(φ),m = 0, 1, 2, · · · , with Inverse DFT

For a fixed latitude φ, if we are given finite gridded data values, we have the

following DFT expression (take n = 2N for simplicity).

X(φ, λ) =
1√
n

(
W0(φ) + 2

N−1∑
m=1

Wm(φ) cos(mλ) + cos(π)WN(π)

)
, (3.3)

and hence based on Section 3.2,

Wm(φ) =
1√
n

n∑
t=1

X(φ, λt) cos(mλt), m = 0, 1, · · · , N.
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In general, if we are given gridded data on a set of latitudes, denoted as {φ1, φ2, · · · , φm},

we can write the above expression in a matrix form as given below.

W =
1√
n
Xe,

where X is the gridded data structure given in Section 3.1 and

W =



W0(φ1) W1(φ1) · · · Wn−1(φ1)

W0(φ2) W1(φ2) · · · Wn−1(φ2)

W0(φ3) W1(φ3) · · · Wn−1(φ3)

...
...

...

W0(φm) W1(φm) · · · Wn−1(φm)


,

e =



1 (cosλ1) (cos 2λ1) · · · 1

1 (cosλ2) (cos 2λ2) · · · −1

1 (cosλ3) (cos 2λ3) · · · 1

...
...

...
...

...

1 (cosλn) (cos 2λn) · · · −1


.

Step 2: Estimate Cm(·, ·) (given in Chapter IV)

Step 3: Kriging Method

Assume that we have the gridded data X given by (3.1). We will predict the data

value X(φ0, λ0). We have the following two cases.
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(1) Latitude φ0 ∈ {φ1, φ2, · · · , φm}. In other words, φ0 is one of the existing lati-

tudes.

This is a straight forward approach. One can easily get the Wm(φ) from the

above equation (3.3) and apply the following equation. More specifically, any

data value at latitude φ0 and longitude λ0 can be written as

X(φ0, λ0) =
1√
n

(Ŵ0(φ0) + 2
N−1∑
m=0

Ŵm(φ0) cos(mλ0) + ŴN(φ0) cos(Nπ)). (3.4)

(2) Latitude φ0 ∈ [0, π] but may not be one of the existing latitudes. In this case,

we need to predict Wm(φ0),m = 0, 1, 2, · · · , N first (details to be given next),

and then we can use the above expression(3.4) to obtain X(φ0, λ0).

In principle, ordinary kriging is represented as a linear combination of observed

data values [Cre93]. It has the following two assumptions.

(1) Model assumption: The real-valued random process W (φ) with an unknown

constant mean µ can be written as follows.

W (φ) = µ+ δ(φ), φ ∈ [0, π], µ ∈ R and µ unknown.

where δ(φ) is a real-valued process with zero mean but having the same covari-

ance structure.

(2) Predictor assumption: The unobserved W (φ0) at an unknown location φ0 is

computed by

W (φ0) =
n∑
i=1

ciW (φi),
n∑
i=1

ci = 1
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where ci ∈ R i = 1, 2, · · · , n are to be determined.

Note

E[W (φ0)] = E

(
n∑
i=1

ciW (φi)

)
=

n∑
i=1

ciE(W (φi)) =
n∑
i=1

ciµ = µ.

From the unbiasedness we can say MSE = Variance.

σ2 = E(µ−W (φ0))2 = E(W (φ0)−
n∑
i=1

ciW (φi))
2 = V ar(W (φ0)−

n∑
i=1

ciW (φi)).

Therefore, for the optimal prediction on the real-valued random field, we need to

minimize the mean squared error (MSE), given by E(W (φ0)−
∑n

i=1 ciW (φi))
2. Here,

W (φ0) and W (φi) can be replaced by the δ(φ0) + µ and δ(φi) + µ, respectively, due

to the predictor assumption where
∑n

i=1 λi = 1.

Hence,

E(W (φ0)−
n∑
i=1

ciW (φi))
2

= E(δ(φ0)−
n∑
i=1

ciδ(φi))
2

= Eδ(φ0)2 − 2E(δ(φ0)
n∑
i=1

ciδ(φi)) + E(
n∑
i=1

n∑
j=1

cicjδ(φi)δ(φj))

= E(W (φ0)− µ)2 +
n∑
i=1

n∑
j=1

cicjE((W (φi)− µ)(W (φj)− µ))

−2
n∑
i=1

ciE((W (φ0)− µ)(W (φi)− µ))

= C(φ0, φ0) +
n∑
i=1

n∑
j=1

cicjC(φi, φj)− 2
n∑
i=1

ciC(φ0, φi),
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where C(φ0, φ0) is the variance value at φ0 and C(φi, φj) is the covariance at two

latitudes φi, φj. After applying the Lagrange multiplier l subject to
∑n

i=1 ci = 1, the

objective function becomes

C(φ0, φ0) +
n∑
i=1

n∑
j=1

cicjC(φi, φj)− 2
n∑
i=1

ciC(φ0, φi)− 2l

(
n∑
i=1

ci − 1

)
.

Differentiating with respect to c1, · · · , cn and l, and equating to 0, we have

n∑
j=1

cjC(φi, φj)− C(φ0, φi)− l = 0 i = 1, 2, · · · , n.

and

n∑
i=1

ci = 1.

We can rewrite the above equations in the following matrix form

An×n −~1n×1

~1
′
1×n 0


~cn×1

l

 =

~bn×1

1

 .
where ~1n×1 = (1, 1, · · · , 1)T , ~cn×1 = (c1, c2, · · · , cn)T , and

A =



C(φ1, φ1) C(φ1, φ2) C(φ1, φ3) · · · C(φ1, φn)

C(φ2, φ1) C(φ2, φ2) C(φ2, φ3) · · · C(φ2, φn)

C(φ3, φ1) C(φ3, φ2) C(φ3, φ3) · · · C(φ3, φn)

...
...

...
...

...

C(φn, φ1) C(φn, φ2) C(φn, φ3) · · · C(φn, φn)


,

50



~b = (C(φ1, φ0), C(φ2, φ0), · · · , C(φn, φ0))T ,

Optimal Solution

Now we are looking for the solution to the following equation:

An×n~cn×1 − l~1n×1 = ~bn×1,

subject to
∑n

i=1 ci = 1.

Hence,

~cn×1 = A−1[~bn×1 + l~1n×1].

But, we know that
∑n

i=1 ci = 1. Therefore, multiplying the transpose of ~1Tn×1 = ~11×n

by the left side of the above equation gives.

1 = ~11×nA
−1[~bn×1 + l~1n×1], and l =

[1−~11×nA
−1~bn×1]

~11×nA−1~1n×1

.

Once we plug the solution for l into the equation cn×1 = A−1[~bn×1 + l~1n×1], we have,

cn×1 = A−1

[
~bn×1 +~1n×1

[1−~11×nA
−1b]

~11×nA−1~1n×1

]
.

For a longitudinally reversible process X(φ, λ), Wm(φ) m = 0, 1, 2, · · · , n is a real

process. Apply the above kriging methods to each of Wm(φ) to obtain the estimates
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Ŵm(φ0).

