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Abstract: 
 
This paper presents and explains an approach for measuring technological change in the 
production of new scientific knowledge. The paper expands our previous work on this topic. Our 
approach is illustrated by using as an example new scientific journal publications from the U.S. 
National Institute of Standards and Technology. The empirical findings are consistent with the 
expectation that resource constraints will cause a breakdown in the process of creating new 
scientific knowledge and with the evidence that scientific research has been less productive in 
recent decades. 
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Article: 
 
1. Introduction 
 
In a previous issue of this journal (Link and Scott 2019), we used a version of the Solow (1957) 
method of functional decomposition to study the production of new scientific knowledge as 
proxied by new scientific publications from the U.S. National Institute of Standards and 
Technology (NIST).1 We found that 79 percent of the increase in scientific publications per unit 
of scientific personnel from 1973 through 2008 is explained by an increase in federal R&D 
capital expenditures per unit of scientific personnel. What is also interesting is that 21 percent of 
the increase in scientific publications per index unit of scientific personnel is not explained by 
the flows of new investments in R&D-based research capital per index unit of scientific 
personnel. We called the unexplained, or residual, 21 percent a measure of creativity-enhancing 
technological change. 
 

 
1 Others who have studied scientific publications are, for example as discussed in Link and Scott (2019), Adams and 
Griliches (1996) and Shelton (2008). 

https://libres.uncg.edu/ir/uncg/clist.aspx?id=815
https://doi.org/10.1080/10438599.2019.1705004
http://www.tandfonline.com/10.1080/10438599.2019.1705004
http://creativecommons.org/licenses/by-nc/4.0/


Our previous approach to the production of new scientific knowledge (i.e. new scientific 
publications) considered the knowledge output for each period as being the product of a shift 
factor for the period multiplied by a function of each period’s expenditures for research capital 
and the research labor services. Our method was to first to sweep out the effect, on each period’s 
knowledge output, of the period’s new expenditures for research capital and for research labor 
services. That swept-out effect was assumed to be the relation between the inputs and outputs 
that is the part of the production function that would remain the same from period to period if 
there were no technological change in the process of creating new scientific knowledge. Then, 
second, we measured technological change as a shift factor from one period to another. Thus, 
measured technological change in the production of new knowledge included the effect of using 
the extant research capital stock – the use of it is itself necessarily creating technological change, 
unlike the use of the capital stock to produce ordinary goods and services.2 In this paper, we take 
a second look at technological change in the production of new scientific knowledge using the 
same data as before. 
 
The approach for this second look isolates shifts in the knowledge production function after 
sweeping out the effects on knowledge production of all inputs of research capital (including the 
extant capital stock before the new capital expenditures for a period) and scientific personnel as 
we explain in Section 2. In Section 3, we briefly describe the data used to illustrate our method, 
and then in Section 4 we present the results of applying our method in which overall research 
expenditures are disaggregated into expenditures for research capital and for the services of 
scientific personnel. Section 5 presents a more parsimonious production function with 
knowledge output as a function of a single argument – namely, the stock of scientific knowledge, 
and then uses our data to estimate the function and the findings for the rate of technological 
change in the process of creating new science. Finally, in Section 6, we conclude the paper by 
emphasizing the importance of measuring the technological change for the production of new 
knowledge. 
 
2. Technological change in the production of new scientific knowledge 
 
Let new scientific knowledge output, Q, be a function of the inputs of research capital stock, K, 
and scientific labor services, L, with the function, given neutral technological change, 
being Q = A(t)f(K, L).3 In this context, technological change is measured as a shift in the 
production function, with the shift factor A(t) increasing with technological change that increases 

 
2 In the production of new science, scientific physical capital – the equipment, instruments and facilities – is used to 
innovate, to create new science, or more generally new knowledge, and hence the existing stock of physical capital 
is used to create technological change in science and technology. For example, a microscope in a laboratory that is 
engaged in producing new science is part of the stock of scientific physical capital. In Link and Scott (2019), the 
output, new knowledge, from the microscope’s use in the process of scientific discovery is itself a measure of 
technological change for the knowledge production function after sweeping out the relationship between output and 
the new inputs of research capital and scientific labor services in each period. In contrast, in the production of 
ordinary goods and services, the use of the stock of physical production capital to produce output need not be 
accompanied by technological change. Applying labor services with the physical production capital may simply give 
us more of the goods and services associated with the production process and do so just as it has done in the 
preceding period, yielding more automobiles or more rubbish removal for example, with the inputs providing more 
of the same goods or services and without any technological change. 
3 We follow Solow’s (1957) assumption of neutral technological change, although other scholars have shown 
instances in which technological change is in fact biased (e.g., Antonelli and Quatraro 2010, 2014). 



the output from the inputs. This formulation is analogous to the one in the seminal use of the 
aggregate production function to measure technological change in Solow (1957). Research 
expenditures, R+, in the current period, are in part for new scientific research capital, K+, and in 
part for the scientific labor services, L. 
 
