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Abstract: 
 
A lack of quantitative information on cross-firm licensing agreements constrains policy makers 
in their overall understanding of the innovation process and the innovative environment of firms. 
This paper develops a methodology for understanding the patterns of technology flows that result 
through licensing agreements from readily available patent data. In addition, hypotheses about 
firms that share technology through licensing are tested; in particular, we find that diversified 
firms have a higher probability of licensing their technology. 
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Article: 
 
I. INTRODUCTION 
 
Alternative sources for acquiring technical knowledge are available to the firm, and each source 
can augment production and related activities differently. The most obvious and most frequently 
studied internal source is in-house R&D. External sources of technical knowledge are more 
varied, and may even be more important to some firms. One external source is the federal 
government. Firms involved in either contracted research or Cooperative Research and 
Development Agreements (CRADAs) can appropriate technical information from their 
involvement in research. A second external source is research universities. Firms appropriate 
technical knowledge from universities by funding participation in university-based research, or 
by transferring knowledge directly or indirectly through students or faculty consultants. A third 
source is other firms, domestic or international. New technology is embodied in capital 
equipment purchased from other firms, whether they have developed the technology or simply 
have added value to it through technical modifications. Firms can also acquire technical 
knowledge directly through mergers, or indirectly through their participation in collaborative 
research relationships or even by observing the research outputs of other firms without any 
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formal transaction signaling a technology transfer. Finally, firms can license technology from 
other firms. 
 
The economics, management, and policy literatures are replete with studies of in-house R&D 
activity. Certainly, more is known about that source of technical knowledge than about any of 
the others mentioned above. Additionally, some studies have examined the spillover effects of 
R&D done by other firms on a firm’s or industry’s productivity. Such studies have used R&D, 
patents, or purchased inputs embodying the technologies developed with R&D to measure the 
outsiders’ R&D.1 Scholarly research is also accumulating on the use of and interaction with the 
external sources, particularly on firm interactions with universities and firm participation in 
collaborative research relationships.2 However, there is a conspicuous lack of information about 
one external source in particular, namely technical knowledge obtained from other firms through 
licensing agreements.3 While a paucity a publicly- or privately-available information on private-
sector licensing agreements is likely the reason for such a dearth of information, scholars in 
general and policy makers in particular (to effectively initiate technology-based policies) need to 
understand patterns in licensing agreements as a part of their overall understanding of the 
innovation process and the innovative environment of firms. 
 
The purpose of this paper is to set forth a general methodology for understanding the patterns of 
technology flows that result through licensing agreements.4 Our methodology also provides a 
way to test hypotheses about the characteristics of firms that are most likely to use licensing to 
share technology. In Section II, we describe the methodology used to construct a database for a 
sample of licensing agreements among chemicals firms with U.S. patents. In Section III, we set 
forth a patent-based model to explain the licensing patterns observed. In Section IV, we discuss 
the relevance of our model for predicting technology flows, and we also provide new empirical 
evidence to support the hypothesis that licensing of technology and the resulting flows of 
technology will be more likely when firms are diversified. Finally, we conclude the paper with 
some summary comments in Section V. 
 
II. CONSTRUCTING A DATABASE FOR A SAMPLE OF LICENSING AGREEMENTS 
 
We relied on a number of electronic sources of information to identify existing licensing 
agreements (conducting keyword searches for “licensing” and “chemicals”) to construct a 
database on licensing agreements. These sources included ProQuest’s ABI/Inform,5 Information 
Access Company’s Business Index, and H.W. Wilson Company’s Business Periodicals Index. 
We focused on the chemicals industry for the time period of 1993 to 1997. During those years, 

 
1 See Scherer (1982a, 1982b), and more recently see Siegel (1997). 
2 See Link and Rees (1991), Hall, Link, and Scott (2000), and Hagedoorn, Link, and Vonortas (2000). 
3 What limited information there is (e.g., Bozeman and Link, 1983; Fu and Perkins, 1995) suggests that licensing 
activity as a technology acquisition strategy is more prevalent among large firms than among small firms. See 
Baldwin and Scott (1987: pp. 118–120) for a review of this literature. 
4 We have shown that effective public support of innovation should be focused on sets in industries and technology 
areas (Link and Scott 1998b, 2001). Here we show that technologies being developed and patented are useful in sets 
of industries or technology areas. We conclude that public support should be aimed not piecemeal, but at the sets of 
areas among which technology is flowing as evidenced by licensing agreements. 
5 ProQuest’s name has now changed to Bell and Howell Information and Learning. 



the electronic sources had a relatively complete coverage of the industry’s activities, and 
licensing of technology appeared to be an important activity. 
 
The licensing agreements for chemicals technology identified for this study are listed in Table I.6 
An inspection of the table shows that there are 43 parent firms. Defining for the purpose of this 
study these 43 parent firms as the relevant population of firms licensing chemicals technology,7 
there are 1806 pairs of potential licensees and licensors.8 A further inspection of Table I shows 
that 39 of the possible 1806 pairs are identified as having licensing agreements during the sample 
period, where only the presence, as opposed to the frequency, of the relationship is important for 
our analysis below.9 
 
Table I. Licensing agreements among chemicals firms10 (listed alphabetically by licensee) 
Licensee Licensor Licensed technology 
Allied Signal Inc. Bayer AG Non-ozone-depleting foam blowing 

agents 
Allied Signal Inc. DuPont R-404A refrigerant 
Asahi Chemical Dow Chemical Co. Insite technology 
Boehringer Mannheim Corp.11 Hoffmann-La Roche & Co. (Roche 

Group) 
Taq DNA polymerase, thermostable 
enzymes 

Borealis Exxon Chemical (Exxon) Metallocene catalysts 
BP Chemicals Inc. (British 
Petroleum) 

