
   

 

AMPOLINI, BRIGITTE G. M.S. Bioinformatic Discovery of New Ribosomally Synthesized and 
Post-translationally Modified Peptides in Plants and Fungi. (2023) 
Directed by Dr. Jonathan Chekan. 36 pp.  

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a 

chemically diverse class of natural products with exciting potential. The genomic basis of RiPPs 

creates a unique opportunity to discover new natural products bioinformatically using genome 

and transcriptome mining. Class specific features of RiPP gene clusters can be used to guide the 

bioinformatic analysis to discover new molecules and enzymes. Here, we searched for new 

fungal dikaritins by genome mining with a diagnostic biosynthetic enzyme, leading to the 

discovery of 77 putative new dikaritins.  Applying a similar genome mining strategy to plants, 

we created a custom hidden Markov model to define a new class of plant cyclopeptides called 

burptides and to search through all Viridiplantae genomes for the potential to make new 

burptides. Ultimately, this bioinformatic analysis led to the discovery of a new molecule from 

Coffea arabica: arabipeptin A. To continue looking for new burptides, we used our custom 

hidden Markov model to search publicly available raw transcriptomic data. This process 

involved the creation of a pipeline that automates the process of downloading, assembling, and 

analyzing transcriptomic data with the custom burptide HMM. The results of the transcriptome 

search yielded 67 potential producers of novel burptides. RiPP cores bioinformatically seen in 

potential producer Gardenia jasminoides, were later verified by mass spectrometry, validating 

our transcriptome mining approach. This approach to bioinformatic mining has led to the 

identification of numerous potential molecules in both plants and fungi that will aid in the search 

for new RiPP natural products.  
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CHAPTER I: INTRODUCTION 

Natural products are molecules produced by an organism’s secondary, nonessential 

metabolism.1 Secondary metabolites are used to adapt to the environment the organism lives in 

and have functions ranging from defense against predators to signaling.2 These molecules have 

evolved over millions of years to excel at their functions. Consequently, they possess unmatched 

chemical diversity, unique modifications, and a myriad of functions. Natural products have been 

used by different cultures in traditional medicine for thousands of years and have inspired over 

half of modern day drugs such as penicillin, codeine, Taxol, artemisinin and ivermectin.2–4 

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a rapidly 

growing, diverse class of natural products. RiPPs offer extensive chemical diversity, bioactivity 

and potential for pharmaceutical development.5 The genetic basis of precursor peptides and 

frequent proximity to tailoring enzymes that are also genetically encoded make RiPPs conducive 

to genome mining.6 However, genome mining in eukaryotes poses unique challenges. Unlike 

prokaryotes, eukaryotic genes contain introns and biosynthetic genes are not always clustered 

together. As a result, far fewer RiPPs have been identified in eukaryotes and the space remains 

underexplored. 

I.A. Background 

I.A.1 Ribosomally Synthesized and Post-translationally Modified Natural Products:  

Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a large, 

growing class of secondary metabolites. Their biosynthesis begins with transcription of the 

precursor peptide gene, followed by translation by the ribosome. The resulting linear precursor 

peptide undergoes post-translational modifications of the core peptide by tailoring enzymes and 

then proteolysis to ultimately yield the mature natural product (Figure 1).6 Genes for these 
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tailoring enzymes are frequently, but not always, found nearby the gene for the precursor 

peptide.5,6 

RiPP precursor peptides in eukaryotes are characterized by the presence of signal, leader 

and core sequences.5 The signal sequence ensures the peptide is directed to the correct location in 

the cell. The leader is attached to the N-terminus of the core and is used for recognition by 

tailoring enzymes. Finally, the core sequence is the region that will undergo modification. 

Eukaryotes often utilize precursor peptides that have multiple core sequences (Figure 1). In 

these cases, the cores are demarcated by recognition sequences that are used for proteolysis and 

recognition by the tailoring enzymes.6 

Figure 1: RiPP Biosynthesis

After transcription and translation, the precursor peptide undergoes modification by tailoring 

enzymes before proteolysis excises the modified cores.  
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Eukaryotic RiPPs are understudied compared to their prokaryotic counterparts, but they 

have been identified in fungi and plants (Figures 2 and 3). 

