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ANDERSON, NORMAN BRUCE, Ph.D. The Effects of Intertarget-
Interval Certainty and Length on Autonomic and Cortical 
Reactivity in Type A and Type B Males. (1983) Directed by 
Dr. M. Russell Harter. Pp. 139. 

The purpose of this study .was to examine the psycho­

physiological effects of waiting and uncertainty in young 

Type A and Type B males. It was hypothesized that Type 

subjects would exhibit greater sympathetically medicated 

cardiovascular changes (as measured by pulse transit time) 

than Type B subjects on a reaction time task where the 

intertarget interval (ITI) was relatively long as opposed 

to short, and when the ITI was uncertain or unpredictable. 

The prediction on ITI length was based on the notion that 

Type A subjects have a preference for a more rapid pacing 

of activities. It was also hypothesized that Type A subjects 

would evidence greater cortical reactivity when target stim­

ulus occurrence was uncertain or unpredictable. The combina­

tion of relatively long and uncertain ITIs was also expected 

to enhance cardiovascular and cortical responses in Type As 

relative to Bs. 

Ten Type A and 10 Type B subjects performed a reaction 

time task which involved either a relatively short (6 sec) 

or long (18 sec) average intertarget interval (ITI) and 

either with high certainty or low certainty as to the length 

of the ITI. Physiological measures included tonic and phasic 

heart rate, tonic and phasic pulse transit time, systolic 

and diastolic blood pressure, and event-related brain poten­

tials (ERP). 



All cardiovascular measures were analyzed using an 

analysis of covariance with baseline serving as covariate. 

ERPs were analyzed using an ANOVA. The findings were as 

follows: (1) Concerning ITI Length, support for the hypoth­

esis was found in tonic heart rate, which was faster in 

Type As than Type Bs during the 18-sec condition. Type As 

had shorter phasic PTTs than Type Bs during the 6-sec ITI 

condition with Bs having shorter phasic PTTs in the 18-sec 

condition. (2) Concerning ITI Certainty, support for the 

experimental hypothesis was found on phasic PTT and P295 (P3) 

ERP latency. Type As had shorter phasic PTTs and P295 ERP 

latencies than Type Bs during the low certainty condition, 

while Type Bs had shorter phasic PTTs and P295 latencies 

under the high certainty condition. (3) Concerning the com­

bined influence of the ITI Length and Certainty, the predicted 

effect was found only r \ N201 (N200) ERP latency, which was 

significantly shorter in Type As than in Type Bs during the 

18-sec low certainty condition. 
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CHAPTER I 

INTRODUCTION 

Over the last 30 years, coronary heart disease (CHD) 

has been the single greatest cause of death in the United 

States (Stallones, 1980), affecting both men and women, and 

blacks and whites. Statistics show that the mortality due 

to CHD reached its peak in the 1950's, at which time about 

300 per 100,000 died from the disease. There has more 

recently been a decline in mortality, such that the death 

rate from CHD between 1950 and 1980 decreased by about 25%. 

The optimism induced by this downward trend in mortality 

must be tempered by the reality that CHD still claims close 

to a million lives a year and remains America's number-one 

health problem. 

Coronary heart disease denotes a condition whereby there 

is an inability of the coronary arteries to supply the heart 

muscle with sufficient oxygen and nourishment to perform all 

of its functions given the demands made upon it (Friedman 

& Rosenman, 1974). Actually, CHD is a result of an earlier 

degenerative process, coronary artery disease or athero­

sclerosis, which is characterized by a thickening or occlud­

ing of the walls of blood vessels supplying the heart. This 

arterial thickening may be attributed to tiny lesions pro­

duced by trauma to a coronary artery as blood is carried up 



2 

to the heart. The artery engages in a self-healing procedure 

by which newly formed cells containing fatty substances or 

plaques cover the lesion with accompanying blood clots 

(thrombi), thereby producing arterial thickening (Glass, 

1977). Figure 1 shows the progression of coronary occlusion 

that typically occurs. 

This occlusion of the coronary arteries may result in 

any of several complications. One of the most common and 

serious complications is known as myocardial infarction or 

heart attack. Myocardial infarction is basically the necro­

sis of any part of the heart muscle due to oxygen deprivation 

over a prolonged time period (Friedman & Rosenman, 19 74). 

This oxygen deprivation in a portion of the heart muscle is 

caused by the obstruction of blood supply to it by occluded 

arteries. While other forms of CHD are also prevalent, such 

as angina pectoris and congestive heart failure, all result 

from the development of plaques on the arterial wall leading 

to the obstruction of blood supply to the heart. 

Epidemiological and experimental research has delineated 

several factors that may increase the likelihood that a per­

son who possesses one or more of them will develop CHD. The 

major risk factors include high levels of serum cholesterol 

and serum lipoproteins, high systolic and diastolic blood 

pressure, increasing age, sex (being male), diabetes, and 

cigarette smoking. Although the above factors have clearly 

been linked to the incidence of CHD, the combination of them 



Normal Vessel 

Atherosclerotic 
Vessel Showing 
Atheroma 

Partially Blocked 
Vessel 

Occluded Vessel 

Figure 1. Course of atherosclerotic coronary artery 
disease, terminating in occlusion of the 
vessel. Normal vessel (top) and progres­
sive occlusion of the vessel by scarred 
thickened plaque and thrombus. (From 
Arteriosclerosis Report of the Working 
Group on Arteriosclerosis, National Heart, 
Lung and Blood Institute, 1971.) 
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of them can account for less than half of the reported cases 

of heart disease each year (Jenkins, 1971). 

As a result of the low explanatory power of the tradi­

tional risk factors in accounting for most of the new cases 

of CHD, researchers have begun to search for other risk fac­

tors. It has long been assumed that a person's life style 

or behavior could affect the well-being of his or her cardio­

vascular system (e.g., Osier, 1897). While there existed a 

casual acknowledgement of the possible role behavior might 

play in the development of CHD, until recently there was 

little empirical support for this notion. In the 1950's, 

however, two cardiologists, Meyer Friedman and Ray Rosenman 

(1959), observed consistent characteristic behavioral fea­

tures, such as time consciousness and competitiveness, of 

many heart disease patients. These behavioral features, 

they speculated, might predispose patients to heart disease. 

To gain some idea of the thinking of lay people and medical 

professionals on this issue, Friedman and Rosenman sent out 

several hundred questionnaires to San Francisco business 

executives and internists, asking them to check which one of 

several items on a list they thought preceded a heart attack 

in a friend or patient. The vast majority in both groups 

believed that indulgence in "excessive competitive drive and 

meeting deadlines" was the primary precipitator (Friedman & 

Rosenman, 1974). The responses were provocative given the 
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current thought on the importance of cigarette smoking, 

cholesterol, and lack of exercise in bringing about a heart 

attack. 

Subsequent to these early observations, several features 

have been added to the complex of behavior that is character­

istic of many people 'who suffer from CHD (see Jenkins, 1975). 

This behavioral complex is known as the Type A or coronary-

prone behavior pattern. The following is a discussion of 

the essential characteristics of the Type A behavior pattern 

and its assessment. 

Characteristics of the Type A Behavior Pattern 

In general, individuals manifesting the Type A behavior 

pattern are characterized by excessive time urgency, hard-

driving competitive behavior, aggressiveness, hostility, a 

persistent desire for recognition and advancement, all of 

which are readily evoked by a variety of stimuli in the 

social and physical environment (Matthews, 1982; Rosenman & 

Friedman, 1974). The following is a discussion of some of 

the behavioral features of the Type A behavior pattern. It 

should be pointed out, however, that the following discussion 

of the characteristics of the Type A behavior pattern will be 

a descriptive and general one, concentrating on aspects of 

the behavior pattern which are reflected by the most commonly 

used Type A assessment procedures. 
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Motor Behavior 

Persons evidencing the Type A behavior pattern often ex­

hibit a rapid pacing of their motor functioning. For example, 

they tend to eat very rapidly, walk fast, and show rhythmic 

or repetitive movements when sitting or standing at rest, 

such as tapping their feet or fingers and fidgeting. Type As 

may use exaggerated gestures during normal conversations, 

sometimes pounding on a surface for emphasis. Their hand­

shakes are usually quite firm and vigorous. 

Verbal Behavior 

One of the most striking characteristics of many Type A 

individuals is their speech topography. As they talk, many 

of their words have an "explosive" quality (Scherwitz, Ber-

ton, & Leventhal, 1977). That is, some words are said much 

louder than others and tend to be the first words in sen­

tences or key words (Schucker & Jacobs, 19 77). Similarly, 

the last words in a sentence are spoken more rapidly than the 

first. When interrupted, Type As may "talk-over" the speech 

of the other person in order to finish a thought, and fre­

quently interrupt or otherwise attempt to hurry the speech 

of another by using anticipatory nods and "ahems" or "right, 

right" while listening (Jenkins, 1975). When they are asked 

a question, there is typically a very short latency between 

the end of the question and the onset of their response. 

Relatedly, when- a questioner appears to be having difficulty 
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completing an obvious question (i.e., appears "stuck"), Type 

As without much hesitation will provide the right words. 

Professional and Social Life 

Type A individuals tend to be very achievement- and 

work-oriented. They put great value on recognition and power 

and draw much of their self-worth from their productivity. 

They have often been described as "possessing an intense 

drive toward self-selected but poorly defined goals" (Suinn, 

1977). Because they are work-oriented, Type A persons have 

difficulty "finding the time" to relax, and, when they do 

find time, will spend much of it thinking about professional 

matters, or simply cut short the relaxation period to get 

back to doing "something useful" (Jenkins, 1975). The pro­

fessional life of the Type A person is closely allied to the 

issue of "time urgency". Type As seem constantly to be 

under pressure to do things fast. They loathe waiting, 

whether at a traffic light, in the doctor's office, or in a 

grocery store checkout line, and become visibly irritated 

when made to do so. Professionally, they tend to constantly 

be under deadline pressure. This deadline pressure usually 

results from the setting of self-imposed and unrealistic 

deadlines for activities that require more time, and the 

scheduling of more and more activities in less and less time 

with fewer allowances made for unforeseen contingencies 

(Friedman & Rosenman, 1974). It is therefore not unusual 
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for a Type A individual to attempt to carry out several 

activities simultaneously (e.g., dictating letters while 

driving), and to prefer to read only summaries or abstracts 

of articles (Suinn, 1977). Type As variously describe them­

selves as being more aggressive, angry, achievement-oriented, 

shrewd, active, quick, dominant, sociable, lacking in self-

control, and hard-working than Type Bs report (Caffrey, 1968; 

Chesney, Black, Chadwick & Rosenman, 19 81; Matthews, 19 82). 

Some studies have found that although Type As state that they 

are more self-confident and have achieved high-status occupa-

^ tions, they also report having symptoms that are indicative of 

stress and being dissatisfied'with work, life achievements, 

and marriage (Howard, Cunningham, & Recknitzer, 1976, 1977; 

Waldron, 1978). 

Another hallmark of the Type A behavior pattern is com­

petitiveness. Type As seem to enjoy competitive situa­

tions — especially when they win. This competitive quality 

is not restricted to the more obvious forms of competition 

such as, say, racquetball, but can also be evidenced profes­

sionally (Waldron, 1978). For example, a Type A person 

might boast about his/her company's profits over the year as 

compared to those of other companies, or the number of pub­

lications or amount of grant money accumulated by their lab­

oratory as compared to others. Most Type As loathe losing, 
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and if it is apparent that they will lose, many become apa­

thetic and simply give up. 

The antithesis of Type A is the Type B behavior pattern. 

The simplest way to describe the Type B pattern is to say 

that it is characterized by a relative absence of the Type A 

features (Dembroski, MacDougall, & Shields, 1977) . Essen­

tially, if Type As are viewed as lying on the extremes of 

several behavioral continua (e.g., competitiveness, impat­

ience, etc.), then Type Bs may be viewed as lying behavior-

ally on the opposite extremes. This is not to suggest that 

Type B individuals are not at times competitive or impat­

ient, but the number of environmental stimuli which evoke 

these attributes are fewer and do so to a lesser degree than 

in Type As. 

This latter point is important and deserves some elabora­

tion. Neither the Type A nor Type B behavior pattern is 

viewed as a "trait". Rather, both are viewed as learned 

behavioral responses to specific environmental conditions. 

For example, research has demonstrated that only under suf­

ficiently challenging conditions will people labeled as Type 

A display any of the behaviors that uniquely identify them 

(Dembroski et al., 1977; Goldband, 1980; Manuck & Garland, 

1979). Suinn (1977) has presented a model describing how 

Type A behavior might be acquired and maintained. In 
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stressful or challenging situations, such as writing a paper, 

a person may impose a stringent deadline on himself (Type A 

behavior) for completion of the paper. Setting this deadline 

may result in the reinforcing consequences of completion of 

the paper and therefore stress reduction (see Figure 2). 

I 1 
STRESS Type A Behavior REWARD AND 

STRESS 
REDUCTION 

Figure 2. The cycle of stress. (From Suinn, 1977.) 

Because of these favorable consequences, this person might in 

the future impose stringent deadlines on other work activ­

ities. Having to meet these deadlines, however, is in itself 

stress-producing, and may lead to other Type A behaviors 

such as longer working hours and reduced relaxation time. 

These activities in turn help the person accomplish his/her 

goals and are thus strengthened. In other words, Type A 

individuals are often caught in a vicious cycle of stress-

involving environmental and behavioral interactions. While 

many individuals may exhibit Type A behaviors in a general­

ized fashion across a variety of situations, the behavior 

pattern is still viewed as learned and malleable by environ­

mental factors. 
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Assessment of the Type A Behavior Pattern 

The most commonly used devices for assessing Type A 

behavior are the Structured Interview (SI) and the Jenkins 

Activity Survey (JAS). The SI was developed by Rosenman, 

Friedman and associates (Rosenman, Friedman, Straus, Wurm, 

Kositchek, Hahn, &' Werthessen, 1964) and consists of 25 ques­

tions dealing with the intensity of ambitions, competitive­

ness, sense of time urgency, and the nature and magnitude of 

hostile feelings. All interviews are tape-recorded and 

later reviewed independently by a trained auditor. The 

interview assessment technique takes into account not only 

the specific answers to questions but also the behavioral 

style of the subjects in making classifications. For exam­

ple, some questions are designed to yield fairly direct 

diagnostic information, such as "When you play games with 

people your own age, do you play for the fun of it, or are 

you really in there to win?" Or "When you are in your auto­

mobile, and there is a car in your lane going far too slowly 

for you, what would you do about it? Would you mutter and 

complain to yourself? Would anyone riding with you know 

that you were annoyed?" Other questions, however, are desig­

ned to assess Type A characteristics more indirectly. For 

instance, on some questions the interviewer pretends to get 

"hung up" on a word; that is, appears not to be able to think 
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of the appropriate word to use in a sentence. Type A sub­

jects are much more likely to provide an appropriate word 

than Type Bs. Also rated are voice stylistics such as 

accentuations and inflections, and number of "ahems" used to 

hurry the interview along. 

