
ALKALDI, WEJDAN ABDULLAH, M.S. Query Optimization in XML Based In-
formation Integration for Queries Involving Aggregation and Group By. (2009)
Directed by Dr. Fereidoon Sadri. 37 pp.

This thesis addresses optimization and processing of queries involving ag-

gregation and group-by in the semantic-model approach to information integration.

Query processing algorithms materialization, subqueries, and wrapper have been ex-

tended for such aggregate queries. Algorithms have been presented for two cases:

In the first case information at different sources are disjoint, while in the second

case information sources may contain overlapping information.

Keywords: Information integration; overlapping information; query optimization.

QUERY OPTIMIZATION IN XML BASED INFORMATION

INTEGRATION FOR QUERIES INVOLVING

AGGREGATION AND GROUP BY

by

Wejdan Abdullah Alkaldi

A Thesis Submitted to
the Faculty of The Graduate School at

The University of North Carolina at Greensboro
in Partial Fulfillment

of the Requirements for the Degree
Master of Science

Greensboro
2009

Approved by

Committee Chair

To my loving parents.
To my father, Abdullah, who inspired me with his knowledge, wisdom, and

guidance to be a better person.
To my mother, Sarah, whos encouragement and constant love sustains me

throughout my life.

To my husband, Majed, thank you for believing in me; and supporting me to
further my studies.

ii

APPROVAL PAGE

This thesis has been approved by the following committee of the Faculty of

The Graduate School at The University of North Carolina at Greensboro.

Committee Chair

Committee Members

Date of Acceptance by Committee

Date of Final Oral Examination

iii

ACKNOWLEDGMENTS

I would like to express my gratitude to all the people at UNCG Computer

Science Department who gave me the possibility to complete this thesis. I am deeply

indebted to my supervisor Prof. Fereidoon Sadri whose help, stimulating sugges-

tions, and encouragement helped me in all the time of research for and writing of

this thesis.

Especially, I would like to give my special thanks to my husband Majed

whose patient love and support enabled me to complete this work.

iv

TABLE OF CONTENTS

Page

CHAPTER

I. INTRODUCTION . 1

II. BACKGROUND . 3

2.1. Information Integration . 3
2.2. The Semantic-Model Approach to Information Integration . 4
2.3. Overlapping Sources . 6
2.4. Aggregation Queries . 7

III. MATERIALIZATION APPROACH . 8

3.1. Processing Queries with Materialization Approach 8

IV. SUBQUERIES APPROACH . 11

4.1. Min and Max Aggregations . 12
4.2. Count and Sum Aggregations . 14
4.3. Average Aggregation . 18
4.4. Reducing Inter-Source Subqueries . 20
4.5. Execution of Inter-source Subqueries . 22

4.5.1. Performing early selections to improve efficiency
of inter-source subquery execution 30

V. WRAPPER APPROACH . 31

5.1. Min and Max Aggregations . 31
5.2. Count and Sum Aggregation . 35
5.3. Average Aggregation . 37

VI. COMPREHENSIVE COMPARISON OF ALGORITHMS 39

VII. CONCLUSIONS AND FUTURE WORK . 46

BIBLIOGRAPHY . 47

v

1

CHAPTER I

INTRODUCTION

Very large volumes of data are available in electronic form in many different

systems and formats such as relational databases, XML data sources, spreadsheets,

and on the web. The volume of data has been growing steadily over decades.

This explosion of information comes with the need for advanced data management.

Information integration is at the heart of needed functionalities for a large number

of applications. This thesis presents an investigation into efficient query processing

in information integration systems. More specifically, extensions to various query

processing algorithms for the semantic-model approach to information integration

has been presented to handle queries involving aggregation and group-by operations

efficiently.

In recent years and decade, significant research has been conducted on in-

formation integration systems. The main goal of these systems is to combine infor-

mation residing at different sources, and to provide the user with a unified view of

these information. This thesis extends the work presented in [1, 2]. Three major

algorithms, materialization, subqueries, and wrapper and a number of variations on

these algorithms were introduced in these works. This thesis presents extensions

to these algorithms for the optimization and processing of queries involving aggre-

gation and group-by. The usual set of aggregation functions, sum, count, average,

min, and max, have been covered. Different information sources, in general, can

contain some overlapping data. Algorithms are presented for this general case, as

2

well as for the special case where data at the information sources are disjoint.

This thesis is organized as follows: Chapter 2 discusses the relevant back-

ground. Information integration is discussed in Section 2.1, and the Semantic-Model

approach to information integration is reviewed in Section 2.2. Sections 2.3 and 2.4

are devoted to important definitions used throughout this thesis. Chapter 3 extends

the Materialization Approach algorithm to handle queries involving aggregations

and group-by. Chapter 4 shows how to extend the Subqueries Approach to handle

queries involving aggregations and group-by, with emphasis on query processing ef-

ficiency. Aggregate operations min and max are covered in Section 4.1, count and

sum in Section 4.2, and avg in Section 4.3. Algorithms are presented for both over-

lapping and non-overlapping sources. In Chapter 5, we present the third approach,

the Wrapper. We present theoretical results regarding when the chase should (and

should not) be applied in this approach. These results provide further optimization

by avoiding the chase task when it is not needed. Finally, in Chapter 6, we provide

a comprehensive example that demonstrate all of our algorithms produce the same

answer to a user query. This is an indication of the correctness of our algorithms.

Conclusions are presented in Chapter 7.

3

CHAPTER II

BACKGROUND

2.1 Information Integration

Large amounts of data are available in electronic form on the web and elsewhere

and the volume is growing rapidly. However, the Web’s browsing paradigm does

not support many information management tasks as mentioned in [3]. Combining

information residing at different sources, and providing the user with a unified view

of the information is the problem of designing information integration systems. This

problem has become extremely important in current real world applications, and is,

in addition to significant practical importance, characterized by a number of issues

that are interesting from a theoretical point of view [5].

