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One of the main usages of covariance function or kernel is to capture the spatial

or temporal dependency of a random process or random field. Covariance functions

have been widely used in many areas such as environmental statistics, economics, ma-

chine learning, atmospheric sciences, imaging analysis, etc. Hence, the understanding

of a covariance function is crucial to the modeling, estimation, and prediction of a

random process. In this dissertation, based on Mercer’s theorem, we first modify

an existing algorithm that uses the Wavelet-Galerkin method to approximate real-

valued stationary covariance functions. We then apply the algorithm to approximate

real-valued and complex-valued nonstationary covariance functions. In particular, we

demonstrate the validity of the algorithm in the approximation of complex-valued

covariance functions. In the second part of this dissertation, we apply the proposed

algorithm to implement the Karhunen-Loéve expansion for studying axially symmet-

ric Gaussian random processes on the sphere. The convergence of the truncated

Karhunen-Loéve expansion to approximate axially symmetric Gaussian processes is

established, and an expression for L2 error bound of the above approximation is de-

rived. Also, we propose an efficient algorithm to generate axially symmetric Gaussian

data on the sphere with a given covariance structure, and we demonstrate that our

method is comparable with the classical data generation method.



THE WAVELET-GALERKIN METHOD ON GLOBAL RANDOM PROCESSES

by

Romesh Ruwan Thanuja Athuruliye Liyana Arachchige

A Dissertation Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Doctor of Philosophy

Greensboro
2021

Approved by

Committee Chair



To my family.

ii



APPROVAL PAGE

This dissertation written by Romesh Ruwan Thanuja Athuruliye Liyana

Arachchige has been approved by the following committee of the Faculty of The

Graduate School at The University of North Carolina at Greensboro.

Committee Chair
Haimeng Zhang

Committee Members
Sat Gupta

Scott Richter

Xiaoli Gao

Somya Mohanty

Nicholas Bussberg

Date of Acceptance by Committee

Date of Final Oral Examination

iii



ACKNOWLEDGMENTS

These words cannot express my gratitude to my supervisor, Dr. Haimeng

Zhang. I would not be where I am today without him. I greatly appreciate his sup-

port and kindness. I also would like to offer my deepest gratitude to the members of

the committee, Dr. Gupta, Dr. Richter, Dr. Gao, Dr. Mohanty, and Dr. Bussberg for

the wonderful suggestions to make improvements to this dissertation. My thanks are

extended to Dr. Shivaji for the helpful guidance over the past five years. Furthermore,

I wish to acknowledge the University of North Carolina at Greensboro, particularly,

the Department of Mathematics and Statistics for providing me the financial support.

I would like to convey my heartfelt gratitude to my parents Nandasiri & Shan-

thi, my wife Bhashini, my sister Monisha, and my brother Dinuka, for always being

there for me even in the darkest days of my life. Finally, I would like to thanks all of

my school (Mahinda College, Sri Lanka) and university’s (University of Peradeniya,

Sri Lanka and University of North Carolina at Greensboro, USA) teachers and friends.

I could not have made it this far without their support.

iv



TABLE OF CONTENTS

Page

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Spatial Random Fields . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Circularly Symmetric Gaussian Random Vectors . . . . . . . . 7
1.3. Circulant and Block Circulant Matrices . . . . . . . . . . . . . . 7
1.4. Covariance and Variogram Estimators on a Circle . . . . . . . 10
1.5. Random Processes on the Sphere . . . . . . . . . . . . . . . . . . . 13

II. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.1. Research Studies on Spatial Data . . . . . . . . . . . . . . . . . . . 21
2.2. Outline of This Dissertation . . . . . . . . . . . . . . . . . . . . . . 26

III. WAVELET-GALERKIN METHOD AND COVARIANCE
FUNCTIONS APPROXIMATION . . . . . . . . . . . . . . . . . . . . . . . . 28

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2. Introduction to Mercer’s Theorem and theWavelet-

Galerkin Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3. Comparison of Analytical and Numerical Re-

sults of the Wavelet-Galerkin Method . . . . . . . . . . . . . . 41
3.4. Approximating Complex-valued Covariance Func-

tions using
the Wavelet-Galerkin Method . . . . . . . . . . . . . . . . . . . . 52

IV. KARHUNEN-LOÉVE EXPANSION FORGAUSSIAN AX-
IALLY SYMMETRIC RANDOMPROCESSES ON THE
SPHERE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1. A Study of Convergence for Truncated Karhunen-
Loéve Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2. Global Data Generation on the Sphere . . . . . . . . . . . . . . . 77
4.3. Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . . . 80

v



V. SUMMARY AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2. Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

APPENDIX A. PROOF 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

APPENDIX B. PROOF 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

vi



LIST OF FIGURES

Page

Figure 1. TOMS data; data resolution spatial 10 Latitude × 1.250

Longitudes in May, 1-6 1990. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 2. Distribution at each latitude (left) and variance at each
latitude (right) between 500S and 500N . . . . . . . . . . . . . . . . . . . 24

Figure 3. The comparison of first five eigenfunction of analytical
and numerical stationary covariance function. . . . . . . . . . . . . . . . 44

Figure 4. True covariance matrix values evaluated at 128 equally
spaced grid points on [0,π] . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Figure 5. Haar wavelet approximation of a two-dimensional sta-
tionary covariance function (left) and the difference
between true and approximate stationary covariance
functions (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

Figure 6. The comparison of the first five eigenfunctions between
analytical and numerical solutions. . . . . . . . . . . . . . . . . . . . . . . 50

Figure 7. True covariance function values evaluated at 128 equally
spaced grid points on [0,π]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 8. Left graph shows Wavelet-Galerkin approximation of
real-valued nonstationary covariance function. The
difference between true and approximate nonstation-
ary covariance function is represented on the right graph. . . . . . . 51

Figure 9. Approximated CR(t, s) using wavelet approach (left) and
the difference between analytical and approximated
CR(t, s) (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 10. Approximated CI(t, s) using wavelet approach (left) and
the difference between analytical and approximated
CI(t, s) (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

vii



Figure 11. The L2 error as a function of M . The theoretical error
bound is represented by the red solid line and the
average empirical L2 error bound by blue line with
1000 repetitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Figure 12. The average empirical L2 error as a function of M for
different p values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

Figure 13. Cross variogram estimator comparison of Model 1 under
the longitudinally reversible assumption (u = 0) for
the parameter set 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Figure 14. Cross variogram estimator comparison of Model 1 under
the longitudinally reversible assumption (u = 0) for
the parameter set 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 15. Cross variogram estimator comparison of Model 1 under
the axially symmetric assumption for the parameter
set1 (left) and set 2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Figure 16. Cross variogram estimator comparison of Model 2 under
the axially symmetric assumption for the parameter
set1 (left) and set 2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 17. Cross variogram estimator comparison of Model 1 under
the axially symmetric assumption for the parameter
set1 (left) and set2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

Figure 18. Cross variogram estimator comparison of Model 2 under
the axially symmetric assumption for the parameter
set1 (left) and set 2 (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Figure 19. Bias and MSE comparison of the wavelet approach and
classical method for a fixed pair of latitudes (800S, 600N)
over ∆λ ∈ (0, π) for Model 1 with set 1 parameter values. . . . . . . 91

Figure 20. Bias and MSE comparison of the wavelet approach and
classical method for a fixed pair of latitudes (800S, 600N)
over ∆λ ∈ (0, π) for Model 2 with set 1 parameter values. . . . . . . 91

viii



LIST OF TABLES

Page

Table 1. Gridded data structure on the sphere (Xφi = 1
n

∑nL
j=1 Xij) . . . . . . . . . 17

Table 2. Comparison between analytical and numerical eigenval-
ues for the exponential covariance function. . . . . . . . . . . . . . . . . . 43

Table 3. First four eigenvalues and eigenfunctions of the nonstaionary
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Table 4. Parameter values of the covariance functions . . . . . . . . . . . . . . . . . . 85

ix



CHAPTER I

INTRODUCTION

In this section we will introduce basic concepts and important results in spatial

statistics, including stationarity, intrinsic stationarity, and mean-squared continuity,

etc. We will also give a brief discussion on stationary processes on a circle and axially

symmetric processes on the sphere. Finally, the gridded data structure and the cross-

covariance and cross-variogram estimators will be provided and with their elementary

properties will be presented.

1.1 Spatial Random Fields

We define various random processes {X(t), t ∈ T} as a collection of random

variables based on the values of t taking from a specific domain T . Here are some of

the commonly used random processes corresponding to certain choices of T .

• T = N, a sequence of integers, X(t) is a time series.

• T = R1, X(t) is a stochastic process.

• T = Rd , d > 1 , X(t) is a spatial process.

• T = S2 , X(t) is a random process on the sphere.

• T = Rd(S2)× R, X(t) is a spatio-temporal process on the sphere.

When T = D ⊂ Rd (d > 0), {X(t); t ∈ T} is called a spatial process with t =

(t1, t2, . . . , td)
ᵀ ∈ Rd, being the spatial index.
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In spatial statistics, to fully characterize a random process, one needs the finite di-

mensional distribution.

Definition 1.1. For any n > 0, the cumulative distribution function of a random

vector (X(t1), . . . , X(tn))ᵀ on a n-tuple of spatial locations indexed by (t1, t2, . . . , tn)

is given by

Ft1,t2,...,tn(x1, x2, . . . , xn) = P{X(t1) ≤ x1, . . . , X(tn) ≤ xn},

where x1, x2, . . . , xn ∈ R.

The Gaussian process is one of the most commonly used processes, where its

finite dimensional distribution is multivariate normal. Note that a multivariate nor-

mal distribution is uniquely determined by its mean and variance-covariance matrix.

Therefore, the Gaussian process is uniquely determined by its mean function and

variance-covariance function.

1.1.1 Stationarity Concepts

A random field X(t), t ∈ T is called to be strictly stationary if for any n,

t1, t2, . . . , tn ∈ T , and random vectors (X(t1 + h), X(t2 + h), . . . , X(tn + h))ᵀ and

(X(t1), X(t2), . . . , X(tn))ᵀ have the same joint distribution for any lag distance h.

The assumption of strict stationarity might be too strong to be satisfied in real-world

situation. A weaker assumption is weak stationarity (simply, stationarity). More

specifically, a stationary random process satisfies following properties.

• ∀t ∈ T , E(X(t)) = µ a constant.

• E(X2(t)) <∞ ∀t ∈ T , that is, the second moment of X(t) is finite.
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• The covariance (kernel) function C(·) only depends on the displacement (h)

between two spatial locations. C(h) = Cov(X(t), X(t+ h)).

A continuous covariance function C(·, ·) on Rd is called positive semi-definite if and

only if

n∑
i,j=1

C(ti, tj) ai aj ≥ 0, (1.1)

for any n > 0, a finite number of spatial locations {ti, i = 1, 2, . . . , n} on Rd, and any

real numbers {ai, i = 1, 2, . . . , n}. If the process {X(t) : t ∈ T} is strongly stationary

and has finite second moment, {X(t) : t ∈ T} is weakly stationary, but not vice

versa (see Appendix A for an example). However, since a weakly stationary Gaussian

random field is characterized by its mean and covariance function, weak stationarity

implies strict stationarity.

If C(·): Rd → R is a covariance function of a stationary random field, it has fol-

lowing properties:

• C(0) ≥ 0

• C(t) = C(−t) , ∀t ∈ Rd

• | C(t) | ≤ C(0) ,∀t ∈ Rd

• C(·) satisfies the positive semi-definite as given by Definition (1.1).

1.1.2 Mean-Squared Continuity

For a sequence of random variablesX1, X2, . . . and a random variableX defined

on some common probability space, define Xn
L2

−→ X as E(Xn − X)2 → 0, n → ∞
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and E(X2) < ∞. We say Xn converges in L2 if there exists X such that Xn
L2

−→ X.

Suppose X(t) is a random field on Rd. We say X(t) is mean squared continuous at s

if

lim
t→s

E{X(t)−X(s)}2 = 0.

For a weakly stationary processX(t) with covariance function C(·), E{X(t)−X(s)}2 =

2 (C(0)− C(s− t)), [Mic98].

1.1.3 Construction of Covariance Functions

Suppose C : Rd → R is a continuous function, then C is the covariance function

of some stationary Gaussian random field if and only if

C(h) =

∫
Rd
ei<w,h>dµ(w), where < w, h >=

d∑
i=1

wihi, (1.2)

for some finite symmetric Borel measure µ on Rd. The measure µ is called spectral

measure of the random field. In particular, if µ admits an even density f : Rd → R+

and with (1.2), then

C(h) =

∫
Rd
ei<w,h>f(w)dw =

∫
Rd
f(w) cos(< w, h >)dw. (1.3)

By the inverse Fourier formula, f(w) can be obtained as,

f(w) =
( 1

2π

)d ∫
Rd
e−i<w,h>C(h)dh, (1.4)

4



which is the so-called spectral density. For instance, here are some stationary covari-

ance functions and corresponding spectral densities.

(1) Matern class

f(w) =
1

φ(α2 + w2)v+ 1
2

where φ, v, α > 0,

C(h) =
π1/2φ

2v−1Γ(v + 1/2)α2v
(α|h|)vYv(α|t|),

where Yv is the modified Bessel function of second kind, Γ is the gamma function

and α and v are non-negative parameters of the covariance function.

(2) Gaussian spectral density f(w) and Gaussian covariance function C(h),

f(w) =
1

2
√
πα

ce
−w2

4α ,

C(h) = ce−αh
2

,

where α, c > 0 and ω ∈ R.

1.1.4 The Semi-Variogram

Semi-variogram can be defined by

γ(h) =
1

2
var(X(t+ h)−X(t)),

5



where h is the displacement. Note that for weakly stationary random fields, the

following relationship holds

γ(h) = C(0)− C(h).

The variogram function 2γ(·) is conditionally negative semi-definite; that is

N∑
i,j=1

2γ(ti − tj) ai aj ≤ 0, ∀ti, tj ∈ Rd,

for any finite number of spatial locations {ti, i = 1, 2, . . . , N} on Rd and any real

number {ai, i = 1, 2, . . . , N} with constraint
∑N

i=1 ai = 0.

1.1.5 Intrinsically Stationary Process

A process is called an intrinsically stationary process if it has a finite constant

mean and the variogram function is only a function of displacement (h).

• E(X(t)) = µ, ∀t ∈ Rd.

• V ar(X(t+ h)−X(t)) = 2γ(h).

Note that second order stationarity implies intrinsic stationarity, but the converse

may not be true. For instance, consider the following linear semivariogram function.

γ(h) =


τ 2 + σ2h, if h > 0, τ 2 > 0, σ2 > 0,

0, otherwise.

Note that γ(h) → ∞ when h → ∞ and so this semi-variogram does not correspond

to a weakly stationary process (although it is intrinsically stationary).
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1.2 Circularly Symmetric Gaussian Random Vectors

A complex-valued random variable Z is circularly symmetric if eiφZ has the

same probability distribution as for Z for all φ. Let ~Z = (Z1, Z2, . . . , Zn)ᵀ be a

complex jointly-Gaussian vector. We say Z = ZR + iZI is complex Gaussian if

both ZR and ZI are real-valued random variables and jointly Gaussian. Then ~Z can

be expressed as a set of 2n jointly-Gaussian real-valued random variables such that

Zk = (ZR
k , Z

I
k)ᵀ, k = 1, 2, . . . , n. In addition, covariance matrix of ~Z, K~Z and the

pseudo-covariance matrix M~Z are given by

K~Z = E[~Z ~Z∗],

M~Z = E[~Z ~Zᵀ],

where ~Z∗ = ~̄Zᵀ is the conjugate transpose of ~Z. Furthermore, according to the Theo-

rem 1 in [Gal08], If we assume that Z is a complex jointly-Gaussian random vector,

then Z is circularly symmetric if and only if M~Z = 0 .