Using the structured interview, it is possible to rate 

behavior patterns on a 5-point scale: fully developed As 

(A^); incompletely developed As (A2) (absence of explosive 

speech patterns); incompletely developed Bs (B^); fully 

developed Bs (B^); and Type X, possessing characteristics of 

both A2 and B^ Types. 

The second most frequently used Type A assessment device 

is the Jenkins Activity Survey for Health Prediction (JAS), a 

self-administered questionnaire. There are special versions 

of the JAS, one for working adults (Form B) and one for 

college students (Form T). Typical JAS questions are: 

1) "Has your spouse or friend ever told you that you 
eat too fast?" A Type A response is "Yes, often," 
and Type B responses are "Yes, once or twice," or "No, 
no one has told me this." 

2) How would your spouse (or closest friend) rate you?" 
Pattern A responses are, "Definitely hard-driving and 
competitive," and "Probably hard-driving and compet­
itive," and B responses are "Probably relaxed and easy­
going" and "Definitely relaxed and easy-going." 

3) "Do you ever set deadlines or quotas for yourself 
at work or at home?" An A response is "Yes, once per 
week or more often," and B responses are "No" and "Yes, 
but only occasionally." 

In using the JAS, subjects can be assigned a score along 
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a continuous Type A-B dimension. Typically, subjects who 

score in the upper half are classified as Type A and, in the 

lower half, as Type B. In addition, the JAS can also yield 

scores on independent subscales of "Hard Driving", "Speed and 

Impatience", "Job Involvement". 

Both assessment instruments are of demonstrated relia­

bility and validity. One-year test-retest reliability for 

the SI is .80 and between .65-.75 for the JAS (Dembroski, 

Caffrey, Jenkins, Rosenman, Spielberger, & Tasto, 1978; 

Jenkins, Rosenman, Friedman, 19 68). Inter-rater reliability 

on the SI tape recordings has been found to be between .75 

and .84 (Caffrey, 1968; Jenkins, Rosenman, & Friedman, 1967). 

Both instruments also appear to have some concurrent and con­

struct validity. Research has shown the SI and JAS to be 

significantly correlated with measures of aggression, speed, 

and activity level (Dembroski et al., 1978; Glass, 1977), 

demonstrating to a certain degree their concurrent validity. 

The construct validity of the instruments has been shown in 

a variety of ways. When compared to Type Bs, Type A subjects 

1) show a greater tendency to develop coronary heart disease; 

2) show greater autonomic arousal in stressful conditions; 

3) are more concerned with maintaining control over their 

environment; and 4) show more psychomotor activity in res­

ponse to environmental challenges. In addition, there tends 

to be a low correlation between the two measures of Type A 
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behavior and more traditional measures of personality (Glass, 

1977) . 

Type A Behavior and the Atherosclerotic Process 

While epidemiological research has clearly documented 

the association between Type A behavior and CHD (see review 

of this research in a later section), it is not discernible 

from these studies how Type A behavior might cause CHD. That 

is, it is not clear how behavioral characteristics such as 

competitiveness, impatience, aggressiveness, and achievement-

striving translate into occluded coronary arteries (just as 

it is unclear how smoking, hypertension,and other risk fac­

tors lead to CHD). Currently, however, there is strong sup­

port for the hypothesis that Type A behavior translates into 

CHD through the chronic activation of sympathetically 

mediated autonomic nervous system arousal and its associated 

cardiovascular and neuroendocrine phenomena (Williams, Fried­

man, Glass, Herd, & Schneiderman, 1978). On a molar physio­

logical level, sympathetic autonomic arousal is best exempli­

fied by the fight-or-flight concept, which states that humans 

and animals respond physiologically to stressful situations 

in predictable ways. The body prepares itself physiologic­

ally to escape from the stressor (flight) or to confront or 

fight the stressful stimulus. This physiological preparation 

is characterized by increases in heart rate, blood pressure, 
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respiratory rate, and blood flow to peripheral muscles. 

This pattern of responding is viewed as quite adaptive in 

lower animals and in more primitive cultures, where stressful 

stimuli are often of a life-threatening nature and rapid 

mobilization of bodily resources is necessary. The "stressors" 

facing modern man are predominantly not of the life-threaten­

ing nature, but involve more subtle psychosocial stimuli. 

Yet, for many people, especially those labeled Type A, the 

fight-flight response is initiated by these psychosocial 

stimuli when it need not be. 

To understand the importance of frequent sympathetic 

autonomic arousal in the development of CHD, it is essential 

to understand certain biochemical and hormonal consequences 

of sympathetic activity. Specifically, it is the secretion 

of sympathetic catecholamines which is implicated as the prim­

ary pathogenic mechanism. A brief review of the relationship 

between the catecholamines and CHD follows. 

Catecholamines and CHD 

Activation of the sympathetic branch of the autonomic 

nervous system (see Table 1) leads to the discharge of the 

two primary catecholamines, epinephrine and norepinephrine 

(sometimes called adrenaline and noradrenaline, respectively) 

from sympathetic terminals and from the adrenal medulla 

(Steptoe, 1981). Pharmacological research has demonstrated 



Table 1 

Action of the Autonomic Nervous System 

Parasympathetic Sympathetic 
Structure Function Nervous System Nervous System 

_ Iris 
^ Lens 

Constriction + _ Iris 
^ Lens Accommodation + — 

Lacrymal glands Tears + -(?) 
Nasal mucosa Secretion, dilation + — 

Salivary glands Salivation + -(?) 
Gastrointestinal tract Peristalsis + — * 

Stomach glands HCL, pepsin, & mucus + 0 
Pancreas (islet cells) Insulin + 0 

Heart (rate) Acceleration + 
Lungs (bronchia) Dilation — + 
Adrenal medulla Epinephrine 0 + 
Sympathetic Terminals Norepinephrine 0 + 
Peripheral blood Vasoconstriction •? + 
vessels 

Sweat glands Sweating 0 + 
Pilomotor cells Piloerection 0 + 

Internal sphincters 
Bladder 
Intestine Contraction - + 

Bladder wall 
Lower bowel Contraction + -

Genitalia Erection + -

Genitalia Ejaculation — + 

Note: In the table (+) indicates a facilitative effect and (-) an inhibitory effect. 
Note that the upper portion of the table emphasizes facilitative effects of the 
cranial parasympathetics, the bottom separates the sacral parasympathetic effects, 
and the central portion emphasizes sympathetic facilitative effects. (Adapted 
from Stern et al. , 1980) 
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that these hormones may act as neurotransmitters at either of 

the two groups of sympathetic nervous system receptors, alpha 

and beta receptors. Stimulation of the alpha-sympathetic 

receptors promotes more peripheral vasoconstriction and blood 

pressure increase, while beta-receptor stimulation increases 

heart rate and fotce of cardiac contraction (Steptoe, 1981). 

There is now extensive evidence implicating the catecholamines 

as a major element at each stage of the atherosclerotic 

process. 

First of all, catecholamines have been shown to initiate 

the atherosclerotic process via the development of myocardial 

lesions (Hueper, 1944; Raab, Stark, MacMillian et al., 1961; 

Waters & de Suto-Nagy, 1950). In animals, the severity and 

extent of these lesions varies directly with the amount and 

rate of catecholamines infused (Haft, 1974) and damage may 

occur in all chambers of the heart (Schenk & Moss, 1966). 

Another way by which the catecholamines lead to cardio­

vascular pathology is through the facilitation of platelet 

aggregation. Platelets are disk-shaped blood elements which 

average about 250,000 per cubic millimeter of blood (Miller 

& Keane, 1978). The aggregation, or clumping together, of 

these platelets represents an early stage in blood clotting 

(sometimes called coagulation or thrombosis), which might 

impede circulation (see again Figure 1). Research has shown 

that epinephrine and norepinephrine facilitate platelet 
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aggregation and blood clotting (Ardlie, Glen, & Schwartz, 

1966: Haft, 1974; Haft, Kranz, Albert et al., 1976; O'Brien, 

1963). 

Catecholamines might also affect pathogenic cardiovas­

cular processes indirectly through the production of very 

low-density lipoproteins (VLDL), a form of cholesterol which 

is known to damage the arterial wall and contribute to the 

process of occlusion. Basically, three stages are involved 

here. In the first stage, secretion of the catecholamines 

facilitates the release of free fatty acids (FFA) from tri­

glycerides, which are used by skeletal muscles and myocardium 

(heart muscle) in the production of energy (Herd, 1978; 

Ziesler, Maseii, Klassen, Rabinowitz, & Burgess, 1968). The 

amount of FFAs used is dependent on the energy demands of the 

body. For example, more FFAs are used during exercise and in 

cold environments than when an organism is at rest and warm 

(Ziesler et al., 1968). The second stage involves liver up­

take of unused FFAs. At the liver, these FFAs are then used 

to produce VLDL which are secreted into plasma (Stage 3). 

Once in the blood stream, the lipoproteins may act to damage 

coronary arteries by the production of lesions (Selye & 

Bajusz, 1959) or, following lesion development, may accumulate 

over the lesion to cause arterial thickening. 

Therefore, it is clear that activity of the sympathetic 
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nervous system, and the concomitant release of catechol­

amines, contributes significantly to the pathogenesis of 

of CHD. To summarize, empirical evidence has determined that 

sympathetic catecholamines may (1) initiate arterial lesions; 

(2) facilitate platelet aggregation and thrombosis; and (3) 

facilitate the production of very low-density lipoproteins. 

It is also clear that the degree and severity of these pheno­

mena are related directly to the amount of catecholamine 

secretion — the more catecholamines released, the more 

marked these phenomena. 

Before discussing how Type A behavior relates to the 

catecholamines, it is important to state that sympathetic 

nervous system activity is not always pathological. For 

example, physical exercise and exertion lead to sympathetical­

ly mediated cardiovascular changes (Dimsdale & Moss, 1980; 

Frankenhaeuser, 1971)that are not considered hazardous to 

one's health. In fact, health is probably promoted by this 

type of activity. The primary difference between sympathet­

ic activity elicited during exercise and nonphysical activ­

ity is that, when one exercises, the body's energy demands 

increase, and the catecholamines and FFAs are extracted from 

plasma and utilized as energy (Ziesler et al., 1968). Con­

versely, when one is late for a meeting and gets caught in a 

traffic jam, or is preparing to give a talk in front of a 
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large and critical audience, similar hormonal increases 

occur, but without the high rates of extraction and utiliza­

tion (Herd, 1978) . In other words, the catecholamines con­

tinue circulating, increasing the probability of arterial 

lesions, platelet aggregation, and production of VLDL. 

Therefore, "pathogenic" sympathetic arousal is due to the 

mobilization of energy substances without their subsequent 

utilization. 

It may be concluded, therefore, that if environmental 

situations frequently and chronically elicit sympathetic 

hyperactivity in the absence of physical demands, the prob­

ability of CHD development increases. Additionally, exper­

iments using both invasive and noninvasive measures of sym­

pathetic arousal suggest that the greater the sympathetic 

activity, the greater the probability of serious arterial 

damage (Haft, 1974; Manuck & Kaplan, Note 2). For 

example, Manuck and Kaplan (Note 2) recently demonstrated 

that monkeys who exhibited heart rate hyperresponsivity 

under repeated exposure to stressful conditions developed 

significantly greater coronary atherosclerosis in their 

primary arteries, relative to monkeys low in responsivity. 

The results of the research demonstrating atherosclerosis 

development through sympathetic nervous system activity pro­

vide the framework for the hypothesis that the Type A behavior 

pattern leads to CHD via the chronic elicitation of sympa­
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thetic hyperreactivity (Williams et al., 1978). If this 

hypothesis is correct, then Type A individuals might be ex­

pected to exhibit significantly greater sympathetic reactiv­

ity to environmental challenges relative to Type B persons. 

There are now a number of studies demonstrating this greater 

reactivity in Type As. On a biochemical level. Type As have 

been shown to have significantly higher levels of serum nor­

epinephrine than Type Bs during their working hours and when 

exposed to experimental challenges such as insoluble mental 

puzzles (Friedman, Byers, Diament, & Rosenman, 1975; Fried­

man, St. George, & Byers, 1960; Williams et al., 1978). Most 

studies, however, have used noninvasive psychophysiological 

procedures to detect sympathetic nervous system arousal. 

These studies will be reviewed shortly. 

It may be concluded that there is strong evidence sup­

porting the notion that excessive sympathetic activity is a 

pathogenic mechanism for CHD development, and that individ­

uals labeled Type A often exhibit heightened levels of sympa­

thetic activity under environmental challenges. The chain of 

events illustrating how environmental factors operate through 

sympathetic hyperreactivity which leads ultimately to CHD in 

persons labeled Type A is shown in Figure 3. 
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Environmental Demands 

Increased 
Cardiac Output 
Blood Pressure 

I 
i 

Increased 
Hemodynamic 
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Arterial 
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Free Fatty Acid 
Release 
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Very Low-Density Lipoprotein 
Production and Secretion 
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Coronary Occlusion* 
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Coronary Heart Disease 

(Myocardial Infarction, Angina) 

Figure 3. Processes by which environmental demands act 
to increase the probability of coronary heart 
disease in persons exhibiting the Type A 
behavior. 
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Association of Type A Behavior 
and Coronary Heart Disease 

Epidemiological Research 

The association between the Type A behavior pattern and 

CHD has now been demonstrated in both retrospective and pro­

spective epidemiological studies. In the initial retrospec­

tive studies (Friedman & Rosenman, 1959; Rosenman & Friedman, 

1961) it was discovered that Type A men and women have 

roughly four to seven times the rate of CHD of their Type B 

counterparts. For example, Friedman & Rosenman (19 59) 

studied 83 Type A men, 83 Type B men, and 46 unemployed blind 

men selected because they manifested a chronic state of in­

security and anxiety. The Type A and B groups were selected 

from various corporations in California. Upon physical exam­

ination, it was found that Type A men evidenced seven times 

the frequency of clinical coronary artery disease (i.e., 

heart attacks) and significantly higher serum cholesterol 

levels than the Type B and blind men. Importantly, detailed 

analysis of the data suggested that the higher incidence of 

artery disease could not be attributed to differences in age, 

exercise, calorie or fat intake, alcohol, or cigarettes. 

Similar results were obtained with a female population 

(Rosenman & Friedman, 1961). 

These initial studies were retrospective in nature — 

that is, they were conducted using subjects who already evi­
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denced some artery disease. Therefore, to ascertain the role 

of Type A behavior in predicting future occurrence of the 

disease, the Western Collaborative Group Study was started 

in 1960 as a prospective epidemiological project. The study 

involved 3,524 men, aged 39 to 59 years, who were employed 

in 11 participating corporations in northern and southern 

California. All were given thorough medical examinations 

which assessed subject's lipids and lipoproteins (i.e., 

fatty material), blood pressure and coagulation. In addition, 

each subject was given an electrocardiogram and other heart 

disease assessments. Additionally, extensive data were col­

lected concerning their family medical history and smoking, 

diet, and exercise habits. During the screening examinations 

113 of the 3,524 men were found to already have CHD. Of 

this group of 113, 80 (70.9%) were judged, using blind 

raters, to be Type A (Rosenman et al., 1964). The remaining, 

disease-free subjects (3,154) were followed subsequently for 

8h years. Upon re-examination, it was found that 257 had 

developed CHD (as evidenced by occurrence of heart attack 

and angina pectoris); of those, 178 (or roughly 70%) were 

classified as Type A; only 79 (or 30%) of the 257 heart dis­

ease cases were judged to be Type B. Thus, Type A subjects 

experienced over twice the incidence of CHD as the Type B 

subjects. Importantly, even after statistical adjustment 
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procedures which controlled for differences in traditional 

risk factors such as age, smoking, cholesterol, and systolic 

blood pressure, the Type A subjects were still 1.97 times, or 

doubly, at risk (Rosenman, Brand, Jenkins, Friedman, Straus, 

& Wurm, 1975). 