Using the ‘dot’ notation for time derivatives, observe that  
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𝑄𝑄

=
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𝐾𝐾

+ 𝑠𝑠𝐿𝐿
�̇�𝐿
𝐿𝐿
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where 𝑠𝑠𝐾𝐾 and 𝑠𝑠𝐿𝐿 are respectively the elasticity of research output with respect to research capital 
stock and the elasticity of research output with respect to scientific labor services.4 Thus, 
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and 
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Rearranging (1), we have 
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Then, following Terleckyj (1974), substitute for 𝑠𝑠𝐾𝐾 using (2), to have 
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Finally, assuming that for a good approximation we can ignore the depreciation in the research 
capital stock, we can use the observed flow of new research capital expenditures, K+, as the 
value for �̇�𝐾. To estimate the rate, �̇�𝐴 𝐴𝐴⁄ , of technological change in the production function for 
new knowledge, we use the estimated intercept from the estimation of the equation 
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(6) 

 
3. Description of the data 
 

 
4 The elasticities would also be shares in the value of output assuming that the factors’ prices equaled their marginal 
products. 



To estimate Equation (6), we use the NIST data published in Link and Scott (2019) in order to be 
able to compare the results for the two different approaches to measuring technological change in 
the production of new scientific knowledge.5, 6 We continue to view new scientific publications 
as a measure of the laboratory’s new scientific knowledge output. See column (1) in Table 1.7  
 
Table 1. Data for Estimation of Equation (6) for Scientific Publications. 

Year 

(1) 
Number 

NIST 
Scientific 

Publications
 Q 

(2) 
�̇�𝑸 𝑸𝑸⁄  

(3) 
Intramural 

R&D 
($2015, 
000s) 

(4) 
Scientific 
Personnel 

Costs 
($2015, 
000s) L 

(5) 
Research 
Capital 
Costs 

($2015, 
000s) 

K+ 
(6) 

K+/Q 

(7) 
Scientific 

Personnel’s 
Relative 

Share 
𝒔𝒔𝑳𝑳 

(8) 
�̇�𝑳 𝑳𝑳⁄  

(9) 
dNIST 

1973 417 .2398082 147267 104306 42961 103.024 .7083 .0257799 0 
1974 517 −.098646 148257 106995 41263 79.81238 .7217 −.0100659 0 
1975 466 −.0193133 146277 105918 40359 86.6073 .7241 .106337 0 
1976 457 .0787746 154474 117181 37293 81.60394 .7586 .0013227 0 
1977 493 .020284 161743 117336 44407 90.07505 .7254 −.0056419 0 
1978 503 −.0218688 159157 116674 42483 84.45924 .7331 .0343178 0 
1979 492 .1300813 167397 120678 46719 94.95731 .7209 .0506638 0 
1980 556 .1672662 176443 126792 49652 89.30215 .7186 .0050398 0 
1981 649 .0616333 175590 127431 48159 74.20493 .7257 −.0170367 0 
1982 689 .1044993 177380 125260 52120 75.64587 .7062 .0094603 0 
1983 761 −.4086728 182639 126445 56194 73.84232 .6923 −.0018111 0 
1984 450 .6733333 178873 126216 52657 117.0156 .7056 −.0198073 0 
1985 753 .0584329 181975 123716 58259 77.36919 .6799 −.0064745 0 
1986 797 .0803011 179033 122915 56118 70.41154 .6866 −.0257902 0 
1987 861 −.0162602 170463 119745 50718 58.90592 .7025 .0218715 0 
1988 847 .0011806 182056 122364 59692 70.47462 .6721 .0021248 1 
1989 848 −.067217 183611 122624 60987 71.91863 .6678 .0302388 1 
1990 791 .1340076 187114 126332 60782 76.84197 .6752 .0765048 1 
1991 897 −.1204013 197142 135997 61145 68.16611 .6898 .0486481 1 
1992 789 .1064639 207196 142613 64583 81.85425 .6883 .1141972 1 
1993 873 .0687285 229642 158899 70743 81.03436 .6919 .1279555 1 
1994 933 .0203644 271415 179231 92184 98.80386 .6604 .0304579 1 