Dow Chemical Co. Insite singlesite catalyst technology 

 
6 Throughtout our sample, a ‘‘parent’’ is, as best we can achieve, a well-defined entity owning the patents on the 
licensed technology and making its licensing decisions largely autonomously. As a practical as well as theoretical 
matter, we work with parent data when dealing with companies that have subsidiaries, but not necessarily the 
ultimate parent for two reasons. First, in some cases, a well-defined company has U.S. patents and is in the CHI 
Research database—used extensively in this study as noted throughout the paper—but its ultimate parent does not, 
apart from the patents of its subsidiary, have patents in the CHI Research database. Second, in some other cases, the 
subsidiary (such as a U.S. subsidiary of a foreign firm) is a largely autonomous unit covering a highly diversified, 
conglomerate, ultimate parent’s activity in the given technology area. We want to consider the parent company 
operating as an integrated and autonomous company with regard to decisions about technology development, and 
thus, to see the patent portfolio of a well-defined whole company in terms of the potential relationships among its 
patents and those of other well-defined companies operating in the specified technology areas. Formally, a license 
might go to or from a subsidiary, but the technology behind the license might reside elsewhere in the company. 
Thus, we consider parent companies that have patents in the CHI Research U.S. patent database that includes firms 
actively patenting in the United States. As a practical matter, the observation of a ‘‘parent’’ company is not always 
perfectly ‘‘clean’’, although we have endeavored to make our choices as sensible as possible. Development of a 
formal protocol for treating the choice of appropriate ‘‘parent’’ companies is one important issue that could usefully 
be addressed if policy makers implement the methodology suggested herein. Caveats aside, the information in Table 
I, as an empirical effort to identify licensing agreements, is unique; indeed such systematic compilations of licensing 
activity are rare. See Arora’s (1997) important initial effort to examine licensing data. 
7 We realize that not all licensing agreements in the chemicals area have been identified but rather only those 
announced in the business news for which the firms involved have U.S. patent data in the CHI Research database, 
and additionally, probably only those in the database that involve larger firms. 
8 For 43 firms, there are 43×42 permutations (pairs of firms where order matters) of a licensee/licensor relationship. 
9 A supplemental data appendix on these firms is available from the authors. 
10 These agreements come from identified articles published from 1993 through 1997. 
11 Subsequent to the licensing agreements (after the period of our sample) shown in this table, mergers have changed 
the relationships among the parent firms in the table. For one example, Boehringer Mannheim merged with the 
Roche Group. 



Licensee Licensor Licensed technology 
Cerestar Benelux BV Dow Chemical Company’s Gas/Spec 

Technology Group 
Shell SulFerox process 

Chevron Chemical (Chevron) BP Chemicals Inc. (British 
Petroleum) 

Innovene technology 

Chevron Chemical (Chevron) Institut Francais du Petrole (IFP) Eluxyl 
Ciba Additives (Ciba-Geigy) Mead Corporation Borate photoinitiator 
Daelim Industrial Himont Spherilene polyethylene 
Dow Chemical Company (licensee 
and licensor) 

BP Chemicals Inc. (British 
Pertoleum) (licensor and licensee) 

BP’s Innovene gas phase PE process. 
Dow’s Insite metallocene catalyst 
technology. 

Dow Chemical Company Montell Polyolefins Spheripol process technology 
DSM Fine Chemicals (DSM NV) Amoco Corp Amoco/Chisso PP manufacturing 

technology 
DSM Fine Chemicals (DSM NV) BP Chemicals Inc. (British 

Petroleum) 
Innovene technology 

DSM Fine Chemicals (DSM NV) BP Chemicals Inc. (British 
Petroleum) 

Gas-phase polyethylene 

DSM Fine Chemicals (DSM NV) Univation Technologies (a joint 
venture between Exxon Chemical 
Company and Union Carbide Corp.) 

Unipol technology 

DuPont Allied Signal Inc. Genetron AZ-20(R-410a) refrigerant 
Elf Atochem (Elf Atochem North 
America Inc. and also the parent—Elf 
Atochem—in France.) 

DuPont A refrigerant, Suva HP62 (ASHRAE 
designation R-404A) 

Eni Chem (ENI) BP Chemicals Inc. (British 
Petroleum) 

Gas-phase, fluid-bed polyethylene 

Exxon Chemical Company (Exxon) Union Carbide Cross-licensing embodied in joint 
venture.12 Union Carbide’s Unipol 
gas-phase process and Exxon’s 
metallocene technology 

Fina Inc. (Petrofina) Phillips Petroleum Co. Loop reactor technology 
Formosa Plastics BP Chemicals Inc. (British 

Petroleum) 
Innovene technology 

Indian Petrochemicals Corp. Ltd. 
(IPCL) 

BP Chemicals Inc. (British 
Petroleum) 

Fluid-bed acrylonitrile process 

Indian Petrochemicals Corp. Ltd. 
(IPCL) 

BP Chemicals Inc. (British 
Petroleum) 

Innovene technology 

Institut Francais du Petrole (IFP) Mobil Chemical Processes for para-xylene production 
Ipiranga Quimica Montell Polyolefins Spherilene gas-phase technology 
Lyondell Petrochemical Co. Nissan Chemical Industries Ltd. Slurry high-density polyethylene 

(HDPE) technology 
Maruzen Polymer (Maruzen Co. Ltd.) Nissan Chemical Industries Ltd. Slurry high-density polyethylene 

(HDPE) technology 
Mitsui Chemical Exxon Gas-phase metallocene technology 
Montell Polyolefins Dow Chemical Company Rights to use Dow’s Insite 

metallocene catalysts in Montell’s 
Spheripol process technology 

 
12 Univation Technologies, a joint venture between Exxon Chemical Company and Union Carbide Corp. 



Licensee Licensor Licensed technology 
Morton International Inc. Firmenich SA Chemical synthesis and purification 

process 
Phillips Petroleum Company Chevron Chemical Company 

(Chevron) 
Aromax catalytic reforming process 

Quantum Chemicals (Millennium) BP Chemicals Inc. Innovene technology 
Rexene (now named Huntsman 
Polymers Corp.) 

DSM Fine Chemicals (DSM NV) Solution phase technology 

Sipsy SA Arco Chemical Company (Arco) Production technology for chiral 
glycidols and epoxides 

Sumitomo Chemical Exxon Gas-phase metallocene technology 
Tebodin BV Hoechst AG Catalytic scrubbing process 
Texas Eastman (Eastman Chemical) BP Chemicals Inc. (British 

Petroleum) 
Innovene technology 

Union Carbide Corporation Exxon Chemical Company (Exxon) Cross-licensing embodied in joint 
ventures (see footnote earlier). Union 
Carbide’s Unipol gas-phase process 
and Exxon’s metallocene technology 

 
III. THE ANALYTICAL FRAMEWORK 
 
A. Simple Patent-Based Probability Model of Licensing Agreements 
 
Our patent-based model of licensing agreements specifies that, within a defined population 
of n firms, the probability of observing a licensing agreement between firm i and firm j, 
where firm i is the licensee and firm j is the licensor, can be predicted on the basis of 
the technology characteristics of firm i and firm j. Thus, our model is represented as: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃�𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖𝑖𝑖� = 𝐹𝐹�𝐗𝐗𝑖𝑖𝑖𝑖� (1) 
 
where Xij is a vector of technological characteristics of the i-j pair of firms. Licensing 
agreements could be predicted if the technological characteristics—innovation strategy and 
funding, technological competitiveness, ability to use other firm’s licensable technology—were 
known.13 Such characteristics are not readily observable, although possibly discernable through 
extensive firm surveys and interviews (but to our knowledge no significant systematic attempt 
has been made). One could argue that in a competitive environment all such characteristics are 
determined by a fundamental set of technology characteristics that could be captured by a set of 
variables about the patent portfolios of the potential licensor and licensee. However, our 
objective in this paper is to demonstrate a methodology for explaining observed licensing 
agreements; prerequisite to the usefulness of the model for predicting such technology flows is 
that the elements of Xij be readily observable whether or not those characteristics are primary 
determinants of licensing activity. 
 