Although the Structured Interview (SI) was used ini­

tially to classify subjects as Type A vs. Type B, the Jenk­

ins Activity Survey (JAS) was later given to 92% of the 

original sample and was also shown to be useful in determin­

ing which subjects would subsequently develop CHD (Jenkins, 

Rosenman, & Zyzanski, 1974). Further, JAS scores are also 

predictive of recurrent heart attacks (Jenkins, Rosenman, & 

Zyzanski, 1974; Jenkins, Zyzanski, Rosenman, & Cleveland, 

1971). 

Finally, epidemiological research has further estab­

lished the association of Type A behavior and CHD in differ­

ent regions of the United States (Kenigsberg, Zyzanski, Jen­

kins, Wardwell, & Licciardello, 1974; Shekelle, Schoenber-

ger, & Stamler, 1976) and in several European countries 

(Heller, 1979; Zyzanski, Wryesniewski, & Jenkins, 1979). 

Therefore, it now appears that the Type A behavior pattern 

represents a risk factor of the development of CHD "over and 

above those imposed by age, systolic blood pressure, serum 

cholesterol and smoking and appears to be of the same magni­

tude as the relative risks associated with any of these 

other factors" (Panel on Coronary Prone Behavior, 1978). 
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Arteriographic Evidence 

Several reports have been published demonstrating the 

relationship between Type A behavior and atherosclerosis 

(arterial occlusion) as determined by arteriographic x-rays 

or angiograms. Blumenthal, Williams, Kong et al. (1975),at 

Duke University Medical Center, studied 142 patients under­

going coronary angiography and found Type A behavior as meas­

ured by the SI to be systematically related to the degree of 

arterial thickening". Under blind classification procedures, 

44% of those patients evidencing mild atherosclerosis (see 

Figure 1, second picture) were judged to be Type A; of those 

patients with moderate atherosclerosis (Figure 1, third pic­

ture) , 69% were Type A; and finally, of those patients with 

severe arterial occlusion (Figure 1, fourth picture), 95% 

were judged to be Type A. These same researchers obtained 

a comparable result when a larger sample consisting of a 

sizable proportion of female subjects was used. Type A 

female patients were as likely to have developed coronary 

atherosclerosis as the males (Blumenthal, Williams, Kong, 

et al., 1978). The findings of Blumenthal and associates 

have been replicated by researchers at Boston University 

School of Medicine (Zyzanski, Jenkins, Ryan, Flessas, Ever-

ist, 1976) and at Columbia University (Frank, Heller, Korn-

feld, Sporn, & Weiss, 19 78), and are consistent with autopsy 

data (Friedman, Rosenman, Straus, Wurm, & Kostichek, 1968). 
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In summary, the Type A behavior pattern has been shown 

to predict the occurrence of myocardial infarction, recurring 

myocardial infarction, and angina pectoris. Additionally, it 

has been associated with the degree of angiographically doc­

umented coronary atherosclerosis. What follows is a discus­

sion of the psychophysiological literature on Type A behavior 

and autonomic reactivity. 

Type A Behavior and Autonomic Reactivity 

Cognitive Tasks 

Manuck, Craft, and Gold (1978) conducted one of the 

initial investigations testing the hypothesis that the Type A 

behavior pattern represents a risk factor affecting the car­

diovascular system via sympathetically mediated autonomic 

nervous system activity. These investigators studied the 

effects of a difficult cognitive task on three measures of 

cardiovascular response — heart rate, systolic blood pres­

sure, and diastolic blood pressure. The task involved pre­

senting A and B subjects with cards containing four related 

objects (from Feldman & Drasgnio, 1959, Visual-Verbal Test). 

The objects differed along the dimensions of size, form, 

color, etc., but contained two dimensions that were common 

to three of the stimulus designs. The subject's task was to 

identify the stimulus objects on each card that belonged 

together, on the basis of these two salient attributes. 
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Subjects were given 6 seconds to respond, even though inter­

vals of up to 3 minutes are typically allowed for responding 

to items on this test. Obviously, this time constraint sig­

nificantly increased the difficulty of the task. It was 

found that Type A males evidenced significantly greater 

increases in systolic blood pressure than Type B males under 

these conditions. No differences were noted between groups 

in diastolic blood pressure or heart rate, nor between A and 

B females on any of the measures. 

Manuck and Garland (1979) expanded on the previous study 

by adding a monetary incentive to the cognitive task. All 

subjects, Type A and Type B, received the cognitive task 

manipulation described previously. Half of each group, 

however, was paid 100 for every correct response up to a 

balance of either 800 or $1.60, depending on the condi­

tion. When a subject's balance reached either of these 

amounts, he/she received 150 and 200 respectively for 

each correct response. Throughout this condition, sub­

jects lost 10<r for each incorrect response, regardless of 

balance. Analyses revealed that Type A subjects showed sig­

nificantly greater elevations in systolic blood pressure and 

pulse pressure than Type Bs, but the data showed no reliable 

interaction of the Type and Incentive factors. Also, no sig­

nificant increases in heart rate or diastolic blood pressure 

were evident. 
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Another cognitive manipulation often used involves 

having Type A and Type B subjects attempt to answer difficult 

questions from an American history quiz (Dembroski, MacDougall, 

& Lushene, 1977- MacDougall, Dembroski, & Krantz, 1981). 

Subjects are told that they will be asked questions about 

"well-known facts in early American history-" Most of the 

questions,, except the first one, were in fact extremely dif­

ficult, and the probability of answering more than one or two 

correctly was small. MacDougall et al. (1981), studying Type 

A and Type B women, found significant systolic blood pressure 

increases for both groups during this challenging history 

quiz; however, the Type A women responded with somewhat 

greater increments in blood pressure than their Type B coun­

terparts . 

A recent study by Williams, Lane, White, et al. (Note 

1) utilized a mental arithmetic task to study the Type A -

cardiovascular relationship. Thirteen undergraduate males 

engaged in difficult arithmetic tasks requiring them to 

serially subtract 13 from a four-digit number. They were 

asked to subtract as fast as possible and informed that 

their answers would be recorded and that the best performer 

would receive a small prize. Measures of heart rate (HR), 

systolic and diastolic blood pressure (SBP, DBP), forearm 

blood flow (FBF), and forearm vascular resistance (FVR) were 
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taken during a 20-minute baseline period, during the 20-

minute task period, and again during a 20-minute recovery 

period. The authors discovered that HR, SBP, DBP, and FBF 

all increased significantly from baseline during the arith­

metic task. FVR decreased from baseline but not significant­

ly. A high correlation was found between Type A behavior (as 

assessed via Jenkins Activity Survey and Structured Interview) 

and physiological response magnitude. Higher Type A scores 

on the Jenkins Activity Survey (JAS) were related to the 

greater increases in HR and FBF. In addition, there were 

significant differences between Type A and Type B subjects, 

identified via Structured Interview, on measures on FBF and 

SBP. 

The study of Williams et al. (Note 1) is important because 

it was one of the first studies to find significant HR in­

creases during a cognitive task with Type A subjects. One 

possible reason for this latter finding is that, in previous 

research, the cognitive task was not sufficiently challenging 

for the Type A subjects. The basis for this assumption lies 

in current research suggesting that the physiological effects 

of Type A behavior are evidenced only under sufficiently 

challenging or "relevant" conditions (Goldband, 1980). In 

the Williams et al. study, when subjects were told that the 

best performer would receive a prize, a direct competitive 
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situation was established. Since competition has previously 

been shown to be one of the central components of the Type A 

pattern (Dembroski, MacDougall, Shields, Petitto, & Lushene, 

1978), increases in heart rate when subjects are competing 

might be expected. Another possible explanation is that the 

cognitive tasks used in previous studies might be charac­

terized as "sensory intake" tasks, while Williams et al. 

(1981) utilized a "sensory rejection" task. The sensory 

intak.e-sensory rejection distinction is the result of theoriz­

ing by the Laceys (1974), and research by Williams, Bittker, 

Buchsbaum, and Wynne (1975). Sensory intake tasks are those 

requiring the detection of environmental stimuli in order to 

make the correct response (e.g., choice reaction time tasks), 

while sensory rejection requires no such attention to incoming 

stimuli (e.g. mental arithmetic tasks). These tasks have 

been found to elicit different patterns of autonomic res­

ponse, with heart rate decreases typically occurring during 

sensory intake tasks, while sensory rejection tasks elicit 

heart rate increases. Recently, Williams, Lane, Kuhn, et al. 

(1982) found that Type A males showed significantly greater 

increases in forearm blood flow, epinephrine, norepinephrine, 

and Cortisol, along with greater decreases in forearm vascular 

resistance, than Type B males on a sensory intake task (men­

tal arithmetic), while no differences were discovered on the 
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sensory rejection task (reaction time). Therefore, the dif­

ferences in cardiovascular and neuroendocrine reactivity in 

Type As and Type Bs on cognitive tasks appear to be dependent 

upon both the level of challenge and the nature of the task 

(i.e., intake vs. rejection). 

A cognitive task involving elements of both sensory in­

take and sensory rejection was used recently in a study by 

Blumenthal, Lane, Williams, et al. (1983). The task was the 

Word Finding Test (WFT) which involves presentation of a 

series of sentences in which one word is missing. Each sen­

tence provides a clue as to what the missing word is. A non­

sense word is usually used in place of the correct one. For 

example, a series of items may be as follows: (a) A Grobnick 

really isn't worth very much? (b) However, Grobnicks are 

still more than a dime a dozen; (c) Many people won't bother 

to pick up a Grobnick if they find one; (d) Grobnicks are 

often given to little children who sometimes swallow them; 

(e) You can still get weighed for a Grobnick. The Grobnick 

is correctly identified as a penny (Blumental et al., 1983). 

Type A and B subjects performed this task either with or 

without the addition of a monetary incentive, whereby sub­

jects could win up to five dollars. The amount a subject won 

was dependent on the number of clues needed to answer correct­

ly. Subjects received 25C for a correct response to the first 
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clue; 10£ for a correct response to the second clue, etc. 

Type A subjects were found to show significant increases in 

heart rate, systolic blood pressure, and forearm blood flow, 

and decreases in forearm vascular resistance across both in­

centive and nonincentive conditions. Type B subjects, in 

contrast, showed increases in heart rate and systolic blood 

pressure only under the incentive condition. Therefore, it 

appears that with the WFT, Type A subjects experienced 

enhanced physiological arousal in the absence of explicit 

performance demand, suggesting a possible difference in 

attributional characteristics of Type As and Type Bs. That 

is, Type A persons may more readily attribute to or perceive 

a challenge in a situation than Type B persons, leading to 

augmented physiological reactivity in Type As (Schlegel, 

Wellwood, Copps, Gruchow, & Sburratt, 1980; Smith & Anderson, 

Note 3). 

Psychomotor - Physical Performance Tasks 

Type A subjects, when exposed to tasks involving motor 

performance, tend to react with greater sympathetic arousal 

than their Type B counterparts (e.g., Dembroski, MacDougall, 

Herd, & Shields, 1979; Dembroski, MacDougall, & Shields, 

1977; Goldband, 1980; Lovallo & Pichkin, 1980; MacDougall, 

Dembroski, & Krantz, 1981). Several of these studies will 

now be reviewed. 
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Dembroski et al. (1979) designed an experiment to deter­

mine whether Type A male subjects were more likely than Type 

B subjects to perceive a performance challenge on a given 

task, regardless of the nature of that task. It was assumed 

that if Type As always perceived a performance challenge on 

a task, they should evidence heart rate (HR) and blood pres­

sure (BP) increases even when no direct challenge was made. 

To test this hypothesis, those cardiovascular measures were 

taken on A and B subjects while they were given a standard 

cold pressor test. Subjects were presented with either high-

challenge instructions ("This is a test of will power and 

endurance. Try to keep your hand immersed in the water as 

long as you can") or low-challenge instructions ("Remove your 

hand when it gets too cold"). The results showed that under 

high-challenge instructions Type A subjects responded to the 

cold stress with significantly greater increases in HR and 

SBP than Type B subjects. Under low-challenge instructions, 

however, there were no differences between As and Bs in HR 

or BP. The authors concluded that "since the blood pressure 

difference between Type A and Type B subjects was paralleled 

by a significant difference in HR change during the high-

challenge condition, these data are indicative of greater sym­

pathetic nervous system arousal in Type A subjects" (Dembroski 

et al., 1979). The findings from the cold pressor test were 

partially replicated in the same study using a reaction time 
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task. Under high-challenge instructions, Type As again 

showed significantly greater increases in SBP than Type Bs. 

A similar study was conducted by MacDougall et al. (1981), 

comparing the physiologic responses of Type A and Type B 

women. Subjects were presented with cold pressor and reaction 

time tasks that emphasized only the challenging nature of the 

tasks. The authors discovered that, unlike males in the Dem-
• 

broski et al. study, Type A women in the present experiment 

did not prove to be more physiologically reactive than their 

Type B counterparts. One explanation posited by the authors 

was that these particular tasks were not perceived by the 

women as being highly relevant to their personal definition 

of success and achievement, and thus did not provide a suf­

ficiently challenging situation for them. This reasoning 

was somewhat supported in a second experiment when Type A 

and Type B women were placed in a situation involving inter­

personal and verbal challenge from another woman during a 

difficult U.S. history quiz. As reported earlier in the 

section on cognitive tasks, Type A women evidenced signif­

icantly greater increases in SBP under those conditions than 

did Type B women. 

One of the most important studies on Type A and physio­

logic responses to date was conducted by Goldband (1980). 

In the first of two experiments, Type A and Type B subjects 

performed a reaction time task which either included manipu­



36 

lations involving competition, time urgency, and loss of 

control (task-relevant condition) or which did not include 

those manipulations (neutral condition). Competition was 

manipulated in the relevant condition by informing the sub­

jects that their performance would be compared with that of 

the "average subject" and that it was crucial for each sub­

ject to do his very best. In the neutral condition, subjects 

were told that the purpose of the experiment was to study 

some basic physiological processes, and that the reaction 

time task was merely a convenient way to keep the subject 

busy while measures were being taken. Time urgency was 

heightened in the relevant condition by introducing a dead­

line in the reaction time task. That is, subjects were given 

a preset criterion as to how fast they should respond on each 

trial. This criterion was set in such a way that, it was 

assumed, subjects would miss the deadline on approximately 

half of the trials. In the neutral condition, the deadline 

was set so that subjects met it 90% of the time. If the 

subject failed to meat the deadline, a tone sounded and a 

computer flashed the message, "You failed to meet the dead­

line". Loss of control was arranged by either allowing sub­

jects to control whether or not they received feedback as to 

their reaction time after each trial (neutral condition) or, 

as in the relevant condition, having each subject receive 
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feedback on a yoked basis, according to whether a neutral 

subject received feedback. That is, relevant condition sub­

jects had no control over when they received feedback. 