1.3 Circulant and Block Circulant Matrices

A square matrix in which each row (after the first) has the elements of the

previous row shifted cyclically one place to the right, is called a circulant matrix.
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[Dav79] denotes it as

A = circ(a0, a1, . . . , an−1) =



a0 a1 a2 . . . . . . an−2 an−1

an−1 a0 a1 . . . . . . an−3 an−2

...
... a0

...
...

...
... . . . ...

...

a1 a2 a3 . . . . . . an−1 a0


,

for ~a = (a0, a1, . . . , an−1)ᵀ ∈ Rn.

Eigenvalues of A are given by

λj =
n−1∑
k=0

akw
k
j , where w

k
j = ei2πjk/n, j = 0, 1, . . . , n− 1.

If A is also symmetric, that is ai = an−i, then eigenvalues are real. The eigenvector

Ψj is given by,

~Ψj =
1√
n

(1, wj, w
2
j , . . . , w

n−1
j )ᵀ.

8



A block circulant matrix was first proposed by [Mui1920]. A ∈ Rnp×np with [Ak]p×p, k =

0, . . . , n− 1 sub block matrices is given below.

A = bcirc(A0, A1, . . . , An−1) =



A0 A1 A2 . . . . . . An−2 An−1

An−1 A0 A1 . . . . . . An−3 An−2

...
... A0

...
...

...
... . . . ...

...

A1 A2 A3 . . . . . . An−1 A0


.

According to [CL88], matrix A can be decomposed as

A = Pdiag(S1, S2, . . . , Sn)P ∗,

where P= 1√
n
(E1, E2, . . . , En) with

Ej =



Ip

wjIp

w2
j Ip
...

wn−1
j Ip


, j = 1, 2, . . . , n and wkj = ei2πjk/2,

and Sj =
∑n−1

k=0 w
k
jAm. More details about eigenvalues and eigenvectors can be found

in [Gar15].
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1.4 Covariance and Variogram Estimators on a Circle

It is important to investigate expressions of the variance (variogram) and the

covariance as dependencies between two angles on the circle are dominated by these

two parameters. In this section we will introduce random processes, stationary con-

cepts, covariance, and variogram estimators on the circle.

1.4.1 Random Process on a Circle

Let {X(t), t ∈ S1} be a random process on a unit circle that has a finite

second moment and is continuous in quadratic mean. Then X(t) can be represented

as a Fourier series with convergence of the series in quadratic mean

X(t) = A0 +
∞∑
n=1

(An cos(nt) +Bn sin(nt)), t ∈ [0, 2π],

where random variables A0, An and Bn (n = 1, 2, . . .) can be expressed by

A0 =
1

2π

∫ 2π

0

X(t) dt,

An =
1

π

∫ 2π

0

X(t)cos(nt) dt,

Bn =
1

π

∫ 2π

0

X(t)sin(nt) dt.

1.4.2 Stationary and Intrinsically Stationary Processes on the Circle

A process is called to be stationary on the circle if the process has constant

mean and the covariance function only depends on the angular difference.

C(θ) = cov(X(t+ θ), X(t)), θ ∈ [0, π].
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Note that the stationary covariance function has the following spectral decomposition

C(θ) = a0 +
∑∞

k=1 ak cos(kθ), where ak ≥ 0, k = 0, 1, 2, . . ., and
∑∞

k=0 ak <∞.

We can find a0 and ak, k ≥ 1 by considering the orthogonality of cos(kθ)

a0 =
1

π

∫ π

0

C(θ) dθ, ak =
2

π

∫ π

0

C(θ) cos(kθ) dθ, k ≥ 1.

Note that if a random process X(t) is intrinsically stationary, E(X(t)) = µ (constant),

and the variogram function depends only on the angular distance θ. The variogram

function on the circle has the following spectral decomposition

γ(θ) =
∞∑
k=1

ak(1− cos(kθ)),

where ak ≥ 0, k = 0, 1, 2, . . . and
∑
ak <∞.

1.4.3 Covariance and Variogram Estimator on the Circle

Let ~X = (X1, X2, . . . , Xn)ᵀ with Xj = X((j − 1)δ) is a collection of gridded

observations on the circle. Let ∆λ = kδ for k = 0, 1, 2, . . . , N = n/2, where n is the

number of data points on the circle and δ = 2π
N

(here for simplicity, n = 2N even).

Then we have the following Method of Moment (MOM) covariance estimator.

Ĉ(∆λ) =
1

n

n∑
i=1

(X((i− 1)δ + ∆λ)− X̄)(X(i− 1)δ)− X̄)

=
1

n

n∑
i=1

(X((i− 1)δ + ∆λ)(X(i− 1)δ)− (X̄)2,where X̄ =
1

n

n∑
i=1

Xi.
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According to the [Ada17], the above expression of the covariance estimator can be

converted to a quadratic form,

Ĉ(∆λ) = ~XᵀM(∆λ) ~X,

where

M(∆λ) =
1

n
circ(− 1

n
,− 1

n
, . . . ,− 1

n
, . . . ,− 1

n
).

As stated in [Ada17], we can define the variogram estimator on the circle as fol-

lows. Let ~X(k+1) = (Xk+1, . . . , Xn, X1, . . . , Xk−1, Xk)
ᵀ be the rotated vector ~X by kth

position. Hence, we have, for ∆λ = kδ, k = 0, 1, 2, . . . , N .

γ̂(∆λ) =
1

2n

n∑
i=1

(X((i− 1)δ + ∆λ)− (X(i− 1)δ))2

=
1

2n
( ~X(k+1) − ~X)ᵀ( ~X(k+1) − ~X).

We write γ̂(∆λ) as the following quadratic form

γ̂(∆λ) = ~XᵀA(∆λ) ~X,

where,

A(0) = 0;

A(kδ) =
1

2n
circ(2, 0, 0, . . . ,−1, 0, . . . ,−1, 0, . . . , 0), 1 ≤ k ≤ N − 1,
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where −1’s are placed at (k + 1)th and (n− k + 1)th positions, respectively.

A(Nδ) =
1

2n
circ(2, 0, 0, . . . ,−2, . . . , 0, . . . , 0),

where −2 is placed at (N + 1)th position.

1.5 Random Processes on the Sphere

Let {X(P ), P = (φ, λ) ∈ S2} be a possibly complex-valued random process

with longitude λ ∈ [0, 2π) and latitude φ ∈ [0, π]. X(P ) can be expressed as a

combination of spherical harmonics with quadratic mean convergence. If we can

assume for every location the process X(P ) is continuous in quadratic mean and has

a finite second moment [LN97]

X(P ) = X(λ, φ) =
∞∑
v=0

ν∑
m=−ν

Zν,me
imλPm

ν (cosφ),

where Pm
ν is a normalized associated Legendre polynomial and indices ν andm (which

are integers) are considered as the degree and order of the associated Legendre poly-

nomial, respectively. Zν,m coefficients can be obtained by

Zν,m =

∫
S2
X(P )e−imλPm

v (cosφ) dP.

Without loss of generality (WLOG), we can set E(X(P )) = 0, then the covariance

function between two locations P = (φP , λP ) and Q = (φQ, λQ) would become (for

13



example, [HZR12])

R(P,Q) = E(X(P )X(Q))

=
∞∑
ν=0

∞∑
µ=0

ν∑
m=−ν

µ∑
n=−µ

E(Zν,mZµ,n)eimλPPm
ν (cosφP )e−inλQP n

µ (cosφQ), (1.5)

where Zν,m denotes the complex conjugate of Zν,m.

1.5.1 Homogeneous (Stationary) Processes on the Sphere

If the underlying process is homogeneous then the covariance function only

depends on the spherical distance between two locations. That is, [Yag61]

R(P,Q) = R(θ(P,Q)) =
∞∑
ν=0

(2ν + 1)fν
2

Pν(cos θ(P,Q)),

where cos θ(P,Q) = (sinφP sinφQ + cosφP cosφQ cos(λP − λQ)), θ(P,Q) is called the

spherical angle, Pν(·) is the Lengendre polynomial of order ν, fν ≥ 0, and
∑∞

ν=0(2ν+

1)fν <∞.

1.5.2 Axially Symmetric Processes on the Sphere

{X(P ), P ∈ S2} is said to be an axially symmetric process on the sphere, if

the covariance function of the process only depends on the longitudinal difference.

Consider the two location P = (φP , λP ) and Q = (φQ, λQ), then the covariance

function between P and Q can be written as

R(φQ, φQ, λP , λQ) = R(φP , φQ, λP − λQ).
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Under the assumption of axial symmetry [Jon63], we can simplify equation (1.5) as

follows;

E(Zν,mZµ,n) = δn,mfν,µ,m,

where δn,m = 1, when n = m, and 0 otherwise. Hence, the covariance function is of

the form (for example, [Ste07])

R(P,Q) = R(φP , φQ, λP − λQ)

=
∞∑

m=−∞

∞∑
ν=|m|

∞∑
µ=|m|

fν,µ,me
im(λP−λQ)Pm

ν (cosφP )Pm
µ (cosφQ). (1.6)

For each fixed integerm, the matrix Fm(N) = {fν,µ,m}ν,µ=|m|,|m|+1,...,N must be positive

definite for all N ≥ |m|. In equation (1.6), for each m = 0,±1, . . ., we let

Cm(φP , φQ) =
∞∑

ν=|m|

∞∑
µ=|m|

fν,µ,mP
m
ν (cosφP )Pm

µ (cosφQ).

According to [HZR12], Cm(φP , φQ) is Hermitian and positive definite by considering

the properties of fν,µ,m and Fm(N).

As mentioned in [HZR12], a continuous covariance function defined on axially sym-

metric processes has the following structure

R(P,Q) = R(φP , φQ,∆λ) =
∞∑

m=−∞

eim∆λCm(φP , φQ), (1.7)
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where ∆λ ∈ [−π, π], and Cm(φP , φQ) is Hermitian and positive definite with∑∞
m=−∞ |Cm(φP , φQ)| <∞.

1.5.3 Longitudinally Reversible Processes on the Sphere

A longitudinally reversible process is a special case of an axially symmetric

process, where the covariance function satisfies the following additional property.

R(φP , φQ, λQ − λP ) = R(φP , φQ, λP − λQ).

Under this assumption of reversibility, the above equation yields C−m(φP , φQ) =

Cm(φP , φQ), then the equation (1.7) can be simplified as

R(φP , φQ,∆λ) =
∞∑
m=0

Cm(φP , φQ) cos(m∆λ).

1.5.4 Cross Covariance and Variogram Functions on the Sphere

If R(φP , φQ,∆λ) is the cross-covariance function between two locations P =

(φP , λP ) and Q = (φQ, λQ) with ∆λ = λP − λQ, then the cross-variogram function

γ(φP , φQ,∆λ) can be expressed as

γ(φP , φQ,∆λ) = R(φP , φQ, 0)− 1

2
(R(φP , φQ,∆λ) +R(φP , φQ,−∆λ)). (1.8)

When the process is longitudinally reversible then the above equation (1.8) becomes

γ(φP , φQ,∆λ) = R(φP , φQ, 0)−R(φP , φQ,∆λ). (1.9)
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1.5.5 Construction of Gridded Data Structure

Table 1 illustrates how gridded data points are distributed throughout the

entire sphere. Let δ = 2π
nL

= 2π
n

be a fixed common length on a latitude. The

longitude difference, ∆λ, between two points P = (φp, λP ) and Q = (φQ, λQ) can only

be taken the following sequence of values. WLOG, consider n as an even number.

∆λ = kδ, k = ±1.± 2, . . . ,±N, where Nδ = π and n = nl = 2N.

Table 1. Gridded data structure on the sphere (Xφi = 1
n

∑nL
j=1 Xij)

Latitudes Observed data on each latitude Means of Latitudes

0 δ . . . (nL − 1)δ

φ1 X11 X12 . . . X1nL Xφ1

φ2 X21 X22 . . . X2nL Xφ2

. . . . . . . . . . . . . . . . . .

φnl Xnl1 Xnl2 . . . XnlnL Xφnl

When nl = 2, that is there are only two latitudes denoted as φP and φQ. All

observations on latitudes φP and φQ can be commonly written as {X(φP , kδ)}n−1
k=0

and {X(φQ, kδ)}n−1
k=0 , respectively. Moreover, we form the following vector ~X =

(X11, X21, , X12, . . . , X1n, X2n)ᵀ, where X1k = X(φP , kδ) and X2k = X(φQ, kδ).
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1.5.6 Cross Covariance and Variogram Estimator on the Sphere

The MOM (Method of Moments) based cross covariance estimator between

two points for an axially symmetric process can be expressed as follows [Ada17].

R̂12(∆λ) = R̂(φ1, φ2,∆λ)

=
1

n

n∑
i=1

(X(φ1, (i− 1)δ + ∆λ)− X̄φ1)(X(φ2, (i− 1)δ)− X̄φ2)

=
1

n

n∑
i=1

(X(φ1, (i− 1)δ + ∆λ))(X(φ2, (i− 1)δ))− X̄φ1X̄φ2

= ~XᵀA(∆λ) ~X,

where,

A(∆λ) =
1

n
circ


0 −1

n

0 0

 , . . . ,

0 1− 1
n

0 0

 , . . . ,

0 −1
n

0 0


 ,

A(∆λ) is a block-circulant matrix.

We can apply unitary diagonalization to A(∆λ) which gives the following.

A(∆λ) = P diag(S
(A)
1 , S

(A)
2 , . . . , S(A)

n ) P ∗,

with

S
(A)
j =

n−1∑
m=0

wmj Am,
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where Am, m = 0, 1, . . . , n− 1 represents the 2× 2 blocks in A(∆λ).

S
(A)
j =

1

n
wkj

0 1

0 0

 , if 2 ≤ j ≤ n,

and

S
(A)
1 =

0 0

0 0

 , if j = 1.

1.5.7 Cross Variogram Estimator on the Sphere

For an axially symmetric process we can define the MOM cross variogram

estimator as given in [Ada17].

γ̂12(∆λ) = γ̂(φ1, φ2,∆λ) =
1

2n

n∑
i=1

(X(φ1, (i− 1)δ + ∆λ)−X(φ1, (i− 1)δ)

(X(φ2, (i− 1)δ + ∆λ)−X(φ2, (i− 1)δ) = ~XᵀA(∆λ) ~X, (1.10)

where A(∆λ) is a block-symmetric circulant matrix.

For instance, let’s consider n = 6, the following are the obtained matrices for ∆λ =

0, π/3, 2π/3 values.

A(0) = 012×12

A(π/3) = 1
12
circ


0 1

1 0

 ,

 0 −1
2

−1
2

0

 ,

0 0

0 0

 ,

0 0

0 0

 ,

0 0

0 0

 ,

 0 −1
2

−1
2

0


,
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A(2π/3) = 1
12
circ


0 1

1 0

 ,

0 0

0 0

 ,

 0 −1
2

−1
2

0

 ,

0 0

0 0

 ,

 0 −1
2

−1
2

0

 ,

0 0

0 0


,

A(π) = 1
12
circ


0 1

1 0

 ,

0 0

0 0

 ,

0 0

0 0

 ,

 0 −1

−1 0

 ,

0 0

0 0

 ,

0 0

0 0


.

