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ANDREWS, SHERRI, PhD. The Effects of a Constructivist Learning 
Environment on Student Cognition of Mechanics and Attitude Toward 
Science. (1995) 
Directed by Dr. Samuel Miller. 122pp. 

The purpose of this project was to examine the effects of a 

constructivist learning environment on student cognition of mechanics and 

attitude toward science compared to students enrolled in a traditional lecture 

course. The constructivist course utilized cooperative grouping and 

microcomputer-based labs with very little lecture to teach mechanics. 

Enrollment in the course was limited to women and minorities. 

Case study methodology was used to collect and analyze the data. The 

data was both qualitative and quantitative in nature. The qualitative data 

consisted of formal interviews, copies of course work, a participant 

observation journal, and video tape of class sessions. Quantitative data 

consisted of student test scores from a cognitive exam, The Mechanics 

Baseline Test and an attitude survey, Attitude Toward Science in School 

Assessment. 

A_t_test procedure showed that quantitatively there were no significant 

differences in the two groups. Qualitatively, students said they enjoyed 

science more if the constructivist strategies; instructor interaction, hands-on 

activities, and applications to everyday life, were used. Women in the 

courses said they felt more confident with their career choice because they 



were successful in their physics course. Even though students in the 

constructivist course had a median SAT score that was 270 points below the 

lecture section, they performed just as well on The Mechanics Baseline Test. 

Lastly, it was determined from qualitative data that students must be able to 

understand graphs and diagrams to be successful in science courses. 
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CHAPTER I 

STATEMENT OF THE RESEARCH 

Introduction 

Despite efforts by many educational groups, women and minorities 

remain underrepresented in science and science related careers (Hill et al.; 

1990). In an effort to increase the number of women and minorities entering 

engineering and other science-related careers, the American Association for 

the Advancement of Science (1990) has called for science education reform 

such that the learning of science content is more meaningful to these groups. 

AAAS (1990) implemented Project 2061 in an effort to initiate reform in 

science education. According to AAAS the major intent of this project is to 

create an educational system that would; a) maximize the variety of career 

options and employment opportunities for all graduates, b) enable all 

Americans to make sound emotional and political decisions involving 

science and technology, c) engage students in such a way that students and 

citizens can follow science with an interest and relate science to their 

everyday lives, and d) show students that science applies to our everyday 

lives. AAAS believes that these goals cannot be met unless a broader, more 

general goal, is first addressed. AAAS states that the general population must 

view science more favorably and more intelligently. 

To accomplish the general goal that the general population view 

science more favorably and more intelligently, science educators are 



2  

encouraged to use instructional strategies that allow meaningful learning to 

take place (Rutherford & Ahlgren, 1990). The AAAS (1990) encourages 

educators to provide students with experiences much like the work of 

scientists in the field. Brown, Collins, and Duguid (1989) also believe that 

students should be given the opportunity to participate in authentic practices 

of scientists in the field and furthermore that students should use the tools of 

scientists to solve real world problems. They call this practice situated 

cognition. 

Meaningful learning can be defined as the ability to apply science 

concepts to everyday situations. Meaningful learning and understanding of 

science concepts can occur when students are given opportunities in which 

they are able to construct their own knowledge (Rutherford & Ahlgren, 1990). 

Situated cognition provides students with the opportunity to construct their 

own knowledge (AAAS, 1990; Brown et al., 1989; Pintrich et al., 1993; 

Duckworth, 1986; Roth, 1993). 

Physics educators have been particularly interested in using authentic 

practices of scientists to facilitate student cognition of physics concepts (Arons, 

1990; McDermott, 1984). If students have a good understanding of physics 

concepts they will be able to view science more intelligently. The 

Washington Physics Education group supports restructuring the traditional 

methods of teaching physics to include authentic practices of physicists and 

other instructional strategies that facilitate better understanding of physical 

phenomena (McDermott, 1984; Rosenquest & McDermott, 1987). Other 

instructional strategies that have been identified as providing students with 

the opportunity to construct their own knowledge include but are not limited 
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to: a) utilizing the environment for points of curiosity; b) asking thoughtful 

open-ended questions; c) employing problem solving strategies; d) collecting 

and organizing data; e) experimenting with materials; f) designing and using 

models to elicit discussions; g) using student responses to drive the lesson 

and applying knowledge and skills (Yager, 1991). Use of microcomputer-based 

laboratories (MBL) has also proven to be especially successful in allowing 

students to construct their own knowledge (Thorton, 1989). These strategies 

are called constructivist strategies (Yager, 1991). Using these strategies and 

allowing students to construct their own knowledge is part of a learning 

theory called constructivism. Constructivists believe that students actively 

construct their own knowledge and that this construction is an adaptive 

process (Glaserfeld, 1987). Learners construct their knowledge through 

interactions with and in the environment. They can do this in the physical 

environment by manipulating the tools of scientists or in the social 

environment by working in a peer group (Wheatley, 1991). 

Physicists at the University of North Carolina at Greensboro and Bennett 

College, both located in Greensboro, North Carolina, now offer an 

introductory physics course that utilizes these strategies. Their goal is to 

facilitate better understanding of physics concepts and facilitate more positive 

attitudes toward science. In other words, their goal is for students to view 

science more intelligently and more favorably. The course is titled Physics 

and the 3 Rs. The aim of the course is to: a) recruit more women and 

minorities to enroll in introductory physics; b) restructure the traditional 

method of teaching to include constructivist practices; and c) retain women 
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and minorities in science and science related courses (Meisner & Ponting, 

1991). 

Restructuring the typical pedagogy involves leading students to become 

doers of science versus observers of science. (Meisner & Ponting, 1991). 

Typically, an introductory course in physics is offered as a lecture with a 

separate laboratory. The typical lecture involves the professor solving 

problems at a board in front of the lecture hall and/or conducting 

demonstrations. The typical laboratory is a verification lab where the students 

complete step by step procedures to 'verify' a known outcome. In contrast, 

the 3 Rs course uses constructivism as the pedagogical basis, i.e., the students 

are actively engaged in the learning process by interacting in the physical and 

social environment. Research has shown that by providing students with the 

opportunity to participate in authentic tasks (physical environment) in 

cooperative groups (social environment) they become more efficient in 

constructing knowledge regarding physical phenomena. Students can do this 

because they are solving real problems in which the outcome is not a 

predetermined answer. 

Changing pedagogical methods would also help achieve the second goal 

of AAAS - that students view science more favorably. Students who view 

science more favorably have a more positive attitude toward science. 

Attitude can greatly influence career choice (Koballa & Crawley, 1986; Hill et 

al., 1990) and learning (Koballa & Crawley, 1986; Pintrich et al., 1993). 

Not only has method of pedagogy been identified as affecting cognition 

and attitude toward science, but classroom factors have also been identified as 

affecting students' attitudes toward and how well students cognitively 
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understand concepts presented in courses (Arons, 1985; Arons & Karplus, 

1987; Cannon & Simpson, 1985, Dykstra et al., 1992; Krynowski, 1988; Lawrenz, 

1975; Lawrenz, 1976; Myers & Foutz, 1992; Welch, 1976). These factors include 

single sex classes, opportunity to experience phenomena contrary to student 

beliefs, a noncompetitive environment (Stipek, 1993), evaluation based on 

improvement, mistakes viewed as positive, and use of metacognitive 

strategies (Pintrich et al., 1993). 

Purpose of the Study 

The purpose of this study was to examine how restructuring of the 

typical pedagogy in an introductory physics class affected student cognition of 

mechanics and student attitudes toward science. 

Hypotheses 

1. Students enrolled in the 3 Rs course will have a greater 

understanding of physics concepts related to mechanics than students 

enrolled in a traditional physics course. 

2. Students enrolled in the 3 Rs course will exhibit more positive 

attitudes toward science than students enrolled in a traditional physics 

course. 

Limitations 

Participants in this study were limited to those students enrolled in two 

sections of Physics 101 in the Fall Semester of 1994 at The University of North 

Carolina at Greensboro. These were two nonequivalent groups with different 

instructors. Participation in the study was strictly voluntary. 
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The study was also limited by the use of case study methodology. Use of 

case study methodology has the potential to present the biased interpretations 

of the researcher. Since the researcher in this case study was also a participant 

observer there were other unique limitations that also existed. According to 

Yin (1985), a participant observer can be limited by her potential to be biased to 

the case and as a participant she often must assume roles that are contrary to 

good scientific practice. He also states that the participant observer is more 

likely to follow a commonly known phenomenon and become a supporter of 

the group. In addition, Yin has stated that the role of participant observer is 

often limited by the amount of time she has to be an observer by her role in 

the case. These factors limit the participant observer because she may not 

have sufficient time or raise questions about events from different 

perspectives. 

Yin believes that these limitations can be balanced by the advantages the 

role of participant observation can present. These include unlimited access to 

the group, the ability to perceive reality from inside the group, and the 

researcher's ability to manipulate the situation. These manipulations may 

not be as precise as those in a scientific experiment but they can provide many 

opportunities for collecting data. 

Significance of the Study 

Scientific literacy and equal opportunity to maximize the variety of 

career options and employment opportunities for all graduates has become a 

major goal in science education. A scientifically literate person has a positive 

attitude toward science. A positive attitude is an important part of scientific 

literacy because of its potential to affect learning, career choice, and the ability 
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to deal with technological change. Students who are provided with the 

opportunity to construct their own knowledge have a better understanding of 

science concepts. Students who are provided with the opportunity to learn 

physics in a constructivist course should have higher cognitive knowledge 

and more positive attitudes toward science, both of which are an important 

part of scientific literacy. 

Summary 

Project 2061 was implemented in 1985 as a means of addressing the 

shortage of scientists and engineers. AAAS believes that this goal cannot be 

obtained unless the general population views science more favorably and 

more intelligently. AAAS has emphasized that in order for students to be 

able to view science more favorably and more intelligently meaningful 

learning must take place in science classrooms. Cognitive research implies 

that individuals must construct their own knowledge in order for 

meaningful learning to occur. The classroom environment and choice of 

tasks can provide students with the opportunity to construct their own 

knowledge and can encourage more positive attitudes toward science. The 3 

Rs course strives to implement practices identified in the research as allowing 

students to effectively construct their own knowledge. The purpose of this 

study was to examine how the constructivist learning environment that 

existed in the 3 Rs classroom affected student cognition of mechanics and 

attitude toward science. 
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CHAPTER II 

REVIEW OF THE RELATED LITERATURE 

Introduction 

Student understanding of physics concepts is necessary to meet the broad 

general goal identified by AAAS that students view science more 

intelligently. Changing student attitude toward science is important to the 

AAAS goal that view science more favorably. Therefore, it is important to 

review the science education literature to identify studies that have examined 

cognition of physics concepts and student attitude toward science as it relates 

to constructivism. There exists a large body of studies in the science 

education literature that examine constructivist pedagogy (Appleton, 1993; 

Ebenezer & Zoller, 1993; Glaserfeld, 1987; Glasson & Lalik, 1993; Wheatley, 

1991) and student cognition (Appleton, 1993; Fredrickson, 1984; Piaget, 1964; 

Pressley & McCormick, 1994; Roth, 1993; Roth , 1994). Other studies report the 

effects of instruction and learning environment on attitude toward science 

(Ajerwole, 1992; Glasson & Lalik, 1993; Germann, 1988; Gogolin & Swartz, 

1992; Lin & Crawley, 1985; Matthews, 1990; Myers & Fouts, 1992; Saunders & 

Young, 1985). The results of a literature review are presented in this section. 

An examination of the literature on constructivism and cognition of physics 

concepts is followed by a review of the literature on attitude toward science. 
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Constructivism / Cognition 

Lecture, the typical method of teaching, has failed to produce a 

population of scientifically literate individuals and has failed to recruit 

women and minorities into the sciences (Rutherford & Ahlgren, 1990). 

Science educators are calling for a reform in the current methods of teaching 

(Arons, 1990; McDermott, 1984; Roth, 1993). 

Physics educators have long been interested in how students learn and 

how physics educators can facilitate better understanding of physics concepts 

(Roth, 1993; Fischer & Von Aufschnaiter, 1993). Educators have suggested 

that this can be accomplished when students do science, not merely hear 

about science (Duckworth, 1989; Meisner & Ponting, 1991). Research also 

indicates that empirical and phenomenological experiences are important in 

learning physics concepts. (Arons, 1990; McDermott, 1984). Constructivists 

also support this premise (Roth, 1993; Roth, 1994). 

Constructivism as a theory examines knowledge structures. There are 

two basic tenets of constructivism; 1) that students actively construct their 

own knowledge and 2) that this construction of knowledge, learning, is an 

adaptive process (Roth, 1993). "Knowledge", Piaget has stated, "is not a copy 

of reality" (Piaget, 1964, p 177). Learning is personal and unique to each 

individual (Wheatley, 1991). In order to learn, individuals construct 

meaning from interacting with the physical and social environment. 

(Glaserfeld, 1987). Learners construct and reconstruct their cognitive 

frameworks based on these interactions (Pulaski, 1971). 
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Conceptual Restructuring 

Piaget (1964) theorized that all information must be organized by the 

learner. This is accomplished through assimilation. Information is placed 

into the appropriate scheme (assimilated) based on the way the child or adult 

perceives the world and his/her current knowledge (Pulaski, 1971). If 

information fits into no existing schema, then the learner must change or 

accommodate his/her existing schema in order to place the information into 

a conceptual framework (Demby, 1991). The learner accommodates or 

changes his/her view of reality after obtaining new knowledge (Miller, 1993) 

thus restructuring his or her conceptual framework. 

Appleton (1993) has proposed a theoretical basis for how this 

restructuring occurs. (See Figure 1). Appleton proposed that the learner is 

initially in a state of conceptual equilibrium. Piaget believed that individuals 

were driven by the need to maintain their conceptual equilibrium (Piaget, 

1964). When the learner experiences a new encounter, a filter is used to sort 

through recall in a search for an identical fit of the encounter to an existing 

idea in the learner's conceptual framework (Appleton, 1993). This occurs 

when the short-term memory receives information from the sensory buffer 

(Miller, 1993). The sensory buffer filters sensory perception from the sense 
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changed. 
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Figure 1 

organs. Stimuli from the environment are detected by the sense 

organs and are transferred through nerve impulses to the sensory registers in 

the brain (Campbell, 1993). These registers act as a buffer or filter and transfer 

information to the short term or working memory (Pressley & McCormick, 

1994). A search is then conducted of the long term memory of the declarative 
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and procedural knowledge frameworks to identify information that is similar 

to the current stimuli (Driscoll, 1994). If the search identifies a "fit" then the 

stimuli are encoded and stored in the long term memory within the 

framework in which the scheme or production was found (Fredrickson, 

1984). At this point, assimilation of the idea has occurred and the learner 

exits the cognitive exercise. The current idea is reinforced regardless of 

whether the idea is or is not correct (Appleton, 1993). 

If a search of the conceptual framework identifies no fit, the learner will 

check the incorrect idea. If the learner cannot place the idea into an existing 

conceptual framework, uneasiness and disequilibrium occur (Piaget, 1964). 

Some learners may attempt to ascertain the right answer (Appleton, 1993). 

This scenario generally occurs in school situations where students learn the 

right answers for the test (Appleton, 1993; Dykstra et al., 1992). This results in 

existing ideas remaining unchanged, with a new set of ideas being filed for 

school situations (Appleton, 1993; Dykstra et al., 1992). A second scenario that 

may occur when the identical fit is not found is for the learner to opt out of 

learning (Appleton, 1993). 

The scenario that teachers wish for students is the third scenario 

(Appleton, 1993), in which restructuring of existing conceptual frameworks 

and accommodation take place. In this scenario a complete fit occurs and 

learning adaptation takes place. Previous ideas held by the learner are 

changed and again the learner is in cognitive equilibrium. Accommodation 

is the adaptation of the learner's existing conceptual framework to make the 

new information fit into the learner's schema thus placing the learner in 

conceptual equilibrium (Piaget, 1964). 
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Teachers can facilitate the path learners take in Appleton's model 

(Appleton, 1993). Many researchers (Duckworth, 1989; Ebenezer & Zoller, 

1993; Glasson & Lalik, 1993; Yager, 1991) have stressed the importance of the 

role of the teacher as a facilitator of instruction and conceptual bridge builder. 

Research indicates that student cognition increases when the instructor 

assumes the role of facilitator (Andrews & Meisner, 1994). By questioning 

students, the teacher can identify the student's misconceptions and the 

teacher can guide the student to conceptual equilibrium (Appleton, 1993). 