Results indicated that Type A subjects in the relevant 

condition showed significant decreases in pulse transit time 

(representing increased sympathetic influence) compared to 

Type A subjects in the neutral condition. Pulse transit time 

(PTT) responses in Type B subjects were similar in both con­

ditions. Actually, Type A subjects in the neutral condition 

evidenced significantly less of a decrease in PTT from base­

line than did Type Bs in this condition. This finding 

suggests that under conditions that are not sufficiently 

challenging or "relevant" to the Type A behavior pattern, 

Type A subjects may actually be hyporesponders. 

In the second experiment of the Goldband (1980) study, 

A and B subjects performed two physically stressful tasks (a 

cold pressor task and a task involving inflating 4 balloons 

until they burst) that did not involve specific manipulations 

relevant to the Type A behavior pattern, while HR and PTT 

were measured. Although both Type As and Type Bs showed 

some reactivity in physiological responses, there were no 

group differences. Taken together, the findings from the 

two Goldband experiments strongly support the notion that 
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the physiological hyperreactivity of Type A subjects is 

highly situation-specific, occurring only in response to 

certain types of environmental stressors relevant to the 

Type A pattern. 

The notion that Type A persons have an enhanced need 

to control their environments has been given some attention 

in the psychophysiological literature. Previous reaction 

time studies have demonstrated that when subjected to uncon­

trollable stress (e.g. loud uncontrollable noise, noncontin-

gent electr-ic shock) , Type A subjects exert increased effort 

to escape these stressors (e.g. faster reaction times), while 

Type Bs decrease their efforts in the face of uncontrollabil-

ity (Brunson & Matthews, 1981; Glass, 1977). 

For example, in a study reported in Glass (19 77), Type A 

and Type B subjects were presented with a choice reaction time 

task on which a certain response either terminated (ESCAPE) 

or had no control over 100 dB noise bursts (NO ESCAPE). In 

comparison with Type B subjects, Type As showed slower reac­

tion times when their responses were effective in terminating 

the noise, but significantly faster responses when there was 

no relationship between their behavior and the noise bursts. 

In fact, while Type As' reaction time speeds increased in the 

NO ESCAPE condition, those of the Type B subjects decreased. 

Glass interpreted this finding as being congruent with his 
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conception of Type A behavior as a response style elicited 

by conditions that threaten an individual's sense of envir­

onmental control. When initially confronted by each event, 

Type As, compared to their Type B counterparts, exert greater 

efforts to master the threatening stimulus. 

This enhanced effort to exert control on the part of 

Type As is similar to Obrist's notion of "effortful active 

coping" (Obrist, 1976), which is characterized by a subject's 

attempt to perform well on highly difficult tasks. In a 

series of studies, Obrist, Light and their associates have 

demonstrated an enhancement of beta-andrenergic activity in 

subjects performing a shock avoidance reaction time test 

(Light, 1981; Light & Obrist, 1980(a); Light & Obrist, 

1980(b); Obrist, Gaebelin, Teller, Langer, Grignola, Light, 

& McCubbin, 1978). 

To investigate the cardiovascular and neuroendocrine 

effects of effortful active coping on Type A persons, Con-

trada, Glass, Krakoff, Krantz et al. (1982) measured circul­

ating catecholamines as well as heart rate and blood pres­

sure while Type A and B subjects performed a choice reaction 

time test. In one condition, subjects could avoid aversive 

stimulation (loud noise bursts and/or electric shocks) by 

attaining a predetermined reaction time speed (Contingency), 

while subjects in the other condition were informed that 
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their responses had no control over aversive stimulation (No 

Contingency). Within each condition, half the subjects 

received a high frequency of aversive stimulation (High FAS) 

while the other half received a low frequency (Low FAS). 

Within the Contingency condition, High and Low FAS signified 

failure or success at meeting the reaction time criterion. 

It was predicted that Type As would be more reactive in FAS 

since this condition would elicit increased attempts to 

master the task. As predicted, Type A subjects evidenced 

greater physiologic (increases in norepinephrine) and 

behavioral (faster reaction time) hyperresponsivity under 

High FAS but only with the Contingency manipulation. It was 

found that when exposed to uncontrollable noise, Type As 

evidenced greater decreases in pulse transit time and faster 

reaction times than Type Bs. 

Although there is considerable evidence from the 

psychophysiological literature suggesting that Type A indi­

viduals exhibit heightened autonomic responsivity to stress 

when compared with Type Bs, it should be noted that some 

studies have reported no differences between As and Bs 

(Diamond & Carver, 1980; Lott & Gatchel, 1978; Krantz et 

al., 1982). As Matthews (1982) pointed out, however, these 

studies were more likely to have included women (Lott & 

Gatchel, 1978) or cardiac patients (Krantz et al., 1982) 
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as subjects, classified subjects according to JAS scores, 

or imposed tasks which failed to elicit large responses from 

any subject (Diamond & Carver, 1980). 

Type A Subcomponents, Environmental Demands, 
and Sympathetic Nervous System Activity 

One relatively new line of investigation has been to 

examine separately the subcomponents of the Type A behavior 

pattern. It has frequently been noted that while the global 

Type A behavior pattern predicts the occurrence of CHD, it 

has not been determined which of the subcomponents of the 

behavior pattern (e.g. potential for hostility, competitive 

drive, impatience, and vigorous voice stylistics) is actually 

placing one at risk for heart disease, or whether all the 

subcomponents are equal in this respect (Glass, Krakoff, 

Contrada, Hilton, et al., 1980; Scherwitz, Leventhal, Cleary, 

& Laman, 1978) . It is conceivable that some of the subcom­

ponents, for example competitive drive and/or impatience, 

may elicit cardiovascular activity disposing Type A persons 

to CHD, while others, such as potential for hostility and 

vigorous voice stylistics, may not. Identifying the subcom­

ponents of the Type A pattern that result in elevated levels 

of sympathetic autonomic activity would not only enhance our 

understanding of Type A-CHD relationship, but, from a clin­

ical perspective, would begin to delineate those aspects of 
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the behavior pattern in greatest need of modification. 

There have been only a few studies which have explored the 

relationship between the subcomponents of the Type A pattern 

and arousal of the sympathetic nervous system. 

In their study with Type A women, MacDougall, Dembroski, 

and Krantz (19 81) found that the Potential for Hostility sub­

component of the SI was the only component that significantly 

predicted physiologic response in a reaction time task. 

Dembroski, MacDougall, Shields et al. (1978) also found the 

potential for hostility to be substantially correlated with 

elevations in both SBP and HR. Subjects who scored higher 

on this scale tended to show greater increase in systolic 

blood pressure and heart rate than subjects who scored lower. 

Attributes such as verbal competitiveness, rapid/accelerated 

speech, and speed and impatience (as measured by the Struc­

tured Interview) correlated strongly with only one physiolog­

ical measure (either heart rate or systolic blood pressure). 

The importance of these first subcomponent studies by 

Dembroski, MacDougall, and associates is that they began to 

more clearly delineate the relative contribution of each of 

the separate Type A dimensions. High scores on certain Type 

A subcomponents correlated significantly with physiological 

arousal. While a correlational approach might provide impor­

tant information concerning the subcomponent-sympathetic 
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arousal interaction, a more convincing and potentially more 

clinically useful approach would involve placing Type A sub­

jects in particular situations which might evoke certain Type 

A characteristics while physiological arousal is assessed. 

For example, to determine if competition is a Type A subcom­

ponent which might lead to pathogenic autonomic arousal, Type 

A subjects could be placed in challenging competitive 

situations, while the appropriate dependent measures are 

taken. This experimental approach is more useful than the 

correlational approach in at least two respects. First of 

all, since the Type A subcomponents are perceived as res­

ponses to specific environmental stimuli, it seems more 

appropriate to measure physiological arousal while subjects 

are in conditions which approximate such environmental 

stimuli. Secondly, from a more applied perspective, the 

ability to discern the environmental circumstances under 

which pathogenic autonomic arousal occurs would be valuable 

in the development of intervention programs aimed at de­

creasing Type A behavior. That is, by elucidating exper­

imentally the relevant environmental factors, clinicians can 

be more efficient in helping Type As alter their pattern 

of responding to these factors. 

One might argue, however, that demonstrating heightened 

sympathetic autonomic arousal in Type A persons under 
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conditions of, say, competition, is of little importance, 

inasmuch as their JAS scores or structured interview responses 

already suggest that this would occur. That is, if subjects 

say they are very competitive, it is expected that they would 

show hyperarousal in competitive situations. This, however, 

may not be the case. Glass et al. (1980) conducted the only 

study to date in which the subcomponents of the behavior pat­

tern were experimentally manipulated while psychophysiological 

measures were taken. These researchers examined the physiolog­

ical effects of competition and hostility in Type A and B men. 

Subjects competed at an electronic board game with a compet­

itor who said nothing, and also with a hostile competitor 

who continuously harassed the subject (e.g. "Come on, you 

aren't even trying"). It was found that Type As exhibited 

more autonomic arousal than Type Bs only under the hostile 

competition conditions. This study by Glass and associates 

suggests that the relationship between situational factors, 

Type A behavior, and physiological arousal may not be a 

simple one, since competition alone did not differentiate 

between groups, while the interaction of competition and 

hostility did. Simply placing Type A and Type B persons in 

situations which mimic the Type A subcomponents, therefore, 

may not yield group differences. It is necessary to look 

also at the interaction of subcomponents and situation 
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demands, and at the exact nature and parameters of the 

environmental challenges. That is, emphasis should be 

placed on the interaction and specificity of situational 

demands. 

One subcomponent of the Type A pattern which may be 

critical to the development of later CHD is time urgency or 

impatience. Previous research comparing As and Bs on this 

dimension has revealed that Type As tend to arrive earlier 

for appointments (Gastorf, 1980), estimate the end of a time 

interval sooner (Brunan et al., 1975), exhibit greater beha­

vioral hyperactivity when forced to wait (Glass, Snyder, & 

Hollis, 1974), show longer response latencies on choice 

reaction time tasks involving long preparatory intervals 

(Glass, 1977), and evidence irritation when forced to slow 

down the rapid pacing of their activities (Glass et al., 

1974). In fact, in many of the psychophysiological studies 

conducted using Type As, the experimental tasks contained 

challenges which placed subjects under time pressure. For 

example, in studies using reaction time (e.g. Dembroski, 

MacDougall, Shields, Petitto, & Lushene, 1978) and cognitive 

tasks (e.g. Manuck, Craft, & Gold, 1978; Manuck & Garland, 

1979), subjects are typically instructed to "respond as 

rapidly as possible". In essence, then, there appears to be 

strong behavioral evidence and, to a lesser degree, psycho­

physiological support for the notion that Type A individuals 
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exhibit a unique response to time pressures. No study to 

date, however, has systematically investigated the possible 

role time urgency might play in the elicitation of patho­

genic sympathetic arousal. That is, a question remains 

concerning whether Type A individuals evidence sympathetic­

ally mediated cardiovascular hyperactivity in situations 

involving extended waiting periods. For example, do Type A 

individuals show a systematic increase in cardiovascular 

hyperarousal corresponding with increments in the time they 

must wait? 

As noted earlier, it may not be sufficient simply to 

place subjects in challenging situations which mimic Type A 

subcomponents, since this approach does not always yield 

A-B differences (e.g., Glass et al., 1980). Rather, it may 

be more important to explore how different situations inter­

act to augment autonomic arousal in Type A persons. In fact, 

it is conceivable that many of the challenging situations to 

which individuals are exposed outside of the laboratory are 

multi-dimensional, comprising a number of simultaneously 

occurring demands. With regard to the time urgency component 

of the Type A behavior pattern, conditions which require ex­

tended waiting periods may interact with other situational 

demands to enhance autonomic reactivity in Type As — over 

and above that elicited by waiting alone. One factor which 
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might interact with waiting to enhance autonomic reactivity 

is the uncertainty or unpredictability of the waiting per­

iod. Given the often-reported need for environmental control 

attributed to Type A persons, it might be that unpredictable 

or uncertain conditions decrease their sense of control, and 

consequently increase their efforts to gain control — pro­

cesses which might ultimately lead to enhanced autonomic 

responsivity. 

Type A Behavior Pattern and Cortical Activity (Event-
Related Potentials) 

Event-related potentials (ERP) are scalp-recorded mani­

festations of neural events associated with the processing 

of environmental stimuli. Their waveforms depend on the loca­

tion of the electrode and voltage source, and on the nature 

of the experimental manipulations. While ERPs have been 

used by some researchers to study differences between selec­

ted groups of subjects (e.g., Calloway, 1975), they have yet 

to be used in the study of the Type A behavior pattern. 

Two ERP components are particularly relevant to the purposes 

of this experiment, the N200 and P300 components. The N200 

component is a negative-going shift which occurs around 200 

msec after presentation of an attended or task-relevant 

stimulus or a stimulus with features common to the relevant 

stimulus, and is presumably reflective of modality-specific 
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selection processes (Harter & Guido, 1980). The P300 com­

ponent is a positive voltage change with a latency of ap­

proximately 300 msec following a task-relevant event 

(Duncan-Johnson, 1981) and is maximal when recorded over the 

parietal region. Among other things, P300 amplitude and 

latency are sensitive to the subjective probability of the 

target stimulus (Donchin, 1980; Duncan-Johnson, 1978; 

Squires, Wickers, Squires, & Donchin, 1976), while its laten­

cy also varies with the difficulty of a discimination 

(Duncan-Johnson, 1981; Johnson, Pfefferbaum, & Kopell, 

1981; Kutas, McCarthy, & Donchin, 1977). These ERP compon­

ents might serve as important indices of increased effort 

on the part of Type A subjects — which, as noted above, 

might be elicited by conditions of uncertainty or unpredic­

tability. It could be that Type A individuals are not only 

autonomically hyperreactive to challenging situations, but 

may exhibit augmented neural information processing as well. 

In addition, an accelerated rate of information processing 

in Type As would provide neural evidence for their afore­

mentioned tendency toward and preference for rapid pacing 

of their motor activities. 

Purpose and Predictions 

The purpose of the present study was to explore the 

hypothesis that extended waiting and uncertainty play a 



49 

significant role in eliciting heightened levels of sympa­

thetic and cortical arousal in Type A as compared to Type B 

individuals. Tonic (sustained) and phasic (transient) 

autonomic activity and ERPs of Type A and Type B subjects 

were measured while they performed a reaction time task 

emphasizing speed, with either a relatively short or long 

intertarget interval (ITI) and with either low or high 

certainty as to length of the ITI. The study determines 

whether greater sympathetic autonomic arousal in Type As 

depends on 1) how long they must wait and 2) how certain the 

interval length is. It also determines if Type As respond 

to conditions which might engender effortful active coping 

(e.g., uncertainty) with enhanced cortical responsivity. 