Ŵm(φ0) =
n∑
j=1

c
(m)
j Wm(φj) m = 0, 1, 2, · · ·

where c(m) = A−1
m

[
~bm +~1n×1

[1−~11×nA
−1
m
~bm]

~11×nA
−1
m ~1n×1

]
,

Am =



Cm(φ1, φ1) Cm(φ1, φ2) Cm(φ1, φ3) · · · Cm(φ1, φn)

Cm(φ2, φ1) Cm(φ2, φ2) Cm(φ2, φ3) · · · Cm(φ2, φn)

Cm(φ3, φ1) Cm(φ3, φ2) Cm(φ3, φ3) · · · Cm(φ3, φn)

...
...

...
...

...

Cm(φn, φ1) Cm(φn, φ2) Cm(φn, φ3) · · · Cm(φn, φn)


,

bm = (Cm(φ1, φ0), Cm(φ2, φ0), · · · , Cm(φn, φ0))T

Step 4: Data Prediction

We use the inverse DFT to predict the data X(φ0, λ0) from Ŵm(φ0).

X(φ0, λ0) =
1√
n

(Ŵ0(φ0) + 2
N−1∑
m=0

Ŵm(φ0) cos(mλ0) + ŴN(φ0) cos(Nπ)).
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3.3.4 Kriging under Axial Symmetry

We assume that X(φ, λ) is an axially symmetric process on the sphere. As we note

from Section 3.3.1, Wm(φ),m = 0, 1, 2, · · · becomes a complex-valued uncorrelated

random process on φ ∈ [0, π]. We illustrate the above diagram in more details.

Step 1: Obtaining Wm(φ),m = 0, 1, 2, · · · , with Inverse DFT

Unlike longitudinally reversible process, an axially symmetric random process on

the sphere Wm(φ), φ ∈ [0, π] is possibly a complex-valued random process. Let X(P )

be an axially symmetric random process on the sphere. For each fixed latitude φ, let

~X = (X(φ, λ1), X(φ, λ2), · · · , X(φ, λn) with λ1 = 0, λ2 = δ, · · · , λi = (i − 1)δ with

δ = 2π
n

be observed gridded data on the sphere. Then from [HZR12], we have

X(φ, λt) =
1√
n

n−1∑
m=0

Wm(φ)eimλt , t = 1, 2, · · · , n.

Therefore, using the inverse discrete Fourier transform, we have (for example, [Brock91])

Wm(φ) =
1√
n

n∑
t=1

X(φ, λt)e
−imλt , m = 0, 1, 2, · · · , n− 1.

For the general case of gridded data with a dimension of nl×n (that is, nl latitudes

and n longitudes), the above equation can be rewritten as

W =
1√
n
Xe
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where

X =



X(φ1, λ1) X(φ1, λ2) X(φ1, λ3) · · · X(φ1, λn)

X(φ2, λ1) X(φ2, λ2) X(φ2, λ3) · · · X(φ2, λn)

X(φ3, λ1) X(φ3, λ2) X(φ3, λ3) · · · X(φ3, λn)

...
...

...
...

...

X(φm, λ1) X(φm, λ2) X(φm, λ3) · · · X(φm, λn)


,

W =



W0(φ1) W1(φ1) · · · Wn−1(φ1)

W0(φ2) W1(φ2) · · · Wn−1(φ2)

W0(φ3) W1(φ3) · · · Wn−1(φ3)

...
...

...

W0(φm) W1(φm) · · · Wn−1(φm)


,

e =



e−i1λ1 e−i2λ1 e−i3λ1 · · · e−inλ1

e−i1λ2 e−i2λ2 e−i3λ2 · · · e−inλ2

e−i1λ3 e−i2λ3 e−i3λ3 · · · e−inλ3

...
...

...
...

...

e−i1λn e−i2λn e−i3λn · · · e−inλn


.

Therefore, for any latitude φp we can obtainWm(φp),m = 1, 2, · · · , n fromX(φp, λi), i =

1, 2, · · · , n.

Step 2: Estimate Cm(·, ·) (given in Chapter IV)
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In the rest of this section, we will present the kriging method for predicting ran-

dom values on unobserved locations when the underlying process is axially symmetric.

Step 3: Kriging for the complex Wm(φ)

Making inferences on unobserved values of the complex random process W (·) from

the complex data W (φ) = (W (φ1), · · · ,W (φn))T observed at known spatial locations

{φ1, · · · , φn} is called kriging on a complex-valued random field. Similar to the case

under the longitudinally reversible process, we have two different cases of predictions.

(1) Latitude φ0 ∈ {φ1, φ2, · · · , φm}. In other words, φ0 is an existing latitude.

This is a straight forward prediction. One can easily get the Wm(φ) from the

data based on the inverse DFT and then apply the following equation. More

specifically, any data value X(φ0, λ0) to be predicted at the unobserved location

(φ0, λ0) can be written as

X̂(φ0, λ0) = W0(φ0) + 2
m−1∑
m=1

[WRe
m (φ0) cos(mλ0)−W Im

m (φ0) sin(mλ0)]

where Wm(φ0) = WRe
m (φ0) + iW Im

m (φ0) is a possibly complex-valued random

process on φ ∈ [0, π].

(2) Latitude φ0 ∈ [0, π] but not one of the existing latitudes. We consider this case

in more detail.

Spatial predictions on an axially symmetric process has the following two assump-

tions.
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(1) Model assumption: The complex-valued random process W (φ) with an un-

known constant mean µ can be written as the following.

W (φ) = µ+ δ(φ), φ ∈ [0, π], µ ∈ R and µ unknown

where δ(φ) is a complex-valued process with zero mean but has the same co-

variance structure.

(2) Predictor assumption: The unobserved W (φ0) at an unknown location φ0 is

computed by

W (φ0) =
n∑
i=1

biW (φi),
n∑
i=1

bi = 1

where bi ∈ C i = 1, 2, · · · , n are to be determined.

According to the [Sand15], we denote the complex-valued random field W (φ) at

unknown location φ as the following

W (φ) = X(φ) + iY (φ),

where X(φ) and Y (φ) represent the real and imaginary components of W (φ), respec-

tively.
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Therefore, the complex-valued random variable W (φ0) at an unknown location φ0

can be computed

W (φ0) =
n∑
i=1

biW (φi)

=
n∑
j=1

(bRej + ibImj )(X (φj ) + iY (φj ))

=
n∑
j=1

[bRej X(φj)− bImj Y (φj)] + i
n∑

j=1

[bRej Y (φj ) + bImj X (φj )]

= XT bRe − Y T bIm + i(X TbIm + Y TbRe)

where ~X = (X(φ1), X(φ2), · · · , X(φn))T , ~Y = (Y (φ1), Y (φ2), · · · , Y (φn))T , ~bRe =

(bRe1 , bRe2 , · · · , bRen )T ,~bIm = (bIm1 , bIm2 , · · · , bImn )T are the real and imaginary compo-

nents of the predictors, respectively.

However, we have

E[W (φ0)] = E(
n∑
i=1

biW (φi)) =
n∑
i=1

biE(W (φi)) =
n∑
i=1

biµ = µ.

Hence W (φ0) is unbiased only if
∑n

i=1 bi = 1, which implies that

n∑
i=1

bRei = 1,
n∑
i=1

bImi = 0.