 
5 The National Institute of Standards and Technology (NIST) is the U.S. federal laboratory responsible for the 
advancement of measurement science, standards, and new technology in order to promote innovation and industrial 
competitiveness in ways that enhance economic security and improve our quality of life. 
See, https://www.nist.gov/about-nist/our-organization/mission-vision-values. For an historical overview of NIST, 
see Link (2019) and Link and Scott (2019). 
6 The Technology Partnerships Office at NIST is responsible for the summary report to the President and the 
Congress on annual technology transfers from federal laboratories. Although the information is not part of the 
official reports, NIST has collected data on scientific publications that have appeared as articles in peer-reviewed 
journals. The Office provided those data by fiscal year of publication. We thank Dr. Gary Anderson, then Senior 
Economist within the Technology Partnerships Office, for graciously sharing these data. 
7 Data on scientific publications were provided from 1973 through 2015. As in Link and Scott (2019), we use the 
data through 2008. In 2009 and 2010, NIST received funding through the American Recovery and Reinvestment Act 
of 2009 (ARRA). Thus, post-2008 R&D data and perhaps post-2008 scientific publication data might not be 
comparable to pre-Great Recession measures. 

https://www.nist.gov/about-nist/our-organization/mission-vision-values


Year 

(1) 
Number 

NIST 
Scientific 

Publications
 Q 

(2) 
�̇�𝑸 𝑸𝑸⁄  

(3) 
Intramural 

R&D 
($2015, 
000s) 

(4) 
Scientific 
Personnel 

Costs 
($2015, 
000s) L 

(5) 
Research 
Capital 
Costs 

($2015, 
000s) 

K+ 
(6) 

K+/Q 

(7) 
Scientific 

Personnel’s 
Relative 

Share 
𝒔𝒔𝑳𝑳 

(8) 
�̇�𝑳 𝑳𝑳⁄  

(9) 
dNIST 

1995 952 .0231092 307575 184690 122886 129.0819 .6005 .0564676 1 
1996 974 .0020534 304320 195119 109201 112.116 .6412 .0166821 1 
1997 976 .0522541 312584 198374 114210 117.0184 .6346 .0280228 1 
1998 1027 .0632911 314619 203933 110687 107.777 .6482 .0343152 1 
1999 1092 .0815018 317905 210931 106974 97.96154 .6635 −.0353481 1 
2000 1181 −.1168501 309428 203475 105953 89.71465 .6576 .0255068 1 
2001 1043 .029722 343094 208665 134429 128.8869 .6082 .0411521 1 
2002 1074 −.0083799 352096 217252 134844 125.5531 .617 −.0135097 1 
2003 1065 .1370892 369088 214317 154771 145.3249 .5807 .073312 1 
2004 1211 −.0495458 328160 230029 98131 81.03303 .701 −.0237101 1 
2005 1151 .0451781 354188 224575 129612 112.6082 .6341 −.0316776 1 
2006 1203 −.0074813 351564 217461 134103 111.4738 .6186 .0443206 1 
2007 1194 .0343384 388379 227099 161280 135.0754 .5847 .0313167 1 
2008 1235 0 380177 234211 145966 118.1911 .6161 .0700223 1 
2009 1235 

  
250611 

     

Notes: All data pertain to fiscal years. 
Nominal data for (3), (4), and (5) are from NIST; data are converted to $2015 using the GDP deflator. 
 
The R&D data provided by NIST separates the total intramural R&D into scientific personal 
costs and the remaining non-scientific personnel or research capital costs (see columns (3), (4), 
and (5) of Table 1). As shown in Table 1, on average for the years we observe, about two-thirds 
of total intramural R&D has been allocated to scientific personnel each year. In our most 
parsimonious model, we use labor’s share of intramural R&D as an approximation for 𝑠𝑠𝐿𝐿, the 
elasticity of output with respect to scientific labor services, although we can and do estimate the 
unconstrained model and obtain similar results.8 The variable dNIST is a qualitative variable that 
is 0 during the years before 1988 when the federal laboratory that became NIST in 1988 was 
organized as the National Bureau of Standards (NBS); starting in 1988 when the Bureau was 
reorganized and renamed as NIST, dNIST = 1. 
 

 
8 Note that our approach does not require an estimate of the research capital stock or an assumption about the 
elasticity of output with respect to that stock. In contrast, the approach in Link and Scott (2019), while not requiring 
an estimate of the research capital stock, uses the shares of capital and labor in current research expenditures as an 
approximation of the elasticity of output with respect to those expenditures. One anonymous referee observes that 
while for the formulation in Equation (6) we have assumed that labor’s share equals the elasticity of output with 
respect to labor, in principle the elasticity could be estimated as a part of the model. That approach would have the 
advantage of not imposing constant returns to scale on the production function. With our small sample size (an issue 
other researchers may also confront) in order to conserve degrees of freedom, we estimate Equation (6) and avoid 
estimating the extra parameter. In the Appendix, we also present the unconstrained model, with the rate of growth in 
labor on the right-hand side and with the elasticity of output with respect to labor estimated rather than assumed to 
equal labor’s share. As shown in the Appendix, despite the small sample, we are able to estimate the unconstrained 
version of the model. 



Table 2 provides the descriptive statistics for the variables used in Section 4 to estimate, with 
new scientific publications as the measure of new scientific knowledge output, the model 
provided by Equation (6). 
 