It was predicted that Type A subjects would evidence 

more sympathetically mediated autonomic reactivity (as 

indexed principally by pulse transit time) than Type B sub­

jects during the longer ITIs. Long waiting intervals prior 

to responding were expected to affect the impatient or time-

urgent component of the Type A pattern, leading to enhanced 

sympathetic responsivity. The length of ITI was not expected 

to differentially affect cortical activity in Type As and 

Type Bs. It was also predicted that Type As would exhibit 

greater sympathetic autonomic reactivity than Type Bs under 

conditions of uncertainty. This prediction stemmed primarily 

from the Laceys' (Lacey & Lacey, 1970, 1974) research which 
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showed that on fixed foreperiod reaction time tasks, heart 

rate actually decelerates as the time of the target stimulus 

approaches, and immediately accelerates following stimulus 

occurrence, and that these phasic heart rate changes are under 

parasympathetic control (Obrist, Langer, Light, Grignolo, & 

McCubbin, 1979). Type A individuals have been shown to 

evidence these stimulus-bound cardiac changes (Goldband, 

1980) , and under some conditions show greater prestimulus 

heart rate decreases than Type Bs (Jennings & Choi, 1981). 

Therefore, Type A subjects were expected to show less sympa­

thetically mediated autonomic changes under conditions where 

the ITI is relatively certain. Conversely, when the wait­

ing interval is less certain, the stimulus-locked cardiac 

deceleration should not occur since stimulus occurrence 

is unpredictable. Instead, it is expected that Type As would 

exhibit greater sympathetic autonomic arousa-1 than Type Bs 

under these conditions. This prediction comes from the idea 

that Type A persons are more concerned than Type Bs with 

controlling their social and physical environment (Glass, 

1977; Williams et al., 1978), and the finding that Type As 

will work harder to gain control over uncontrollable 

stressors than Type Bs. Therefore, following Obrist's 

notion of effortful active coping, it was expected that the 

pattern of autonomic arousal would suggest greater sympathet­

ic innervation, and that Type As would exhibit greater 
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arousal than Type Bs. It is also during this low certainty 

condition that, due to increased effort and sustained 

attention, Type A subjects will exhibit a greater enhancement 

of cortical activity than Type B subjects. Finally, it was 

predicted that the combined effects of long waiting periods 

and low certainty would also lead to greater cardiac and 

cortical responses in Type As as compared to Type Bs. 
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CHAPTER II 

METHOD 

Subjects 

Subjects were 20 male undergraduate volunteers selected 

from the pool of introductory psychology students (see 

Behavior Pattern Assessment below). All subjects were paid 

$10.00 for their participation in the study. All subjects 

were nonsmokers and each was asked to abstain from drinking 

coffee for four hours prior to participation. The average 

height of the Type A subjects was 5 ft., 10 inches and was 

5 ft., 11 inches for Type B subjects. The average weight 

for the Type A subjects was 168 lbs. as compared to 171 lbs. 

for the Type Bs. 

Behavior Pattern Assessment 

Subjects were selected for participation in this exper­

iment based on their scores on the JAS - Form T (Krantz, 

Glass, & Snyder, 1974). The JAS were given to male intro­

ductory psychology students and later scored along the A-B 

dimension (see Appendix A for copy of JAS). 

Of the 54 items on the JAS, 21 are used to classify 

subjects as Type A or Type B (see circled items on JAS). 

Typically, these 21 items are scored by assigning a weighting 

of 1 to responses designated to be Type A, and 0 to Type B 

responses. The exact score at which subjects are labeled 
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Type A or Type B has varied across previous studies. For 

example, subjects scoring 8 or below have been labeled Type 

B and those scoring 10 or above, Type A (Goldband, 1980); or 

subjects scoring above the median of all scores labeled Type 

A and those below as Type B (Krantz et al., 1974). For the 

purposes of the present study, an attempt was made to choose 

subjects with extreme scores. Therefore, of the 80 students 

who completed the JAS, the 10 with the highest scores and 

the 10 with the lowest scores were selected as subjects. 

This method resulted in a mean Type A score of 14.2 and a 

mean Type B score of 5.2. 

Apparatus 

Heart rate was measured using a Glass (Model 7P4) car-

diotachograph in conjunction with a low-level DC amplifier 

(Model 7P3). Pulse transit time was measured using an AC 

amplifier (electrocardiogram) Glass Photoelectric Trans­

ducer (Model PTTN) (finger pulse) and two Schmitt triggers. 

Blood pressure was measured manually using a sphygomano-

meter and stethoscope. A Fabritek 1062 Signal Averager was 

used for measuring phasic heart rate and phasic pulse transit 

time. Electroencephalograms for measuring evoked potentials 

were amplified with Grass 785 wide-band AC preamplifiers 

in a Grass 7WC polygraph with half-amplitude high and low 

frequency filter set at 35 and 1 Hz, respectively. Cortical 

activity was averaged with a Fabritek 1062 Signal Averager 



54 

for 500 msec following the stimulus flash. Each average 

evoked potential was based on 34 trials. 

Stimuli 

The stimuli in this experiment were a white circle and 

a white square. The figures were presented in a 1.92°-

diameter black display surrounded by a white field. Stimuli 

were presented at a rate of 1/500 msec, and each was dis­

played for a duration of 40 msec. The white circles served 

as nontarget while the white squares were target stimuli. 

The frequency of occurrence of the squares was dependent 

upon the experimental condition (see Conditions below). 

Task 

Subjects were instructed to respond to the white square 

by lifting their left index finger from a button mounted on 

a wooden board and then returning the finger as quickly as 

possible. The lifting of the finger constituted a response. 

Subjects were signaled by a "click" if their response times 

were longer than 350 msec. 

Experimental Conditions 

The target stimuli were presented on four schedules 

varying in the certainty of the intertarget interval 

(high certainty vs. low certainty) and the length of the ITI 

(6 sec vs. 18 sec). In the high certainty conditions, 

subjects were aware of the time interval between the 
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occurrence of successive square stimuli (targets). Two 

interval lengths were used: a 6-sec and an 18-sec inter­

val . 

In the low certainty condition, subjects were unaware 

of the interval between the occurrence of the successive 

squares. The interval varied randomly from 1 to 30 sec­

onds . Two average interval lengths were used: a 6-sec 

and an 18-sec interval. 

Design 

The experiment was designed to examine the cardiovas­

cular and cortical effects of waiting different lengths of 

time (6 and 18 sec on the average) under different condi­

tions of certainty (low vs. high) before responding on a 

reaction time task in Type A and Type B males. To examine 

these issues, a three-factor mixed design was used, with 

repeated measures on two factors (see Figure 4). The two 

within-subject factors were ITI Certainty (high vs. low) 

and ITI Length (6 vs. 18 sec), and the between-subjects 

factor was Subject Type (A vs. B). 

Dependent Measures 

Reaction time. The latency of reaction time (RT) on 

each trial was measured. Mean reaction time across 34 trials 

per condition was derived for each subject. Other behavioral 

measures were percentage of "hits" or "false alarms," represent-
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Interval Certainty 

High Certainty Low Certainty 

Interval Length Interval Length 

Ss 6 sec 18 sec 6 sec 18 sec 

A 

Subject 
Type 

10 

B 

10 

Figure 4. Design matrix for experimental condi­
tions , showing repeated measurements 
on interval certainty (high and low), 
and interval length (6 and 18 seconds) 
for Type A and B subjects. The presen­
tation of conditions was counterbalanced 
across subjects. 



57 

ing responses occurring within 350 msec, of target and non-

target stimuli, respectively. 

Subjective tension rating. Each subject rated their 

subjective level of tension before and after each condition 

using a 100-mm visual analogue scale. The scale consisted 

of a 100-mm vertical line with the bottom end labeled "NO 

TENSION" and the top labeled "MOST TENSION POSSIBLE". To 

rate their tension, subjects simply placed a horizontal 

slash at any point across this line. Tension ratings then 

were quantified in terms of millimeters from the NO TENSION 

endpoint. 

Event-related potentials (ERP). Evoked potentials were 

recorded with Grass gold-cup scalp electrodes located over 

the parietal (Pz) and frontal (Fz) regions of the scalp with 

the earlobes serving as references. Electrode placement 

followed the International 10-20 system (Jasper, 1958). 

Resistance was reduced by rubbing these locations briskly 

with a Q-tip and electrode cream. The ERP was quantified by 

using the average voltage of the first 50 msec of each ERP 

waveform as a baseline. The amplitude and latency of specific 

points along the ERP waveform were used as dependent meas­

ures: the most negative deflection between 150 and 300 msec 

and between 300 and 450 msec, and the most positive deflec­

tions between 250 and 350 msec and between 350 and 500 msec. 
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Both the latency and amplitude of each deflection were meas­

ured and subjected to statistical analysis. 

Tonic heart rate (THR). Heart rate was measured using 

standard gold cup electrodes. Before electrodes were posi­

tioned, the placement areas on the skin were cleaned. 

Electrode cream was placed inside the electrode cup, which 

was held on the surface of the subject's skin using adhes­

ive tape. Placement of the electrode followed the standard 

limb lead II method (Stern, Ray, & Davis, 1980) which in­

volves placing one electrode on the right arm and another on 

the left leg. This right arm - left leg placement was chosen 

since subjects responded with their left hand, and thus move­

ment artifact was reduced. Heart rate was obtained by hav­

ing the EKG spike trigger a counter. Tonic heart rate was 

quantified in terms of number of beats per minute. 

Phasic heart rate (PHR). In order to ascertain varia­

tions in heart activity which were temporally related to 

stimulus presentation, PHR changes occurring before (at 

times -1.0 and -0.5 sec), following (at times +0.5 and +1.0 

sec) and at the time of target stimulus (time 0.0) were meas­

ured. Phasic heart rate was measured by computer sampling 

of heart rate occurring during the aforementioned 2-second 

interval, which was printed on graph paper as a horizontal 

line representing the average phasic heart rate across the 
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34 trials. Using time 0.0 as a baseline, the difference 

in the slope of the horizontal line between this point and 

the four other points was measured in terms of millimeters. 

The computer was calibrated such that one millimeter repre­

sented two beats per minute. A counter recorded the inter-

beat-interval (IBI) occurring at the time of the target 

stimulus (time 0.0) which served as reference for the quan­

tification of heart rate at the other sampling times. All 

values (including IBI at time 0.0) were converted into heart 

rate in terms of beats per minute. 

Tonic pulse transit time. Pulse transit time (PTT) is 

defined as the interval between the onset of ventricular 

electrical activity and the arrival of the pulse at a peri­

pheral site (Weiss, Note 4). Stated differently, it is the 

time required for the pulse wave to travel from the heart 

(after contraction) to a distant location, such as an arm 

or finger, or from one point to another point (Stern et al., 

19 80). The importance of pulse transit time as a dependent 

measure in this study rests on its sensitivity to sympa­

thetic nervous system effects on the myocardium, and there­

fore catecholamine secretion. Several studies using the 

beta-blocking agent propranolol have demonstrated a consis­

tent relation between beta-adrenergic (sympathetic) inhibi­

tion and increases in pulse transit time (decreases in PTT 

reflect beta-adrenergic excitation) (Obrist, Light, McCubbin, 
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Hutcheson, & Hoffer, 1979; Weiss, Del Bof Reichek, & Engelman, • 

1980). Therefore, PTT was chosen as the best noninvasive 

indicator of sympathetic nervous system activity. 

Pulse transit time was measured by recording the time 

delay from the onset of the R-wave of the EKG to the onset 

of a vasomotor pulse at the distal end of the radial artery. 

The occurrence of the R-wave activated a Schmitt trigger 

which in turn started a timer; the timer was terminated by a 

second Schmitt trigger which was activated by the arrival of 

the pulse wave at the distal end of the radial artery. The 

sum of every three R-wave-to-pulse-wave cycles was printed 

by a print-counter and later divided by three to get mean 

pulse transit time for three heart beats. 

Phasic pulse transit time. As with HR, PTT was meas-

used just prior to, just after, and at the time of the tar­

get stimuli. In this case, phasic PTT was sampled at times 

-1.0 sec, -0.5 sec, 0.0 (time of the target stimulus), and 

+0.5 sec. To measure phasic PTT, the first EKG R-wave-to-pulse-

wave interval following each occurrence of the four stimuli 

(occurring at the times above) was computer-sampled. This 

produced four frequency histograms reflecting the distribu­

tion of PTTs relative to each stimulus across 34 trials. 

Mean PTT for each histogram was derived by measuring half 



61 

of its amplitude (mode) at the midpoint of the distribution; 

then the distance between the point of stimulus onset and 

the mode of the frequency histogram was measured, whereby 

1 cm equaled 100 msec. 

Blood pressure. Both systolic and diastolic blood 

pressure were measured manually before and after each condi­

tion. In all, then, a total of 8 blood pressure readings 

were taken. Blood pressure was measured using a sphygmon-

anometer and stethoscope. 

Procedure 

Upon their arrival at the Psychophysiology Laboratory, 

each subject was told that the purpose of the experiment 

was to study the interaction of behavior and physiological 

processes. They were informed that their task would be to 

respond by releasing a lever whenever a certain stimulus 

appears, and that their cardiovascular responses would be 

recorded as they worked on the tasks. At this time, sub­

jects were asked to sign a consent form if they still wished 

to participate. 

Subjects were then taken into the experimental chamber 

where electrodes were put in place. A 5-minute baseline was 

taken on the recordings, after which the experimenter played 

a recording of the following instructions: 
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On the screen in front of you is a black display 
panel on which a series of circular lights will 
appear. Occasionally, a square light within the 
series of circular lights will appear. Your task is 
to respond as rapidly as possible to the square 
light by lifting your finger from the button on the 
board in front of you. Please observe the screen 
carefully since the lights will be flashing very 
rapidly, and it is important that you make a res­
ponse to each square light. In the event that you 
fail to respond to a square light, or your response 
is too slow, you will hear a click, and thereafter 
should try to improve your speed. If your reaction 
times are on the average faster than those of any 
other subject in the study, you will receive a 
$10.00 cash prize in addition to your payment for 
participation. 

At this time, when subjects were in the high certainty 

conditions, they were told that the square figure would 

appear at fixed-time intervals (either 6 or 18 seconds 

apart depending on condition). When subjects were in the 

low certainty conditions, they were told that the square 

stimulus would appear at unpredictable intervals, but 

that it would occur between 1 and 30 seconds and, on the 

average, would occur either every 6 or 18 seconds. 

Following each condition, the subject was asked to 

relax while another 5-minute baseline was taken on the depen­

dent measures. Subjects were then told what the next con­

dition would be and were reminded to respond as rapidly as 

possible. For each experimental condition there were 34 

reaction time trials. 