Note that

MSE = Variance + Bias2,
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and from the unbiasedness we have MSE = Variance, giving

σ2 = E|µ−W (φ0)|2 = E|W (φ0)−
n∑
i=1

biW (φi)|2 = V ar(W (φ0)−
n∑
i=1

biW (φi)).

Therefore, for the optimal prediction on the complex-valued random field, we need

to minimize

E | W (φ0)−
n∑
i=1

biW (φi) |2= E(W (φ0)−
n∑
i=1

biW (φi))(W (φ0)−
n∑
i=1

biW (φi)).

Here, W (φ0) and W (φi) can be replaced by δ(φ0) + µ and δ(φi) + µ respectively, due

to the predictor assumption that
∑n

i=1 bi = 1. Hence,

E(| W (φ0)−
n∑
i=1

biW (φi) |2)

= E(| δ(φ0)−
n∑
i=1

biδ(φi) |2)

= E | δ(φ0) |2 −2E(δ(φ0)
n∑
i=1

biδ(φi)) + E(
n∑
i=1

n∑
j=1

bibjδ(φi)δ(φj))

= E | W (φ0)− µ |2 +
n∑
i=1

n∑
j=1

bibjE(W (φi)− µ)(W (φj)− µ)

−2
n∑
i=1

biE(W (φ0)− µ)(W (φi)− µ)

= C(φ0, φ0) +
n∑
i=1

n∑
j=1

bibjC(φi, φj)− 2
n∑
i=1

biC(φ0, φi).

Here C(φi, φj) is the complex covariance function of W .

Finally, minimizing the expression using derivatives with respect to b1, b2, · · · , bn after
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adding the complex Langrange multiplier M , we have

n∑
j=1

bjC(φi, φj) +M = C(φ0, φi) i = 1, 2, · · · , n

and

n∑
i=1

bRei = 1,
n∑
i=1

bImi = 0.

The optimal equation can be rewritten as

n∑
j=1

(bRei +ibImi )(CRe(φi , φj )+iC Im(φi , φj ))+(M Re+iM Im) = CRe(φ0 , φi)+iC Im(φ0 , φi),

where CRe, CIm,MRe,M Im are the real and complex components of the corre-

sponding C,M respectively. Therefore, we can split the above n equations into 2n

equations.

CRe(φi, φj)b
Re − CIm(φi, φj)b

Im +MRe = CRe(φ0, φi)

CIm(φi, φj)b
Re + CRe(φi, φj)b

Im +M Im = CIm(φ0, φi)

Further, we obtain this condition from the unbiasedness.

n∑
i=1

bRei = 1,
n∑
i=1

bImi = 0

Altogether we have 2n+ 2 unknowns and 2n+ 2 equations.
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Matrix Setup

The following matrix setup designed to get the solution for the coefficients(~b) and

complex Langrange multiplier.



CRe −CIm ~1n×1
~0n×1

CIm CRe ~0n×1
~1n×1

~11×n ~01×n 0 0

~01×n ~11×n 0 0





~bRen×1

~bImn×1

MRe

M Im


=



~CRe(φ0, φi)n×1

~CIm(φ0, φi)n×1

1

0


where CRe, CIm are the real and imaginary components of the covaraince matrix,

respectively.

Let us take

A =

CRe −CIm

CIm CRe


2n×2n

, B =

~1n×1
~0n×1

~0n×1
~1n×1

 , C =

~11×n ~01×n

~01×n ~11×n

 , D =

0 0

0 0

 .
But, A andD−CA−1B are non-singular, hence from the analytic inversion formula

we have the (2n+ 2)× (2n+ 2) matrix given by

A B

C D


−1

=

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

 .
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Furthermore, the matrix A is symmetric and CRe is non-singular. Finally, the

solution matrix is



~bRen×1

~bImn×1

MRe

M Im



=

A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1




~CRe(φ0, φi)n×1

~CIm(φ0, φi)n×1

1

0


.

We can then solve the above equation to obtain~b = ~bRe+i~bIm. Hence, the predicted

value Ŵ (φ0) is given by

Ŵ (φ0) =
n∑
j=1

(bRej + ibImj )W (φj).

For the prediction on the axially symmetric process, we repeat the above procedure

for each m = 0, 1, 2, · · · , n− 1 to have the following

Ŵm(φ0) =
n∑
j=1

(bRemj + ibImmj )Wm(φj) m = 0, 1, 2, · · · , n− 1.

Step 4: Obtain the Predicted Value X(φ0, λ0)
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Finally, the data value at the unobserved location (φ0, λ0) can be obtained by

X̂(φ0, λ0) =
1√
n

n−1∑
m=0

[ŴRe
m (φo) cos(mλ0)− Ŵ Im

m (φ0) sin(mλ0)].

3.3.5 Justification for Kriging (IPE)

[Yan13] discussed the justification for kriging performance. Suppose that X̂0(φ, λ)

is the predicted value at location s using the true covariance function C0, and X̂i(φ, λ)

is the predicted value with covariance function Ci. Let e0(φ, λ) = X(φ, λ)− X̂0(φ, λ)

and ei(φ, λ) = X(φ, λ)− X̂i(φ, λ) be the prediction error, respectively.

Ee2
0 is the mean squared prediction error (MSPE) of the best linear unbiased pre-

dictor or the kriging variance, which is computed using the true covariance function.

Ee2
i is the actual variance of the prediction error. Then the Increase in Prediction

Error (IPE) is given by

Ee2
i (s)

Ee2
0(s)

=
E(X(φ, λ)− X̂i(φ, λ))2

E(X(φ, λ)− X̂0(φ, λ))2
.

Remark: A smaller IPE value indicates a better kriging performance for the

corresponding approach.
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CHAPTER IV

COVARIANCE MODEL ESTIMATION

In this chapter, our main goal is to estimate the covariance function that is crit-

ical in the kriging development. More specifically, we propose both parametric and

non-parametric approaches in estimating the true covariance function. We perform

simulations to evaluate the accuracy of our approaches for axially symmetric pro-

cesses on the sphere.

In the parametric approach, we specify a model with some parameters that are

to be determined. These parameters are normally estimated/adjusted from the data.

The advantage of using parametric approaches is that only a few unknown parame-

ters are to be estimated, which could be computationally efficient if a correct model

is specified. However, in practice mostly we lack of knowledge about the underlying

process of the model. This leads to model misspecification. For instance, if the un-

derlying true model is exponential but we incorrectly assume that it is a spherical

model then we will end up with making incorrect statistical inferences and conclusions.

Unlike a parametric approach, the non-parametric approach does not make an

assumption for the underlying covariance model. It has a potential advantage to

accurately fit a wide range of possible models. However, non-parametric approaches

often suffer from the major disadvantage that a large number of observations, com-

pared with the number of observations needed for parametric approaches, might be
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needed in order to obtain an accurate model estimate.

In this chapter, we will introduce both parametric and non-parametric approaches

when estimating the covariance models. In Section 4.1, we discuss one parametric

approach: least squared error estimation method (LSE). The performances of the

LSE method is compared through simulation studies in Section 4.2. In Section 4.3 we

apply the Wavelet-Galerkin approximation to obtain the covariance model. Simula-

tion studies are also conducted to investigate the performance of proposed methods

in Section 4.4. Some discussions are given in Section ??.