I.A.2 RiPP Classes in Fungi and Plants 

Fungi: Cycloamanides, borosins, & dikaritins 

Cycloamanides: The founding family of fungal RiPPs, the cycloamanides (Figure 2), 

come from basidiomycetes. Formerly known as the MSDINs after the five N-terminal amino 

acids shared by its members, this family includes phallotoxins, amatoxins and virotoxins.7 They 

are characterized by macrocyclization and proteolysis of the core by the enzyme prolyl 

oligopeptidase B (POPB).7–9 

Borosins: The borosin family (Figure 2) also comes from basidiomycetes. These RiPPs 

are head-to-tail cyclized peptides with significant backbone methylation.10,11 The methylation is 

carried out by a methyltransferase domain fused to the precursor peptide.7,12,13 

Dikaritins: The dikaritin family (Figure 2) includes ustiloxins, phomopsins, asperipin-2a, 

victorins, and epichloëcyclins.14–18 Dikaritins are the first example of RiPPs from ascomycetes. 

They are characterized by Kex-2 protease cleavage sites and DUF3328 catalyzed cyclization.15
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Figure 2: Fungal RiPP Classes 

 

Cycloamanide B is from the cycloamanide family, ustiloxin B from the dikaritins, and 

omphalotin H from the borosins. 

Plants: Cyclotides, orbitides & burptides 

Cyclotides: Cyclotides are large, head-to-tail cyclized peptides with a distinctive cyclic-

cysteine knot motif (Figure 3).19,20 They are known for their insecticidal, antiviral, antimicrobial 

and cytotoxic bioactivities.21 Cyclization takes place in the endoplasmic reticulum by asparaginyl 

endoprotease.6,8 
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Orbitides: Orbitides are small N-to-C cyclized peptides that lack disulfide bonds (Figure 

3). These peptides range from 5 to 12 amino acids in length and are typically comprised of 

hydrophobic amino acids. They typically do not have any modifications other than cyclization.22 

Orbitides antimalarial, antiviral, antibacterial, and immunosuppressive bioactivities.6,8,23 

Burptides: Burptides are macrocyclic rings with crosslinks between amino acid side 

chains (Figure 3). These peptides are post-translationally modified by BURP peptide cyclases.24 

Many have tyrosine or tryptophan as the C-terminal amino acid, some such as moroidins have a 

C-terminal histidine. The side chain cross links can be between aromatic side chains or aromatic 

side chains and the β-carbon of another amino acid in the chain.25,26 Prior to this work, 

cyclopeptide alkaloids, hibispeptins and arabipeptins were not identified as burptides.  

Figure 3: Plant RiPP classes 

[1-9-NαC]-linusorb B3 is an example of an orbitide, consisting of hydrophobic amino acids and 

no modifications other than cyclization. Moroidin is a burptide. The crosslink occurs between 

tryptophan and the β- carbon of leucine. Kalata-B1 exhibits the cysteine knot motif seen in 

cyclotides. (Image taken from https://doi.org/10.2210/pdb1NB1/pdb)
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I.B. Basis for Study 

I.B.1 Genome Mining 

Genome mining is the bioinformatic process of screening an organism’s genome for new 

natural products or biosynthetic pathways (Figure 4). The genomic origin of RiPPs makes them 

well suited to this approach. RiPP biosynthetic logic relies on conserved leader, core and 

recognition sequences, as well as tailoring enzymes that are genetically encoded. The sequence 

of any one of these features can be used to search for homologous sequences in other genomes. 

Three tools were used for the bioinformatic studies: BLAST, hidden Markov models and 

sequence similarity networks. 

Figure 4: Genome mining strategy

 

Sequencing data can be analyzed with a variety of software in order to identify potential new 

molecule candidates. (Created with BioRender.com) 

BLAST: The Basic local alignment search tool (BLAST) is a web driven search platform 

that takes a protein or nucleotide query sequence and compares it to a database of subject 

sequences in order to find homologous sequences.27 BLAST searches its database of subject 
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sequences using three amino acid long “words” from the query sequence. When a match is 

found, the alignment is extended forward and backward by two additional “words” as long as the 

alignment score increases or until a critical drop-off value is reached.28 Alignment scores are 

assigned to each letter of the query sequence as it is aligned with a letter in the subject sequence. 