Most information integration systems are characterized by an architecture

based on a global schema and a set of sources. The sources contain the real data,

while the global schema provides a reconciled, integrated, and virtual view of the un-

derlying sources. Modeling the relation between the sources and the global schema

is therefore a crucial aspect [5]. For this reason, two general approaches have been

introduced:

(i) global-as-view (GAV), requires that the global schema is expressed in terms of

the data sources, and

(ii) local-as-view (LAV), requires the global schema to be specified independently.

The connections between the global schema and the sources are founded by defining

every source as a view over the global schema.

4

In the past few years, many researches have investigated issues in information

integration systems. Here, we will consider the four techniques presented in [2],

namely, materialization, subqueries, optimized subqueries, and wrapper approaches

to efficient query processing. We extend these techniques to handle queries with

aggregation and group-by. Our emphasis is on efficient processing of these queries.

2.2 The Semantic-Model Approach to Informa-

tion Integration

The semantic-model (SM) approach to information integration and interoperability

was first introduced in [4]. SM system have two types of sites, information sources

and coordinators (also called mediators). A coordinator oversees query decomposi-

tion and execution. User queries can be submitted at any site [1].

The Semantic-Model approach enables interaction between (i) data sources

that store data using XML or relational data models, and (ii) relational mediators

whose schema’s conform to a Semantic-Model. The information at each source is

viewed as a collection of (logical) binary relations, which is called the semantic-

model view [2].

In this paper, we are working on sources that have XML or relational data

in their local schemas. However, in all our examples, we are showing the data in

the form of the semantic-model relations for simplicity.

In this thesis, we extend the query processing algorithms introduced in [1, 2]

to handle queries that involve aggregation and group-by operations. We will provide

a short description of these algorithms below.

The Materialization Approach

This is the base query-processing approach against which we evaluate other

5

approaches. In the simple materialization approach, we materialize the SM view

relations that appear in the user query, and execute the query on the materialized

relations [1]. This approach is not efficient in general, and it is used mainly for

comparison.

The Subqueries Approach

The subqueries approach is based on generating and executing local and

inter-source subqueries for the user query, and then merging these partial results to

obtain the query answer. A local subquery is executed on data from a single source

and can be executed locally at that source. An inter-source subquery is executed

on data from multiple sources. In this case some data transmission will be required

[2].

The Optimized-Subquery Approach

In the optimized-subquery approach we use semantic constraints to elimi-

nate, to the extent possible, inter-source processing. Based on key and foreign-key

constraints that are relevant to the query, all or some of inter-source subqueries may

be redundant and need not be evaluated [2].

The Wrapper Approach

The wrapper approach, generates only one local subquery per data source.

This subquery extracts from the source the minimum amount of information that

is needed to answer the user query. It is called “wrapper” approach because this

extraction can be viewed as a (query-specific) wrapper that collects the needed

information from each source. Compared to local subqueries, the information ex-

tracted from each source in the wrapper approach is richer than the result of the

local subquery on the same source, thus making it possible to obtain the full answer

6

to the user query by further processing. Intuitively, the information collected by the

local (wrapper) query corresponds to the full outer-join of the relations involved.

In a large class of applications, an efficient chase-based algorithm [6] can be applied

to the extracted information to obtain the full answer to the user query [1, 2].

2.3 Overlapping Sources

In this thesis, we will extend query processing algorithms for two possible cases:

Case 1: Information sources do not have any overlapping information, and

Case 2: Information sources have overlapping information (see definition below).

Definition 1 (Overlapping) Two sources s1 and s2 are said to have overlapping

data (or to be overlapping) when, for a predicate p(A,B) in the semantic model

where A is the key, s1 has a tuple (a1, b1) in p and s2 has a tuple (a2, b2) in p where

a1 = a2.

Note that b1, b2, or both can be NULL. If they are both values but b1 6= b2,

then the two sources have inconsistent data (are inconsistent). That means the

combination of their data violates a constraint.

Example 1 Assume we have two sources s1 and s2, and the semantic model has a

predicate id-city, with the following values. Assume id is the key for id-city.

id city
100 –
120 Greensboro

id city
100 Charlotte
110 Raleigh

These sources have overlapping information, but no inconsistencies.

7

2.4 Aggregation Queries

The general form of a query that involves aggregation and group-by is

select W, Agg(M)

from relations

where conditions P

group by N

Where M is an attribute, N is a set of attributes, W ⊆ N , Agg is an

aggregates operation such as min, max, count, sum, and average. Each condition in

the set of conditions P has one of the following forms: A op B, A op K, and K op

A, where A and B are attributes, K is a constant, and op is an arithmetic comparison

like =, 6=, <, >, ≤ , and ≥.

We will refer to this form of query as Aggregation Query Form in the next

chapters.

8

CHAPTER III

MATERIALIZATION APPROACH

In this chapter we extend the Materialization Approach to handle queries

involving aggregations and group-by. All queries are processed as described bellow

for overlapping as well as non-overlapping sources.

3.1 Processing Queries with Materialization Ap-

proach

In this approach, overlapping sources and non-overlapping sources will be handled

similarly. Suppose we have a query in Aggregation Query Form shown below for

convenience.

select W, Agg(M)

from relations

where conditions P

group by N

Then to execute the query using the Materialization Approach, we follow the

following steps:

1. At each source materialize the relations that appear in the from clause. We

can enforce those conditions in P that have the form A op K or K op A where

A is an attribute and K is a constant at this time.

2. Send the results from each source to the mediator.

9

3. In the mediator, combine (union) binary relations for each selection in the

from clause of the query. Inconsistencies, if any, are detected at this step.

4. execute a modified query at the mediator. The modified query is obtained

by removing those conditions that were enforced in step 1 from the original

query.

We will illustrate these steps with the following example.