63 

Data analysis. All behavioral measures (reaction times, 

hits, and false alarms) and ERPs were subjected to a repeated 

measure analysis of variance (SAS program). Then tension and 

autonomic data (THR, TPTT, SBP, DBP, PHR, PPTT) were analyzed 

using an analysis of covariance with the precondition base­

line serving as the covariate. All data will be graphically 

presented as change scores. This procedure was used since 

research has shown that even nonsignificant baseline differ­

ences between groups or individuals can influence responsive­

ness to experimental manipulations (Benjamin, 1967; Kinsman 

& Staudeumayer, 1978). Since there were extremely large 

variance differences between Type As and Type Bs in pulse 

transit time, a log transformation procedure (Winer, 

1971) was performed on these scores to make the variances 

more homogeneous (SAS program). Multiple comparisons of 

between-individual means were carried out using the Neuman-

Kuel's Multiple Range Test. 
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CHAPTER III 

RESULTS 

Behavioral and Subjective Measures 

The independent variables used in the analysis of the 

behavioral and subjective measures were subject Type 

(A vs. B), ITI Certainty (high vs. low), and ITI Length 

(6 sec vs. 18 sec), creating a 2 x 2 x 2 mixed design. All 

figures and tables which follow can be found in Appendix B. 

Reaction time, false alarms, and hits. The data for 

reaction time are shown in Figure 5. Reaction times were 

significantly shorter during the high as compared to low 

certainty condition (ITI Certainty effect, F (1, 18) = 

22.68, jo<.001). Reaction times were also faster during 

the 6-sec than 18-sec ITI Length condition (ITI Length 

effect, F (1, 18) = 76.45, £<.001). Figure 6 shows that 

there was a greater percentage of hits during the 6-sec as 

compared to the 18-sec ITI condition (F (1, 18) = 12.10, 

jo <.002). Other main effects or interactions reaction time, 

false alarms, and hits did not approach statistical signif­

icance. 

Tension. No significant main effect or interactions 

were found for subjective tension ratings. 
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Tonic Autonomic Measures 

All data on autonomic measures unless otherwise stated 

are presented in terms of change scores from baseline. For 

blood pressure, change scores were calculated by subtracting 

the baseline mean from the Post-condition score (Post-Pre). 

For heart rate and PTT the baseline mean was subtracted from 

the mean of the condition (Condition x-baseline x). 

No significant main effects or interactions were found 

for tonic PTT or systolic blood pressure (see Figures 7 and 

8). The apparent main effect of Type on topic PTT was due 

primarily to extremely large change scores for one Type A 

subject which dramatically influenced the group mean. 

Tonic heart rate. The data for tonic heart rate are 

shown in Figures 9 and 10. Under both ITI Length manipula­

tions, Type Bs evidenced a decrease in heart rate from 

baseline (Figure 10). However, as seen in Figure 9 (bottom 

graph), the overall decrease in heart rate for Type B 

subjects during the 6-sec condition was due primarily to 

their large decrease in heart rate during the low certainty 

6-sec condition. In contrast, Type As showed only a slight 

decrease during the 6-sec condition and an increase in heart 

rate during the 18-sec condition. The ITI Length x Type 

interaction was statistically significant F, (1,18) = 59.1, 

£ <.04. Other main effects on tonic heart rate were not 

statistically significant. 
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Diastolic Blood pressure. The data for diastolic 

blood pressure are shown in Figure 11. Higher blood 

pressures occurred during the low certainty condition 

(Certainty/ F,(1,18) = 4.97, £ <.03). However, inspection 

of the figure shows that higher mean diastolic blood pressure 

during the low certainty condition tended to be due to Type 

As subject's response rather than Type Bs, although this 

interaction did not approach statistical significance. 

Phasic Autonomic Measures 

Phasic heart rate. Heart rate was sampled at 5 points 

in time in reference to the target stimulus: 1.0 sec before 

(-1.0 sec), 0.5 msec before (-0.5 sec), at the time of the 

target stimulus (0.0), 0.5 msec after (0.5 sec), and 1.0 sec 

(1.0 sec) after the target stimulus. These sampling points 

introduced into the analysis a new independent variable 

labeled Time. Therefore, the phasic heart rate analysis 

consisted of the factors Type (A vs. B) by ITI Certainty 

(high vs. low) x ITI Length (6 sec vs. 18 sec) x Time 

(-1.0, -0.5, 0.0, +0.5 and +1.0). The results for phasic 

heart rate are shown in Figure 12. 

As can be seen in Figure 12 there was a greater decelera­

tion in heart rate occurring across the time intervals during 

the high certainty than low certainty condition (Certainty 

x Time interaction, F (9, 180) = 24.7, £ <.001). During the 

high certainty conditions heart rate at time -1.0 was signif­

icantly greater than that occurring at Time 0.0 (jo <.01) and 
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at Time +1.0 (p .01). Figure 12 also suggests a greater 

decline in heart rate during the 6-sec ITI condition, partic­

ularly with high certainty. There was in fact a significant 

ITI Length x Time interaction, F (9, 180) = 24.7, JD <.0001, 

with a greater deceleration in phasic heart rate occurring 

during the 6- as compared to the 18-sec ITI condition. 

There was also a significant Time effect, F (4, 90) = 37.15, 

JD <.0001, with heart rate decreasing from time 1.0 sec 

before to 1.0 sec after the target stimulus. 

Phasic pulse transit time. Figure 13 shows the data 

for phasic PTT. Type A subjects evidenced shorter phasic PTT 

than Type Bs during the low certainty condition for all 

time periods except -0.5, whereas Type Bs showed shorter 

PTTs during the high certainty condition across the same 

time periods (Type x Certainty x Time interaction, 

F (10, 174) = 2.46, JD <.009). Both Type As and Type Bs 

exhibited decreases in phasic PTT from their baselines 

(corresponding to increase in sympathetic activity) for 

all time periods. Type As, in addition, showed shorter 

phasic PTTs than Type Bs during the 6-sec ITI condition 

(Type x Length x Time interaction, F (18, 174) = 2.34, 

£ <.01) at all time periods except -0.5. (See Figure 14.) 

However, this interaction was due primarily to the shorter 

PTTs in Type As during the low certainty condition, since 

As and Bs were similar in PTT during the high certainty 
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6-sec condition. Finally, Type As showed overall greater 

shorter PTTs than Bs particularly at time +0.5 msec, but not 

at time -0.5 (Type x Time interaction, F (5, 89) = 2.23, 

]2 <.05). Again, the effect can be attributed primarily to 

the effects of the low certainty condition (Figure 13). 

Correlations. Overall, there was a significant nega­

tive correlation (-.23) between heart rate and PTT (£ <.04). 

As heart rate increased PTT decreased, suggesting sympathetic 

nervous system activation. Separate correlations x Type 

revealed a significant negative correlation between heart 

rate and PTT for the Type A group only (JD <.05). 

Event-Related Potentials (ERP). 

All ERP measures were subjected to separate analyses 

of variance. The factors in each analysis were Type (A,B), 

ITI Certainty (high vs. low), ITI Length (6 vs. 18 sec), Time 

(-1.0, -0.5, 0.0), and Electrode Location (Fz, Pz). Multiple 

comparisons were made using Newman-Kuel1s Multiple Range 

Test. Analyses were performed on four components of the 

ERP: the most negative wave between 150 and 300 msec, and 

between 300 and 450 msec, and the most positive wave between 

250 and 350 msec, and between 350 and 500 msec. Hereafter, 

these four peaks will be labeled according to their mean 

latencies: N201, N371, P295, and P436. Raw ERP waveforms 

for Type A and Type B subjects for each condition are shown 

in Figure 15. These waveforms represent subject responses 

to target stimuli at the parietal location. Evoked potential 
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data were analyzed using nine Type A subjects and nine 

Type B subjects, since the ERPs from one Type A and one 

Type B subject were omitted due to equipment difficulties. 

N201. The data for N201 latency are graphed in Fig­

ure 16. Graphed are the Type A/B N201 latencies in response 

to the target (0.0 sec) and preceding nontarget stimuli 

(-1.0, -0.5 sec). The most striking feature of the graph is 

the consistently shorter latencies for Type As as compared 

to Type Bs for all conditions and particularly at time 0.0, 

with the exception of the high certainty 18-sec condition 

(Type effect, F (1, 16) = 5.22, JD <.03; Type x Time, 

F (3, 48) = 3.5, £ .02). The A/B differences on N201 

latency was greatest during the low certainty 18-sec condi­

tion and primarily at time 0.0 (interaction of Type x Cer­

tainty x Length x Time, F (3, 48) = 3.53, £ <.02). This 

interaction indicates that A's N201 latencies were much 

shorter than B's during the low certainty 18-sec condition, 

and primarily at time 0.0 sec in response to the target 

stimulus. 

Other effects were also significant. N201 occurred 

earlier in response to the target stimuli as compared to pre­

ceding nontarget stimuli (Time effect, F (2, 48) = 27.44, 

£<•0001). Shorter N201 latencies to nontarget stimuli 

(-1.0 and -0.5 sec) were found at the frontal location, 

while target stimuli (0.0 sec) produced shorter N201 laten­

cies at the parietal location (Electrode Location x Time, 

F (5, 96) = 12.68, JD <.0001). No main effects or interac­

tions were significant on N201 amplitude. 
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P295. The data on P295 latency are shown in Figures 17 

and 18. Type As generally had shorter P295 latencies during 

the low certainty condition while Type Bs generally had 

shorter latencies during the high certainty condition 

(Type x Certainty, F (1, 16) = 6.09, £ <.02) (Figure 18). 

Figure 17 shows that during the high certainty condition, 

Type B's P295s were shorter primarily in response to the 

target stimuli (time 0.0) r however, under conditions of low 

certainty, Type As had a consistently earlier P295 to both 

targets (0.0) as well as nontargets (-1.0, -0.5) (Type x 

Certainty x Time, F (3, 48) = 3.12, JD <.03). 

Other main effects and interactions were also signif­

icant. P295 occurred earliest when the ITI was 6-sec as 

compared to 18-sec (290 vs. 300 msec) (ITI Length, F (1, 16) = 

6.2, £ <.02). Figure 19 illustrates that P295 latencies 

decreased across time during the 6-sec condition, whereas 

P295 latencies increased across time during the 18-sec condi­

tion (Length x Time interaction, F (3, 48) = 2.73, £ <.05). 

P295 latencies decreased between times -1.0 and 0.0 during 

the high certainty 6-sec condition, but increased between 

-1.0 and 0.0 sec during the high certainty 18-sec condition. 

P295 occurred consistently earlier during low certainty 

6-sec condition as compared to low certainty 18-sec condi­

tion for all time points, and occurred earlier at time 0.0 

(in response to the target stimuli) than at times -1.0 and 

0.5 (Certainty x Length x Time interaction, F (3, 48) = 4.0, 

E <-01). 



Larger amplitude P295 occurred in response to the target 

stimuli (Time, F (2, 48) = 13.0, £<.001), particularly 

over the parietal location and at time 0.0 (Electrode Loca­

tion x Time, F (4, 80) = 7.92, £ <.0001). 

N371. The effects of the experimental variables on 

N371 latency are shown in Figure 20. As with P295, N371 

latencies in Type As were shorter than Type Bs during the 

low certainty 18-sec condition. N371 occurred earlier in 

response to target stimuli (Time, F (2,48) = 34.76, £ <.001), 

and earlier at the frontal location to non-target stimuli 

(at times -1.0 and-0.5) and earlier at parietal location 

in response to the target stimuli (Electrode Location x Time 

F (5,96) = 20.04, £ <.0001). 

Figure 21 shows that N371 became more positive between 

times -1.0 and 0.0 during the high certainty condition but 

became more negative between these times duri-ng the low cer­

tainty condition (Certainty x Time, F (3, 48) = 9.40, £ <.0001). 

From Figure 21 it also can be seen that N371 was generally 

more negative during the low certainty condition as compared 

to the high certainty condition (Certainty, F (1, 16) = 13.50, 

JD <.002). At both frontal and parietal locations, N371 was 

more positive than baseline during the high certainty condi­

tion. In the low certainty condition, however, N371 at 

parietal was more negative than baseline while the frontal 

location continued to evidence a positive voltage (Certainty 

x Location, F (1, 16) = 9.91, £ <.006). 
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P436. The effects of the experimental variables on 

P436 latency are shown in Figure 23. Type Bs had shorter 

latencies than As, F (1, 16) = 6.05, p <.02. Type B sub­

jects also showed a trend toward shorter P436 latencies in 

response to targets (at Time 0.0) as opposed to nontargets 

(at time -1.0, -0.5), while As showed an increase (Type x 

Time, F (3, 48) = 3.07, JD<.03). 

For P436 amplitude a larger response occurred at the 

frontal location at times -1.0 and -0.5 (nontarget stimuli), 

and over parietal location at time 0.0 (target stimulus) 

(Electrode Location x Time, F (4, 80) = 7.29, £ <.0001). 

Overall, there was a larger P436 at time 0.0 in response to 

the target stimulus (Time, F (2, 48) = 13.46, £<.0001). 

Summary of Results 

The results are summarized in Tables Bl, B2, and B3. 

Table Bl shows the main effects of the independent measures on 

each of the primary physiological dependent measures. 

Under each column are the levels of the dependent (e.g. Type 

A vs. Type B) with either a plus or minus sign, denoting 

whether the dependent measure listed on the far left of the 

table showed a change which suggested an increase (+), a 

decrease (-), or no change (0) in autonomic arousal from 

baseline. In the case of phasic HR, however, the signs 

denote the direction of the trend in absolute heart rate. 

Less than (< ), greater than ( >) or approximately equal 
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to (££) signs compare relative influence of the two levels 

of the independent variable. For the ERPs, the tables illus­

trate which level of the independent measures produced the 

shorter latency. As an example, Table B1 shows an increase 

in tonic heart rate for Type As and a decrease for Type Bs, 

but the difference was not significant (NS). Likewise, the 

table shows that P295 latency was shorter during the 6-sec 

condition and this difference was statistically signifi­

cant (.02). Tables B2 and B3 are designed to show the inter­

actions of the Type variable with one (Table B2 )or both 

(Table B3)manipulations (Length and/or Certainty). To illus­

trate , Table B2 shows that tonic heart rate decreased in the 

6-sec condition for both As and Bs, and increased in the 

18-sec for As but not for Bs. The table shows that this 

Type x Length interaction was significant at .04. Table B3 

indicates that the only significant interaction involving 

Type, Length and Certainty was on N201 (at .02). It should 

be noted that the significant effects found with phasic HR 

in Table Bland with phasic PTT in Table B2also included the 

variable Time (see asterisk *). 
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CHAPTER IV 

DISCUSSION 

The purpose of this experiment was to explore the ef­

fects of ITI Certainty (high vs. low) and ITI Length (6-sec 

vs. 18-sec) on cardiovascular and cortical reactivity in 

Type A and Type B individuals. It was predicted that Type A 

subjects would evidence greater sympathetic autonomic reac­

tivity when the ITI was relatively long (18-sec), ion predict­

able (low certainty), and when these conditions were combined• 

Type As were expected to exhibit greater cortical reactivity 

than Bs when the ITIs were relatively unpredictable, espe­

cially when combined with longer ITIs. The results relevant 

to these predictions showed the following: 

(1) Concerning ITI Length, support for the hypothesis 

was found in tonic heart rate, which was faster in Type As 

than Type Bs during the 18-sec condition. Tonic heart rate 

was also faster in Type As during the 6-sec condition, but 

the A/B difference in heart rate was greater during the 

18-sec condition (Figure 10 and Table B2). Conversely, 

Type As had shorter phasic PTTs than Type Bs during the 

6-sec ITI condition with Bs having shorter phasic PTTs in 

the 18-sec condition (Figure 14 and Table B2 ), producing the 

opposite effect than was predicted. Other interactions of 

the Type variable with ITI Length on other autonomic 
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measures were not statistically significant (see Table 3). 