We use readily available information about each firm’s patenting portfolio to create a set of 
instruments to represent the technological characteristics of each of the i-j pairs of firms. For 

 
13 One can view licensing activity as a form of technology adoption. See Siegel (1999) for a review of the literature 
on the determinants of technology adoption. 



each chemicals firm, we began by constructing three patent-based variables to capture in the 
most parsimonious way the complementarity in the patent portfolios of a pair of firms. These 
variables, our simplest set of instruments of Xij, are defined in Table II and are relevant for what 
we call the simple patent-based probability model of licensing agreements.14 
 
Table II. Explanatory variables in the simple patent-based model of licensing agreements 
Variable Definition 
dnthrcit Dummy variable = 1 if neither the potential licensor nor the potential licensee has citations to the 

other’s patents, and 0 otherwise 
dbothcit Dummy variable = 1 if both the potential licensor and the potential licensee cite the other’s patents, 

and 0 otherwise 
donecit Dummy variable = 1 when just one of the firms cites the other (thus, when either “the potential 

licensor cites the potential licensee while the potential licensee does not cite the potential licensor” or 
“the potential licensee cites the potential licensor while the potential licensor does not cite the 
potential licensee”), and 0 otherwise 

 
We, of course, do not observe the underlying indicator variable (a linear combination of the 
instruments plus random error) that determines the probability in Eq. (1). Instead, we observe 
dlic, a dichotomous variable equaling 1 if there is an observed licensing agreement with a 
potential licensee as the observed licensee and a potential licensor as the observed licensor, and 0 
otherwise. For the licensing agreements listed in Table I, dlic equals 1 in 39 of 1806 cases. Also 
included in Eq. (1) with the explanatory variables described in Table II are binary variables to 
account for the fact that within the chemicals technology area licensed technology could flow 
from one area segment or industry to another. Thus, a more complete specification of the simple 
model would control for the industries in the chemicals technology area that are occupied by a 
potential licensee or licensor.15 Table III describes the industries considered.16 
 
B. Statistical Results from the Simple Patent-Based Probability Models 
 
Equation (1) was estimated as a probit model.17 Included in the specification are the explanatory 
variables listed in Table II along with the industry controls described in Table III.18 

 
14 Values for the explanatory variables described in Table II came from patent information provided in the CHI 
Research database (CHI Research, 1996). 
15 We observe licensing between firms; yet our ultimate specifications will allow estimation of probabilities that 
licensed technology flows from one industry segment to another. Many firms are diversified, purposively combining 
complementary lines of business (Scott and Pascoe, 1987; Scott, 1993). Thus, when the firm as a whole is 
considered, as it is with licensing arrangements between whole firms with their patent portfolio data, the firm’s lines 
of business may span much of the broad technological areas under consideration. Our ultimate model allows the 
identification of the probabilities of agreements across the various areas spanned by the firms. 
16 We constructed each variable by studying product category information from each firm’s home page on the World 
Wide Web, as well as from various corporate directories available on Lexis/Nexis. 
17 Because there were only occasional instances where firm i licensed more than once from firm j, we did not 
consider either a count model or a multinominal probit model. We assume that the occurrence of licensing is 
completely determined by the systematic part of the model (the inner product of the unobserved parameters and the 
variables—an inner product estimated by the probit index using the maximum likelihood estimates of the 
unobserved parameters) and purely random error, and hence given that complete model, we have a sample of n(n–1) 
statistically independent probabilities of licensing agreements. See Maddala (1983: p. 22). 
18 Absent from this specification are such variables as firm size and firm expenditures on R&D. We view such 
variables as endogenous to be determined by the underlying patent portfolios reflecting the information and 
technology base. 



 
Table III. Industry controls for the firms licensing chemicals technology 
Variable Definition 
dgensor and dgensee Dummy variable = 1 for operations in general chemicals or intermediate or specialty 

chemicals n. e. c., 0 otherwise, with sor and see denoting potential licensor and potential 
licensee respectively 

dpetsor and dpetsee Dummy variable = 1 for operations in petroleum and petrochemicals, 0 otherwise, with sor 
and see denoting potential licensor and potential licensee respectively 

dphasor and dphasee Dummy variable = 1 for operations in pharmaceuticals, 0 otherwise, with sor and see 
denoting potential licensor and potential licensee respectively 

dplasor and dplasee Dummy variable = 1 for operations in plastics, 0 otherwise, with sor and see denoting 
potential licensor and potential licensee respectively 

dfibsor and dfibsee Dummy variable = 1 for operations in fibers, 0 otherwise, with sor and see denoting 
potential licensor and potential licensee respectively 

dagrsor and dagrsee Dummy variable = 1 for operations in agricultural chemicals, 0 otherwise, with sor and see 
denoting potential licensor and potential licensee respectively 

 
Table IV. Probit estimates: probability of a licensing agreement between firms licensing 
chemicals technology 
Variable Coefficient (standard error in parentheses) 
donecit 0.209 (0.212) 
dbothcit 0.419** (0.172) 
dpetsor 0.170 (0.149) 
dpetsee –0.017 (0.154) 
dphasor –0.306 (0.210) 
dphasee –0.173 (0.193) 
dplasor 0.268*** (0.155) 
dplasee 0.062 (0.157) 
dfibsor –0.269 (0.224) 
dfibsee 0.028 (0.217) 
dagrsor 0.548* (0.160) 
dagrsee 0.108 (0.169) 
constant –2.540* (0.198) 
𝜒𝜒122  24.14** 
Log likelihood –176.08 
Pseudo R2 0.064 
n 1806 
* Significant at the 0.01-level. 
** Significant at the 0.05-level. 
*** Significant at the 0.10-level. 
Note: dgensor and dgensee are absorbed in the intercept; thus, the constant term reflects the impact on the probit 
index of having both the potential licensor and the potential licensee in general chemicals. Further, dnthrcit is 
omitted and its effect is in the intercept; thus, the constant term reflects the case where both firms in the pair are in 
general chemicals and neither cites the other’s patents. 
 
The probit estimates are in Table IV. Controlling for the product location of the firm’s 
operations, the probability of a licensing agreement increases with the extent of the cross-
citations of the patents between the potential licensor and the potential licensee. The probability 
of a licensing agreement is least when neither of the firms in the pair cites the other’s patents; it 



is greater when one but not both cites the other’s patents; and it is greatest when both firms cite 
the patents of the other. We believe that the basic fact of complementarities in the technologies 
used by a pair of firms, as indicated by their cross-citations in their patent portfolios, is only a 
part of the explanation for why the linkages between the patent portfolios of firms are associated 
with the probability of licensing agreements. The fact that the potential licensor and potential 
licensee are actually doing R&D and establishing patent portfolios makes them better able to 
appropriate returns from the related technologies developed by others. As Cohen and Levinthal 
(1989: p. 569) have explained, “R&D not only generates new information, but also enhances the 
firm’s ability to assimilate and exploit existing information.” 
 