Teachers can guide the learner to conceptual equilibrium by challenging 

conceptions students currently hold. Several methods or strategies have been 

identified as having an effect on identification of misconceptions and 

facilitating conceptual restructuring or conceptual change. Dykstra et. al., 

(1992) has stated that physics instruction should begin with students' beliefs 

about the world. Dykstra and his colleagues believe that the general strategy 

that should be used to lead students to conceptual change is to present 

students with situations that are contrary to their beliefs. Students must be 

allowed to make predictions about physical phenomena. Instructors, they 

have stated, 

should find phenomena that are easy to produce and whose outcome will 

differ in some way with students' predictions. Furthermore, students should 

be allowed to discuss how their predictions were different from their 

observations and why the phenomena occurred as it did. 

Teachers should serve as the conceptual bridge builder between what the 

students have observed and the theory behind the observation (Glasson & 

Lalik, 1993). Teachers should question their students (Duckworth, 1989) and 
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allow their students to work in cooperative pairs or small groups (Wheatley, 

1991). Working in cooperative groups allows students to engage in dialogue. 

By having students verbalize their thoughts, the teacher and the student can 

identify misconceptions and the necessary restructuring of cognitive 

frameworks can occur. 

The Constructivist Model 

Allowing students to interact with objects and with one another to 

construct meaning is part of a learning theory called the Constructivist 

Learning Model (Yager, 1991) or constructivism. Based on cognitive science 

research, this model places emphasis on the learner. Learning is an active 

and adaptive process that takes place within the learner as indicated by 

Appleton's model. From this perspective, learning outcomes are an 

interactive result of the information or stimuli a learner receives and how 

he/she processes that information based on existing ideas and background 

knowledge. These interactions take place in both the social and physical 

environments (Glaserfeld, 1987). 

The social environment involves people and their interactions through 

language and communication (Yager, 1991). Student understanding evolves 

as they negotiate meaning through testing their ideas in relation to the ideas 

held by their peers (Bayer, 1990). Vygotsky, a contextualist (Miller, 1993), 

emphasized the importance of language and adult-child interaction in 

cognitive development (Glasson & Lalik, 1992). Tudge (1993) stated that as a 

contextualist Vygotsky was interested in the context of development. Tudge 

believes that this does mean not that students learn in different contextual 

situations, but he believes that there are three contextual levels; a) individual 
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factors, (temperament, motivation, age, intelligence, and gender); b) 

sociocultural/historical (race and or background) experiences; and 3) 

interpersonal experiences, (which include family, peers, school, and church). 

These three factors are interwoven into a person's cognitive and linguistic 

development. Development occurs externally before it can occur internally, 

as one attempts to make sense of what is being said, he/she changes his/her 

thinking. 

Those who aspire to this sociocultural model believe that students move 

from external control to internal control (Howe & Jones, 1993). Teachers can 

facilitate cognitive growth by modeling, using peer tutoring, and cooperative 

learning (Miller, 1993). 

Interactions in the physical environment take place with objects. Piaget 

(1964) has stated that in order to know an object one must act on it. This is 

important to science education. As students act on tools and objects in the 

manner that scientists do, they can develop understanding. It is the teacher's 

task to present situations in class that draw upon this theory (Yager, 1991). 

Teachers should provide the opportunity for students to interact in the 

physical and social environment and should place more emphasis on how 

students view a problem rather than whether they arrive at the right answer 

(Yager, 1991). They can do this by using constructivist strategies for teaching. 

Yager (1991) believes that constructivist strategies invite students to learn, 

explore, propose explanations and solutions, and take action. Teachers can 

invite students to learn by using the environment for points of curiosity and 

by asking thoughtful open-ended questions. Students can explore by 

employing problem-solving strategies, collecting and organizing data, and 
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experimenting with materials. Students can explain phenomena by 

designing models. Students can take action by applying knowledge and skills. 

An example of a constructivist practice is the use of microcomputer-based 

laboratories (MBL). MBL has proven especially successful in allowing 

students to construct their own knowledge and to identify discrepancies in 

their existing frameworks (Thorton, 1989). 

Applications to Physics 

Use of MBL in the classroom creates an environment that simulates the 

practices of scientists in the field (Thorton, 1989). In a study of students 

enrolled in an introductory algebra-based physics course at the University of 

Oregon, researchers found that students in a special section that utilized MBL 

to explore heat and temperature significantly lowered their pretest error rate 

on the posttest (Thorton & Sokoloff, 1989). Rosenquest and McDermott (1987) 

found that when students in an introductory course were exposed to 

instruction that emphasized the application of kinematics concepts to actual 

motion, as MBL allows, they achieved at a level of understanding that 

matched students with stronger backgrounds in a traditional course. 

As has already been stated previously, students' conceptual frameworks 

often contain misconceptions based on their experiences and interactions 

with the physical world. Such misconceptions can interfere with 

understanding physics concepts (Arons, 1990; Driver & Easley, 1978; Driver & 

Erickson, 1983; Dykstra et.al., 1992; McCloskey, 1983; McDermott, 1984). These 

misconceptions are present at all levels of study. For example, researchers in 

Norway found that even physics graduate students have misconceptions of 

physical phenomena (Sjeberg & Lie, 1987). 
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Many students have difficulty understanding certain concepts of 

mechanics (McDermott, 1984). Minstrell (1982) found that students could not 

conceptualize normal forces. Minstrell demonstrated that when books were 

piled on a student's hands the student had to apply an equal and opposite 

force to continue to hold the books. Students could understand that a living 

thing (the person) would have to apply an equal and opposite force to hold 

the books, but could not understand that a table holding books must also exert 

an equal and opposite force on the books (or the books would fall through the 

table to the floor). 

Students also have misconceptions about free fall. Champagne et al., 

(1980) found that even though 'bright' students could answer certain 

questions, their answers were based on incorrect assumptions. Students were 

successful in predicting time of fall for certain objects. However, these 

predictions were based on the incorrect assumption that velocity and 

acceleration could be equated with mass and weight. From this incorrect 

assumption, the students concluded that force was proportional to speed. 

This study caused the researchers to realize that misconceptions could be 

hidden behind correct answers. 

The realization that students hold many misconceptions and that these 

misconceptions were retained throughout their studies at universities led 

science educators to evaluate the traditional method of pedagogy (Dykstra et 

al., 1992). Many physicists advocate reform away from lecture toward a more 

constructivist method of teaching that would allow instructors to identify 

misconceptions and allow students to be active participants in the learning 
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process (Arons, 1985; Arons, 1990; Brown, 1992; Dykstra et al., 1992; 

McDermott, 1984; Thorton, 1989; Thorton & Sokoloff, 1990). 

Constructivist Studies 

Studies that examined the effect of using a constructivist method of 

teaching in physics have been conducted by Roth (1993, 1994) and by Fischer 

and Von Aufschnaiter (1993). Roth (1993) found that when students were 

able to frame their own exploratory questions (using student responses to 

drive the lesson) and when the teacher served as the conceptual bridge 

builder by asking thoughtful open-ended questions to guide student thinking, 

students were able to correctly construct their own knowledge. Roth (1994) 

found that when students worked in cooperative problem-solving groups, 

they began to approach tasks more like practicing scientists. Fischer and Von 

Aufschnaiter (1993) found that students enrolled in a constructivist physics 

course changed their language as they worked in the physical and social 

environment. The meaning of words changed for students during the 

learning process and words for new objects were used only after meaning was 

constructed. 

Few studies are available in the literature that examine constructivist 

methods of teaching, although many articles exist that explore how 

constructivist theory applies to the science classroom (Appleton, 1993; 

Wheatley, 1991, Yager, 1991). A large portion of those studies have been 

presented in this chapter. Research conducted by Ebenezer & Zoller (1993) 

indicates that students would like science better if teachers were to adopt 

constructivist methods of teaching. Ebenezer and Zoller also found that 

students believed they would like science better, i.e., have more positive 
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attitudes toward science, if their science lessons applied to local situations and 

if instruction was related to everyday life. Practices that were reported to have 

a negative affect on student attitudes include extensive note-taking and 

memorization. Thus the literature supports the view that use of 

constructivist strategies can influence student attitudes. 

Attitude Studies 

Just as Appleton's model can be used to explain how students learn 

and how teachers can facilitate the learning process, Appleton's model also 

can serve as a model for facilitating positive attitudes toward science. 

Background knowledge is important to learning new concepts. Beliefs and 

values are important in forming attitudes (Koballa, 1986; Shrigley & Koballa, 

1992). Misconceptions can hinder learning. Certain beliefs and values have 

been shown to hinder change in attitude (Koballa, 1986). Science educators 

are interested in attitudes because attitudes are correlated with (Shrigley, 1989) 

and are antecedents to behavior (Koballa, 1986). These experts also believe 

that we must distinguish between beliefs, attitudes and behaviors. Koballa 

(1988) suggested that attitudes are formed based on a person's beliefs, with 

regard to right or wrong. Shrigley, Koballa, and Simpson (1988) contended 

that science educators should not confuse attitudes, beliefs, and values. 

Beliefs are cognitive and values are broader and culturally bound. The 

desired outcome is the behavior (Koballa, 1986; Shrigley, 1989; Shrigley & 

Koballa, 1992). 

Because beliefs are cognitive, teachers can guide students to change 

beliefs just as they can lead students to conceptual change in physics 

cognition. Student beliefs must be challenged just as misconceptions must be 



2 0  

challenged. Andrews and Matthews (1993) found that student attitudes 

toward scientists showed significant positive changes after their stereotypic 

view of scientists had been challenged. Educators can work within this 

framework to change negative attitudes toward science. If a student believes 

that science class is uninteresting, his/her beliefs can be challenged by 

implementing practices that have been demonstrated to improve student 

interest in science. The literature contains many studies that examine how 

various teaching practices affect student attitudes toward science. 

Teaching Practices 

Glasson & Lalik (1993) found that students believed they would like 

science better if the lessons applied to local situations and if instruction was 

related to everyday life. Students disliked classes that included extensive note 

taking and classes that required memorization. Gogolin and Swartz (1992) 

found that nonscience majors' attitudes toward science improved after 

participation in an anatomy and physiology course designed specifically for 

nonmajors. The course emphasized applications for daily living, was human 

in its orientation, and used hands-on activities. Most students in the course 

indicated they had never before been exposed to hands-on science. 

Additional studies indicate that students like science more if they are 

able to participate in hands-on activities. For example, Ajerwole (1992) found 

that students exhibited more positive attitudes toward science when 

discovery learning was used. Discovery learning is decidedly constructivist. 

Recall that constructivism supports active student involvement in the 

learning process. Students are able to construct their own knowledge when 
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they actually participate in activities. Discovery learning allows students to 

construct knowledge, or discover concepts through exploration. 

Students in the Glasson and Lalik (1993) study indicated they would 

like science better if it applied to real life. Matthews (1990) also found this to 

be true in a study of the effects of teaching science to Native Americans using 

hands-on, culturally relevant materials. Members of certain tribes had 

significantly more positive attitudes after exposure to these materials. 

Physical Environment 

Constructivists also believe that the physical environment is 

important to the student construction of knowledge. Saunders and Young 

(1985) showed how using living materials in science instruction affected 

student's attitudes toward science. They reported significant differences in 

attitude toward science in biology classrooms that used live materials. They 

suggested that the presence of the live materials aroused students' interest 

and curiosity and thus stimulated learning. 

Lin and Crawley (1985) also studied the effects of the physical 

environment on student attitudes toward science. They found that students 

in metropolitan school environments had more positive attitudes toward the 

social benefits of science, the use of scientific inquiry, and the attributes of 

scientists. They noted that students in metropolitan areas were more likely to 

participate in science-related activities than students in rural areas. No 

significant differences were found between metropolitan school student 

attitudes and rural school toward student attitudes with regard to the 

enjoyment of science lessons, normality of science, or career interest. 
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Social Environment 

The social environment also influences student attitudes toward 

science. Germann (1988) found that the social interaction between the 

learner, teacher, and the curriculum had significant positive effects on 

student attitudes toward science. Students in classrooms with high social 

interaction, laboratory practices, a supportive teacher, and better instructional 

methods, had more positive attitudes toward science. Myers and Fouts (1992) 

also found that students in classroom environments which had high levels 

of involvement (social interaction) had significantly more positive attitudes 

toward science. They also found that working in cooperative groups affected 

student attitudes toward science. Other variables identified as affecting 

attitude were high teacher support, high order and organization, and use of 

innovative teaching methods. 

Teacher support also has been identified by Gagne (1985) as important 

in the acquisition of attitudes. The teacher must establish an expectancy of 

success if students are to acquire positive attitudes. Schibeci and Riley (1986) 

and Haladyna, Olsen, and Shaughnessy (1983) have identified teacher support 

as a major contributor to positive attitude acquisition. They found that 

teacher enthusiasm contributes to positive attitudes. 

Haladyna, Olsen, and Shaughnessy (1983) identified teacher quality as 

the major contributor in the variance of student attitude toward science. 

Koballa and Rice (1985) have even listed six teacher behaviors that can lead to 

the positive acquisition of attitudes. These include: a) know the content; b) be 

aware of the student's home environment and use this environment when 

possible; c) know the students and their needs; d) find out what attitudes and 
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skills students already possess; e) challenge students existing ideas; and f) 

make students doers of science rather than merely talking about doing 

science. Mason and Kyle (1988) found that when teachers participated in a 

program to stimulate a gender-free learning environment their students 

demonstrated more positive attitudes toward science. The teacher was shown 

to be an influencing factor in affecting student attitudes. 

Other practices that teachers can use to improve attitudes include 

providing opportunities for success (Gagne 1985), arranging for students to 

express their choice of personal action, providing feedback for successful 

performances (Driscoll, 1994), providing a positive learning environment 

(Germann, 1988), viewing mistakes as positive and part of the learning 

process, making evaluation in the course improvement-based, using 

metacognitive strategies (Pintrich et al., 1993), and providing a 

noncompetitive environment (Stipek, 1993). 

As previously stated, attitude is important because it is an antecedent to 

behavior and has been identified as an important factor in career choice 

(AAAS, 1990; Hill et al., 1990; Koballa & Crawley, 1986; Rutherford & Ahlgren, 

1990). One goal of the 3 Rs course is to foster more positive attitudes in 

science so that women and minorities might choose science as a career. 

Science typically is viewed as a male profession (Hill et al., 1990). The 3 Rs 

course intends to foster positive attitudes by providing students with a 

learning environment that includes factors mentioned in the previous 

sections. This environment theoretically will challenge the belief held by 

many women and minorities that they can not be successful in physics. By 

changing their belief, preconceived notions and existing negative attitude 
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toward science can be negated. Hill et al., (1990) identified interest in a subject 

(the antecedent) as a major factor in choosing a career (the behavior). Other 

researchers have found that students who like science (the antecedent) are 

more likely to pursue science as a career (the behavior) (Entwistle & 

Duckworth, 1977; Evan & Baker, 1977). 

Current experts in the field caution science educators about attitude 

research (Shrigley, & Koballa, 1992). Shrigley, & Koballa (1992) have stated 

that "despite the volume of attitude research, only a few faltering conclusions 

can be deduced regarding the influence of instructional treatments on 

attitude..." (p 17). Many experts agree that the major problems with past 

attitudinal research are: a) an inconsistent definition of attitude (Germann, 

1988); b) the lack of a theoretical framework; and c) faulty attitude assessment 

instruments (Koballa, 1992; Koballa & Crawley, 1985; Munby, 1983; Shrigley, 

1990; Shrigley & Koballa, 1992). Therefore, in designing a study that would 

examine attitude, it was important to obtain a definition of attitude, a 

theoretical framework, and a valid attitude instrument. The following 

section presents a definition of attitude, a valid attitude instrument, and a 

theoretical framework on which to base this study. 

Definition of Attitude 

Germann (1988) suggests that lack of theoretical framework and faulty 

attitude instruments are due to a" vague, inconsistent, and ambiguous" 

definition of the construct ( p. 689). He argued that there is a difference 

between scientific attitude, attitude toward science instruction, and attitude 

towards science itself. Attitude toward science involves scientists, careers in 

science, and science as a subject. Scientific attitude is more involved in the " 
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approach a person assumes for solving problems, for assessing ideas and 

information and for making decisions" (p. 690). Koballa and Crawley (1985) 

defined attitude toward science as the " general or enduring positive feeling 

toward science" (p 223). 