Also, A(∆λ) has a spectral decomposition as follows.

A(∆λ) = P diag(S
(A)
1 , S

(A)
2 , . . . , S(A)

n ) P ∗

with

S
(A)
j = (1− cos((j − 1)∆λ)))

0 1

1 0

 j = 1, 2, . . . , n.

Hence,

A(∆λ) = P diag(1− cos((j − 1)∆λ)))

0 1

1 0

 P ∗.
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CHAPTER II

LITERATURE REVIEW

2.1 Research Studies on Spatial Data

Spatial data is used to explain information at locations on the earth’s surface.

Such data first appeared in the form of data maps. For instance, in 1686, Halley

mapped the direction of trade winds and monsoons onto a map of land forms. In

general, spatial data are mainly classified into three types based on their character-

istics (i.e., how data are available in nature). Geostatistical data is collected from

regularly spaced or irregularly spaced spatial locations (for example, percentage of

coal ash sampled on a grid in a mine). Lattice data are gathered from regularly

spaced R2 that is linked to nearest neighborhoods, for example, temperature data

that are measured from small rectangular areas of the earth’s surface by satellites.

In point patterns processes, data are collected at fixed locations and regions (for ex-

ample, positions of some particular trees in an Island) or sometimes information of

locations where "events" happen randomly. However, in my dissertation, I focus only

on geostatistical data. According to [Cre93], many geostatistics applications can be

found in a wide range of areas such as hydrology, soil science, public health, and

climate predictions.

Modeling spatial data first appeared in a study of Student in 1907, apparently

after a few centuries of mapping spatial data. Modeling spatial data and making

predictions are challenging compared to traditional data modeling and predictions
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in statistics. In order to make predictions we need to capture the local dependency

between locations accurately. In spatial statistics, the dependency between locations

is captured by covariance functions. Since every point itself is a random variable

and only one observation is available at each location, we cannot construct covari-

ance functions without any assumptions on those random variables. In addition,

researchers often need to deal with high-dimensionality problem when the data set is

large. For instance, 55 parameters need to be estimated to construct the variance-

covariance matrix to predict a values of the unobserved spatial location from the 10

observed locations.

The covariance function of a random process is crucial for modeling, making

inferences, and predictions. There has been a rich study of covariance functions that

are valid on Rd. However, with the availability of global-scale data in recent years,

the study of covariance functions on global scale processes has received increasing

attention. Note that due to the difference of topological structures of Rd and the

sphere S2, the covariance functions that are valid in Rd might not be valid on S2

([HZR11] and [Gne13]). In this dissertation, based on Mercer’s theorem, we first

develop an existing algorithm that uses the Wavelet-Galerkin method [PHQ02] to

approximate real-valued nonstationary covariance functions. Galerkin method is a

type of expansion method where any function can be written as a linear combination

of finite basis functions when we solve the Fredlohom homogeneous equation. I use

wavelets as the basis functions because of their capability of capturing the inhomo-

geneity of the approximating functions. Furthermore, we propose an algorithm using

Wavelet-Galerkin method to approximate possibly nonstationary complex-valued co-
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variance functions that are widely used in geostatistics, engineering, and computer

science applications, etc. (see [KM11] and [SCI17]).

Over the past few decades with the development of technology, remote sensing

data are widely used in many areas. These types of data are collected by satellites or

remote sensing networks and they often display high-dimensionality. Gridded level 3

Total Ozone Spectrometer (TOMS) data measured by Nimbus-7 satellite daily from

November 1, 1978, to May 1993, is a well-known example for the global data. There

are some missing values in the data set and data points above 730S are not available

in the image because the instrument used was back-scattered sunlight during the time

of collecting data.

Figure 1. TOMS data; data resolution spatial 10 Latitude × 1.250 Longitudes in May,

1-6 1990.

1

1NASA reference publication, Nimbus–7 Total Ozone Mapping Spectrometer (TOMS) Data Prod-
ucts User’s Guide, 1996.
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According to the given spatial resolution 10 latitudes × 1.250 longitudes of the

image (Figure 1) possibly there are more than 20,000 data points (after subtracting all

missing data points from 1000

10
× 3600

1.250
data points) can be taken into the analysis [Ste07].

That means the variance-covariance matrix will be a high dimensional because of

the number of parameters that are required to estimate for making predictions on

unknown spatial locations. [Ste07] used 170 parameters in the variance-covariance

matrix to model the TOMS data. However, he was not able to fully capture the

global dependency.

Figure 2. Distribution at each latitude (left) and variance at each latitude (right)

between 500S and 500N

Before making any further assumptions of the random processes defined on the

earth’s surface, researchers tend to visualize the characteristics of the distributions

along with the directions of latitudes and longitudes to investigate the important

properties of the underlying processes. From the above Figure 2, one can observe

that although the mean value of each latitude fluctuates around zero, variances are

comparatively higher in the latitudes near the north and south poles. Homogeneity
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assumption of the underlying random process may not be valid in this case. There-

fore, we need to define alternative model assumptions to handle these types of global

data.

A wide variety of random process assumptions other than the homogeneity as-

sumptions have been proposed in the literature over the last few decades. For example,

some properties and modeling using isotropic covariance functions on the sphere have

been studied in [GF15]. [HS11] have investigated properties of an existing class of

models for Gaussian processes on the sphere that are invariant to shifts in longitudes

(anisotropic). [LRL11] used Gaussian Markov random fields and stochastic partial

differential equations to analyze global data with non-stationary covariance models.

A flexible family of non-stationary processes called intrinsic random functions (IRFs)

is formally defined on the sphere by [HZRS19], under which the homogeneity can be

achieved through a truncation operation. In research work, [BUS20] applied the IRF

approach to propose a universal kriging procedure.

Due to the earth’s inclination and rotation, many random processes such as

environments and geophysical sciences exhibit a heterogeneous spatial dependency

across latitudes and stationarity across longitudes. Therefore, finding statistical

methods to model and analyze these types of random processes has received spe-

cial attention in the recent literature. [Jon63] named these types of random processes

as the axially symmetric random process on S2. In 2007, [Ste07] verified that these as-

sumptions of the axially symmetry can be applied to global data by using the TOMS

data set. [HZR12] proposed a simplified representation of covariance function for
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axially symmetric random processes on the sphere. Since then researchers have been

exploring covariance functions that characterize the dependency of axially symmetric

random processes on the sphere, see [PAC18] for a complete review on the recent

development.

There are limited studies in the literature on data generation of axially sym-

metric processes on the sphere. [Yan13] proposed convolution methods to generate

random fields with a class of Matérn type kernel function. Recent work by [VWZ19]

demonstrated that the axially symmetric data on the sphere can be decomposed into

a Fourier series on circles, where the Fourier random coefficients can be expressed

as circularly-symmetric complex random vectors. The Karhunen-Loev́e expansion

has been applied to a wide range of areas such as functional data analysis [RS97],

finance [Sch04], pattern recognition [KS90], and machine learning [RW05], etc. In

this dissertation I apply Karhunen-Loev́e expansion to geostatistics, especially when

the random process on the sphere is Gaussian axially symmetric. The convergence of

the truncated Karhunen-Loéve expansion to approximate axially symmetric Gaussian

random processes are established and a expression for L2 error bound of the above

approximation is derived, under which we propose an efficient algorithm to generate

axially symmetric Gaussian data on the sphere with the given covariance structure.

2.2 Outline of This Dissertation

This dissertation is organized as follows. In Chapter 3, I briefly introduce

Mercer’s theorem, Haar wavelet, Fredlohom homogeneous equation, and the Galerkin

method. Then an algorithm is proposed to numerically find solutions to Fredlohom
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homogeneous equation. All of these concepts and methods are merged to numerically

approximate three different types of covariance functions, stationary, real-valued non-

stationary, and complex-valued nonstationary covariance functions. In Chapter 4, the

Karhunen Loéve expansion defined on a complex domain is introduced to propose a

computationally efficient algorithm to generate Gaussion axially symmetric global

data. A convergence study is carried out for generating data, and the theoretical

L2 error bound is obtained for such an approximation. In addition, a validation

study is conducted via simulations to compare our proposed model with the classical

method on data generation. Finally a summary of this research as well as future work

directions are provided in Chapter 5.
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CHAPTER III

WAVELET-GALERKIN METHOD AND COVARIANCE FUNCTIONS

APPROXIMATION

3.1 Introduction

Approximating real-valued positive definite covariance functions on Rd×Rd, d ≥

1 , has become a central part of geospatial statistics because an accurate approxima-

tion of the covariance (kernel) function is crucial for parametric inferences and optimal

spatial prediction [Ste99]. In this chapter, we propose an approach using orthogonal

basis functions to approximate possibly complex-valued covariance functions that are

widely used in geostatistics, engineering, and computer science applications, etc. (see

[KM11] and [SCI17]).

Different types of wavelets and their properties have been widely studied in

recent years. Wavelet basis methods have been developed in areas such as regression,

density and function estimation, factor analysis, modeling and forecasting in time

series analysis, and spatial statistics [Vid99]. Wavelets basis functions are capable

of capturing the local information of the approximating functions specially when the

eigenfunction is inhomogeneous. The Galerkin method is a type of an expansion

method where any function can be written as a linear combination of finite basis

functions when we solve the Fredlohom homogeneous equation. Frequently, wavelets

are considered as bases, but the choice of the basis function used in the Galerkin

method solely depends on the application. There is a significant advantage of Gar-
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lekin method over integration method. The accuracy of the solutions is determined

not only by the number of terms in the expansion but also by the shape of the approx-

imating functions. As stated in [PHQ02], the conventional Galerkin method (which

use trigonometrics and polynomials as bases) would create a computational burden

for large-scale data sets because this approach leads to a dense matrix.

In this Chapter, a brief introduction of Mercer’s theorem andWavelet-Galerkin

method is first given. These concepts and methods are combined to numerically ap-

proximate three different types of covariance functions, stationary, real-valued nonsta-

tionary covariance functions, and complex-valued nonstationary covariance functions.

Finally, the performance of the proposed algorithm will be illustrated with examples.

3.2 Introduction to Mercer’s Theorem and the Wavelet-Galerkin Method

3.2.1 Mercer’s Theorem

Mercer’s theorem states that any symmetric, continuous, and positive semi

definite kernel function C(t, s) defined in the square interval a ≤ t ≤ b and a ≤ s ≤ b

can be written as;

C(t, s) =
∞∑
i=1

ηi fi(t) fi(s), a ≤ t, s ≤ b,

where ηi ≥ 0, i = 1, 2, . . . are the eigenvalues satisfying
∑∞

i=1 ηi < ∞ and fi(·) are

orthonormal and square integratable eigenfunctions of the covariance function C(·, ·),

∫ b

a

fi(t) fj(t) dt = δij (δij = 1 if i = j, and 0 otherwise).
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In general, the leading terms in Mercer’s theorem capture the main features of

the covariance function because only the first few eigenvalues (η1 ≥ η2 ≥ . . .) of the

expansion make a significant impact on the true covariance function. So that true

covariance function can be approximated using truncated covariance function. Trun-

cated expansion yields a reasonable reduced rank approximation of the covariance

function as follows

CN(t, s) =
N∑
i=1

ηi fi(t) fi(s), a ≤ t, s ≤ b. (3.1)

It can be shown that if C(t, s) is continuous and bounded on [a, b] × [a, b], then

CN(t, s)→ C(t, s) uniformly converge on [a, b]× [a, b] as n→∞.

By solving the following Fredlohom homogeneous integral equation of second

order, we can find a set of orthonormal squared integrable eigenfunctions fi(·) and a

set of eigenvalues ηi of the covariance function,

ηi fi(t) =

∫ b

a

C(t, s)fi(s) ds, a ≤ s ≤ b. (3.2)

Many of the covariance functions may not have closed-form analytical solutions. It is

very challenging to solve the above integral equation analytically, especially when the

covariance function is defined over a complex domain. This strain motivated us to fab-

ricate an algorithm to find solutions numerically. [WS01] used the Nyström method

to solve the integral equations. However, in the next section, the Wavelet-Galerkin

method is implemented to obtain accurate numerical solutions to the Fredlohom ho-

mogeneous integral equation.
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3.2.2 Wavelet-Galerkin Method

Intuitively, a function is said to be inhomogeneous if the function has a sharp

jump at some point but is very smooth otherwise. Approximating these kind of func-

tions can be complicated using commonly use trigonometrics and polynomials bases

[Dau92]. However, one way to estimate inhomogeneous functions is to use multireso-

lutional local bisquare wavelet bases. In this work we start with a particular wavelet,

namely, Haar wavelets. Haar wavelets are the simplest basis form of Daubechies

family, see [Nie13] for more details. The Haar wavelets defined on [a,b] are given as

follows:

ψ(t) =


1, a ≤ t < a+b

2
;

−1, a+b
2
≤ t < b;

0, otherwise.

Haar wavelets are localized but they are not smooth. A family of orthogonal Haar

wavelets can be constructed by shifting and scaling the mother wavelets:

ψj,k(t) = αjψ(2jt− k), for j, k ∈ Z,

where j and k are dilation and transnational positive integer constants respectively,

and αj is the amplitude of the function. We can construct orthogonal functions by
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letting αj = 2
j
2 . Alternatively, the above expression can also be represented as:

ψj,k(t) =


1, (a+ k)2−j < t < (a+ b)2j−1 + k2−j,

−1, (a+ b)2j−1 + k2−j ≤ t < (b+ k)2−j,

0, otherwise.

One can check the orthogonality of the Haar wavelet bases by deriving

∫ b

a

ψj,k(t)ψm,n(t) dt =
(b− a)

2j
δj,m.

where δj,m = 1 if j = m and 0 otherwise. For simplicity, let ψ0(t) = 1 and

ψi(t) = ψj,k(t) and i = 2j + k; k = 0, 1, . . . , 2j − 1; j = 0, 1, . . . ,m − 1, where m

is the maximum wavelet level.

According to the Galerkin method, any function (in our case the kth eigenfunction of

the covariance function CN(·, ·)) can be approximated through a linear combination

of the finite number of Haar wavelets bases which is given by

fk(t) =
N−1∑
i=0

dk,iψi(t) = ~Ψ(t)ᵀ ~Dv. (3.3)

Here dv,i are the wavelet coefficients and

~Ψ(t)ᵀ = (ψ1(t), ψ2(t), . . . , ψN−1(t)) with N = 2m,

~Dᵀ
v = (dv,1, dv,2, . . . , dv,N−1).
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From equations (3.1) and (3.3) we have

CN(t, s) = ~Ψ(t)ᵀDᵀΛD ~Ψ(s), (3.4)

where Dᵀ = ( ~Dᵀ
1 ,
~Dᵀ

2 , . . . ,
~Dᵀ
N) and

Λ =



η1 0 . . . 0 0

0 η2 . . . 0 0

... . . . ...

0 0 . . . 0 ηN


is a diagonal matrix. From (3.4), it is sufficient to find D and Λ. We implement the

process with following two steps.

(i) Let A = DTΛD. Therefore, following [New93]

CN(t, s) = ~Ψ(t)ᵀA~Ψ(s) =
N−1∑
i=0

N−1∑
j=0

Aijψi(t)ψj(s), (3.5)

where A = (Aij) and Aij = 1
hihj

∫ b
a

∫ b
a
CN(t, s)ψi(t)ψj(s) dtds.