C. Expanded Patent-Based Probability Model of Licensing Agreements 
 
While the simple probability model demonstrates that the probability of a licensing agreement 
increases with the extent of the complementarities in the patent portfolios of the potential 
licensor and potential licensee, its usefulness for describing flows of technologies by means of 
licensing agreements is limited as indicated by the relatively low pseudo R2 value reported in 
Table IV. Accordingly, an expanded patent-based probability model was estimated using the 
additional variables defined in Table V. 
 
Table V. Explanatory variables in the expanded patent-based model of licensing agreements 
Variable Definition 
tosorcit ‘‘Inbound citations (hence outbound technology flow) for potential licensor’’: total citations 

from 1990 through 1996 for the cited patents of the potential licensor that were issued from 
1975 through 1996 

toseecit ‘‘Inbound citations (hence outbound technology flow) for potential licensee’’: total citations 
from 1990 through 1996 for the cited patents of the potential licensee that were issued from 
1975 through 1996 

sorcitot ‘‘Outbound citations (hence inbound technology flow) for potential licensor’’: the potential 
licensor’s total citations (1990–1996) of the patents (issued from 1975 through 1996) of the 
firms in our sample (including its citations of its own patents) 

seecitot ‘‘Outbound citations (hence inbound technology flow) for potential licensee’’: the potential 
licensee’s total citations (1990–1996) of the patents (issued from 1975 through 1996) of the 
firms in our sample (including its citations of its own patents) 

secitsor Potential licensee’s citations (1990–1996) of the potential licensor’s patents (issued 1975–
1996) 

sorcitse Potential licensor’s citations (1990–1996) of the potential licensee’s patents (issued 1975–
1996) 

dcitsee Dummy variable = 1 if the potential licensor cites the potential licensee’s patents 
dcitsor Dummy variable = 1 if the potential licensee cites the potential licensor’s patents 
sornopat Number of regular utility U.S. patents granted to the potential licensor, 1990–1996 
seenopat Number of regular utility U.S. patents granted to the potential licensee, 1990–1996 
sorcil Science linkage for potential licensor, 1990–1996: CHI Research’s TECH-LINE indicator of 

how close a company’s patents are to the scientific research base: science linkage is the 
average number of ‘‘other references cited’’ on the front pages of a set of U.S. patents, 
which are to the scientific literature, such as journal papers and scientific meetings. 
References to books, reports, and other non-scientific literature sources are excluded. (CHI 
Research, 1996) 

seescil Science linkage for potential licensee, 1990–1996 



Variable Definition 
sortcit Technology cycle time for potential licensor, 1990–1996: technology cycle time is defined 

as the median age in years of the earlier U.S. patents referenced on the front page of a U.S. 
patent. Technology cycle time is the time that has elapsed between the current patents and 
the previous generation of patents. (CHI Research, 1996) 

seetct Technology cycle time for potential licensee, 1990–1996 
sorpgppi and seepgppi 
for i = 1 to 30 

The percentage of the potential licensor’s or potential licensee’s patents in each of 30 SIC 
product groups. (CHI Research, 1996) 

 
First, a limited expanded model, without the 30 product-group patent-percentage variables but 
including just the other patent variables and the industry location controls, was estimated for the 
entire sample of 1806 observations of potential licensors and potential licensees. Second, a 
similar model, adding to the first model the variable for technology cycle time, was estimated for 
a subset (n=1560) of the potential-licensor-licensee-pair observations for which the variable for 
technology cycle time was available. Finally third, the product-group patent-percentage variables 
are added to the first two models for full model estimations that provide whole models with 
excellent explanatory ability for the occurrence of a licensing agreement. 
 
Table VI shows the estimated probit model for the full 1806 observation sample of potential 
licensing pairs, but without the variables to control for the potential licensor’s and potential 
licensee’s percentages of patents in each of the 30 SIC product groups into which CHI Research 
categorizes patents. Table VII reports the results from a reestimation of the model adding the 
technology cycle time for the potential licensor and the potential licensee. Although the cycle 
time variables are not themselves significant, the model performs better in the sense that it is 
even more significant statistically.19 Our interpretative conclusions from Tables VI and VII, 
highlighting the relationships that have probit index coefficients greater than their standard errors 
in either or both specifications, are that, ceteris paribus, the probability of a licensing agreement: 
 

• increases with the inbound citations (outbound technology flows) for both the potential 
licensor and the potential licensee; firms with patented technology that is useful to other 
firms are more likely to have licensing agreements. 

• increases with the potential licensee’s citations of the potential licensor; the citations 
signal the relevance of the potential licensor’s technology for the technology of the 
potential licensee. 

• includes a separable positive, constant eect given the presence of the potential licensee’s 
citations of the potential licensor; further evidence that citations signal the relevance of 
the potential licensor’s technology for the potential licensee. 

• decreases with the licensee’s outbound citations (inbound technology flows); the 
probability of an agreement decreases as the potential licensee’s dependence on the 
potential licensor decreases as measured by the proportion of the potential licensee’s 
citations that are to the patents of the potential licensor.20 

 
19 The subsample with complete technology cycle times is, by the definition of the technology cycle variable in 
Table V, a set of firms dealing with technologies with well-defined previous generations of patents. 
20 Estimating the model using proportions tells the same descriptive story directly. The model here (using the levels 
of all variables rather than their proportions) incorporates the proportions discussed and others implicitly in the 
ceteris paribus approach and does not sacrifice the observations for which the proportions would not be defined 
because the denominator of the proportion would be zero. 



• decreases as the number of patents of the potential licensor increases; the technology of 
interest to the potential licensee (in a subset of the potential licensor’s patents) is a less 
prominent part of the potential licensor’s patent portfolio and less likely to receive the 
potential licensor’s corporate resources for licensing the technology. 

• decreases as the number of patents of the potential licensee increases; the potential 
licensee is less dependent on the technology of others in such cases.  

• increases as the science linkage for the potential licensor increases; such patents are 
especially likely to have useful technology to transfer to other firms. 

• decreases as the science linkage for the potential licensee increases; the potential licensee 
will be less dependent on others for technology. 

• includes significant effects of several variables for industry location (chemicals firms are 
typically diversified into several of these industries); industry affects the likelihood of 
technology transferable through licensing agreements. 

 
Tables VIII and IX show the results from an expansion of the two previous models by 
controlling for the distribution of the patents of the potential licensor, and for the potential 
licensee, across 30 SIC product-group categories.21 The models are, as a whole, significant, and 
they provide excellent explanations of the probability of a licensing agreement (certainly there 
are too many variables in these models to estimate individual coefficients with precision). Thus, 
these large models estimate exceptionally well the collective effect of the variables on the probit 
index; hence we use them to provide probabilities of licensing as new technology indicators of 
the diffusion of technology through licensing based on probabilities fitted from readily available 
patent data.22 From the probit model in Table VIII, we derive the probit index for each of the 
1806 observations. 
 