Example 2 Suppose we have two sources s1 and s2 in some federated universities

databases containing the following data. Note that, sources can have XML or rela-

tional data in their local schemas. Here we are showing the data in the form of the

semantic-model relations for simplicity.

source s1

id major
100 English
110 Math

id gpa
100 3.2
110 3.0

id tuition
100 in-state
110 out-of-state

source s2

id major
120 English

id gpa
120 2.8

id tuition
120 in-state

Now consider the following query that lists the minimum GPA of in-state

students enrolled in each major:

select id-major.major, min(id-gpa.gpa)

from id-gpa, id-major, id-tuition

where id-gpa.id = id-major.id and

id-gpa.id = id-tuition.id and

id-tuition.tuition = ’in-state’

group by id-major.major

10

Using the Materialized approach to execute this query, we do the following:

1. For each source, we enforce the condition id-tuition.tuition = ‘in-state’

in the where-clause to obtain

source s1

id major
100 English
110 Math

id gpa
100 3.2
110 3.0

id tuition
100 in-state

source s2

id major
120 English

id gpa
120 2.8

id tuition
120 in-state

2. These tables are sent to the mediator.

3. Binary relations for each relation in the query are merged to obtain:

id major
100 English
110 Math
120 English

id gpa
100 3.2
110 3.0
120 2.8

id tuition
100 in-state
120 in-state

4. The following query, which is the modified version of the original query

with the enforced condition removed, is executed on these relations in the mediator

select id-major.major, min(id-gpa.gpa)

from id-gpa, id-major, id-tuition

where id-gpa.id = id-major.id and

id-gpa.id = id-tuition.id

group by id-major.major

The final result is:

major min(gpa)
English 2.8

11

CHAPTER IV

SUBQUERIES APPROACH

In this chapter we will show how to extend the Subqueries Approach to handle

queries involving aggregations and group by efficiently. We will also discuss the issue

of inter-source subqueries and investigate different strategies for their execution.

We will see that for some aggregations we need to handle overlapping sources

and non-overlapping sources differently and for others we can handle them similarly.

The subqueries algorithm, in general, consists of three phases:

1. Local and inter-source subqueries phase. In this phase local and inter-

source subqueries are generated and submitted for execution to the sources.

For simple non-aggregate queries, the subqueries are translations of user query

to the sources’ local data format (for example, XML). Translation for aggre-

gate queries is more involved and will be discussed further below. Results of

the subqueries are sent to the mediator.

2. Collection and merge phase. In this phase, the mediator “combines”

the results of local and inter-source subqueries. For simple (non-aggregate)

queries, this is often the end of the processing and the result is the final answer

to user query. For queries involving aggregation and group-by, additional

processing is needed.

3. Additional processing phase. In this phase additional processing, in the

form of queries executed on the result of previous phase, is carried out by the

12

mediator to obtain the final answer to user query.

For each aggregation type, namely, min, max, count, sum, and average, we

need to develop the algorithms for the query translation (in Phase 1) and additional

processing (in Phase 3). These will be discussed below.

4.1 Min and Max Aggregations

In min and max aggregations, duplicate tuples do not affect the results. So, we will

treat overlapping sources and non-overlapping sources similarly. Suppose we have a

query in Aggregation Query Form with Min/Max aggregation. Then the execution

of this query using the subqueries algorithm, consists of three phases:

1. Local and inter-source subqueries phase. For min and max aggrega-

tion, translated subqueries perform the user query, including group-by and

aggregation, on the local data. Then the results are sent to the mediator.

2. Collection and merge phase, which is done in the mediator, simply unions

(without duplicate removal) the results of the previous phase.

3. Additional processing phase, which is done in the mediator too. In this

phase we apply the group-by and aggregation on the collected results.

The following example will show how the three phases will work.

Example 3 Suppose we have two sources s1 and s2 in some federated universities

databases containing the following data. We are assuming that a student can take

courses from any university in the federation, but some student information, such

as GPA, is only available at the student’s “home” university. Note that, in general,

sources can have XML or relational data in their local schemes. Here we are showing

the data in the form of the semantic-model relations for simplicity.

13

source s1

id course
100 Eng111
110 Eng111
120 Eng111

id gpa
100 3.2
110 3.0

source s2

id course
120 Art333

id gpa
120 2.8

Now consider the following query that lists the minimum GPA of students

registered in each course:

select id-course.course, min(id-gpa.gpa)

from id-gpa, id-course

where id-gpa.id = id-course.id

group by id-course.course

Phase 1: The results of local and inter-source subqueries are shown below.

The first two are results of local subqueries at the two sources, the third is the result

of an inter-source subquery. These results will be sent to the mediator.

course min(gpa)
Eng111 3.0

course min(gpa)
Art333 2.8

course min(gpa)
Eng111 2.8

Phase 2: The results of Phase 1 are combined at the mediator:

course min(gpa)
Eng111 3.0
Art333 2.8
Eng111 2.8

Phase 3: A final query is executed by the mediator on the result of Phase 2

to obtain the answer to user query:

14

course min(gpa)
Eng111 2.8
Art333 2.8

4.2 Count and Sum Aggregations

In Count and Sum Aggregations, duplicate tuples do affect the results. So, we

will treat overlapping sources and non-overlapping sources separately. The same

algorithm that will apply on count will apply on sum as well.

I. Non-overlapping sources

In a non-overlapping sources, to execute a query that involves aggregation

Count or Sum we need three phases :

1. Local and inter-source subqueries phase. For a query that involves count

or sum aggregation, translated subqueries perform the user query (including

group-by and aggregation) on the local data. Then the results are sent to the

mediator.

2. Collection and merge phase, which is done in the mediator, simply unions

(without duplicate removal) the results of the previous phase.

3. Additional processing phase, which is done in the mediator too. In this

phase we apply the group-by and the sum aggregation on the collected results.

The following example will show how the three phases will work.