These scores are then summed over the length of the alignment.29 To address amino acid 

substitutions and gaps, BLAST creates a matrix that contains scores for all possible amino acids 

at each position. If the substitution is likely, it receives a positive score. If it is unlikely, it 

receives a negative score.27–29 

Hidden Markov model: Profile hidden Markov models (HMMs) take multiple sequence 

alignments and create a position specific scoring system that can be used to query other datasets 

for homologous sequences.30 Match, insert, and delete states are used to account for sequence 

variability and deletions. Match and insert states have 20 emission probabilities, one for each 

amino acid. Delete states have no emission probabilities. This allows the finished profile to 

model both the frequency of an amino acid occurring at each position and the transition state 

between amino acids.30,31 Once made, the model can be run against large numbers of sequences 

to rapidly identify homologs. Hidden Markov models can be made and used to search sequence 

databases with the software HMMER.32 

Sequence Similarity Network: Sequence similarity networks (SSNs) are an efficient way 

of visually sorting a dataset of proteins into clusters of related sequences. Each protein sequence 

is represented as a node in the network. All-by-all BLAST is used to generate edge values, and 

an edge is drawn between two nodes if the BLAST pairwise similarity score is above the defined 

threshold.33 The resulting network visually shows clusters of nodes that contain homologous 

protein sequences.  
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I.C. Significance 

Many useful small molecules and drugs are derived from natural products. RiPPs 

represent a vast, underexplored wealth of potential new natural products with diverse 

cyclizations and modifications. Their genetic basis is advantageous in the search for new 

molecules. Instead of needing to blindly isolate a new natural product from its source, its 

presence can be predicted by looking at the organism’s genome and can then be validated by 

isolation or heterologous production for structural elucidation. This genome mining project will 

help discover new RiPP natural product leads in eukaryotes, as well as provide insight into their 

biosynthesis. 
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CHAPTER II: GENOME MINING IN FUNGI 

II.A. Approach 

There are currently three families of fungal RiPPs: dikaritins, cycloamanides, and 

borosins. Of these, dikaritins are particularly interesting due to their diverse modifications and 

proximity to the tailoring enzyme. We chose to target the dikaritins for genome mining. The 

family of dikaritins includes ustiloxins, phomopsins, asperipin-2a, victorins, and epichloëcyclins 

(Figure 5).7,14–18 These natural products are derived from precursor peptides that have an N-

terminal signal peptide followed by repeats containing the core sequences. These repeats are 

separated by recognition sequences and at least one Kex-2 protease recognition site consisting of 

the amino acid pairs KK, RR or KR.7,34 

Biosynthetically, a hallmark of dikaritins is the presence of DUF3328 enzymes in close 

proximity to precursor peptides.26 The function of DUF3328 has yet to be clearly elucidated, but 

it is hypothesized to play a role in a diverse range of modifications including ether bond 

cyclizations and chlorinations.7,14,16,35 Because of its hypothesized role in the modifications seen 

in this RiPP class and its close genomic proximity to precursor peptides, DUF3328 guided 

genome mining is an appealing method for searching for new fungal RiPPs. Using a combination 

of hidden Markov models and sequence similarity network bioinformatic tools, all deposited 

fungal identical protein groups were searched for the presence of new dikaritins.  

 

 

 

 

 



 

  5 

Figure 5: Examples of known dikaritins  

 

To identify these new dikaritins, all identical fungal protein groups were downloaded 

from the National Center for Biotechnology Information (NCBI) public database. The HMMER 

function hmmsearch was used to evaluate these protein groups with the existing hidden Markov 

model for the DUF3328 protein family.36 The resulting hits were used to make a sequence 

similarity network with the Enzyme Function Initiative sequence similarity tool and visualized in 

Cystoscape.33 Each of the large clusters was run through ClusterReaper, a tool developed by the 

Chekan lab for easy identification and exploration of biosynthetic gene clusters. Sequences from 
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precursor peptide core regions, if present, were extracted for each node in the cluster and 

compared to known fungal RiPP cores. Due to a scarcity of research, the exact core sequences of 

these putative dikaritins are unclear. 

II.B. Results 

Out of the 15,692,220 total proteins downloaded from the fungal identical protein groups 

NCBI database, 11,152 scored above the default HMMER inclusion threshold for being a 

member of the DUF3328 protein family. Further analysis of these putative DUF3328 family 

members using an SSN clustered them into 1,424 isofunctional groups, of which 136 were 

evaluated (Figure 6). Possible precursor peptides were identified in 77 of these clusters.  

Figure 6: Sequence similarity network generated by DUF3328 guided genome mining 

 

Clusters investigated are boxed in red. Cluster containing a putative precursor peptide from 

Pleurotus ostreatus is highlighted in yellow. Cluster containing a putative precursor peptide from 

Aspergillus nomiae is highlighted in orange.  
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Of interest, a potential precursor peptide was noted in Pleurotus ostreatus, commonly 

known as oyster mushrooms (Figure 7). Oyster mushrooms are basidiomycetes and there are 

currently no examples of dikaritins in this fungal subkingdom. These commonly eaten 

mushrooms appear to have a precursor peptide containing Kex-2 cleave sites (KR/KW) and 

conserved recognition sequences between potential core regions. This putative precursor peptide 

is in close proximity to a DUF3328, suggesting it may be modified into a dikaritin product. 