Table 2. Descriptive Statistics for the Variables (n = 36) Used in the Model of Scientific 
Publications. 

Variable Mean Standard Deviation Minimum Maximum 
�̇�𝑄 𝑄𝑄⁄  0.04108 0.1522 −0.4087 0.6733 

dNIST 0.5833 .50 0 1 
K+/Q 94.95 21.98 58.91 145.3 
𝑠𝑠𝐿𝐿 0.6739 0.04554 0.5807 0.7586 
�̇�𝐿 𝐿𝐿⁄  0.02542 0.04072 −0.03535 0.1280 

 
4. Estimation of technological change in the production function for new scientific 
knowledge 
 
To estimate the annual rate of technological change for the production function for new scientific 
knowledge, we estimate the model in Equation (6), assuming that the regressors are uncorrelated 
with the error in the equation. As shown in Link and Scott (2019), the time series for the 
production function for new knowledge behaves differently in the periods before and after the 
institutional reorganization in 1988 when NBS became NIST. We therefore estimate different 
parameters for the model during the period of the NBS and for the later period after the 
reorganization. Table 3 shows the ordinary least squares (OLS) results from estimating Equation 
(6).9 The Durbin-Watson statistic and Durbin’s alternative test statistic show that first-order 
autocorrelation is not an issue. However, the test for autoregressive conditional 
heteroscedasticity (ARCH) suggests that such heteroscedasticity is present in the estimated 

 
9 Looking at the first column of Table 1, the time series of NIST’s publications behaves oddly from 1983 through 
1985. As a referee observed, the steady upward trend during the NBS era suddenly plunges from 1983 to 1984, and 
then it just as suddenly jumps in 1985 and resumes to its upward trend. We have no a priori information about why 
this happened (and the data for the publication series are correct) apart from the random error modeled, but we 
investigated the matter by including a qualitative variable that is 1 during the three years from 1983 through 1985, 
and is zero otherwise. In the Appendix, we show the model with the addition of the qualitative variable gives 
essentially the same results. 



model.10 Table 4 uses a generalized autoregressive conditional heteroscedasticity (GARCH) 
model to control for the heteroscedasticy in the model’s errors.11, 12 

 
Table 3. Ordinary Least Squares (OLS) Regression Estimation of Equation (6) for New 
Scientific Publications: Dependent Variable �̇�𝑄 𝑄𝑄⁄ − 𝑠𝑠𝐿𝐿(�̇�𝐿 𝐿𝐿⁄ ), n = 36. 
Variable Coefficient (standard error) [probability > |t|] 
dNIST 0.740 (0.227) [0.003] 
K+/Q 0.0110 (0.00227) [0.000] 
(dNIST) × (K+/Q) −0.00985 (0.00254) [0.000] 
Constant −0.859 (0.193) [0.000] 
F(3, 32) 
(probability > F) 

8.99 
(0.0002) 

R2 0.457 
Durbin-Watson d-statistic (4, 36) 2.19 
Durbin’s alternative test for autocorrelation: 
Chi-squared (1) 
(probability > chi-squared) 

 
0.662 

(0.416) 
LM test for ARCH: 
Chi-squared (1) 
(probability > chi-squared) 

 
5.36 

(0.0206) 
 
Table 4. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Estimation of 
Equation (6) for New Scientific Publications: Dependent Variable �̇�𝑄 𝑄𝑄⁄ − 𝑠𝑠𝐿𝐿(�̇�𝐿 𝐿𝐿⁄ ), n = 36. 
Variable Coefficient (standard error) [probability > |t|] 
dNIST 0.666 (0.179) [0.000] 
K+/Q 0.00929 (0.00186) [0.000] 
(dNIST) ×  (K+/Q) −0.00838 (0.00199) [0.000] 
Constant −0.760 (0.161) [0.000] 

 
10 See Greene (2012, 930–937) for a description and detailed discussion of autoregressive conditional 
heteroscedasticity. 
11 Greene (2012, 934) discusses an example where fitting a GARCH (1, 1) model as we have done accounts for a 
complicated pattern of autoregressive conditional heteroscedasticity. StataCorp (2011, 26) describes the GARCH 
model that we have estimated using Stata: Release 12, and observes, ‘Empirically, many series with conditionally 
heteroskedastic disturbances have been adequately modeled with a GARCH (1, 1) specification.’ As a practical 
matter, the effectiveness of the simple GARCH (1, 1) specification is important because it is often difficult to 
achieve convergence in the estimation of the parameters for specifications with additional lags (beyond a single 
lagged squared innovation and a single lagged variance). One anonymous referee observes that if we had a longer 
time series, we could explore longer differences (i.e., longer lags), and the other referee observes that examining the 
residuals across various specifications could uncover misspecification of the model that arguably causes the need for 
the GARCH model. With longer time series, those thoughts will be implementable. However, note in our short time 
series, the simple lag structure appears to be appropriate; and for the errors, it is appropriate not because of first-
order serial autocorrelation, but instead for the autoregressive heteroscedasticity where variance in the error at any 
time depends on the square of the single-period lagged random error in the equation and the variance in that 
preceding period’s error. 
12 We believe that our knowledge production function approach, with knowledge as the output from research inputs 
in the direct and simple way modeled, is an appropriate way to model the ‘output’ that we are examining in our 
model, although surely one could instead as an alternative model the output as a function of past output in a dynamic 
adjustment model. For the knowledge-production function as we have modeled it, we have examined the residuals in 
the models closely, plotting them through time and finding them consistent with the random errors as we have 
modeled them. 