In a more general view, Gagne (1985) defined attitude as choosing some 

personal action based on one's cognition and feelings. One must have some 

understanding of related concepts and/or information for an attitude to be 

acquired. Some attitudes can be acquired due to constant reinforcement. 

Repeated failure can contribute to the acquisition of a negative attitude. 

Since a major goal of the 3 Rs course is to foster positive attitudes in 

science so that students enrolled in the course might choose science as a 

career, the students must have an interest in studying the subject, science. 

Therefore, it is important to examine attitude toward science. This attitude 

can be defined as the enduring positive and/or negative feelings students 

have toward science and science as a subject. 

Attitude Assessment Instrument 

One of the major problems identified with past attitude research was the 

use of poor attitude instruments. Most instruments used in previous attitude 

studies provided poor psychometric data (Blosser, 1984; Gardiner, 1975; 

Mundy, 1983). Many instruments failed to provide psychometric data to 

provide evidence for reliability and or validity (Germann, 1988). The 

instrument chosen for this study, Attitude Toward Science in School 

Assessment (Germann, 1988) was selected because of its internal reliability 

and because the items on the instrument measure attitude toward science. 
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Attitude toward science involves scientists, careers in science, and science as a 

subject. 

In order to determine construct validity, Cronbach's alpha was 

calculated and a factor analysis of the items was completed. In previous 

studies, Cronbach's alpha for all items ranged from .93 to .97. (Germann, 

1988). Factor analysis percent of variance for all items ranged from 59.2 to 

69.8. Cronbach's alpha for all fourteen items for this study was determined to 

be .96. For conducting the factor analysis, the items on the instrument were 

placed into one of two categories: a) interest in science, which has been 

identified as a major factor in choosing a career (Entwistle & Duckworth, 1977, 

Evan & Baker, 1977; Hill et. al., 1990), and b) study of science as a subject. 

Questions in the interest in science category related to how well students like 

science (i.e., Science is fun.). Items placed in the study of science category 

related to how students like studying science (i.e., If I knew I would never go 

to science class again I would be sad.). Variance accounted for by each 

question for each category or factor loading is reported in Table 1. 

Theoretical Framework 

On the basis of the review of the literature, constructivist methods of 

teaching took place in the 3 Rs course. Students worked to construct their 

own knowledge in both the physical and social environments. In the social 

environment, they worked in cooperative groups in pairs or in three's. They 

interacted and discussed phenomena they observed. They were often asked to 

predict answers to questions and situations. Dialogue was encouraged 

between students and instructors. This allowed both students and instructors 

to identify misconceptions students held with regard to physical phenomena. 
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Students interacted in the physical environment by using the tools of 

physicists to solve problems in which there was not one correct answer. 

Working in the physical environment also allowed students to identify 

misconceptions they held in regard to physical phenomena. In correcting 

their misconceptions, students became more knowledgeable about physics. 

Table 1 
Percent of Variance Explained 

Factor Loading: Study of Science 

Question % of Variance 
I do not like science and it bothers me to study it. 87.394 
Duirng science class I am usually interested. 88.727 
I would like to learn more about science. 78.970 
If I knew I would never go to science class again I would be sad. 77.061 
Science is a topic I enjoy studying. 90.964 

Factor Loading: Interest in Science 
Question % of Variance 

Science is fun. 92.568 
Science is interesting to me and I enjoy it. 89.263 
Science makes me feel uncomfortable... 82.948 
Science is facinating and fun. 84.291 
The feeling I have towards science is a good feeling 93.493 
I have a definite positive reaction to science 85.894 
I feel at ease with science... 89.832 
I feel a definite positive reaction to science 90.123 

The intent of the course was for students to realize that as women and 

minorities, they could be successful in science courses and science courses 

could be enjoyable. Theoretically, this challenged their beliefs they held about 

science courses. By challenging students beliefs, their beliefs could be 

changed, thus their behavior, choosing science as a career or choosing to 
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enroll in other science courses, could be changed. Measuring changes in 

attitude would allow the researcher to identify changes in these beliefs. 

Attitude Summary 

Science educators are interested in studying attitude toward science 

because it is an antecedent to behavior. The 3 Rs project's goal is to affect 

career choice as a behavior. Interest in science courses has been identified as 

part of the attitude that precedes career choice. In order to change the 

behavior, career choice, science educators must change attitude. Appleton's 

model can be used to lead students to changes in attitude via changes in 

beliefs because beliefs are cognitive. 

In order to change beliefs, students must be presented with situations 

that are contrary to those beliefs. A goal of the 3 Rs course is to change 

students' beliefs by showing women and minorities that they can be 

successful in physics and enjoy studying physics as a subject. Practices that are 

constructivist in nature can facilitate this change. These changes in attitude 

will be measured using a valid attitude instrument. 
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CHAPTER in 

METHODOLOGY AND PROCEDURES 

Introduction 

The purpose of this study was to investigate the effects of a constructivist 

learning environment on cognition of mechanics and students' attitudes 

toward science. The purpose of this chapter is to describe the methods and 

procedures used in this study. Case study methodology was utilized to collect 

and analyze data. Such qualitative research has often been identified as 

unscientific in its approach (Lincoln & Guba, 1985), although many 

qualitative researchers such as Stake (1985) have demonstrated the rigor of 

well designed qualitative research using case study methodology. 

Gubba (1991) suggested methods that make qualitative research as 

rigorous as quantitative research. In a scientific study it is important to 

establish internal and external validity, reliability, and objectivity. Gubba 

believes that established credibility can be used in place of internal validity. 

He also suggested that transferability can be used in place of external 

reliability, that dependability can replace reliability, and that confirmability 

can replace objectivity. By establishing credibility, transferability, 

dependability, and confirmability, a well developed case study, if not scientific 

study, can be established. Gubba refers to these elements of a study as the 
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trustworthiness of a study. The following section provides a description of 

the how the trustworthiness of this study was achieved. 

Trustworthiness of the Study 

The trustworthiness of this study was established by the constructs 

identified by Lincoln and Gubba (1985). According to Lincoln and Gubba 

(1985), the trustworthiness of a study can be established through credibility, 

dependability and confirmability, and transferability. 

Credibility 

Gubba and Lincoln state credibility can be established through 

prolonged engagement, persistent observation, peer debriefing, participant 

checking and triangulation. 

In this study, the investigator was involved in the Three R's project for 

twelve months prior to the study and for four months during the collection 

of data. The investigator was present at all class meetings that were two 

hours in length three times per week. A journal of the graduate assistant's 

observations and impressions was kept during this time. This established 

prolonged engagement and persistent observation. 

Peer debriefing "is a process of exposing oneself to a disinterested peer 

in a manner paralleling an analytic session" (Lincoln & Gubba, p 308). The 

purpose of this session is to identify any aspects of the study that are not 

expressly stated by the inquirer. For this study an anthropologist, familiar 

with case study methodology, and a physicist, familiar with physics education 

research, reviewed the case study account. 

In order to establish participant checking the interviewer read the 

presentation of interview results to confirm accuracy and interpretations of 
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the interviewees' comments. She confirmed that interviewees' statements 

were accurately presented and not taken out of context. 

According to Lincoln and Gubba, triangulation of the data can occur 

when using different data collecting modes. Since multiple data sources were 

used, triangulation of the data could occur within student groups, among 

different sources, and within sections. The participant observation journal 

also facilitated triangulation of the data. 

Dependability and Confirmabilitv 

Lincoln and Guba have stated that there cannot be "validity without 

reliability and thus no credibility without dependability" (p 316). 

Dependability was established by an inquiry audit. The instructor for the 3 Rs 

course examined the process by which the accounts of the inquiry were kept 

and he examined the records for accuracy. He also examined the data, an 

account of the findings, and the interpretations of those findings. He 

determined that the dependability of the study was established. 

Confirmability was established through a confirmability audit, 

triangulation, and a participant observation journal. The confirmability audit 

was made of the raw data, a flow chart identifying how the data was analyzed, 

and data reduction and analysis products. A flow diagram is provided in 

Figure 2 to describe the exact sequence by which the data was analyzed. 

Transferability 

Gubba and Lincoln have stated that transferability can be established 

through 'thick description'. The combination of multiple data sources and 

the number of participants provided an adequate data base that allowed 

transferability judgments to be made. The triangulation of evaluation 



instruments, tests, examination, course work, participant observation notes, 

and interviews provided a thick description of the case that existed in the 

Three R's course in the fall of 1994. Transferability can thus be established by 

the techniques used for facilitating thick description. 

Case Study Methodology 

According to Yin (1984) there are five components of the case study 

research design. These are: a) a study's questions; b) the propositions of the 

study; c) its unit(s) of analysis; d) the logic linking the data to the propositions; 

and e) the criteria for interpreting the findings. These components are 

described in the following section. 

Study questions 

There are two hypotheses that were generated based on the review of 

the literature: 

1) Students enrolled in the 3 Rs course will have a greater change in 

understanding physics concepts related to mechanics than students 

enrolled in a traditional physics course. 

2) Students enrolled in the 3 Rs course will exhibit more positive 

changes in attitudes towards science than students enrolled in a 

traditional physics course. 

Study propositions 

A proposition should "direct attention to something that should be 

examined within the scope of the study" (Yin, 1984, p 31). The theoretical 

model developed for this study was based on the literature presented in the 
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proceeding chapter. The literature reviewed suggests that both student 

cognition and beliefs, and subsequently attitudes, can be guided through 

conceptual change by using certain teaching strategies and providing the 

proper learning environment. 

Gagne (1985) believes if a student is successful, he or she understands the 

material, then the student is more likely to have a positive attitude toward 

science. It is therefore important to establish an environment in which 

student understanding is maximized. Research indicates that students have a 

more positive attitude if material is related to everyday life (Glasson & Lalik, 

1993). The review of the literature also found that students enter the 

classroom with pre-existing attitudes and conceptions, both of which can 

affect learning and attitude (Arons, 1987; Arons, 1990; Brown, 1992; Dykstra et 

al., 1992; McDermott, 1984). It was found when the teacher assumes the role 

of conceptual bridge builder, misconceptions can be identified and corrected 

(Andrews & Meisner, 1993). 

The theoretical model adopted for this study assumes that the learner 

enters the learning environment with prior knowledge. Prior knowledge 

includes both misconceptions (Arons, 1987; Arons, 1990; Brown, 1992; Dykstra 

et. al., 1992; McDermott, 1984) and preexisting attitudes, based on students' 

beliefs, toward science (Koballa, 1987: Shrigley, 1990). It is important to 

include prior knowledge in the model because constructivists believe that 

learning begins with prior knowledge (Appleton, 1993). The model is 

interactive because the learner interacts with the learning environment 

(Yager, 1991). He or she does this in the physical environment by interacting 

with the tools of physicists to solve problems encountered in everyday life 
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(Roth, 1993) and in the social environment by working in cooperative pairs 

(Wheatley, 1991). The environment includes use of constructivist strategies 

such as employing problem solving strategies, collecting and organizing data, 

experimenting with materials, using student responses to drive the lesson, 

applying knowledge and skills, and use of microcomputer-based laboratories 

(MBL). Use of these strategies allows the learner to construct knowledge and 

provides opportunity for the instructor to identify discrepancies in students' 

existing frameworks (Yager, 1991). See Figure 3 for a schematic drawing of the 

model. 

Figure 3 
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Units of Analysis 

The units of analysis for this study were two sections of students enrolled 

in Physics 101 in the fall semester of 1994. The units of analysis were the two 

sections. Only those students who completed both pretests and both posttests 

were included in the data base. Participation in the study was strictly 

voluntary. Twenty-one students out of a total class size of twenty-four 

students from the 3 Rs section and thirty-one students of ninety from the 

traditional lecture course elected to participate in the study. They completed 

all pretests and posttests and were therefore included in the data base. The 

two courses differed in various ways. A description of each section is 

provided in the following section. 

The 3 Rs 

The 3 Rs class met three times per week and was two hours in length. 

Most of the class was spent completing laboratory activities (see Appendix A 

for syllabus). The lab activities were not verification labs. Frequently there 

was no 'right answer' (see Appendix A for a sample laboratory activity). 

There was very little lecture. Instructors and the graduate assistant circulated 

to assist students if needed and question students to facilitate understanding. 

The students were given an agenda for each class period so that they 

knew what they should accomplish by the next class meeting. See Appendix 

A for a typical class agenda. Often students had to spend additional time in 

the lab after regular class hours in order to complete assignments. 

Each Friday students took a 'concept quiz' so that the instructor and the 

students could identify any weaknesses in student knowledge or 

misconceptions that existed in the students' conceptual framework (see 
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Appendix A for an example). Students were given four two hour 

examinations through out the semester. Three of these tests consisted of two 

parts. Part one was a traditional pen and paper multiple-choice test in which 

students were given 20 problems to solve. For part two, students were 

required to design and execute an experiment to solve an assigned problem. 

For example, for one test students were to determine the amount of kinetic 

energy lost when a softball collided with a wall. Students completed part two 

with their cooperative group. Two of the four multiple choice tests were 

taken in the cooperative group. The other two were taken individually as 

was the final examination. 

A constructivist learning environment existed in the 3 Rs course. 

Instructors consistently used students' background knowledge to drive 

lessons. Interaction continually took place between the learners, instructors, 

and the environment. The curriculum materials used in the course facilitate 

this interaction. An example of how this occurred is provided below. 

Students in the 3 Rs Physics Course used Workshop Physics activities 

developed at Dickinson College (Laws, 1990) in Pennsylvania and Tools for 

Scientific Thinking activities developed at TUFTS University in Boston, 

Massachusetts. Both sets of materials demanded that students use problem 

solving skills and both were open-ended. Students worked in cooperative 

groups to collect and organize data using Vernier software and probeware 

connected to the Macintosh computer. A typical lesson is a TUFTS 

investigation in which students were to observe acceleration and velocity 

graphs produced from the motion of a dynamics cart down a nearly 

frictionless incline plane. After setting up the apparatus, students were asked 
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to generate a hypothesis as to what they thought would happen. The students 

then collected one set of data. The students were then asked to change the 

angle of the incline. After changing the angle several times, students were 

asked to draw conclusions about how the angle of the incline affected 

acceleration and velocity. The students then had to explain how their 

observations differed from their hypothesis. This provided opportunity for 

dissatisfaction. 

During the lesson, the instructors circulated the classroom to assist 

students and ask questions to identify discrepancies in students' conceptual 

frameworks. If necessary, the instructor could then assume the role of 

conceptual bridge builder to guide the student through conceptual change. 

The Lecture Section. 

The traditional lecture section met three times per week for fifty 

minutes in a large lecture hall. The instructor stood at the front of the room 

to conduct class. He often demonstrated physical phenomena for the class. 

The instructor worked problems related to material that was being covered 

and conducted demonstrations to illustrate phenomena being discussed in 

class (see Appendix A for syllabus). He felt it important to make the class fun 

and interesting. He was readily available outside of class to help his students. 

The students were required to attend a laboratory once per week that 

was scheduled for three hours. The laboratory activities were verification labs 

in which there was often one right answer (see Appendix A for an example). 

Students frequently finished the lab before the scheduled time was completed. 

A summary of the difference between the two groups can be found in Table 2. 
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Table 2 

Comparison of the Sections 

3 Rs Class Lecture Class 

Student Centered Instructor Centered 

Interactive Learning Passive Learning 

Authentic Labs Verification Labs 

Cooperative Groups Individual Learning 

Linking data to the propositions 

The data collected was both quantitative and qualitative in nature. 

Quantitative data was collected by administering evaluation instruments to 

measure student attitudes toward science and student cognition of mechanics. 

Students were administered both of these instruments as both a pretest and 

posttest. These data were analyzed using statistical methods to compare 

pretests and posttests mean scores of both groups. Yin (1985) has suggested 

there should be multiple sources of qualitative data that should be placed into 

a data base. The data base for this study was drawn from documentation, 

archival records, interviews, and participant observation. The specifics of 

these data, both quantitative and qualitative are presented in the following 

section. 

Quantitative Data 

Attitude Toward Science in School Assessment 

Special care was taken when selecting the instrument to measure changes 

in student attitudes. A major problem that has been identified with past 

research was the use of poor attitude instruments (Blosser, 1984; Gardiner, 
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1975; Mundy, 1983a, 1983b; Schibeci, 1983). Many instruments did not provide 

psychometric data to provide evidence for reliability and/or validity 

(Germann, 1988). The instrument chosen for this study, Attitude Toward 

Science in School Assessment (Germann, 1988) was selected because of its 

internal reliability and the items included on the test measured the construct, 

attitude toward science. 

