# NEAR-HOMEOMORPHISMS OF NÖBELING MANIFOLDS

A. CHIGOGIDZE AND A. NAGÓRKO

ABSTRACT. We characterize maps between *n*-dimensional Nöbeling manifolds that can be approximated by homeomorphisms.

## 1. Introduction

A long standing problem (see, for example, [8, TC 10], [3, Conjecture 5.0.5]) of characterizing topologically universal n-dimensional Nöbeling space, as well as manifolds modeled on it, was solved recently by M. Levin [5] and A. Nagórko [7]. Theory of Nöbeling manifolds, developed in [5], [6], [7] based on completely different approaches, among other things contains various versions of Z-set unknotting theorem, open embedding theorem, n-homotopy classification theorem, etc.

In this note we complete the picture by proving that for n-dimensional Nöbeling manifolds classes of near-homeomorphisms, approximately n-soft maps, fine n-homotopy equivalences and  $UV^{n-1}$ -mappings coincide. Recall that an n-dimensional Nöbeling manifold is a Polish space locally homeomorphic to  $\nu^n$ , the subset of  $\mathbb{R}^{2n+1}$  consisting of all points with at most n rational coordinates.

**Definition 1.1.** For each map f from a space X into a space Y, for each open cover  $\mathcal{U}$  of Y and for each integer n, we define the following conditions.

- $(NH_{\mathcal{U}})$  There exists a homeomorphism of X and Y that is  $\mathcal{U}$ -close to f.
- (AnS<sub>U</sub>) For each at most n-dimensional metric space B, its closed subset A and maps  $\varphi$  and  $\psi$  such that the following diagram commutes



there exists a map  $k \colon B \to X$  such that  $k|A = \varphi$  and  $f \circ k$  is  $\mathcal{U}$ -close to  $\psi$ .

- (FnHE<sub>U</sub>) There exists a map g from Y to X such that  $f \circ g$  is  $\mathcal{U}$ -n-homotopic  $^1$  to the identity on Y and  $g \circ f$  is  $f^{-1}(\mathcal{U})$ -n-homotopic to the identity on X (with  $f^{-1}(\mathcal{U})$  denoting  $\{f^{-1}(\mathcal{U})\}_{\mathcal{U} \in \mathcal{U}}$ ).
- $(UV_{\mathcal{U}}^{n-1})$  The star of the image of f in  $\mathcal{U}$  is equal to Y and there exists an open cover  $\mathcal{W}$  of Y such that for each W in  $\mathcal{W}$  there exists U in  $\mathcal{U}$  such that the inclusion  $f^{-1}(W) \subset f^{-1}(U)$  induces trivial (zero) homomorphisms on

<sup>1991</sup> Mathematics Subject Classification. Primary: 55M10; Secondary: 54F45.

 $Key\ words\ and\ phrases.\ n\text{-}dimensional\ N\"{o}beling\ manifold,\ Z\text{-set}\ unknotting,\ near-homeomorphism.}$ 

<sup>&</sup>lt;sup>1</sup>see section 2 for definitions.

homotopy groups of dimensions less than n, regardless of the choice of the base point.

Our main result is the following theorem.

**Theorem 1.2.** For each open cover  $\mathcal{U}$  of an n-dimensional Nöbeling manifold Y there exists an open cover  $\mathcal{V}$  such that for each map f from an n-dimensional Nöbeling manifold into Y, if  $(FnHE_{\mathcal{V}})$ , then  $(NH_{\mathcal{U}})$ .

Theorem 1.2 is an analogue of theorems of Ferry on Hilbert space and Hilbert cube manifolds [4] and of a theorem of Chapman and Ferry on euclidean manifolds [2].

Let  $(P_{\mathcal{U}})$ ,  $(Q_{\mathcal{U}})$  and  $(R_{\mathcal{U}})$  be any of the predicates stated in definition 1.1. We are interested in which of the implications

$$\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (P_{\mathcal{V}}) \Rightarrow (Q_{\mathcal{U}})$$

are true. We show that if Y is an ANE(n)-space, then, with quantifiers understood to be same as above,  $(NH_{\mathcal{V}}) \Rightarrow (AnS_{\mathcal{U}})$  (lemma 2.2),  $(AnS_{\mathcal{V}}) \Rightarrow (FnHE_{\mathcal{U}})$  (lemma 2.4) and  $(FnHE_{\mathcal{V}}) \Rightarrow (UV_{\mathcal{U}}^{n-1})$  (lemma 2.5). These implications are standard. To complete the picture, we give an example that shows that  $(UV_{\mathcal{V}}^{n-1})$  does not imply  $(FnHE_{\mathcal{U}})$ , even if X and Y are Nöbeling manifolds (example 2.6).