4.1 Parametric Approaches

4.1.1 Least Squared Method

The least squared method is a classical parametric approach, where we select

the parameters based on the least sum of squared differences between the true and

estimated semivariogram values, as the Method of Moments (MOM) semivariogram

estimator is unbiased (for example, [Van16]). More specifically, let R(φP , φQ,∆λ; ~θ) ≡

R(~θ) be the underlying covariance model with parameters ~θ to be determined. Hence

the semivariogram function can be given below.

γ(~θ) ≡ γ(φP , φQ,∆λ; ~θ) = R(φP , φQ, 0; ~θ)− 1

2

(
R(φP , φQ,∆λ; ~θ) +R(φQ, φP ,∆λ; ~θ)

)
.

With the given gridded data, we calculate the estimated semivariogram values through
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the following formula.

γ̂(φP , φQ,∆λ) =
1

2n

n∑
i=1

(X(φP , (i− 1)δ + ∆λ)−X(φP , (i− 1)δ))

× (X(φQ, (i− 1)δ + ∆λ)−X(φQ, (i− 1)δ)) .

We choose the parameters ~̂θ that minimize the sum of squared differences between

true and estimated semivariogram values, that is,

~̂θ = argmin~θ
∑

all pairs (φi, φj)

∑
∆λ

(γ(φi, φj,∆λ; ~θ)− γ̂(φi, φj,∆λ))2.

We then use the covariance model with optimal parameter values to perform krig-

ing. Here is the algorithm for this method.
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Algorithm 1 (Pseudo-code)

• Step-1: Generate data based on the given covariance function R(P,Q; ~θ)

with a specified parameter vector ~θ.

• Step-2: Select optimal parameters ~̂θ of the parametric covariance func-

tion based on the LSE method.

(1) Assume we are given data {X(φi, λj), 1 ≤ i ≤ nl, 1 ≤ j ≤ n} on nl

latitudes and n gridded longitudes.

(2) For specified parameter values, compute the theoretical variogram

estimator γ(φ1, φ2,∆λ; ~θ) for all pairs of φi, φj & and all longitude

differences ∆λ

γ(φ1, φ2,∆λ; ~θ) = R(φ1, φ2, 0; ~θ)

−1

2
(R(φ1, φ2,∆λ; ~θ) +R(φ1, φ2,−∆λ; ~θ)).

(3) Compute the estimated variogram estimator for all pairs of φ1, φ2

and all longitude differences ∆λ.

(4) Select the optimal parameter values ~̂θ such that

~̂θ = argmin~θ
∑

all pairs (φi, φj)

∑
∆λ

(γ(φi, φj,∆λ; ~θ)− γ̂(φi, φj,∆λ))2.

• Step-3: Use the optimal parameters of the given covariance function to

perform kriging.
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4.2 Parametric Approaches - Simulation Studies

In this section, we conduct simulations to compare the performance of the proposed

parametric approaches. We will compare both the accuracy of parameter estimates

and the IPE values.

4.2.1 Covariance Function Selection

In this research, we use the following covariance function that was proposed by

[VWZ21]:

R(φP , φQ,∆λ) = C̃(φp, φq)
1− p2

1− 2p cosα + p2
,

C̃(φp, φq) = C1(C2 − e−a|φP | − e−a|φQ| + e−a|φP−φQ|)

where α = ∆λ+ u(φp − φq) ∈ [0, 2π], C1 ≥ 0, C2 ≥ 1, a ≥ 0, u ∈ R, p ∈ (0, 1).

There are five parameters C1, C2, a, p and u in the model, where C1, C2, a, p are scaling

parameters and u is a parameter where u = 0 indicates the longitudinal reversibility

of a random process. For illustration purposes, we will set ~θ = (a, C2)T as parameters

to be determined.

According to the Proposition 2 in [HZR12], we have

Cm(φp, φq) =
1

2π

∫ π

−π
R(φP , φQ,∆λ)e−im∆λd∆λ = C̃(φP , φQ)pmeimb (4.1)

with b = u(φP − φQ). Note that C0(φp, φq) = C̃(φp, φq).
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4.2.2 Data Generation

To generate the gridded data values {X(φi, λj), 1 ≤ i ≤ nl, 1 ≤ j ≤ n} with nl

latitudes and n equal-spacing longitudes, we use the classical data generation method.

Note that the covariance matrix for an axially symmetric process is block circulant,

and as a special case, it becomes a symmetric block circulant matrix with symmetric

blocks for a longitudinally reversal process. Let R(φP , φQ,∆λ; ~θ) be the covariance

matrix of an axially symmetric process X(φ, λ), and let ~Z represent an i.i.d. standard

normal random vector. Then the gridded data, denoted as a matrix X as given by

(3.1), can be obtained by

X = R
1
2 (φP , φQ,∆λ; ~θ)× ~Z.

Here R1/2 is the square root matrix of R, which can be easily obtained through Sin-

gular Value Decomposition (SVD). Finally, we consider both axially symmetric and

longitudinally reversible processes with the following three mean trend scenarios: zero

means, global constant means, and different constant means on different latitudes.

In our simulation, we set the following initial parameters that were also considered

in [VWZ21] for data generation.

Table 1. Parametric approach data generation parameter settings

Parameter C1 C2 a u p

initial value 1 2 1 1 0.5
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For all cases considered in this dissertation, we generate a grid of 11×10 data struc-

tureX on latitudes (π/11, 2π/11, · · · , π) and longitudes (0, 2π/10, 4π/10, · · · , 18π/10).

We consider the axially symmetric process by setting u = 1 and the longitudinally

reversible process with u = 0. Furthermore, for each of three mean cases, we use the

following mean structures.

(1) Zero mean: E(X(φ, λ)) = 0.

(2) Constant mean: E(X(φ, λ)) = 100.

(3) Different means on different latitudes: We set mean values incrementally with

latitudes with values (110, 120, · · · ).

Finally we repeat the above process iteratively with iteration number = 100.

4.2.3 Results and Conclusions - Parametric Approaches

The following tables describe the bias and mean squared error values when estimat-

ing parameters ~θ = (a, C2)T for LSE approach under the axially symmetric process

for all the three mean cases.
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Table 2. The bias and MSE values for estimating ~θ = (a, C2)T for LSE approach

when the underlying process is axially symmetric (iteration = 100)

n = 10, nl = 11 True LSE Estimates

(Bias(MSE))

Zero mean a 1 0.14(0.78)

C2 2 0.49 (1.09)

Constant mean a 1 0.14(0.78)

C2 2 0.49 (1.09)

Different means a 1 0.14(0.78)

C2 2 0.49 (1.09)

Table 3. The bias and MSE values for estimating ~θ = (a, C2)T for LSE approach

when the underlying process is longitudinally reversible (iteration = 100)

n = 10, nl = 11 True LSE Estimates

(Bias(MSE))

Zero mean a 1 0.23(1.72)

C2 2 0.02 (0.59)

Constant mean a 1 0.24(1.72)

C2 2 0.04 (0.58)

Different means a 1 0.24(1.73)

C2 2 0.04 (0.58)
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According to the above tables, it should be noted that despite the fact that param-

eter C2 in the LSE method when the underlying process is longitudinally reversible is

close to the true value, the estimate for the parameter a has a considerable difference

with its true parameter value. Meanwhile, parameter a in the LSE method under

axially symmetric process is close to the true value. Moreover, one can note that

the results for all three cases seem the same. This might be due to the reason that

theoretically the same constant on each latitude is subtracted in the estimation of

empirical variograms.