However, there were faster reaction times and a greater 

percentage of hits during the 6-sec as compared to the 18-sec 

condition. 

(2) Concerning ITI Certainty, support for the exper­

imental hypothesis was found on phasic PTT and P295 ERP 

latency. Type As had shorter phasic PTTs and P295 ERP 

latencies than Type Bs during the low certainty condition 

(Figure 13 and Table B2). Type Bs had shorter phasic PTTs 

and P295 latencies under the high certainty condition. . 

Additionally, there were faster reaction times during 

the high as opposed to low activity condition. 

(3) Concerning the combined influence of the ITI Length 

and Certainty, the predicted effect was found on N201 ERP 

latency, which was significantly shorter in Type As than in 

Type Bs during the 18-sec low certainty condition (Figure 16 

and Table B3). In addition, the data showed trends in the 

direction of greater cortical arousal in Type As than 

Type Bs during the 18-sec low certainty condition on P295 

and N371 ERP latencies (Figures 17 and 20). 

(4) Other effects occurred which did not involve the 

Type variable, but which nonetheless demonstrate the dif­

ferential effects of the experimental manipulations on the 

dependent variables. There was an overall greater decline 
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in phasic HR from times -1.0 to 1.0, and a greater decline 

at these times under the 6-sec as opposed to the 18-sec con­

dition, and during the low compared to high certainty condi­

tion. Diastolic blood pressure was higher during the low 

compared to high certainty condition. The manipulations also 

produced a large number of ERP amplitude changes which indicate 

a greater response to target as compared to nontarget stim­

uli (P295, P436), and higher amplitude response during the 

low as opposed to high certainty condition (N371). Latency 

data showed that some ERP components occurred earlier in 

response to target stimuli compared to nontargets (N201, 

N371), and when the ITI was 6-sec as opposed to 18-sec (P295). 

In summary, although the ITI Length hypothesis was 

supported by tonic heart rate, it failed to find support 

in phasic PTT, phasic HR, tonic PTT, and blood pressure. 

The ITI Certainty hypothesis was supported by phasic PTT 

and P295 ERP latency, yet failed to be supported by tonic 

and phasic HR, tonic PTT, blood pressure, and N201, N371, 

and P436 ERP latencies. The combined effects of ITI Length 

and Certainty was supported only by N201 latency. 

Effect of ITI Length 

Of the autonomic measures (tonic heart rate, tonic PTT) 

and blood pressure, significant effects involving subject type 

were found only on heart rate. With heart rate, Type B 

subjects decreased significantly from baseline in both ITI 
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Length conditions, while Type As' heart rate either maintained 

(as in the 6-sec condition) or increased (as in the 18-sec 

condition). This finding supports the hypothesis that 

longer ITIs might affect the impatient or time-urgent component 

of the Type A behavior pattern and thus lead to increased 

arousal. This finding, however, is tempered by the absence 

of significant changes in blood pressure and particularly PTT. 

Therefore, it is doubtful that this increase in heart rate 

for As during the 18-sec condition was under sympathetic 

nervous system control. While a heart rate increase may be 

induced by sympathetic excitation, it may also reflect 

vagal as well as mixed vagal and sympathetic excitation 

(Obrist et al., 1979). Therefore, in light of the lack 

of significant changes in the other autonomic measures, 

particularly PTT, it does not appear that the 18-sec as com­

pared to 6-sec ITI condition produced a higher level of sympa­

thetic activation. It should be kept in mind that blood 

pressure was measured before and after each condition rather 

than during, and thus changes occurring while subjects were 

actually performing the task may have been lost. 

This finding of an increase in heart rate for Type As 

in the absence of significant PTT changes suggests that 

although the 18-sec ITI condition did not elicit the overall 

enhanced sympathetic effects on Type As as expected, there 

was less of a vagal influence in As than Bs. That is, in a 

task that frequently elicits heart rate deceleration, 
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Type A subjects were less susceptible to this phenomenon than 

were Type Bs, particularly when forced to wait relatively 

long intervals prior to responding. Research from other 

areas suggest that individuals who are the most sympathetic­

ally reactive on tasks evoking sympathetic activity (such as 

mental arithmetic) are also the least vagally reactive in 

tasks evoking vagal activity (such as reaction time) 

(Bunnell, 1982). Thus, Bunnell (1982) suggested that high 

reactive individuals, as Type As are assumed to be, may be 

both sympathetically overreactive and have a diminished 

capacity for vagal restraint. Therefore, Type As may have 

been more "resistant" to the bradycardial effects of the 

task. Relatedly, it should be noted that overall there was 

a significant negative correlation between tonic heart rate 

and PTT in Type As but not Type Bs, suggesting greater sym­

pathetic activation in Type A subjects. 

Unexpectedly, phasic PTT and P295 ERP latency were 

shorter for Type As than Type Bs during the 6-sec ITI 

condition while the opposite was true for the 18-sec con­

dition, „countering the original prediction. These find­

ings on the effects of the 6-sec condition have implica­

tions for how Type As might encounter more frequently those 

environments which elicit heightened physiological arousal. 

It was originally hypothesized that the 18-sec condition 

would enhance reactivity in Type As due to their preference 

for fast-moving activities and general impatience with 
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delays, and that when placed in situations which required 

extended waiting they would be maximally aroused. The 
a 

current findings suggest that the type of situations which 

Type As prefer (i.e., faster-paced) may be precisely the 

kinds which are most arousing for them. This finding is 

congruent with a recently proposed model of Type A behavior 

and physiological reactivity (Smith and Anderson, Note 3) 

which holds that Type As construct stressful (or at least 

reactivity-engendering) environments in part through their 

choice of situations. That is, given the opportunity to 

choose between a faster or slower pacing of activities, 

Type As will choose the faster pace and exhibit greater 

autonomic arousal as a function of their choice—the 

latter being suggested by the current findings. 

An alternative although not incompatible explanation 

for these findings on ITI Length is that the .relation­

ship between waiting and sympathetic reactivity in Type As 

may not be a linear one. That is, increases in sympathetic 

activity in Type As may in fact coincide with increases in 

waiting interval up to a certain point, at which time there 

begins to be a decline in sympathetic activity. If this is 

true, then the relationship between sympathetic activity and 

waiting length in Type As might best be represented as an 

inverted U (see Figure 24). In this experiment, the 6-sec 

ITI condition might have produced sympathetic activity in Type 

As which approached the apex of the distribution shown in 
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Figure 24, whereas the 18-sec ITI condition produced activity 

similar to that on the declining side. It is therefore pos­

sible that if a shorter ITI than 6 seconds had been used, sym­

pathetic activity in Type As might have been more similar to 

that found for 18-sec condition, in which case the autonomic-

waiting interval relationship might have suggested increases 

in arousal with increases in waiting. 

Effects of ITI Certainty 

The low certainty ITI condition produced greater 

phasic PTT decreases and shorter P295 latencies in Type A 

subjects than in Type B subjects, as predicted. Type Bs 

had shorter phasic PTTs and P295s under the high certainty 

condition. Comparisons of the mean phasic PTT changes across 

conditions for each group separately showed that Type As 

had only small decrease from their baseline in PTT under the 

high certainty ITI condition (x = -4.1 msec), but evidenced 

larger decrease in the low certainty ITI condition (x = -18.3 

msec). In contrast, the high certainty and low certainty 

manipulations did not produce as great a differential effect 

in PTT for Type Bs (X = -8 and -14.3 msec, respectively). 

This finding with phasic PTT is consistent with that found 

by Goldband (1980) where Type As were shown to be more reac­

tive in PTT compared to Type Bs on more challenging reaction-

time tasks. On a less challenging reaction-time task 

(involving little time pressure and competition), Type As 
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were less reactive than Type Bs( with Type As in fact exhib­

iting minimal PTT changes from baseline. Goldband hypoth­

esized that under conditions not sufficiently challenging 

or "relevant" to the Type A behavior pattern, Type A sub­

jects may actually be hyporesponders. Indeed, the current 

findings are congruent with this notion and suggest some­

thing analogous to an "all-or-none" phenomenon of PTT reac­

tivity in Type As. 

The notion of an all-or-none pattern of reactivity is 

also in line with Glass1 assertion that Type As have an 

enhanced need to control their environments, and that threats 

to this control elicit increased efforts to control —what 

Obrist (1976) terms "effortful active coping." The low 

certainty ITI condition might be conceptualized as an uncontrol-

able or unpredictable situation for Type As, thus enhancing 

their efforts to control. The evoked potentials data lend 

support to this idea, since Type As had an earlier onset of 

the P295 component during the low certainty ITI condition 

(possibly suggesting greater involvement in or concentration 

on the task) as compared to the high certainty condition. 

The opposite was true for Type Bs — P295 was earliest dur­

ing the high certainty ITI condition. 

It appears then that phasic PTT (occurring across a 1500-

msec period) was quite sensitive to the certainty manipu­

lation — particularly for the Type A group. As noted 

in the Introduction, chronic or sustained activation of the 
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sympathetic nervous system has been implicated as a factor 

leading to atherosclerosis. It has also been proposed that 

phasic increases in sympathetic nervous /system activity — 

of which PTT is a function — may be involved in endothelial 

injury via increased hemodynamic turbulence (Ross & Glomset, 

1976) and other metabolic processes, and may be linked spec­

ifically to the development of clinical manifestations of 

heart disease, such as myocardial infarction and/or angina 

pectoris (Herd, 1978; Krantz, Glass, Schaffer, & Davia, 1982). 

The finding in the present and in a previous study (Goldband, 

1980), that under some circumstances Type A persons may be 

hyporesponsive and that appropriately challenging conditions 

(e.g., uncertainty) "trigger" cardiovascular reactivity, is 

quite interesting in light of speculation on the causal 

role of abrupt shifts between vagal and sympathetic 

activity in cardiovascular disorders, including sudden 

death (Engel, 1970; Richter, 1957). 

It is apparent from the results on ITI Length as well 

as those in ITI Certainty that there was a clear lack of 

uniformity in the level of influence on the autonomic indices 

exerted by the manipulations. That is, significant effects 

were found on only some dependent measures, particularly 

PTT. This lack of uniformity possibly suggests that the 

tasks did not evoke a singular sympathetic nervous system 
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response, but rather evoked mixed parasympathetic and 

sympathetic excitation. As noted, the value of PTT rests 

in its sensitivity to sympathetic influences, even in light 

of vagal excitation. Heart rate, on the other hand, is more 

susceptible to vagal influences. In fact, it has been 

demonstrated that even mild or moderate levels of para­

sympathetic excitation can predominate over sympathetic 

influences on the heart, and can actually block the effects 

of even high levels of sympathetic stimulation (Levy & 

Zieske, 1969). Indeed, in the most comprehensive study 

to date on physiological reactivity in Type As, Williams 

et al. (1982) found no significant A/B differences during 

a mental arithmetic task on measures of heart rate or 

systolic and diastolic blood pressure. Significant 

A/B differences were found, however, on norepinephrine, 

epinephrine, and Cortisol, as well as on forearm .blood flow 

and forearm vascular resistance. Thus, heart rate as well 

as blood pressure may be relatively insensitive to the 

presence of sympathetic stimulation, and could lead to 

inappropriate conclusions. Therefore, the presence of sig­

nificant changes in PTT in the absence of heart rate or 

blood pressure changes in the present study is not viewed as 

arguing against sympathetic stimulation, but as demonstrating 

complex autonomic nervous system interactions. 
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It is interesting that although significant sympathetic 

excitation was shown to occur under some conditions (e.g., 

uncertainty), no significant changes in subjects' self-rating 

of tension were evident. This finding suggests that situa­

tions which might produce potentially pathogenic physiolog­

ical arousal in Type A persons are not necessarily those 

which may be perceived as "stressors." In addition, it also 

indicates that very subtle environmental conditions can 

lead to potentially dangerous physiological adjustments. 

One clinical implication of this is that if there is little 

correspondence between physiological reactivity and aversive 

subjective experiences, there may be little motivation 

for individuals to change. In fact, some individuals, the 

high level of autonomic arousal which might be elicited by 

things such as video games (Glass et al., 1980) may even 

be pleasurable. In other words, Type As may enjoy being 

Type A and enjoy their tendency toward heightened autonomic 

reactivity. Indeed, anecdotal observations suggest that 

healthy Type A subjects generally resist lifestyle change 

(e.g., reduced work load), while post-heart-attack As are 

much more malleable. 

Combined Effects of ITI Certainty and Length 

As noted, the evaluation of the effects of multi­

dimensional situational demands might yield differences 

between Type As and Type Bs beyond those elicited by one 

variable singly. The present data from N201 supports 
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this idea. Maximal A-B differences on N201 were found when 

the ITI was uncertain and relatively long. This combina­

tion of challenges, while evoking trends toward greater 

autonomic arousal in Type As, did not, however, lead to 

significant changes in autonomic reactivity. 

One possible explanation for this is related to how sub­

jects were selected. Matthews (1982) has noted that Type As 

assessed by the Jenkins Activity Survey exhibit different 

behavioral characteristics than Si-assessed Type As. The 

latter group seems to be characterized by a tendency toward 

heightened behavioral reactivity under challenging circum­

stances, while JAS-assessed Type As are characterized more as 

vigorous achievement strivers, who may be aggressive and 

competitive (Matthews, 1982) . Also, in studies in which no 

A-B differences were found in cardiovascular reactivity, 

subjects tended to be selected based on JAS scores. In 

some of these studies (e.g., MacDougall et al., 1981), when 

subjects were reclassified using the SI, significant A-B 

differences were found (with As being more reactive). In 

contrast, when Si-assessed subjects were reclassified using 

the JAS, significant cardiovascular differences between As 

and Bs were diminished (e.g., Blumenthal et al., 1983). 

This is in some respects not surprising, since Type A scores 

on the SI were more predictive of incidence of coronary 

heart disease in the Western Collaborative Group Study 

(Brand, Rosenman, Jenkins, Sholtz, and Zyzanski, Note 5). 
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It might therefore be assumed that the differences in reac­

tivity that were discovered in the present study were 

obtained using an assessment procedure less likely to 

produce A-B differences. 

A unique feature of the present study was the use of 

ERPs as additional measures of physiological reactivity. 

Since these measures have not previously been used in the 

Type A research area, further discussion of their signif­

icance seems warranted. As discussed in the Introduction, 

ERP components might be useful in the study of information 

processing differences in Type As and Type Bs. Of the 

four peaks measured,two in particular seemed most responsive 

to the experimental manipulations and differentiated between 

As and Bs: N201 and P295. A third component, P436, also 

differentiated between Type As and Type Bs but was not as 

sensitive to the experimental manipulations. The N201 

component of the present study appears similar to the N200 

wave reported by other investigators (e.g., Ritter, et al., 

1979; Simson, Vaugh & Ritter, 1977) in both its mean 

latency and response to improbable task-relevant stimuli. 