Observe that we have the following rule of inference

$$(\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (P_{\mathcal{V}}) \Rightarrow (Q_{\mathcal{U}})) \land (\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (Q_{\mathcal{V}}) \Rightarrow (R_{\mathcal{U}})) \Rightarrow (\forall_{\mathcal{U}} \exists_{\mathcal{V}} \forall_f (P_{\mathcal{V}}) \Rightarrow (R_{\mathcal{U}})).$$

Hence the above mentioned implications yield the following theorem.

**Theorem 1.3.** For each open cover  $\mathcal{U}$  of an n-dimensional Nöbeling manifold Y there exists an open cover  $\mathcal{V}$  such that for each map f from an n-dimensional Nöbeling manifold X into Y if

$$(NH_{\mathcal{V}})$$
 or  $(AnS_{\mathcal{V}})$  or  $(FnHE_{\mathcal{V}})$ ,

then

$$(NH_{\mathcal{U}})$$
 and  $(AnS_{\mathcal{U}})$  and  $(FnHE_{\mathcal{U}})$ .

Now consider absolute versions of conditions stated in definition 1.1.

**Definition 1.4.** For each map f from a space X into a space Y we say that (NH) ((AnS), (FnHE) or (UV<sup>n-1</sup>) respectively) is satisfied, if for each open cover  $\mathcal{U}$  of Y (NH $_{\mathcal{U}}$ ) ((AnS $_{\mathcal{U}}$ ), (FnHE $_{\mathcal{U}}$ ) or (UV $_{\mathcal{U}}^{n-1}$ ) respectively) is satisfied.

If a map satisfies (NH), then we say that it is a near-homeomorphism. If it satisfies (AnS), then we say that it is approximately n-soft. If it satisfies (FnHE), then we say that it is a fine n-homotopy equivalence. If it satisfies (UV<sup>n-1</sup>), then we say that it is a  $UV^{n-1}$ -map.

We shall show that if Y is an ANE(n)-space, then  $(UV^{n-1}) \Rightarrow (FnHE)$  (lemma 2.7, which contrasts example 2.6). Hence we have

$$(NH) \Rightarrow (AnS) \Rightarrow (FnHE) \Leftrightarrow (UV^{n-1}).$$

The above implications combined with theorem 1.2 yield the following theorem.

**Theorem 1.5.** The following conditions are equivalent for each map  $f: X \to Y$  of n-dimensional Nöbeling manifolds:

(NH) f is a near-homeomorphism,

(AnS) f is approximately n-soft,

(FnHE) f is a fine n-homotopy equivalence,  $(UV^{n-1})$  f is an  $UV^{n-1}$ -map.

#### 2. Preliminaries

**Definition 2.1.** We say that a metric space X is an absolute neighborhood extensor in dimension n if it is a metric space and if every map into X from a closed subset A of an n-dimensional metric space extends over an open neighborhood of A. The class of absolute neighborhood extensors in dimension n is denoted by ANE(n) and its elements are called ANE(n)-spaces.

**Lemma 2.2.** For each open cover  $\mathcal{U}$  of an ANE(n)-space Y there exists an open cover  $\mathcal{V}$  such that if a map into Y satisfies  $(NH_{\mathcal{V}})$ , then it satisfies  $(AnS_{\mathcal{U}})$ .

*Proof.* Choose open covers  $\mathcal{V}$  and  $\mathcal{W}$  of Y such that the star of  $\mathcal{W}$  refines  $\mathcal{U}$  and the following condition is satisfied [3, Proposition 4.1.7] for each at most n-dimensional metric space B and its closed subset A:

If one of two V-close maps of A into Y has an extension to B,

(\*) then the other also has an extension to B and we may assume that these extensions are W-close.

Let A be a closed subset of an at most n-dimensional metric space B and let maps  $\varphi \colon A \to X$  and  $\psi \colon B \to Y$  be such that  $f\varphi = \psi|A$ . By  $(\operatorname{NH}_{\mathcal{V}})$ , there exists a homeomorphism  $g \colon X \to Y$ , which is  $\mathcal{V}$ -close to f. By the above stated property of  $\mathcal{V}$  there exists a  $\mathcal{W}$ -close to  $\psi$  extension  $h \colon B \to Y$  of the composition  $g\varphi$ . Let  $k = g^{-1}h \colon B \to X$ . Clearly,  $k|A = \varphi$  and fk is  $\mathcal{U}$ -close to  $\psi$ .

**Definition 2.3.** Let  $\mathcal{U}$  be an open cover of a space Y. We say that maps  $f, g: X \to Y$  are n-homotopic if for every map  $\Phi$  from a polyhedron of dimension less than n into X, the compositions  $f \circ \Phi$  and  $g \circ \Phi$  are homotopic by a homotopy whose paths refine  $\mathcal{U}$ .