One point that can be taken away from the tables is that even with the change of

mean structure from the case of zero mean to the case of different means on different

latitudes, the parameter value estimates, in particular if they are obtained from the

LSE approach, are stable in terms of bias and MSE values. It might be interesting to

see if this observation holds in the future if the mean structure gets more complicated,

even with non-constant mean trends.

Now we evaluate the performance of our parametric approach when it is used for

prediction. Here we use the Increase in Prediction Error (IPE) value (see [Yan13])

to justify the kriging performance. The idea is to calculate a ratio that takes the

average overall prediction error based on the estimated model related to that based

on the true model. Here we compare the IPE values based on three mean structures.

The following two tables provide the IPE values of the proposed kriging methods

based on the LSE method when the underlying process is either axially symmetric

or longitudinally reversible with three mean structures; that is, zero means, constant
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means, and different means on different latitudes.

Table 4. IPE values for LSE approach when the underlying process is axially sym-

metric with three mean structures.

Axial Symmetry LSE (Mean(MSE))

Zero mean 58.32 (13366)

Constant mean 58.32 (13366)

Different means 125 (11665)

Figure 4. Boxplots for IPE values with axially symmetric processes under zero means

(left plot), constant means (center plot), and different means (right plot).
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Table 5. IPE values when the underlying process is longitudinally reversible with

three mean structures.

Longitudinally Reversible LSE (Mean(MSE))

Zero mean 27.09(9.66)

Constant mean 5.03(9.66)

Different means 1.44(9.66)

Figure 5. Boxplots for IPE values with longitudinally reversible process under zero

means (left plot), constant means (center plot), and different means (right plot).
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Based on the above tables and box-plots, we can conclude that the LSE method

seems performing fine for all scenarios considered. It should be noted that among

those 100 simulations some of the IPE values are unusually large, especially when the

underlying process is axially symmetric. These few unusual values heavily impact the

calculation of the mean and MSE. To see these more closely, we add box-plots of IPE

values under all three cases to illustrate the distribution of IPE values.

From these two set of box-plots (Figures 4 & 5), it is obvious to see that we have

some IPE values which are too far from the central box of the distribution. In addi-

tion, it seems that LSE methods perform better for longitudinally reversible processes

on each of the mean structures than the counterpart for axially symmetric processes.

Even though the parameter estimation seems good, the performance of kriging in

terms of mean and MSE of IPE values are not justifiable. One potential issue is when

the underlying process is axially symmetric the covariance matrix is possibly com-

plex. To overcome this issue, one can try a different justification method for kriging

performance (other than IPE) or try a different parametric estimation method.

Finally we investigate the robustness of our parametric approaches in predicting

values with increasing data variation. We assume that the underlying process is

Gaussian. We then construct a 95% confidence theoretical band to check whether the

predicted values fall within the band. For illustration, we consider LSE method under

axially symmetric (AS) and longitudinally reversible (AR) processes with a constant

mean of 100, where the data are generated with standard deviation values of 1, 10,

and 20. The following three sets of plots give the confidence band, the true value,
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and the estimated value vs the longitudinal index that is on the predicted latitude.

From the below graphs, the predicted data values are very close to the true val-

ues, and they are all well within the theoretical bands for all three cases considered.

Therefore, our approaches seem to be robust with increasing variance.

Figure 6. 95% confidence band, estimated and true values vs the longitudinal index

for both axially symmetric (AS) and longitudinally reversible (LR) processes with

constant mean of 100 and standard deviation of 1.
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Figure 7. 95% confidence band, estimated and true values vs the longitudinal index

for both axially symmetric (AS) and longitudinally reversible (LR) processes with

constant mean of 100 and standard deviation of 10.

Figure 8. 95% confidence band, estimated and true values vs the longitudinal index

for both axially symmetric (AS) and longitudinally reversible (LR) processes with

constant mean of 100 and standard deviation of 20.
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4.3 Non-parametric Approaches

In this section, we discuss how the two non-parametric approaches are developed

and their performance for the axially symmetric process and its special case longitu-

dinally reversible process with three mean structures considered in Section 4.2.

4.3.1 Method Development

In this subsection, we explore an unbiased estimator of the covariance function,

which is critical for our non-parametric approaches. According to [Van16], the Method

of Moments (MOM) estimator for the cross covariance R(φP , φQ,∆λ) is given by

R̂M(φP , φQ,∆λ) =
1

n

n∑
i=1

(X(φP , λi + ∆λ)− X̄P )(X(φQ, λi)− X̄Q) (4.2)

where X̄P , X̄Q are the latitude means and ∆λ ∈
{

0, 2π
n
, 4π
n
, · · · , (n−1)2π

n

}
.

If we assume that E(X(φ, λ)) = µφ, that is, the mean of X(φ, λ) is a constant on

each latitude φ, it has been shown (for example, Proposition 4.2 in [Van16]) that,

E(R̂M(φP , φQ,∆λ)) = R(φP , φQ,∆λ)− C0(φP , φQ). (4.3)

That is, the MOM cross covariance estimator R̂M(φP , φQ,∆λ) is biased with the

constant shift given by C0(φP , φQ) = cov(X̄P , X̄Q). However, it seems impossible

to estimate C0(φP , φQ) = cov(X̄P , X̄Q) based on only one copy of the gridded data

structure C. Hence, we also make the following assumption.
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Assumption: We assume that we have t i.i.d. copies of gridded data structures,

denoted as Dk = {Xk(φi, λj) : i = 1, 2, · · · , nl, j = 1, 2, · · · , n}, k = 1, 2, · · · , t.

Remark: In the Microwave Sounding Units (MSU) data, average monthly tem-

perature starting in 1978. If we are interested in the spatial process for a particular

month, say August, we may assume that we have the roughly independent copies of

August data since 1978. Of course, as a part of future research, one should assume

those copies have certain temporal dependence, which form a spatio-temporal process.

Now let us introduce the following terminologies. For each latitude i, i = 1, 2, · · · , nl

on the kth gridded data, we have

X̄ki =
1

n

n∑
j=1

Xk(φi, λj)

as the average on latitude i on the kth copy, and

¯̄Xi =
1

t

t∑
k=1

X̄ki

is the overall average on latitude i. Based on the t i.i.d. copies {Dk, k = 1, 2, · · · , t},

we propose the following estimator of C0(φP , φQ) on two latitudes φP and φQ, respec-

tively,

Ĉ0(φP , φQ) =
1

t− 1

t∑
k=1

(
X̄kP − ¯̄XP

)(
X̄kQ − ¯̄XQ

)
. (4.4)
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The properties of Ĉ0(φP , φQ) are given in the following proposition.

