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As part of an ongoing investigation into the pharmaceutical potential of 

filamentous fungi, two new drimane meroterpenoids were discovered, which showed 

moderate cytotoxic activity across three cancer cell lines (MDA-MB-435, MDA-MB-

231, OVCAR3). Compounds were isolated from a solid fermentation of Fitzroyomyces 

sp. (fungal strain MSX62440) and their structures were elucidated through NMR and 

HRESIMS data analysis. Absolute configuration was assigned through a combination of 

chiroptic and spectroscopic techniques in conjunction with predicted ECD calculations. 

Dasyscyphin G, previously published as a synthetic precursor to known compound 

dasyscyphin B, was also isolated as a natural product. Two compounds also showed 

activity against B. anthracis. Structure revision of dasyscyphin C was also performed 

based on ECD and NMR calculations. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Cancer is the second leading cause of death in the world with a mortality rate of 

about 1 in 6 incidences. Breast cancer is considered the leading diagnosed type in 

women, with over 25% of all cases and over 600,000 deaths in 2018.1 The ability for 

multiple variations to exist within one type of cancer can make treatment options 

difficult.2 Combinational methods to treat cancer include radiation therapy, 

immunotherapy, chemotherapeutic agents, and surgeries.3 Chemotherapeutic agents have 

been not only been synthesized by advances in combinational chemistry but also through 

the discovery of said agents in nature.4 These natural products are secondary metabolites 

produced by organisms, in part to defend themselves from other organisms but also to 

help facilitate reproduction. Since nature is able to produce such complex structures with 

defined stereospecific cores, natural products are often an excellent source of drugs.5-6 

Some drugs like taxol have translated directly to the clinic, while others have taken 

extraordinary steps in the realm of combinational synthetic chemistry to become drugs.7-8   

Bioactivity guided fractionation is a systematic approach to the separation of 

biologically active natural products from their non-active components.9 The process 

entails a series of chromatographic steps and biological screenings to ensure the 

discovery of such molecules. The extract of an organism of choice is obtained first 

through a series of extraction techniques which ultimately lead to a crude organic mass. 
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Normal phase chromatography employs a polar stationary phase like silica with a 

nonpolar mobile phase like chloroform or hexanes.10 In contrast, reverse phase 

chromatography uses a nonpolar stationary phase like C18 bound silica with polar 

solvents like acetonitrile and water.11 This material is then separated using either normal 

phase flash or column chromatography to distinguish the material into defined sections of 

polarity.12 The original extract as well as its constituents are then tested against a 

bioassay of choice, which will designate which fractions are worth continuing to resolve. 

At this point, active fractions can be separated with either normal phase or reverse phase 

techniques, depending on the polarity of the components in the mixture. Both types of 

chromatography are generally used to expose the fraction of interest to a wide variety of 

solvent combinations to best optimize the separation into pure compounds. After 

separation is achieved, the compounds are then analyzed by a series of spectroscopic and 

spectrometric methods to resolve the structure. Final biological screenings are also 

collected at this point to discern which component of the mixture was active. At this 

point, other bioactivites can also be profiled based on different biological screenings. 

Natural products often contain multiple stereocenters that cause the structure 

elucidation of said molecules to be difficult. One dimensional (nuclear magnetic 

resonance) experiments are often enough for the assignment of planar structure of 

molecules, however stereoenriched compounds are often difficult to deduce even with 

two-dimensional experiments like HMBC13 (heteronuclear multiple bond correlation 

spectroscopy) or COSY (correlation spectroscopy). Both of these techniques rely on 

“through bond” correlations that allow for the chemist to associate the hydrogen of 
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choice’s environment. However, these experiments do not take into consideration those 

interactions that happen “through space,” which is where the NOESY (nuclear 

Overhauser effect spectroscopy) experiment becomes relevant. NOESY14, which does not 

rely on proximity between atoms to be observed, is an experiment that allows for 

“through space” interactions. Correlations from the COSY experiment can also be 

observed in the NOESY experiment, since “through space” interactions do not have to 

but can include “through bond” interactions. However, with the use of the NOESY 

experiment alone, only relative configuration can be assigned.15 This is because when a 

structure is assigned through NOESY correlations, the absolute configurations be the 

structure proposed or its enantiomer. This is where a technique like circular dichroism 

can come into play. 