Figure 7: Putative gene cluster for an uncharacterized RiPP from the widely eaten 

mushroom Pleurotus ostreatus

Potential core regions are red, Kex-2 protease sites are bold. (Image by Preston Keres. 

https://tinyurl.com/yzh7vvcf) 

Another example of a potentially interesting precursor peptide is found in Aspergillus 

nomiae NRRL 13137. The precursor has KR and RR cleavage sites, a relatively short recognition 

sequence and a DUF3328 is nearby (Figure 8). While the exact core sequence is unknown, of 

the sequence of the putative core region does not match any of the known dikaritins. This hit is 

advantageous because it comes from an NRRL strain. This simplifies future analysis as it can be 

ordered directly from the ARS Culture Collection Database.  

Aim 1: Results

Putative serine/threonine 
protein kinase

DUF3328Precursor

>XP_036631536.1 uncharacterized protein 
PC9H_005960 [Pleurotus ostreatus] 
MFLKQLIIFSTIAIKQAEAREAAELDERFYYHHYAPEKR
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LEERFYYHHYSPES

Solute Carrier 
Protein 5&6 Like

26



 

  8 

Figure 8: Putative gene cluster for an uncharacterized RiPP from Aspergillus nomiae 

NRRL 13137

Potential core regions are red, Kex-2 protease sites are bold. (Image taken from 

https://commons.wikimedia.org/w/index.php?title=File:Aspergillus_nomius_meaox.png&oldid=

637708472) 

II.B. Conclusion 

Numerous putative dikaritin precursor peptides were identified using a DUF3328 guided 

genome mining strategy. These dikaritin precursors were seen in both Dikarya subkingdoms, 

Ascomycota and Basidiomycota. Basidiomycetes were not previously known to produce 

dikaritins. Of interest, novel precursor peptides were bioinformatically seen in Pleurotus 

ostreatus as well as Aspergillus nomiae. 

 

Aim 1: Results
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CHAPTER III: GENOME MINING IN PLANTS 

III.A. Approach 

Cyclopeptide alkaloids are cyclic peptides produced by many plant families, particularly 

the Rhamnaceae family.37 They are macrocyclic rings composed of 4 or 5 amino acids, 

characterized by an ether linkage between tyrosine and the β-carbon the neighboring amino acid 

(Figure 9). This tyrosine undergoes decarboxylation and desaturation to form a styrylamine 

moiety.37,38 There are currently over 200 known cyclopeptide alkaloids, with over 100 coming 

from the Ziziphus genus.37 Plants that produce these peptides have been used in traditional 

medicine for centuries. A variety of bioactivities have been shown including sedative, analgesic, 

antibacterial, antifungal and antidiabetic properties.37,38 

 The Chekan lab was investigating the biosynthetic basis of cyclopeptide alkaloids using 

Ceanothus americanus, a well-known producer of cyclopeptide alkaloids (Figure 9).22 

Transcriptomic data was used to link precursor peptides to their cyclopeptide alkaloid products. 

The ether linkage in cyclopeptide alkaloids shares some structural similarities with burptides, 

suggesting they may share biosynthetic commonalities. Previous research had shown BURP 

peptide cyclases are responsible for the cyclization seen in some burptides such as moroidins and 

lyciumins (Figure 9).25,39 For this reason, it was hypothesized that a BURP peptide cyclase may 

be responsible for installing the side-chain crosslink in cyclopeptide alkaloids
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Figure 9: Cyclopeptide alkaloids  

 

Cyclopeptide alkaloids from C. americanus and the burptides moroidin and lyciumin A. 

Characteristic side chain cross links are seen in all structures. 

BURP peptide cyclases are copper dependent enzymes that carry out the 

macrocyclization of burptides through a crosslink between amino acid side chains.37,39 In place 

of an autocatalytic “fused” system, a standalone precursor peptide was identified. Separately, 

BURP peptide cyclases were found nearby in a “split” biosynthetic system (Figure 10).
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Figure 10: Split (top) and fused (bottom) burptide biosynthetic routes  

The predicted precursor peptide from C. americanus was used to search the Viridiplantae 