The Attitude Toward Science in School Assessment instrument is a 

Likert-type instrument with fourteen items (see Appendix B for a copy of the 

instrument). Germann (1988) reported Cronbach's alpha for all items on the 

test from previous studies ranged from .93 to .97. He also reported factor 

analysis percentage of variance for each individual question ranged from 59.2 

to 69.8. See Table X for details. Cronbach's alpha for all fourteen items for 

this particular study was determined to be .96. Variance accounted for by each 

questions for each category is reported in Table 1 in Chapter II. 

Cognition of Mechanics 

The Mechanics Baseline Test was chosen to measure student cognition 

because of its content and the psychometric data provided (see Appendix B for 

a copy of the instrument). The test was designed to assess student 

understanding of basic mechanics concepts. First semester physics course 

content at The University of North Carolina at Greensboro is mechanics. The 

Baseline Test was developed to assess students' understanding of the first 

semester of introductory physics and it emphasizes concepts that can not be 

understood without formal understanding of mechanics (Hestenes & Wells, 

1992). 
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The Baseline Test upon first examination looks like a quantitative 

problem-solving test. However, it was designed to measure qualitative 

understanding (Hestenes & Wells, 1992). The multiple choice distracters are 

not common-sense alternatives and they include typical student mistakes. 

These mistakes are made due to deficiencies in understanding rather than 

carelessness. There are no problems on the test where numbers can be 

'plugged in'. 

There are twenty-six multiple choice items on the test. Seven of these 

items require greater than average amount of calculation than other items on 

the test. Seven items require the use of force diagrams to answer the 

question. Twelve items are related to kinematics. Two items can be placed in 

all three categories (Hestenes & Wells, 1992). 

The test has been administered to both high school and college students. 

The test was administered to college students enrolled in introductory physics 

courses at Arizona State University (AVH) and Harvard University (HU). 

These student scores, the percentage obtaining the right answer, means and 

standard deviations for students in Physics 105 at AVH and regular and 

honors sections of physics at HU as well as those from Wells High School and 

students in Arizona high schools can be found in Table 3. There was no 

information available on the validity nor the reliability of this test. 

Qualitative Data 

In any qualitative study, data from multiple data sources should be 

collected (Yin, 1985). The data base for this study was drawn from 

documentation, archival records, interviews, and participant observation. A 



Table 3 

Mechanics Baseline Data 

Question AZ MW MW AVH HU HU 
Number Regular Honors AP Regular Honors Regular Honors 

%correct %correct %correct %correct 

1 54 69 69 61 73 79 78 75 
2 40 51 56 39 70 78 78 82 
3 29 44 59 50 70 60 93 90 
4 85 80 84 94 90 86 67 69 
5 1 1 3 11 40 72 18 12 
6 45 44 56 61 73 53 87 96 
7 8 8 25 22 40 46 36 38 
8 23 30 31 72 83 67 81 92 
9 21 23 25 17 47 40 68 86 
10 35 43 28 61 97 50 89 932 
11 25 26 34 17 40 47 85 85 
12 12 17 9 6 17 29 24 30 
13 31 37 47 56 83 69 79 82 
14 51 56 75 83 93 76 87 100 
15 48 47 41 56 83 79 83 90 
16 16 17 9 22 47 38 60 73 
17 26 33 31 22 63 60 81 81 
18 15 19 25 28 20 40 32 51 
19 16 17 34 39 47 29 78 84 
20 25 24 9 28 70 38 46 49 
21 62 71 53 61 83 93 89 97 
22 56 49 53 61 40 67 32 48 
23 28 41 44 39 53 74 84 85 
24 29 50 44 17 70 35 59 74 
25 25 37 38 33 67 26 61 70 
26 13 20 28 28 57 31 53 71 

Test Ave 32 37 39 42 62 61 66 73 
(Standard Deviation) (11) (15) (15) (16) (17) (18) (14) (11) 

Calculation 31 33 30 31 45 51 54 64 

Diagram 14 17 24 27 43 45 46 53 

Kinematics 30 39 41 39 58 57 62 68 

Number of 
Students 600 116 32 18 30 58 183 73 



detailed description of these data sources can be found in the following 

section. 

Documentation 

Documentation for this study consisted of copies of laboratory 

classwork, individual and group tests, including part one and part two 

reports, and individual quizzes. Examination of these documents allowed 

the researcher to identify misconceptions held by students and/or identify 

factors that might interfere with student cognition. Therefore, copies of 

laboratory classwork were photocopied from the eleven lab groups from Unit 

Nine, Torque; Unit Eleven, Pressure; Unit Twelve, Heat and Temperature; 

and Unit Fifteen, Thermodynamics. Photocopies of individual and group 

tests were made from part one of all tests and the final exam. Part two reports 

from exam one, the effects of adding springs on the spring constant, and the 

final exam, parameters that affected terminal velocity of an object, were also 

photocopied. Concept quizzes on pressure and temperature were also 

included in the data base. 

Archival Records 

Archival records were drawn from past data bases assembled from 

previous semesters of research conducted with 3 Rs class members. These 

records include Mechanics Baseline test scores, course evaluations, 

interviews, and surveys completed by Fall 1994 students prior to the study 

which provided background information about the students. These records 

would allow the researcher to determine if patterns that occurred in the fall 

semester were also prevalent in other 3 Rs sections from previous semesters. 
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Interviews 

Interviews were conducted to provide another data source from which 

to identify changes in student cognition and attitude toward science. The 

researcher wanted to draw a sample from the two groups that was typical of 

both sections. In order to select students for the interview process, students' 

scores on the Baseline test and the Attitude Toward Science in School 

Assessment instrument were examined. Two students from each section 

with above average attitude and above average Baseline scores, two students 

with average attitude and average baseline scores and two students from each 

section with below average baseline and below average attitude scores were 

placed on a master list. Six alternates were then chosen. Students were asked 

if they would be willing to participate in an interview conducted by a skilled 

interviewer who was not involved in teaching or grading either section. 

Students were to be interviewed about their experience in physics for the fall 

semester. Students who indicated a willingness to be interviewed were then 

matched to a master list. The first four pairs of students on the master list 

were interviewed as well as the sixth and seventh pairs. 

The list of students' codes was then provided to the interviewer. She 

contacted the students and arranged interview appointments. Students who 

participated in the interviews were compensated for their time. Interviews 

were conducted formally at the beginning of the spring semester. Interview 

questions can be found in Appendix C. The interviews lasted no less than 

twenty minutes and no more than one hour. All interviews were 

transcribed and the researcher had no access to the original audio tapes or to 

the identities of the students participating in the interview. 



Participant Observation 

Participant observation was documented by a teacher assistant journal. 

The journal was kept on the computer. Entries were made at least once each 

week. Observations were recorded as soon as possible after the class session in 

which the observation occurred. Six two-hour sessions of the 3 Rs class were 

videotaped. Three of these class sessions were on heat and temperature, two 

were on heat transfer, and one was on thermodynamics. Using video taping 

allowed the participant observer to observe these class sessions at leisure. 

The participant observer also was a passive observer in three laboratory 

classes of the lecture section. Observation notes were made of each session. 

Collecting the Data 

The data for this case study was collected in the fall of 1994. 

Documentation occurred during this time. Both Mechanics Base-Line Test 

and Attitude Toward Science in School Assessment were administered in 

September to students enrolled in both sections of Physics 101. These 

evaluation instruments were also administered as posttests the last week of 

the semester. Copies of laboratory reports and tests and quizzes were made 

throughout the semester. Video recordings of six two hour sessions of the 

Three R's were made from lessons on heat and temperature, heat transfer, 

and thermodynamics. Interviews were conducted and transcribed at the 

beginning of the spring semester, 1995. 
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Analyzing the Data 

Quantitative Data 

The pretest and posttest for both the Mechanics Base-Line Test and 

Attitude Toward Science in School Assessment were analyzed using statistical 

analysis. The difference in the pretest and posttest scores for every student in 

each group was calculated using SAS. The mean for each group also was 

calculated. An independent t test was used to test the following null 

hypotheses for both the Mechanics Base-Line Test and Attitude Toward 

Science in School Assessment: a) the mean pretest score for the 3 Rs was equal 

to the mean pretest score for the lecture section; b) the mean posttest score for 

the 3 Rs was equal to the mean posttest score for the lecture section; and c) 

the mean difference in pretest and posttest scores were equal. A significance 

level of .10 was chosen because of the small sample size (n=2). A critical 

value of 3.078 (1 degree of freedom) was used in determining if differences 

were significant. 

The Mechanics Base-Line Test also was examined using a Chi Square 

analysis to test the difference in proportions of correct answers on grouped 

and on individual questions (Glass & Hopkins, 1984). Questions on the test 

were divided into three groups: a) questions related to force diagrams; b) 

questions related to kinematics; and c) those that required calculations. A 

significance value of .05 was chosen. A critical value of 3.84 was used in 

determining if differences were significant. 
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Qualitative Data 

The qualitative data was analyzed through relying on theoretical 

propositions using pattern matching logic (Yin, 1985). Emerging patterns 

were matched to predicted ones. The data was prepared by transcribing the 

interviews and portions of videotapes to facilitate identification of patterns in 

the data and matching these patterns to patterns identified in other data 

sources. A coding system was devised that allowed commonalties to be 

identified. Patterns contrary to the theory were purposely sought as well as 

unhypothesized patterns that emerged. The researcher deliberately sought 

disconfirmation of findings (Stake, 1988). 

More specifically, classwork, quizzes, tests, and the examination, were 

examined for misconceptions and /or problem areas. These were coded and 

grouped by commonalties. The videotapes of the two hour class sessions on 

heat and temperature (two sessions), heat transfer (two sessions), and 

thermodynamics (two sessions) were examined for disequilibrium and 

statements that included misconceptions. The transcript of the video tape 

was coded according to the path the student took in Appleton's model. 

Student redirection was then coded according to the apparent source of the 

redirection (i.e., instructor questioning, dialogue with lab partners, and or 

interaction with the physical environment). 

Formal interviews were audio taped and transcribed. The transcribed 

documents were coded according to emerging themes present in the 

interviews. 
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Triangulation of the data first occurred by matching emerging patterns 

that occurred between laboratory groups, second by matching patterns across 

data sources, and third by matching patterns that occurred among sections. 



CHAPTER IV 

DATA PRESENTATION AND ANALYSIS 

Introduction 

The purpose of this chapter is to present an analysis of the data 

collected as it documents student cognition and attitude during the course of 

this study. The results from the Mechanics Baseline Test are presented first. 

The results of pattern matching analysis of the course work, quizzes and tests 

follow the analysis of the Baseline Test. The results of the Attitude Toward 

Science in School Assessment instrument are then presented followed by 

results from the student interviews. This is followed by a discussion of how 

well the theoretical model fits the data. 

Student Cognition 

The Mechanics Baseline Test 

Students were administered the Mechanics Baseline Test six weeks into 

the semester as a pretest. The mean for the Three R's section was 7.048 

(SD=2.46) questions answered correctly. The mean for the lecture section was 

7.94 (SD=3.79) questions answered correctly. In order to determine the 

appropriate ttest to be used, an equality of variance F statistic was calculated. 

The F (30,20) statistic was determined to be 2.38 . Since this statistic was 

significant at the .10 level it was determined that the variances were unequal 

and an unequal variance t test procedure was then conducted. The t statistic 
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was calculated to be -1.024idf • This test statistic was not significant at the .10 

level. It was therefore determined that there were no differences in the 

pretest scores for the two groups. 

The posttest was administered the last week of the semester. The mean 

correct questions for the 3 Rs group was 7.59 (SD=2.28)and the mean correct 

questions for the lecture section was 8.16 (SD=3.07). In order to determine 

which ttest should be used, an equality of variance F statistic was calculated. 

The F (30,20) statistic was determined to be 1.81. Since this statistic was not 

significant at the .10 level it was determined that the variances were equal 

and an equal variance ttest procedure was then conducted. A test statistic of 

-.739idf was calculated. This test statistic was not significant at the .10 level 

and it was therefore determined that there was no difference in the posttest 

scores of the two groups. 

In order to determine if there was a significant difference in the change 

in knowledge scores between the two groups a gain score was calculated. This 

score was calculated for each individual student by subtracting their pretest 

mean from their posttest mean. The mean gain score for the Three R's group 

was .474 (SD=3.10). The mean gain score for the lecture section was .267 

(SD=3.24). An equality of variance F statistic was computed in order that the 

proper ttest be conducted. The F (30,20) statistic was determined to be 1.16. 

Since this statistic was not significant at the .10 level the variances were 

considered to be equal. An equal variance ttest was then conducted and the 

test statistic was determined to be .224 idf. This test statistic was not significant 

and it was therefore determined that there was no difference in the gain 

scores for the two groups. See Table 4 for a summary of knowledge scores. 
Table 4 
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Scores for Knowledge Test 

Mean Pretest Posttest Gain 

Three R's 
Lecture 
F statistic (equal variance) 
T-statistic (ldf) -1.024 

7.0476 
7.9355 
2.38 

7.5909 
8.1613 
1.81 

-.7385 

.47368 

..26667 
1.16 
.8237 

The posttest answers were then divided into three groups based on the 

type of question: a) those that required a force diagram to obtain the correct 

answer; b) those that required calculation; and c) those that dealt with 

kinematics. The mean proportion of questions answered correctly for 

questions that required a force diagram for the Three R's group was .1557. 

The mean for the lecture section was .1567. A Chi Square difference in paired 

proportions was calculated to be .001 idf. This was not significant at .05 level. 

The mean proportion of questions for that required calculation for the Three 

R's group was .292. The mean for the lecture section was .332. A Chi Square 

difference in paired proportion statistic was calculated to be .256idf. This was 

also not significant at the .05 level. Lastly, the mean proportion of questions 

that dealt with kinematics was calculated for both groups. The mean for the 

Three R's was .274. The mean for the lecture section was .2956. A Chi Square 

difference in paired proportion statistic was calculated to be .082idf. Again, 

this was not significant at the .05 level. It was therefore concluded that there 

were no differences in the proportions of students answering questions 

correctly for questions that required a force diagram, required calculation, and 

dealt with kinematics between the two groups. See Table 5 for a summary of 

grouped questions on the Mechanics Baseline Test. 
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Table 5 

Grouped Questions on Mechanics Baseline Test 

Mean Proportion Correct Answers 

Force Diagram 
Calculation 
Kinematics 

3 Rs 
.1557 
.2920 
.2740 

Lecture 
.1567 
.3320 
.2956 

Chi Square 
.001 
.256 
.082 

The posttest answers for each individual question were then examined. 

The percent of correct answers for each question for the two groups was 

determined. An item analysis is presented in Table 6. A Chi Square 

difference in proportions for paired items was calculated for each item. The 

Chi Square statistic for items 2, 3, 7,10,16, 20, and 26, indicated that the 

proportions of students answering the question correctly was significantly 

different for the two groups with the lecture group performing best. These 

items could be placed in one of two categories; those that involved 

understanding a diagram and those that involved reading a graph. These 

patterns were also prevalent in the mistakes 3 Rs students made on tests, 

quizzes, and class assignments. 

Problems with diagrams. 

Students consistently had problems drawing and/or interpreting 

diagrams on tests, quizzes, and class assignments. An example of this 

problem is in Unit Nine; the unit on torque. Students were asked to attach a 

meter stick with holes drilled in it to a fixed point. The students were to then 

place two scales at equal distances from the fixed point and to apply equal 

forces in the same direction at each of these points. They were asked to 



53 

Table 6 
Item Analysis for Mechanical Baseline Posttest 

3 Rs Lecture 
Question # % correct % correct Chi Square 

1 59.1 41.9 2.93 
2 18.2 35.5 5.57* 
3 22.7 38.7 4.18* 
4 81.8 67.7 1.33 
5 4.5 3.5 .125 
6 40.9 41.9. 012 
7 4.5 12.9 4.06* 
8 29.3 35.5 1.10 
9 31.8 22.6 1.56 
10 9.1 67.7 44.7* 
11 40.9 25.8 3.42 
12 9.1 9.7 .019 
13 22.7 16.1 1.12 
14 59.1 51.6 .508 
15 54.5 48.4 .362 
16 22.7 41.9 5.71* 
17 18.2 22.6 .475 
18 27.3 19.4 1.70 
19 36.4 29.0 .837 
20 13.6 35.5 9.78* 
21 63.6 61.3 .042 
22 59.1 58.1 .009 
23 18.2 22.6 .475 
24 9.12 9.0 .001 
25 18.2 29.0 2.47 
26 4.5 19.4 9.29* 

kinematics 27.4 29.56 .082 
(Q's 1,2,3,4,5,8,9,12, 

18,23,24,25) 

calculation 29.2 33.2 .256 
(9,11,12,18,20,21,22) 

diagram 15.57 15.67 .001 
(5,7,12,13,18,19,26) 

•Significant at the .05 level 
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observe what happened (no torque was produced). Students were to then 

draw a force diagram representing the situation. Only 25% of the student 

groups were able to properly draw the force diagrams. The appropriate force 

diagram and student examples can be found in Figure 3. 