Circular dichroism spectroscopy is a method that involves the application of 

circularly polarized light to molecules of interest.16 An orthogonal method called ECD 

(electronic circular dichroism) measures the absorption of the UV region. As circularly 

polarized light is applied to the molecule of interest, it will rotate in a defined way and 

absorb light at a particular wavelength.17-19  

Computational chemistry has made great strides in the development of simulation 

technology capable of modeling the chemical environments of structures.20 One area in 

particular is in the ability to use TD-DFT (time dependent density functional theory) 

calculations to investigate the spectroscopic properties of small molecules.21-22 Structures 

can be modelled first through the use of the NOESY NMR experiment, which assigns the 

relative configuration of a molecule of interest. Then, if one models the structure to 



4 

calculate first its minimal energy conformation and then its ECD profile, one is able to 

assign the absolute configuration of a molecule.23-25  
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CHAPTER II 

RESULTS 
 
 

The presented study focuses on fungal strain MSX62440 and its associated 

isolated compounds. The compounds isolated in MSX62440 belong to a small family of 

meroterpenoids called the dasyscyphins, of hich there are currently five published in the 

literature.26-28 These meroterpenoids are the product MSX62440 was described as a 

Fitzroyomyces sp., and dasyscyphins F-H represent three new meroterpenoids, which are 

a combination isoprene biosynthesis and polyketide biosynthesis.29 Also isolated was 

dasyscyphin C, which showed irregularities within the original structure assignment of 

the molecule. The issues are described in the chemical description of dasyscyphin C, 

where both NMR and ECD calculations are used. Bioactivity guided fractionation was 

utilized for the separation of said molecules, and activities in cell cytotoxicity assays and 

antimicrobial screenings are noted. Of particular interest in the activity against B. 

anthracis, of which 3 show particular activity against. 
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Figure 1. Compounds Isolated from MSX62440 
 
 

Dasyscyphin F (2.93 mg) (1) was isolated as an optically active ([𝛼]𝐷20= +17°) 

yellow powder and a molecular formula was established as C22H30O3 by HRESIMS (m/z 

[M+H]+ 343.2257, calculated for C22H31O3
+ 343.2268, -3.1 ppm), indicating index of 

hydrogen deficiency of 8.  Analysis of the 1H and 13C NMR data indicated the presence 

of 22 carbon atoms, consisting of four methyl groups, six methylene groups, and four 

methine groups (one aromatic, one aldehydic, two aliphatic). Three of the eight 

remaining carbons were determined to be oxygenated (one chelated and one hydroxyl) as 

well as one carbonyl group. Relative configuration was assigned through NOESY 

correlations, and TDDFT calculations allowed for the assignment of absolute 

configuration through circular dichroism. 

Extensive 1H-13C HMBC spectrum analysis revealed two partial structures, 

subunits a and b, of 1. Unit a (2,5 dihydroxy-benzaldehyde moiety), was identified as a 

1,2,4,5,6-pentasubstituted aromatic ring based on the singlet resonance at δH 6.75 (H-14) 

and 13C NMR shifts (δC 140.1, 153.0, 116.8, 120.1, 144.6, 142.0) observed for C-12, C-
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13, C-14, C-15, C-16, C-17, respectively. Furthermore, HMBC correlations from H-22 

(δH 9.75) to C-12 and C-14 indicated an aldehyde directly bound to the aromatic system. 

Finally, a resonance at δH 10.82 showed correlations with C-12/C-13/C-14, indicating its 

position to be at C-13, along with a resonance at δc 153.0, typical for a phenolic carbon. 

Subunit a accounted for five indices of hydrogen deficiency, leaving a total of three for 

subunit b.  