Aij is a N × N matrix which is two-dimensional wavelet discrete transform

of the matrix CN(t, s). The algorithm to find A using the In-place fast Haar

transform can be found in Algorithm 3.1 (Pseudo-code, Page 40).

(ii) Note that A = DTΛD is not a singular value decomposition (SVD) for A since

D may not be an orthogonal matrix. Therefore, we calculate them through the
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Fredlohom homogeneous equation with C(t, s) replaced with CN(t, s).

∫ b

a

CN(t, s)fv(t)dt = ηvfv(s).

From (3.3) and (3.4), we have

~Ψ(s)ᵀA

∫ b

a

~Ψ(t) ~Ψ(t)ᵀ ~Dvdt = ηk ~Ψ(s)ᵀ ~Dv.

Note that the following orthogonality for Ψ(t) holds.

∫ b

a

~Ψ(t) ~Ψ(t)ᵀdt = H,

where

H =



h1 0 . . . 0 0

0 h2 . . . 0 0

... . . . ...

0 0 . . . 0 hN


,

is a diagonal matrix with hi = (b−a)
2j

, i = 2j + k; k = 0, 1, . . . , 2j − 1; j =

0, 1, . . . ,m− 1. We have

~Ψ(s)ᵀAH ~Dv = ηv ~Ψ(s)ᵀ ~Dv,

implying that

AH ~Dv = ηv ~Dv, (3.6)
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after considering the coefficients of both sides for Ψ(s). Let Â = H1/2AH1/2

and D̂v = H1/2Dv. Equation (3.6) becomes

Â
~̂
Dv = ηk

~̂
Dv. (3.7)

Now we can see that finding Λ and D is equivalent to solving the eigenvalue

problem (3.7) with the SVD method, with ~̂
Dv = H−1/2 ~Dv. Therefore, the vth

eigenfunction can be obtained by

fv(t) = Ψ(t)ᵀH−1/2 ~̂Dv.

Note that above algorithm is a modified version of the algorithm given in

[PHQ02]. Now we illustrate the above procedure with a simple example. First we

introduce the in-place transform. In the literature, there are two ways of calculating

two-dimensional discrete wavelet transformation; one is called in-place transform and

the other one is ordered transform. Although both methods give the same result,

the in-place method is used in our study because it has a lower number of operations

count than of the ordered method. Here we demonstrate how an in-place algorithm

can be performed for an array of size 8 (one dimensional).
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Initialization ~s(3) = (s1, s2, s3, s4, s5, s6, s7, s8)

First sweep

~s(2) =

(
s1 + s2

2
,
s1 − s2

2
,
s3 + s4

2
,
s3 − s4

2
,
s5 + s6

2
,
s5 − s6

2
,
s7 + s8

2
,
s7 − s8

2

)
= (a

(2)
1 , c

(2)
1 , a

(2)
2 , c

(2)
2 , a

(2)
3 , c

(2)
3 , a

(2)
4 , c

(2)
4 ).

Second sweep

~s(1) =

(
a

(2)
1 + a

(2)
2

2
, c

(2)
1 ,

a
(2)
1 − a

(2)
2

2
, c

(2)
2 ,

a
(2)
3 + a

(2)
4

2
, c

(2)
3 ,

a
(2)
3 − a

(2)
4

2
, c

(2)
4

)

= (a
(1)
1 , c

(2)
1 , c

(1)
1 , c

(2)
2 , a

(2)
3 , c

(2)
3 , c

(1)
2 , c

(2)
4 ).

Last sweep

~s(0 = (
a

(1)
1 + a

(2)
3

2
, c

(2)
1 , c

(1)
1 , c

(2)
2 ,

a
(1)
1 − a

(2)
3

2
, c

(2)
3 , c

(1)
2 , c

(2)
4 )

= (a
(1)
1 , c

(2)
1 , c

(1)
1 , c

(2)
2 , c

(0)
1 , c

(2)
3 , c

(1)
2 , c

(2)
4 ).

Now we consider the following example to illustrate our two dimensional Haar-Wavelet

discrete transformation (2WDT) method.
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Example 3.1: We consider a stationary covariance function C(t, s) = e−|t−s|, 0 ≤

t, s ≤ π evaluated at t, s = 0.392, 1.178, 1.963, and 2.748, which gives the following

matrix

B(t, s) =



1 0.455 0.208 0.095

0.456 1 0.456 0.208

0.208 0.456 1 0.456

0.095 0.208 0.456 1


.

We first the apply in-place one-dimensional wavelet transformation on each row of

B(t, s) to yield

Bnew(t, s) =



0.439 0.288 0.272 0.056

0.529 0.198 −0.272 0.124

0.529 −0.198 −0.124 0.272

0.439 −0.288 −0.056 −0.272


.

First take the transpose of the above matrix, then apply the in-place one-dimensional

Wavelet transformation on rows again to obtain

A =



0.485 0 −0.045 0.045

0 0.243 0.045 0.045

−0.405 0.045 0.272 −0.034

0.045 0.045 −0.337 0.272


.
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Then Â matrix can be derived by Â = H1/2AH1/2,

Â =



1.523 0 −0.100 −0.100

0 0.764 0.100 0.100

−0.100 0.100 0.427 −0.052

0.100 0.100 −0.052 0.427


, H =



π 0 0 0

0 π 0 0

0 0 π
2

0

0 0 0 π
2


.

Then we solve the eigenvalue problem Â
~̂
Dv = ηv

~̂
Dv to find Λ = diag(ηv, v =

1, 2, . . . , N).

Λ =



1.541 0 0 0

0 0.810 0 0

0 0 0.461 0

0 0 0 0.328


, D̂ =



0.992 0 0.132 0

0 −0.951 0 −0.310

−0.094 −0.219 0.701 0.672

0.094 −0.219 −0.701 0.672


.

Next we calculate, D = H−1/2D̂ = ( ~Dᵀ
1 ,
~Dᵀ

2 ,
~Dᵀ

3 ,
~Dᵀ

4).

Here, ~Dᵀ
1 = (0.559, 0,−0.074, 0.074), ~Dᵀ

2 = (0,−0.536,−0.175,−0.175),

~Dᵀ
3 = (0.074, 0, 0.559,−0.559) and ~Dᵀ

4 = (0,−0.175, 0.536, 0.536).

Now we recover some selected entities of B(t, s) matrix using the expression given by

(3.4), when ~Ψᵀ(0.392) = (1, 1, 1, 0), ~Ψᵀ(1.178) = (1, 1,−1, 0), ~Ψᵀ(1.963) = (1,−1, 0, 1),
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~Ψᵀ(2.748) = (1,−1, 0,−1).

B11(0.392, 0.392) = ~Ψ(0.392)ᵀDᵀΛD~Ψ(0.392) = 1.032,

B23(1.178, 1.963) = ~Ψ(1.178)ᵀDᵀΛD~Ψ(1.963) = 0.488,

B34(1.963, 2.748) = ~Ψ(1.963)ᵀDᵀΛD~Ψ(2.748) = 0.488.

Please note that obtained values are deviated from the actual values due to the im-

pact of using a low number of bases in the calculations. However, if we utilize more

bases (dimension), for instance, when N = 128 we can accurately recover all variance-

covariance matrix entries.

Algorithm 3.1 (finding 2DWT) is computationally very efficient because the

Mallat’s tree [PHQ02] is the core concept of the DWT. The operation count is ap-

proximately N for 2DWT while the Fast Fourier Transformation (FFT) consumes

N log2N operations. FFT only works for trigonometric functions which would pro-

duce a dense covariance matrix [New93].
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Algorithm 3.1 (Pseudo-code)
• Step 1 : First, an one-dimensional In-place wavelet transform is performed

on each row (explain below) of the covariance matrix B which is evaluated

over N ×N grid.

B = {b1, b2, . . . , bl, . . . , bN}ᵀ , where bl1×N represent lth row of the matrix

[B]N×N .
−→
bl = {bl1, bl2, . . . , blN}

START

I = 1, J = 2

N=2n where n is the maximum wavelet level

FOR L = 1, . . ., n do

M = M/2

FOR K = 0, . . . ,M − 1 do

an−lk = (bl[J.K] + bl[J.K + I])/2

cn−lk = (bl[J.K]− bl[J.K + I])/2

bl[J.K] = a
(n−l)
k , bl[J.K] = c

(n−l)
k

END I = J , J = 2 ∗ J

END STOP

RESULTS :
−−→
blnew = (a

(n−n)
0 , c

(n−1)
0 , c

(n−2)
0 , c

(n−1)
0 , . . .).

• Step 2 : Restore outputs of the above step in a new matrix,

Bnew = {b1
new, b

2
new, . . . , b

l
new, . . . , b

N
new}ᵀ.

• Step 3 : Take the transpose of the step 2 matrix, Btrans = Bᵀ
new.

• Step 4 : Then apply one dimensional in-place Haar wavelet transform

again (Step 1) for the each row of the matrix Btrans to obtain A.
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3.3 Comparison of Analytical and Numerical Results of the Wavelet-

Galerkin Method

This section focuses on applying our Wavelet-Galerkin approach to approxi-

mate true eigenvalues and eigenfunctions of a covariance function. The approach will

be evaluated by comparing approximations on each of the real-valued stationary and

non-stationary covariance functions with true function values using numerical exam-

ples. The approximation to a complex-valued non-stationary covariance function will

be given in Section 3.4.

3.3.1 Ornstein-Uhlenbeck Stationary Covariance Model

Although stationary processes are not common in spatial random fields, they

are simple and convenient in terms of modeling and making predictions. Here we

consider one of the well-known stationary Gauss-Markov processes in many random

fields- the Ornstein-Uhlenbeck process-which has the following form of the covariance

structure

C(t, s) =
ρ2

2β
exp(−β | t− s |), s, t ∈ [0, 1]. (3.8)

For ease of manual computation, we set spatial correlation parameter (β = 1)

and variance component (ρ =
√

2) to covert covariance function into exponential

covariance function C(t, s) = exp(− | t− s |). In order to find therotical eigenvalue-

eigenfunction pairs we need to solve the Fredholm integral equation manually,

∫ 1

0

exp(−|t− s|)fi(s) ds = ηifi(t) (3.9)
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where fi(·) is an orthogonal eigenfunction and ηi is the corresponding eigenvalue of

the exponential covariance function (3.8). After integrating (3.9) twice with respect

to t we have

f ′′(t) + ω2
i f(t) = 0, where ω2

i =
2− ηi
ηi

. (3.10)

Since (3.10) has the structure of second order differential equation, a general solution

to the eigenfunction can be obtained.

fi(t) = Aicos(ωit) +Bisin(ωit) (3.11)

with the boundary conditions

f ′i(0)− fi(0) = 0,

f ′i(π) + fi(π) = 0.

Applying basic mathematics to above equations, ωi values can be obtained by solving

cot(ωi) =
ω2
i − 1

2ωi
. (3.12)

The Newton-Raphson method is the most suitable way to find optimal values

of ωi. Once we find out ωi value, then the corresponding eigenvalue can be easily

found from ηi = 2
1+ω2

i
. In addition, we can determine the unknown terms Ai and Bi
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by considering the orthogonality of eigenfunctions. Thus, we have

Ai =

√
2ω2

i

3 + ω2
i

, Bi =
Ai
ωi

=

√
2

3 + ω2
i

.

Therefore, when i ≥ 1, the general solution for the eigenfunction is given by

fi(t) =

√
2ω2

i

3 + ω2
i

cos(ωit) +

√
2

3 + ω2
i

sin(ωit).

We now apply the Wavelet-Galerkin procedure that was proposed in Section

3.2 to find the approximate eigenvalues and eigenfunctions of C(t, s). As a next step,

we will explore how well numerical eigenvalues of the exponential covariance function

approximate analytic ones for different numbers of Haar wavelets basis. Here, N

denotes the number of wavelet bases we considered in the algorithm.

Table 2. Comparison between analytical and numerical eigenvalues for the exponen-

tial covariance function.

Analytical N=8 N=16 N=32 N=64 N=128 N=256
0.73881 0.74812 0.73981 0.73906 0.73887 0.73882 0.73881
0.13800 0.14123 0.13880 0.13820 0.13805 0.13802 0.13800
0.04508 0.04800 0.04580 0.04526 0.04513 0.04509 0.04508
0.02133 0.02424 0.02201 0.02149 0.02137 0.02132 0.02133
0.01227 0.01531 0.01296 0.01244 0.01232 0.01229 0.01227

One big advantage of Wavelet-Galerkin method is the ability to compute a

large number of eigen-solutions accurately and rapidly. Table 2 shows that when the

number of wavelets basis used increases, the numerical eigenvalues obtained from the
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Wavelet-Galerkin method are getting closer to analytical counterparts. Furthermore,

we can notice that high order eigenvalues are significantly small compared to first few

eigenvalues. Next let’s focus on how well this method approximates eigenfunction

when a finite number (N = 256) of wavelet bases are used.

Figure 3. The comparison of first five eigenfunction of analytical and numerical

stationary covariance function.

We can clearly notice that from Figure 3 Wavelet (Haar)-Galerkin method

performs quite well (both theoretical and numerical eigenfunctions). We can also ver-

ify in a similar way that other analytical eigenfunctions are accurately approximated
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by the corresponding numerical eigenfunctions. For future approximations, N = 256

wavelets will be considered as the benchmark.

[NWR02] proposed a technique to approximate one-dimensional stationary co-

variance models with continuous wavelets (the W-transform). However, in this section

we demonstrate how well multiresolutional covariance model can be approximated

(3.8) with square-shaped discrete Haar wavelets.

Figure 4. True covariance matrix values evaluated at 128 equally spaced grid points

on [0,π]

Figures 4 and 5 represent the reconstruction of the covariance reconstruction

using Haar wavelets. Obviously there is no significant difference between true and

truncated Wavelet-Galerkin approximation, in particular. The approximation per-

forms better in the diagonal, which is corresponding to the peak.
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Figure 5. Haar wavelet approximation of a two-dimensional stationary covariance

function (left) and the difference between true and approximate stationary covariance

functions (right).

3.3.2 Non-Stationary Parametric Covariance Model

It is important to approximate non-stationary covariance functions as in many

environmental and geo-physical applications one often sees non-stationary covariance

structures. In this section, we will demonstrate how our Wavelet-Galerkin method

and 2DWT method can be used to approximate non-stationary covariance functions.

Here we use the non-stationary covariance function that was proposed by [VWZ19],

which is given by

C(x, y) = C2 − C(x)− C(y) + C(x− y) with C2 ≥
∫ ∞
−∞

f(ω)dω > 0.

46



where f(ω) ≥ 0 is the spectral density of a stationary covariance function C(·) through

Bochner’s theorem

C(x) =

∫ ∞
−∞

e−ixωf(ω)dω.

We consider the stationary covariance function

C(x) = Ce−a|x|,

which implies

C(x, y) = C1(C2 − e−a|x| − e−a|y| + e−a|x−y|), C1 > 0, x, y ∈ R.

In our study, the covariance functions of the following structure is being used (and

for notation simplicity):

C(t, s) = (1− e−|t| − e−|s| + e−|t−s|) where s, t ∈ [0, π]. (3.13)

A method of finding analytical eigenvalues and eigenfunctions for C(t, s) has been

derived in Appendix. Here we provide a summary of the results.