Another example is from Unit Eleven: Pressure. Students were to 

answer a series of questions based on a diagram (see Figure 4) of a wooden 

block and an aluminum block in water. Students were to calculate the gauge 

pressure on the top and bottom on each block. Gauge pressure could be found 

by first multiplying the density of the object by gravity and by the height the 

object was under water. Gauge pressure excludes atmospheric pressure. 

Students were unable to interpret the diagram even after the graduate 

assistant and one of the instructors explained how to calculate gauge pressure. 



Figure 3 

Student Diagrams from Unit 9 

4-
2F 

Correct force diagram 

Example of Student Response 

2N 2N 

*Many students did not attempt to draw a force diagram. 
They left the questons blank. 
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Figure 4 

Diagram from Unit 11- Pressure 

Water surface 

wood 

steel 
"•Students needed to use the equation P=pgh to calculate gauge pressure. The students had difficul 
calculating pressure on top and bottom of the two blocks. 

Students inability to interpret diagrams was also a major problem on 

tests. There were 20 questions on all hourly exams. The final exam had 30 

questions. For example, on test one there were twelve questions that at least 

50% of the students did not answer correctly. Of these twelve questions ten 

required obtaining information from a diagram or a student drawn diagram 

would have been useful in obtaining the answer. The eleventh question 

missed involved reading a graph. On test two there were sixteen questions 

on the test that at least 50% of the students did not answer correctly. Of these 

sixteen, eight required students to obtain information from a diagram. 

Likewise for test three, of twelve questions missed by at least 50% of the 

students five required students to interpret diagrams. Test four only had two 
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of nine questions missed by at least 50% of the students required students to 

obtain information from a diagram. The final exam, however, was more 

similar to the first two exams. There were 24 questions out of 30 that at least 

50% of the students answered incorrectly. Eight of these 24 questions required 

that students obtain information from a diagram or a diagram was needed to 

correctly answer the question. Three of the eight diagrams were force 

diagrams. 

The interview data also support the finding that 3 Rs students could 

not properly read and interpret diagrams. When students were asked to 

identify all forces in the situation in Figure 5, only one Three R's student was 

able to correctly identify all forces. All of the 3 Rs students were able to 

identify the force on the dynamics cart due to gravity. Three of the six Three 

R's students were able to identify the normal force acting on the cart and only 

three students were able to identify the tension force in the attachment. Two 

of the six students included the frictional force. 

The lecture section students, however, were very successful in 

identifying the forces acting on the dynamics cart. All but one of the lecture 

section students correctly identified these forces. 
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Figure 5 

Correct force Diagram for Interview 

Mass M 

Problems with graphs. 

Students in the Three R's section not only had problems interpreting 

diagrams on the Mechanics Baseline Test, they also had problems reading 

graphs. This was a second pattern that was prevalent in mistakes students 

continually made on quizzes, classwork, and tests. For example, on Concept 

Quiz 14, students were asked to determine absolute zero on "New World" in 

a different universe. To do this students needed to extrapolate a graph (see 

Figure 6). Seventy-four percent of the students were unable to do this. On 

the final exam 12.5% of the questions missed by at least 50% of the students 

involved reading a graph. Misunderstanding of graphs was also prevalent in 

classwork. In Activity 15-2, 41.6% of the student lab groups could not 

interpret the graph of pressure and volume (See Figure 7) and therefore could 
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not complete the activity. Earlier in the semester many students had an 

especially difficult time drawing acceleration graphs from velocity graphs and 

visa versa. Even the 'A' students had difficulty reading graphs as was evident 

during a class discussion on heat and temperature: 

Instructor "Do you have any questions about the pretest ?" 
Student "I have a question." 
Instructor "Yes?" 
Student, " On number four I got 200 calories per gram and that is not an 

answer." 
Instructor, " You got 200 as an answer and 200 is not an answer. You know 

some of these answers might be wrong" He reads the question. 
" Why do you say the answer is 200?" 

Student "Because if you look at the graph the difference in temperature 
on that straight line is 200." 

Instructor " I think you are reading the graph a little incorrectly. Part of the 
reason is the zero point isn't as clear as it might should be. The 
zero point crosses the y axis. That first hash mark is 50. The next 
one is 100, its marked. That next one is 150, not 200. That line 
you are correctly looking at goes from 50 to 150. That's a 
difference of 100 calories per gram, not 200. Your thinking 
process was entirely correct. You just misread the graph." 



Figure 6 

New World Temperature/ Concept Quiz 14 

100-•  

75 "• 

50 "• 

H 1 1- -I—h 
0 25 50 75 100 125 150 

Temperature 
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Figure 7 

Unit 15: Thermodynamics Graph 

5 10 15 20 

Volume (cc) 

Students were asked "Suppose you wanted to operate your syringe so that the air pressure and 
volume followed the path shown above: 

1. Compress the air in the syringe to give pressure of about 4 ATM and a volume of 5 cc. (It does 
not have to be accurate). The gas is now at point I in the diagram. What would you have to do 
to move from I to A on the diagram; i.e., expand the gas at the same pressure? Explain your 
answer. (You cannot change the amount of air in the syringe). 

2. If the gas is at point A, what would you have to do to move the air from A to F; (i.e., 
decrease the pressure while keeping the volume constant)? Explain. 
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The interview data suggest that Three R's students understood velocity 

and acceleration graphs. All six students who participated in the interview 

were able to correctly draw the acceleration graph that would match the 

velocity graph provided. Two of the six students could not correctly draw the 

force diagram. Only two students in the lecture section were able to correctly 

draw both the acceleration and force graphs from the velocity graph. One 

other student correctly drew the velocity graph. 

Other problems prevalent in the data. 

Another pattern identified in the data was that students were unable to 

view problems holistically. In other words they could not integrate parts of a 

problem to form the whole, nor could they break the whole into its 

individual parts. This was especially true for part two on exams. For 

example, for part two on exam three students were asked to determine how 

the addition of different springs affected the simple harmonic motion of the 

spring. Most students determined the spring constant of a single spring and 

then added a second spring in series to determine the effects of the second 

spring on the spring constant. Not one student group thought to examine 

how springs added in parallel would affect the system. They were unable to 

see the big picture and could only focus on one part. 

The inability to integrate concepts, i.e. seeing the big picture, was also 

evident on certain test questions and during repecharge. An example can be 

provided from test four. Students were asked to determine the amount of 

work done on a block by the force of friction. Most students correctly solved 

the problem in calories, however they failed to convert calories to joules, 

which was unit required in the answer. 
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It was also evident from repecharge that students have difficulties 

examining questions as a sum of many parts. As part of their repecharge, one 

group was asked to determine the X and Y components of velocity and 

acceleration for a ball that had been tossed up into the air at the marked 

points for the following situation: 

Students in the group had an extremely difficult time determining what to 

do. After about twenty minutes they asked for help. The following chart was 

provided: 
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Acceleration Velocity 

X Y X Y 

A 

B 

C 

Students still had difficulty and again asked for help. The question was then 

posed: "If you needed to calculate each of these what equation(s) would you 

use?". The group was then able to fill in the chart. 

Another example comes from repecharge for test four. Several student 

groups were given the following problem: 

A homeowner is trying to decide whether he should insulate with 
twelve inches of wood or four inches of styrofoam. Which would you 
suggest and why? 

Most students suggested that the homeowner insulate with the styrofoam 

because it had lower thermal conductivity and was therefore a better 

insulator. When they were asked if the thickness of the insulator played a 

role in their choice many indicated they had not taken that into 

consideration. They were asked to then also take the thickness of the 

insulator into consideration and more fully explain which insulator they 

would choose and why. 

In summary there were three major problems 3 Rs students had in 

learning mechanics. These were: a) solving problems that involved using a 

diagram to obtain information; b) reading and understanding graphs; and c) 

viewing problems holistically. 
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Conceptual Change 

According to the theoretical model, students who work in cooperative 

groups (the social environment) and use materials that scientists use 

(physical environment) and work with an instructor who assumes the role of 

the facilitator of instruction would be more likely to undergo conceptual 

change as identified in path four of Appleton's model. There was little 

evidence to support the assumption that working in cooperative groups had 

any effects at all on cognition. In fact, most students in the Three R's course 

tended to work individually dividing labor so that they could finish as soon 

as possible. Often, for part two of exams one person would do most of the 

work. Many students began to report other members of their group who did 

not pull their own weight. 

The instructors in the course felt most conceptual change and 

understanding occurred during instructor probing. The only evidence for 

this was anecdotal. 

Attitude Toward Science 

The fourteen questions from the Attitude Toward Science instrument 

were administered to students in both sections during the second week of the 

fall semester. Questions that were positively worded (e.g. Science is fun.) 

were assigned five points for an answer of "strongly agree", four points for an 

answer of " agree", three points for a neutral response, two points for an 

answer of "disagree", and one point for an answer of " strongly disagree". 

Items that were negatively worded (e.g. When I hear the word science I have 

a feeling of dislike.) were reverse scored: "strongly agree" was assigned one 

point; "agree" was assigned two points; "neutral" was assigned three points; 
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"disagree" was assigned four points; and "strongly disagree" was assigned five 

points. The maximum possible score was a 70, indicating a very positive 

attitude toward science. The minimum possible score was a 14 indicating a 

very poor attitude toward science. Students with a completely neutral 

attitude toward science would receive a score of 42. Items left blank were 

coded as a neutral response. 

The mean pretest score for the Three R's section was a 58.34. The range 

of scores was a maximum score of 70 and a minimum of 33. The mean for 

the lecture section was a 57.48. The range of scores was a maximum of 70 and 

a minimum score of 40. In order to determine if there were any differences 

between the pretest scores for the two groups a ttest procedure was conducted. 

First, an unequal variance F test was conducted to determine which t test 

procedure should be used. The F statistic was found to be 2.26. This was not 

significant at the .05 level and it was determined that the variances were 

equal. An equal variance t test was conducted and the test statistic was 

determined to be .3310idf. This statistic was not significant at the .10 level and 

it was therefore determined that there was no difference in the two pretest 

scores. 

The fourteen questions were then divided into two groups based on 

the type of question; attitude toward the subject science and attitude toward 

the study of science. There were no significant differences in any of the subset 

scores. The mean score for attitude toward subject science for the Three R's 

was 37.42. The mean score for the lecture section was 36.90. In order to 

identify significant differences between the two groups a t test procedure was 

conducted. An equal variance F statistic was calculated to determine which t 



test procedure to use. The F statistic was found to be 1.95 which was not 

significant at the .05 level. An equal variance t test then was conducted and 

the test statistic was determined to be .3224idf- This was also not significant at 

the .10 level and it was therefore determined that there was no difference in 

the attitude toward the subject science scores between the two groups. 

The mean score for attitude toward study of science for the Three R's 

was 20.95. The mean score for the lecture section was 20.58. In order to 

identify if the differences in the two groups' scores were significant a t test 

procedure was used. In order to determine which t test procedure should be 

used an equal variance F test was conducted. An equal variance F statistic was 

calculated to be 3.16. This was found to be significant at the .05 level and it 

was determined that the variances were unequal. An unequal variance t test 

was conducted and a test statistic of .3564idf was calculated. This statistic was 

not significant and it was determined that there was no difference in attitude 

toward study of science scores between the two groups. 

The posttest was given to both groups the last week of the fall semester. 

The mean posttest score for the Three R's was 57.68. The maximum score 

was a 70. The minimum score was a 32. The mean posttest score for the 

lecture section was a 56.27. The maximum score was a 70 and the minimum 

score was a 42. In order to determine if the difference between the two 

groups' scored were significantly different a t test procedure was used. Again 

an equal variance F statistic was calculated for the two groups in order to 

determine which t test should be used. The F statistic was determined to be 

1.10. Since this was not significant at the .05 level it was determined that the 

variances were equal. An equal variance t test procedure was conducted and a 
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test statistic of .506idf was calculated. This statistic was not significant at the .10 

level and it was therefore determined that there was no difference in the 

posttest scores for the two groups. 

Once again the test questions were divided into two groups based on 

the type of question: attitude toward subject science and attitude toward the 

study of science. Again, there were no significant differences in these subset 

scores. The mean test score for attitude toward subject science for the Three 

R's was 37.26. The mean test score for the lecture section was 35.56. In order 

to determined if the differences in the two groups scores were significant a t 

test procedure was used. An equal variance F statistic was calculated to 

determine which t test should be used. The F statistic was calculated to be 

1.29. This was not significant at the .05 level and it was determined that the 

variances for the two groups were equal. An equal variance t statistic was 

then calculated to be .845idf which was not significant at the .10 level. The 

mean test score for attitude toward the study of science for the 3 Rs was 21.47. 

The mean score for the lecture section was 20.00. A t test procedure was then 

used to determine if the differences in the two groups scores were significant. 

An equal variance F test was conducted and the F statistic was determined to 

be 1.29. This was not significant at the .05 level and it was determined that 

the variances were equal. An equal variance t test was conducted and the test 

statistic was determined to be 1.31idf. This was not significant at the .10 level 

and it was determined that there was no difference in the attitude toward the 

study of science test scores for the two groups. 

In order to determine if there were significant differences in the pretest 

and posttest scores for each group a gain score was calculated and a t test 
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procedure was conducted for each gain score. The mean gain score for all 

fourteen question for the 3 Rs group was -.684. The mean gain score for the 

lecture section was -1.28. An equal variance F statistic was calculated to 

determine which ttest procedure should be used. The F statistic was 

determined to be 5.24. This was significant at the .05 level. An unequal 

variance t statistic was calculated and was found to be .302idf. This was not 

significant at the .10 level and it was determined there was "no difference in 

the total gain scores for the two groups. 

A gain score for each subgroup of test questions was then calculated. 

The gain score mean for attitude toward subject science for the 3 Rs was 

determined to be -.158. The mean gain score for the lecture section was -1.414. 

An equal variance test statistic was calculated to determine which t test 

procedure should be used. The F statistic was found to be 8.20. Since this was 

significant at the .05 level an unequal variance t statistic was calculated. The 

test statistic was determined to be .883idf. This was not significant at the .10 

level and it was therefore determined that there was no difference in the gain 

scores between the two groups for attitude toward subject science. 

The mean gain score for attitude toward study of science was found to 

be .53 for the 3 Rs section and -.57 for the lecture section. Again an equal 

variance F statistic was calculated to determine which t test procedure should 

be used. The F statistic was found to be 1.17. Since this was not significant at 

the .05 level an equal variance t test procedure was used to calculate a t 

statistic. The test statistic was determined to be 1.08idf which was not 

significant at the .10 level. It was therefore determined that there was no 



difference in the two groups test scores. See Tables 7, 8, and 9 for a summary 

of attitude scores. 