Due to the lack of olefins in the 1H and 13C NMR data, subunit b would need to 

contain three aliphatic rings to satisfy the index of hydrogen deficiency. Subunit b 

contained four methyl groups and highly saturated ring system, with overlaying 

methylene groups. HSQC confirmed the presence of only three resonances that accounted 

for quaternary carbons (δc 33.4/C-4, 37.3/C-10, 48.5/C-8), indicating a pair of 

inequivalent geminal dimethyl groups. A fourth quaternary carbon would otherwise need 

to be present since the methyl groups are all singlets. 1H-13C HMBC data indicated that 

the C-11 methylene group (δc 29.4, δH 2.90 dd, 2.73 d) has multiple correlations with the 

aromatic ring (δc C-12, C-16, C-17), and the aromatic proton also correlates with C-11, 

indicating a methylene group alpha to the aromatic ring system. C-11 also contains two 

inequivalent protons, of which one splits with its pair (δH 2.73-2.90 where JH-H=17.7) 

while the other splits with its pair and a tertiary proton (δH 2.90-2.73, 2.90-1.75 JH-H=8.0) 

with a resonance of δc 62.0. Compound 1’s remaining 13C and 1H spectra resembled that 

of the terpenoid moiety with the dasyscyphins. Electronic circular dichroism was also 

used for the assignment of absolute configuration, which was only possible after the 

assignment of relative configuration using NOESY correlations.  



8 

 

Figure 2. ECD Spectra of 1 

 

 

Dasyscyphin G (2), previously reported as a synthetic intermediate, was also 

isolated and characterized.26 Its NMR data was consistent with literature data. It showed 

little to no activity and was assigned the trivial name Dasyscyphin G. 2 also decomposed 

before the ability to collect further chiroptic data.  

Dasyscyphin C (3) showed previous activity in various antibiotic and cancer cell 

lines. NMR data was consistent with the literature, but 13C NMR data seemed disputable 

due to two shifts at 196.0 ppm and 202.4 ppm, which was originally reported as a 1,2 

dione moiety. However, both shifts seem to represent similar chemical environments, 

which would be inconsistent with the original structure proposed.30-31 Instead, a 1,4 dione 

moiety would be more representative of the data at hand. While a crystal was prepared, 

both ECD and NMR calculations32 were performed on the proposed (literature) structure 

as well as the suggested structure based on structure revision. Both a published and 

proposed version of dasyscyphin C were modelled and energy minimized before ECD 
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and NMR calculations were performed. Below indicate the results of ECD and NMR 

calculations.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Two Possible Structures of Dasyscyphin C 
 

 
 
 
 
 
 

 

 

 

 

 

 

 
 
 

Figure 4. ECD Spectra of (A) 3a and (B) 3b 
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Calculated ECD spectra were created from modelling both structures (3a and 3b) of 

dasyscyphin C, and show a clear discrepancy between the 3a and 3b. In particular, the 

experimental data matches strongly with revised structure 3a instead of 3b, and 3b shows a 

marginally different ECD profile. 

As represented (Fig. 5), 3a’s calculated and experimented CD spectra match much more 

similarly than that of 3b’s calculated and experimental CD spectra. This variation in calculated 

CD spectra is a result of the change of the 1,2 dione core to the 1,4 dione core, which causes the 

chromophore in question to elicit a new set of Cotton effects. The experimental Cotton Effects at 

210 and 245 match the calculated 3a almost exactly but 3b’s experimental data is much less 

similar and shows that the modelled structure does not match the experimental data. NMR 13C 

calculations were also performed, and the data is presented as a table shown below. 

Calculated carbon data are increasingly used for the verification of assigned 

structures, whether through elucidation or revision.33-35 The data shows that the modelled 

structure 3a more closely matches the experimental data than 3b does, which is the 

originally published structure.27, 36 This data, along with calculated ECD spectra, suggests 

that the original structure was incorrectly assigned as 1,2 dione and dasyscyphin C should 

in fact be corrected to a 1,4 dione. 

Compounds 1-3 were tested against three human tumor cell lines. 1 and 3 were 

moderately active in the screening (with IC50 values ranging between 4 and 16 µM against all cell 

lines) compared to taxol as the control (ranging between 2 and 7 nM). Compounds 1 and 3 were 

also tested for antimicrobial activity, of which 3 showed moderate activity against Bacillus 

anthracis in particular (with MIC value of 2.0 µg/mL), which was previously unreported. 
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CHAPTER III  
 

METHODOLOGY 
 
 