Table VI. Probit estimates: probability of a licensing agreement between firms licensing 
chemicals technology, full sample without patent percentages 
Variable Coefficient (standard error in parentheses) 
tosorcit 0.000072 (0.000052) 
toseecit 0.000083*** (0.000051) 
secitsor 0.0021 (0.0015) 
sorcitse –0.00012 (0.0015) 
sorcitot 0.0000076 (0.000062) 
seecitot –0.00010 (0.000084) 
dcitsee –0.145 (0.213) 
dcitsor 0.370*** (0.216) 
sornopat –0.00038 (0.00047) 
seenopat –0.00056 (0.00043) 
sorscil 0.248* (0.092) 
seescil –0.170 (0.135) 
dpetsor 0.0083 (0.183) 

 
21 These categories are defined in CHI Research (1996). 
22 We use fitted probabilities from the large model to describe the historical probability of specified technology 
flows through licensing agreements. Our smaller models, for which the coefficients on the explanatory variables are 
well estimated, could be used to forecast probabilities of an agreement, or to predict such probabilities for various 
combinations of characteristics of hypothetical potential licensors and licensees. 



Variable Coefficient (standard error in parentheses) 
dpetsee 0.057 (0.175) 
dphasor –1.349* (0.419) 
dphasee 0.114 (0.231) 
dplasor 0.408** (0.185) 
dplasee 0.064 (0.183) 
dfibsor –0.731** (0.375) 
dfibsee 0.131 (0.264) 
dagrsor 0.926* (0.203) 
dagrsee 0.219 (0.185) 
constant –2.869* (0.267) 
𝜒𝜒222  65.48* 
Log likelihood –155.41 
Pseudo R2 0.174 
n 1806 
* Significant at the 0.01-level. 
** Significant at the 0.05-level. 
*** Significant at the 0.10-level. 
Note: dgensor and dgensee are absorbed in the intercept; thus, the constant term reflects the impact on the probit 
index of having both the potential licensor and the potential licensee in general chemicals. 
 
Table VII. Probit estimates: probability of a licensing agreement between firms licensing 
chemicals technology, small sample with technology cycle time and without patent percentages 
Variable Coefficient (standard error in parentheses) 
tosorcit 0.00014** (0.000061) 
toseecit 0.000091*** (0.000054) 
secitsor 0.0022 (0.0015) 
sorcitse 0.000090 (0.0015) 
sorcitot –0.000046 (0.000070) 
seecitot –0.00013 (0.000090) 
dcitsee –0.171 (0.223) 
dcitsor 0.318 (0.234) 
sornopat –0.00089*** (0.00052) 
seenopat –0.00052 (0.00046) 
sorscil 0.264* (0.105) 
seescil –0.134 (0.146) 
dpetsor 0.184 (0.198) 
dpetsee 0.109 (0.192) 
dphasor –1.365* (0.454) 
dphasee 0.077 (0.282) 
dplasor 0.550** (0.227) 
dplasee 0.102 (0.201) 
dfibsor –0.842** (0.418) 
dfibsee 0.102 (0.275) 
dagrsor 1.127* (0.228) 
dagrsee 0.228 (0.212) 
sortct 0.019 (0.057) 
seetct 0.0047 (0.047) 



Variable Coefficient (standard error in parentheses) 
constant –3.352* (0.841) 
𝜒𝜒242  71.93* 
Log likelihood –135.30 
Pseudo R2 0.210 
n 1560 
* Significant at the 0.01-level. 
** Significant at the 0.05-level. 
*** Significant at the 0.10-level. 
Note: dgensor and dgensee are absorbed in the intercept; thus, the constant term reflects the impact on the probit 
index of having both the potential licensor and the potential licensee in general chemicals. 
 
Table VIII. Probit estimates: probability of a licensing agreement between firms licensing 
chemicals technology, full sample with patent percentages 
Number of observations = 1806 
𝜒𝜒802 = 122.26* 

Log likelihood = –127.02 
Pseudo R2 = 0.32 
The collection of patent variables, except for the technology cycle time variables, is included. 

The same ten of the twelve industry variables (six for the potential licensor and six for the potential licensee) 
showing the production locations of the potential licensor and the potential licensee are included. As in the 
specifications of Tables VI and VII, dgensor and dgensee are absorbed in the intercept; thus, the constant term 
reflects the impact on the probit index of having both the potential licensor and the potential licensee in general 
chemicals. 

sorpgppi and seepgppi for i = 1 to 30, except the sorpgppchemicals and seepgppchemicals were excluded and left in the 
intercept. Thus, there are included in this specifications 58 control variables for patent locations, 29 of the 30 SIC 
product group patent percentage variables for the potential licensor and the same 29 variables for the potential 
licensee. The percentages in the 30 categories add to 100%, and the variable dropped for the potential licensor and 
again for the potential licensee and left in the intercept are the variables showing the percentage of the potential 
licensor’s or the potential licensee’s patents in the CHI Research SIC product group for chemicals. Not surprisingly, 
that is the product group with the largest percentage of patents on average for the firms in the sample. Thus, the 
constant term reflects the impact on the probit index of having both firms in general chemicals and with 100% of 
their patents in chemicals with the effects of the included pgppi variables to be added in to reach the effect for the 
exact patent distribution for the potential licensor and the potential licensee. 
* Significant at the 0.01-level. 
 
Table IX. Probit estimates: probability of a licensing agreement between firms licensing 
chemicals technology, small sample with technology cycle time and with patent percentages 
Number of observations = 1560 
𝜒𝜒822 = 120.15* 

Log likelihood = –111.19 
Pseudo R2 = 0.35 
The full collection of patent variables is included. 

The same ten of the twelve industry variables (six for the potential licensor and six for the potential licensee) 
showing the production locations of the potential licensor and the potential licensee are included. As in the 
specifications of Tables VI and VII, dgensor and dgensee are absorbed in the intercept; thus, the constant term 
reflects the impact on the probit index of having both the potential licensor and the potential licensee in general 
chemicals. 



sorpgppi and seepgppi for i = 1 to 30, except the sorpgppchemicals and seepgppchemicals were excluded and left in the 
intercept. Thus, there are included in this specification 58 control variables for patent locations, 29 of the 30 SIC 
product group patent percentage variables for the potential licensor and the same 29 variables for the potential 
licensee. The percentages in the 30 categories add to 100%, and the variable dropped for the potential licensor and 
again for the potential licensee and left in the intercept are the variables showing the percentage of the potential 
licensor’s or the potential licensee’s patents in the CHI Research SIC product group for chemicals. Not surprisingly, 
that is the product group with the largest percentage of patents on average for the firms in the sample. Thus, the 
constant term reflects the impact on the probit index of having both firms in general chemicals and with 100% of 
their patents in chemicals with the effects of the included pgppi variables to be added in to reach the effect for the 
exact patent distribution for the potential licensor and the potential licensee. 
* Significant at the 0.01-level. 
 