Variable Coefficient (standard error) [probability > |t|] 
Wald chi-squared (3) 
(probability > chi-squared) 

31.4 
(0.0000) 

Notes: The standard errors for the estimated coefficients are derived from the outer product of gradients (OPG) and 
reported as OPG standard errors. See discussion in StataCorp (2011, pp. 82–83). The autoregressive conditional 
heteroscedasticity is controlled with the GARCH (1, 1) model; it estimates the error variance to be 𝜎𝜎𝑡𝑡2 = 0.00173 +
0.959𝜀𝜀𝑡𝑡−12 + 0.0652𝜎𝜎𝑡𝑡−12 . The lagged squared innovation is the most important term; its two-tailed p-value is 0.122. 
 
The estimated coefficient for the flow of new research capital per unit of output is the estimate 
for ∂Q/∂K, the annual rate of return to research capital. Using the estimates in Table 4, the 
annual rate of return to research capital is estimated to be 0.009 or 9 publications from the 
addition of $1,000,000 in research capital stock in the NBS era and 0.001 or 1 publication for 
$1,000,000 increase in the research capital stock in the NIST era. The finding of greater marginal 
productivity in the NBS era is consistent with the estimate of the rate of technological change 
using the approach in Link and Scott (2019) that incorporates returns to the extant capital stock 
in the measure of technological change. However, excluding those returns to the capital stock, 
with the approach in this paper we see just how important those returns are to the advance of 
scientific knowledge. With the approach in this paper, the estimated annual rate of change in the 
shift factor – the measure of technological change – is the estimate of  �̇�𝐴 𝐴𝐴⁄ , and that estimate is 
−0.76 or −76 percent in the NBS era, and −0.10 or −10 percent in the NIST era. The returns to 
research capital in the NBS era were higher, and so using the approach in this paper and 
removing those returns from the impact of technological change as it is measured with the 
approach in Link and Scott (2019) reduces the measured technological change by much more in 
the NBS era than in the NIST era. 
 
In the approach of Link and Scott (2019), measured technological change includes the effects 
from the use of the extant research capital stock to recognize the fact that those effects are 
necessarily technological change, as in the example of the use of a microscope in scientific 
research in note 2. Including in the production function’s annual shift factor the effects of using 
the research capital stock existing prior to the new expenditures for additions to that stock, in the 
earlier paper the annual rate of change in the shift factor was 0.0105 or 1.05 percent on average 
over the 36 years observed, averaging 0.056 or 5.6 percent in the first 15 years of the sample in 
the NBS era and −0.022 or −2.2 percent in the last 21 years covering the NIST era. In contrast, 
the present paper’s approach isolates the shift factor in the relationship between all inputs and 
their effect on the knowledge output (rather than the relationship between just the new flows of 
inputs and their effect on the output as in the earlier paper), and the result is that the annual rate 
of change in the shift factor is strongly negative. The earlier approach emphasizes that 
technological change in the creation of new science comes from using extant research capital; the 
current approach emphasizes that the process of creating new science from the research capital 
stock has required increasing amounts of scarce resources. 
 
5. New scientific knowledge as the output of a parsimonious production function of the 
stock of scientific knowledge 
 
As a check on our basic finding that there has been a strong negative shift in the knowledge 
production function, we estimate one more model. Rather than breaking down NIST’s total 
research expenditures into the expenditures for new research capital and the expenditures for 



scientific labor services, we consider the total of those expenditures in each year as adding to the 
stock of scientific knowledge and denote that stock of knowledge as R. The knowledge 
production function is Q = A(t)f(R). 
 