NCBI identical protein groups for homologs. This was accomplished using BLAST to search for 

additional precursor peptides similar in sequence to those from C. americanus. Using these, a 

custom hidden Markov model was built that searches for burptide precursor peptides across all 

plants. A sequence similarity network using these precursor peptides are generated and manually 

annotated for the presence of core sequences and known molecules. Finally, the species 

represented in the HMM results were used to determine their distribution in the Viridiplantae by 

building a cladogram. Ultimately, this bioinformatic approach enabled the identification of new 

molecules, the biosynthetic system used to make them, and its phylogenetic distribution. 
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americanus derived from a split BURP system, with the ether linkage highlighted.
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III.B. Results 

To evaluate if similar standalone precursor peptides were found in other plants, BLAST 

was used to search the available Ziziphus jujuba genomes for homologs of the C. americanus 

precursor. Ziziphus jujuba was chosen because it is a known producer of numerous cyclopeptide 

alkaloids.40  

Core sequences of 15 known molecules, including jubanines F, G, H, I, J, and 

nummularine B could be mapped back to genes in the initial BLAST results from Z. jujuba 

(Appendix A).40 Additionally, BURP peptide cyclases were found in close genomic proximity to 

30 of 35 Ziziphus precursor peptides. These results suggested that a split biosynthetic route may 

be involved in cyclopeptide alkaloid biosynthesis, consistent with the observation of the 

standalone C. americanus precursor.  

Next, a PSI-BLAST search with the C. americanus precursor peptide was carried out to 

create a set of similar sequences that could be used to search larger datasets for the presence of 

related precursor peptides with the machine learning algorithm NeuRiPP. NeuRiPP was chosen 

because it can be trained to identify RiPPs of any class in large datasets.41 It requires a positive 

dataset of sequences with manually confirmed precursor peptides, and a negative “decoy” dataset 

of sequences that do not contain precursor peptides. The program builds a model and runs 

iterative training cycles until model accuracy is no longer improving. BLAST results were used 

for the positive dataset, and a list of monocots was used as the decoy set. Unfortunately, 

NeuRiPP was unable to consistently identify precursor peptides. It gave numerous false positives 

and false negatives. Adjusting the training weights, increasing the number of positive precursor 

sequences, and decreasing the number of decoys did not improve the quality of the results.  
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The list of positive precursor peptides was then used to construct a custom hidden 

Markov model that would look for these plant side-chain crosslinked cyclopeptides. The 

HMMER hmmbuild utility was employed for its creation.36 The hmmsearch function was used to 

examine the 17,867,506 identical protein groups of the Viridiplantae clade deposited on NCBI 

with the new model.  

Figure 11: Hidden Markov model visualization using Skylign 

 

This conserved Ax6YWx7PMP motif is found in both autocatalytic BURP peptide cyclases and 

split BURP systems. 

The results unexpectedly contained a significant number of hits annotated as BURP-

domain containing proteins. This is likely due to the model detecting a conserved Ax6YWx7PMP 

motif in both the autocatalytic BURP peptide cyclases and split precursor peptides (Figure 11). 

To address this, the existing HMM for the BURP protein family was downloaded and run with 

the Viridiplantae identical protein groups.42 These results were then compared to the results from 

the custom HMM and used to create lists of “fused” and “split” BURP peptide cyclases. The 

Hidden Markov models identified 1,423 split and 1,099 fused BURP cyclase systems. 

Circular and linear cladograms were constructed from all species represented in the split 

and fused HMM results using the website phyloT.43 The trees were annotated with clade, 
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presence of a known molecule, presence of a fused BURP peptide cyclase and presence of a split 

system in R with the ggtree and ggtreeExtra packages (Figure 12).44,45 

Percent abundance of the split and fused biosynthetic routes was calculated using 

annotated genomes available for eudicots and monocots. 89.1% of the 202 annotated eudicot 

genomes contain precursor peptides from split BURP systems. 79.2% contained fused BURP 

peptide cyclases as identified by our HMM. Fused BURP peptide cyclases were more prevalent 

in monocots with 83.7% of the 49 unique monocot species containing at least one. Split BURP 

cyclase systems were present in 32.7% of annotated monocot genomes (Figure 12).
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A sequence similarity network of the split precursor peptides above the burptide HMM 

inclusion threshold was made using the Enzyme Function Initiative Enzyme similarity tool 

(Figure 13).33 The clusters were then manually annotated for core sequence and presence of 

known molecules.
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Figure 12: Cladogram of fused and split burptides identified by the custom HMM 
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Figure 13: Sequence similarity network of standalone precursor peptides using an 

alignment score of 70 

 The sequence similarity network of the split precursor peptides helped establish the 

presence of a handful of known molecules including hibispeptins A&B, jubanines F-G, 

moroidins and lyciumins (Figure 13). Numerous precursor peptides with cores not matching 

known molecules were noted in Coffea arabica. Ultimately one of these went on to be isolated, 

Precursor peptides with cores containing serine or threonine in the second position are 

represented in navy blue. Clusters from H. syriacus (pink), Z. jujuba (light blue), Coffea (red), 

and C. americanus (purple) are indicated along with those with lyciumin-like (green) and 

moroidin-like (brown) core sequences. Amino acid probabilities of the core sequences for these 

clusters are depicted.  