**Lemma 2.4.** For each open cover  $\mathcal{U}$  of an at most n-dimensional ANE(n)-space Y there exists an open cover  $\mathcal{V}$  such that if a map into Y satisfies  $(AnS_{\mathcal{V}})$ , then it satisfies  $(FnHE_{\mathcal{U}})$ .

Proof. Choose open covers  $\mathcal{V}$  and  $\mathcal{W}$  of Y such that  $\operatorname{st}_{\mathcal{V}}\operatorname{st}\mathcal{W}$  refines  $\mathcal{U}$  and condition (\*) defined in the proof of lemma 2.2 is satisfied. By  $(\operatorname{AnS}_{\mathcal{V}})$ , there exists a map  $g\colon Y\to X$  such that  $f\circ g$  is  $\mathcal{V}$ -close to the identity on Y. By (\*), any two  $\mathcal{V}$ -close maps from an at most n-dimensional metric space are st  $\mathcal{W}$ -n-homotopic. Hence  $f\circ g$  is  $\mathcal{U}$ -n-homotopic to the identity on Y. Let k be a map into X defined on an at most (n-1)-dimensional polyhedron K. Let  $l=g\circ f\circ k$ . Since  $f\circ g$  is  $\mathcal{V}$ -close to the identity on Y,  $f\circ k$  is  $\mathcal{V}$ -close to  $f\circ l$ . By (\*), there exists a st  $\mathcal{W}$ -homotopy  $H\colon K\times [0,1]\to Y$  of  $f\circ k$  and  $f\circ l$ . By  $(\operatorname{AnS}_{\mathcal{V}})$ , this homotopy can be lifted to a homotopy of k and l in Y, whose composition with f is  $\mathcal{V}$ -close to H. Since  $\operatorname{st}_{\mathcal{V}}\operatorname{st}\mathcal{W}$  refines  $\mathcal{U}$ , this composition is a  $\mathcal{U}$ -homotopy. Hence H is a  $f^{-1}(\mathcal{U})$ -homotopy and  $g\circ f$  is  $f^{-1}(\mathcal{U})$ -n-homotopic to the identity on X.

**Lemma 2.5.** For each open cover  $\mathcal{U}$  of an ANE(n)-space Y there exists an open cover  $\mathcal{V}$  such that if a map into Y satisfies  $(FnHE_{\mathcal{V}})$ , then it satisfies  $(UV_{\mathcal{U}}^{n-1})$ .

*Proof.* Let W be an open cover of Y whose star refines U. By theorem [3, 2.1.12], there exists an open cover V of Y such that for each V in V there exists  $W_V$  in W, for

which the inclusion  $V \subset W_V$  induces trivial homomorphisms on homotopy groups of dimensions less than n. Let k < n. Let V in  $\mathcal{V}$ . Let  $\varphi \colon S^k \to f^{-1}(V)$ . We will show that  $\varphi$  is null-homotopic in  $f^{-1}(\operatorname{st}_{\mathcal{V}} W_V)$ , which shall end the proof, as  $\operatorname{st}_{\mathcal{V}} \mathcal{W}$  refines  $\mathcal{U}$ . By  $(\operatorname{FnHE}_{\mathcal{V}})$ , there exists a map  $g \colon Y \to X$  such that  $g \circ f$  is  $f^{-1}(\mathcal{V})$ -n-homotopic with the identity on X and  $f \circ g$  is  $\mathcal{V}$ -close to the identity on Y. In particular,  $\varphi$  is homotopic with  $g \circ f \circ \varphi$  in  $\operatorname{st}_{f^{-1}(\mathcal{V})} f^{-1}(V) \subset f^{-1}(\operatorname{st}_{\mathcal{V}} V) \subset f^{-1}(\operatorname{st}_{\mathcal{V}} W_V)$ . By the assumptions,  $f \circ \varphi$  is null-homotopic in  $W_V$ . Hence  $g \circ f \circ \varphi$  is null-homotopic in  $g(W_V) \subset f^{-1}(\operatorname{st}_{\mathcal{V}} W_V)$ . We are done.

**Example 2.6.** We show that there exists a space Y and an open cover  $\mathcal{U}$  of Y such that for each open cover  $\mathcal{V}$  of Y there exists a map f from a space X into Y such that  $(UV_{\mathcal{V}}^{n-1})$  is satisfied, but both  $(FnHE_{\mathcal{U}})$  and  $(AnS_{\mathcal{U}})$  are not. We give an example for n > 1 and the map that we construct is onto Y. For n = 1 an example can also be constructed, but the map cannot have a dense image in Y.