From the index, we compute the cumulative normal probability, F. F is the model’s estimate of 
the probability of a licensing agreement for the observation; the computed F values range from 0 
to 0.5512693, with a mean value of 0.0216065. For comparative purposes, the naive probability 
of observing a licensing agreement is 0.0215947 (39/1806). The distribution of the values of F is 
skewed; the proportion of the 1806 observations for which the estimated probability exceeds the 
mean value is 0.2458472. That proportion represents 444 pairs, or 24.6 percent of the potential 
licensor–licensee pairs have a higher than average (mean) probability of a licensing agreement. 
For that 24.6 percent of the sample, the estimated probability of agreement ranges from 
0.0217247 to 0.5512693, with a mean value of 0.0809248. The expanded model explains the 
occurrence of licensing agreements well in the sense that among the 444 observations with 
estimated probabilities of licensing greater than the mean probability, there are 38 of the 39 
actual cases of licensing agreements. 
 
For the 1560 observations used in the model in Table IX, there were 36 observations of actual 
licensing agreements. For the 1560 pairs, the estimate of the probability of an agreement, F, 
ranges from 0 to 0.6004202, with a mean value of 0.0230569, as compared to the 
naive probability 0.0230769 (36/1560). The proportion of the 1560 observations for which 
the estimated probability of a licensing agreement exceeded the mean value is 0.2358974, or 
368 of the pairs. For these pairs, the estimated probability of agreement ranged from 
0.0231307 to 0.6004202, with a mean value of 0.0907533. In this model, the explanation 
of the occurrence of a licensing agreement is “perfect” in the admittedly special sense 
that among the 368 pairs that have a high probability of agreement according to the 
model, are all 36 of the actual licensing agreements in the sample of 1560 pairs. Of course, 
since only a small fraction (36/1560) of the cases have agreements, the “naïve” guess that 
agreement would not be observed is correct 97.7 percent of the time, while our “perfect” 
predictor is correct only 78.7% of the time ((36 + (1560 – 368))/1560). The “naïve” 
guess, however, does not let one predict the cases where agreement will occur, and of course 
that is what we care about here.23 Our model identifies every one of those cases, although it 

 
23 As Greene (1997: p. 893) observes: ‘‘In general, any prediction rule of the form [we use] . . . will make two types 
of errors. It will incorrectly classify 0s as 1s and 1s as 0s. In practice, these errors need not be symmetric in the costs 
that result.’’ Our rule does not incorrectly classify any of the 1s, but does identify as 1s some of the zeros. In the 
context of our interests, not knowing the circumstances when the 1s occur has a large cost; in our model, the errors 
are not symmetric in the costs that result. If one just wants to maximize the percentage of correct guesses about 
when one will see a licensing agreement, one could simply always guess ‘‘no agreement here’’ and be right most of 
the time since there are so few agreements in the population of possible agreements. That is of course true anytime 
the fraction of times 1s occur is very small. So, without the model, one would never be able to discern the cases 



does as well identify the other cases where conditions imply that agreement is more likely 
than average yet it did not occur.24 
 
IV. INTERPRETATION OF THE FINDINGS 
 
The results presented above provide strong empirical evidence that an in-depth investigation of 
observable patent citation data is an effective way to explain technology flows throughout the 
economy through licensing agreements.25 
 
To illustrate the relevance of our methodology for predicting technology flows from licensing 
agreements, we computed the matrices in Tables X and XI. Each cell of Table X shows the 
probability of a licensing agreement when the potential licensor and the potential licensee sell 
products in the industries indicated. For example, the third probability in the fourth row shows 
the average probability of a licensing agreement when the potential licensor is in plastics and the 
potential licensee is in pharmaceuticals to be 4.95 percent.26 We computed the probability for 
each cell as follows. The probit index for the probability for a cell of the matrix is denoted 
pindex*. We estimate pindex* by using the fitted probit index values from the probit model in 
Table VIII. That model provides a well-fitted probit index for each pair of the full sample of 
1806 pairs. To estimate the probit index, we observe that for each ith observation in the cell, 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝∗ + 𝑢𝑢𝑖𝑖 (2) 
 
where ui is random error with variance estimated by the square of stpdi, where stpdi denotes the 
standard error of prediction for the probit index pindexi. 

 
where agreement occurs using the naive guess. The reason we want the model is to be able to find such cases. And 
our model is perfect on that score. Namely, Greene notes that in general there are two types of errors, and our model 
actually makes zero errors of the one sort. Unlike the naive guess, we can uncover the cases where licensing occurs 
with our model. Furthermore, given that performance, one might well think that the 0s that are predicted to be 1s in 
fact are high probability of licensing cases. A relatively high probability of agreement is, after all, a fairly low 
probability; therefore, we expect that there will be many cases where despite the relatively high probability no 
agreement occurs. 
24 Another way to observe that our model distinguishes well the cases where licensing agreement occurs is to note 
that the average mean probability for the 36 observations where dlic = 1 is 0.1613, while the average mean 
probability for the remaining 1524 observations where dlic = 0 is 0.0198. 
25 Following on the analyses of Scherer (1982a, 1982b) about R&D spillovers through purchased inputs used in 
production, Jaffe (1986) about spillovers from related R&D of other firms, and Link and Zmud (1987) about self-
reported stocks of purchased technology, it may well be the case that external sources of technology are a more 
important source of productivity-enhancing innovation than in-house R&D. Scott (1993: pp. 128–131) provides an 
experiment demonstrating the effects of R&D spillovers across industries on total factor productivity growth and 
also reviews several other studies, such as the work of Geroski (1991) and Griliches and Lichtenberg (1984), that 
have explored such effects. 
26 The probability shown is an average for all observations where dplasor = 1 and dphasee = 1. Thus, for each 
observation the actual values of all variables are used. Again, that is the only sensible way to use the large model to 
predict probabilities, because we have high confidence in the complete model, but very low confidence in any one 
coefficient. Therefore we would not want to determine the predicted probabilities by creating artificial observations 
by setting individual variables in particular ways to generate the different predictions. 