Example 4 Suppose we have two non-overlapping sources s1 and s2 as shown in

Example 3. Now consider the following query that lists the number of students

registered in each course with GPA ≤ 3.0:

15

select id-course.course, Count(id-gpa.id)

from id-gpa, id-course

where id-gpa.id = id-course.id and

id-gpa.gpa <= 3.0

group by id-course.course

Phase 1: The results of local and inter-source subqueries are shown below.

The first two are results of local subqueries at the two sources, the third is the result

of an inter-source subquery. These results will be sent to the mediator.

course count(id)
Eng111 1

course count(id)
Art333 1

course count(id)
Eng111 1

Phase 2: The results of Phase 1 are combined at the mediator:

course count(id)
Eng111 1
Art333 1
Eng111 1

Phase 3: A final query (with Sum aggregation) is executed by the mediator

on the result of Phase 2 to obtain the answer to the user query:

course count(id)
Eng111 2
Art333 1

II. Overlapping sources

For overlapping sources, to execute a query that involves aggregation Count

or Sum, the three phases are somewhat different since duplicate tuples affect the

results :

16

1. Local and inter-source subqueries phase. For a query that involves count

or sum aggregation, translated subqueries perform the user query (without

group-by nor aggregation) on the local data. Then the results are sent to the

mediator.

2. Collection and merge phase, which is done in the mediator, simply unions

(with duplicate removal) the results of the previous phase.

3. Additional processing phase, which is done in the mediator too. In this

phase we apply the user query (with group-by and aggregation) on the col-

lected results.

The following example will show how the three phases will work.

Example 5 Suppose we have two overlapping sources s1 and s2 in some feder-

ated universities databases containing the following data. We are assuming that a

student can take courses from any university in the federation, and some student

information, such as City, is available at other universities databases. Note that, in

general, sources can have XML or relational data in their local schemes. Here we

are showing the data in the form of the semantic-model relations for simplicity.

source s1

id course
100 Eng111
110 Eng111
120 Eng111

id city
100 Greensboro
110 Charlotte
120 Greensboro

source s2

id course
120 Art333

id city
120 Greensboro

17

Now consider the following query that lists the number of students from

Greensboro registered in each course:

select id-course.course, count(id-city.id)

from id-city, id-course

where id-city.id = id-course.id and

id-city.city = ‘Greensboro’

group by id-course.course

Phase 1: The results of local and inter-source subqueries are shown below.

The first two are results of local subqueries at the two sources, the third and the

fourth are the result of inter-source subqueries. These results will be sent to the

mediator.

id course city
100 Eng111 Greensboro
110 Eng111 Charlotte
120 Eng111 Greensboro

id course city
120 Art333 Greensboro

id course city
120 Art333 Greensboro

id course city
120 Eng111 Greensboro

Phase 2: The results of Phase 1 are combined at the mediator with duplicate

tuples removal:

id course city
100 Eng111 Greensboro
110 Eng111 Charlotte
120 Eng111 Greensboro
120 Art333 Greensboro

18

Phase 3: A final query is executed by the mediator on the result of Phase 2

to obtain the answer to user query:

course count(id)
Eng111 2
Art333 1

4.3 Average Aggregation

In Avg Aggregation, duplicate tuples do affect the results. So, we will treat over-

lapping sources and non-overlapping sources separately.

I. Non-overlapping sources

In non-overlapping sources, to execute a query that involves aggregation Avg,

we can use average = sum
count

to design our algorithm. Conceptually, we evaluate the

following query using the algorithm discussed in previous section.

select W, sum(M), count(M)

from relations

where conditions P

group by N

Then, as the final processing, the average is calculated as sum
count

for each group.

The following example will show how these phases work.

Example 6 Suppose we have two non-overlapping sources s1 and s2 as shown in

Example 3. Now consider the following query that lists the average gpa of students

registered in each course:

select id-course.course, Avg(id-gpa.gpa)

from id-gpa, id-course

where id-gpa.id = id-course.id

group by id-course.course

19

Phase 1: The results of local and inter-source subqueries are shown below.

The first two are results of local subqueries at the two sources, the third is the result

of an inter-source subquery. These results will be sent to the mediator.

course sum(gpa) count(gpa)
Eng111 6.2 2

course sum(gpa) count(gpa)
Art333 2.8 1

course sum(gpa) count(gpa)
Eng111 2.8 1

Phase 2: The results of Phase 1 are combined at the mediator:

course sum(gpa) count(gpa)
Eng111 6.2 2
Art333 2.8 1
Eng111 2.8 1

After that we sum the numbers of sum(gpa) and count(gpa) for each group

and we get

course sum(gpa) count(gpa)
Eng111 9.0 3
Art333 2.8 1

Phase 3: execute the user query with average aggregation on the result of

Phase 2 using the fact average = sum/count to obtain the answer:

course avg(gpa)
Eng111 3.0
Art333 2.8

20

II.Overlapping sources

The same approach discussed in previous section, can be used here too.

Of course, the overlapping sources algorithm should be used for sum and count.

Alternatively, the overlapping source algorithm can be applied to directly compute

the average. The modified algorithm (for average) is straight forward and we omit

the details here.

4.4 Reducing Inter-Source Subqueries

To execute any user query using subqueries approach, we need to preform nk sub-

queries where n is the number of sources and k is the number of the relations in the

query. Only n subqueries are done locally and the rest are inter-source subqueries.

However, in some cases, all or some of these inter-source subqueries are redundant

and will not be evaluated. We can reduce the number of inter-source subqueries (or

eliminate them in best cases) if we find a key and a foreign-key constraints that are

relevant to the user query. [2]

The following Theorem from [1] will illustrate that.

Theorem 1 [1] Given a user query involving the natural join of two or more re-

lations r1, ..., rk, if the local-join graph restricted to the query relations r1, ..., rk

contains a directed spanning tree, then no inter-source processing is needed for this

query.

The following example will demonstrate this theorem.