Table 7 
Attitude scores 

Pretest Posttest Gain 
3 Rs 58.34 57.68 -.684 
(SD) (10.27) (9.84) (4.06) 
Lecture 57.48 56.27 -1.28 

(SD) (6.82) (9.37) (9.28) 
F statistic (30,20) 2.26 1.10 5.24* 
t statistic (1) .331 .506 .302 

'Significant at the .05 level 

Table 8 
Attitude Toward Subject Science 

Pretest Posttest Gain 
3 Rs 37.42 37.26 -.158 
(SD) (6.57) (4.41) (2.46) 
Lecture 36.9 35.56 -1.41 
(SD) (4.70) (3.43) (7.03) 
F statistic (30,20) 1.95 1.29 8.20* 
t statistic (1) .322 .845 .883 

'Significant at the .05 level 

Table 9 
Attitude Toward Study of Science 

Pretest Posttest Gain 
3 Rs 20.95 21.47 .53 
(SD) (4.00) (4.41) (3.67) 
Lecture 20.58 20.00 -.57 
(SD) (2.26) (3.43) (3.40) 

F statistic (30,20) 3.16* 1.29 1.17+ 

t statistic (1) .356 1.31 1.08 

^Significant at the .05 level 
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Interviews 

The interview data also suggested there were basically no differences in 

the two groups' attitudes toward science. No students in either section felt 

that the course they were enrolled in had influenced their career choice. Most 

indicated their career choice had influenced their decision to enroll in their 

physics course. Most students also indicated that the course in which they 

were enrolled had not influenced their decision to enroll in other science 

courses. Only one student in the 3 Rs group, Mary, felt the course had 

influenced her decision to enroll in other science courses. When Mary was 

asked, "Has this course in any way influenced your decision to enroll in other 

science courses?", she replied: 

"Oh gosh, yes. The other day I was thinking I was ready for an 
electrician course. From my design background, the interest has always 
been there. I used to fear electricity. Now I feel it's fear from 
unknowing. Now I feel like I have more of an understanding...! have 
more desire to take classes that I had no desire to before." 

When students in the 3 Rs were asked to describe their experience in 

their physics course last semester, several students commented on the 

structure of the course. Students had mixed opinions on how the course was 

structured. Many students felt they needed more structure in the course. For 

example, one student, Jennifer, said: 

"I feel like, maybe, for me personally I need more structure. I need to 
have someone explaining things more from the book. It's like a new 
math homework problem. Then I come in and do the lab. And like they 
tell me just get to work. I sometimes feel kinda lost about not bringing 
information from the book into the lab. I need help getting it together 
and everything." 
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Other students, however, indicated they really enjoyed the format of the class. 

For example, Lisa indicated the structure of the course helped her learn: 

"I've been able to do well in this class. I feel like I've been more in 
control. It's not really easier, but you understand it more because you 
have more help and it's a little more open. You have two helpers in the 
class. If you ask a question you don't really feel stupid...(It's like) you 
work under contract. If you want to stay after and finish you have a 
certain deadline (by which to finish). You can do it at your own speed. I 
like that you do it at your own pace." 

Another student, Alice, also felt the structure of the course better suited her 

learning style: 

" I think (this class) is a very good idea, because it's more individualized. 
You're not sitting in a big lecture class and coming in and taking quizzes. 
And I like using the computers." 

The theoretical model adopted for this study suggested that a 

constructivist environment would influence student attitude toward science. 

It was hypothesized that students would like science better, i.e., have more 

positive attitudes toward science if constructivist practices were used. The 

interview data provides some insight on this subject. Students in both 

sections identified practices that were decidedly constructivist as the most 

enjoyable aspects of the course . Several students enrolled in the lecture 

course indicated they liked the demonstrations and interaction with the 

professor. One male student, Andy, said: 

"This is the second experience in physics for me. It's been a positive 
experience. I have learned a lot more the second time around...(In the 
course I am in now) there is more interaction with the professor." 
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A female student, Cindy, also identified a constructivist practice as 

influencing her attitude toward the course. In her words: 

"I was really dreading physics. I had an expectation. I was just taking it 
because I had to. It's a requirement. It's really been much more positive 
than I expected it to be. I enjoyed the class very much. Some days I hate 
physics because it's a challenge. Some days I love it because it's 
interesting. (The professor) does a great job making conceptual ideas in 
physics applicable to real life." 

A third student, Becky, in the lecture section identified demonstrations and 

hands-on activities as an enjoyable part of the course: 

" I like the demonstrations. They were extremely helpful in helping me 
understand the material. The hands-on stuff you can really see what is 
happening." 

The Three R's students also indicated they enjoyed the hands-on experiences. 

Two of the interviewees, Mary and Sandra, exemplified the tone of the 3 Rs 

students: 

Mary: " I like (the 3 Rs course) a lot better because this is hands-on. The 
lecture class is just lecture. In (my other science classes) the lab was 
separate than the class. And then that wasn't productive. I think the 
one thing about having this class, the lab and the lecture together, you 
have the same people, the same person knows what's going on." 

Sandra: "I really liked the hands-on experience. I was a little skeptical at 
first. I didn't know what to expect. It was something new. It was easier 
than I thought. It has been better than any of my other (science) courses. 
It is a lot more work, but I would recommend it. I've always enjoyed 
labs. Its the other work I don't like because I get bored. I felt like I was 
doing real science because of the thought process, what would work, 
what wouldn't work, and seeing how the math really fit in. This is more 
in depth." 
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Other students in the 3 Rs course also felt they were doing real science. 

When asked "Do you feel like you were doing real science? In other words, 

do you feel like you did things real scientists do?" Mary was very explicit in 

why she felt she was doing real science: 

"Oh yeah. Definitely. Especially when we run trials. We have more 
than one trial to show the variance. I've had some statistical work... It 
was interesting to see how far off (our values) were from the mean. 
That's interesting because I can go to a science manual or journal and see 
the data tables or graphs, and know what really went into it. No, I didn't 
do that whole thing, but at least a tiny potion of what they had to 
do...And I guess when a lab was confusing it's even more like science 
because we have a manual. Scientists that are working on a specific 
project don't have manuals, they have unknowns. All they have is a 
certain procedure to follow. They know if they can repeat it and get the 
same answers through trials then they know they're on the right course. 
I think our lab is like that. Real science isn't a few lectures and do a few 
projects with one topic. A lab usually takes one topic and has three 
hours (to cover that topic). You miss a lot. At least here, every single 
section we are dealing with we have lab..." 

The lecture section students did not believe they were doing real science. 

Cindy's response to the question was adamant: 

"Oh gosh, no. The lab materials are so archaic compared to other science 
courses I have been in. We don't even have a decent balance. We have 
to use these crummy little beam balances that you pile up the weights 
and they are totally inaccurate. I think in a real lab it's a little more 
sophisticated. I realize in a science lab of course, they are going to have 
more advanced instrumentation." 

Andy also felt the labs did not emulate the practices of scientists: 

"I think (our labs were giving us the) basic idea...real science to me is 
when you are actually applying what you have learned. Applying 
science to the real world. The labs we did required no follow-up 
experiment and no thought. That's not real science..." 
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Students were also asked, in general, what role they felt women should 

play in the sciences. All students indicated that women should play the same 

roles as men do. The men did not chose to elaborate on this question, 

however most of the women did. Sandra, a 3 Rs student, elaborated on her 

previous experiences in science classes and how she chose to deal with her 

expected role and the men in her classes: 

"I think women should not be intimidated by (science). I think teachers 
might sometimes deter you. They might pick Joe over here instead of 
Sally to answer a question. I don't know if I ever went through that 
anyway (teacher determent). I might know the answer to the question, 
so I just nose my way in. If they did call on a boy and they didn't know 
the answer, (even though) 1 didn't want to intimidate the male species 
(laughs), I (would) jump right in with the answer." 

Another woman in the Three R's, Andrea, course had this to say: 

I think a lot of women are intimidated by (science) because like science 
seems like a man's field". 

A lecture section students, Becky, also felt intimidated by the course and the 

number of men in the course. When she was asked about enrolling in 

physics, she said: 

"... I was intimidated by (the class) because there were more guys in this 
class than any other class. This was physics. Hard science..." 

Cindy, also in the lecture section, also had been led to believe that science was 

a male-oriented career. She explains her reflections of why in high school 

and in her first degree program she chose not to major in science: 

"I think women should be as free as men to pursue the sciences. It's 
tough because I don't think they are because of the way we are taught in 
this culture. The society has said that women should not be scientists. I 
feel that's influenced my life because as a high school student I never 
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took anything beyond the basic requirements. I look back and the only 
reason I can figure out why that I didn't pursue the courses that I enjoy is 
because I felt like I wasn't suppose to like it. Now that I am at the college 
level, I've gone out into the world and worked, whatever. And coming 
back to school I am taking science at the college level and am planning to 
pursue it further. I am enjoying it very much and I am doing just as 
well as ever. That makes me say that women should be able to play any 
role as scientist as they want. At the other end of that question, I think 
one problem that has been shown to have occurred with a lot of 
scientists' experimentation is that they tend to consider men and 
extrapolate that to the entire human population. Which is really not the 
case. Experimentation on females should be considered separate 
experimentation and should be pursued as much as experimentation on 
men." 

Two women in the 3 Rs course indicated that they also knew women who felt 

the same way the previous interviewee felt. Lisa's comment was very similar 

to Cindy's. She said: 

"I think women's role in science is important, because women can do 
science like men can do. I've never thought of myself as not being able 
to do science. But often girls say they're not able. They don't think of 
themselves as not able to do science. But they have some all women's 
classes in high school and the girls do better because they don't have they 
guys to distract them. Like the guys aren't scared to ask questions." 

Several of the women enrolled in these courses did indicate that the 

course did change their attitude toward science. Becky, the woman in the 

lecture section who liked the demonstrations and the hands-on aspects of the 

lecture course and who indicated she was intimidated by the number of men 

in the course, said: 

"(As) I began to understand it I became much more confident...It's made 
me feel better about my future classes...This class has helped me realize 
I've made the right decision (in choosing science as a career)." 
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Lisa, a 3 Rs student, had this response when asked if the course had 

influenced her career choice: 

"I guess you can say it has. I've been able to do well in this class. I feel 
like I am more in control." 

Students in the 3 Rs course commented on how they felt this method 

of teaching affected their learning of the material. Mary felt she learned more 

by using hands-on materials: 

"The learning is not forced...This hands-on stuff is being stored in long 
term memory. It's not just reading it and forgetting it..." 

Jennifer, another 3 Rs student, felt the approach to teaching was more 

applicable to everyday life than a physics lecture course she had been in 

previously: 

"Some things I realize I am understanding, but I really wonder just how 
much. But then again when you are forced to memorize it all you're 
really not learning it... I was in a previous physics class (the lecture 
course). And it was more abstract. And this process I like it much more 
because it seems applicable to real life situations. (Now) I understand. 
Before (in the other class) in was like whoa. Real life doesn't deal like 
that." 

Mary also commented on how important she felt the role of the 

instructor was in helping students understand the material: 

"The instructor adds to the class a great deal. The manual will show you 
a diagram, but it doesn't give you the procedure how to get to that point, 
and that's where the person comes into play. We definitely need that." 
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In summary the interviews supported the quantitative findings. There 

basically were no differences between the two groups attitudes. The qualities 

both groups said they liked most about the courses were decidedly 

constructivist; the hands-on activities, demonstrations, and applications to 

everyday life. Many of the women felt there were societal pressures exerted 

on them to not major in science. They also believed physics was a 'hard 

science'; a science that was for men. Many of the women also felt that 

because they had been successful in these courses they were more confident in 

their choice to pursue a career in science. 

The students in the Three R's course felt they were emulating the 

practices of scientists in the classroom. Students in the lecture section did not 

share this belief. Many felt their labs were disorganized and archaic. 

Fitting the Data to the Model 

The theoretical model, the Constructivist Learning Model, on which 

this study was based suggests that student background knowledge and 

experience affect cognition. Ideally, an Analysis of Covariance test would be 

conducted using a variable such as SAT score to serve as the background 

covariant with the section students were enrolled in to determine if there 

were any significant differences in Mechanics Baseline scores. Unfortunately 

one of the fundamental assumptions, independent observation of Baseline 

scores, was not meet. Therefore, this assumption can not be examined using 

a statistical test. 

In order to examine this assumption, self-reported SAT scores and 

grade point averages were examined. The mean self-reported SAT score for 

students in the Three R's course was 1028. The median SAT score for the 
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Three R was 950. The mean self-reported SAT score for students in the 

lecture section was 1148. The median self-reported SAT score for students in 

the lecture section was 1230. Students in the 3 Rs section had an average GPA 

of 3.0. Students enrolled in the lecture section had an average GPA of 3.40. 

(See Table 10). 

Table 10 

Self-reported SAT Scores and GPA 

SAT ' Mean GPA 
Mean Median 

3 Rs 1028 950 3.0 
Lecture 1148 1230 3A 

*Not all students had taken the SAT. Many indicated they had taken the ACT. (3 Rs n=12. 
Lecture n=18) 

This data suggests that students in the lecture section are more 

successful in college and were better prepared for college than those in the 3 

Rs course. However, students in the 3 Rs course did just as well on the 

Mechanics Baseline Test. Research suggests that a predominately non 

minority male group should outperform a predominately female group on 

cognitive tests in the physical sciences(Grossman & Grossman, 1994; Kahle & 

Meece, 1994). This was not the case in this study. 

The model also suggested that a constructivist learning environment 

would influence student attitudes toward science. The Attitude Toward 

Science in School Assessment scores did not indicate there was any change in 

attitude toward science. However, the qualitative interview data indicated 

that women enrolled in these courses felt more confident because they were 
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successful in the course. The quantitative findings are not surprising 

considering that students enrolled in these courses had very positive attitudes 

toward science at the beginning of the course. Since these scores were already 

high the only changes that could have been detected would have been lower 

scores indicating less positive attitudes toward science. The fact that students 

in these classes had such high attitude scores is also not surprising. 

Enrollment data at The University of North Carolina at Greensboro suggests 

that students who are non-science majors choose to enroll in the life sciences 

for their required lab science credit. 

In general, the data collected for this study supports the theoretical 

framework. Women enrolled in a constructivist physics course perform just 

as well as predominately non-minority males in a lecture course. Overall, the 

women enrolled in the 3 Rs course had lower SAT scores and lower GPA's 

than students in the lecture course suggesting that the constructivist learning 

environment mediated their understanding of physics concepts. 

The data also supports the hypothesis that use of constructivist 

learning strategies would affect student attitudes toward science. Students in 

both the lecture and 3 Rs course indicated hands-on activities, interaction 

with the instructor, and application to real life made physics more enjoyable. 

Enjoyment of science courses is an integral part of attitude toward science. 

Women in both courses felt more positive in regard to their career choice due 

to the successful experience they had in physics. 

Archival data corroborates the findings for this study. Fifty-five 

percent of the students enrolled in the spring on 1993 indicated they had 

learned more in the 3 Rs course than other science courses. One student 
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group indicated they felt that the "class had a positive impact on (their) ability 

to actually do science instead of just learn science...". Eighty-three percent of 

the students enrolled in the 3 Rs course in the Spring of 1994 indicated they 

felt the hands-on approach to learning physics had positive effects on their 

learning. One student group wrote the following statement in their course 

evaluation: 

"The entire set-up of the program allows a student to experience physics 
from a hands-on point of view. This is important because the idea of 
learning physics from a book is very frightening...One can get through a 
lecture course in physics by memorizing certain formulas and never 
knowing how or why they apply to certain situations. That path is 
impossible with the 3 Rs procedure. It is necessary that students have a 
full understanding." 

Fifty percent of the students enrolled in the Spring of 1994 and twenty-

seven percent of the students fro the Spring of 1993 indicated that the 3 Rs 

course had in some way influenced their career choice. Most of these 

students indicated the course had boosted their confidence in their ability to 

do well in science courses. 

The Mechanics Baseline Test results for the Fall semester of 1992 also 

supports there was no difference in scores on the tests for the 3 Rs course and 

the lecture course. The mean number correct for the Mechanics Baseline Test 

for the Fall of 1992 was 6.47 (n=30; SD=2.34). These scores are very similar to 

those obtained for this study. Unfortunately there are no lecture section 

group equivalent scores for Fall 1992. 
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CHAPTER V 

DISCUSSIONS, CONCLUSIONS, AND RECOMMENDATIONS 

Discussions 

The purpose of this study was to examine the effects on the 

restructured pedagogy of the 3 Rs course on student cognition and attitude 

toward science. The lecture course was used as a comparison to determine 

these effects. Statistically, there were no differences in the two groups. 

However, qualitative data suggested that several differences did exist between 

these groups. 

First, the data collected for this study indicates that students in the 3 Rs 

course could not interpret diagrams as well as students in the lecture course. 

In particular students in the 3 Rs course had more difficulty with force 

diagrams. The theoretical model for study indicated that in order for students 

to understand certain concepts they should be provided with the opportunity 

to act on objects as do physicists. Unfortunately for many concepts there are 

no concrete or visual activities in which students are able to experience 

phenomena. For example, there is no way to 'see' forces. In the activities 3 

Rs students participated in to study force, they used a force probe to hang 

objects from and move a dynamics cart. The students did not get very good 

results from using the force probes. As a result they had a difficult time 

understanding how hanging and moving objects was related to force. The 

students did not have any activity that was designed to identify normal forces. 
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Perhaps the fact that they could not 'see' these forces explains why they did 

not understand force diagrams. The lecture section students had more 

opportunities to draw force diagrams than did the 3 Rs students. The 

theoretical model also suggests that a students background knowledge and 

experience also play a role in their conceptual understanding. If one accepts 

this model, these results are not surprising considering students in the lecture 

course had a median SAT score that was 280 points higher than the median 

SAT score for the 3 Rs. 