Lyciumin-like

Moroidin-like

Eudicots Coffea Hibiscus syriacus

Ziziphus jujuba

jubanine F

Ceanothus americanus

hibispeptin A
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purified and named arabipeptin A by Chekan lab member Dr. Stella de Lima Camargo (Figure 

14). This demonstrated that the bioinformatically identified precursors not only explained known 

molecules but were predictive of new natural products. 

Figure 14: arabipeptin A

 

Bioinformatically discovered gene for arabipeptin A and its structure determined after isolation 

and structure elucidation.24 

III.C. Conclusion 

The Chekan lab identified a standalone cyclopeptide alkaloid precursor peptide from 

Ceanothus americanus. This precursor peptide was used to bioinformatically search for related 

standalone precursor peptides in the Viridiplantae family. BURP peptide cyclases were noted 

nearby many of these precursors, suggesting a split biosynthetic system was responsible for 

installing modifications seen in the mature natural product. Previously, BURP peptide cyclases 

were known as autocatalytic enzymes.24,26,39 This split biosynthetic system is widely distributed 

among angiosperms. One of the bioinformatically identified precursor peptides from Coffea 

arabica was isolated and named arabipeptin A, validating our genome mining approach.  
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CHAPTER IV: TRANSCRIPTOME MINING PIPELINE 

IV.A. Approach 

Previously, only species with fully annotated genomes deposited to the NCBI were 

explored. However, raw sequencing data is frequently deposited into the publicly available 

Sequence Read Archive (SRA) and never submitted in an assembled and annotated form. This is 

required by most journals prior to publishing. Consequently, there is an abundance of 

unassembled RNA data for plants that can be searched with a custom HMM after assembly. This 

is accomplished by creating a pipeline that automatically downloads raw sequencing data and 

identifies searchable coding regions within the transcriptomes. This opens the search for new 

burptides to a large, unexplored set of data. 

Figure 15: Transcriptome assembly pipeline 

 

To generate an accurate, and fast pipeline for the de novo assembly of transcriptomes, it is 

important to select software that is both efficient and robust (Figure 15). The assembly software 

SPAdes was chosen for these reasons. SPAdes, short for St. Petersburg Genome Assembler was 

developed for de novo assembly of single cell sequencing data from small genomes. It contains 

pipelines that can assemble metagenomes, plasmids, RNA-Seq data, biosynthetic gene clusters, 

and transcriptomes.46 SPAdes is appropriate due to its ability to assemble transcriptomes from 

organisms without well annotated reference genomes. SRA files sourced from RNA, with paired 
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end library layouts and from Illumina sequencing were used for this project and subsequently 

assembled with SPAdes.  

Coding regions of the assembled transcriptomes were identified using TransDecoder. 

TransDecoder predicts open reading frames (ORFs) within the transcript and scores them based 

on nucleotide composition, length and Pfam domain content.47 The longest ORFs are reported 

back in FASTA format. In this transcriptome assembly pipeline, the script (Appendix B) 

developed automatically downloads user selected SRA files, assembles the transcriptomes with 

SPAdes and uses TransDecoder to identify coding regions (Figure 15).  

Species with a high likelihood of producing burptides based on existing data of 

cyclopeptide alkaloid producers were prioritized for analysis. Furthermore, every order of the 

current angiosperm phylogeny with transcriptomes deposited in the SRA was represented in the 

analysis, with the addition of the gymnosperm order cycads.48  

This list of SRAs was input into the script (Appendix B) and the results were analyzed 

with an updated custom hidden Markov model. The updated version of the HMM was biased 

towards small molecule discovery instead of searching for fused burptides and cores with no 

known corresponding subfamily (Figure 16). This was accomplished by removing sequences 

such as xSxY and xAxY, represented in the “eudicot” Weblogo in Figure 13 while adding 

sequences coding for known molecules such as hibispeptins, moroidins, jubanines, and 

lyciumins. 
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Figure 16: Old and new hidden Markov model visualization 

 

The updated HMM (bottom) showed a highly conserved proline not seen in the prior model 

(top). Additionally, the Ax6YWx7PMP motif was less conserved.