Optical rotations, UV, and IR data were measured using a Rudolph Research 

Autopol III polarimeter (Rudolph Research Analytical), a Varian Cary 100 Bio UV-Vis 

spectrophotometer (Varian Inc.) and a Perkin-Elmer Spectrum One with Universal ATR 

attachment (PerkinElmer). NMR spectra were recorded using a JEOL ECA-500 NMR 

spectrometer operating at 500 MHZ for 1H and 125 MHz or a JEOL ECS-400 NMR 

spectrometer operating at 400 MHz for 1H and 100 MHz for 13C and equipped with a 

high sensitivity JEOL Royal probe and a 24-slot autosampler (JEOL Ltd). Residual 

solvent signals were utilized for referencing. HRMS data were collected using a Thermo 

LTQ Orbitrap XL mass spectrometer equipped with an electrospray ionization source 

(Thermo Fisher Scientific). A Waters Acquity UPLC System (Waters Corp.) utilizing a 

Waters BEH C18 column (1.7 µm; 50 × 2.1 mm) and analyzed using the software 

XCalibur. A Varian ProStar HPLC system equipped with ProStar 210 pumps, a ProStar 

335 Photodiode array detector (PDA), and Galaxie Chromatography Workstation 

software (version 1.9.3.2, Varian Inc.) was used for data collection and analysis. Flash 

chromatography was conducted on a Teledyne Isco CombiFlash Rf 200 system using 

RediSep RF Gold HP Silica columns (both from Teledyne Isco) that was coupled with 

UV and evaporative light-scattering detectors 
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(ELSD). All other reagents and solvents were obtained from Fisher Scientific and were 

used without further purification. 

Phylogram of the most likely tree (-lnL = 5786.07) from a RAxML analysis of 26 

strains based on ITS region sequence data (1020 bp). Numbers refer to RAxML bootstrap 

support values ≥ 70% based on 1000 replicates. Strain MSX62440 is identified as 

Fitzroyomyces sp., Ostropales, Stictidaceae, Lacanoromycetes, Ascomycota as it groups 

with isolates of Fitzroyomyces cyperacearum. It is also forms a clade with 

Neofitzroyomyces nerii sharing 100% RAxML bootstrap support. MSX62440 is 

highlighted in a brown box. Three-week-old culture on potato dextrose agar is shown. 

Bar indicates nucleotide substitutions per site. The tree is rooted with members of 

Trapeliaceae Baeomycetales. Taxon sampling was performed following a recent 

taxonomic study by Yang et al.37-38 

Briefly, cultures of strain MSX62440 were grown in one 2.8-L Fernbach flask 

(Corning, Inc., Corning, NY, USA) containing 150 g rice and 300 mL H2O. A seed 

culture grown in YESD medium was used as the inoculum. Following incubation at 22 

°C for 14 days, to the solid fermentation culture of MSX62440, 100 mL of acetone was 

added and chopped, and the resulting mixture sat for 15 minutes. The slurry was filtered 

under vacuum and an additional 100 mL acetone was added. The filtrate was then filtered 

through silica on a 250 mL glass fritted funnel. The de-sugared extract was then dried in 

vacuo and reconstituted in 200 mL of ethyl acetate and 200 mL of H2O, and transferred to 

a separatory funnel. The aqueous layer was drawn off, and set aside. The organic layer 
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was drawn off and dried off in vacuo. The aqueous layer was repartitioned with an 

additional 100 mL of ethyl acetate, then this process was repeated twice to pull any 

remaining organic material from the aqueous layer. The organic was dried down in vacuo 

and repartitioned in 100 mL of 1:1 MeOH-MeCN and 100 mL of hexane, and then 

partitioned in a separatory funnel. The MeOH-MeCN layer was collected and 

concentrated in vacuo. The resulting MeOH-MeCN extract was then adsorbed on Celite 

545 (Acros Organics) and fractionated via flash chromatography on a 4g RediSep Rf 

Gold Si-gel column using a gradient solvent system of hexane-CHCl3-MeOH at a flow 

rate of 18 mL/min over 90 column volumes for a duration of 24.0 min. Fractions were 

collected every 9.0 mL and pooled according to the UV and ELSD profiles, which 

resulted in five combined fractions in total (FI-FV). FIII was subjected to two rounds of 

preparative HPLC using a gradient system of 90 to 100 CH3CN-H2O (0.1% formic acid) 

over 30 minutes at a flow rate of 17 mL/min and T3 column to yield dasyscyphin F 

(TR=18.2 minutes) and dasyscyphin G (TR=25.5 minutes). A separate sample preparation 

resulted in seven fractions in total (FI-FVII). FII was subjected to one round of preparative 