Secondly, the data indicated that the 3 Rs students had problems 

reading and interpreting graphs. The interview results indicated that the 3 Rs 

students were beginning to correct this problem. In the interviews the 3 Rs 

students were more successful than the lecture section students at drawing an 

acceleration graph from a velocity graph. Neither section was particularly 

successful at drawing a force graph from a velocity graph. Perhaps this is 

because the 3 Rs students had the opportunity to 'see' velocity and 

acceleration in their activities. They moved toward or away from a motion 

detector that immediately showed them a graph of their motion. When 3 Rs 

students were first asked to draw velocity graphs from acceleration graphs and 

visa versa they were not successful at doing so. This continued experience 

helped students to be able to visualize these graphs-

Graphs and diagrams play a crucial role in how scientists communicate 

their findings. Since language is symbolic representation used for 

communication, graphs and diagrams can be considered as the language of 

scientists. According to the model, language plays an important role in 
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facilitation of student understanding. The 3 Rs students had not yet mastered 

this new language by the end of the semester. 

Thirdly, the data indicated that students in the 3 Rs course had trouble 

viewing problems holistically. This is one area of scientific literacy that 

Rutherford and Ahlgren (1990) have deemed a part of scientific habits of 

mind. They believe every American should posses critical response skills 

that allow them to be able to apply critical skills to their own observations, 

arguments, and conclusions. Students in the 3 Rs course had not mastered 

these skills by the end of the semester. 

The quantitative data provided no supportive evidence for detecting 

differences in student attitudes toward science. The fact that students in both 

sections had very positive attitudes toward science coming into these courses 

made it difficult to detect any positive changes in student attitudes. The only 

differences that could have been detected with a group this small in number 

would have been more negative attitudes toward science. Students attitudes 

did not become more negative. In the interviews, students said the parts of 

the courses they enjoyed the most were constructivist in nature. These 

included hands-on activities, instructor interaction, and real life applications. 

The women interviewed from both groups said they felt much more 

confident about their career choice because they had been successful in their 

physics courses. They also made comments about how they or other women 

they knew felt intimidated by science, physics in particular, because it was a 

'man's field'. These comments are particularly important because they were 

unsolicited and made by several of the female interviewees. This is 

supportive evidence that women enter physics courses with existing beliefs 
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about women in science. The fact that they feel more confident after a 

successful experience in science courses that used constructivist strategies to 

teach content also is supportive evidence for the theoretical model of 

improving women's attitude toward science by implementing certain 

constructivist strategies. In the case of this study it was the use of hands-on 

activities, instructor interaction, and applications to everyday life. 

However, it should be pointed out that the definition of 'hands-on' 

activities is different for these two groups. For the lecture section 'hands-on' 

activities were demonstrations conducted by the instructor. In the 3 Rs 

'hands-on' activities were the activities in which the students participated. It 

was interesting that not one of the lecture section students who were 

interviewed mentioned how they felt the lecture helped or hindered their 

learning. Lisa, Mary, and Jennifer from the 3 R's course all felt the course 

helped them really learn the material. There has been little research 

conducted on how demonstrations affect student understanding of physical 

phenomena. Preliminary research conducted by Krauss et al., (1994) suggests 

that demonstrations are relatively ineffective for long term memory storage. 

It is an area that merits much further study. 

Conclusions 

Based on these data the following conclusions can be drawn: 

1. Student enjoy science classes more if certain constructivist strategies 

are used, i.e., hands-on activities, instructor interaction, and applications 

to everyday life. 
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2. Women feel more confident about their science career choice if they 

are successful in their science courses; 

3. Students who are not as well prepared can match an understanding 

level of better prepared students when exposed to a constructivist 

leaning environment; 

4. In order for students to be highly successful in their science courses 

they must understand the language of scientists, more specifically they 

must be able to comprehend graphs and diagrams. 

None of these conclusions are surprising. The conclusion that student enjoy 

science classes more if certain constructivist strategies are used has already 

been reported by Ebenezer and Zoller (1993). A study conducted by 

Rosenquest and McDermott (1987) reported the similar result that students 

could reach a higher level of understanding of kinematics concepts after 

exposure to instruction constructivist in nature. Recently science educators 

have become particularly interested in the role language and dialogue play in 

student understanding (Fischer & Von Aufschnaiter, 1993; Glasson & Lalik, 

1993). The findings that student understanding is impeded by not 

understanding the language scientists use to explain data, i.e. graphs and 

diagrams, also is not surprising. Use and mastery of language in the science 

classroom is another area that merits much further research. 
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A third area that merits much further research is the idea that women 

and perhaps minorities can be further encouraged to enter science professions 

by using teaching strategies that allows them to be more successful in science 

courses thus affecting their attitude toward science. In this particular study 

use of constructivist strategies such as hands-on activities, instructor 

interaction, and applications to everyday life affected student attitudes. Other 

studies have identified working in cooperative groups with other females as 

having positive effects on women's learning (Andrews & Meisner, 1994; 

Belenky et al., 1986). It would be interesting to develop a year long case study 

that examines all these factors. 

Recommendations 

It is difficult to draw conclusions about career choice in such a short 

time period. In order to determine if using certain teaching techniques and 

practices are to truly influence women and minorities to, pursue careers in 

science, a longitudinal study needs to be conducted. The 3 Rs project is just 

completing its third year. It would be especially enlightening to interview 

students from the previous two years to ascertain the effects of this course 

after at least one year has passed. These students should be contacted again 

several years in the future. 

Several findings in this study should be particularly interesting to 

secondary science teachers. The finding from this study suggests that high 

schools are not spending enough time developing scientific habits of mind 

nor are they facilitating scientific language development. Science educators 

have already begun reform movements in science education to create a more 

scientifically literate society, a society that has acquired the ability to think 
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critically and one that views science more favorably and more intelligently. 

A specific example of this reform is in North Carolina. State competency 

goals and objectives are no longer emphasizing the memorization of vast 

amounts of information. Instead, teachers are encouraged to facilitate science 

process skills. These skills encompass the ability to interpret data, which 

includes interpreting graphs and diagrams. These skills, if taught properly, 

should also help student be able to view problems holistically. In other words 

students should acquire scientific habits of mind. 

These competency goals also intend to foster positive attitudes toward 

science. Teachers should be encouraged to use and coached on how to use 

hands-on activities to promote student understanding of science concepts. 

Based on the results of this study, if the afore mentioned and other 

constructivist strategies are used to teach science students will begin to view 

science more intelligently and more favorably. If these broad general goals 

are meet then perhaps more women and minorities will choose to have 

science and science related careers. 
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PHYSICS & THE 3 RS Fall 1994 

Monday 22 August, 1994 

Welcome to Physics & the 3 Rs, a NSF^siippdrted initiative whose purpose is to 
attempt to increase the number of Underrepreserited groups in the science and 
m a t h e m a t i c s ' p i p e l i n e ' .  T o d a y ' s  s c h e d u l e  i s ; '  / C ,  -  •  

• Introductions: 
You, the class members, Slierri, former biology teacher and now doctoral candidate in the 
School of Education and your Graduate Assistant (GA); Anu Prabat, biophysicist and 
observer for the course; Harol Hoffman anthropologist and colleague with this project; and 
Jerry Meisner, physicist and instructor. 

• Discussion of the structure of the course: 
The course meets MWF from 10 AM until 11:50 AM. There is no additional scheduled lab. 

"'11 briefly describe the difference between this course and Phy 101-91 which meets from 1-2 
PM, MWF and has an additional 3 hour lab. 

The good news about this style of learning is that the grades are higher in this course than in 
the 'regular' course with a lecture format ( and, research has shown, you also learn a great 
deal more ). The bad news is that you have to work hard to earn your grade. 1 Iowever, in this 
course, hard work nearly always translates into good grades. In the lecture course, hard work 
often translates into poor grades. The reasons for this are well understood. 

• Introduction to the Mac 

• Activity 1-2 C.: Pitching Speed Data 
For the three distances in the table on page 1-4, use 10m, 20m and 30m. 

• Activity 1-2: D: 
Macintosh Basics 'application'is in the Macintosh Basics 'folder' on your Mac hard disk. 
We'll lead you through the beginning steps. 

• By Wed, 10 AM please 
* purchase and bring to class the Activity Guide. Physics 101-01, from the 
UNCG bookstore as well as the textbook. 
* finish through page 1-5 . Room 201 will be open 8-5 PM or later for your 
convenience. 

word\3Rs\course work\F94\class noles\Unit 1 Introduction J. Meisner p 1 August 21,1994 
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Conceol Quit RJ3 NAME 
losed wtk 10:00 - 10:15. If you finish before 10:15, please slarl on your olhcr 
clusswork. 

I. Suppose you want n mug of hoi chocolate In lake to a socccr game on a cuUI fall ilay. 
iJcscrlbc In dclail the kliul of cup ynu would use so Ihnl Ihc dutcolale would slay luil as 
long as possible. You tuny label various components of » cup shown in Ihc schcmallc if 
you wish. You can add, subtract. or draw another mug, of course. Oe complete. 

fC 

7. Suppose you lake lhal cup of hoi chocnlalc and pour ll Inlo a well Insulaled bowl nnd 
measure Us tcmperalutc wllh a Irnipctalurc probe, taking Ihc temperature of Ihc chocolate 
al fie«|ticnt Inlervals. You Ihen plol Ihc temperature vs. lime. Which will be Ihc most 
likely graph you will sec 7 

t 

n 

1 Imi 

c 

Explain why you chose whal you did. 

l'o»vriMat\?Rj\CoM«M\r94\CriKr|'l Quit •!? Ilea* and 1rrop J MH«ncr NovrniVirr IB, 1994 



1 0 3  

EXPERIMENT: Specific Heat and Heat of Fusion H53A 

OBJECT! To determine the specific heat of a solid and the heat of 
fusion of ice. 

APPARATUS: Water boiler, cast iron or brass specimen, beam balance 
with metric masses, thermometer, calorimeter. 

DISCUSSION: The specific heat of a substance may be defined as the 
number of calories of heat required to raise the temperature of one gram 
of the substance one degree celsius. The calorie is so defined that the 
specific heat of water is unity. Almost every other common substance 
has a specific heat less than that of water. The specific heat of a 
substance may be determined by the METHOD OF MIXTURES wherein a known 
mass of tha substance at a known tamparatura is mixed with a known mass 
of another substance (of known specific heat) at 6 known temperature, 
and the resultant temperature of the mixture is noted. The heat lost by 
the hot body equals the heat gained by the cold body. Since the heat 
transferred to or from the body of known specific heat can be 
calculated, the specific heat of the other body can be found. In Part 
A of this experiment a metal specimen is heated to the temperature of 
boiling water, then transferred to a cup of cold water. After a few 
minutes the temperature of the mixture becomes uniform as a result of 
the flow of heat from the hot speciman to tha surrounding water and the 
cup. The heat lost by the specimen equals the heat gained by the water 
and the cup, and hence the specific heat of the metal can be calculated. 

The latent heat of fusion is defined as the amount of heat per unit 
mass (cal/g) given up when a substance changes from the liquid state to 
solid state, at the melting point. The latent heat is defined only at a 
phase transition point whereas the specific heat is defined at all 
points other than the phase transition points. In Part B of this 
experiment a few ice cubes are added to warm water. After a few minutes 
the resulting water mixture is at a new temperature lower than the 
original temperature but higher than the ice temperature (which we take 
to be 0°CJ. 

PROCEDURE: (Read all temperatures within 0.l°c. )  

PART A. 
1. Half fill the boiler and start it heating. 
2. Find the mass of the inner cup of the calorimeter (without 

plastic ring). 
3. Find the mass of the metal specimen. 
4. Lay the specimen on its side in the cup and add just enough 

water to cover it. 
5. Remove the specimen from the cup and put it in boiling water 

for at least five minutes. 
6. While the specimen is being heated add a few pieces of ice to 

the water in the cup to cool it about 10C° below room 
temperature, find the mass of the cup with the water in it, 
and place it in the outer part of the calorimeter to minimize 
heat transfer through the walls of the cup. stir the water 
until all the ice has melted. 



1 0 4  

7. When the specimen has been in the boiling water at least 
five minutes, read the temperature of the water in the cup, 
then quickly take the specimen from the boiler and lower it 
into the water in the cup. Be sure that the specimen is fully 
submerged, and brings with it very little water from the 
boiler. 

8. Stir the water gently with the thermometer while watching the 
temperature. Record the maximum temperature reached, the 
final temperature of the mixture. (The temperature will first 
rise rapidly, then, after the specimen has cooled to the 
temperature of the water, will fall slowly due to the loss of 
heat to the surrounding air. Carefully watch the thermometer 
and note the highest temperature reached.) 

PART B. 
1. The latent heat of fusion is to be determined by putting a 

known mass of ice in warm water* whose mass and temperature 
are known. The heat lost by the warm water, calorimeter, and 
thermometer equals the heat required to melt the ice and raise 
the temperature of the water formed from the ice to the 
resulting temperature of the mixture. Read all temperatures 
within 0.1°C and masses within 0.1 g. 

2. Flan carefully the order in which you will proceed, listing 
the quantities you need to measure, check your list and plans 
with the lab instructor. 

•The heat transferred to and from the room is approximately 
"balanced out" when the starting temperature is as far above 
room temperature as the final temperature is below. 

CALCULATIONS8 The specific heat of the inner cup of the 
calorimeter is 0.217. 

PART A. 
1. 

PART B. 
1. 

Heat gained by cup and water = Heat given up by specimen. 
Since no phase changes occurred, mcAis the expression for the 
heat gained or given up by each part. Find c for the 
specimen. 
The specific heats of iron, brass, and aluminum are 0.113, 
0.088, and 0.219, respectively. Which kind of metal was your 
specimen? 
Find percent error for your value of c. 

Heat gained by melting ice and warming melted ice 
= Heat given up by warm water and cup. 

Some of these amounts of heat are given by mcAT, but one is of 
the form mL, where L is what you are to find. 
Find the percent error if the accepted value of L is 
79,7cal/g. 



ENERGY TRANSFER AND TEMPERATURE CHANGE 

Investigation 3: Heating Other Materials 

To And out How transferring heat to I quids other than water affects the temperature 
change 
The specific heat capacity ol • (quid other than water 
How to reach thermal equllbrlum by balancing heal loss and heat gain 

Materials MacTemp or PC-Tamp software 
two temperature probes 
heat pulser (relay box and healer) 
Universal Laboratory Interface (ULI) 
alcohol (Isopropyl) 
foam or other fnsufafed cup 
piece o( metal with hole (or temperature probe 
boiling water 
container marked In ml 

Introduction In Investigations I and 2 you examined how the temperature ol a sample ol 
water Is changed by translating heat to It. and you lound the specific heal 
capacity ol water. In this Investigation you wilt use the same procedures to 
heat another liquid and find Its specific heal capacity. 

You will also measure Ihe lolal heal lost by a hot ob|ect Is placed In cooler 
water and Ihe total heat gained by Ihe water as they come to thermal 
equilibrium. 

Activity 1 Heating a Uqutd Other Then Water 

1. Choose a lould and record lis name and mass density. 

Heme ol liquid: Mess density: gram/ml 

Prediction Do you think It will take the same amount of haat energy (same number of 
pulses) to raise Ihe temperature ol this liquid the same number ol degrees 
as an equal mass of water? Explain why you made this prediction. 

2. Use MacTemp or PC-Temp to make the measurements that are needed 
to fill In the table on the next page Just as you did when you used 150 
grams ol water. However, this time use 150 grams of your liquid and try 
to produce the same temperature rise as In Investigation 1. Activity 2. 
(Come as dose as you are able) 

II you measure Ihe liquid's volume instead ol lis mass, you will need to 
calculate the number ol ml ol ihe liquid that have a mass ol 150 grams: 
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Volume ol liquid: ml. 