Let Y be the unit interval [0,1] and let  $\mathcal{U}=\{[0,1]\}$  be the trivial cover of Y. Let  $\mathcal{V}$  be an open cover of Y and let V be an element of  $\mathcal{V}$  that contains  $\frac{1}{2}$ . Let  $\varepsilon>0$  such that  $[\frac{1}{2}-\varepsilon,\frac{1}{2}+\varepsilon]\subset V$ . Let  $X=[0,1]\times[0,1]\setminus[\frac{1}{2}-\varepsilon,\frac{1}{2}+\varepsilon]\times\{\frac{1}{2}\}$ . Let  $f\colon X\to Y$  be a restriction to X of the projection of  $[0,1]\times[0,1]$  onto the first coordinate. We can verify that f satisfies  $(\mathrm{UV}^{n-1}_{\mathcal{V}})$  from the definition, taking any  $\mathcal{W}$  that refines  $\mathcal{V}$  and whose mesh is smaller than  $2\varepsilon$ . As X is homotopy equivalent to a circle and Y is contractible, f does not induce a monomorphism on fundamental groups of X and Y. This is easily seen to contradict both  $(\mathrm{F}n\mathrm{HE}_{\mathcal{U}})$  and  $(\mathrm{A}n\mathrm{S}_{\mathcal{U}})$  for n>1.

It is easy to modify the above example is such a way that X and Y are n-dimensional Nöbeling manifolds.

**Lemma 2.7.** If a map into an at most n-dimensional ANE(n)-space satisfies  $(UV^{n-1})$ , then it satisfies (FnHE).

*Proof.* Let f be a  $UV^{n-1}$ -map from a space X into an ANE(n)-space Y. We will show by induction that for each  $0 \le k \le n$ , f satisfies (AnS) for polyhedral pairs (A,B) such that dim  $A \setminus B \leq k$ . Let  $(P_k)$  denote the last condition. For k=0 the assertion is obvious, as  $(UV^{n-1})$  implies that f has dense image in Y. Assume that k>0. Let  $\mathcal{U}$  be an open cover of Y. By  $(UV^{n-1})$ , there exists an open cover  $\mathcal{W}$  of Y such that for each  $W \in \mathcal{W}$  there exists  $U_W \in \mathcal{U}$  such that the inclusion of  $f^{-1}(W)$ into  $f^{-1}(U_W)$  induces zero homomorphisms on homotopy groups of dimensions less than n. Let S be an open cover whose star refines W. Let B be a subpolyhedron of an at most n-dimensional polyhedron A such that dim  $A \setminus B \leq k$ . Let maps  $\varphi \colon B \to X$  and  $\psi \colon A \to Y$  be such that  $f \circ \varphi = \psi_{|B}$ . Fix a triangulation of A such that for each simplex  $\delta$  of this triangulation  $\psi(\delta) \subset S$  for some  $S \in \mathcal{S}$ . By  $(P_{k-1})$ , we may extend  $\varphi$  over the (k-1)-dimensional skeleton of A to a map k in such a way that  $f \circ k$  is S-close to  $\psi$ . Consider an k-dimensional simplex  $\delta$  of A. Observe that k maps boundary of  $\delta$  into the inverse image  $f^{-1}(W)$  of an element W of W. Hence, k extends over  $\delta$  to a map into the inverse image  $f^{-1}(U_W)$ . Extend k in this manner over all k-dimensional simplexes of  $A \setminus B$  and observe that  $f \circ k$  is  $\mathcal{U}$ -close to  $\varphi$ . This completes the inductive step and a proof that  $(P_n)$  holds for f.

Let  $\mathcal{U}$  be an open cover of Y. We will show that  $(FnHE_{\mathcal{U}})$  is satisfied. Choose open covers  $\mathcal{V}$  and  $\mathcal{W}$  of Y such that  $\operatorname{st}_{\mathcal{V}}\operatorname{st}\mathcal{W}$  refines  $\mathcal{U}$  and condition (\*) defined in the proof of lemma 2.2 is satisfied. By [3, Theorem 2.1.12(vii)], there exist an at most n-dimensional polyhedron A and two maps  $q: Y \to A$ ,  $p: A \to Y$  such that  $p \circ q$  is  $\mathcal{V}$ -close to the identity on Y. By  $(P_n)$ , there exists a map  $r: K \to X$  such

that  $f \circ r$  is  $\mathcal{V}$ -close to p. Let  $g = r \circ q$ . By the construction,  $f \circ g$  is st  $\mathcal{V}$ -close to the identity on Y. The rest of the proof follows the proof of lemma 2.4.