HPLC using a gradient system of 87 to 100 CH3CN-H2O (0.1% formic acid) over 30 

minutes at a flow rate of 17 mL/min and T3 column to yield 3 (TR=12 minutes) 

The TDDFT calculations, such as NMR and circular dichroism, were performed 

as previously described using the Gaussian’16 program package.39 A 3D model of 

dasyscyphin F and dasyscyphin C were built and geometry optimized using Spartan’10 

software (www.wavefunction.com). The resulting conformers were filtered, checked for 

http://www.wavefunction.com/
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duplicity, and minimized using a DFT force field at the B3LYP/6-311+G(2d,p) level of 

theory. Conformational analysis was performed by a Monte Carlo search protocol as 

implemented in the same software under the semiempirical method (PM3). ECD 

calculations using the self-consistent reaction field with conductor-like continuum 

solvent model in MeOH were subsequently performed on the obtained DFT-minimized 

major conformers of both 5R,8S,9S,10R and 5S,8R,9R,10S enantiomers of dasyscyphin 

F at the B3LYP/G-31+G(d,p) level of theory. ECD calculations using the self-consistent 

reaction field with conductor-like continuum solvent model in MeOH were also 

subsequently performed on the obtained DFT-minimized major conformers of both 

5S,8S,9S,10S,12R,17R and 5R,8R,9R,10R,12S,17S enantiomers of dasyscyphin C at the 

B3LYP/G-31+G(d,p) level of theory Subsequently, the excitation energy (nm) and 

rotatory strength (R) in dipole velocity (Rvel) and dipole length (Rlen) forms obtained 

from the calculations were then used to simulate the ECD curves. A 3D model of 

dasyscyphin C was generated and geometry optimized using Schrodinger Suite under 

Maestro (source) and conformational searches were performed using Schrodinger Suite’s 

Macromodel. The resulting conformers were filtered, checked for duplicity, and 

minimized using a DFT force field at the M062X/6-31+G(d,p) level of theory. NMR 

shielding constants were calculated with the GIAO method at B3LYP/6-311+G(2d,p) 

level of theory with the IEFPCM model in chloroform solvent. The obtained shielding 

constants were converted to chemical shifts by referencing TMS at 0 ppm.40
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CHAPTER IV 
 

CONCLUSIONS 
 
 

In summary, initial bioassay guided fraction of fungal strain MSX62440 led to the 

isolation of three new drimane sesquiterpenoids. The initial screening tested against three 

cancer cell lines: MDA-MB-435 (melanoma), MDA-MB-231 (breast) and OVCAR3 

(Ovarian). Further fractionation allowed for the isolation of compounds 1 and 2, while 

regrowth of MSX62440 allowed for the isolation of 3 and 4. Extensive 1D and 2D NMR 

data analysis allowed for the assignment of the planar structure of 1-4. While 2 degraded 

before further data could be collected, compounds 1, 3, and 4 all had absolute configuration 

assigned through a combination of 2D NMR experiments and chiroptic techniques. In 

particular, the calculation of electronic circular dichroism spectra allowed for the 

comparison of enantiomers that were assigned relatively through NOESY correlations. The 

dasyscyphins are low in number in the literature, but are structurally unique and complex 

with interesting bioactivities. Preliminary gene sequencing placed MSX62440 as a member 

of the Fitzroyomyces sp., which is a member of the Lecanoromycetes, which represent 

lichenized fungi as well as saprobes and endophytes. Structure revision of 4 was performed 

by calculation of 13C chemical shifts and ECD predictions.  
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APPENDIX A 

NMR SPECTRA 
 

 
 

Figure 5. 1H and 13C NMR Spectra of 1. 
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Figure 6. COSY NMR Spectrum of 1. 
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Figure 7. HSQC NMR Spectrum of 1. 
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Figure 8. HMBC NMR Spectrum of 1. 
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Figure 9. 1H and 13C NMR Spectra of 2.  
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Figure 10. 1H and 13C NMR Spectra of 3.  

 