Example 7 Suppose we have a query in Aggregation Query Form that uses tables

u(A,B), v(C,A), and w(D,C) . Suppose that attribute A is the key for u and that

21

a foreign-key constraint holds from v.A to u.A. Also, suppose that attribute C is

the key for v and that a foreign-key constraint holds from w.C to v.C. Then, the

local-join graph for these relations is as follows:

u←− v ←− w

The above graph, has a directed spanning tree that goes through w, v then u.

In this case, we can eliminate all inter-source subqueries, and only local subqueries

need to be executed.

Suppose we have a query in Aggregation Query Form. If the condition of

Theorem 1 does not hold then some inter-source processing is needed. [1]

22

4.5 Execution of Inter-source Subqueries

Local subqueries are executed locally within their sources. However, inter-source

subqueries use data from more than one source, and could be executed at one of

the sources or at the mediator. If all the sources have relatively small amount of

data, then the execution of inter-source subqueries will be done in the mediator. In

the other hand, if at least one of the sources have a large amount of data, then it

is better to execute the inter-source subquery at this particular source. By doing

that, we avoid transforming large amounts of data.

We will discuss the case when all sources have a small amount of data. In

this case, the inter-source subqueries will be executed in the mediator.

A. Min and Max Aggregations

Min and Max are handled similarly. In min and max aggregations, duplicate

tuples do not affect the results. So, we will treat overlapping sources and non-

overlapping sources similarly. The algorithm consists of five phases:

1. subqueries phase. We translate the user query into subqueries (local and

inter-source subqueries) that perform as the user query, including group-by

and aggregation min/max. Then we send the inter-source subqueries to the

mediator and the local subqueries to the local source they use.

2. local subqueries phase, which is done locally in sources. We execute the

local subqueries and send the results to the mediator.

3. inter-source subqueries phase, which is done in the mediator. We execute

the inter-source subqueries and keep the results in the mediator.

23

4. Collection and merge phase. This phase is done in the mediator, simply

unions (without duplicate removal) the results of the previous phases.

5. Additional processing phase, which is done in the mediator too. In this

phase we apply the user query on the collected results with respect to the

group-by to get the final results.

The following example will show how these phases will work.

Example 8 Suppose we have two sources s1 and s2 with tables id-source and

id-gpa as in Example 3

source s1

t u

id course
100 Eng111
110 Eng111
120 Eng111

id gpa
100 3.2
110 3.0

source s2

t u

id course
120 Art333

id gpa
120 2.8

Now consider the following query that lists the maximum GPA of students

with gpa ≤ 3.0 registered in each course:

select id-course.course, max(id-gpa.gpa)

from id-gpa, id-course

where id-gpa.id = id-course.id

id-gpa.gpa <= 3.0

group by id-course.course

24

To execute this query using the Simi-Subqueries approach, we need five phases:

1. subqueries Phase: In this phase we will send the inter-source subqueries

(that will use (t1, s2) relations and (t2, s1) relations) to the mediator and send the

local subqueries (that will use (t1, s1) and (t2, s2)) to source s1 and s2.

2. Local subqueries phase: Here, we run in source s1 the local subquery

that uses the relations (t1, s1); and the same in source s2 we run the subquery with

(t2, s2). Then we send the results in s1 and s2 to the mediator. That will result in

sending the following data to the mediator.

id course gpa
110 Eng111 3.0

id course gpa
120 Art333 2.8

3. inter-source subqueries phase: We run the inter-source subqueries

that uses (t1, s2) relations and (t2, s1) relations. The first subquery will give the

following table and second one will result in nothing

id course gpa
120 Eng111 2.8

4. Collection and merge phase: In the mediator, we union the previous

results without duplicate removal.

5. Additional processing phase: In this phase, we apply the user query

on the previous results and we get

course max(gpa)
Eng111 3.0
Art333 2.8

25

B. Count and Sum Aggregations

Count and Sum are handled similarly. In Count and Sum aggregations,

duplicate tuples affect the results. So, we will treat overlapping sources and non-

overlapping sources separately.

I. Non-overlapping Sources: Using a non-overlapping sources, we need five

phases (similar to the ones introduced in the previous section) in order to execute

a query with count or sum aggregation.

1. subqueries phase. We translate the user query into subqueries(local and

inter-source subqueries) that perform as the user query with group-by and

count/ sum aggregation. Then we send the inter-source subqueries to the

mediator and the local subqueries to the local source they use.

2. local subqueries phase, which is done locally in sources. We run the local

subqueries (that needs only the local source) and we send the results to the

mediator.

3. inter-source subqueries phase, which is done in the mediator. We run

the inter-source subqueries (that uses more than one source) and we keep the

results in the mediator.

4. Collection and merge phase. This phase is done in the mediator, simply

unions (without duplicate removal) the results of the previous phases.

5. Additional processing phase, which is done in the mediator too. In this

phase we just sum the collected results whether we had sum or count aggre-

gation in the user query, with respect to the group-by to get the final results.

26

II. Overlapping Sources: In this type of sources, we use the same phases intro-

duced before but with different description. So, the new phases will be

1. subqueries phase. We translate the user query into subqueries (local and

inter-source subqueries) that perform a modified query which is the same as

the user query except (1) select clause has been replaced by select *, and

(2)group-by clause has been removed. Then we send the inter-source sub-

queries to the mediator and the local subqueries to the local source they use.

2. local subqueries phase, which is done locally in sources. We run the local

subqueries (that needs only the local source) and we send the results to the

mediator.

3. inter-source subqueries phase, which is done in the mediator. We run

the inter-source subqueries (that uses more than one source) and we keep the

results in the mediator.

4. Collection and merge phase. This phase is done in the mediator, simply

unions (with duplicate removal) the results of the previous phases.

5. Additional processing phase, which is done in the mediator too. In this

phase we apply the user query on the collected results with respect to the

group-by and the aggregation to get the final results.

This example will show how these phases will work.