IV.B. Results 

442 accessions meeting the criteria for assembly by the SPAdes were selected for 

analysis. Of those, transcriptomes for 383 unique species were successfully assembled. These 

species represented 62 angiosperm orders and one order of gymnosperms. Three angiosperm 

orders, Dilleniales, Alismatales, and Picramniales were not represented in this analysis owing to 

them having no transcriptomic data deposited to the Sequence Read Archive. Analysis of the 

hidden Markov model results for each of these transcriptomes showed 67 species were potential 

producers. Species were labeled as potential producers if multiple repeats of a core sequence and 

a recognition sequence were seen in the HMM results. Cores with xSxY and xAxY sequences 

were not considered.  

Old

New
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Potential producers were widely distributed throughout the angiosperm phylogenetic 

orders (Figure 17). The order Gentianales is home to the Rubiaceae and Rhamnaceae families 

and known burptide producers Ceanothus americanus and Coffea arabica.24 Transcriptomic 

analysis revealed twelve new potential producers in this order. In the order Malvales where 

Hibiscus syriacus is found, six potential producers were identified.  

Celosia argenta and Amaranthus cruentus are known moroidin producers.24 Both of these 

species are from the order Caryophyllales. Moroidin and moroidin-like cores were seen in two 

new species of plants in the order Caryophyllales. Moreover, they were found in three species 

from the Icacinales, and two from the Lamiales. There was significant diversity in these core 

sequences, with most not matching any known moroidins (Table 1).26  

Table 1: Moroidin-like producers 

Seven species produced moroidin-like compounds. Phylogenetic order and potential cores are 

shown.  

Accession Species Order Potential Cores 

SRR12006303 Merrilliodendron megacarpum Icacinales 

QLLVWKTH, QLLLWREH, 
KLLLWREH, QLQLWREH, 
QLLLCREH, QLLLGREH, 
HLLLWREH, QLLVWREH, 
QLKLLREH, QLLLWRQH, 
QLLLWHEH, QLLLLREH, 
QLLLWTDH, QLLLWREQ, 
QLLLWREL, QLLIWLIH, 
QLLVWKTH, QLLLWLEH 

SRR11994211 Pyrenacantha malvifolia Icacinales QLLLWREH, QLLVWREH 
SRR11994210 Mappia racemosa Icacinales PSYNY, QLLLWREH 

SRR21095983 Krascheninnikovia arborescens Caryophyllales QLLVWRGH, QLFVWRNH, 
QLRVWLEH, QLLVSDAL 

SRR13316945 Atriplex imbricata Caryophyllales PVLFWWQ, PNQVLYW, 
QLLVWRQG 

SRR7806556 Justicia pacifica Lamiales QNRLAYH 
SRR7848077 Justicia gendarussa Lamiales QLLVWRRH 
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This transcriptome mining approach was validated by Michael Pasquale in the Chekan 

lab when molecules matching core sequences FFFY and ILLY seen in Gardenia jasminodies 

(Table 2) were verified by mass spectrometry. 

Table 2: Core sequences from Gardenia jasminoides 

Twenty potential core sequences were seen bioinformatically. To date, ILLY and FFFY core 

sequences have been verified. 

IV.C. Conclusion 

Our search for new burptides had previously been confined to organisms with annotated 

genomes deposited to NCBI. In order to explore the abundance of raw transcriptomic data 

available in the NCBI Sequence Read Archive, a script was written that downloads, assembles 

and analyzes raw transcriptomic data. This was accomplished using the software SPAdes, 

TransDecoder and an updated version of our custom burptide HMM. This transcriptome mining 

approach identified 67 species that are potential burptide producers. These producers were 

widely distributed among the angiosperm phylogenetic orders. Finally, our transcriptome mining 

approached was validated when bioinformatically identified core sequences from Gardenia 

jasminoides were confirmed by mass spectrometry.  

 

 

Species Order (Family) Potential Cores 
Gardenia 
jasminoides 
(SRR19137756) 
 

Gentianales 
(Rubiaceae) 

ILLY, FFFY, VLLY, PLFY, SLFY, LDIY, IFPY, 
HRRY, FFFF, FLIY, FLFY, FFIY, LYIY, IFLY, 
SVFY, FQPY, LFPY, LQKY, AVRY, AVRD 
 



 

 

 Figure 17: Cladogram of species mined from both genomes and transcriptomes 
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CHAPTER V: CONCLUSIONS 

V.A. Genome Mining in Fungi 

Using a DUF3328 guided genome mining approach, numerous new putative dikaritin 

precursor peptides were identified in fungi from both Ascomycota and Basidiomycota. Dikaritins 

were not previously known to be produced by basidiomycetes. One example of this is Pleurotus 

ostreatus. Better known as oyster mushrooms, these fungi are commonly eaten and 

bioinformatically appear to produce a new dikaritin.  