Proposition 3.1. The eigenvalues and eigenfunctions of the covariance function

( 3.13) are given by the following.
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(1) When ηi < 2, ηi satisfies the following equation

(
2− ηi
ηi

) 1
2

(ηi − 1− π) sin(

√
2− ηi
ηi

π) +
1

ηi
(−η2

i + πηi + 2ηi − 2π − 4)

cos(

√
2− ηi
ηi

π) + 2 = 0. (3.14)

The corresponding eigenfunction is given by

fi(t) = −Ci3 + kiCi3 sin(
√
ωit) + Ci3 cos(

√
ωit),

where

ki =

(
ωi +

√
ωi sin(

√
ωiπ)− cos(

√
ωiπ) + 1

)(√
ωi cos(

√
ωiπ) + sin(

√
ωiπ)

) , ωi =
2− ηi
ηi

,

and

C2
i3 =

1∫ π
0

(−1 + ki sin(
√
ωit) + cos(

√
ωit))

2
dt
.

(2) When ηi ≥ 2, ηi satisfies the following equation

(
ηi − 2

ηi

) 1
2

(ηi − 1− π) sinh(

√
ηi − 2

ηi
π) +

1

ηi
(η2
i − πηi − 2ηi + 2π + 4)

cosh(

√
ηi − 2

ηi
π)− 2 = 0. (3.15)

The corresponding eigenfunction is given by

gi(t) = −Ai3 + k′iAi3 sinh(
√
ωit) + Ai3 cosh(

√
ωit),
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where

k′i =
(ωi −

√
−ωi sinh(

√
−ωiπ)− cosh(

√
−ωiπ) + 1))

(
√
−ωi cosh(

√
−ωiπ) + sinh(

√
−ωiπ))

, ωi =
ηi − 2

ηi
,

and

A2
i3 =

1∫ π
0

(
−1 + k′i sinh(

√
−ωit) + cosh(

√
−ωit)

)2
dt
.

It would not be possible to obtain the closed-form analytic values for both

eigenvalues and eigenfunctions. Therefore, we apply the Newton-Raphson method to

obtain the first four eigenvalues and hence corresponding eigenfunctions.

Table 3. First four eigenvalues and eigenfunctions of the nonstaionary function

Eigenvalue Eigenfunctions
2.947779 gi(t) = −1.384− 1.203 sinh(

√
0.321t) + 1.384 cosh(

√
0.321t)

0.5310727 f1(t) = −0.024− 0.765 sin(
√

2.766t) + 0.024 cos(
√

2.766t)

0.2625776 f2(t) = −0.030 + 0.791 sin(
√

6.616t) + 0.030 cos(
√

6.617t)

0.144951 f3(t) = −0.009− 0.789 sin(
√

12.798t) + 0.009 cos(
√

12.798t)
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Now we apply our Wavelet-Galerkin method that was given in Section 3.2 to

obtain the corresponding eigenvalues and eigenfunctions. We present the following

graph to demonstrate the accuracy of our approximation for the first five eigenfunc-

tions. From Figure 6, we can see that difference between numerical eigenfunctions

(red line) the theoretical eigenfunctions (blue line) values are very small for all φ = t

values.

Figure 6. The comparison of the first five eigenfunctions between analytical and

numerical solutions.
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Figure 7. True covariance function values evaluated at 128 equally spaced grid points

on [0,π].

Figure 8. Left graph shows Wavelet-Galerkin approximation of real-valued nonsta-

tionary covariance function. The difference between true and approximate nonsta-

tionary covariance function is represented on the right graph.
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The results of the Figures 7 and 8 illustrate that Wavelet-Galerkin method

can be applied to approximate nonstastionary covariance functions.

3.4 Approximating Complex-valued Covariance Functions using

the Wavelet-Galerkin Method

Investigating structures and properties of complex-valued covariance (kernel)

functions have received special attention in many research fields, for instance, in en-

gineering, complex-valued kernels for complex-values signals [TSRF15] and in spatial

statistics, complex-valued covariance functions for axially symmetric random pro-

cesses on the sphere [HZR12].

In this section, we consider a complex-valued covariance function C(t, s) with

t, s ∈ [a, b]. We denote C(t, s) = CR(t, s) + iCI(t, s), where CR(t, s) is the real part of

C(s, t) and CI(s, t) is the imaginary part. Note that C(s, t) is positive definite, that

is, for any n, and any complex constants C1, C2, . . . , Cn, we have

n∑
i=1

n∑
j=1

CiC̄jC(t, s) ≥ 0, ∀ s, t ∈ [a, b].

According to Mercer’s theorem, a bounded continuous complex-valued covariance

function can be written as follows

C(t, s) =
∞∑
i=1

ηi fi(t) fi(s), a ≤ t, s ≤ b.
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Here fi(s) denotes the complex conjugate of fi(s). Now we consider a truncated func-

tion CN(t, s) =
∑N

i=1 ηifi(t)fi(s) to approximate C(t, s). First we have the following

results.

Proposition 3.2. The function CN(t, s), 0 ≤ t, s ≤ b is Hermitian and positive

definite.

Proof: For any 0 ≤ t, s ≤ b,

CN(t, s) =
N∑
i=1

ηifi(t)fi(s)

=
N∑
i=1

ηifi(s)fi(t)

= CN(s, t).

For the positive definiteness, we take any n, any complex constants ai, i = 1, 2, . . . , n,

and any 0 ≤ t1, t2, . . . , tn ≤ b,

n∑
i=1

n∑
j=1

aiājCN(ti, tj) =
n∑
i=1

n∑
j=1

aiāj

N∑
k=1

ηkfk(ti)fk(tj)

=
N∑
k=1

ηk

n∑
i=1

n∑
j=1

aifk(ti)ajfk(tj)

=
N∑
k=1

ηk

[
n∑
i=1

aifk(ti)

]2

≥ 0,

concluding the proof.
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Now we mimic the approach used in Section 3.3. The kth eigenfunction of a

truncated covariance function CN(t, s) =
∑N

i=1 ηi fi(t) fi(s) can be written as,

fk(t) =
N−1∑
i=0

dkiψi(t) = ~Ψᵀ(t) ~Dk, t ∈ R, dki ∈ C and k ∈ 1, . . . , N − 1, (3.16)

where, ~Dk

ᵀ
= (dk1, d

k
2, . . . , d

k
N) ∈ CN is the set of complex-valued wavelet coefficients

and ~Ψᵀ(t) = (ψ1(t), ψ2(t), . . . , ψN(t)) ∈ RN real-valued Haar wavelets. Hence, a trun-

cated complex-valued covariance function CN(t, s) can be written as;

CN(t, s) = ~Ψᵀ(t)A ~Ψ(s),

where A, a possibly complex-valued matrix, can be obtained via Algorithm 3.1 in

Section 3.2 as

Aij =
1

hihj

∫ b

a

∫ b

a

CN(t, s)ψi(t)ψj(s)dtds. (3.17)

Proposition 3.3. A = (Aij) with Aij given by ( 3.17) is a Hermitian, positive definite

matrix.

Proof: To prove that A is Hermitian, it is sufficient to show that

Aij = Aji.
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Now,

Aij =
1

hihj

∫ b

a

∫ b

a

CN(t, s)Ψi(t)Ψj(s)dtds

=
1

hihj

∫ b

a

∫ b

a

CN(t, s)Ψi(t)Ψj(s)dtds

=
1

hihj

∫ b

a

∫ b

a

CN(t, s)Ψi(t)Ψj(s)dtds = Aji

Next for any n and any complex constants a1, a2, . . . , an, we want to prove that

n∑
i=1

n∑
j=1

aiājAij ≥ 0.

Now,

n∑
i=1

n∑
j=1

aiājAij =
n∑
i=1

n∑
j=1

aiāj
1

hihj

∫ b

a

∫ b

a

CN(t, s)Ψi(t)Ψj(s)dtds

=

∫ b

a

∫ b

a

CN(t, s)dtds
n∑
i=1

n∑
j=1

aiāj
1

hihj
Ψi(t)Ψj(s)

=

∫ b

a

∫ b

a

CN(t, s)dtds
n∑
i=1

ai
hi

Ψi(t)
n∑
j=1

aj
hj

Ψj(s).

Let ξ(t) =
∑n

i=1
ai
hi

Ψi(t), then above equation becomes

n∑
i=1

n∑
j=1

aiājAij =

∫ b

a

∫ b

a

CN(t, s)ξ(t)ξ(s)dtds.

It is now sufficient to prove that

∫ b

a

∫ b

a

CN(t, s)ξ(t)ξ(s)dtds ≥ 0.
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Now we consider the definition of the above double integral. Take the gridded region

(ti, ti+1)× (sj, sj+1) where ti = b−a
n

(i− 1) + a and sj = b−a
n

(j − 1) + a.

Therefore,

∫ b

a

∫ b

a

CN(t, s)ξ(t)ξ(s)dtds = lim
n→∞

n∑
j=1

n∑
i=1

CN(ti, sj)ξ(ti)ξ(sj)(
b− a
n

)2

= lim
n→∞

(
b− a
n

)2

n∑
j=1

n∑
i=1

CN(ti, sj)ξ(ti)ξ(sj) ≥ 0,

since CN(t, s) is positive definite from Proposition 3.2. This concludes the proof.

Now we illustrate the above calculations with an example.

Example 3.2. We consider the following covariance function:

C(t, s) = e−|t−s|ei(t−s) = e−|t−s|(cos((t− s)) + i sin((t− s)))

= CR(t, s) + iCI(t, s), t.s ∈ (0, 1).

It is easy to see that C(t, s) is a covariance function since e−|t−s| and ei(t−s) are

covariance functions. We evaluate C(t, s) at t, s= 0.25, 0.75 to obtain

C =

 1 0.5322− 0.2907i

0.5322 + 0.2907i 1

 .
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We want to use the Wavelet-Galerkin method from Section 3.2 to approximate C.

We first use equation (3.17) to calculate A analytically.

A00 = 2 ∗
∫ 1/2

0

∫ 1/2

0

1 dtds+ 2

∫ 1/2

0

∫ 1

1/2

0.5322 dtds

= 0.7661,

A01 = −i
∫ 1/2

0

∫ 1

1/2

0.2907 dtds− i
∫ 1

1/2

∫ 1/2

0

0.2907 dtds

= −0.1454i = −Ā10,

A11 = 2 ∗
∫ 1/2

0

∫ 1/2

0

1 dtds−
∫ 1/2

0

∫ 1

1/2

−0.5322 dtds

= 0.2339.

Hence, we have A given below

A =

 0.7661 −0.1454i

0.1454i 0.2339

 .
This matrix matches perfectly with the matrix we obtained from the 2WDT numer-

ical method (Algorithm 3.1).

Now for the given A, we want to find the eigenvalues ηk and the complex-valued

vector ~Dk. We proceeed with the same steps as before, that is, from the Fredlohom

homogeneous equation of second kind

∫ b

a

CN(t, s) ~Ψᵀ(t) ~Dkdt = ηk ~Ψᵀ(s) ~Dk.
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Hence

∫ b

a

~Ψᵀ(s)A ~Ψ(t) ~Ψᵀ(t) ~Dkdt = ηk ~Ψᵀ(s) ~Dk.

Substituting Â = H1/2AH1/2 and ~̂
Dk = H1/2 ~Dk, we have

Â
~̂
Dk = ηk

~̂
Dk, (3.18)

with

∫ b

a

~Ψ(t) ~Ψᵀ(t)dt = H,

where

H =



h1 0 . . . 0 0

0 h2 . . . 0 0

... . . . ...

0 0 . . . 0 hN


is a diagonal matrix with hi =

(b− a)

2j
,

i = 2j + k; k = 0, 1, . . . , 2j − 1; j = 0, 1, . . . ,m− 1, where m is the maximum wavelet

level. We first present the following result.

Proposition 3.4. Â is Hermitian and positive definite.

58



Proposition 3.4 can be easily obtained from Proposition 3.3. Now we explore the

calculations of ηk and ~̂
Dk. We write

Â = Re(Â) + iIm(Â), and

~̂
Dk = ~d1,k + i ~d2,k.

Then we have

(Re(Â) + iIm(Â))( ~d1,k + i ~d2,k) = ηk( ~d1,k + i ~d2,k),

which implies that

Re(Â) ~d1,k − Im(Â) ~d2,k = ηk ~d1,k,

Im(Â) ~d1,k +Re(Â) ~d2,k = ηk ~d2,k.

The above system of equations becomes the following.

 Re(Â) −Im(Â)

Im(Â) Re(Â)


 ~d1,k

~d2,k

 = ηk

 ~d1,k

~d2,k

 . (3.19)

This is the same system as that we saw in the equation (3.7). Hence, eigenvalues

and eigenvectors can be determined by solving the equation (3.19). We first give the

following proposition about the system (3.19).
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Proposition 3.5. [Gal08] Let

U =

 Re(Â) −Im(Â)

Im(Â) Re(Â)

 . (3.20)

If λ is the eigenvalue of Â with the corresponding eigenvector ~v, then λ is the eigen-

value (with a repetition order of 2) of U and q = (Re(~v), Im(~v)) is the corresponding

eigenvectors of U . On the other hand, if λ (with an order 2) is the eigenvalue of

U with corresponding eigenvector ~v = (~v1, ~v2)ᵀ (~v1 = n × 1 and ~v2 = n × 1), then

~q = ~v1 + i~v2 is the eigtenvector of Â corresponding to eigenvalue λ.

We know that from mercer’s theorem CN(t, s) can be decomposed as follows

CN(t, s) = F (t)ᵀΛF (s),

where F (t)ᵀ = (f1(t), f2(t), . . . , fN(t)) and Λ is a diagonal matrix with N number

of eigenvalue entries. Therefore, by expanding equation (3.16), kth complex-valued

orthonormal eigenfunction can be calculated by fk(t) = ~Ψ(t)ᵀH−1/2 ~̂Dk and the co-

variance function can be approximated by

CN(t, s) = ~Ψ(t)ᵀD∗ΛD ~Ψ(s),

where D∗ is the conjugate transpose of D. Now we revisit Example 3.2.
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Example 3.2 (continued). Â matrix can be derived by Â = H1/2AH1/2,

Â =

 0.7661 −0.1454i

0.1454i 0.2338

 , H =

1 0

0 1

 .

Then we solve eigenvalue problem Â
~̂
Dk = ηv

~̂
Dk to find Λ = diag(η1, η2) and ~̂

Dk:

Λ =

0.8032 0

0 0.1967

 , D̂ =

−0.968 −0.247

−0.247i −0.968i

 .
In this case both D̂ and D are the same because H is an identity matrix. At last, we

recover some selected entities of C matrix. When ~Ψᵀ(0.25) = (1, 1) and ~Ψᵀ(0.75) =

(1,−1),

C11(0.25, 0.25) = ~Ψᵀ(0.25)D∗ΛD~Ψ(0.25) = 1,

C12(0.25, 0.75) = ~Ψᵀ(0.25)D∗ΛD~Ψ(0.75) = 0.5322− 0.2908i.

We can see that these values are exactly equal to corresponding entries of C matrix.

Now we approximate a more general complex-valued covariance function given

by CR(t, s) = (1 − e−|t| − e−|s| + e−|t−s|) cos(t − s) and CI(t, s) = (1 − e−|t| − e−|s| +

e−|t−s|) sin(t − s), where s, t ∈ [0, π]. Here, we show the results of the wavelet ap-

proach when approximating the truncated series of CR(t, s) and CI(t, s) respectively.