Example 9 Suppose we have two sources s1 and s2 with tables id-course and

id-gpa as below

source s1

27

t u

id course
100 Eng111
110 Eng111
120 Eng111

id gpa
100 3.2
110 3.0
120 2.8

source s2

t u

id course
120 Art333

id gpa
120 2.8

Now consider the following query that lists the number of students with gpa

≤ 3.0 registered in each course:

select id-course.course, count(id-gpa.gpa)

from id-gpa, id-course

where id-gpa.id = id-course.id

id-gpa.gpa <= 3.0

group by id-course.course

To execute this query using the above algorithm:

1. subqueries Phase. In this phase we will send the inter-source subqueries

(that will use (t1, s2) relations and (t2, s1) relations) to the mediator and send the

local subqueries (that will use (t1, s1) and (t2, s2)) to source s1 and s2.

2. Local subqueries phase. Here, we run in source s1 the local subquery

(with select all) that uses the relations (t1, s1), and the same in source s2 we run

the subquery with (t2, s2) relations. Then we send the results in s1 and s2 to the

mediator. That will result in sending the following data to the mediator:

id course gpa
110 Eng111 3.0
120 Art333 2.8

28

id course gpa
120 Art333 2.8

3. inter-source subqueries phase. Here we run the inter-source sub-

queries that uses ((t1, s2) relations and ((t2, s1) relations. That will give the follow-

ing tables:

id course gpa
120 Eng111 2.8

id course gpa
120 Art333 2.8

4. Collection and merge phase. In the mediator, we union the previous

results with duplicate removal. That will result in:

id course gpa
110 Eng111 3.0
120 Eng111 2.8
120 Art333 2.8

5. Additional processing phase. In this phase, we apply the user query

and we get:

course count(gpa)
Eng111 2
Art333 1

C. Average Aggregation

Here we will treat overlapping sources and non-overlapping sources separately

since duplicate tuples do affect the results.

29

I. Non-overlapping Sources: Using a non-overlapping sources, we need five

phases in order to execute a query with avg aggregation.

1. subqueries phase. We translate the user query into subqueries (local and

inter-source subqueries) that perform as the user query with sum and count

instead of average(since average = sum/count) with respect to the group

by. Then we send the inter-source subqueries to the mediator and the local

subqueries to the local source they use.

2. local subqueries phase, which is done locally in sources. We run the local

subqueries (that needs only the local source) and we send the results to the

mediator.

3. inter-source subqueries phase, which is done in the mediator. We run

the inter-source subqueries (that uses more than one source) and we keep the

results in the mediator.

4. Collection and merge phase. This phase is done in the mediator, simply

sum (with respect to the group-by) the results of the previous phases.

5. Additional processing phase, which is done in the mediator too. In this

phase we just calculate the average using the sum and count numbers we found

in the collected results with respect to the group-by to get the final results.

II. Overlapping Sources: Here, we will use the same phases title introduced

before but again with different description. So, phases new description will be:

1. subqueries phase. We translate the user query into subqueries (local and

inter-source subqueries) that perform the modified query as explained previ-

30

ously. Then we send the inter-source subqueries to the mediator and the local

subqueries to the local source they use.

2. local subqueries phase, which is done locally in sources. We run the local

subqueries (that needs only the local source) and we send the results to the

mediator.

3. inter-source subqueries phase, which is done in the mediator. We run

the inter-source subqueries (that uses more than one source) and we keep the

results in the mediator.

4. Collection and merge phase. This phase is done in the mediator,simply

unions (with duplicate removal) the results of the previous phases.

5. Additional processing phase, which is done in the mediator too. In this

phase we apply the user query, including the group-by and aggregation aver-

age, on the collected results to get the final answer.

4.5.1 Performing early selections to improve efficiency of

inter-source subquery execution

We can use the where clause conditions to minimize the amount of data have to

be sent from each source to the mediator. That can be done by enforcing the P

condition of type A op K or K op A at each source to filter out the tuples that will

not be used. Then we send the results to the mediator where we enforce the rest of

the conditions that we did not enforce locally at each source.

31

CHAPTER V

WRAPPER APPROACH

In the Wrapper Approach, we obtain the full answer using the outer-join and,

in some cases, the chase-based algorithm introduced in [6].

5.1 Min and Max Aggregations

The same argument that will apply on Min will apply on Max. So, we will work with

one of them. Consider a query in the Aggregation Query Form with Min aggregation,

shown below for convenience.

select W, Agg(M)

from relations

where conditions P

group by N

Theorem 2 Let U be the set of attributes that appear in conditions P that have the

form A op K or K op A. For any query in Aggregation Query Form with Min/Max

aggregation and any functional dependency X → Y , where X and Y are sets of

attributes, if W , U , and M are disjoint from Y , then there is no need to do the

chase with respect to X → Y . Otherwise, chase should be applied.

Proof. In this case values in attributes W , U , and M , will not change by chase.

Hence, the group by and aggregation attribute values are not affected, and further, a

tuple satisfies P after the chase if and only if it satisfies it before the chase. Keeping

in mind that in the wrapper approach, chase is applied to the union of outer-join of

32

tables in each source, we notice the only possible change due to chase is changing

the multiplicities of the groupings (by the W group by attributes). But min (and

max) operations are not sensitive to multiplicities. Hence, the answer to the query

will be the same if chase is not carried out, and hence, there is no need to do the

chase.

The following examples demonstrate the cases where chase is needed and not

needed.