Proposition 4.1: Ĉ0(φP , φQ) is an unbiased estimator of C0(φP , φQ). Moreover,

Ĉ0(·, ·) is non-negative definite.

Proof: We first note that, letting E(X(φP , λ)) = µP be the constant mean of

X(φP , λ) on latitude φP ,

E(Ĉ0(φP , φQ)) = E

[
1

t− 1

t∑
k=1

(
X̄kP − ¯̄XP

)(
X̄kQ − ¯̄XQ

)]

= E

[
1

t− 1

t∑
k=1

(
(X̄kP − µP ) + (µP −

∑n
k=1 X̄kP

n
)

)
×
(

(X̄Q − µQ) + (µQ −
∑t

k=1 X̄kQ

t
)

)]
= I + II + III + IV.

Here we have the following results.

I =
1

t− 1

t∑
k=1

E(X̄kP − µP )(X̄kQ − µQ) =
t

t− 1
cov(X̄P , X̄Q).

II =
1

t− 1

t∑
k=1

E
(

(X̄kP − µP )(µQ − ¯̄XQ)
)

=
t

t− 1
E

(
1

t

t∑
k=1

(X̄kP − µP )(µQ − ¯̄XQ)

)
=

t

t− 1
E
(

( ¯̄XP − µP )(µQ − ¯̄XQ)
)

= − t

t− 1
cov( ¯̄XP ,

¯̄XQ).
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III =
1

t− 1

t∑
i=1

E
(

(µP − ¯̄XX)((X̄kQ − µQ)
)

=
t

t− 1
E
(

(µP − ¯̄XP )( ¯̄XQ − µQ)
)

= − t

t− 1
cov( ¯̄XP ,

¯̄XQ).

IV =
1

t− 1

t∑
k=1

E
(

(µP − ¯̄XP )(µQ − ¯̄XQ)
)

=
t

t− 1
cov( ¯̄XP ,

¯̄XQ).

Note that

cov( ¯̄XP ,
¯̄XQ) = cov

(
1

t

t∑
k=1

X̄kP ,
1

t

t∑
s=1

X̄sQ

)

=
1

t2

t∑
k=1

t∑
s=1

cov
(
X̄kP , X̄sQ

)
=

1

t2

t∑
k=1

cov
(
X̄kP , X̄kQ

)
=

1

t
cov
(
X̄P , X̄Q

)
.

The last equality is obtained with generic mean processes on latitudes φP and φQ,

respectively. Hence,

E(Ĉ0(φP , φQ)) = I + II + III + IV

=
t

t− 1
cov(X̄P , X̄Q)− 1

t− 1
cov
(
X̄P , X̄Q

)
− 1

t− 1
cov
(
X̄P , X̄Q

)
+

1

t− 1
cov
(
X̄P , X̄Q

)
= cov(X̄P , X̄Q) = C0(φP , φQ).

That is, Ĉ0(φP , φQ) is an unbiased estimator of C0(φP , φQ). Next we want to prove

Ĉ0(·, ·) is non-negative definite. That is, for any real constants ai and latitudes φi, i =
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1, 2, · · · ,M ,

M∑
i=1

M∑
j=1

aiajĈ0(φi, φj)

=
M∑
i=1

M∑
j=1

aiaj
1

t− 1

t∑
k=1

(
X̄ki − ¯̄Xi

)(
X̄kj − ¯̄Xj

)
=

1

t− 1

t∑
k=1

M∑
i=1

M∑
j=1

aiaj

(
X̄ki − ¯̄Xi

)(
X̄kj − ¯̄Xj

)
=

1

t− 1

t∑
k=1

(
M∑
i=1

ai

(
X̄ki − ¯̄Xi

))( M∑
j=1

aj

(
X̄kj − ¯̄Xj

))

=
1

t− 1

t∑
k=1

(
M∑
i=1

ai(X̄ki − ¯̄Xi)

)2

≥ 0.

Hence, Ĉ0(·, ·) is non-negative definite.

Now we propose the following estimator of R(φP , φQ,∆λ).

R̂(φP , φQ,∆λ) = R̂M(φP , φQ,∆λ) + Ĉ0(φP , φQ).

We then have the following properties of R̂(φP , φQ,∆λ).

Proposition 4.2: R̂(φP , φQ,∆λ) is an unbiased estimator of R(φP , φQ,∆λ). It is

also non-negative definite.

Proof: The unbiasedness of R̂(φP , φQ,∆λ) can be obtained from the unbiasedness

of Ĉ0(φP , φQ) of C0(φP , φQ) and (4.3). To prove the non-negative positiveness of

R̂(φP , φQ,∆λ), it is sufficient to prove the non-negative definiteness of R̂M(φP , φQ,∆λ),

which can also be obtained along the same lines as those for proving the non-negative
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definiteness of Ĉ0(φP , φQ).

Remark: For a zero mean case, the estimator R̂M(φP , φQ,∆λ) = 1
n

∑n
i=1X(φP , λi +

∆λ)X(φQ, λi) is the unbiased estimator of R(φP , φQ,∆λ).

4.3.2 The Wavelet-Galerkin Method

In this dissertation, we apply the Wavelet-Galerkin method to approximate the

covariance function, which is critical to our kriging approach. Here we provide an

outline of Wavelet-Galerkin method that was developed by [Arachchige21].

Approximating real-valued positive definite covariance functions has become a cen-

tral part of a geospatial statistics because an accurate approximation of the covariance

(kernel) function is crucial for parametric inferences and optimal spatial prediction.

Furthermore, investigating structures and properties of complex-valued covariance

functions has received special attention in many research fields, for instance, in engi-

neering, complex-valued kernels for complex-valued signals, and in spatial statistics,

complex-valued covariance functions for axially symmetric random processes on the

sphere. However, there are only minimal studies can be found for approximating

complex-covariance functions.

Different types of wavelets and their properties have been widely studied in recent

years. In this work we start with a particular wavelet, namely, Haar wavelets. Haar

wavelets are known as the simplest basis form of the Daubechies family. On the other
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hand, the Galerkin method is considered as a type of expansion method, as eigen-

functions can be written as a linear combination of finite orthogonal basis functions.

A linkage of these two concepts: Wavelet-Galerkin method for approximating eigen-

functions and eigenvalues first appeared in [PHQ02] paper. The Galerkin method is

a type of an expansion method where any function can be written as a linear com-

bination of finite basis functions where we solve the Fredlohom homogeneous equation.