Using the ‘dot’ notation for time derivatives, observe that 
 

�̇�𝑄
𝑄𝑄

=
�̇�𝐴
𝐴𝐴

+ 𝑠𝑠𝑅𝑅
�̇�𝑅
𝑅𝑅

, 
(7) 

 
where 𝑠𝑠𝑅𝑅 is the elasticity of research output with respect to the stock of scientific knowledge. 
Thus, 
 

𝑠𝑠𝑅𝑅 =
𝜕𝜕𝑄𝑄
𝜕𝜕𝑅𝑅

𝑅𝑅
𝑄𝑄

. 
(8) 

 
Then, again following Terleckyj (1974), substitute for 𝑠𝑠𝑅𝑅 using (8), to have 
 

�̇�𝑄
𝑄𝑄

=
�̇�𝐴
𝐴𝐴

+
𝜕𝜕𝑄𝑄
𝜕𝜕𝑅𝑅

�̇�𝑅
𝑄𝑄

. 
(9) 

 
Assuming that for a good approximation we can ignore the depreciation in the scientific 
knowledge stock, we can use the observed flow of new research expenditures, R+, as the value 
for �̇�𝑅. To estimate the rate of technological change in the knowledge production function, �̇�𝐴 𝐴𝐴⁄ , 
we use the estimated intercept for the estimation of the equation 
 

�̇�𝑄
𝑄𝑄

=
�̇�𝐴
𝐴𝐴

+
𝜕𝜕𝑄𝑄
𝜕𝜕𝑅𝑅

𝑅𝑅+

𝑄𝑄
. 

(10) 

 
Table 5 provides the OLS estimates for Equation (10) using the NIST new scientific publications 
data for 1973 through 2008 as provided in Table 1. The test statistics show that there is no first 
order autocorrelation, but that there is autoregressive conditional heteroscedasticity. To address 
the ARCH effects a GARCH model is fitted in Table 6. 
 
Table 5. Ordinary Least Squares (OLS) Regression Estimation of Equation (10) for New 
Scientific Publications: Dependent Variable �̇�𝑄 𝑄𝑄⁄ , n = 36. 
Variable Coefficient (standard error) [probability > |t|] 
dNIST .502 (0.274)[0.076] 
R+/Q .00251 (0.000611) [0.000] 
(dNIST) × (R+/Q) −0.00185 (0.000932) [0.055] 
Constant −0.669 (0.183) [0.001] 
F(3, 32) 
(probability > F) 

6.35 
(0.0017) 

R2 0.373 
Durbin-Watson d-statistic (4, 36) 2.08 



Variable Coefficient (standard error) [probability > |t|] 
Durbin’s alternative test for autocorrelation: 
Chi-squared (1) 
(probability > chi-squared) 

 
0.172 

(0.678) 
LM test for ARCH: 
Chi-squared (1) 
(probability > chi-squared) 

 
9.70 

(0.0018) 
 
Table 6. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Estimation of 
Equation (10) for New Scientific Publications: Dependent Variable �̇�𝑄 𝑄𝑄⁄ , n = 36. 
Variable Coefficient (standard error) [probability > |t|] 
dNIST 0.588 (0.245) [0.016] 
R+/Q 0.00272 (0.000715) [0.000] 
(dNIST) × (R+/Q) −0.00199 (0.000798) [0.013] 
Constant −0.789 (0.221) [0.000] 
Wald chi-squared (3) 
(probability > chi-squared) 

19.0 
(0.0003) 

Notes: The standard errors for the estimated coefficients are derived from the outer product of gradients (OPG) and 
reported as OPG standard errors. See discussion in StataCorp (2011, pp. 82–83). The autoregressive conditional 
heteroscedasticity is controlled with the GARCH (1, 1) model; it estimates the error variance to be 𝜎𝜎𝑡𝑡2 =
0.000289 + 0.771𝜀𝜀𝑡𝑡−12 + 0.311𝜎𝜎𝑡𝑡−12 . The lagged squared innovation term has the biggest effect; its two-tailed p-
value is 0.137. The lagged variance term is also important; its two-tailed p-value is 0.090. 
 
The estimated coefficient for the flow of new research expenditures per unit of output is the 
estimate for ∂Q/∂R, the annual rate of return to the stock of scientific knowledge. Using the 
estimates in Table 6, the annual rate of return to the knowledge stock is estimated to be 0.00272 
or 27 publications from the addition of $10,000,000 in knowledge stock in the NBS era and 
0.000734 or 7.3 publications for $10,000,000 increase in the knowledge stock in the NIST era. 
The estimated annual rate of change in the shift factor – the measure of technological change – is 
the estimate of �̇�𝐴 𝐴𝐴⁄ , and that estimate is −0.789 or −78.9 percent in the NBS era, and −0.201 or 
−20.1 percent in the NIST era. The results are consistent for what we observe in the earlier 
model (6) that decomposes the research inputs into research capital and scientific labor services. 
 
6. Concluding observations 
 
The estimate of a strongly negative rate of change in the shift factor that captures technological 
change in the knowledge production function is consistent with the prediction of de Solla Price 
(1963) that there would be a breakdown in the overall process of creating new science as science 
inevitably ceases its exponential growth.13 The estimate is also consistent with the evidence, 
such as in Bloom et al. (2017), that the productivity of scientific research in the United States has 
declined in recent decades. 
 