Table X. Probability of a licensing agreement for all firms (with the estimate of pindex*, the standard error of the estimate of pindex*, 
and the number of observations in parentheses) 
 Licensee 
Licensor General chemicals Petroleum Pharmaceuticals Plastics Fibers Agricultural chemicals 
General 
chemicals 

0.0694 
(–1.48, 0.0349) 

(n = 306) 

0.0465 
(–1.68, 0.0294) 

(n = 302) 

0.0571 
(–1.58, 0.0456) 

(n = 157) 

0.0606 
(–1.55, 0.0371) 

(n = 280) 

0.0901 
(–1.34, 0.0651) 

(n = 103) 

0.0764 
(–1.43, 0.0479) 

(n = 173) 
Petroleum 0.0681 

(–1.49, 0.0386) 
(n = 302) 

0.0594 
(–1.56, 0.0335) 

(n = 272) 

0.0516 
(–1.63, 0.0515) 

(n = 152) 

0.0681 
(–1.49, 0.0416) 

(n = 268) 

0.0901 
(–1.34, 0.0735) 

(n = 101) 

0.0823 
(–1.39, 0.0535) 

(n = 167) 
Pharmaceuticals 0.0301 

(–1.53, 0.110) 
(n = 157) 

0.0162 
(–2.14, 0.105) 

(n = 152) 

0.0322 
(–1.85, 0.159) 

(n = 72) 

0.0212 
(–2.03, 0.117) 

(n = 140) 

0.0427 
(–1.72, 0.195) 

(n = 51) 

0.0314 
(–1.86, 0.0535) 

(n = 167) 
Plastics 0.0630 

(–1.53, 0.0328) 
 (n = 280) 

0.0465 
(–1.68, 0.0274) 

(n = 268) 

0.0495 
(–1.65, 0.0445) 

(n = 140) 

0.0559 
(–1.59, 0.0370) 

(n = 240) 

0.0793 
(–1.41, 0.0663) 

(n = 91) 

0.0708 
(–1.47, 0.0454) 

(n = 156) 
Fibers 0.0446 

(–1.70, 0.0516) 
(n = 103) 

0.0233 
(–1.99, 0.0273) 

(n = 101) 

0.0455 
(–1.69, 0.0847) 

(n = 51) 

0.0329 
(–1.84, 0.0533) 

(n = 91) 

0.0446 
(–1.70, 0.0875) 

(n = 30) 

0.0465 
(–1.68, 0.0717) 

(n = 57) 
Agricultural 
chemicals 

0.0901 
(–1.34, 0.0501) 

(n = 173) 

0.0606 
(–1.55, 0.0453) 

(n = 167) 

0.0778 
(–1.42, 0.0644) 

(n = 86) 

0.0793 
(–1.41, 0.0556) 

(n = 156) 

0.121 
(–1.17, 0.0980) 

(n = 57) 

0.102 
(–1.27, 0.0727) 

(n = 90) 
 
  



Table XI. Probability of a licensing agreement for undiversified firms (with the estimate of pindex*, the standard error of the estimate 
of pindex*, and the number of observations in parentheses) 
 Licensee 
Licensor General chemicals Petroleum Pharmaceuticals Plastics Fibers Agricultural chemicals 
General 
chemicals 

0.0446 
(–1.70, 0.0686) 

(n = 20) 

0.0344 
(–1.82, 0.0360) 

(n = 50) 

0.0239 
(–1.98, 0.0720) 

(n = 15) 

0.0262 
(–1.94, 0.0371) 

(n = 25) 

— 
(n = 0) 

0.0244 
(–1.97, 0.0952) 

(n = 10) 
Petroleum 0.0262 

(–1.94, 0.0386) 
(n = 50) 

0.0281 
(–1.91, 0.0283) 

(n = 90) 

0.0136 
(–2.21, 0.0559) 

(n = 30) 

0.0146 
(–2.18, 0.0207) 

(n = 50) 

— 
(n = 0) 

0.0122 
(–2.25, 0.0528) 

(n = 20) 
Pharmaceuticals 0.000845 

(–3.14, 0.547) 
(n = 15) 

0.000291 
(–3.44, 0.370) 

(n = 30) 

0.0136 
(–2.21, 0.981) 

(n = 6) 

0.000208 
(–3.53, 0.553) 

(n = 15) 

— 
(n = 0) 

0.000136 
(–3.64, 0.931) 

(n = 6) 
Plastics 0.0465 

(–1.68, 0.0507) 
(n = 25) 

0.0427 
(–1.72, 0.0358) 

(n = 50) 

0.0336 
(–1.83, 0.112) 

(n = 15) 

0.0329 
(1.84, 0.0691) 

(n = 20) 

— 
(n = 0) 

0.0314 
(–1.86, 0.0739) 

(n = 10) 
Fibers — 

(n = 0) 
— 

(n = 0) 
— 

(n = 0) 
— 

(n = 0) 
— 

(n = 0) 
— 

(n = 0) 
Agricultural 
chemicals 

0.0526 
(–1.62, 0.0368) 

(n = 10) 

0.0559 
(–1.59, 0.0398) 

(n = 20) 

0.0367 
(–1.79, 0.193) 

(n = 6) 

0.0367 
(–1.79, 0.0223) 

(n = 10) 

 
(n = 0) 

0.838 
(–1.38, 0.00127) 

(n = 2) 
 



Dividing Eq. (2) through by stpdi, yields an estimable model of the average probability of each 
cell, with homoskedastic error. The cell probability is then estimated as the cumulative normal 
distribution evaluated at the coefficient from the regression, for the pairs in the cell, of 
pindex/stdp on the reciprocal of stpd with no constant term. The formal weighted least-squares 
model of the average probability for a cell is intuitive. Each pair’s estimated probit index is 
weighted proportionately to its quality as measured by the reciprocal of its standard error of 
prediction. The simple, unweighted average estimated probability of a licensing agreement 
across the 1806 observations is 0.0216 or about 2.2 percent, while the average estimated 
probability across the 36 cells of Table X is 0.0591 or 5.9 percent.27 
 
In contrast, each cell of Table XI (again based on the probit model in Table VIII) shows the 
probability of a licensing agreement when the potential licensor and the potential licensee sell 
products in the activities indicated and nowhere else—that is, when the firms are undiversified or 
focused. Thus, these probabilities are the evaluation of the cumulative normal probability 
distribution at the weighted averages of the estimated probit indices for the actual observations in 
the sample where the potential licensor and the potential licensee are not diversified, but 
completely focused in the categories indicated. Again, the formal weighted least-squares model 
of the cell average was used to estimate the average probit index from which the probability was 
then derived for each cell. The average estimated probability for the 25 cells for which there are 
observations of potential licensor/licensee pairs is 0.0286 or 2.9 percent. 
 
There is a large range in the probabilities relative to one another, with rounded estimated 
probabilities ranging from 0.00, or 0 percent, to as much as 0.121, or 12.1 percent, across the 
cells in the two tables. Note that the numbers of observations in the ith column match up with 
those in the ith row because each pair of firms appears with one of the firms as the potential 
licensor and the other as the potential licensee, and then appears again with their roles reversed. 
Note also that all of the cell probabilities in both tables are highly significant statistically; that is, 
they are estimated with small standard errors for the estimated probit index for the cell. 
 