According to [Arachchige21], Wavelet basis functions are capable of capturing the

local information of the approximating functions specially when the eigenfunction

is inhomogeneous. Moreover, [Arachchige21] proposed an approach using orthogonal

basis functions to approximate a possibly complex-valued covariance function. The ul-

timate goal of using the Wavelet-Galerkin method in kriging is approximating the co-

variance function that provides dependency of random processes among observed and

unobserved locations. In this work, we used the proposed Wavelet-Galerkin method

by [Arachchige21] for our non-parametric kriging approaches, where we approximate

the true covariance function Cm(φP , φQ). More explicitly, we use theWavelet-Galerkin

method for two purposes. First. we use the Wavelet-Galerkin method to approximate

R(φP , φQ,∆λ) from R̂(φP , φQ,∆λ) which is obtained in Section 4.3.4.In addition, we

can obtain the estimated Ĉm(φP , φQ) from R̂(φP , φQ,∆λ) through inverse DFT, and

then apply the Wavelet-Galerkin method to approximate the true Cm(φP , φQ).
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4.3.3 Outline of the Method

According to Mercer’s theorem, a bounded continuous complex-valued continuous,

and Hermitian covariance function can be written as follows

C(t, s) =
∞∑
i=1

ηi fi(t) fi(s), a ≤ t, s ≤ b, (4.5)

where ηi ≥ 0, i = 1, 2, 3, . . . are the eigenvalues satisfying
∑∞

i=1 ηi < ∞ and fi(·) are

corresponding complex-valued orthonormal and square intergratable eigenfunctions

of the covariance function C(·, ·). Here fi(s) denotes the complex conjugate of fi(s).

In general, the leading terms in Mercer’s theorem capture the main features of the

covariance functions, so a truncated expansion of (4.5) can be expressed as CN(t, s) =∑N
i=1 ηifi(t)fi(s). It can be proved that CN(t, s), 0 ≤ t, s ≤ b is Hermitian and positive

definite ([Arachchige21]). Analytical solutions for the eigenvalues and eigenfunctions

can be found by solving the following Fredlohom homogeneous integral equation of a

second kind

∫ b

a

CN(t, s)fk(t)dt = ηkfk(t).

According to [Arachchige21], the function fk(t) can be expressed as following.

fk(t) =
N−1∑
i=0

dkiψi(t) = ~ΨT (t) ~Dk, t ∈ R, dki ∈ C

k ∈ 1, . . . , N − 1 where, ~Dk

T
= (dk1, d

k
2, . . . , d

k
N) ∈ CN is the set of complex-valued

wavelet coefficients and ~ΨT (t) = (ψ1(t), ψ2(t), . . . , ψN(t)) ∈ RN are real-valued Haar

84



wavelets. Furthermore, CN(t, s) can be represented in matrix form as follows.

CN(t, s) = F (t)TΛF (s) = ~Ψ(t)TD∗ΛD ~Ψ(s), (4.6)

where F (t)T = (f1(t), f2(t), . . . , fN(t)), for fk(t) = ~Ψ(t)TH−1/2 ~̂Dk and Λ is a diagonal

matrix with N number of eigenvalue entries and D∗ is the conjugate transpose of

D. All of the quantities in (4.6) can be obtained through solving a system of linear

equations. For details, see [Arachchige21].

4.3.4 Non-parametric Approaches

Recall from [HZR12], the covariance function R(φP , φQ,∆λ) can be represented as

follows

R(φP , φQ,∆λ) =
∞∑

m=−∞

Cm(φP , φQ)eim∆λ,

where

Cm(φP , φQ) =
1

2π

∫ π

−π
R(φP , φQ,∆λ)e−im∆λd∆λ.

The above Fourier transform relationship between R(φP , φQ,∆λ) and Cm(φP , φQ) be-

comes the basis for our nonparametric approaches in this section.

Given gridded data {X(φi, λj), i = 1, 2, · · · , nl, j = 1, 2, · · · , n} on the sphere, we

further assume that we have t i.i.d. copies of gridded data structures {Xk(φi, λj), i =

1, 2, · · · , nl, j = 1, 2, · · · , n, k = 1, 2, · · · , t}. From Section 4.3.1, we have the following
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unbiased estimator R̂(φP , φQ,∆λ) of R(φP , φQ,∆λ) given below.

R̂(φP , φQ,∆λ) = R̂M(φP , φQ,∆λ) + Ĉ0(φP , φQ),

where R̂M(φP , φQ,∆λ) and Ĉ0(φP , φQ) are given by (4.2) and (4.4), respectively.

Non-parametric approach 1:

In the first nonparametric approach, we first obtain Ĉm(φp, φq) through the inverse

DFT

Ĉm(φp, φq) =
1√
n

n∑
i=1

R̂(φp, φq,∆λi)e
−im∆λi m = 0, 1, · · · .

Once we obtain Ĉm(φp, φq), we can use the Wavelet-Galerkin method to approxi-

mate the function Cm(φp, φq) to be used for kriging.
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Algorithm 2 (Pseudo-code)

• Step-1: Given gridded data structure {X(φi, λj), i = 1, 2, · · · , nl, j =

1, 2, · · · , n}.

• Step-2: Obtain covariance function Cm(φP , φQ) m = 0, 1, 2, · · · .

(1) Compute the MOM estimator R̂(φp, φq,∆λ) and ˆcov(X̄P , X̄Q) from

the data for all pairs of φP , φQ and all longitude difference ∆λ.

(2) Perform DFT to obtain Ĉm(φP , φQ) for all pairs of φP , φQ and m =

1, 2, · · · .

(3) Apply Wavelet-Galerkin method to derive the Cm(φP , φQ) for all

pairs of φP , φQ and 0,m = 0, 1, 2, · · · .

• Step-3: Use {Cm(φP , φQ)}m=0,1,2,··· to perform kriging.

Non-parametric approach 2

Based on the unbiased estimator R̂(φP , φQ,∆λ) of R(φP , φQ,∆λ), we perform the

Wavelet-Galerkin method to estimate R(φP , φQ,∆λ).

R̂(φp, φq,∆λ)
wavelet-Garlekin−−−−−−−−−→ RWG(φp, φq,∆λ).

Therefore, through the inverse Fourier transform, Ĉm(φp, φq) can be obtained

through

Cm(φp, φq) =
1√
n

n∑
i=1

RWG(φp, φq,∆λt)e
−im∆λi m = 0, 1, · · · .
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Once we obtain Cm(φp, φq) we can then apply the covariance function on kriging.

Algorithm 3 (Pseudo-code)

• Step-1 : Given gridded data structure X(φi, λj), i = 1, 2, · · · , nl, j =

1, 2, · · · , n.

• Step-2 : Obtain covariance function Cm(φP , φQ) m = 0, 1, 2, · · · .

(1) Compute the MOM estimator R̂(φp, φq,∆λ) from the data for all

pairs of φP , φQ and all longitude difference ∆λ.

(2) Perform Wavelet-Galerkin method to obtain RWG(φp, φq,∆λ)

R̂(φp, φq,∆λ)
wavelet-Galerkin−−−−−−−−−→ RWG(φp, φq,∆λ).

(3) Apply DFT and estimate the Cm(φp, φq) function from the

RWG(φp, φq,∆λ).

• Step-3 : Use {Cm(φP , φQ)}m=0,1,2,··· to perform kriging.
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4.4 Nonparametric Approaches - Simulation Studies

In the non-parametric approach, we generate data with the same procedure as that

for the parametric approach discussed in Section 4.2.2. In addition, we consider both

axially symmetric process and longitudinally reversible process with three different

mean structures: zero mean, constant mean, and different means on different lati-

tudes, on which we investigate the performance of both non-parametric approaches.

We use the covariance function R(P,Q) that was proposed by [Van16] for the data

generation (Section 4.2.2). We set the initial parameters below.