From the figures 9 and 10 given below, we can observe that the error between ap-

proximations and true values are very small in terms of their magnitude.
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Figure 9. Approximated CR(t, s) using wavelet approach (left) and the difference

between analytical and approximated CR(t, s) (right).

Figure 10. Approximated CI(t, s) using wavelet approach (left) and the difference

between analytical and approximated CI(t, s) (right).
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CHAPTER IV

KARHUNEN-LOÉVE EXPANSION FOR GAUSSIAN AXIALLY SYMMETRIC

RANDOM PROCESSES ON THE SPHERE

When a random process is periodic, Fourier series would be the most ap-

propriate representation to use. However, when the underlying random process is

non-periodic, under which Fourier random coefficients can be correlated. In order to

address this drawback, Karhunen [Kar46] and Loéve [Loe55] independently proposed

a expansion which is the so-called "Karhunen-Loéve expansion" (or simply the K-L

expansion).

One can consider the K-L expansion as a generalization (extension) of a Fourier

series. Yet, there is a big difference in the representation of these two processes. The

K-L expansion is a stochastic process which can be represented as with various types

of orthogonal functions. However, in the Fourier series, the process can be approxi-

mated only by a summation of trigonometric functions.

[PHQ01] provided some discussions on Karhunen Loéve expansion. Their

study mainly focuses on measuring and comparing the efficiency of the K-L expan-

sion using various approaches. The K-L expansion has been applied to a wide range

of areas such as functional data analysis [RS97], finance [Sch04], pattern recognition

[KS90], and machine learning [RW05], etc.
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In this chapter we apply K-L expansion to geostatistics, especially when the

random process on the sphere is Gaussian axially symmetric. This chapter is orga-

nized as follows. In Section 1, the convergence of truncated K-L expansions for axially

symmetric random processes is studied. In Section 2, an algorithm has proposed to

generate axially symmetric random processes on the sphere using a truncated K-L

expansion. In the last section, performance of our proposed method is illustrated

through a simulation based data validation study.

4.1 A Study of Convergence for Truncated Karhunen-Loéve Expansion

In this section, we investigate the convergence and accuracy of the K-L expan-

sion under the assumption of axially symmetric processes on the sphere. According

to [PHQ01], there are many factors directly associated with the convergence rate of

a random processes such as the structure of a covariance function, method of solving

eigenvalue-eigenfunction pair, stationary criteria of the covariance function and the

magnitude of the parameters in the covariance function as well as how a study of

convergence is conducted. In our study, we focus on the complex form of parametric

nonstationary covariance function on the sphere where eigen-solutions to that co-

variance function are determined numerically by the Wavelet-Garlekin method. The

convergence study of a truncated process is important to evaluate the accuracy of

the proposed random process generation method. Furthermore, the L2 error of the

approximation is calculated both analytically and numerically. The accuracy of our

results are demonstrated via simulations.
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As stated in [HZR12], let {X(P ), P = (λ, φ) ∈ S2} be a zero-mean continuous

real-valued Gaussian random process defined on a unit sphere with longitude λ ∈

[0, 2π] and latitude φ ∈ [0, π]. Then for each fixed point P = (λ, φ),

X(P ) = X(λ, φ) =
∞∑

m=−∞

Wm(φ)eimλ, (4.1)

with Wm(φ) = Wm(φ),m = 1, 2, . . .. Here, the Wm(φ) are independent Gaussian

complex-valued circular symmetric random processes defined on φ ∈ [0, π] with

E(Wm(φP )Wn(φQ)) = δm,nCm(φP , φQ),

where

Cm(φP , φQ) =
∞∑
v=1

ηm,vfm,v(φP )fm,v(φQ),

ηm,v > 0,
∑∞

i=v ηm,i <∞ and fm,v(φ) = fm,v,R(φ) + ifm,v,I(φ) are the eigenvalues and

complex orthogonal eigenfunctions such that

∫ π

0

fm,i(φ) fn,j(φ) dφ = δm,nδi,j.

Here, a represents the conjugate of a complex number a.

We can determine the vth eigenfunction and eigenvalue of the covariance function
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Cm(φP , φQ) by solving Fredlohom homogeneous equation

∫ π

0

Cm(φP , φQ)fm,v(φQ)dφQ = ηm,vfm,v(φP ).

Therefore, Wm(φ) can be expressed in terms of the zero-mean K-L expansion,

Wm(φ) =
∞∑
v=1

√
ηm,v ξm,v fm,v(φ), φ ∈ [0, π]. (4.2)

Here the set of uncorrelated ξm,v random coefficients is given by

ξm,v =
1

√
ηm,v

∫ π

0

Wm(φ) fm,v(φ) dφ.

When W−m(φ) = Wm(φ), the axially symmetric process X(φ, λ) in (4.1) can be

expressed as

X(φ, λ) =
∞∑
v=1

√
η0,vf0,v(φ)ε0,v + 2

∞∑
m=1

∞∑
v=1

√
ηm,vεm,v(fm,v,R(φ) cos(mλ)

− fm,v,I(φ) sin(mλ)). (4.3)

For ease of notation we let

gm,v(φ, λ) = (fm,v,R(φ) cos(mλ)− fm,v,I(φ) sin(mλ)).

Now we consider the truncated K-L expansion XN,M(φ, λ) where N, M ∈ N,

XN,M(φ, λ) =
M∑
v=1

√
η0,vf0,v(φ)ε0,v + 2

N∑
m=1

M∑
v=1

√
ηm,vεm,vgm,v(φ, λ). (4.4)
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The error of the approximation can be obtained by taking the difference of (4.3) and

(4.4), which gives

eNM(φ, λ) =
∞∑

v≥M+1

√
η0,vf0,v(φ)ε0,v︸ ︷︷ ︸

e0NM (φ, λ)

+ 2
N∑
m=1

∞∑
v≥M+1

√
ηm,vεm,vgm,v(φ, λ)︸ ︷︷ ︸

e1NM (φ, λ)

+ 2
∞∑

m≥N+1

∞∑
v=1

√
ηm,vεm,vgm,v(φ, λ)︸ ︷︷ ︸

e2NM (φ, λ)

. (4.5)

We observe that the error en,M(φ, λ) can be split into three independent parts as

follows,

eNM(φ, λ) = e0NM (φ, λ) + e1NM (φ, λ) + e2NM (φ, λ).

Consider the absolute square error term for each component,

|e0NM (φ, λ)|2 =
∞∑

v≥M+1

∞∑
j≥M+1

√
η0,v
√
η0,jf0,v(φ)f0,j(φ)ε0,vε0,j,

|e1NM (φ, λ)|2 = 4
N∑
m=1

N∑
n=1

∞∑
v≥M+1

∞∑
j≥M+1

√
ηm,v
√
ηn,jεm,vεn,jgm,v(φ, λ)gn,j(φ, λ),

|e2NM (φ, λ)|2 = 4
∞∑

m≥N+1

∞∑
n≥N+1

∞∑
v=1

∞∑
j=1

√
ηm,v
√
ηn,jεm,vεn,jgm,v(φ, λ)gn,j(φ, λ).

Since the εij are uncorrelated Gaussian random variables with mean zero and unit

variance, we have Cov(εm,v, εm,v′ ) = δv,v′ , Cov(εn,j, εn,j′ ) = δj,j′ , and Cov(εm,v, εn,j) =

δm,nδv,j. All the error terms are uncorrelated with each other because they do not
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share the same running indices. Thus, we can express square error terms as follows,

E(|eNM(φ, λ)|2) = E|e0NM (φ, λ)|2) + E(|e1NM (φ, λ)|2) + E(|e2NM (φ, λ)|2),

where,

E(|e0NM (φ, λ)|2) =
∞∑

v≥M+1

η0,v|f0,v(φ)|2, (4.6)

E(|e1NM (φ, λ)|2) = 4
N∑
m=1

∞∑
v≥M+1

ηm,v |gm,v(φ, λ)|2, (4.7)

E(|e2NM (φ, λ)|2) = 4
∞∑

m≥N+1

∞∑
v=1

ηm,v |gm,v(φ, λ)|2. (4.8)

Therefore, the L2 error bound can be written as,

‖X(φ, λ)−XN,M(φ, λ)‖2 = E(|eNM(φ, λ)|2) =
∞∑

v≥M+1

η0,v|f0,v(φ)|2

+ 4
N∑
m=1

∞∑
v≥M+1

ηm,v |gm,v(φ, λ)|2 + 4
∞∑

m≥N+1

∞∑
v=1

ηm,v |gm,v(φ, λ)|2. (4.9)

Theorem 4.1. Let X(φ, λ) be a zero-mean continuous axially symmetric random

process on the sphere. Then we have the expected L2 error in terms of individual mean

error term. ‖X(φ, λ) − XN,M(φ, λ)‖2 is given by ( 4.9). Hence, when N,M → ∞,

‖X(φ, λ)−XN,M(φ, λ)‖2 → 0. That is, the truncated K-L expansion approximates to

the true process with mean-squared convergence.
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Proof. It is sufficient to prove that each of the terms in (4.9) converges to zero. Recall

that for any φP , φQ ∈ [0, π],

∞∑
m=0

Cm(φP , φQ) =
∞∑
m=0

∣∣∣∣∣
∞∑
v=1

ηm,vfm,v(φP )fm,v(φQ)

∣∣∣∣∣ <∞.
Hence, if we take φP = φQ ∈ [0, π], we have

C0(φP , φP ) =
∞∑
v=1

η0,vf0,v(φP )f0,v(φQ) =
∞∑
v=1

η0,v|f0,v(φP )|2 <∞,

implying that when M →∞,

E(|e0NM (φ, λ)|2) =
∞∑

v≥M+1

η0,v |f0,v(φ)|2 → 0.

In parallel,

∞∑
m=0

|Cm(φ, φ)| =
∞∑
m=0

∣∣∣∣∣
∞∑
v=1

ηm,vfm,v(φ)fm,v(φ)

∣∣∣∣∣ =
∞∑
m=0

∣∣∣∣∣
∞∑
v=1

ηm,v|fm,v(φ)|2
∣∣∣∣∣

=
∞∑
m=0

∞∑
v=1

ηm,v|fm,v(φ)|2 <∞,

since ηm,v ≥ 0 and |fm,v(φ)|2 ≥ 0 for all m, v.

Therefore,

∞∑
m=0

∞∑
v=1

ηm,v|fm,v,R|2 <∞, (4.10)
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and

∞∑
m=0

∞∑
v=1

ηm,v|fm,v,I |2 <∞, (4.11)

which implies that

∞∑
m=0

∞∑
v≥M+1

ηm,v|fm,v,R(φ)|2 → 0, (4.12)

and

∞∑
m=0

∞∑
v≥M+1

ηm,v|fm,v,I(φ)|2 → 0, (4.13)

as M →∞. Note that

|gm,v(φ, λ)|2 = |fm,v,R(φ) cos(mλ)− fm,v,I sin(mλ)|2 ≤ [|fm,v,R(φ)|+ |fm,v,I(φ)|]2

≤ 2
(
|fm,v,R(φ)|2 + |fm,v,I(φ)|2

)
.

Hence

N∑
m=1

∞∑
v≥M+1

ηm,v|gm,v(φ, λ)|2 ≤ 2
N∑
m=1

∞∑
v≥M+1

ηm,v
(
|fm,v,R(φ)|2 + |fm,v,I(φ)|2

)
= 2

N∑
m=1

∞∑
v≥M+1

ηm,v|fm,v,R(φ)|2 + 2
N∑
m=1

∞∑
v≥M+1

ηm,v|fm,v,I(φ)|2

≤ 2
∞∑
m=1

∞∑
v≥M+1

ηm,v|fm,v,R(φ)|2 + 2
∞∑
m=1

∞∑
v≥M+1

ηm,v|fm,v,I(φ)|2 → 0
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as M →∞ from (4.12) and (4.13), giving E(|e1NM (φ, λ)|2)→ 0 as M →∞.

In addition, from (4.10) and (4.11), we have
∑∞

m≥N+1

∑∞
v=1 ηm,v|fm,v,R(φ)|2 → 0,∑∞

m≥N+1

∑∞
v=1 ηm,v|fm,v,I(φ)|2 → 0 as N →∞. Hence

∞∑
m≥N+1

∞∑
v=1

ηm,v|gm,v(φ, λ)|2 ≤ 2
∞∑

m≥N+1

∞∑
v=1

ηm,v|fm,v,R(φ)|2

+2
∞∑

m≥N+1

∞∑
v=1

ηm,v|fm,v,I(φ)|2 → 0

as N →∞, implying that E(|e2NM (φ, λ)|2)→ 0 as N →∞. This concludes the proof

of Theorem 4.1.

Theorem 4.2. Let X(φ, λ) be a zero-mean continuous axially symmetric random

process on the sphere. We further assume that for every m = 0, 1, 2, . . . ,

Cm(φP , φQ) = C0(φP , φQ)ξme
imu(φP−φQ), φP , φQ ∈ [0, π],

where u ≥ 0, ξ0 = 1 (for simplicity), ξm ≥ 0,m = 1, 2, . . . , and
∑∞

m=0 ξm < ∞.

C0(φP , φQ) is symmetric positive definite real function. Then we have

(1) Cm(φP , φQ) is Hermitian and positive definite.

(2) If C0(φP , φQ) has the following eigen-decomposition based on Mercer’s Theorem

C0(φP , φQ) =
∞∑
v=1

η0,vf0,v(φP )f0,v(φQ),
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with η0,v ≥ 0 and f0,v(φ) being an orthonormal real-valued basis in L2([0, π]),

Then if Cm(φP , φQ) has the following decomposition:

Cm(φP , φQ) =
∞∑
v=0

η0,vfm,v(φP )fm,v(φQ),

we have

ηm,v = ξmη0,v, fm,v(φ) = f0,v(φ)eimuφ.

(3) With the above decomposition for Cm(φP , φQ), the truncated K-L expansion of

( 4.3) is of the form

XN,M(φ, λ) =
M∑
v=1

√
η0,vf0,v(φ)ε0,v + 2

N∑
m=1

M∑
v=1

√
ηm,vεm,vf0,v(φ) cosm(uφ+ λ),

and we have

‖X(φ, λ)−XN,M(φ, λ)‖2 ≤

(
1 + 4

N∑
m=1

ξm

) ∑
m≥M+1

η0,vf
2
0,v(φ)

+ 4C0(φ, φ)
∑

m≥N+1

ξm. (4.14)

Moreover, when N,M →∞, ‖X(φ, λ)−XN,M(φ, λ)‖2 → 0.
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Proof. (1) We first prove that Cm(φP , φQ) is Hermitian and positive definite. For

every m ≥ 0,

Cm(φQ, φP ) = C0(φQ, φP )ξme
imu(φQ−φP ) = C0(φP , φQ)ξmeimu(φP−φQ)

= Cm(φP , φQ).

That is, Cm(φP , φQ) is Hermitian. For positive definiteness, we take an arbitrary

n, any n complex numbers ci, i = 1, 2, · · · , n, and any φi ∈ [0, π], i = 1, 2, · · · , n,

considering

n∑
i=1

n∑
j=1

cicjCm(φi, φj) =
n∑
i=1

n∑
j=1

cicjC0(φi, φj)ξme
imu(φi−φj)

= ξm

n∑
i=1

n∑
j=1

cie
imuφicje

−imuφjC0(φi, φj)

= ξm

n∑
i=1

n∑
j=1

cie
imuφicjeimuφjC0(φi, φj) ≥ 0,

by the positive definiteness of C0(φP , φQ). Hence Cm(φP , φQ) is the (nonsta-

tionary) covariance function of a possibly complex-valued random process on

[0, π].