Comparing Table X and Table XI, clearly when both firms are undiversified, the firms are less 
likely to be involved in a licensing agreement. The cells of Table X typically have higher 
estimated probabilities than the cells in Table XI because of the diversified pairs with high 
probability being averaged in several cells. But why do the diversified pairs typically have a 
higher estimated probability of reaching a licensing agreement? On one hand, the explanation is 
simple. Such a difference is to be expected because a pair of focused firms each have production 

 
27 The probabilities in Tables X and XI will in general be higher than the sample average naïve probability. That is 
because the average probability for each cell gives higher weight to probabilities with smaller standard errors of 
prediction for their underlying probit index and typically the high variance probit index estimates are for pairs where 
no licensing agreement was observed. In those high variance cases, typically there was a very negative probit index, 
and hence an essentially zero estimated probability. In Table X where all firms are used for the averages, note that 
the probabilities are in general higher than the average of the sample as a whole for an additional reason. The reason 
is that the observations in one cell are not mutually exclusive from those in another cell. For example, an 
observation in the cell where the potential licensor is in general chemicals while the potential licensee is in 
petroleum products can also appear in the cell where the licensor is in plastics while the licensee is in fibers. For a 
numerical example, suppose that in a population of 100 pairs there were just 10 with licensing agreements and the 
average predicted probability across the 100 observations was 0.10. If the 10 pairs with agreements (and high-
predicted probabilities of agreements) appear in multiple subsets of licensor–licensee combinations, then the 
averages of the estimated probabilities will exceed 0.10 for those combinations. 



in just a single industry in which licensed technology could be generated or used as contrasted 
with a pair of diversified firms where each could identify complementarities in their 
development and use of technology in any of several industries. On the other hand, the 
explanation is potentially more complex. We do not attempt in this exploratory effort to sort out 
all of the extant hypotheses about diversified R&D that might be applied here to explain the 
higher probability of licensing between diversified firms. However, we do find that this effect is 
associated with the diversification of the licensor, not the licensee. That is the finding, despite the 
logical expectation that the purchase of licensed technology may have greater value to a 
diversified firm for any of several reasons. The size of the expected return from using the 
acquired knowledge may be greater because the diversified firm recognizes potential 
applications in many different fields (Nelson, 1959; Link and Long, 1981); the riskiness of the 
application of the knowledge acquired may be less for the diversified firm (Arrow, 1962); the 
costs of applying the knowledge may be less for the diversified firm (Teece, 1980); and, the 
diversified firm may more rapidly apply the knowledge, thereby lessening the probability of 
preemption by other firms (Scott, 1993: pp. 112–115). The hypotheses notwithstanding, we 
discover that the diversification effect in our sample is associated with the licensor’s 
diversification. That finding is consistent with diversification’s effect on R&D because of 
recognition, risk, cost, and preemption.28 The R&D thus affected produces licensable 
technology. 
 
To describe the size and significance of the difference in the average probability of licensing for 
diversified pairs of firms (included with all pairs in Table X) and undiversified pairs of firms 
(Table XI), we use a formal model of the average probability for the different categories of 
diversified potential licensor=licensee pairs. We therefore consider the probit index estimated by 
the probit model in Table VIII, pindex, and two dummy variables. The first is the dummy 
variable ddivsor that takes the value 1 when the potential licensor (for the pair of firms among 
the 1806 observed pairs) is diversified, and 0 otherwise (i.e., when it is undiversified or focuses 
in one of the six chemical areas). The second dummy is ddivsee that takes on the value 1 when 
the potential licensee is diversified, and 0 otherwise. Diversification category averages for the 
probit index are determined by the equation equating each estimated probit index to the sum of a 
constant term, each dummy variable multiplied by its coefficient, and a random error term. As 
before, the error variance is estimated by the squared standard error of prediction for the probit 
index. The homoskedastic model of the category averages is then estimated, for the 1806 
observations, in Eq. (3) with standard errors shown below the coefficients. 
 

pindex/stdp = –2.44(1/stdp) + 0.965ddivsor/stdp + 0.0657ddivsee/stdp (3) 
 (0.0599) (0.0773) (0.0759)  

R2 = 0.0798    
F2,1803 = 78.15    

 

 
28 Baldwin and Scott (1987: p. 94) review early empirical literature that on the whole does not provide empirical 
evidence supporting the hypothesized link from diversification to R&D activity. However, Scott and Pascoe (1987) 
show that when purposive diversification (nonrandom combinations of complementary lines of business) is 
distinguished from random diversification, R&D investments are significantly different, and overall greater, for the 
purposively diversified firms and total factor productivity growth increases with the R&D investments in 
complementary activities. 



The constant term and the coefficient on the dummy variable for diversification by the potential 
licensor are both very highly significant statistically, with diversification by the licensor having a 
large positive effect on the probit index and hence on the probability of a licensing agreement. 
The coefficient for the dummy indicating diversification by the potential licensee is positive, but 
not significant. 
 
For the undiversified pairs among the 1806 pairs of firms, the average probability of a licensing 
agreement is 0.007243 (corresponding to the probit index of –2.445). When the potential licensee 
is diversified, but the potential licensor is not, the average probability for such pairs is not 
significantly different and is 0.008680 (corresponding to the probit index of –2.379). In the 
sample of 1806 pairs, when the potential licensor is a diversified firm but the potential licensee is 
an undiversified firm, the average probability of a licensing agreement is significantly greater 
(economically and statistically) and equals 0.06944 (with –1.48 being the corresponding probit 
index). If both firms in the pair are diversified, then the average probability of a licensing 
agreement is 0.07868 (corresponding to a probit index of –1.414). 
 
Product diversification of firms in our sample increases the probability of licensing. The 
pronounced effect on the probability of a licensing agreement comes when the potential licensor 
is diversified. For the probabilities derived from the actual averages of the fitted probit indices, if 
neither firm is diversified, the probability of a licensing agreement is 0.7 of 1 percent. If only the 
potential licensor is diversified, the probability increases by an order of magnitude to 7 percent. 
 
V. CONCLUDING OBSERVATIONS 
 
To date, analyses of technology flows have considered almost exclusively technology that is 
embodied in new capital equipment—and there is a large literature related to the adoption of 
computer equipment that falls under this category29—or embodied in new employees.30 Previous 
analyses of external technology flows via licensing have been hampered by a lack of large 
samples of empirical data. Information about technology acquired through licensing agreements 
addresses some fundamental new questions. How frequently does licensing occur? Is licensing a 
complement or a substitute for other technology acquisition strategies? Is licensing a 
phenomenon specific to the technology area? Researchers have been limited in the past in their 
ability to consider such questions because of the lack of available data. However, as we 
demonstrate here, patent citation data, which are readily available, can be a valuable source of 
information from which to predict cross-firm licensing patterns and hence technology flows. We 
have derived a probability map for licensing agreements, and with the estimated probabilities of 
licensing patterns, we have also shown that a more diversified potential licensor has a higher 
probability of participating in licensing agreements. 
 
Although our model fits the data well, showing the circumstances where licensing occurred in 
our sample, we cannot assume that the model would perform well predicting the probability of 
licensing agreements in other samples. Our method allows historical understanding of 
technology flows from licensing agreements, showing both the location of the flows and the 
circumstances where flows are most likely. However, further research is needed before we can 

 
29 See, for example, Link and Scott (1998a). 
30 See, for example, Scherer (1982a, 1982b) and Siegel (1997, 1998, 1999). 



know whether the method will predict well the technology flows from licensing agreements in 
the future or in other industries. 
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