Gordon (2016) has placed the slowdown in economic growth in the context of a richly detailed 
history that describes the growth of knowledge and implications for the growth of the U.S. 
economy from the second half of the nineteenth century into the twenty-first century. Jones 

 
13 The prediction of de Solla Price (1963) and its relation to the estimation of technological change in the knowledge 
production function are discussed in detail in Link and Scott (2019). 



(2009) observes that as knowledge has grown it takes longer for potential inventors to learn 
about the discoveries that have already been made and reach the frontier of knowledge. 
Consequently, those working with science and technology specialize and must combine their 
knowledge with the knowledge of other specialists to create new knowledge by means of 
resource-devouring teamwork. Other things being the same, the growth of knowledge and 
economic growth become more costly. To Gordon’s (2016) insightful history and Jones’ (2009) 
thoughtful analysis of the productivity-reducing implications of the burden of knowledge, we 
add cliometric evidence by estimating a knowledge generation function to provide case study 
evidence of the decline in productivity in the production of scientific and technological 
knowledge.14  
 
While productivity in the process of creating new science has declined when measured in terms 
of the increasing resource costs to achieve given amounts of output when that output is measured 
with metrics such as the number of publications, observing the outstanding examples – such as 
the CRISPR story – of progress in science, one can argue that current progress in science is very 
rapid.15 Nonetheless, although one can reasonably say that we are in a period of rapid progress in 
science even as the conventional productivity measures show a pronounced downturn, the 
productivity decline is a concern, because with the right policies substantial amounts of scarce 
resources could potentially be saved with no diminishing of the progress of science. That is 
extraordinarily important because continued exponential growth in the scarce resources devoted 
to science is clearly not possible. 
 
We have examined the evidence about the shifts in the knowledge production function for a 
federal laboratory. However, using our ‘second look’ methodology, technological change in the 
production of new knowledge could be documented for the research conducted by many 
different types of research institutions, whether federal laboratories, universities, private for-
profit firms, or various types of nonprofit research institutions. Also, the methodology could be 
applied to different measures of knowledge – for example, citation-weighted counts of 
publications, or altogether different measures such as invention disclosures. Documenting the 
changing shift factor and hence technological change in the production of new science, and then 
developing understanding of the circumstances for progress in the process of creating new 
science, could lead to new policies to strengthen the performance of research to develop science 
and technology.16 The need for such policies would seem to be urgent given this paper’s strongly 
negative estimate for the rate of change in the shift factor for the knowledge production function 

 
14 One referee observed that our knowledge production function approach clearly delineates relationships among 
measures of knowledge output, inputs of research capital and scientific labor, and the total factor productivity in the 
production of new knowledge. The referee contrasted our approach with the approach in Bloom et al. (2017) that, 
for a variety of areas of knowledge, directly compares the growth rate in knowledge output over time with the 
research effort over time. The approaches differ, but both indicate a dramatic increase in the resources used to 
achieve gains in knowledge. 
15 For the CRISPR story, see Lander (2016) and Doudna and Sternberg (2017). For the view that science is not 
slowing down, see Guzey (2019). In the context of this paper, perhaps at the same time that more scarce resources 
are needed per publication, the quality of the publications, or at least a critical set of them, is increasing. 
16 Critiques of current policy are numerous and vary greatly in their perspectives and recommendations; for 
example, see Kealey (1996) and Firestein (2016). 



– a finding that supports the view that the process of creating new scientific knowledge is in 
crisis.17  
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Appendix 1 
 
In this appendix, we show that the essential results of our estimation of Equation (6) also obtain 
with alternative specifications (1) to control for the unusual behavior of the NIST publications 
time series as publications plunged from 1983 to 1984 and then rebounded to trend in 1985, and 
then (2) to estimate the elasticity of output with respect to labor rather than imposing the 
restriction that it equals labor’s share. 
 
Table A1 corresponds to Table 3; the specification in Table A1 adds a qualitative 
variable, d838485, that equals 1 in each of the years 1983, 1984, and 1985, and is zero otherwise. 
The variable controls for the years with the unexplained plunge in publications and the rebound 
to trend. The estimates and their significance change only very slightly from the estimates 
in Table 3. 
 