(2) Now we prove the second result. As given before, we have

C0(φP , φQ) =
∞∑
v=1

η0,vf0,v(φP )f0,v(φQ) <∞,
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and

∫ π

0

C0(φP , φQ)f0,v(φQ)dφQ = η0,if0,v(φP ).

Now considering the both sides of the above equation

η0,vf0,v(φP ) =

∫ π

0

C0(φP , φQ)f0,v(φQ)dφQ

ξmη0,vf0,v(φP )eimuφP e−imuφP =

∫ π

0

ξmC0(φP , φQ)f0,v(φQ)eimuφQe−imuφQdφQ

ξmη0,vf0,v(φP )eimuφP =

∫ π

0

ξmC0(φP , φQ)eimu(φP−φQ)

fm,v(φQ)eimuφQdφQ

= ηm,vfm,v(φP ),

(4.15)

implying that

ηm,v = ξmη0,v, fm,v(φ) = f0,v(φ)eimuφ, m = 1, 2, . . . .

(3) With the given truncated K-L expansion

XN,M(φ, λ) =
M∑
v=1

√
η0,vf0,v(φ)ε0,v + 2

N∑
m=1

M∑
v=1

√
ηm,vεm,vgm,v(φ, λ),

we notice that

ηm,v = ξmη0,v,
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gm,v(φ, λ) = fm,v,R(φ) cos(mλ)− fm,v,I(φ) sin(mλ)

= f0,v(φ) cos(mφ) cos(mλ)− f0,v(φ) sin(mφ) sin(mλ)

= f0,v(φ) cosm(uφ+ λ).

That is

XN,M(φ, λ) =
M∑
v=1

√
η0,vf0,v(φ)ε0,v + 2

N∑
m=1

M∑
v=1

√
ξmη0,vεm,vf0,v(φ) cosm(uφ+ λ).

Hence,

‖XN,M(φ, λ)−X(φ, λ)‖2 ≤
∑

v≥M+1

η0,vf
2
0,v(φ) + 4

N∑
m=1

ξm
∑

v≥M+1

η0,vf
2
0,v(φ)+

4
∑

v≥N+1

ξm

∞∑
v=1

η0,v|f0,v(φ)|2

=

(
1 + 4

N∑
m=1

ξm

) ∑
v≥M+1

η0,vf
2
0,v(φ) + 4C0(φ, φ)

∑
v≥N+1

ξm,

which tends to 0 when N,M →∞ since C0(φ, φ) <∞ and
∑∞

i=0 ξm <∞.

Now consider a parametric nonstationary covariance function proposed in [VWZ19],

as listed as model 1 in their paper.

Cm(φP , φQ) = C0(φP , φQ)pmeimb (4.16)
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where p ∈ (0, 1), b = u(φP − φQ) with u ≥ 0, and

C0(φP , φQ) = C1(C2 − e−a|φP | − e−a|φQ| + e−a|φP−φQ|),

for C1 > 0, C2 ≥ 1 and a > 0. Note that when u = 0, the process becomes a

longitudinally reversible process, under which we have

Cm(φP , φQ) = C0(φP , φQ)pm.

From Corollary 4.3, we have ξm = pm,m = 0, 1, 2, . . . . To justify the accuracy of

our approximation with the K-L expansion, we consider the L2 error bound of the

approximation. Without further assumptions on the covariance function, it is difficult

to provide the error bound. For our simulation, we consider the covariance function

given by (4.16). In particular, we set C1 = C2 = a = 1, so that

C0(φP , φQ) = 1− e−φP − e−φQ + e−|φP−φQ|, (4.17)

which gives C0(φ, φ) = 2(1 − e−φ), φ ∈ [0, π]. Therefore, we present the following

corollary.

Corollary 4.3. Under the covariance function ( 4.16) with the special case ( 4.17),

the L2 error bound on the K-L approximation is given as

‖XN,M(φ, λ)−X(φ, λ)‖2 =

(
1 + 4

p(1− pN)

1− p

) ∑
v≥M+1

η0,vf
2
0,v(φ) + 8

pN+1

(1− p)
(1− e−φ).

(4.18)
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We will conduct simulations in Section 4.3 to demonstrate the accuracy of the

empirical errors to the theoretical errors given by Corollary 4.3.

4.2 Global Data Generation on the Sphere

The generation of random data is a fundamental element in statistical research.

However, there are only very few studies available in the literature for data generation

on the sphere. It should be noted that with a data generation algorithm, researchers

can reproduce samples that mimic real data sets to investigate the performance of

a proposed statistical method. Therefore, it is critical to provide an efficient and

accurate algorithm for data generation. There is limited research in the literature on

data generation of axially symmetric processes on the sphere. For example, convolu-

tion methods to generate random fields with a class of Matérn type kernel function

was proposed by [Yan13]. In their recent work [VWZ19] demonstrated that axially

symmetric data on the sphere can be decomposed into a Fourier series on circles,

where the Fourier random coefficients can be expressed as circularly-symmetric com-

plex random vectors. In this section we develop an accurate and simple algorithm to

generate axially symmetric data on S2.

According to (4.1), with W−m(φ) = Wm(φ) we can write truncated axially symmetric

Gaussian random process on the sphere as

XN(P ) = W0(φ) + 2
N∑
m=1

[Wm,R(φ) cos(mλ)−Wm.I(φ) sin(mλ)] (4.19)

77



where,

Wm(φ) = Wm,R(φ) + iWm,I(φ) =
M∑
v=1

√
ηm,vεm,vfm,v,R(φ) + i

M∑
v=1

√
ηm,vεm,vfm,v,I(φ).

(4.20)

Under the assumption of a longitudinally reversible process,Wm(φ) = W−m(φ). Then

the global data can be generated by simplifying equation (4.1) as follows

XL(λ, φ) = W0(φ) +
∞∑
m=1

Wm(φ)(eimλ + e−imλ),

= W0(φ) + 2
∞∑
m=1

Wm(φ) cos(mλ), where m = 0, 1, . . . (4.21)

With the Wavelet-Galerkin method and Algorithm 3.1 from Section 3.2, we propose

the following algorithm for generating axially symmetric data on the sphere.
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Algorithm 4.1 (Pseudo-code)

• Choose a cross covariance function Cm(·, ·) with given parameters

(C1, C2, a, u, p)

• Specify the set of latitudes φ1, φ2, . . . , φnl and the set of longitudes

λ1, λ2, . . . , λnL.

• For each m, m = 0, 1, . . . , N

(1) For the covariance function Cm(·, ·), construct the covariance matrix

evaluated over M ×M gridded matrix

(2) Apply the 2-D in-place Wavelet discrete transformation (Algorithm 3.1)

on resulting covariance matrix to obtain A (see (3.17)).

(3) Find the set of eigenvalues and eigenfunctions for Â (see equation (3.18))

(4) Obtain Wm(φi), i = 1, 2, . . . , nl from equation (4.20).

• For each i = 1, 2, . . . , nl apply equation (4.19) to generate data

{X(φi, λi)}nl,nLi=1,j=1.
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4.3 Simulations and Results

In this section, we will present the results of two simulation studies. In the

first simulation study, theoretical L2 error bounds (as mentioned in Section 4.1) are

compared to empirical L2 error bounds to investigate the convergence rate of the

generated random processes. Here we consider L2 error for different number of terms

and different parameter values in the approximation. The second simulation study

illustrates a validation study for the global data generation algorithm (proposed in

section 4.2) through simulations.

4.3.1 Convergence Study by Simulation

First we perform simulations to demonstrate how well Wavelet-Galerkin method

based empirical error approximate the true L2 error bound. More explicitly, we con-

sider the L2 error bound given in (4.18) when the covariance function is (4.16) with

C0(φP , φQ) given by equation (4.17).

Simulation steps:

• Choose any values of φ ∈ [0, π], λ ∈ [0, 2π]. In this case, φ = λ = π
18

is

being used. Consider different values of M = 4, 8, 16, 32, 64, 128, and 256 with

fixed N = 10 and choose p = 0.5 (Note that: we choose N = 10 because

there is a monotonic decay in the function of N . Other cases of N and p are

also considered but the results are similar). Use (4.19) with the desired M

value to generate Gaussian axially symmetric random processes on the sphere

(X̂10,M(φ, λ)) for a given location. The numerical eigenvalue-eigenfunction pairs

are obtained from the Wavelet-Galerkin method (see Section 3.4).

80



• We use theoretical eigenvalues and eigenfunctions (as mentioned in Proposition

3.1) in the expression of (4.19) to calculate X512,512(φ, λ).

• The empirical truncated square error for each ith repetition can be calculated

by

L2 error[i] = [X512,512(φ, λ)[i]− X̂10,M(φ, λ)[i]]2.

• Then we calculate the average empirical L2 error out of n repetitions.

L2 error =
1

n

n∑
i=1

L2 error[i].

• Finally, we compare those empirical error values with theoretical L2 error values

given by (4.18), where theoretical eigenvalues and eigenfunctions are used.

Note: We have obtained similar results for other sets of parameter values and locations

as well, which are not presented here.
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Figure 11. The L2 error as a function ofM . The theoretical error bound is represented

by the red solid line and the average empirical L2 error bound by blue line with 1000

repetitions.

The comparison between theoretical and simulated L2 errors is given by Figure

11. When we increase the number of terms M in the truncated random process for a

given location, the truncated process smoothly converges to the true value.

In addition, we explore how parameters of a covariance function would affect

to the rate of convergence. Figure 12 shows how p ∈ (0, 1) values in the covariance

model (4.16) affect the L2 convergence rate. We notice that the following two points:

the convergence seems to be faster when p gets small, on the other hand, regardless

of the p value, the L2 error gets closer to zero when the number of terms M in the

truncated expansion increases.
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Figure 12. The average empirical L2 error as a function of M for different p values

4.3.2 Simulation Study for Data Generation and Validation for Axially Symmetric

Processes on S2

In this section, we perform data validation through simulations where the

axially symmetric random data are generated based on the proposed algorithm in

Section 4.2. Note that a Gaussian process on the sphere is uniquely determined by

its mean and covariance function. Hence with the assumption of zero mean (without

loss of generality), we need to validate the covariance function from the generated

data to match the true covariance function. However, as indicated by [Ada17] and

[Van16], the classical Method of Moment (MOM) covariance estimator based on ax-

ially symmetric processes may not be estimable, and hence we will use the unbiased

MOM variogram estimator for data validation. More explicitly, we compute the
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cross-variogram empirical estimator from the generated data and then compare them

with theoretical cross-variogram value through simulation studies. Furthermore, we

also compare the accuracy of our proposed data generation method with the classi-

cal data generation method (see [VWZ19] for more details) in terms of biasness and

mean squared errors (MSE). Note that the data generation approach based on cir-

cular symmetric processes introduced in [VWZ19] performs almost the same as the

classical method. Hence, we do not include in this analysis.

In our simulation, we consider two axially symmetric covariance models that were

considered in [VWZ19], which are given below.

Model 1:

R(P,Q,∆λ) = C̃(φP , φQ)
1− p2

1− 2pcos(Θ) + p2
. (4.22)

Model 2:

R(P,Q,∆λ) = C̃(φP , φQ) log
1

1− 2pcos(Θ) + p2
, (4.23)

where C̃(φP , φQ) = C1(C2−ea|φP |−ea|φQ|+e−a|φP−φQ|),Θ = ∆λ+u(φP−φQ) ∈ [0, 2π]

with u ≥ 0 and p ∈ (0, 1). When u = 0, R(P,Q,∆λ) becomes a longitudinal-

reversible covariance function with the inverse Fourier transformation given by (1.7),

which can be obtained as (also see [VWZ19]).
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Model 1:

Cm(φP , φQ) =


C̃(φP , φQ), m = 0,

C̃(φP , φQ)pmeimb, m 6= 0.

Model 2:

Cm(φP , φQ) =


0, m = 0,

C̃(φP , φQ)p
m

m
eimb, m 6= 0

where m = ±1,±2, . . . , b = u(φP − φQ).

In our simulation study, we also follow the same sets of parameter values (see Table

4) that are given in [VWZ19]

Table 4. Parameter values of the covariance functions

Parameter Values

Set 1 C1 = 1, C2 = 1, a = 1, u = 1, p = 0.5

Set 2 C1 = 1, C2 = 2, a = 3, u = 1, p = 0.6

In addition we have the following remarks:

• Axially symmetric random processes on the sphere are generated using Algo-

rithm 4.1 for 100 longitudes (λ) on a fixed pair of latitudes (φ). We set M=256
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and we consider two sets of parameter values mentioned in the above table to

construct covariance functions.

• Then we calculate the empirical cross variogram estimator using the expression

(1.10) for generated data and compare with the theoretical cross variogram

function (1.8) of the desired model (either (4.22) or (4.23)).

We perform simulations with a repetition of 4000 times. For comparison purposes,

we also include the simulation results based on the classical method. Following are

the results for both covariance models evaluated over different pair of latitudes with

two parameter sets.

Figure 13. Cross variogram estimator comparison of Model 1 under the longitudinally

reversible assumption (u = 0) for the parameter set 1.

86



Figure 14. Cross variogram estimator comparison of Model 1 under the longitudinally

reversible assumption (u = 0) for the parameter set 2.

Figure 15. Cross variogram estimator comparison of Model 1 under the axially sym-

metric assumption for the parameter set1 (left) and set 2 (right).
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Figure 16. Cross variogram estimator comparison of Model 2 under the axially sym-

metric assumption for the parameter set1 (left) and set 2 (right).

Figure 17. Cross variogram estimator comparison of Model 1 under the axially sym-

metric assumption for the parameter set1 (left) and set2 (right).
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Figure 18. Cross variogram estimator comparison of Model 2 under the axially sym-

metric assumption for the parameter set1 (left) and set 2 (right).

From Figure 13 to Figure 18, we can see that empirical MOM cross-variogram

values based on both the Wavelet-Galerkin method and classical method are very close

to the theoretical counterparts, regardless the choice of latitudes pairs, the parame-

ter sets used, the covariance models, and the random process (either longitudinally

reversible or axially symmetric processes). However, the biasness of the empirical

MOM cross-variogram values from the Wavelet-Galerkin method to the theoretical

counterparts is overall less than that from the classical method.
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4.3.3 Comparison of Method of Moments (MOM) Variogram Estimator Values between

the Wavelet Approach and Classical Approach

In this section, we conduct a comparison study to evaluate the performance

of the wavelet approach over the classical approach. We calculate the mean squared

error (MSE) for both approaches. Here the MSE of MOM variogram estimator can

be calculated using the following formula.

MSEj∆ = V arj∆ + (Biasj∆)2

=
1

nn

nn∑
i=1

(
γ̂i(j∆)− γ̂(j∆)

2
)

+ (γ(j∆)− γ̂(j∆)
2
),

where ∆ = 2π
nL

, nL and nn are the number of longitudes and number of repeated

simulations, respectively.