Desired Ismpaialure Increase: _*C 

Initial lampsralura ol IquM: *C 

Oaslrad Dnal temperature: *C 

Manet 
UquUto) 

Nuntoatol 
Heel Pukes 

Changa In 
Tanp.rCI 

Twnp. Chang* 
Per Puiu COpuha) 

150 

3. Cana«t» wauf maaamamanta la lha ma it a tar walar Did II lake lewer. 
about tha tama, or mora puis** to raise this Rqukfs lampsralura lite 
sama amount as an equal mass ol walar? Did this agraa wtlh your 
prediction? 

P.alrailria lha «naH«r haat ranarihi nt lha louM. Usa lha mass ol lha 
Rquld. lha temperature change, lha numbar ol pulsas. lha langth ol tha 
pulses and lha calbratlon ol tha haalar Irom Invasllgatlon 1, Activity 3 to 
calculate the specific heat o! Ih* liquid. Show your calculations below. 

Specific heal ol the liquid: cal/gramsC 

Questions How does your measured value ol Ihe specific heat ol Ihe (quid agree with 
the accepted value in your textbook or a handbook? By whal percentage do 
Ihe values (filler? (Ql) 

Did your measured value coma oul too small or too largo? Explain why you 
think II came oul this way. (02) 

Using lha accepted value tor lha mechanical equivalent ol heat, calculate 
the specific heat ol your Rquld In |oules/gram"C. (Q3) 
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Activity 2 Htal Gain and Loas-Thermal Equilibrium 

In this activity you will examine haal How* from ona ob|«ct lo another whan t 
hot and a cold obfed ara brought In contact with aach olhar by observing 
temperature change*. You hava already obiarvad what characterizes the 
atata ol Ihtrmal mjuBIMum betwaan the two objeds-when they teach a 
common. Steady temperature, and whan there Is no longer a net heat I tow 
between them. 

Prediction Record below the spedllc heat ol water and the mass and specific heal ol 
the metal you wilt be using In this Investigation. 

Spedllc heal ol water: foutesfgram'C 

Name ol metal: Mass: grams 

Spedllc heat: foules/gram'C 

II you heat the metal to a high temperature and put It Into an equal mass ol 
cool water at room temperature, win the final temperature be midway 
between the cool water temperature and the high temperature, closer to the 
cool water temperature or closer to the original high temperature ol the 
metal? Explain how you decided what lo predict. 

Now test your prediction. 

1. Prepare the tamnwratiira probes and aotlware. Plug In two temperature 
probes. Display and graph both probes (Temperature I 8 2). Set the 
time axis lo 120 seconds and the temperature axis tram I0"C to 110 *C. 

2. Haal the metal and measure Ha temperature. Place probe 2 In the hole In 
the metal, and tape It In place. Place the metal In boiling water so that It 
Is completely Immersed. 

3. Sal UP lha water and net ready to wraah. Pour a mass ol cool water 
equal to the mass ol the metal Into a foam cup. Put probe t In the cup. 

4. Start graphing Stir the water constantly. Altar to seconds, record the 
temperature ol the water and the temperature ol the metal. 

Initial temperature ot the water: *C 

tnWat temperature ol the metal: *C 

5. QuSchtv »H the metal oul ol Ihe boHno water and place It Into the cool 
ttalfif. 

Keep stirring. Alter the temperature stops changing, record the final 
temperature ol the water with probe 1 and Ihe metal with probe 2.. 

Final temperature ol water and metal: ®C 
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6. Sketch the graphs on the b*tcnw. 

110 

T BO 
• 
m 
P 70 

rc> 50 

30 

X ! ! I ! — 0 « 38 « W 72 64 86 108 120 
Time (sac) 

7. Calcutata Iha haul transferred lo Iha walar In wanting UP. Use Iha mass, 
•pedflc haal and temperature change lo calculate Iha best transferred lo 
Iha water. Show your calculations. 

Haal galnad by Iha walar: joules 

8. Calcutta Iha haal hart translated Irom Iha mala! In cooing down. Use 
Iha mass, spedne hast and temperatuie change lo calculate the heat 
transferred Irom the metal. Show your calculations. 

Heal lost by the metal: Joules 

Questions Explain the shapes ol your graphs based on what you know about heal How 
and thermal equlRbrium. (04) 

After you mixed the metal and the water together, what happened to the 
temperature of the waler? What happened to the temperature ot the metal? 
(05) 



Did lha final temperature agree with your prediction? II nol, can you explai 
why your prediction was Incorrect? (OS) 

Does the heal gained by the water equal the heat lost by the metal? II nol, 
what Is the percent difference between them? (Q7) 

What are the Imitations In this experiment which mlQht explain any 
differences In Question 7? (Q8) 
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Appendix B 



3 R's Student Survey August 24, 1994 

Please use this scale to answer the following questions: 

SA — Strongly Agree 
A — Agree 
N — Neither agree nor disagree 
D — Disagree 

SD — Strongly Disagree 

(Circle one choice.) 

18. SA A N D SD Science is fun. 
19. SA A N D SD I do not like science and it bolliers me to 

have to study it. 
20. SA A N D SD During science class, I usually am interested. 
21. SA A N D SD I would like to learn more about scicncc. 
22. SA A N D SD If 1 knew 1 would never go to science class 

again, 1 would feel sad. 
23. SA A N D SD Science is interesting to me and I enjoy it. 
24. SA AND SD Science makes me feel uncomfortable, 

restless, irritable, and impatient. 
25. SA AND SD Scicncc is fascinating and fun. 
26. SA AND SD The feeling that 1 have towards scicncc is a 

good feeling. 
27. SA AND SD When 1 hear the word scicncc, I have a 

feeling of dislike. 
28. SA AND SD Scicnce is a topic which I enjoy studying. 
29. SA AND SD I feel at case with scicncc and I like it very 

much. 
30. SA AND SD I feel a definite positive reaction to scicncc. 
31. SA AND SD Scicncc is boring. 



Mechanics Baseline Test 
* Refer to the diagram below when answering the first two 

questions. This diagram represents a multlflash photograph of 
an object moving along a horizontal surface. The positions as 
Indicated in the diagram are separated by equBl time intervals. 
The first flash occurred just as the object started to move and 
the last just as It came to rest. 

o o o o  o  o  o  o o o  |  I II  I  | I  I I  1[  I  I  I  I  |  I I  I  I  |  I I  I  I | I  I I  I  |  I I I  I  |  I I  I  I  I  I  I  I  I  IH1 I I  
1. Which ol the following graphs best represents the objects velocity as a 

function of time? 

(A) (B) 

+i+i-ji+)v|$- t i 

I 

f+t-Wi 

* <D> ), (E) • 

1 t K^H++H"+^+<'- t 

2. Which of the following graphs best represents the object's acceleration as a 
function of time? 

(A) 

r- \ r-
I A 

—1 1 
i n 1 In II 1 t 

—•» 1 

'I'i Ii i i i Ii -  «  •w 1 lini 1 > t H I I 

(D) a (E) 

l i I I t  

3. The velocity ol an object as a function of time is 
shown in the graph at the right. Which graph 
below best represents the net force-vs.-time 
relationship for this object? 

(A) (B) 

t 

F <E) 

t 

1  

* Refer to the graph on the right 
when answering the next 
three questions. 

This diagram depicts a block 
sliding along a frictionless ramp. 
The eight numbered arrows in the 
diagram represent directions to be 
referred to when answering the 
questions. 

4. The direction of the acceleration of the block, when in position I, is best 
represented by which of the arrows in the diagram? 

(A) 1 (B) 2 (C) 4 (D) 5 
(E) None of the arrows, the acceleration is zero. 

5. The direction of the acceleration of the block when in position II is best 
represented by which ol the arrows in the diagram? 

(A) 1 (B) 3 (C) 5 (D) 7 
(E) None of the arrows, the acceleration is zero. 

6. The direction of the acceleration of the block (after leaving the ramp) at 
position III is best represented by which of the arrows in the diagram? 

(A) 2 (B) 3 (C) 5 (D) 6 
(E) None of the arrows, the acceleration is zero. 

7. A person pulls a block across a 
rough horizontal surface at a constant 
speed by applying a force F. The arrows 
in the diagram correctly indicate the 
directions, but not necessarily the 
magnitudes of the various forces on the 
block. Which of the following relations 
among the force magnitudes W, k, N. and 
F must be true? 

(A) F.k and N>W (B) F » k and N > W 
(C) F > k and N < W (D) F > k and N = W 
(E) None ol the above choices 

,4k 
V B<V 

.--El 

2 
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A small metal cylinder rests on a circular turntable, 
rotating at a constant speed as illustrated in the 
diagram at the right. Which ol the following sets of 
vectors best describes the velocity, acceleration, and 
net force acting on the cylinder at the point indicated 
in the diagram? 

(A) (B) 

-> v 

(C) 

a - 0 

(D) 

F a 

9. Suppose that the metal cylinder in the last problem has a mass of 0.10 kg 
and that the coefficient of static friction between the surface and the cylinder 
is 0.12. If the cylinder is 0.20 m from the center of the turntable, what is the 
maximum speed that the cylinder can move along its circular path without 
slipping off of the turntable? 

(A) 0<vi0.5m/s 
(C) 1.0 <v£ 1.5 m/s 
(E) 2.0 < v & 2.5 m/s 

(B) 0.5 < v S 1.0 m/s 
(D) 1.5 <vS 2.0 m/s 

10. A young girt wishes to select one of the frictionless playground slides 
illustrated below to give her the greatest possible speed when she reaches 
the bottom of the slide. 

- T f c  _ _ _ t  

2.3 m 

0 5m 

Which of the slides illustrated in the diagram above should she choose? 

(A) A (B) B (C) C (D) D 
(E) It doesn't matter, her speed would be the same for each. 

Refer to the diagram below when answering the next two 
questions. 

X and Z mark the highest and Y 
the lowest positions of a 50.0 kg 
boy swinging as illustrated in the 
diagram to the right. 

11. What is the boy's speed at point 
Y? 

(A) 2.5 m/s (B) 7.5 m/s 
(C) 10. m/s (O) 12.5 m/s 
(E) None of the above. 

12. What is the tension In the rope at 
point Y? 

(A) 250 N (B) 525 N 
(E) None of the above. 

5.0 m 

.0 m 

(C) 7 x 10* N (D) 1.1 * 103 n 

* Refer to the diagram below when answering the next two 
questions. 

Blocks I and II. each with a mass of 1.0 kg are hung from 
the ceiling of an elevator by ropes 1 and 2. 

13. What is the force exerted by rope 1 on block I when the 
elevator is traveling upward at a constant speed of 2.0 
m/s? 

(A) 2 N 
(D) 20 N 

(B) 10 N 
(E) 22 N 

(C) 12 N 

14. What is the force exerted by rope 1 on block II when the 
elevator is stationary? 

(A) 2 N (B) 10N (C) 12 N (D) 20 N (E) 22 N 

4 



Refer to the following diagram when answering the next two 
questions. 

The diagram to the right depicts the paths ol two 
colliding steel balls, P and Q. \ 

15. Which set ol arrows best represents the direction ol 
the change in momentum ol each ball? 

(A) (B) 

'P /o 

(C) 

P 

<D) (E) 

16. Which arrow best represents the direction ol the impulse applied to ball O 
by ball P during the collision? 

(A) (B) (C) (D) (E) 

17. A car has a maximum acceleration of 3.0 m/s2. What would its maximum 
acceleration be while towing a second car twice its mass? 

(A) 2.5 m/s2 (B) 2.0 m/s2 (C) 1.5 m/s* 
(D) 1.0 m/s2 (E) 0.5 m/s2 

18. A woman weighing 6.0 x 10 2 N is riding an elevator from the 1SI to the 6th 

tloor. As the elevator approaches the 6th lloor, it decreases its upward 
speed from 8.0 to 2.0 m/s in 3.0 s. What is the average force exerted by the 
elevator floor on the woman during this 3.0 s interval? 

(A) 120 N (B) 480 N (C) 600 N 
(D) 720 N (E) 1200 N A 

19. The diagram at the right depicts a hockey 
puck moving across a horizontal, trlctionless 
surface in the direction ol the dashed arrow. A 
constant force F, shown in the diagram, is acting 
on the puck. For the puck to experience a nel 
lorce in the direction of the dashed arrow, 
another force must be acting in which ol the 
directions labeled A, B, C, O, E? 

5 

* Refer to the diagram below when answering the next three 
questions 

The diagram depicts two pucks on a frictionless table. 
Puck II is tour times as massive as puck I. Starting 
from rest, the pucks are pushed across the table by 
two equal forces. 

20. Which puck will have the greater kinetic energy upon 
reaching the finish line? 

(A) I (B) II 
(C) They both have the same amount. 
(D) Too little information to answer. 

21. Which puck will reach the linish line first? 

(A) I (B) II 
(C) They will both reach the finish line at the same 

time. 
(D) Too little information to answer. 

22. Which puck will have the greater momenlum upon reaching the finish line? 

(A) I (B) II 
(C) They will both have the same momentum. 
(O) Too little information to answer. 

* Refer to the following klnematlcal graph when answering the 
next three questions. 

— Finish 

v(m/s) 
Ji. 

'"yir ; \ r r 
£ m «• mf m • « *

 i i .... r — ... *
 •
 4 ' 1
* 1 1 

>* ; • 1 . \ • 
o ;  •  / P  »  
o ; • S \ . • 

• « ' V 
> i yT « i ; / 

» /  i i i ; ; 
• \ 

» * » • • f : i i \ 

The graph represents the motion ol an object moving in one dimension. 

6 



23. What was the objects average acceleration between t»0s and t = 6.0 s? 

(A) 3.0 m/s2 (B) 1.5 m/s2 (C) 0.83 m/s2 (D) 0.67 m/s2 

(E) None ol the above. 

24. How lar did the object travel between t» 0 and t = 6.0 s? 

(A) 20. m (B) 8.0 m (C) 6.0 m (D) 1.5 m 
(E) None of the above. 

25. What was the average speed of the object (or the first 6.0 s? 

(A) 3.3 m/s (B) 3.0 m/s (C) 1.8 m/s (D) 1.3 m/s 
(E) None of the above. 

Befar to the diagram In the right margin to answer the following 
question. 

The figure represents a multiflash photograph of a 
small ball being shot straighl up by a spnng. The 
spring, with the ball atop, was initially compressed 
to the point marked X and released. The ball left 
the spnng at the point marked Y. reaches its 
highest point at the point marked Z. 

26. Assuming that the air resistance was negligible;-

(A) The acceleration of the ball was greatest just 
before it reached point Y (still in contact with 
the spring). 

(B) The acceleration of the ball was decreasing on 
its way from point Y to point Z. 

(C) The acceleration of the ball was zero at point 
Z. 

(D) All of the above responses are correct. 
(E) The acceleration of the ball was the same for 

all points in its trajectory from points Y to Z. 

^T.5rt*uSfiT MapfeM 
I'U- tfME, 

1Zf Iftt PAEV/ 

H—» 
•—* 
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Appendix C 



1  1 7  

Interview Protocol For Attitude Change 

Say to the student: I want to thank you for agreeing to participate in this 

interview. You understand that your instructor and TA will not be able to 

identify you in any way. This interview will be transcribed. In other words, 

the researcher will only see the typed response to the questions I am going to 

ask you. The original taped interview will be kept by Dr. Hoffman. The 

researcher will not have access to the tapes. 

1. Tell me about your experience in your physics class this semester at UNC-G. 

Probes: How does the experience compare with your 

experience in previous science courses? 

What did you like about the course? 

Did you enjoy the laboratory experiences? 

2. Do you feel like you were doing real science: in other words do you feel like 

you did things that real scientists do in a lab? 

3. What do you think real science is really like? 

4. Has this course in any way influenced your decision to enroll in other 

science courses? 
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Probes In what way? 

If answer is yes what other courses did you take? 

5. Has this course in any way influenced your career choice? 

How? 

6. In general what role do you feel women should play in the sciences? 
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Tasks to Identify Conceptual Change 

1. Set up a dynamics cart as follows: 

Mass M 

Ask students to identify all forces in the given situation. 



2. Consider the following situation: 

Chain 
Mass m 

Rubberband 
Mass m 

Hanging Hanging 
mass M mass M 

String 
Mass m 

0 i inging Hanging LJ 
Hanging 
mass M 

Which has the greatest tension force? 
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3. The velocity of an object as a function of time is shown in the graph below. 

Please draw the acceleration vs. time graph that best represents the 

acceleration of the object over time t. 

Please draw the force vs. time graph that best represents the force of the object 

over time, t. 

V 

T 
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Force 

Time 

Aceleration 

Time 