Table A1. Ordinary Least Squares (OLS) Regression Estimation of Equation (6) for New 
Scientific Publications, with d838485: Dependent Variable �̇�𝑄 𝑄𝑄⁄ − 𝑠𝑠𝐿𝐿(�̇�𝐿 𝐿𝐿⁄ ), n = 36. 
Variable Coefficient (standard error) [probability > |t|] 
dNIST 0.743 (0.232) [0.003] 
K+/Q 0.0111 (0.00235) [0.000] 
(dNIST) × (K+/Q) −0.00992 (0.00262) [0.001] 
d838485 −0.0117 (0.0803) [0.885] 
Constant −0.862 (0.197) [0.000] 
F(4, 31) 
(probability > F) 

6.54 
(0.0006) 

R2 0.458 
Durbin-Watson d-statistic (5, 36) 2.15 
Durbin’s alternative test for autocorrelation: 
Chi-squared (1) 
(probability > chi-squared) 

 
0.460 

(0.498) 
LM test for ARCH: 
Chi-squared (1) 
(probability > chi-squared) 

 
6.06 

(0.0139) 
 
Table A2 corresponds to Table 4. Given the significance of the test for autoregressive 
conditional heteroscedasticity as shown in Table A1, Table A2 shows the GARCH model for the 
new specification in Table A1. There are only slight changes in the coefficients and their 
significance. 
 
Table A2. Generalized Autoregressive Conditional Heteroskedasticity (GARCH) Estimation of 
Equation (6) for New Scientific Publications, with d838485: Dependent Variable �̇�𝑄 𝑄𝑄⁄ −
𝑠𝑠𝐿𝐿(�̇�𝐿 𝐿𝐿⁄ ), n = 36. 
Variable Coefficient (standard error) [probability > |t|] 
dNIST 0.588 (0.206) [0.004] 
K+/Q 0.00849 (0.00219) [0.000] 
(dNIST) × (K+/Q) −0.00754 (0.00228) [0.001] 
d838485 −0.0682 (0.0670) [0.309] 
Constant −0.686 (0.194) [0.000] 



Variable Coefficient (standard error) [probability > |t|] 
Wald chi-squared (4) 
(probability > chi-squared) 

30.4 
(0.0000) 

Notes: The standard errors for the estimated coefficients are derived from the outer product of gradients (OPG) and 
reported as OPG standard errors. See discussion in StataCorp (2011, pp. 82–83). The autoregressive conditional 
heteroscedasticity is controlled with the GARCH (1, 1) model; it estimates the error variance to be 𝜎𝜎𝑡𝑡2 = 0.00204 +
0.974𝜀𝜀𝑡𝑡−12 + 0.00397𝜎𝜎𝑡𝑡−12 . The lagged squared innovation is the most important term; its two-tailed p-value is 
0.112. 
 
Table A3 changes the basic specification. Instead of assuming that the elasticity of output with 
respect to labor is approximated by labor’s share and estimating Equation (6), the specification 
in Table A3 estimates the elasticity by including the labor growth rate on the right-hand side of 
the estimating equation. In other words, the product of labor’s share and labor’s growth rate is 
added to both sides of Equation (6) to have a new estimating equation that regresses the rate of 
growth in output on the variables used in Table A1 plus additionally the growth rate in labor. 
Constant returns to scale is not assumed, and the elasticity of output with respect to labor is 
estimated by the unconstrained model. As before, we allow the coefficients to vary across the 
NBS era and the NIST era. The results for the previously estimated coefficients and their 
significance are very similar to what we see in the constrained model. The estimated elasticity of 
output with respect to labor is strongly negative during the NBS era when the rate of growth in 
the shift factor for the knowledge production function was strongly negative; the estimated 
elasticity is 0.57 during the NIST era (almost as large as labor’s share during that era). 
 
Table A3. Ordinary Least Squares (OLS) Regression Estimation Unconstrained Model for New 
Scientific Publications: Dependent Variable �̇�𝑄 𝑄𝑄⁄ , n = 36. 
Variable Coefficient (standard error) [probability > |t|] 
dNIST 0.801 (0.218) [0.001] 
K+/Q 0.0121 (0.00222) [0.000] 
(dNIST) × (K+/Q) −0.0111 (0.00247) [0.000] 
�̇�𝐿 𝐿𝐿⁄  −1.83 (0.958) [0.067] 
(dNIST) × (�̇�𝐿 𝐿𝐿⁄ ) 2.40 (1.12) [0.042] 
d838485 −0.0846 (0.0794) [0.295] 
Constant −0.909 (0.184) [0.000] 
F(6, 29) 
(probability > F) 

5.76 
(0.0005) 

R2 0.544 
Durbin-Watson d-statistic (7, 36) 2.29 
Durbin’s alternative test for autocorrelation: 
Chi-squared (1) 
(probability > chi-squared) 

 
1.460 

(0.227) 
LM test for ARCH: 
Chi-squared (1) 
(probability > chi-squared) 

 
2.63 

(0.105) 
Notes: The LM test for autoregressive conditional heteroscedasticity is not significant at the 10% level, although it is 
almost so. Moreover, and probably because the ARCH test is not significant, the GARCH model cannot be fitted in 
any case; the estimation of the model will not converge, and so after many iterations and alternative algorithms, 
Stata reports ‘flat log likelihood encountered, cannot find uphill direction’. 
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