From both figures 19 and 20, we can notice that for all ∆λ values, bias is low

for the wavelet approach compared to the classical method. However, the MSE values

from the Wavelet-Galerkin approach are comparable with those from classical method

when ∆λ is small, but tend to be larger when ∆λ is getting larger. It should be noted

that the classical method involves the block circular matrix decomposition, and the

computation cost might be expensive when the dimension is big, which is in contrast

to the low dimensional matrix manipulation in the Wavelet-Galerkin approach. In

summary, our method provides a comparable approach for axially symmetric random

data generation on the sphere with lower computational cost.
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Figure 19. Bias and MSE comparison of the wavelet approach and classical method

for a fixed pair of latitudes (800S, 600N) over ∆λ ∈ (0, π) for Model 1 with set 1

parameter values.

Figure 20. Bias and MSE comparison of the wavelet approach and classical method

for a fixed pair of latitudes (800S, 600N) over ∆λ ∈ (0, π) for Model 2 with set 1

parameter values.
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CHAPTER V

SUMMARY AND FUTURE WORK

5.1 Summary

In this dissertation, we successfully developed an algorithm to perform a two-

dimensional discrete wavelet transformation for any given complex-valued covariance

functions. Moreover, the Wavelet-Galerkin numerical method has been extended to

numerically determine the eigenvalues and eigenfunctions of real-valued and complex-

valued non-stationary covariance functions defined on R2. Then we have conducted a

convergence study for the truncated K-L expansion of an axially symmetric Gaussian

random process on S2. Furthermore, we proved that the truncated process approx-

imates to the true axially symmetric process value with convergence in L2 (mean

squared convergence). Theoretical L2 error bound was derived for such an approxi-

mation. In addition, we have demonstrated how the values of the model parameters

affect the convergence rate. Finally, we proposed an algorithm using the K-L ex-

pansion to generate global data when the underlying random process is Gaussian

axially symmetric. The validation through simulation was conducted to verify the

performance of our proposed method with the classical method.

5.2 Future Work

Our proposed Wavelet-Galerkin method relies on the known covariance func-

tion evaluated at the given locations. Therefore, it is important to obtain such co-

variance matrices when modeling. Note that with a given real data, one can obtain a

nonparametric estimate of the axially symmetric covariance function R(φP , φQ,∆λ))
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through the MOM approach, which in turn would provide a nonparametric estima-

tor Cm(φP , φQ) through the inverse of Fourier transform from (1.7). Therefore, we

will explore how the proposed wavelet-Galerkin approach can be used to investigate

the important features of possibly complex-valued covariance functions Cm(φP , φQ),

which would help us better understand the dependency of random processes on a

global scale.

There has been limited research on axially symmetric covariance models in lit-

erature. Therefore, as our next research project, we will be working on constructing

axially symmetric covariance models in S2 that could be practically useful in ana-

lyzing massive global data sets. We will also enforce sparsity to covariance function

approximations to convert full rank variance-covariance matrices to reduced rank ma-

trices which will be more beneficial in handling large data sets.

Finally, following [Van16] which has shown the non-consistency of the MOM

variogram estimator on the circle, we will investigate the non-consistency of the MOM

estimator on the sphere first for longitudinally reversible processes, and we will then

extend the idea to prove the non-consistency for an axially symmetric process on the

sphere.
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APPENDIX A

PROOF 1

Here is an example to demonstrate that a weakly stationary process may not

necessarily be strictly stationary. Let {Xt; t ∈ Z} be a stochastic random process

defined by

Xt =


Yt, if t is even

1√
2
(Y 2

t − 1), if t is odd

where Yt ∼ iid N(0, 1), implying E(Yt) = 0, var(Yt) = E(Y 2
t ) = 1, and var(Y 2

t ) = 2

since Y 2
t ∼ χ1

2. Let’s calculate the mean and the variance of the process Xt

E(Xt) =


E(Yt) = 0, if t is even

1√
2
E(Y 2

t − 1) = 0, if t is odd

and

var(Xt) =


var(Yt) = 1, if t is even

1
2
var(Y 2

t − 1) = 1, if t is odd.

Further, since for any k 6= 0 Yt and Yt−k are independent random variables, so is Xt

and Xt−k. Hence we have

cov(Xt, Xt−k) = 0 ∀k.
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Therefore, the process Xt is staionary with Xt ∼ WN(0, 1).

Now we know that, P (Xt ≤ 0) = P (Yt ≤ 0) = 0.5 for t even and P (Xt ≤ 0) =

P ( 1√
2
(Y 2

t − 1) ≤ 0) = 0.6826 for t odd. Hence, Xt is not identically distributed. This

implies that the process is not strictly stationary (see [Tri] for more details).
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APPENDIX B

PROOF 2

In this section, we will provide detailed calculations for Proposition 3.1. Here

we assume the covariance function is given by (3.13). From (3.2), we have

∫ π

0

(1− e−|t| − e−|s| + e−|t−s|)fi(s)ds = ηifi(t), 0 ≤ t ≤ π.

That is,

∫ π

0

fi(s)ds−
∫ π

0

e−|t|fi(s)ds−
∫ π

0

e−|s|fi(s)ds+

∫ π

0

e−|t−s|fi(s)ds = ηifi(t), (2.1)

where fi(·) and ηi denotes ith(i = 1, 2, . . .) eigenfunction and eigenvalue of the covari-

ance function, respectively. We can consider each term in (2.1).

∫ π

0

e−|t−s|fi(s)ds = e−t
∫ t

0

esfi(s)ds+ et
∫ π

t

e−sfi(s)ds∫ π

0

e−|t|fi(s)ds = e−t
∫ π

0

fi(s)ds, since t ∈ [0, π],∫ π

0

e−|s|fi(s)ds =

∫ π

0

e−s fi(s)ds.

Now (2.1) becomes

∫ π

0

fi(s)ds− e−t
∫ π

0

fi(s)ds−
∫ π

0

e−sfi(s)ds

+ e−t
∫ t

0

esfi(s)ds+ et
∫ π

t

e−sfi(s)ds = ηifi(t). (2.2)

100



Evaluating the first derivative with respect to t on both sides of the equation, we

obtain

e−t
∫ π

0

fi(s)ds− e−t
∫ t

0

esfi(s)ds+ et
∫ π

t

e−sfi(s)ds = ηif
′
i(t). (2.3)

Differentiating both sides of equation (2.3) with respect to t for the second time, we

obtain

− e−t
∫ π

0

fi(s)ds+ e−t
∫ t

0

esfi(s)ds+ et
∫ π

t

e−sfi(s)ds− 2fi(t) = ηif
′′
i (t). (2.4)

From (2.2), (2.4) can be simplified as following.

(ηi − 2)fi(t)−
∫ π

0

fi(s)ds+

∫ π

0

e−sfi(s)ds = ηif
′′
i (t). (2.5)

Taking the derivative with respect to t on both sides of (2.5) for the third time, we

obtain, noting ηi > 0,

(ηi − 2)f ′i(t) = ηif
′′′
i (t),

f ′′′i (t) + ωi f
′
i(t) = 0, where ωi =

(2− ηi)
ηi

. (2.6)

We have obtained a homogeneous third order differential equation. Based on the sign

of ωi we need to consider two cases of ωi which will lead to two sets of eigensolutions.

Case 1 : ωi > 0,
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The characteristics equation for (2.6) becomes

r3 + ωir = 0,

resulting in three characteristics roots r = 0,± √ωii. Thus, general solutions to (2.6)

can be written as follows.

fi(t) = Ci1 + Ci2 sin(
√
ωit) + Ci3 cos(

√
ωit), (2.7)

where Ci1, Ci2 and Ci3 are constants to be determined. Constructing adequate bound-

ary conditions are required to determine the values of Ci1, Ci2, andCi3. First explore

the behavior of the function on the boundaries 0 and π by considering the function

fi(t) given by (2.1).

When t = 0,

0 = ηifi(0) =⇒ fi(0) = 0, since ηi 6= 0. (2.8)

When t = π,

∫ π

0

fi(s)ds− e−π
∫ π

0

fi(s)ds−
∫ π

0

e−sfi(s)ds+ e−π
∫ π

0

esfi(s)ds = ηifi(π). (2.9)

Considering equation (2.3), we have the following
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When t = 0,

∫ π

0

fi(s)ds+

∫ π

0

e−sfi(s)ds = ηif
′
i(0). (2.10)

When t = π,

e−π
∫ π

0

fi(s)ds− e−π
∫ π

0

esfi(s)ds = ηif
′
i(π). (2.11)

Considering the equation (2.5), we obtain that

when t = 0,

−
∫ π

0

fi(s)ds+

∫ π

0

e−sfi(s)ds = ηif
′′
i (0), (2.12)

when t = π,

− e−π
∫ π

0

fi(s)ds+ e−π
∫ π

0

esfi(s)ds− 2fi(π) = ηif
′′
i (π). (2.13)

From (2.7) and (2.8) one can easily see that

fi(0) = 0, f ′i(0) = Ci2
√
ωi, f ′′i (0) = −Ci3ωi.

For the case of t = π, from (2.7) we have

fi(π) = Ci1 + Ci2 sin(
√
ωiπ) + Ci3 cos(

√
ωiπ). (2.14)
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f ′i(π) = Ci2(
√
ωi cos(

√
ωiπ))− Ci3(

√
ωi sin(

√
ωiπ)). (2.15)

f ′′i (π) = −Ci2(ωi sin(
√
ωiπ))− Ci3(ωi cos(

√
ωiπ)). (2.16)

From (2.14), (2.15), and (2.16), we have the following relations.

ηif
′′
i (0)− ηif ′′i (π) + 2fi(π) = ηifi(π),

f ′′i (0)− f ′′i (π) =
2− ηi
ηi

fi(π) = ωifi(π).

However, if one plugs in the expression for fi(·) and f ′′i (·) and evaluates them at t = 0

and t = π, the above equation is always true. This implies that one of the equations

(2.9), (2.12), and (2.13) is redundant. Here we remove equation (2.9) for further

consideration.

Now we consider equation (2.12) and (2.13). We have

−ηif ′i(π)− 2fi(π) = ηif
′′
i (π)⇒ −ηif ′i(π)− (2− ηi)fi(π)− ηifi(π) = ηif

′′
i (π),

or equivalently, after dividing ηi on both sides,

f ′i(π) + (ωi + 1)fi(π) = −f ′′i (π).

However, ωifi(π) + f ′′i (π) = f ′′i (0) = −C3iωi, hence

f ′i(π) + fi(π) = Ci3ωi. (2.17)
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Equation (2.12) subtracting (2.10) gives

−2

∫ π

0

fi(s)ds = ηi(f
′′
i (0)− f ′i(0)). (2.18)

Adding (2.12) and (2.10) gives

2

∫ π

0

e−sfi(s)ds = ηi(f
′′
i (0) + f ′i(0)). (2.19)

The three equations (2.17), (2.18), and (2.19) are considered to be the boundary

conditions for our eigenvalue and eigenfunctions for the ordinary differential equation

problem.

Our first aim is to find the explicit form for eigenvalues. We first convert (2.17)

and (2.18) into following forms.

Ci2 (
√
ωi cos(

√
ωiπ) + sin(

√
ωiπ)) = Ci3 (ωi +

√
ωi sin(

√
ωiπ)− cos(

√
ωiπ) + 1) ,

(2.20)

Ci2(ηi
√
ωi − 2

∫ π

0

sin(
√
ωis)ds) = Ci3(−ηiωi + 2

∫ π

0

(cos(
√
ωis)− 1)ds). (2.21)

Dividing (2.20) by (2.21) we obtain (3.14). Note that by solving (2.20) and (2.21)

homogeneous system of equations we can expect an infinite number of solutions for

Ci2 and Ci3. Here we explore the orthogonality of eigenfunctions to determine explicit

non-zero values of Ci1, Ci2, and Ci3.

∫ π

0

f 2
i (t)dt =

∫ π

0

(
C1i + Ci2 sin(

√
ωit) + Ci3 cos(

√
ωi)
)2
dt = 1.
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When fi(0) = 0 we have

−Ci1 = Ci3.

From equation (2.20) we obtain

Ci2 = ki Ci3,

where

ki =

(
ωi +

√
ωisin(

√
ωiπ)− cos(

√
ωiπ) + 1

)(√
ωicos(

√
ωiπ) + sin(

√
ωiπ)

) and ωi =
2− ηi
ηi

.

Now we have

∫ π

0

f 2
i (t)d(t) =

∫ π

0

(−C3i + ki Ci3sin(
√
ωit) + Ci3cos(

√
ωit))

2
d(t) = 1, (2.22)

giving

C2
i3 =

1∫ π
0

(−1 + kisin(
√
ωit) + cos(

√
ωit))

2
d(t)

. (2.23)

Hence,

fi(t) = −Ci3 + kiCi3sin(
√
ωit) + Ci3cos(

√
ωit).

This proves the first part of Proposition 3.1.
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Case 2 : ωi < 0.

In this case, the following characteristic equation

r3 + ωir = 0,

results in three characteristics roots r = 0,±
√
−ωi. Thus, general solutions can be

written as

fi(t) = Ai1 + Ai2 sinh(
√
−ωit) + Ai3 cosh(

√
−ωit). (2.24)

Taking the first derivative of fi(t) gives

f ′i(t) = Ai2
√
−ωicosh(

√
−ωit)− Ai3

√
−ωi sinh(

√
−ωit).

Taking the second derivative with respect to t , we obtain

f ′′i (t) = Ai2(−ωi) sinh(
√
−ωit) + Ai3(−ωi) cosh(

√
−ωit).

We can notice that

fi(0) = Ai1 + Ai3 = 0, f ′i(0) = Ai2
√
−ωi, f ′′i (0) = Ai3(−ωi).

We can adjust same boundary conditions that we used in Case 1 to get

Ai2
(√
−ωi cosh(

√
−ωiπ) + sinh(

√
−ωiπ)

)
=

Ai3
(
ωi −

√
−ωisinh(

√
−ωiπ)− cosh(

√
−ωiπ) + 1

)
. (2.25)
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Ai2(ηi
√
−ωi − 2

∫ π

0

sinh(
√
−ωis)ds) = Ai3(−ηiωi + 2

∫ π

0

(cosh(
√
−ωis)− 1)ds).

(2.26)

Dividing (2.25) by (2.26), then we obtain (3.15). A similar argument under the case

ωi > 0 can be adopted to the case ωi < 0, and with the property of the normalized

eigenfunctions, we have

∫ π

0

g2
i (t) =

∫ π

0

(
Ai1 + Ai3 sinh(

√
−ωit) + Ai3 cosh(

√
−ωit)

)2
= 1. (2.27)

Based on the boundary conditions we can derive

−Ai1 = Ai3

Ai2 = k′i Ai3,

where

k′i =
(ωi −

√
−ωisinh(

√
−ωiπ)− cosh(

√
−ωiπ) + 1))

(
√
−ωicosh(

√
−ωiπ) + sinh(

√
−ωiπ))

and ωi =
2− ηi
ηi

.

Therefore, equation (2.27) can be written as,

∫ π

0

(
−Ai3 + k′i Ai3sinh(

√
−ωt) + Ai3cosh(

√
−ωit)

)2
= 1,

with

A2
i3 =

1∫ π
0

(
−1 + k′isinh(

√
−ωit) + cosh(

√
−ωit)

)2 .
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Hence,

gi(t) = −Ai3 + k′Ai3 sinh(
√
ωit) + Ai3 cosh(

√
ωit).

This concludes the proof of Proposition 3.1.
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