Example 10 To show a case where applying the chase is required, consider the

information sources s1 and s2 containing the following data:

source s1

id city
100 -
120 Greensboro

id name
100 Ann
120 Chi

id year
100 2005
120 2009

id gpa
100 2.8
120 2.9

source s2

id city
100 Greensboro
110 Raleigh

id name
100 -
110 Bob

id year
100 -
110 2008

id gpa
100 -
110 3.2

Assume the following functional dependencies hold: id→city, id→name,

id→year, and id→gpa. Now consider the query:

select id-city.city, id-name.name, Min(id-gpa.gpa)

from id-city, id-name, id-year, id-gpa

where id-city.id = id-name.id and

id-name.id = id-year.id and

id-year.id = id-gpa.id and

id-year.year>2000

group by id-city.city, id-name.name

33

In the wrapper approach we get the following relation at the coordinator:

id city name year gpa
100 - Ann 2005 2.8
120 Greensboro Chi 2009 2.9
100 Greensboro - - -
110 Raleigh Bob 2008 3.2

If we do not apply the chase on any of the functional dependencies, then we

will get the following (wrong) answer to the query:

city name Min(gpa)
Greensboro Chi 2.9

Raleigh Bob 3.2

Note that all FD’s need to be applied according to Theorem 2. Now if we

apply the chase on the functional dependencies, we obtain the following selection at

the coordinator:

id city name year gpa
100 Greensboro Ann 2005 2.8
120 Greensboro Chi 2009 2.9
110 Raleigh Bob 2008 3.2

Then the (correct) answer will be

city name Min(gpa)
Greensboro Ann 2.8

Raleigh Bob 3.2

Case 4: when W ∩ Y 6= φ and N ∩ Y 6= φ, chase X→Y. In this example, we

chase id→ city and we get the same result as above.

34

Example 11 To show that we do not need to apply the chase on X → Y when W,

M, and U are disjoint from Y, suppose we have s1 and s2 as shown below, and the

functional dependency id→ position

source s1

id position
100 -
120 grader

position salary
grader 20$ /hour

source s2

id position
100 researcher
110 lab monitor

position salary
researcher 23$/hour

lab monitor 18$/hour

Now, consider the query:

select id-position.id, Min(position-salary.salary)

from id-position, position-salary

where id-position.position = position-salary.position and

position-salary.salary > 10

group by id-position.id

In the wrapper approach we get the following relation at the coordinator:

id position salary
120 grader 20
100 researcher 23
110 lab monitor 18

Since, in the query, position is only used for the join, then whether we apply

the chase on id→ position or not we will get the same result

id salary
120 20
100 23
110 18

So, there is no need to chase id→ position.

35

5.2 Count and Sum Aggregation

The same argument that will apply on Count will apply on Sum. So, we will work

with one of them. In this type of aggregation, we will distinguish between overlap-

ping sources and non-overlapping sources. Consider a query in Aggregation’s Query

Form with count aggregation.

Theorem 3 For sources that have no overlapping information, for any query in

Aggregation Query Form with Count/Sum aggregation and any functional depen-

dency X → Y , where X, Y ⊂ R , if W, U, and M are disjoint from Y, then there

is no need to chase X → Y . Otherwise, chase should be applied.

Note: Theorem 3 does not hold for sources that have overlapping informa-

tion. In the overlapping information database, we need to apply the chase on all

functional dependencies.

The following examples demonstrate the cases where chase is needed and not

needed in the non-overlapping and overlapping sources.

I. Non-Overlapping sources

This example shows that we do not need to chase X → Y when W, M, and

U are disjoint from Y.

Example 12 Suppose we have two sources s1 and s2 as shown below, and the func-

tional dependency id→ position

source s1

id position
100 -
120 grader

position salary
grader 20

36

source s2

id position
130 researcher
110 lab monitor

position salary
researcher 23

lab monitor 18

Now, consider the query:

select position-salary.salary, Count(id-position.id)

from id-position, position-salary

where id-position.position = position-salary.position and

position-salary.salary > 10

group by position-salary.salary

In the wrapper approach we get the following relation at the coordinator:

id position salary
120 grader 20
130 researcher 23
110 lab monitor 18

Since, in the query, position is only used for the join, then whether we apply

the chase on id→ position or not we will get the same result

salary count(id)
20 1
23 1
18 1

So, there is no need to chase id→ position.

II. Overlapping sources

The following example shows that in overlapping sources, chase is needed in

the wrapper approach for the count (and sum) aggregation.

37

Example 13 Consider the information sources s1 and s2 of Example 10 with the

following query:

select id-name.id, id-name.name, count (*)

from id-name, id-city

where id-name.id = id-city.id

group by id-name.id, id-name.name

In the wrapper approach we get the following relation at the coordinator:

id name city
100 Ann -
100 Ann Greensboro
110 Bob Raleigh
120 Chi Greensboro

It is easy to see that we need to apply the chase and eliminate duplicates

before executing the group by and aggregation in order to get the right answer.

5.3 Average Aggregation

The same result holds for queries with average aggregation. Consider a query in

Aggregation Query Form with average aggregation.

Theorem 4 For sources that have no overlapping information, for any query in

Aggregation Query Form with average aggregation and any functional dependency

X → Y , where X, Y ⊂ R , if W, U, and M are disjoint from Y, then there is no

need to chase X → Y . Otherwise, chase should be applied.

Note: Theorem 4 does not hold for sources that have overlapping informa-

tion. In the overlapping information database, we need to apply the chase on all

38

functional dependencies.

39

CHAPTER VI

COMPREHENSIVE COMPARISON OF ALGORITHMS

Running a query using any of the previous approaches should give the same

results. In this chapter, we will show that the answer for a query using the Material-

ization approach, will be the same using Subqueries approach or Wrapper approach.

in following example we are using an overlapping sources.

Example 14 Suppose we have two XML sources s1 and s2 with different formats.

Both sources have data about students including their id, city and courseNo of

courses they registered for. The information at s1 and s2 satisfy the constraint

id→ city. As we will see, s1 and s2 have some overlapping information.

40

source1

<university>

<student>

<ID> 100 <\ID>

<name> Ann <\name>

<course>

<Course_No> Mat444 <\Course_No>

<Title> Algebra <\Title>

<Credits> 3 <\Credits>

<\course>

:

.