Table 6. Non-parametric approach data generation parameter settings

Parameter C1 C2 a u p

initial value 1 1 1 1 0.5

The parameter u is set to be 0 if the process is longitudinally reversible and any non-

zero for an axially symmetric process. For the convenience of the Wavelet-Galerkin

algorithm, we generate the grid data with 16 latitudes and 16 longitudes in our sim-

ulation as the Wavelet-Galerkin approximation is very easy to work with when the

number of latitudes and longitudes are 2n.

Remark: If either the number of latitudes or longitudes is not equivalent to 2n

then we can’t apply our method directly. Algorithm might need to be generalized.
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We first investigate how the estimated Ĉm(φP , φQ) from both non-parametric ap-

proaches approximates the true Cm(φP , φQ) for each m = 0, 1, · · · ,. We compare

the accuracy of approximation through computing the bias between the estimated

and the true covariance function for various m values under the two non-parametric

approaches. The comparisons are considered over two pairs of of latitudes ( 10 & 150

and 80 & 100), which are used to explore how the accuracy of approximation changes

with the closeness of two latitudes. The results can be seen from the following two

plots.

Figure 9. Bias between the estimated and the true covaraince functions vs different

m values for both non-parametric approaches

It can be seen from the above graphs that the overall approximation between the

estimated and true covariance functions from both approaches seems good for all m
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values, with larger bias when m is small.

To investigate the performance of both approaches, we use the IPE value that

was defined in Section 3.3.5. The smaller the IPE value is, the better performance

an approach has. Further, we are interested in how both non-parametric approaches

perform when the underlying process is axially symmetric and its special case, longi-

tudinally reversible for all three mean structures. For each of the scenarios, we select

several latitude points over the globe and compute their IPE values. The following

plots illustrate how the IPE values change with latitudes from south to north of the

globe for all three cases.

Figure 10. IPE values vs a range of latitudes for non-parametric approach 1 with lon-

gitudinally reversible processes under zero means (left plot), constant means (center

plot), and different means (right plot).
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Figure 11. IPE values vs a range of latitudes for non-parametric approach 1 with

axially symmetric processes under zero means (left plot), constant means (center

plot), and different means (right plot).

Figure 12. IPE values vs a range of latitudes for non-parametric approach 2 with lon-

gitudinally reversible processes under zero means (left plot), constant means (center

plot), and different means (right plot).
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Figure 13. IPE values vs a range of latitudes for non-parametric approach 2 with

axially symmetric processes under zero means (left plot), constant means (center

plot), and different means (right plot).

Based on the above graphs, the smallest IPE values appear in the middle of lat-

itudes, which indicates both approaches perform the best when the values are to be

predicted are on the latitudes around the equator, compared with the prediction for

latitudes near north and south poles. Overall, approach-2 has comparatively better

performance than approach 1. To emphasize this more, we randomly selected one of

the latitudes and performed kriging on that latitude. We computed the IPE values

for both approaches over all scenarios. The following table displays the IPE values

for both non-parametric approaches.
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Table 7. IPE values for non-parametric approach 1 and 2 with all scenarios.

Process Mean structure Non-Para-1

(Mean(MSE))

Non-Para-2

(Mean(MSE))

Longitudinally reversible Zero mean 1.143(0.324) 1.005(0.01)

Constant mean 1.143(0.297) 1.005(0.01)

Different mean 1.640(0.250) 1.006(0.01)

Axially symmetric Zero mean 1.315(7.79) 1.305(1.215)

Constant mean 1.274(5.99) 1.252(1.05)

Different mean 1.305(1.215) 0.968(0.83)

According to the above table, due to smaller biases and MSE values, we can con-

clude that both approaches perform better for longitudinally reversible processes than

axially symmetric processes under all three mean structures. This might be due to

the fact that the covariance function for axially symmetric processes is complex, lead-

ing to the estimation with bigger errors. In addition, it seems that the approach 2

performs equally well compared to the approach 1.

Unlike parametric approaches, we noticed both approaches of non-parametric meth-

ods have smaller biases and MSEs for IPE values. Nevertheless, for axially symmetric

processes, the non-parametric approach 1 results in slight differences compared to the

non-parametric approach 2. We also investigate this further through box-plots for all

100 IPE values. Box plots are used to show overall patterns of response for a group.
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They provide a useful way to visualise the range and other characteristics of responses

for a large group.

The following two plots illustrate the distribution of IPE values under both axially

symmetric processes on the non-parametric approaches. Based on the plots, we can

conclude that very few values are far away from the central of the distribution. The

medians (which are generally close to the average) are all at the same level in both

approaches. In general, box plots are comparatively short, which indicates that overall

IPE values have a high level of agreement from each other.

Figure 14. Box plots of IPE values for non-parametric 1 with axially symmetric

processes under zero means (left plot), constant means (center plot), and different

means (right plot).
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Figure 15. Boxplots of IPE values for non-parametric 2 with axially symmetric pro-

cesses under zero means (left plot), constant means (center plot), and different means

(right plot).
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CHAPTER V

SUMMARY AND FUTURE WORK

.

5.1 Summary

In this dissertation, we considered spatial prediction when a random process is

axially symmetric on the sphere. We first decompose an axially symmetric process

as Fourier series on circles, where the Fourier random coefficients can be expressed as

circularly-symmetric complex random processes. The estimation of covariance func-

tions for complex random processes is then obtained through both parametric and

non-parametric approaches, where the least squared error method and the Wavelet-

Galerkin method are applied, respectively. Ordinary kriging is then conducted on

possibly complex random fields and predicted data values are be computed through

the inverse Discrete Fourier transformation. The performance of our proposed ap-

proaches were compared with simulation studies, under the assumption of axial sym-

metry and longitudinal reversibility with three mean structures: zero mean, constant

mean, and different means on different latitudes. We conclude that all proposed krig-

ing methods seem to perform well on all scenarios considered.

5.2 Future Research

There are a few areas that would extend this dissertation research. As we have no-

ticed from Chapter IV, the LSE method seems to be a practical approach to estimate
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the covariance function that is critical for kriging. Therefore, one would be very inter-

ested in investigating the asymptotic properties of the LSE estimator, including but

not limited to the unbiasedness, consistency, and the asymptotic normality. Further-

more, we could also improve the LSE method with more parameters such as C1&p.

In addition, we noted that our simulation studies have been heavily depending on the

covariance function that was proposed by [VWZ21]. There has been limited research

on axially symmetric covariance models in literature, in particular, the construction

of axially symmetric covariance models on S2 that could be practically useful in ana-

lyzing massive global data sets as well as the implementation of our proposed kriging

methods. Moreover, with the complexity and dimensionality of global data, it is very

important that practically useful parametric models with interpretable parameters

are available for geography and environmental scientists.

Finally, we note that the unbiased estimator of R(φP , φQ,∆λ) is critical for our

non-parametric approaches, where we further assume that we have i.i.d. copies of

gridded data structures. Such an assumption might not be feasible in practice, and

hence it needs to be generalized. For example, we may consider that we have a

spatio-temporal sequence of gridded data structures, and we could replace the i.i.d.

assumption. For example, an AR(1) model, that is, the sequence of gridded data

structures might be dependent, but following an auto-regression model with an order

of 1.
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