# 3. Proof that $(FnHE_{\mathcal{V}})$ implies $(NH_{\mathcal{U}})$

For definitions of notions used throughout the proof we refer the reader to [7]. Let  $\mathcal{U}$  be an open cover of an n-dimensional Nöbeling manifold Y. Let f be a map from an n-dimensional Nöbeling manifold X into Y. Assume that q is an integer greater that a constant m obtained by lemma [7, 8.4] applied to n. Additionally assume that q is greater than  $36(5N+8)^{n-1}+3$ , where N is a constant obtained by theorem [7, 6.7]. By lemma [7, 8.1], there exists a closed partition  $\mathcal{Q} = \{Q_i\}_{i \in I}$  of Y that is q-barycentric and whose qth star refines  $\mathcal{U}$ . Observe that if  $\mathcal{P} = \{P_i\}_{i \in I}$  is a closed partition of X that is isomorphic to  $\mathcal{Q}$ , then by lemma [7, 8.4], there exists a homeomorphism h of X and Y that maps elements of  $\mathcal{P}$  into the corresponding elements of st<sup>m</sup>  $\mathcal{Q}$ . If  $P_i \subset f^{-1}(\operatorname{st}_{\mathcal{Q}}^q Q_i)$  for each i in I, then h is  $\mathcal{U}$ -close to f. In this case h is a homeomorphism that we are looking for. Let  $\mathcal{V}$  be an open cover of Y whose star refines  $\mathcal{Q}$ . Assume that f satisfies (FnHE $_{\mathcal{V}}$ ). We will show that there exists a closed partition  $\mathcal{P}$  of X satisfying the above stated conditions. This shall end the proof.

Our first goal is to construct an n-semiregular closed interior  $\mathcal{N}_n$ -cover of X that is isomorphic to Q and such that f maps its elements into lth stars of the corresponding elements of Q, for some constant l (we obtain l=9, but the exact value is of no importance). By proposition [7, 6.4], Q is n-semiregular. Hence there exists an anticanonical map  $\lambda$  of Q that is an n-homotopy equivalence. By  $(FnHE_{\mathcal{V}})$ , there exists a map  $Y \to X$  whose composition with f is  $\mathcal{V}$ -close to the identity. Hence there exists a map  $\hat{\lambda}$  into X whose composition with f is V-close to  $\lambda$ . Since X is strongly universal in dimension n,  $\hat{\lambda}$  can be approximated by a closed embedding  $\Lambda$  whose composition with f is st  $\mathcal{V}$ -close to  $\lambda$ . By the choice of  $\mathcal{V}$ ,  $\lambda$  is  $\mathcal{Q}$ -close to  $f \circ \Lambda$ . Hence the composition  $\lambda \circ \Lambda^{-1}$  is  $\mathcal{Q}$ -close to the restriction of f to im  $\Lambda$ . Hence  $\lambda(\Lambda^{-1}(f^{-1}(Q_i))) \subset \operatorname{st}_{\mathcal{Q}} Q_i$  for each i in I. By lemma [7, 6.16], there exists an extension of  $\lambda \circ \Lambda^{-1}$  to a map g from X to Y such that  $g(f^{-1}(Q_i)) \subset \operatorname{st}_{\mathcal{Q}}^7 Q_i$  for each i in I. This implies that g is  $\operatorname{st}^7 \mathcal{Q}$ -close to f and that  $g^{-1}(Q_i) \subset f^{-1}(\operatorname{st}_{\mathcal{Q}}^8 Q_i)$  for each i in I. Let  $R_i = g^{-1}(Q_i)$  for each i in I. By the construction,  $\mathcal{R} = \{R_i\}_{i \in I}$  is isomorphic to  $\mathcal{Q}$ . By theorem [7, 4.5], there exists a closed interior  $\mathcal{N}_n$ -cover  $\mathcal{P}_0 = \{P_i^0\}_{i \in I}$  of X that is a swelling of  $\mathcal{R}$ . By taking a small enough swelling, we may require that  $P_i^0 \subset f^{-1}(\operatorname{st}_{\mathcal{O}}^9 Q_i)$  for each  $i \in I$ . By the construction,  $\Lambda$  is an anticanonical map of  $\mathcal{P}_0$ . By lemma [7, 2.20] and by corollary [7, 5.1], the composition  $f \circ \Lambda$  is an n-homotopy equivalence, since  $f \circ \Lambda$  is Q-close to  $\lambda$  and  $\lambda$  is an n-homotopy equivalence. Since f is n-homotopy equivalence,  $\Lambda$  is n-homotopy equivalence and by the definition,  $\mathcal{P}_0$  is n-semiregular. Hence we constructed a cover  $\mathcal{P}_0$  that satisfies the following condition.

(0)  $\mathcal{P}_0 = \{P_i^0\}_{i \in I}$  is a closed star finite 0-regular *n*-semiregular interior  $\mathcal{N}_n$ -cover of X that is isomorphic to  $\mathcal{Q}$  and such that  $P_i^0 \subset f^{-1}(\operatorname{st}_{\mathcal{Q}}^9 Q_i)$  for each i in I.