<\student>

<student>

<ID> 120 <\ID>

<name> Chi <\name>

<city> Greensboro <\city>

<course>

<course_No> Mat444 <\course_No>

<Title> Algebra <\Title>

<Credits> 3 <\Credits>

<\course>

:

.

<\student>

:

.

<\university>

41

source2

<university>

<course>

<course_No> CSC555 <\course_No>

<Title> Data Mining <\Title>

<Credits> 3 <\Credits>

<student>

<ID> 100 <\ID>

<name> Ann <\name>

<city> Greensboro <\city>

<\student>

<student>

<ID> 110 <\ID>

<name> Bob <\name>

<city> Raleigh <\city>

<\student>

:

.

<\course>

:

.

<\university>

The corresponding binary relations for these XML sources for id-city and

id-courseNo relations in the semantic-model view are shown below:

source s1

t1 u1

id city
100 -
120 Greensboro

id courseNo
100 Mat444
120 Mat444

source s2

t2 u2

id City
100 Greensboro
110 Raleigh

id courseNo
100 CSC555
110 CSC555

42

Now consider the following query that lists the number of students from

Greensboro in each course.

select id-courseNo.courseNo, count(id-city.id)

from id-city, id-courseNo

where id-courseNo.id = id-city.id and

id-courseNo.city = ‘Greensboro’

group by id-courseNo.id .courseNo

We execute this query using all approaches introduced before. The material-

ization approach is the basic techniques against which other algorithms are evaluated.

We will show in our example that the answers generated by other algorithms are ex-

actly the same as the answers generated by the materialization technique. This is

an indication of the correctness of our algorithms.

A. Materialization approach

1. For each source, we enforce the condition city= ‘Greensboro’ to obtain:

source s1

t1 u1

id city
120 Greensboro

id courseNo
100 Mat444
120 Mat444

source s2

t2 u2

id City
100 Greensboro

id courseNo
100 CSC555
110 CSC555

2. Send the results in each source to the mediator.

43

3. In the mediator, tables for the same relation are unioned (combined) at

the mediator with duplicate removal. So, t1 and t2 are combined - with duplicate

removal (let’s call the result t), and u1 and u2 are combined - with duplicate removal

(let’s call the result u).

t u

id city
120 Greensboro
100 Greensboro

id courseNo
100 Mat444
120 Mat444
100 CSC555
110 CSC555

4. In the mediator, query is executed to get the final answer. That will gives

us:

course count(id)
Mat444 2
CSC555 1

B. Subqueries approach

1. Subquereis phase: Generate and execute local and inter-source subquereis.

Note that in this case the subqueries should not execute the aggregation since sources

are overlapping. This will gives us (regardless where the inter-source subqueries are

executed).

from local subquery at s1 using t1 and u1

id city courseNo
120 Greensboro Mat444

from local subquery at s2 using t2 and u2

id city courseNo
100 Greensboro CSC555

44

from inter-source subquery using t2 and u1

id city courseNo
100 Greensboro Mat444

The inter-source subquery using t1 and u2 does not generate any answers.

2. Collect and merge phase: In the mediator, we union the previous results.

id city courseNo
120 Greensboro Mat444
100 Greensboro CSC555
100 Greensboro Mat444

3. Additional processing phase: In the mediator, we apply the user query on

the previous results to get the final answer.

courseNo count(id)
Mat444 2
CSC555 1

C. Wrapper approach

1. In the wrapper approach, we will get the following relation at the mediator:

id city courseNo
100 - Mat444
120 Greensboro Mat444
100 Greensboro CSC555
110 Raleigh CSC555

2. We apply the chase for the functional dependency id→ city on the previ-

ous results and remove the duplicate tuples.

id city courseNo
100 Greensboro Mat444
120 Greensboro Mat444
100 Greensboro CSC555
110 Raleigh CSC555

45

3. apply the user query.

courseNo count(id)
Mat444 2
CSC555 1

46

CHAPTER VII

CONCLUSIONS AND FUTURE WORK

Information integration and interoperability among multiple information sources

have been active research areas for more than a decade. More recently, due to in-

creased application of XML for data representation, storage, and transmission, as

well as significant increase in the volume of available information in electronic form,

these problems have become even more significant and have received increased at-

tention.

In this thesis we considered query processing algorithms developed in the se-

mantic model approach to information integration, and extended these algorithms

for queries involving aggragation and group-by operations. These algorithms include

materialization (a centralized algorithm based on the creation of the semantic-model

view), subqueries (a distributed algorithm based on dispatching subqueries to be

executed at the information sources), and wrapper (a hybrid algorithm where in-

formation sources and the central coordinator participate in the execution of user

queries). Our emphasis has been on developing extensions to these algorithms for

the efficient processing of queries involving aggragation and group-by.

47

BIBLIOGRAPHY

[1] Dongfeng Chen, Rada Chirkova, Maxim Kormilitsin, Fereidoon Sadri, and

Timo J. Salo. Pay-as-you-go information integration: The semantic model

approach. 2007.

[2] Dongfeng Chen, Rada Chirkova, Maxim Kormilitsin, Fereidoon Sadri, and

Timo J. Salo. Query optimization in xml-based information integration. In

CIKM, 2008.

[3] Craig A. Knoblock, Steven Minton, Jose Luis Ambite, Naveen Ashish, Ion

Muslea, Andrew Philpot, and Sheila Tejada. The ariadne approach to web-

based information integration. International Journal of Cooperative Informa-

tion Systems, 10(1-2):145–169, 2001.

[4] Laks V. S. Lakshmanan and Fereidoon Sadri. Interoperability on xml data. In

The SemanticWeb - ISWC, page 146163, 2003.

[5] Maurizio Lenzerini. Data integration: A theoretical perspective. In Proceedings

of ACM Symposium on Principles of Database Systems, pages 233–246, 2002.

[6] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, Vol-

ume I. Computer Science Press, 1988.