V.B. Genome Mining in Plants 

Using a standalone precursor peptide found in Ceanothus americanus, a custom hidden 

Markov model was developed to search for other related precursor peptides. The results of 

searching all available Viridiplantae genomes showed a widely distributed split biosynthetic 

system was responsible for installing post-translational modifications in a newly named class of 

peptides known as burptides that includes hibispeptins, cyclopeptide alkaloids, moroidins and 

lyciumins.24,26,39 The enzymes involved, BURP peptide cyclases, were previously only known as 

autocatalytic cyclases.39 This genome mining approach was validated when one of the 

bioinformatically discovered precursor peptides from Coffea arabica went on to be isolated and 

named arabipeptin A.  

V.C. Transcriptome Mining Pipeline  

A script was developed that downloads, assembles and analyzes transcriptomic data 

deposited to the Sequence Read Archive for novel burptides. Using this transcriptome mining 

approach, numerous prospective burptides were identified from plants across all orders of 

angiosperms and cycads. Bioinformatically identified core sequences from Gardenia jasminoides 
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transcriptomic data were later confirmed by mass spectrometry, validating our transcriptome 

mining approach.  

V.D. Future Work 

Isolation and structural elucidation of the bioinformatically derived cores from both 

plants and fungi will continue to yield new molecules and insight into the biosynthetic pathways 

that produce them. 
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APPENDIX A: STRUCTURES FROM ZIZIPHUS JUJUBA 

 



 

         31 

 

 



 

         32 

 



 

         33 
 



 

         34 
 



 

         35 

APPENDIX B: TRANSCRIPTOME ASSEMBLY PIPELINE & ANALYSIS SCRIPT 

 

 

Page 1/2/Users/brigitte2/Downloads/plantsProject/transcriptomics.sh
Saved: 5/13/23, 11:04:18 AM Printed for: Brigitte 

#Prompts for SRA accessions 1
echo Accession numbers\? 2
 3
#Reads an input of accessions separated by a space into an array 4
read -a accession 5
 6
for i in ${accession[@]} do cd /mnt/c/software/sratoolkit.3.0.0-ubuntu64/  7
#sratoolkit.3.0.0 is the directory where each accession folder will end up 8
 9
#Makes a folder for each accession 10
mkdir $i 11
 12
#Moves into the new folder 13
cd $i 14
 15
pwd 16
 17
#Downloading the SRA fastq file 18
../bin/fastq-dump-orig.3.0.0 --defline-seq '@$sn[_$rn]/$ri' --split-files 19
$i …
 20
#Assembling with SPAdes 21
/home/chekanlab/software/miniconda3/envs/spades/bin/rnaspades.py -o 22
//mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/spades -1 23
//mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/${i}_1.fastq -2 24
//mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/${i}_2.fastq -t 12 -m 50 25
 26
#Running TransDecoder 27
/mnt/c/software/TransDecoder-TransDecoder-v5.5.0/TransDecoder.LongOrfs -m 28
75 -t …
//mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/spades/transcripts.fasta -O 29
//mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/transdecoder  30
 31
#Moves the .pep file into the corresponding accession folder 32
mv 33
/mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/transdecoder/longest_orfs.pep …
/mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/${i}.pep 34
 35
#Deleting files that are not needed 36
rm /mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/${i}_1.fastq rm 37
/mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/${i}_2.fastq rm -r 38
/mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/spades 39
#rm -r /mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/transdecoder 40
rm -r 41
/mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/transdecoder.42
__checkpoints_longorfs …
 43
#Runs the burptide HMM 44
/home/chekanlab/software/miniconda3/envs/hmmer/bin/hmmsearch 45
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//mnt/c/software/scripts/pscc_update.hmm 46
//mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/${i}.pep > ${i}_hmm.txt 47
 48
#Runs the BURP HMM 49
/home/chekanlab/software/miniconda3/envs/hmmer/bin/hmmsearch 50
//mnt/c/software/scripts/burp.hmm 51
//mnt/c/software/sratoolkit.3.0.0-ubuntu64/$i/${i}.pep > ${i}_burp_hmm.txt 52
 53
#Files will be found in the corresponding accession folder  54
done55