Our second goal is a construction of a sequence  $\mathcal{P}_1, \mathcal{P}_2, \dots, \mathcal{P}_n$  of covers of X such that for each  $0 < k \le n$  the following condition is satisfied.

(k)  $\mathcal{P}_k = \{P_i^k\}_{i \in I}$  is a closed star finite k-regular n-semiregular interior  $\mathcal{N}_n$ cover of X that is isomorphic to  $\mathcal{Q}$  and such that  $P_i^k \subset f^{-1}(\operatorname{st}_{\mathcal{Q}}^{9(5N+8)^k}Q_i)$ for each i in I.

Observe that  $\mathcal{P} = \mathcal{P}_n$  satisfies conditions stated at the beginning of the proof. Hence a construction of such a sequence shall finish the proof.

Let  $\mathcal{F}$  be a cover of Y that refines  $\operatorname{st}^l \mathcal{Q}$  for some positive integer l < q. Let p be a positive integer such that  $2^{p-2}-1 < l \leq 2^{p-1}-1$ . By the assumption that q is big enough,  $\mathcal{Q}$  is p-barycentric. Hence by lemma [7, 6.12] and lemma [7, 6.15],  $\operatorname{st}^{2^{p-1}-1}\mathcal{Q}$  is n-contractible in  $\operatorname{st}^{2^p-1}\mathcal{Q}$ . As  $2^p-1 < 4l+3$ ,  $\mathcal{F}$  is n-contractible in  $\operatorname{st}^{4l+3}\mathcal{Q}$ . By  $(\operatorname{FnHE}_{\mathcal{V}})$ , if a cover  $\mathcal{F}$  is n-contractible in a cover  $\operatorname{st}^{4l+3}\mathcal{Q}$ , then  $f^{-1}(\mathcal{F})$  is n-contractible in  $f^{-1}(\operatorname{st}_{\mathcal{V}}\operatorname{st}^{4l+3}\mathcal{Q}) \prec f^{-1}(\operatorname{st}^{4(l+1)}\mathcal{Q})$ . Hence by theorem [7, 6.7] applied to  $\mathcal{P}_k$ , there exists a closed k-regular n-semiregular interior  $\mathcal{N}_n$ -cover  $\mathcal{P}_k$  that is isomorphic to  $\mathcal{P}_{k-1}$  and that refines  $\operatorname{st}^N f^{-1}(\operatorname{st}^{4(9(5N+8)^{k-1}+1)}\mathcal{Q})$ . By remark [7, 3.5], we may require that  $\mathcal{P}_k$  is equal to  $\mathcal{P}_{k-1}$  on the image of  $\Lambda$ . This implies that  $P_i^k \subset \operatorname{st}^{N+1} f^{-1}(\operatorname{st}^{4(9(5N+8)^{k-1}+1)}\mathcal{Q})$ , hence  $P_i^k \subset f^{-1}(\operatorname{st}^{N+1}\operatorname{st}^{4(9(5N+8)^{k-1}+1)}\mathcal{Q})$ . By lemma [7, 2.1],  $\operatorname{st}^{N+1}\operatorname{st}^{4(9(5n+8)^{k-1}+1)}\mathcal{Q} = \operatorname{st}^{(N+2)(4(9(5N+8)^{k-1})+N+1}\mathcal{Q}$  and clearly the latter exponent is not greater than  $9(5N+8)^k$ . We are done.

4. An alternative proof that  $(UV^{n-1})$  implies (NH)

It is known (see [3, Proposition 5.7.4]) that every *n*-dimensional Menger manifold M has the pseudo-interior  $\nu^n(M)$ .

**Lemma 4.1.** The class of n-dimensional Nöbeling manifolds coincides with the class of pseudo-interiors of n-dimensional Menger manifolds.

*Proof.* Apply [3, Proposition 5.7.5] and the open embedding theorem for Nöbeling manifolds [5], [7].  $\Box$ 

Next we single out one of the main particular cases in which near-homeomorphisms appear naturally.

**Proposition 4.2.** Let A be a  $\sigma Z$ -set in a Nöbeling manifold N. Then the inclusion  $N \setminus A \hookrightarrow N$  is a near-homeomorphism.

*Proof.* Apply Lemma 4.1 and [3, Proposition 5.7.7].

If for a map  $f\colon X\to Y$  the image f(X) is dense in Y (as is the case for approximately n-soft maps), then the set of nondegenerate values of f, denoted by  $N_f$ , consists, by definition, of three types of points of Y: points in  $Y\setminus f(X)$ , points whose inverse images contain at least two points, and points  $y\in Y$  for which although the inverse image  $f^{-1}(y)$  is a singleton, the collection  $f^{-1}(\mathcal{B})$  does not form a local base at  $f^{-1}(y)$  for any local base  $\mathcal{B}$  at y in Y. Note that  $N_f$  is an  $F_{\sigma}$ -subset of Y and that the restriction  $f|f^{-1}(Y\setminus N_f)\colon f^{-1}(Y\setminus N_f)\to Y\setminus N_f$  is a homeomorphism.