The P295 wave resembles the P300 component (see Duncan-

Johnson, 1981) in its larger amplitude in response to 

target as opposed to nontarget stimuli, its earlier lat­

ency when the frequency of target stimulus occurrence was 

greater (as in the 6-sec ITI condition), and its onset 

immediately following what is thought to be N200. 
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There exists some consensus that N200 reflects initial 

target selection (Harter, Aine, & Schroeder, 1982; Ritter 

et al., 1979). The P300 wave, on the other hand, may be 

indicative of further, possibly more complex processing. 

While the exact psychological "meaning" of ERP components 

is unclear at this time, they might be usefully viewed, as 

Callaway (1975) had noted, "as a history of the response to 

a stimulus". That is, the ERPs measured in this experiment 

represent sequential information processing, with earlier 

peaks indicating neural processes which occur before subsequent 

peaks. The present study suggests, then, that Type A and 

Type B subjects may be differentiated on the basis of the 

time course of information processing. Stimulus events 

appear to evoke generally earlier neural responses (N201) 

in Type As, although task demands appear to modulate the 

latency of this wave in both groups. "Middle" processing 

(P295) seems to be more a function of subject Type inter­

acting with specific task demands (e.g., ITI Certainty). 

That is, task demands seem to determine whether Type As or 

Type Bs will exhibit the shorter latency. Later processing 

(P436) seems to occur earlier for Type B subjects regardless 

of task demands. 

While the time course of information processing was 

shown to be different in As as compared to Bs, it is clear 

that this difference is very complex. It is not the case that 
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Type As simply exhibit faster processing, but that whether As 

or Bs process information faster depends on the nature of the 

task. Therefore, rather than representing markers for fixed 

biological or genetic differences between Type As and Type 

Bs, these ERP peaks might best be viewed as possible indica­

tors of task-induced cognitive changes. Cognitive psycho-

physiologists such as Donchin, Ritter, and McCallum (1978) view 

certain "late" peaks (occurring after 200 msec), such as 

those measured in this study, as being associated with a 

subjects' "intentions and decisions, modulated by task 

parameters and experimental instructions" (p. 355) . Of 

course, this does not preclude the possibility that in fact 

there may be neurological differences between Type As and 

Type Bs which might be evidenced in shorter or longer 

cortical responses occurring prior to 200 msec, such as 

the N100 or P200 waves, which are thought by some researchers 

to be less sensitive to psychological factors (Donchin et al., 

1978). Indeed, a recent finding by Krantz, Arabian, Davi , 

and Parker (1982) that Type A individuals exhibit greater 

systolic blood pressure reactivity and more complications 

(arrhythmias) while under general anesthesia during coronary 

artery bypass surgery, led the authors to suggest that there 

may in fact be constitutional differences between Type As 

and Type Bs, of which their overt behavioral characteristics 

are merely an index. Evoked potentials (especially early 
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components) may serve to provide converging evidence as to 

the validity of this idea. 

Ultimately, the value of ERP research in this area 

rests in its ability to enhance our understanding of Type 

A and Type B individuals. While ERP data, when combined with 

autonomic and/or behavioral data, may provide converging 

support for particular hypotheses, they might also impart 

information beyond that obtained with the more typically 

used measures. Indeed, although data from the present 

study show nonsignificant reaction time differences between 

groups, several of the ERP components (N201, P295, and P436) 

showed clear A-B differences. Therefore, the incorporation 

of ERPs may provide for a more complete appraisal of the 

effects of task demands which may otherwise be obscured. 

In summary, the current findings support and extend the 

conceptualization that persons exhibiting the Type A behavior 

pattern evidence increased sympathetic arousal under specific 

environmental conditions. The present study increases our 

understanding of the situations which might facilitate in­

creased physiological arousal in Type As. The findings sug­

gest that circumstances which are characterized by a low 

degree of certainty may elicit in Type As enhanced sympathetic­

ally mediated phasic changes as well as augmented cortical 

arousal. While both short and long waiting intervals lead 

to greater tonic heart rate reactivity in As relative to Bs, 

the longer waiting period produced the greatest A/B 
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differences. In addition, the findings are suggestive of a 

pattern of autonomic enhancement in Type As when low cer­

tainty and extended waiting are combined. The present study 

is the first to demonstrate that physiologic reactivity in 

Type As is not limited to autonomic nervous system function, 

but is exhibited as well in cortical activity as measured 

by event-related brain potentials. The latency of the 

N201 and P295 peaks in many respects paralleled the auto­

nomic measures in terms of the conditions which elicited the 

greatest reactivity in both Type A and Type B subjects. 

Event-related brain potentials may prove to be useful in the 

study of both physiological reactivity and information 

processing in Type As and Type Bs as a function of environ­

mental demands. 
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Figure 5. Reaction times for Type A and Type B subjects 
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certainty (bottom graph) conditions with 
either 6- or 18-sec ITIs. 
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low certainty (bottom) conditions with either 
6- or 18-sec ITIs. 
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Figure 12. Phasic heart rate in beats per minute for Type A 
and Type B subjects during the high certainty 
6-sec ITI condition (top, left), high certainty 
18-sec condition (top, right), low certainty 
6-sec condition (bottom, left) and low certainty 
18-sec condition (bottom, right). 
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Figure 13. Change in phasic pulse transit time from baseline 
for Type A and Type B subjects during the high cer­
tainty 6-sec ITI condition (top, left), high cer­
tainty 18-sec condition (top, right), low certainty 
6-sec condition (bottom, left), and low certainty 
18-sec condition (bottom, right). 
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(bottom) conditions. 
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Figure 15. Effects of ITI Certainty and Length 
on ERPs in Type A and Type B subjects. 
All data represent evoked responses 
from the parietal location following 
presentation of the target stimuli. 
Vertical dashed lines are the means of 
the latency windows which are represented 
by the horizontal lines showing polarity. 
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N201 LATENCY (MSEC) 

Figure 16. N201 latency across time for Type A and Type B 
subjects during the high certainty 6-sec ITI 
condition (top, left), high certainty 18-sec 
condition (top, right), low certainty 6-sec 
condition (bottom, left), and low certainty 
18-sec condition (bottom, right). 
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Figure 17. P295 latency across time for Type A and Type B 
subjects during the high certainty 6-sec ITI 
condition (top, left), high certainty 18-sec 
condition (top, right), low certainty 6-sec 
condition (bottom, left) and low certainty 
18-sec condition (bottom, right). 
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Figure 18. P295 latency for Type A and Type B 
subjects during high certainty and 
low certainty ITI conditions. 
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Figure 19. P295 latency across time for ITI 
6-sec and 18-sec conditions. 
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Figure 20. N371 latency across time for Type A and Type B 
subjects during the high certainty 6-sec ITI 
condition (top, left), high certainty 18-sec 
condition (top, right), low certainty 6-sec 
condition (bottom, left), and low certainty 
18-sec condition (bottom, right). 
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Figure 21. N371 amplitude across time for high 
certainty and low certainty ITI con­
ditions . 
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Figure 22. N371 amplitude for over parietal and 
frontal regions during high certainty 
and low certainty ITI conditions. 



131 

U 
LD 
(/> 

I 
00 

5» 
I-
Z 
< 
h-
Q£ 
UJ 
u 
X 
o 

1 1 1 f 
o o o o 
r— tn <r> ro ro ro ro sr 

o 
* 

o 

U LU 
• ® UJ 
1 5 
I-

0 

1 

U 
LU 
(/) 

>• 
h-
Z 
< 
I— 
0£ 
LU 
u 

< 
> LU n k 
\ 

uu >-
i-

\ 
\ o 

o 

© 

in 
o 

i 

U 
UJ 
I/) 

LU 
s 

o 

i 

i | | | 
o o o o t— in Ci ro ro ro ro 

CJ LU 
l/l 

I 
(0 

>-

I-
z 

a: 
LU 
u 
x 
o 

m 

-4 ° 
© 

{ _ 
f U 
h HI 
; c/> 

J W LU 
 ̂o s 

i . 

o 

PO 
o in co 

o <n ro 
o PO a-

O LU 
CO 

< 
I— 
oc 
LLI 
u 

o 

• o 

o 

© 

U 
LU 
t/) 

in uj 

o 

r-" 
I 

O 
ro 

o 
in 
ro 

o o o ro 
ro cf 

(03SI/V) ADN3±VH 9£hd 

Figure 23. P436 latency across time for Type A and Type B 
subjects during the high certainty 6-sec ITI 
condition (top, left), high certainty 18-sec 
condition (top, right), low certainty 6-sec 
condition (bottom, left) and low certainty 
18-sec condition (bottom, right). 
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interval length and autonomic arousal 
in Type A and Type B individuals. 
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Table B—1 
/ 

Summary of the effects of Type, ITI Length, and 
ITI Certainty on autonomic and ERP measures. 
Plus (+), minus (-), or zero (0) signs denote 
whether change in autonomic measures reflected 
an increase, decrease, or no change in arousal 
from baseline, respectively. In the case of 
phasic HR, plus, minus, and zero signs denote 
trends in absolute levels of HR rather than 
change scores. Less than (<), greater than (> ) 
and approximately equal signs denote rela­
tive effects of each level of the independent 
measures on autonomic arousal and ERP latency. An 
asterisk (*) denotes the effects which include 
the variable Time. Effects which were not sig­
nificant are represented by NS. 



Conditions 

IT I IT I 
Measures Type E Length E Certainty E 

Reaction Time A< B NS 6 sec< 18 sec .001 High< Low .001 

Percent of Hits A > B NS 6 sec >18 sec .002 Higĥ  Low NS 

Percent of 
False Alarms AC£B NS 6 sec< 18 sec NS HighSi Low NS 

Phasic PTT A(+) 3/B( + ) NS 6 sec( + )#18 sec( + ) NS High(+)< Low(+) NS 

Tonic PTT A(+)> B(+) NS 6 sec(+)̂ 18 sec(+) NS High(+)< Low(+) NS 

Tonic HR A(+)> B(—) NS 6 sec (-)&18 sec(-) NS High(-)> Low(-) NS 

Phasic HR A(— ) a/ B(— ) NS 6 sec (-)< 18 sec (-) .0001 High(-)< Low(-) .0001 
Systolic BP A( + )̂ B( + ) NS 6 sec (+)< 18 sec (+) NS High(+)< Low(+) NS 

Diastolic BP A( + )>< B( + ) NS 6 sec (+)~18 sec (+) NS High(0)< Low(+) .03 

N201 Latency A< B .03 6 sec ~±8 sec NS High> Low NS 

P295 Latency A< B NS 6 sec< 18 sec .02 High > Low NS 

N371 Latency A< B NS 6 sec< 18 sec NS High< Low NS 

P436 Latency A > B .02 6 sec< 18 sec NS High> Low NS 



Table B-2 

Summary of the interaction effects of Type with 
ITI Length or Certainty on autonomic and ERP 
measures. Plus ( + ), minus (-), or zero (0) signs 
denote whether change in autonomic measures 
reflected an increase, decrease, or no change in 
arousal from baseline, respectively. In the case 
of phasic HR, plus, minus, and zero signs denote 
trends in absolute levels of HR rather than 
change scores. Less than (< ), greater than (>) 
and approximately equal (̂ ) signs denote rela­
tive effects of each level of the independent 
measures on autonomic arousal and ERP latency. An 
asterisk (*) denotes the effects which include 
the variable Time. Effects which were not 
significant are represented by NS. 



Conditions 

ITI Length R ITI Certainty R 

6-sec 18-sec High Low 

Reaction Time A< B A< B NS A< B A< B NS 

Percent of 
Hits A> B A > B NS A > B A > B NS 

Percent of 
False Alarms A > B ASS B NS A2£B A > B NS 

Phasic PTT A(+)> B(+) A( + )̂  B( + ) .01 A(*)< B( + ) A( + )> B( + ) .009 

Tonic PTT A(+J> B(+) A( + )> B( + ) NS A(+) > B(4) A(+)> B( + ) NS 

Tonic HR A(—)> B(—) A(+)> B(—) .04 A(0)> B(—) A(0)> B(—} NS 

Phasic HR A(-)~B(-) A(-)̂ B(-) NS A(-)̂ B(-) A(0)î B(0) NS 

Systolic BP A(0)̂ B( + ) A(+)~;B( + ) NS A(—)< B(—) A(+)> B(0) NS 

Diastolic BP A(0) <B( + ) A( + )< B( + ) NS A(—)< B(-) A(+)< B(+) NS 

N201 Latency A< B A < B NS A< B A < B NS 

P295 Latency A> B A< B NS A> B A< B .02 

N371 Latency A< B A< B NS A< B A< B NS 

P436 Latency A > B A > B NS A > B A > B NS 



Table B—3 

Summary of the interaction effects of Type with 
both ITI Length and Certainty on autonomic and ERP 
measures. Plus (+), minus (-), or zero (0) signs 
denote whether change in autonomic measures 
reflected an increase, decrease, or no change in 
arousal from baseline, respectively. In the case 
of phasic HR, plus, minus, and zero signs denote 
trends in absolute levels of HR rather than 
change scores. Less than (< ), greater than (> ) 
and approximately equal (̂ ) signs denote rela­
tive effects of each level of the independent 
measures on autonomic arousal and ERP latency. An 
asterisk (*) denotes the effects which include 
the variable Time. Effects which were not 
significant are represented by NS. 



Conditions 

Measures High 6 sec High 18-sec Low 6-sec Low 18-sec R 

Reaction Time A < B A< B A< B A > B NS 

Percent of 
Hits A> B A > B A > B A >B NS 

Percent of 
False Alarms A >B A< B A < B A > B NS 

Phasic PTT A( + ) £jB(+) A(+)< B(+) A(+)> B(+) A( + )>B(+) NS 

Tonic PTT A(+)> B(+) A( + ) >B( + ) A( + ) >B( + ) A( + ) > B(+) NS 

Tonic HR A(-)< B(0) A(—)> B(-) A(0 ) > B(— ) A( —) >B( —) NS 

Phasic HR A(-)< B(—) A(-)«B(-) A(_)< B(+) A(0)< B(0) NS 

Systolic BP A(—)< B(+) A(-) < B(+) A( + )> B(0 ) A( + )> B(0 ) NS 

Diastolic BP A(—)< B(+) A(—)< B(+) A(+)< B(+) A(+)̂ B( + ) NS 

N201 Latency A< B A > B A < B A< B .02 

P295 Latency A > B A > B A < B A< B NS 

N371 Latency A> B A > B A < B A< B NS 

P436 Latency A > B A > B A > B A> B NS 
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Table B-4 

Ranges of Tonic PTT (msec) for Type A and Type B 
Subjects Across Four Experimental Conditions 

Conditions Type A Type B 

High Certainty, 6-sec 179-335 241-323 

High Certainty, 18-sec 184-351 234-337 

Low Certainty, 6-sec 172-329 232-342 

Low Certainty, 18-sec 180-346 248-322 