Our next statement extends Proposition 4.2.

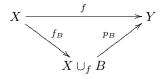
**Proposition 4.3.** Let  $f: M \to N$  be an approximately n-soft map of n-dimensional Nöbeling manifolds. If  $N_f$  is a  $\sigma Z$ -set, then f is a near-homeomorphism.

*Proof.* We follow proof of [1, Proposition 3.1]. Let  $\{\alpha_k : k \in \mathbb{N}\} \subset C(I^n, M)$  be a dense subset of embeddings of the *n*-dimensional cube into M such that  $\alpha_i(I^n) \cap \alpha_i(I^n) = \emptyset$  for each  $i, j \in \mathbb{N}$  with  $i \neq j$ .

The map  $f_0\alpha_1\colon I^n\to N$  can be approximated by a Z-embedding  $\beta_1\colon I^n\to$  $N \setminus N_{f_0}$  which is  $\mathcal{U} - n$ -homotopic to  $f_0\alpha_1$  for a sufficiently small open cover  $\mathcal{U}$  of N. Note that since  $f_0\alpha_1$  and  $f_0f_0^{-1}\beta_1$  are n-homotopic via a small "n-homotopy", the approximate n-softness of  $f_0$  implies that  $\alpha_1$  and  $f_0^{-1}\beta_1$  are n-homotopic in M (via a small "n-homotopy", where smallness is measured in N). A version of Z-set unknotting theorem [5, Theorem 2.2] produces a homeomorphism  $h_1: M \to M$ such that  $h_1\alpha_1 = f_0^{-1}\beta_1$  and  $f_0h_1$  is close to  $f_0$ . Let  $f_1 = f_0h_1$ . Requiring additionally that  $h_1$  is fixed outside of a small neighborhood of  $f_0^{-1}(f_0(\alpha_1(I^n)))$  we conclude that  $f_1^{-1}(f_1(m)) = m$  for each  $m \in \alpha_1(I^n)$ . Continuing in this manner we construct the sequence  $f_0 = f, f_1, \ldots$  of approximately n-soft maps of M into N so that  $f_{k+1} = f_k h_{k+1}$ , where  $h_{k+1} : M \to M$  is a homeomorphism fixed outside of a small neighborhood of  $f_k^{-1}(f_k(\alpha_{k+1}(I^n)))$  missing  $\bigcup \{\alpha_i(I^n): 1 \leq i \leq k\}$ . As above,  $h_{k+1}\alpha_{k+1} = f_k^{-1}\beta_{k+1}$ , where  $\beta_{k+1} \colon I^n \to N \setminus N_{f_k}$  is a Z-embedding. Observe also that  $\bigcup \{f_{k+1}(\alpha_k(I^n)) \colon 1 \leq i \leq k+1\} \subseteq N \setminus N_{f_{k+1}}, \ f_k^{-1}(f_k(m)) = m \text{ for each } m \in \bigcup \{\alpha_i(I^n) \colon 1 \leq i \leq k\} \text{ and } f_k | \bigcup \{\alpha_i(I^n) \colon 1 \leq i \leq k-1\} = 0$  $f_{k-1} \cup \{\alpha_i(I^n): 1 \leq i \leq k-1\}$ . If the homeomorphism  $h_{k+1}$  is chosen sufficiently close to  $h_k$ , then the map  $g = \lim\{f_k\}: M \to N$  will be approximately n-soft. Note that  $g^{-1}(N_q) \cap \bigcup \{\alpha_k(I^n) : k \in \mathbb{N}\} = \emptyset$ . It then follows from the choice of the set  $\{\alpha_k(I^n): k \in \mathbb{N}\}\$  that  $g^{-1}(N_g)$  is a  $\sigma Z$ -set in M.

By Proposition 4.2, both inclusions  $i\colon M\setminus g^{-1}(N_g)\hookrightarrow M$  and  $j\colon N\setminus N_g\hookrightarrow N$  are near-homeomorphisms. Therefore, g (and hence f) can be approximated by a homeomorphism of the form  $H_jg_0H_i^{-1}$ , where  $H_i$  approximates  $i,H_j$  approximates j and  $g_0=g|(M\setminus g^{-1}(N_g))\colon M\setminus g^{-1}(N_g)\to N\setminus N_g$ .

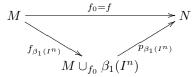
For a map  $f \colon X \to Y$  and a closed subset  $B \subseteq Y$  the adjunction space  $X \cup_f B$  is defined to be the disjoint union of  $X \setminus f^{-1}(B)$  and B topologised as follows:  $X \setminus f^{-1}(B)$  itself is open and  $f^{-1}(U \setminus B) \cup (U \cap B)$  for  $U \subseteq Y$  open in Y. Obviously, the map f factors as follows:



where  $f_B\colon X\to X\cup_f B$  coincides with the identity on  $X\setminus f^{-1}(B)$  and with f on  $f^{-1}(B)$  and  $p_B\colon X\cup_f B\to Y$  coincides with the identity on B and with f on  $X\setminus f^{-1}(B)$ . If f is an approximate n-soft map between Polish ANE(n)-spaces and B is a (strong) Z-set in Y, then  $X\cup_f B$  is also a Polish ANE(n)-space containing B as a (strong) Z-set and both  $f_B$  and  $p_B$  are approximately n-soft. If, in addition, X and Y are n-dimensional Nöbeling manifolds, then so is  $X\cup_f B$ .

Proof of  $(UV^{n-1}) \Rightarrow (NH)$ . Proof follows the proof of [1, Characterization Theorem]. Let  $\{\beta_k \colon k \in \mathbb{N}\} \subset C(I^n, M)$  be a dense subset of embeddings of the n-dimensional cube into N such that  $\beta_i(I^n) \cap \beta_j(I^n) = \emptyset$  for each  $i, j \in \mathbb{N}$  with  $i \neq j$ .

Let  $f_0 = f$  and consider the above described factorization of f through the adjunction space, i.e.  $f_0 = p_{\beta_1(I^n)} f_{\beta_1(I^n)}$ 



Note that  $N_{f_{\beta_1(I^n)}}\subseteq \beta_1(I^n)$ . Since every compact subset of an n-dimensional Nöbeling manifold is a strong Z-set (see [3, Corollary 5.1.6]), it follows from Proposition 4.3 that there exists a homeomorphism  $h\colon M\to M\cup_{f_0}\beta_1(I^n)$  approximating  $f_{\beta_1(I^n)}$  as close as we wish. Let  $f_1=p_{\beta_1(I^n)}h$ . Clearly,  $f_1$  approximates  $f_0$  and is one to one over  $\beta_1(I^n)$ . Proceeding in this manner we construct a sequence  $\{f_k\colon k\in\mathbb{N}\}$  of approximately n-soft maps (of M into N) such that  $f_{k+1}$  approximates  $f_k$  and is one to one over  $\bigcup\{\beta_i(I^n)\colon 1\leq i\leq k+1\}$ . If  $f_{k+1}$  is sufficiently close to  $f_k$ , then the limit map  $g=\lim\{f_k\}\colon M\to N$  will be approximately n-soft. Since g is one to one over  $\bigcup\{\beta_k(I^n)\colon k\in\mathbb{N}\}$  it follows from the choice of the collection  $\{\beta_k\}$  that  $N_g$  is a  $\sigma Z$ -set in N. By Proposition 4.3, g, and hence f, is a near-homeomorphism.

## References

- M. Bestvina, P. Bowers, J. Mogilsky, J. Walsh, Characterization of Hilbert space manifolds revisited, Topology Appl. 24 (1986), 53–69.
- [2] T.A.Chapman, S. Ferry, Approximating homotopy equivalences by homeomorphisms, Amer. J. Math. 101 (1986), 53-69.
- [3] A. Chigogidze, Inverse Spectra, North Holland, Amsterdam, 1996.
- [4] S. Ferry, The homeomorphism group of a compact Hilbert manifold is an ANR. Ann. Math., 106 (1977), 101–119.
- [5] M. Levin, Characterizing Nöbeling spaces, available onlite at http://front.math.ucdavis.edu/math.GT/0602361
- [6] M. Levin, A Z-set unknotting theorem for Nöbeling manifolds, available online at http://front.math.ucdavis.edu/math.GT/0510571.
- [7] A. Nagórko, Characterization and topological rigidity of Nöbeling manifolds, PhD Thesis, Warsaw University, 2006. Available online at http://arxiv.org/abs/math/0602574.
- [8] J. E. West, Open problems in infinite-dimensional topology, 524–597; in: Open Problems in Topology, North Holland, Amsterdam, 1990 (edited by J. van Mill, G.M. Reed).

DEPARTMENT OF MATHEMATICS AND STATISTICS, UNIVERSITY OF NORTH CAROLINA AT GREENS-BORO, 383 BRYAN BLDG, GREENSBORO, NC, 27402, USA

 $E ext{-}mail\ address: chigogidze@uncg.edu}$ 

Department of Mathematics and Statistics, University of North Carolina at Greensboro,  $387~\mathrm{Bryan~Bldg}$ , Greensboro, NC,  $27402,~\mathrm{USA}$ 

E-mail address: a\_nagork@uncg.edu